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Abstract

As agreed upon by PEER researchers in mid-February 2010 at the Richmond Field Station,
the original implementation of reliability modules within the OpenSees finite element soft-
ware framework is unsustainable. This is due primarily to a rigid software design that made
it difficult for developers to implement new or modify existing reliability, optimization, and
sensitivity modules, and secondarily due to an inflexible format adopted for OpenSees/Tcl
input commands in a reliability analysis. Small improvements in the software design and in-
put commands have been made sporadically over the last few years; however, these changes,
along with the addition of modules with a singular focus, have brought the reliability modules
to a stand still. Now, wholesale design changes must be made in order to bring the reliabil-
ity modules to a working state and to make the framework flexible for future extensions in
probabilistic finite element analysis with OpenSees.
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Item 1

Introduction and Sanity Check

1.1 Introduction

There exists a significant amount of information in the literature on how to perform reliabil-
ity, sensitivity, and optimization analyses for a variety of problems. There are also a plethora
of software tools to enable computation of numerical solutions for complex problems. How-
ever, there are still very few software platforms that are enabled with multiple functionalities.
Specifically, it is of interest in performance-based earthquake engineering (PBEE) to perform
nonlinear finite element analysis in the presence of uncertainties. Therefore, it is desirable to
have a finite element analysis platform that has the ability to compute response sensitivities
directly, solve reliability problems with specified uncertain quantities in the models, and
solve optimization problems that consider response quantities in the objective.

The OpenSees framework is the only tool with these capabilities; however, it contains
several legacy implementations that limit the ability to extend the framework to truly be an
object-oriented code for future users and developers. The original finite element reliability
analysis code was added by Haukaas and Der Kiureghian []. This effort was the first time past
work on CalRel, FERUM, FEAP, etc. were combined with the new object-oriented frame-
work in OpenSees. However, there were several major issues preventing the maintenance
and extensibility of the code. They are summarized briefly here.

• Over-reliance on Tcl. The Tcl interpreter was used as a vessel for communication
between all of the reliability modules, often through the use of TclEval commands
that would compile even after implementations had changed. Additionally, the limit
state functions, gradients, and several of the analysis routines were directly interwoven
with Tcl commands that prevented any future changes to either the Tcl interpreter or
a shift to a different interpreter (such as Python or Matlab).

• Code duplication and lack of class hierarchy. While the class structure was established
initially following traditional object-oriented software patterns, a majority of the base
classes were abstract with only a single concrete class. These concrete classes usually
contained only single methods. The result was significant code duplication between
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classes, primarily related to the need to parse limit state functions during evaluation
and for the purposes of gradient computations. Additional efforts at extending the
reliability modules (such as TELM, optimization modules, etc.) unfortunately dupli-
cated the existing code, often resulting in two similar but conflicting implementations
of the same base class or derived classes.

• Sequential “black box” analysis codes that prevent user interaction during and after
analysis. The original code base largely followed a sequential script or function ap-
proach whereby the properties of the analysis were established, the analysis was run,
and the output dumped to a file. This limitation is counter to the scripting and control
that the user has over traditional OpenSees models and analyses.

• Occasional errors in code or compiler-specific compilation issues. There were several
bugs in the code that prohibited only select options from running (did not effect the
overall reliability modules), such as some of the random variable parameter definitions,
SORM, etc. In addition, as changes were made to OpenSees, numerous portions of the
reliability modules were broken due to some of the issues mentioned above.

1.2 Changes in Tcl Interpreter Commands and Core

Classes

The following table provides a summary of the changes made to the class structure. Note
that a majority of the original class hierarchy was retained. The majority of changes were
made to the function evaluator classes, gradient classes, and performance function classes.

Table 1.1: Changes to reliability class structure.

Old Name New Name Notes

GFunEvaluator (BasicGFunEvaluator,
OpenSeesGFunEvaluator, TclGFunEvaluator,
MatlabGFunEvaluator)

FunctionEvaluator See Chapter 4

GradGEvaluator (OpenSeesGradGEvaluator,
FiniteDifferenceGradGEvaluator)

GradientEvaluator See Chapter 5

ProbabilityTransformation (NatafProbability-
Transformation)

ProbabilityTransformation –

FindDesignPointAlgorithm (SearchWithStepSize-
AndStepDirection)

FindDesignPointAlgorithm –

SearchDirection (GradientProjectionSearchDirec-
tion, HLRFSearchDirection, PolakHeSearchDirec-
tionAndMeritFunction, SQPSearchDirectionAnd-
MeritFunction)

SearchDirection See Chapter 9

StepSizeRule (FixedStepSizeRule, ArmijoStep-
SizeRule)

StepSizeRule –
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MeritFunctionCheck (AdkZhangMeritFunc-
tionCheck, CriteriaReductionMeritFunc-
tionCheck, PolakHeSearchDirectionAndMer-
itFunction, SQPSearchDirectionAndMeritFunc-
tion)

MeritFunctionCheck See Chapter 9

RandomNumberGenerator (CStdLibRandGener-
ator)

RandomNumberGenerator –

ReliabilityConvergenceCheck (StandardReliabili-
tyConvergenceCheck, OptimalityConditionRelia-
bilityConvergenceCheck)

ReliabilityConvergenceCheck –

RootFindingAlgorithm (ModifiedNewton-
RootFindingAlgorithm, SecantRootFindin-
gAlgorithm)

– See Chapter 9

FindCurvaturesAlgorithm (FirstPrincipalCurva-
ture)

FindCurvatures See Chapter 6

RandomVariable (Normal, Lognormal, etc.) RandomVariable –
CorrelationCoefficient CorrelationCoefficient –
PerformanceFunction PerformanceFunction See Chapter 3
RandomVariablePositioner – Deprecated, see

Chapter 2
ParameterPositioner – Deprecated, see

Chapter 2
Filter (StandardOscillatorFilter) Filter –
ModulatingFunction (ConstantModulating-
Function, GammaModulatingFunction, Trape-
zoidalModulatingFunction)

ModulatingFunction –

Spectrum (NarrowBandSpectrum, PointsSpec-
trum, JonswapSpectrum)

Spectrum –

TimeSeries (DiscretizedRandomProcessSeries,
SimulatedRandomProcessSeries)

TimeSeries –

The following table provides a summary of the changes made to the Tcl interpreter
commands. As with the class hierarchy, the changes to the interpreter commands are minimal
to allow old input files to be used after making some key changes.

Table 1.2: Changes to reliability Tcl commands.

Old Command New Command Notes

randomVariable randomVariable Arguments have
changed

rvReduction – Deprecated
correlate, correlateGroup, correlationStructure correlate, correlatedGroup –
randomVariablePositioner parameter No more po-

sitioners, see
Chapter 2

parameterPositioner parameter No more po-
sitioners, see
Chapter 2

DiscretizedRandomProcess, SimulatedRandom-
Process

DiscretizedRandomProcess, Sim-
ulatedRandomProcess

–

3



OpenSees Reliability,
Sensitivity, and Optimization

PEER Research, Summer 2012
M. H. Scott and K. R. Mackie

modulatingFunction modulatingFunction –
filter filter –
spectrum spectrum –
performanceFunction performanceFunction See Chapter 3
probabilityTransformation probabilityTransformation –
gFunEvaluator functionEvaluator See Chapter 4
gradGEvaluator gradientEvaluator See Chapter 5
searchDirection searchDirection –
stepSizeRule stepSizeRule –
rootFinding rootFinding See Chapter 9
meritFunctionCheck meritFunctionCheck –
reliabilityConvergenceCheck reliabilityConvergenceCheck –
startPoint startPoint –
findDesignPoint findDesignPoint –
randomNumberGenerator randomNumberGenerator –
findCurvatures findCurvatures See Chapter 6

1.3 Linear-Elastic Frame Reliability Analysis

After significant time away from OpenSees development, my first task was to become familiar
again with uncertainty modeling and sensitivity and reliability analysis in OpenSees. In the
spring quarter of 2010 I taught CE 588, Probability-Based Analysis and Design, in which
I provided students with a simple script for FORM analysis. The design point is found by
the Hasofer-Lind algorithm with the Nataf transformation between x- and u-space. During
the final week of the quarter, we discussed finite element reliability analysis, which was
demonstrated by linking this MATLAB-based FORM analysis with a linear-elastic frame
analysis program written by those students who took CE 585, Matrix Structural Analysis,
in a previous fall quarter.

1.3.1 Model Definition

An in-class example I used is shown in Figure 1.1. All members have E = 30000 ksi. Column
members 1 and 3 have A = 29 in2 and I = 2000 in4, while girder member 2 has A = 25
in2 and I = 1500 in4. To simulate uncertain response of the frame, the following random
variables are mapped to the frame model parameters described therein:

X1 – elastic modulus of both column members (elements 1 and 3)

µ = 30000 ksi, σ = 3000 ksi, Lognormal PDF

X2 – lateral load at node 2

µ = 25 kip, σ = 5 kip, Normal PDF

X3 – X-coordinate of node 1

µ = 0 in (relative to origin), σ = 1 in, Normal PDF
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X4 – distributed gravity load on girder (element 2)

µ = 0.1 kip/in, σ = 0.02 kip/in, Normal PDF

All random variables are uncorrelated.

25 kip

0.1 kip/in

240 in

144 in

1

2 3

4

3

2

1

Figure 1.1: Portal frame example for finite element reliability analysis.

After a straightforward OpenSees model definition of the frame shown in Figure 1.1, the
following Tcl script commands are issued in order to model uncertainty. First, parameters are
created and mapped to the properties listed above, as shown in Figure 1.2. Note that non-
sequential parameter tags are used to emphasize the departure from requiring all reliability
objects be numbered with sequential tags starting at one.

parameter 12 element 1 E

addToParameter 12 element 3 E

parameter 25 loadPattern 1 loadAtNode 2 1

parameter 3 node 1 coord 1

parameter 45 loadPattern 1 elementLoad 2 wy

Figure 1.2: Creation of parameter objects in OpenSees/Tcl script.

Next, random variable objects are created using the mean values, standard deviations,
and probability distributions previously listed. The relevant script commands are shown in
Figure 1.3 with non-sequential tags assigned to the random variables. The Tcl variables E,
P, and w are previously defined in the script with their respective mean values. Note that the
uniform girder load, w, is defined with a negative value so that its direction of application is
correct within the local coordinate system of element 2. In addition, a Tcl array, param is
defined in order to establish to which parameter tag each random variable is associated.

The final step of the mapping between reliability and finite element domains is the cre-
ation of random variable positioners. As shown in Figure 1.4, the creation of random variable
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randomVariable 62 lognormal $E [expr 0.1*$E]; set param(62) 12

randomVariable 32 normal $P [expr 0.2*$P]; set param(32) 25

randomVariable 89 normal 0 1; set param(89) 3

randomVariable 41 normal $w [expr abs(0.2*$w)]; set param(41) 45

Figure 1.3: Creation of random variable objects in OpenSees/Tcl script.

position objects is accomplished via a Tcl foreach loop over the names of the param array
created in Figure 1.3. The tag assigned to each random variable position is inconsequential,
so the loop induction variable tag is used for this purpose.

foreach tag [array names param] {

randomVariablePositioner $tag -rvNum $tag -parameter $param($tag)

}

Figure 1.4: Positioning of random variables in FE domain.

The looping structure shown in Figure 1.4 may seem awkward; however, it is necessary
to maintain the theme of allowing non-sequential tag assignments to objects of the reliability
domain.

1.3.2 Reliability Analysis Results

Two performance functions are defined for this example. The first places a 0.15 in limit on
the lateral displacement of node 2, while the second places a 1500 kip-in limit on the moment
reaction at node 1. In OpenSees, the following reliability commands are issued

performanceFunction 76 ‘‘0.15-\[nodeDisp 2 1\]’’

performanceFunction 23 ‘‘1500.0+\[sectionForce 1 1 2\]’’

A positive sign is used in the second performance function to account for the bending mo-
ment sign convention within the local coordinate system of the element (each member is
represented by a force-based beam-column element with three-point Lobatto integration
and elastic sections). Note that the nodeDisp and sectionForce commands are used in the
performance functions, which is a departure from the original performance function syntax of
u 2 1 and rec element 1 section 1 force 2 which required additional, unnecessary pars-
ing and recorder creation within the reliability core of OpenSees. The use of commands such
as nodeDisp and sectionForce lets Tcl do the parsing of performance functions (rather
than developers) and allows far more flexibility in performance function definitions. This
issue will be addressed extensively in subsequent items of this report. Again, non-sequential
tags are used in defining the performance functions.

The following reliability analysis options were declared.
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randomNumberGenerator CStdLib

probabilityTransformation Nataf -print 3

reliabilityConvergenceCheck Standard -e1 1.0e-2 -e2 1.0e-2 -print 1

gFunEvaluator OpenSees -analyze 1

gradGEvaluator FiniteDifference

searchDirection iHLRF

meritFunctionCheck AdkZhang -multi 2.0 -add 50 -factor 0.5

stepSizeRule Armijo -maxNum 10 -base 0.5 -initial 0.3 5

startPoint Mean

findDesignPoint StepSearch -maxNumIter 30

Note in particular that the finite difference option is employed to find the gradient of the
g-function. In subsequent report items, the direct differentiation method will be used to this
end.

The first order reliability analyses converged to the following reliability indices and sen-
sitivity vectors:

Performance Function 23

beta = 2.2094816

alpha(32) = 0.9814942, gamma(32) = 0.9814942

alpha(41) = 0.1593380, gamma(41) = 0.1593380

alpha(62) = 0.1062089, gamma(62) = 0.1062089

alpha(89) = 0.0003440, gamma(89) = 0.0003440

Performance Function 76

beta = 2.4495696

alpha(32) = 0.9011882, gamma(32) = 0.9011882

alpha(41) = -0.0054455, gamma(41) = -0.0054455

alpha(62) = -0.4333630, gamma(62) = -0.4333630

alpha(89) = 0.0051653, gamma(89) = 0.0051653

Figure 1.5: OpenSees FERA results for linear-elastic frame example.

This output was obtained using the nested loops shown in Figure 1.6, where the use
of Tcl commands is emphasized in obtaining analysis results. The commands getLSFTags

and getRVTags return Tcl lists of performance (limit state) function tags and random vari-
able tags, respectively. FORM analysis results are obtained via the betaFORM and alphaFORM

commands which each take a performance function tag as the first argument. The alphaFORM
command takes an additional argument for the random variable tag, which is a safer imple-
mentation than having Tcl return the entire vector because there is no guarantee that the
returned vector would have the expected ordering. An analogous command, gammaFORM, is
defined in order to return the scaled version of the sensitivity vector proposed by Haukaas
and ADK. Also note that the order of performance functions returned by the getLSFTags

command does not reflect the order in which the functions were defined in the script.
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foreach perf [getLSFTags] {

puts "Performance Function $perf"

puts "beta = [betaFORM $perf]"

foreach rv [getRVTags] {

puts " alpha($rv) = [alphaFORM $perf $rv]"

}

}

Figure 1.6: Tcl loops for printing FORM analysis results.

The use of script-level commands such as those shown in Figure 1.6 gives the user much
more flexibility in creating custom output than the fixed-format text file that is currently
generated. These issues will be emphasized later in the report.

For sanity’s sake, the OpenSees FERA results shown in Figure 1.5 are compared with
those obtained in Figure 1.7 via the aforementioned MATLAB scripts developed for CE 588.

beta = 2.443225

pf = 0.007278

x*(1) = 26785.499590; alpha(1) = -0.438564

x*(2) = 35.978264; alpha(2) = 0.898669

x*(3) = 0.012543; alpha(3) = 0.005134

x*(4) = -0.100265; alpha(4) = -0.005421

beta = 2.204121

pf = 0.013758

x*(1) = 30712.408350; alpha(1) = 0.107739

x*(2) = 35.814889; alpha(2) = 0.981334

x*(3) = 0.000667; alpha(3) = 0.000302

x*(4) = -0.092978; alpha(4) = 0.159300

Figure 1.7: Home-brewed MATLAB FERA output for linear-elastic frame example.

There is only a slight difference in the OpenSees and MATLAB results, most likely due
to discrepancies in the transformation of lognormal RV 1, the elastic modulus of members 1
and 3.1 For the case that all four random variables are normally distributed, identical results
are obtained.

1I am certain the OpenSees results are more “reliable” than the MATLAB code I threw together.
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1.4 Changes in OpenSees C++ Code

In this section, as will be the case for all items in this report, implementation changes and
additions to the OpenSees FE and reliability core are briefly described. The following changes
were made in order to perform or facilitate the linear-elastic frame reliability analysis.

1.4.1 Node Parameters

In attempting to map RV 3 to the X-coordinate of node 1, I found that there was an empty
if-statement in TclParameterCommands.cpp for the case of node parameters. The following
code was added:

else if (strstr(argv[2],"node") != 0) {

if (argc < 4) {

opserr << "WARNING parameter -- insufficient number of arguments

for parameter with tag " << paramTag << ’\n’;

return TCL_ERROR;

}

int nodeTag;

if (Tcl_GetInt(interp, argv[3], &nodeTag) != TCL_OK) {

opserr << "WARNING parameter -- invalid node tag\n";

return TCL_ERROR;

}

// Retrieve element from domain

theObject = (DomainComponent *) theTclDomain->getNode(nodeTag);

argStart = 4;

}

1.4.2 Uniform Member Loads

When mapping RV 4 to the uniformly distributed member load on element 2, I found that
only member point loads were “parameterizable.” This was easily fixed by adding an “or”
clause for “elementLoad” (shown below) in the setParameter method of the LoadPattern
class

else if (strstr(argv[0],"elementPointLoad") != 0 ||

strstr(argv[0],"elementLoad") != 0) {

if (argc < 3)

return -1;
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RVisRandomProcessDiscretizer = false;

int eleNumber = atoi(argv[1]);

ElementalLoad *theEleLoad = 0;

ElementalLoadIter &theEleLoadIter = this->getElementalLoads();

while ((theEleLoad = theEleLoadIter()) != 0) {

int eleTag = theEleLoad->getElementTag();

if (eleNumber == eleTag) {

return theEleLoad->setParameter(&argv[2], argc-2, param);

}

}

return -1;

}

The “elementPointLoad” clause was left in the code for legacy despite the fact the all element
loads are mapped in the same fashion.

10



OpenSees Reliability,
Sensitivity, and Optimization

PEER Research, Summer 2012
M. H. Scott and K. R. Mackie

Item 2

Parameterization Framework

Parameterization framework. Deleting old positioners, etc.
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Item 3

Pure Virtual Performance Function

Class

The previous design of the GFunEvaluator and LimitStateFunction classes has many calls
to the Tcl API in the base class when there are subclasses that have nothing to do with
Tcl, e.g., the existing MATLAB g-function evaluator and possible new evaluator based on
other scripting languages such as Python. Additional methods specific to TELM analysis
have appeared in the interface, not all of which are applicable to every type of probabilistic
finite element analysis. In addition, the current implementation of performance functions
(previously only g-functions) is based entirely on character-by-character parsing that affects
GFunEvaluator, LimitStateFunction, and GradGEvaluator. To separate the interface from
the implementation, and to allow for future development of the reliability, sensitivity, and
optimization modules, an abstract base class is proposed for all performance functions. The
current LimitStateFunction functionality was then moved to a concrete subclass and all of
the Tcl-dependency was removed. In addition, two concrete subclasses are created to handle
constraint and objective functions for optimization. All of the performance function classes
are now container classes for the function strings themselves and do not operate on them
directly or indirectly. The following chapter describes to new abstract class for function
evaluation. These core changes will be transparent to a user of OpenSees reliability.
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Item 4

Pure Virtual Function Evaluator Class

As mentioned in the previous chapter, the current design of the GFunEvaluator class has
many calls to the Tcl API in the base class when there are subclasses that have nothing to do
with Tcl, e.g., the existing MATLAB g-function evaluator and possible new evaluator based
on other scripting languages such as Python. The specific parsing of performance functions
and over-reliance on Tcl for making calls to other reliability and OpenSees domain commands
has caused some issues with maintenance and extensibility of the code base. Therefore, an
abstract base class is proposed for function evaluation and all of the existing calls to the Tcl
API are shipped to a concrete subclass. The implementation depends solely on Tcl API calls
and does not require parsing for either function or gradient evaluation. In addition, concrete
subclass templates were added for future interpreter languages such as Matlab and Python.
These core changes will be transparent to a user of OpenSees reliability.

Need to talk about new “storage” methods now part of FunctionEvaluator, and poten-
tially the new Storage classes themselves.

4.1 Over-Reliance on Tcl

With an eventual goal of having OpenSees reliability analysis tied to scripting languages
such as Python and MATLAB just as well as it currently is to Tcl, it does not make software
engineering sense to have Tcl-related method names and formal arguments in what was
intended to be a generic base class, GFunEvaluator. For example, the base class constructor
takes a pointer to a Tcl interpreter object

GFunEvaluator(Tcl_Interp *theTclInterp,

ReliabilityDomain *theReliabilityDomain,

Domain *theOpenSeesDomain);

This implies that every subclass that is not Tcl-related will have to pass a null pointer for
the first argument to the constructor. In addition, there is a base class method to set current
values of all random variables as variables in the Tcl namespace

int setTclRandomVariables(const Vector &x);
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Although this is a very useful method, it should be private to each subclass where such
an operation is needed. To drive the point home further, there are also methods to parse
reliability syntax for translation to Tcl syntax

int nodeTclVariable(int nodeNumber, int direction,

char* dispOrWhat, char* varName, char* arrName);

int elementTclVariable(int eleNumber, char* varName, char* restString);

As alluded to in Item 7, another goal of this project is to remove parsing of reliability
syntax from the OpenSees reliability core and instead use the more robust functions provided
by the chosen parsing language, e.g., Tcl. Finally, the only pure virtual method in the
GFunEvaluator class takes Tcl-based arguments

virtual int tokenizeSpecials(TCL_Char *theExpression, Tcl_Obj *paramList) = 0;

It could be impossible for non-Tcl subclasses to provide a meaningful implementation of this
method because of the second formal argument.

4.2 Current Class Functionality

The current class structure of GFunEvaluator and its subclasses reflect the desired software
design; however, the base class methods mentioned in the previous section nullify these
intentions. As shown in Figure 4.1, there are currently four subclasses of GFunEvaluator

• BasicGFunEvaluator – This class basically does nothing as it simply returns 0 for the
tokenizeSpecials() method and does not overwrite any of the base class implementations
for g-function evaluation.

• TclGFunEvaluator – This class is intended for evaluation of a g-function contained
in a user-specified Tcl script. It implements the tokenizeSpecials() method by pars-
ing the OpenSees reliability syntax for node displacements (u 2 1), element forces
(rec element 1 section 1 force 2), etc. then calling the base class methods de-
scribed in the previous section in order to set variables in the Tcl namespace. This
class also overrides the runGFunAnalysis() method by invoking the reset command
on the OpenSees domain, updating all random variables with their current realizations,
then calling the Tcl EvalFile function with the filename of the user’s Tcl script.

• OpenSeesGFunEvaluator – This class is intended for evaluation of the g-function
via a simple call to the analyze OpenSees command. Its implementation of tokenize-
Specials is identical to that of the TclGFunEvaluator class, as is the implementation
of runGFunAnalysis() with the exception that the analyze command is invoked in
OpenSees using the Tcl Eval function with the user-specified number of steps and
time step. The overloaded constructor that takes a filename seems to make the TclGFu-
nEvaluator class obsolete??
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• AnalyzerGFunEvaluator – This class was introduced for TELM analysis, and in
the process, several methods were added to the base class GFunEvaluator interface.
These methods are specific only to TELM analysis and should be removed from the
base class interface.

• TclMatlabGFunEvaluator – This class is deprecated; however, its intention was to
use MATLAB in combination with OpenSees in order to evaluate a g-function.

TclMatlabGFunEvaluatorBasicGFunEvaluator

OpenSeesGFunEvaluatorTclGFunEvaluator

<<interface>>

GFunEvaluator

+tokenizeSpecials()

AnalyzerGFunEvaluator

Figure 4.1: Current class structure of GFunEvaluator.

4.2.1 Difference Between runGFunAnalysis and evaluateG

This is more or less a note to self, but the runGFunAnalysis() method invokes operations
on the finite element domain (reset and analyze) in order to prepare for evaluation of the
limit state function, which is accomplished by calling the evaluateG() method. If we move
toward more script-level control of reliability analysis, would the runGFunAnalysis() method
become obsolete?

4.3 Proposed Changes

From inspection of the current design, the following changes to the GFunEvaluator class
hierarchy are proposed in order to make the design more flexible and extensible for current
and future scripting languages:

1. Remove the pointers to Tcl Interp and ReliabilityDomain objects from the formal
argument list of the GFunEvaluator class.

2. For legacy’s sake, move the parsing of expressions like u 2 1 from the base class in to
the currently empty BasicGFunEvaluator class.
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3. Since their implementations are so similar, combine the TclGFunEvaluator and OpenSeesG-
FunEvaluator classes in to a single Tcl-based class. In doing so, we should take full
advantage of the Tcl API for evaluating g-function expressions.

4. Remove the TELM methods from the base class interface and let them reside only in
the AnalyzerGFunEvaluator subclass.

5. Provide a skeletal subclass for Python-based g-function evaluation.

4.3.1 Virtual Methods

The first step to accomplishing the proposed changes is to determine which methods should
be (pure) virtual in the GFunEvaluator abstract base class. Instead of the tokenizeSpe-
cials() method being pure virtual, it may be more intuitive to make the runGFunAnalysis()
and evaluateG() methods pure virtual. The tokenizeSpecials() method can be virtual with
a default implementation of do-nothing. The signatures of these methods are shown in
Figure 4.2.

virtual int runGFunAnalysis(const Vector &x) = 0;

virtual double evaluateG(const Vector &x) = 0;

virtual int tokenizeSpecials(const char *expression) {return 0;}

Figure 4.2: Virtual methods for the proposed changes to the GFunEvaluator class.
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Item 5

Consistent Gradient and Hessian

Class Implementations

The key change was to completely separate the gradient and hessian classes from the prob-
ability transformation, design point algorithm, and any Tcl calls. Therefore, the current
gradient and hessian classes operate exactly as they should, computing the partial deriva-
tives of any performanceFunction without assumptions on whether the variables are random
variables, limit state function parameters, etc. The consequence of this generality is that
the size of the gradient vector is potentially different than the size of the gradient vector,
for example, required by the design point algorithm for converging to the design point (by
definition defined by the size of random variable space). However, the gradient vector is now
rapidly resized by querying the parameter class.

The gradient and hessian classes do not perform any parsing of the performanceFunctions
and do not, by themselves, evaluate the performanceFunction. Calls are made directly to the
functionEvaluator to set variable values in the interpreter of choice, followed by an analysis
to compute the results necessary for evaluating the performanceFunction. It is important
to note that due to the parameterization framework, it is also not necessary to pass around
vectors and matrices containing realizations of variables, gradients, etc. This approach
eliminates a considerable amount of overhead from previous versions of the reliability code
base. Another important note is that the gradient computations can be omitted entirely if
the user specifies an analytic gradient expression (see Chapter 7).

5.1 Gradient

There are currently two concrete subclasses of the Gradient base class, FiniteDifference-
Gradient and ImplicitGradient. These two classes perform similar activities to previous
implementations, but with less code duplication. The FiniteDifferenceGradient perturbs
individual parameters to form the gradient vector. However, the perturbations now come
directly from the Parameter class and are therefore specific to the type of parameter being
considered. The ImplicitGradient class now enables previous functionality associated with
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the direct differentiation method (DDM), but also enables future types of analysis because
it is completely general in it’s implementation. This is accomplished through the calls to the
getSensitivity method of the Parameter classes. The different derived classes of parameters
may perform different computations to achieve this sensitivity calculation (for example, the
parameter could point to an external function that can compute it’s own sensitivities). Cur-
rently this is directly associated with current hierarchy of reliability calls already established
in the previous version of the code. For example, sensitivity of nodal displacement would be
obtained by calls from the Parameter class to getDispSensitivity().

As with previous implementations, the implicit gradient is actually performing a finite
difference scheme on the performanceFunction to uncover the ∂g

∂u
in ∂g

∂u

∂u

∂θ
. The analytic

gradient expression can be used to circumvent the need for this finite difference computation.
In addition, this scheme implies you cannot have an explicit parameter appear in the same
performanceFunction as an implicit parameter. For example, if there are two parameters:
θ1 is modulus E and θ2 is a nodal displacement, then g(θ1, θ2) = θ1 + θ2 is not a viable
performanceFunction. The implicit computation would need to consider ∂g

∂θ1

+ ∂g

∂u

∂u

∂θ1

. Such
a problem can be solved using FiniteDifferenceGradient.

5.2 Hessian

There is currently only one concrete subclass of the Hessian base class, FiniteDifferenceHes-
sian. As with FiniteDifferenceGradient, the hessian obtains the perturbations directly from
the parameters. The diagonal terms of the hessian matrix are obtained using a central dif-
ference approximation whereas the off-diagonal terms are obtained from a forward difference
approximation.

5.3 Transformations

An important consequence of the implementation is that the partial derivatives are with
respect to the original performanceFunction parameters. Therefore, whenever the gradient
or hessian is required in transformed space (i.e., in standard normal space for the design
point algorithm), vector/matrix requires a transformation. Remaining consistent with the
separation of base classes in the new reliability code, any such transformations would be
performed only the subclasses requiring specific functionality. The transformation of the
gradient to standard normal space is well understood using the Jacobian.

∇xgi = [
∂gi

∂x1

∂gi

∂x2
...

∂gi

∂xn

] (5.1)

∇uGi = ∇xgiJx,u (5.2)

where gi is the ith limit state function in random variable space x and Gi is the ith limit
state function in standard normal space u.
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However, the transformation of the hessian to standard normal space is not a simple task
when the transformation is not linear (which is the case for most of the random variables
and probability transformations). Transformation of the hessian can be accomplished by
combination of terms:

HuGi = JT
x,uHxgiJx,u + ∇xgi∇uJx,u (5.3)

The transformation of the gradient to standard normal space is performed by the design
point algorithm and other analysis modules as necessary (e.g., FOSM). The abbreviated
code to accomplish this is illustrated below.

result = theGradientEvaluator->computeGradient(gFunctionValue);

Vector temp_grad = theGradientEvaluator->getGradient();

// map gradient from all parameters to just RVs

for (int j = 0; j < numberOfRandomVariables; j++) {

int param_indx = theReliabilityDomain->getParameterIndexFromRandomVariableIndex(j

(*gradientInOriginalSpace)(j) = temp_grad(param_indx);

}

// Get Jacobian x-space to u-space

result = theProbabilityTransformation->getJacobian_x_to_u(*Jxu);

// Gradient in standard normal space

gradientInStandardNormalSpace->addMatrixTransposeVector(0.0, *Jxu, *gradientInOriginalSpace,

The transformation of the hessian to standard normal space occurs only in the Curvatur-
eFitting subclass of the FindCurvatures base class. The abbreviated procedure is illustrated
below.

// compute Hessian

int result = theHessianEvaluator->computeHessian();

// transform Hessian

Matrix hessU(nrv,nrv);

Matrix temp_hess(numberOfParameters,numberOfParameters);

temp_hess = theHessianEvaluator->getHessian();

// map hessian from all parameters to just RVs

Matrix hessX(nrv,nrv);

for (int j = 0; j < nrv; j++) {

int param_indx_j = theReliabilityDomain->getParameterIndexFromRandomVariableIndex

for (int k = 0; k <= j; k++) {

int param_indx_k = theReliabilityDomain->getParameterIndexFromRandomVariableI

hessX(j,k) = temp_hess(param_indx_j,param_indx_k);
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hessX(k,j) = hessX(j,k);

}

}

// Get Jacobian x-space to u-space

result = theProbabilityTransformation->getJacobian_x_to_u(Jxu);

// Hessian in standard normal space (if the transformation is linear)

hessU.addMatrixTripleProduct(0.0,Jxu,hessX,1.0);

// Now add the nonlinear term

hessU += hessNL;

The nonlinear term in the hessian transformation is currently computed using finite differ-
ences, and therefore will suffer from known accuracy problems and computational demands.
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Item 6

Reliability Analyses and System

Reliability

Flow control of reliability analyses, SORM, system analysis.... need to complete.

6.1 Reliability analyses

Can change the analysis options in-between reliability analyses, investigate response using
getAlpha, etc. There are now defaults provided if you don’t select all of the reliability analysis
options, performed through previous inputCheck function in the TclReliabilityBuilder. Also,
the following reliability analysis options were revised to operate with the new base class
structure: FOSM, FORM, ImportanceSampling, SORM, and System. Need to complete.

6.2 Sensitivity to Random Variable Distribution Pa-

rameters

Standard FORM analysis returns information on not only the design point, but also the
importance (unit) vectors α and γ. These two vectors show the relative importance of the
random variables in u and x spaces, respectively (actually the latter is in an equivalent
normal space). Previous versions of the reliability code also allowed the computation of the
so-called δ and η sensitivity vectors for normal, lognormal, and uniform random variables.
These two vectors are not usually normalized and show the relative importance of each
random variable with respect the mean and standard deviation, respectively. Computation
of these two vectors has now been formalized in the code revisions to allow computation of
the δ and η for any random variable. In addition, the formulation allows future computation
of sensitivities with respect to the random variable distribution parameters.

The entries of the two vectors are defined as δi = σi
∂β

∂M
and δi = σi

∂β

∂D
, where M is the

mean vector and D is the standard deviation vector. The partial derivatives can be obtained
from the dot product of α with either ∂u

∗

∂M
or ∂u

∗

∂D
, respectively. The derivatives with re-
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spect to the mean and standard deviation, evaluated at the design point in standard normal
space are obtained from the probability transformation and depend directly on the type
of random variable transformation employed. Only the Nataf and statistically independent
transformations are operable in OpenSees, and both work with the new mean and standard
deviation sensitivity vectors. In the statistically independent (AllIndependentTransforma-
tion) case, the derivative is passed directly to the random variables themselves which return
∂F
∂µ

1
φ(ui)

and ∂F
∂σ

1
φ(ui)

, respectively. In the Nataf case, the derivative with respect to the lower

Cholesky transformation matrix L′ is also required. Currently the transformation computes
this derivative using finite differences. However, the statistically independent case is exact.

The RandomVariable base class returns the sensitivity of the CDF with respect to the
mean and standard deviation by assembling two derivatives from the derived classes (and re-
turning the dot product). These two derivatives are ∂F

∂θ
and ∂θ

∂µ
(for mean sensitivity), where

θ is the vector of random variable distribution parameters (changes size with each random
variable). For example, to obtain the mean sensitivity, calls are made to the getCDFparame-
terSensitivity() and getParameterMeanSensitivity() methods. The dot product is performing
the following computation:

∂β

∂µ
=

∂β

∂θ1

∂θ1

∂µ
+

∂β

∂θ2

∂θ2

∂µ
+ · · · (6.1)

For all of the random variable distributions in OpenSees, the closed form sensitivities
were calculated and implemented. The complete set of sensitivities is contained in Appendix
B. It should be noted that the sensitivities involving the derivative of the gamma or incom-
plete gamma function were not coded, as this method is not readily available in OpenSees.
The following derivatives were therefore computed with finite differences: ∂F

∂ν
in ChiSquare

distribution, ∂F
∂k

in Gamma distribution, and ∂u
∂µ

and ∂k
∂µ

in Weibull distribution.
While not yet implemented, it is now a simple extension to compute sensitivities with

respect to random variable distribution parameters because of the methods discussed above.
The random variables all return sensitivities with respect to the random variable distribution
parameters directly. For example, the sensitivity of the reliability index to one random
variable distribution parameter can be obtained from the previous results as:

∂β

∂θi

=
∂β

∂µ

∂µ

∂θi

+
∂β

∂σ

∂σ

∂θi

(6.2)

6.3 Second Order Reliability Method

While the other reliability analysis options were merely modified to work with the new
code base (and in some cases simplified drastically), additional functionality was added to
SORM and FindCurvatures. CurvatureFitting was added as a FindCurvatures algorithm.
Curvature fitting SORM requires the computation of the hessian matrix (see Chapter 5), and
the computation of the eigenvalues of a matrix with reduced dimensions (number of random
variables minus one). The hessian is computed for all parameters and then transformed to
standard normal space as described in Chapter 5. Additionally, the orthonormal matrix
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P is derived based on Gram-Schmidt orthogonalization using the α vector as the last row.
The curvatures are obtained from the eigenvalues of the matrix A ∈ ℜnrv−1,nrv−1. The
eigenvectors define the principal axes.

A =
PT (HuG)P

‖∇uG‖ (6.3)

The norm of the gradient is obtained from a previous FORM analysis, as are the α vector
and the design point. The eigenvalue computation is performed using LAPACK dgeev.

Preliminary work was performed to merge the previous FirstPrincipalCurvature and Cur-
vaturesBySearchAlgorithm classes, because they both currently perform the same calcula-
tions. CurvaturesBySearchAlgorithm was never completed in the original implementation.

6.4 System Analysis

SystemAnalysis existed in the previous code base with the option only for systems defined
by components all in series or all in parallel. This functionality was extended to allow
generalized system reliability analysis to be performed. The Tcl syntax for executing a
system reliability analysis is as follows:

runSystemAnalysis fileName? analysisMethod? (allInParallel | allInSeries | cutsets) <-Nmax

where fileName is the file name for the output, and analysisMethod is one of PCM, IPCM,
MVN, or SCIS. The analysis methods operate on individual cutsets to evaluate the multi-
variate function Φn(B,R), where B is the vector of reliability indices corresponding to the
limit state functions comprising the cutset, and R is the correlation matrix. Two of the
analysis methods are variants based on the work of Pandey and utilize conditional marginal
distributions. The original algorithm is the product of conditional marginals (PCM) that was
originally intended for parallel systems. A second improved product of conditional marginals
(IPCM) was subsequently introduced for series systems. The other two methods are simu-
lation based. The first is the multivariate normal method from Genz [] and the second is
the sequential conditioned importance sampling method from Ambartzumian []. The two
simulation-based methods take two additional arguments that dictate how many samples
to complete before returning the system probability estimates. The maximum number of
simulations is specified using Nmax and the tolerance on the probability of failure estimate is
specified using tol. These two arguments default to 2e5 and 1e-6, respectively.

If system analysis is preceded by FORM analysis, the method will compute the B vector
and R matrix from the design point of the specified limit state function. If the user desires
to perform system analysis independent of a component FORM analysis, the B vector and
R matrix can be specified directly using the input file switches shown in the command
line syntax shown above. The type of system analysis to be performed is one of either
allInParallel, allInSeries, or cutsets. Generalized system reliability analysis is possible using
the cutsets option. Cutsets contain components in parallel, and the cutsets are arranged in
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series. Before the system analysis may be performed, the cutsets need to be created in the
interpreter. The command syntax is as follows:

cutset tag? lsf1? ... <lsfm?>

where the kth cutset may contain 1 or more limit state functions. The limit state functions
are specified using the tags that follow the cutset tag. A negative limit state function tag
may be used to indicate that the user would like the complement of the event (survival)
rather than the failure event. The generalized system reliability analysis will degenerate into
a series system if all the cutsets contain only one component. Similarly the system generates
into a parallel system if only a single cutset is used with multiple components.

In addition to the aforementioned analysis methods for computing the system probabil-
ity of failure, OpenSees will also compute several system bounds depending on the analysis
type. For parallel systems (allInParallel), the uni-component bounds of Boole are com-
puted, and therefore may be wider than desired. For series systems (allInSeries), the
bi-component bounds of Kounias, Hohenbichler, and Ditlevsen (so called KHD bounds) are
computed. Both the upper and lower KHD bi-component bounds require checking all per-
mutations of the components to obtain the tightest bounds. Technically this requires (n+1)!
permutations, where n is the number of components. This can be computationally challeng-
ing; therefore, OpenSees accomplishes this by randomly ordering the first 500n permutation
sets. The results are accurate only for smaller numbers of components; however, the random
ordering may improve the bounds for large numbers of components as well.

Generalized system reliability analysis is accomplished using the inclusion-exclusion rule.
It is necessary to consider the addition (or subtraction) of all n choose k combination prob-
abilities of the components. Therefore, the accuracy of the reported system probability of
failure will degenerate as the number of components becomes significantly larger. The speed
of the system reliability algorithm will also decrease significantly due to number of individual
parallel systems that need to be evaluated in such a context.
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Item 7

Analytic Expressions for g-Function

Gradients

A useful feature that I have pondered in my research of girder live load reliability analysis is
user-specified analytic expressions for the gradient of the ith performance function, gi, with
respect to the jth random variable, xj . Using the chain rule, we have

∂gi

∂xj

=
∂gi

∂Uf

∂Uf

∂xj

+
∂gi

∂P

∂P

∂xj

+ . . . (7.1)

where Uf is nodal response and P represents any derived response quantity recovered from
the nodal displacements, such as member forces. The two derivatives in each product on
the right-hand side are computed separately. Although OpenSees has DDM capabilities
for ∂Uf/∂xj and ∂P/∂xj ,

1 there still is a reliance on finite differences to get ∂gi/∂Uf and
∂gi/∂P.

In this part of the report, a simple method to allow the user to input ∂gi/∂xj directly
is implemented. The implementation is likely to change later in the report after analysis
results are removed from LimitStateFunction class.

7.1 Desired Functionality

As demonstrated in Item 1, we would like to move away from unnecessary parsing, within
the OpenSees reliability core, of a performance function. To this end, Tcl commands are
used for response quantities when declaring performance functions

performanceFunction 76 "0.15-\[nodeDisp 2 1\]"

performanceFunction 23 "1500.0+\[sectionForce 1 1 2\]"

1Actually it’s the derivative with respect to an FE parameter combined with a Boolean mapping of the
parameter to a random variable.
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Upon inspection of the OpenSeesGradGEvaluation.cpp file, which is the “DDM” implemen-
tation, it is noted that the performance (limit-state) function is evaluated twice with an
original and a perturbed value to get ∂gi/∂Uf via a finite difference calculation. Then this
approximation is multiplied by the “DDM” gradient of the nodal response, ∂Uf/∂xj in or-
der to get ∂gi/∂xj . An identical approach is taken for derivatives with respect to derived
response quantities.

gradPerformanceFunction $tag_gi $tag_xj ‘‘analytic expression’’

Figure 7.1: Proposed Tcl command for analytic gradient of the g-function.

For the user to input the “exact” derivative of a g-function, there would have to be
OpenSees/Tcl commands along the lines of that shown in Figure 7.1, where tag gi is the
tag of the ith performance function and tag xj is the tag of the jth random variable. While
this appears to necessitate a large number of commands be issued when there are several
parameters, the script-level looping commands described in Item 1 can be used to make
the object creation compact, as shown in Figure 7.2. Such a loop can be written for each
performance function defined for a reliability analysis. Note that the sensNodeDisp Tcl
command returns the “DDM” gradient of a nodal displacement using the same inputs as
the nodeDisp command plus an additional input indicating the parameter with respect to
which the gradient is taken (idential approach for the sensSectionForce command).

foreach {rvTag paramTag} [getRVPositioners] {

gradPerformanceFunction 76 $rvTag "-\[sensNodeDisp 2 1 $paramTag\]"

gradPerformanceFunction 23 $rvTag "\[sensSectionForce 1 1 2 $paramTag\]"

}

Figure 7.2: Tcl loop to create proposed analytic gradient expressions.

When creating objects for the gradient of a performance function, iteration takes place
over the random variable positioners so that each random variable is mapped to its associ-
ated parameter of the finite element model, as shown in Figure 7.2. The getRVPositioners

command returns a list of random variable and parameter tag pairs. Also, it is generally not
possible to iterate over the performance functions in order to accomplish the gradient defi-
nitions shown in Figure 7.2 because the analytic expressions are unique to each performance
function and must be input explicitly by the user.

7.2 Proposed Implementation

Barring unforeseen circumstances, it is not necessary to introduce a new container class
to the reliability domain in order to store expressions for the gradient of a performance
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function. Instead, private data and public methods can be added to the LimitStateFunction
class which is a container class for the performance function.

An STL map is used to store integer keys and associated strings that contain the gradient
expressions. The map is declared in the private data section of LimitStateFunction.h:

private:

map<int, string> mapOfGradientExpressions;

To retrieve and manipulate this information, the following public methods are declared for
the LimitStateFunction class

public:

int addGradientExpression(const char *expression, int rvTag);

int removeGradientExpression(int rvTag);

const char* getGradientExpression(int rvTag);

The objective of each method is fairly self-explanatory and the underlying implementations
of these methods call the appropriate STL map functions.

7.3 Tcl Reliability Model Builder

To make the desired functionality available in an OpenSees/Tcl script, a gradPerformanceFunction
command is added to the list of commands in TclReliabilityBuilder.cpp. The addGradLimitState
function is defined in this file and its implementation follows that of addLimitState.

7.4 Linking with the Gradient Evaluator

Now that gradient expressions can be created in an OpenSees/Tcl script and stored in the
reliability domain (in the LimitStateFunction class), using the expressions during a reliability
analysis is the next step. To simply test out the idea, regardless of good software engineering
practice at this point, the section of code shown in Figure 7.3 is inserted in the computeGradG
method of the OpenSeesGradGEvaluation class with an early return.

As seen in Figure 7.3, a short loop is added after the active limit state function is
“downloaded” from the reliability domain. The loop iterates over all random variables, in
which the RV tag is obtained and used to get its associated gradient expression for the current
limit state function. Then, the gradient expression is evaluated using the Tcl ExprDouble

function and the result of this expression is inserted in the grad g vector.
Initially, the implementation appeared not to work, i.e., significantly different results were

obtained for the linear-elastic frame example of Item 1 when using finite difference versus
analytic evaluation of the g-function gradient. After some investigation, it was discovered
that the problem lies in the DDM implementation of member loads. As shown in Figure 7.4,
similar results were obtained between the proposed analytic gradient expressions and the
finite difference approximations after removing the uniformly distributed load on element 2
from the list of random variables.
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// "Download" limit-state function from reliability domain

int lsf = theReliabilityDomain->getTagOfActiveLimitStateFunction();

LimitStateFunction *theLimitStateFunction =

theReliabilityDomain->getLimitStateFunctionPtr(lsf);

for (int i = 0; i < nrv; i++) {

RandomVariable *theRV = theReliabilityDomain->getRandomVariablePtrFromIndex(i);

int tag = theRV->getTag();

const char *gradExpression = theLimitStateFunction->getGradientExpression(tag);

double result = 0;

if (Tcl_ExprDouble( theTclInterp, gradExpression, &result) == TCL_ERROR) {

opserr << "ERROR OpenSeesGradGEvaluator -- error in Tcl_ExprDouble

for the analytic gradient command" << endln;

return -1;

}

(*grad_g)(i) += result;

}

return 0;

Figure 7.3: Code to use analytic expressions in the OpenSees gradient g-function class.

7.5 Changes in OpenSees C++ Code

The following changes were made in order to implement analytic expressions for the gradient
of a limit state function.

7.5.1 The LimitStateFunction Class

The aforementioned public methods and private data for the string container of analytic
gradient expressions were added to LimitStateFunction.h and LimitStateFunction.cpp.

7.5.2 Tcl Command

The associated Tcl command, gradPerformanceFunction was checked in as part of the
TclReliabilityBuilder.cpp file.

7.5.3 RandomVariablePositioner

To enable the getRVPositioners Tcl command, methods to get the random variable and
parameters tags associated with a random variable positioner object were added.

The getRVPositioners Tcl command was added to TclReliabilityBuilder.cpp.
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Analytic Gradients

Performance Function 23

beta = 2.2380832

alpha(32) = 0.9941831, gamma(32) = 0.9941831

alpha(62) = 0.1077010, gamma(62) = 0.1077010

alpha(89) = -0.0007124, gamma(89) = -0.0007124

Performance Function 76

beta = 2.4496044

alpha(32) = 0.9011834, gamma(32) = 0.9011834

alpha(62) = -0.4334066, gamma(62) = -0.4334066

alpha(89) = 0.0052057, gamma(89) = 0.0052057

Finite Difference Gradients

Performance Function 23

beta = 2.2380833

alpha(32) = 0.9941833, gamma(32) = 0.9941833

alpha(62) = 0.1076992, gamma(62) = 0.1076992

alpha(89) = -0.0007124, gamma(89) = -0.0007124

Performance Function 76

beta = 2.4496059

alpha(32) = 0.9011994, gamma(32) = 0.9011994

alpha(62) = -0.4333735, gamma(62) = -0.4333735

alpha(89) = 0.0052046, gamma(89) = 0.0052046

Figure 7.4: OpenSees FERA results for linear-elastic frame example using user-defined ana-
lytic expressions and finite differences for the gradient of each g-function.
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Item 8

Control of FEA during Reliability

Analysis

With the current implementation of the g-function evaluator, it is necessary to tell this object
which finite element analysis commands should be invoked prior to running a reliability
analysis

gFunEvaluator OpenSees -analyze 1

This hands control of the FEA over to the reliability domain, which can make it cumbersome
for a user to run repeated reliability analyses inside an analysis loop or to run a reliability
analysis based on a condition attained during an analysis. In addition, the command struc-
ture is counter-intuitive to the script-level control offered by the commands added to Tcl for
FEA in OpenSees.
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Item 9

Conclusions and Future Work

9.1 Conclusions

There exists a significant amount of information in the literature on how to perform reliabil-
ity, sensitivity, and optimization analyses for a variety of problems. There are also a plethora
of software tools to enable computation of numerical solutions for complex problems. How-
ever, there are still very few software platforms that are enabled with multiple functionalities.
Specifically, it is of interest in performance-based earthquake engineering (PBEE) to perform
nonlinear finite element analysis in the presence of uncertainties. Therefore, it is desirable to
have a finite element analysis platform that has the ability to compute response sensitivities
directly, solve reliability problems with specified uncertain quantities in the models, and
solve optimization problems that consider response quantities in the objective.

9.2 Future Work

The changes made as part of this project are by no means comprehensive, and additional
work is necessary in the future to allow truly coupled finite element, reliability, sensitivity,
and optimization analyses. Below is a list of issues that were discovered during our work
that should be addressed in future work.

• TclReliabilityBuilder does not use base class static pointers for analysis objects.

• While the Type 1 Largest (T1L) distribution is equivalent to the Gumbel distribution,
it is implemented at the moment as a direct copy of the Gumbel file. This can be better
implemented internally in the future so only a single random variable distribution
derived class is needed.

• Search directions that are not HLRF-based (e.g., PolakHe and SQP) have not been
tested or evaluated for functionality. Unraveling this is not a trivial task due to the fact
that several of the available search directions utilize multiple inheritance. They are
derived from several other base classes, such as meritFunction, HessianApproximation,
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etc. and vary based on the search direction implemented. Authors suggest multiple
inheritance should be realigned with common practice to use only single inheritance.

• The optimization portion of the code (and interface with SNOPT) needs to be brought
in line with the new base classes introduced and the functionality now provided by the
higher-level reliability classes. This should significantly reduce code duplication and
allow more seamless extensions in the future.

• While significant additions were made to random variable distribution parameter sen-
sitivities as part of this work, not all of the distributions were implemented. The
remaining distributions are Type 3 Smallest, Laplace, and Pareto.

• The conversion of NatafProbabilityTransformation from FERUM to OpenSees re-
sulted in a few problems that are rarely encountered. For example, for determining
the Nataf correlation factors for some distributions (i.e., Beta distribution), the wrong
random variable distribution parameters are used; therefore, the Nataf factors are not
correct. Also, the code to determine the correlation structure was written as a se-
quential if-then-else construct (with more than 128 nested statements). Therefore, on
Windows, not all of the random variable pairs are available.

• The tail-equivalent linearization method (TELM) code introduced by Fujimura and
Der Kiureghian contained duplication of many of the original reliability code issues,
plus some additional ones. It is not functional at the moment, and will require some
effort to bring it in line with both the new reliability higher-level functionality, as well
to make it more object-oriented in nature.

• The analysis method GFunVisualizationAnalysis is no longer functional.

• The collection of files pertaining to rootFinding will need some thought and subse-
quent revisions. The current use of SecantRootFinding in some of the nested state-
ments in ArmijoStepSizeRule is not functional with the current changes. In addition,
there appear to be several base classes that are not related (ZeroFindingAlgorithm
and RootFinding).

• The AllIndependentTransformation is just a copy of NatafProbabilityTransformation
but with the correlation structure set to the identity matrix. This needs to be properly
coded in the future for performance of the code, so that it does not do dense matrix-
matrix and matrix-vector multiplies, decompositions to allow the transformation from
x to z, z to u, etc.

• Some of the domain components still employ sequential tagging and do not have asso-
ciated iterators (filter, modulatingFunction, and spectrum).

• PrincipalPlane does not appear to be a domain component (tagged object), but an
analysis result method. However, appears in components.
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• UserDefined random variable distribution needs to be properly coded so that analysis
not performed in TclReliabilityBuilder, and has consistent methods with the new
version of the other random variables.
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Appendices
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Appendix A

Random Variable Distributions
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Figure A.1: Beta distribution with parameters Bet(a, b, q, r).
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Figure A.2: Chi-square distribution with parameters χ2(ν).
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Figure A.3: Exponential distribution with parameters Exp(λ).
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Figure A.4: Gamma distribution with parameters Gam(k, λ).
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Figure A.5: Gumbel distribution with parameters Gmb(u, α).
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Figure A.6: Laplace distribution with parameters Lap(α, β).
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Figure A.7: Lognormal distribution with parameters LN(λ, ζ).
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Figure A.8: Normal distribution with parameters N(µ, σ).

42



OpenSees Reliability,
Sensitivity, and Optimization

PEER Research, Summer 2012
M. H. Scott and K. R. Mackie

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

x

P
D

F

pareto

 

 
OpenSees

Matlab

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

x

C
D

F

 

 
OpenSees

Matlab

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3
x 10

15

x

Inverse CDF

 

 
OpenSees

Matlab

Figure A.9: Pareto distribution with parameters Par(k, u).
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Figure A.10: Rayleigh distribution with parameter Ray(u).
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Figure A.11: Shifted Exponential distribution with parameters SE(fill in).
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Figure A.12: Shifted Rayleigh distribution with parameters SR(fill in).
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Figure A.13: Type 1 Largest distribution with parameters T1L(u, α).
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Figure A.14: Type 1 Smallest distribution with parameters T1S(u, α).
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Figure A.15: Type 2 Largest distribution with parameters T2L(u, k).
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Figure A.16: Type 3 Smallest distribution with parameters T3S(ǫ, u, k).
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Figure A.17: Uniform distribution with parameters U(a, b).
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Figure A.18: Weibull distribution with parameters Wbl(u, k).
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Appendix B

Random Variable Parameter

Sensitivities

B.1 Gumbel Distribution

∂F

∂u
= −f(x) (B.1)

∂F

∂α
= −u − x

α
f(x) (B.2)

∂u

∂µ
= 1 (B.3)

∂α

∂µ
= 0 (B.4)

∂u

∂σ
= −

√
6γ

π
(B.5)

∂α

∂σ
= − π√

6σ2
(B.6)

B.2 Lognormal Distribution

∂F

∂λ
= −xf(x) (B.7)

∂F

∂ζ
= −(ln x − λ)

ζ
xf(x) (B.8)

∂λ

∂µ
=

µ2 + 2σ2

µ(µ2 + σ2)
(B.9)
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∂ζ

∂µ
= − σ2

µζ(µ2 + σ2)
(B.10)

∂λ

∂σ
= − σ

µ2 + σ2
(B.11)

∂ζ

∂σ
=

σ

ζ(µ2 + σ2)
(B.12)

B.3 Normal Distribution

∂F

∂µ
= −f(x) (B.13)

∂F

∂σ
= −x − µ

σ
f(x) (B.14)

∂µ

∂µ
= 1 (B.15)

∂σ

∂µ
= 0 (B.16)

∂µ

∂σ
= 0 (B.17)

∂σ

∂σ
= 1 (B.18)

B.4 Uniform Distribution

∂F

∂a
= − 1

b − a
+

x − a

(b − a)2
(B.19)

∂F

∂b
= − x − a

(b − a)2
(B.20)

∂a

∂µ
= 1 (B.21)

∂b

∂µ
= 1 (B.22)

∂a

∂σ
= −

√
3 (B.23)

∂b

∂σ
=

√
3 (B.24)
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