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Abstract
We present FLAMO, a Frequency-sampling Library for Audio-
Module Optimization, designed for implementing and optimizing dif-
ferentiable linear time-invariant audio systems. The library is open-
source and developed with the PyTorch framework for automatic dif-
ferentiation. FLAMO includes a variety of customizable differen-
tiable digital signal processors (DDSPs), which can be arranged in
parallel, series, or recursive configurations. These systems can be op-
timized to match a target response or be integrated into the neural
network computation graph.

Main Features
• Frequency-sampling optimization [1] with built-in

time-aliasing mitigation method
• Customizable modular DDSP classes

– flexible parameterization via callable mappings
– system wrappers that ensure safe chaining

• Training utilities with integrated logging
• Loss analysis utilities, including loss surface exploration
• Constantly expanding with new modules and features

Frequency-domain optimization
• FIR approximation using the frequency-sampling method
• DDSPs are sampled at M linearly-spaced frequencies in [0,π]
• The system transfer function computed by multiplication

Figure 1. Examples of module chaining configurations and their corresponding
transfer function equations

Time-aliasing mitigation
Frequency sampling is affected by time-aliasing

Figure 2. IR of an artificial reverb decaying at a reverberation time of T60 = 9s, with
(purple) and without (black) time aliasing

In FLAMO, aliasing is mitigated by applying an exponentially decaying
envelope γn, for 0< γ≤ 1, or by sampling the frequency response outside
the unit circle, at a radius of 1/γ:

Ĥ(e ȷω)= H(e ȷω/γ)→ ĥ[n]= h[n]γn

Library structure

Figure 3. Overview of the library structure and its modules

Parameter hyperconditioning
Integration of DDSP modules with neural networks for parameter
estimation [2]

Figure 3. Example of parameter hyperconditioning via an estimation network. The
vector zM indicates the sampling frequencies at which the system H̃(z) is computed

Application in Artificial Reverb
Optimization of a feedback delay network (FDN) for natural-sounding
artificial reverberation [3]

Figure 4. Effect of the optimization of an FDN of size N = 6 with gain coefficient
optimized to improve smoothness

Resources
The library is open-source and available on GitHub, together with its
documentation and a set of introductory examples. The library is also
available on the Python package index (PyPI).
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