Under consideration for publication in Theory and Practice of Logic Programming 1

Natlog: Embedding Logic Programming into the
Python Deep-Learning Ecosystem

Paul Tarau

Dept. of Computer Science and Engineering
University of North Texas
paul.tarau @unt.edu

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Driven by expressiveness commonalities of Python and our Python-based embedded logic-based language
Natlog, we design high-level interaction patterns between equivalent language constructs and data types on
the two sides.

By directly connecting generators and backtracking, nested tuples and terms, coroutines and first-class
logic engines, reflection and meta-interpretation, we enable logic-based language constructs to access the
full power of the Python ecosystem.

We show the effectiveness of our design via Natlog apps working as orchestrators for JAX and Pytorch
pipelines and as DCG-driven GPT3 and DALL.E prompt generators.

Keyphrases: embedding of logic programming in the Python ecosystem, high-level inter-paradigm data
exchanges, coroutining with logic engines, logic-based neuro-symbolic computing, logic grammars as prompt-
generators for Large Language Models, logic-based neural network configuration and training.

1 Introduction

Turing-complete programming languages win users based on how easily one can make comput-
ers do things, for which we will use here expressiveness as an umbrella concept. Declarative
programming has been seen over the years as an expressiveness enhancer, assuming that telling
what rather than how to do things makes it easier to achieve a desired outcome. With this view
of declarative programming in mind, besides competition from today’s functional programming
languages and proof assistants, all with strong declarative claims, logic-based languages face an
even stiffer competition from the more radical approach coming from deep learning.

To state it simply, this manifests as replacement of rule-based, symbolic encoding of intelli-
gent behaviors via machine learning, including unsupervised learning among which transformers
(Vaswani et al. 2017) trained on large language models have achieved outstanding performance
in fields ranging from natural language processing to computational chemistry and image pro-
cessing. For instance, results in natural language processing with prompt-driven generative mod-
els like GPT3 (Brown et al. 2020) or prompt-to-image generators like DALL.E (Ramesh et al.
2021) or Stable Diffusion (Vision and at LMU Munich 2022) have outclassed similarly directed
symbolic efforts. In fact, it is quite hard to claim that a conventional programming language
(including a logic-based one) is as declarative as entering a short prompt sentence describing a
picture and getting it back in a few seconds.

Thus it is becoming clearer as time goes by, that ownership of the declarative umbrella is



2 Paul Tarau

slowly transitioning to deep neural networks-based machine learning tools that replace human
coding (including that done in declarative languages) with models directly extracted from labeled
and more and more often from raw, unlabeled data.

This forces us to question, as lucidly as possible, what contribution logic-based reasoning and
more concretely logic-based language design can bring to this fast evolving ecosystem, and what
language features are needed to enable them.

Language features facilitating interoperation of a logic-based language with the Python
deep-learning ecosystem

Rather than fighting it, we will explore in this paper several ways to join and enhance this strongly
disruptive ecosystem. Toward this end, we will design logic-based language features that will not
only facilitate embedding of logic-based reasoning in the Python but also simplify, syntactically
and semantically the interaction with the deep learning tools that make the ecosystem itself ap-
pealing.

While aware that more accurate (but also more intricate) solutions might come out in the near
future as part of emerging neuro-symbolic computing research! we will apply our findings to
two mechanisms of interoperation with deep learning tools, of practical interest today, where the
embedding of a logic programming language in the ecosystem brings a fresh approach.

Logic languages as orchestrators for deep learning architectures

Let’s start by observing that the actual code base enabling most of today’s deep learning systems
is a convoluted, ungeneralizable mix of unstructured scripting, low level GPU-acceleration and
linear-algebra libraries.

This suggests that there’s plenty of room to enhance and clarify the design and implementation
of the networks themselves in the declarative frameworks logic-based programming languages
provide. To facilitate interoperation with the ecosystem of logic-based orchestrators for deep-
learning tools, we will design a component composition framework implemented in a lightweight
logic language embedded in Python.

Logic languages as prompt-generators and Large Language Model interaction refiners

The emergence of Large Language Models like GPT3 and their refinements like ChatGPT and
text-to-image variants like DALL.E exhibits a strong dependency on an essentially declarative
component: prompt engineering. Prompt engineering can be seen as a goal-driven language gen-
eration, a logically specifiable endeavor for which we will show that logic grammars are a natural
match.

To make our research goals and related language design proposals experimentally testable,
we have embedded in Python a lightweight Prolog-like language, Natlog. We refer to (Tarau
2021) for a description, in an early, proof-of-concept version, of its concrete syntactic and se-
mantic features, while we will focus here on advanced use cases based on a fresh “from-scratch”
reimplementation.

I a fast evolving research field, thoroughly overviewed in (Sarker et al. 2021)



Natlog: Embedding Logic Programming into the Python Deep-Learning Ecosystem 3

The paper is organized as follows. Section 2 introduces and motivates the key design ideas be-
hind the Natlog embedded logic-based language, in particular Natlog’s coroutining mechanisms
using First-Class Logic Engines. Section 3 shows uses of Natlog scripts as orchestrators for de-
signing, training and testing deep-learning systems in the JAX and Pytorch ecosystems. Section 4
discusses the use Natlog’s logic grammars as prompt generators for text-to-text and text-to-image
large language model neural networks. Section 5 discusses related work and section 6 concludes
the paper.

Caveat emptor: As the paper is about interoperation of language constructs between Python
and a Prolog-like logic programming language implemented in it, we assume that the reader is
fluent in Prolog and Python. We also assume exposure to essential language constructs of today’s
very high-level programming languages as well as familiarity with deep learning frameworks
and some key design and implementation decisions behind them.

2 Key Design Ideas behind Natlog, a Lightweight Prolog-dialect Embedded in Python

Our Natlog system has been originally introduced in (Tarau 2021), to which we refer to for
syntax, semantics and low level implementation details. It is currently evolving as a fresh imple-
mentation?, and it will be used as a testbed for the key ideas of this paper.

2.1 Prolog’s semantics, but with a lighter syntax

While keeping Natlog’s semantics the same as Prolog’s LD-resolution, we have brought its syn-
tax a step closer to natural language. In particular, we are not requiring predicate symbols to wrap
parenthesized arguments or predicate symbols to be constants. As a quick glimpse at its syntactic
simplifications, here is a short extract from the usual “family” program in Natlog syntax.

sibling of X S: parent of X P, parent of S P, distinct S X.

grand parent of X GP: parent of X P, parent of P GP.

ancestor of X A : parent of X P, parent or ancestor P A.

parent or ancestor P P.
parent or ancestor P A : ancestor of P A.

2.2 A Quick Tour of Natlog’s “Expressiveness Lifters”

Expressiveness is the relevant distinguishing factor between Turing-complete languages. It can
be seen as a pillar of code development automation as clear and compact notation entails that
more is delegated to the machine. At the same time, expressiveness enhancers need to be kept as
simple as possible, with their users experience in mind.

2 athttps://github.com/ptarau/natlog, ready to install with “pip3 install natlog”




4 Paul Tarau

2.2.1 A finite function API

Finite functions (tuples, lists, dictionaries, sets) are instrumental in getting things done with focus
on the problem to solve rather than its representation in the language.

In Natlog they are directly borrowed from Python. They can be easily emulated in any Prolog
system, but often with a different complexity than if they were natively implemented.

In an immutable form, as well as enabled with backtrackable and non-backtrackable updates,
finite functions implemented as dynamic arrays and hash-maps offer a more flexible and seman-
tically simpler alternative to reliance on Prolog’s assert and retract family of built-ins.

2.2.2 Built-ins as functions or generators

Reversible code like in Prolog’s classic append/3 examples or the use of DCGs in both parsing
and generation are nice and unique language features derived from the underlying LD-resolution
semantics, but trying to lend reversibility and multi-mode uses to built-ins obscures code and
hinders debugging. Keeping Natlog’s built-ins uniform and predictable, while not giving up on
flexibility, can be achieved by restricting them to:

e functions with no meaningful return like print, denoted in Natlog by prefixing their
Python calls with “#”.

e functions of N inputs returning a single output as the last argument of the corresponding
predicate with N 41 arguments, denoted in Natlog by prefixing their calls with a backquote
symbol “‘”. Note that this syntax, more generally, also covers Python’s callables and in
particular class objects acting as instance constructors.

e generators with N inputs yielding a series of output values on backtracking by binding the
N + 1-th argument of the corresponding predicate, denoted in Natlog by prefixing their call
with two backquotes “ ¢ 7.

2.2.3 Interoperation with Python, as seen from a few Natlog library predicates

Interaction with Python’s finite functions happens via function and generator calls. For instance,
the predicate argx implements backtracking over all elements of a tuple or list by relaying on
the Python generator range that iterates over all index positions from where arg picks an item
to be unified with variable X.

argx I T X: "len T L, ““range O L I, “arg T I X.

Given Natlog’s expected practical uses as a Python package, even when inside Natlog’s REPL,
answers are shown as the corresponding Python objects, given the one-to-one correspondence
between terms and nested tuples and between variable binding and dictionaries. Note also that
constructors like dict (and any other Python callables) are usable directly with the same syntax
as function calls.

?- “dict ((one 1) (two 2) (three 3)) D?
ANSWER: {'D': {'one': 1, 'two': 2, 'three': 3}}

?7-eq (abc) T, argx I T X?

ANSWER: {'T': ('a', 'b', 'c¢'), 'I': 0, 'X': 'a'}
ANSWER: {'T': ('a', 'b', 'c¢'), 'I': 1, 'X': 'b'}
ANSWER: {'T': ('a', 'b', 'c'), 'I': 2, 'X': '¢c'}




Natlog: Embedding Logic Programming into the Python Deep-Learning Ecosystem 5

Natlog uses cons-lists like (1 (2 (3 ()))) for the usual, unification-based list operations.
A few built-in predicates support their conversion to/from Python tuples or lists:

to_tuple Xs T : “from_cons_list_as_tuple Xs T.
to_cons_list T Xs : “to_cons_list T Xs.

2.2.4 Reflecting metaprogramming constructs

In function and generator calls, Python’s eval is used to map the Natlog name of a function or
generator to its Python definition. However, to conveniently access object and class attributes,
Natlog implements setprop and getprop relying directly on corresponding Python built-ins.

setprop 0 K V : #setattr 0 K V.
getprop 0 K V : “getattr 0 K V.

Similary, method calls are supported via the Python function meth_call as in the following stack
manipulation API:

stack S : “list S. J note the use of the callable empty list constructor
push S X : #meth_call S append (X).
pop S X : “meth_call S pop () X.

In fact, a method call has a surprisingly succinct Python definition, a testimony that elegant
metaprogramming constructs on the two sides make language interoperation unusually easy.

def meth_call(o, f, xs):
m = getattr(o, f)
return m(*xs)

As the reader familiar with Python will notice, a method “m” is simply an attribute of an object
“0”, directly callable once it has been retrieved from its name “£”.

These predicates are part of the Natlog library code in file 1ib.nat? that can be included as
part of a Natlog script with help of the Python function 1consult®.

2.2.5 Reflecting the type system

As the following examples show, Python’s “type” built-in can be used to reflect and inspect
Natlog’s data-types.

?7- “type (a b) T?

ANSWER: {'T': <class 'tuple'>}

?- “type a T1, “type b T2, eq T1 T2.

ANSWER: {'T1': <class 'str'>, 'T2': <class 'str'>}

?- “type X V, eq X a, “type X C?

ANSWER: {'X': 'a', 'V': <class 'natlog.unify.Var'>, 'C': <class 'str'>}

Note in the last example, that after unification, the type of a variable is dereferenced to the type
of its binding.

3 athttps://github.com/ptarau/natlog/blob/main/natlog/natprogs/lib.nat
“in file https://github.com/ptarau/natlog/blob/main/natlog/natlog. py




6 Paul Tarau

2.3 Natlog’s First Class Logic Engines

Constraint solvers bring to logic-based languages an automated coroutining mechanism when
they suspend computations until more data is available and propagate constraints to the inner
loops of SLD-derivations with impressive performance gains including on NP-complete prob-
lems. However this implicit coroutining mechanism does not reflect control on backtracking and
does not expose the interpreter itself as a first-class object.

One can think about First Class Logic Engines as a way to ensure the full meta-level reflection
of the execution algorithm. As a result, they enable on-demand computations in an engine rather
than the usual eager execution mechanism of Prolog.

We will spend more time on them as we see them as “the path not taken” that can bring
significant expressiveness benefits to logic-based languages, similarly to the way Python’s yield
primitive supports creation of user-defined generators and other compositional asynchronous
programming constructs.

2.3.1 A First-class Logic Engines API

To obtain the full reflection of Natlog’s multiple-answer generation mechanism, we will make
fresh instances of the interpreter first-class objects.

A logic engine is a Natlog language processor reflected through an API that allows its compu-
tations to be controlled interactively from another logic engine.

This is very much the same thing as a programmer controlling Prolog’s interactive toplevel
loop: launch a new goal, ask for a new answer, interpret it, react to it. The exception is that it is
not the programmer, but it is the program that does it!

We will next summarize the execution mechanism of Natlog’s interoperating logic engines.
The predicate eng AnswerPattern Goal Engine works as follows:

e creates a new instance of the Natlog interpreter, uniquely identified by Engine

e shares code with the currently running program

e itis initialized with Goal as a starting point, but not started

e AnswerPattern ensures that answers returned by the engine will be instances of the pat-
tern.

The predicate ask Engine AnswerInstance works as follows:

e tries to harvest the answer computed from Goal, as an instance of AnswerPattern

e if an answer is found, it is returned as (the AnswerInstance), otherwise the atom no is
returned

e it is used to retrieve successive answers generated by an Engine, on demand

e it is responsible for actually triggering computations in the engine

One can see this as transforming Natlog’s backtracking over all answers into a deterministic
stream of lazily generated answers.

Finally, the predicate stop Engine works as follows:

e stops the Engine, reclaiming the resources it has used
e cnsures that no is returned for all future queries

In Natlog these predicates are implemented as built-ins.



Natlog: Embedding Logic Programming into the Python Deep-Learning Ecosystem 7

2.3.2 The coroutining Mechanism Implemented by the Engine APl

Natlog’s yield operation: a key co-routining primitive The annotation “~Term” extends our
coroutining mechanism by allowing answers to be yield from arbitrary places in the compu-
tation. It works as follows:

e it saves the state of the engine and transfers control and a result Term to its client

o the client will receive a copy of Term simply by using its ask/2 operation

e an engine returns control to its client when initiating a yield operation as when a computed
answer becomes available.

As implemented in Python, engines can be seen simply as a special case of generators that yield
one answer at a time, on demand.

We will outline next, with help from a few examples, a few expressiveness improvements First
Class Logic Engines can bring to a logic-based programming language.

2.3.3 An infinite Fibonacci stream with yield

Like in a non-strict functional language, one can create an infinite recursive loop from which
values are yielded as the computation advances:

fibo N Xs : eng X (slide_fibo 1 1) E, take N E Xs.

slide_fibo X Y : with X + Y as Z, ~X, slide_fibo Y Z.

Note that the infinite loop’s results, when seen from the outside, show up as a stream of answers as
if produced on backtracking. With help of the library predicate take, we extract the first 5 (seen
as a Python dictionary with name “X” of the variable as a key and the nested tuple representation
of Natlog’s list as a value), as follows:

?- fibo 5 Xs?7
ANSWER: {'Xs': (1, (1, (2, (3, (5, OMIN?}

2.3.4 The trust operation

When the special atom trust is yielded, the goal that follows it replaces the goal of the engine,
with all backtracking below that point discarded and all memory consumed so far made recover-
able. As a practical consequence, infinite loops can work in constant space, even in the absence
of last call optimization.

Using it, the predicate 1oop shows how to generate an infinite sequence of natural numbers.

loop N N.
loop N X : with N + 1 as M, “trust loop M X.

? - loop O X7
ANSWER: {'X': 0}
ANSWER: {'X': 1}




8 Paul Tarau

3 Natlog as an Orchestrator for Neuro-Symbolic Deep Learning Systems

We will show next how the use of Natlog as an embedded logic-based scripting language can
simplify the design and the execution of neural networks as well as making their internal logic
easily understandable.

3.1 Accessing the namespaces of the Python packages

To ensure unimpeded access to relevant Python objects that can be as many as a few hundred
for packages like JAX or Pytorch, we have devised a namespace sharing mechanism with the
Python side. For objects visible in the original namespace of the “natlog” package this can be
achieved by calling eval on the name of the function or generator. However, when Natlog itself
is imported as a package (as in the JAX and Pytorch apps relying on it) we collect to a dictionary
the names visible in the Python client importing Natlog in the app and then pass it to Natlog.

3.2 Interoperation with JAX

A natural partner to logic-based languages when interacting with deep learning systems is a
declaratively designed neural-network like Google and DeepMind’s JAX (Bradbury et al. 2022).

JAX is referentially transparent (no destructive assignments) and fully compositional, via a
lazy application of matrix/tensor operations, automatic gradient computations and a just-in-time
compilation function also represented as a first-class language construct.

The interaction with a logic-based programming language is facilitated by the lazy functional
syntax of JAX (seen as an embedded sublanguage in Python).

After defining a set of data loaders, initialization functions and basic neural network layers,
both learning and inference can be expressed in JAX as a composition of functions (more exactly
as a future consisting of such a composition to be eventually activated after a compilation step).

In a Python-based logic language like Natlog, this orchestration process can be expressed as a
set of Horn Clauses with logic variables bound to immutable JAX objects transferring inputs and
outputs between neural predicates representing the network layers. JAX’s high-level, referentially
transparent matrix operations can be reflected safely as Natlog predicates with the result of the
underlying N-argument function unified with their N+1-th extra argument. As such, they can
be passed as bindings of logic variables between clause heads and clause bodies in an easy to
understand, goal-driven design and execution model.

JAX’s equivalents of Natlog’s compound terms, called pytrees, hold arbitrary aggregates of
data and can be differentiated with JAX’s grad operator as a single unit.

Hyperparameter optimization searches can be naturally expressed as constraint-driven opti-
mization processes.

The synergy between the declarative neural framework and the declarative logic orchestrator
can also help with identifying the complex causal chains needed for debugging, optimizing the
network architecture as well as with the explainability of both the design and the execution of
the resulting neuro-symbolic system.

The following Natlog code snippet® generates a “deep xor” dataset, known to be unusually
challenging even for deep neural nets.

5 see https://github.com/ptarau/natlog/blob/main/apps/deepnat/natjax.nat for more details



Natlog: Embedding Logic Programming into the Python Deep-Learning Ecosystem 9

xor 0 0 O.
xor 0 1 1.
xor 1 0 1.
xor 1 1 0.

The predicate iter recurses N times over the truth table of xor to obtain the truth table of size
2N of X xor X, xor ...X,, that we will use as our synthetic dataset.

iter N Op X Y: iter_op N Op () E O Y, to_tuple E X.

iter_op O _Op E E R R.

iter_op I Op E1 E2 R1 R3 :
when I > 0, with I - 1 as J,
Op X R1 R2,
with X + X as XX, % xz=>2z-1 maps {0,1} into {-1,1} to facilitate
with XX - 1 as X1, J the work of the network's Linear Layers
iter_op J Op (X1 E1) E2 R2 R3.

The dataset will be passed to JAX after conversion to tuples of tuples, that will eventually
become JAX tensors.

dataset N Op Xss (Y¥s):
findall (X Y) ( iter N Op X Y) XssVsList,
to_pairs XssYsList XssList YsList,
to_tuple XssList Xss,
to_tuple YsList Ys.

to_pairs OO () . 7 note Prolog's [X|Y] becoming (X Y) in Natlog
to_pairs ((Xs Y) Zss) (Xs Xss) (Y Ys)
to_pairs Zss Xss Ys.

We also generate, depending on the number of variables N, an appropriate list of hidden-layer
sizes (via the predicate hidden_sizes) for a Multi-Layer Perceptron that we design in JAX to
be trained on our synthetic dataset. We use the “’” marker to indicate Python calls to functions
like train model and test_model implemented in a companion Python file®.

run N Op Seed Epochs Loss Acc LossT AccT:
dataset N Op Xss Vs,
split_dataset Xss Ys X Xt Y Yt,
hidden_sizes N Sizes,
#print hidden sizes are Sizes,
“train_model X Y Sizes Epochs (Model LossFun), 7 training set
“test_model Model LossFun X Y (Loss Acc), /4 wvalidation set
“test_model Model LossFun Xt Yt (LossT AccT). 7 testing set

Similar calls to pass the dataset to Python and to split it into “train” and “test” subsets, as well
as seamless interaction with objects like JAX-arrays (seen by Natlog as constant symbols) are
shown in the Natlog definition of split_dataset.

6 https://github.com/ptarau/natlog/blob/main/apps/deepnat/natjax.py




10 Paul Tarau

split_dataset Xss Ys Xtr Xt Ytr Yt:
“array Xss X,
“array Ys YO,
“transpose YO Y,
“split X Y 0 0.1 (Xtr Xt Ytr Yt),
show_sizes (X Y Xtr Xt Ytr Yt).

For instance, “‘array Xss X” converts a Natlog tuple of tuples Xss to a two-dimensional JAX
array X, relying on the fact that JAX’s underlying numpy matrix library does such operations
automatically. Note that the embedding of Natlog in Python makes such data exchanges O(1)
in time and space as no data-conversions need to be performed. Note also that the same applies
to compound terms that correspond one-to-one to immutable nested tuples in Python and in
particular to pytrees, instrumental in creating more advanced neural nets in the JAX ecosystem.

3.3 Interoperation with Pytorch

In the Pytorch ecosystem a combination of object-orientation and callable models encapsulate
the underlying complexities of dataset management, neural network architecture choices, auto-
matic differentiation, backpropagation and optimization steps. However, we can follow a similar
encapsulation of architectural components as we have shown for JAX, and delegate to Python
the details of building and initializing the network layers’ with Natlog used to glue together the
training and inference steps®.

4 Logic Grammars as Prompt Generators

We will next overview Natlog applications for text-to-text and text-to-image generation. We refer
to the Natlog code” and its Python companion'? for full implementation details.

4.1 Prompt engineering by extending GPT3’s text completion

GPT3 is basically a text completion engine, which, when given an initial segment of a sentence
or paragraph as a prompt, it will complete it, often with highly coherent and informative results.

Thus, to get from GPT3 the intended output (e.g., answer to a question, elations extracted from
a sentence, building analogies, etc.) one needs to rewrite the original input into a prompt that fits
GPT3’s text completion model.

We will use here Natlog’s syntactically lighter Definite Clause Grammars, with one or more
terminal symbols prefixed by “@” and “=>" replacing Prolog’s “~->". A prompt generator with
ability to be specialized for several “kinds” of prompts is described by the DCG rule:

prompt Kind QuestText => prefix Kind, sent QuestText, suffix Kind.

The predicate sent takes a question sentence originating from a user’s input and maps it into a
DCG non-terminal transforming cons-list Ws1 into cons-list Ws2:

7 see https://github. com/ptarau/natlog/blob/main/apps/deepnat/nattorch.py
8 see https://github.com/ptarau/natlog/blob/main/apps/deepnat/nattorch.nat
9 see https://github.com/ptarau/natlog/blob/main/apps/natgpt/chat.nat
10 see https://github.com/ptarau/natlog/blob/main/apps/natgpt/chat.py




Natlog: Embedding Logic Programming into the Python Deep-Learning Ecosystem 11

sent QuestText Wsl Ws2 :
“split QuestText List, to_cons_list List Ws, append Ws Ws2 Wsl.

The predicate query takes the DCG-generated prompt derived from user question Q and con-
verts it back to a string passed to GPT’3 completion API by a call to the function complete,
implemented in Python.

query Kind Q A: prompt Kind Q Ps (), to_list Ps List, ~join List P, “complete P A.

Next we will describe specializations to question/answering, relation extraction and analogy in-
vention.

An easy way to transform a question answering task into a completion task is to emulate a
hypothetical conversation:

prefix question => @ 'If' you would ask me.
suffix question => @ 'I' would say that.

Similarly, extraction of subject-verb-object phrases can be mapped to completion tasks as in:

prefix relation =>

@ 'If' you would ask me what are the subject and the verb and the object in .
suffix relation =>

@ 'I' would say subject is.

For analogy invention we create a custom trigger as follows:

trigger X Y Z =>
@ given that X relates to Y by analogy 'I' would briefly say that Z relates to.

analogy X Y Z A:
trigger X Y Z Ps (), to_list Ps List, ~join List P, “complete P A.

We will next show interaction examples for all these use cases. First, question answering:

?- query question 'how are transformers used in GPT' R.

ANSWER: {'R': 'transformers are used in GPT (Generative Pre-trained Transformer)
models to generate text from a given prompt. The transformer architecture is
used to learn the context of the input text and generate a response based on the
context. GPT models are wused in many natural language processing tasks such as
question answering, machine translation, summarization, and text generation.'}

Next, relation extraction. Note that after some preprocessing, the extracted triplets can be used
as building blocks for knowledge graphs.

?- query relation 'the quick brown fox jumps over the lazy dog' R.
ANSWER: {'R': '"quick brown fox", verb is "jumps" and object is "lazy dog".'}

?- query relation 'high interest rates try to desperately contain inflation' R.
ANSWER: {'R': '"high interest rates", verb is "try to desperately contain",
and object is "inflation".'}

Finally, some examples of analogical reasoning that show GPT3 finding the missing component
and explaining its reasoning.




12 Paul Tarau

?- analogy car wheel bird A?
ANSWER: {'A': 'wing by analogy. This is because both car and wheel are used for
transportation, while bird and wing are used for flight.'}

?7- analogy car driver airplane A?

ANSWER: {'A': 'pilot by analogy. The pilot is responsible for the safe operation
of the airplane, just as the driver is responsible for the safe operation

of the car.'}

?- analogy cowboy horse advertiser A?

ANSWER: {'A': 'customer by analogy in that they both need each other to achieve
a goal. The advertiser needs the customer to purchase their product or service
and the customer needs the advertiser to provide them with the product or
service they are looking for.'}

4.2 Text-to-image with DALL.E

With magic wands on a lease from generators like DALL.E (Ramesh et al. 2021) or Stable
Diffusion (Vision and at LMU Munich 2022), Natlog’s Definite Clause Grammars can work
as easy to customize prompt generators for such systems.

As the same OpenAl API (with a slightly different Python call) can be used for text-to-image
generation (followed by displaying the generate picture in the user’s default browser), the inter-
action with Python is expressed succinctly by the predicate paint that receives as Prompt the
description of the intended picture from the user.

paint Prompt: “paint Prompt URL, #print URL, #browse URL.

The query to visualize in the user’s browser one of the DCG-generated prompts is:

?- paint '<text description of intended image>'.

with some detail delegated to Python and taking advantage of the fact that the same OpenAl API
is used for both text-to-text and text-to-image generation.

The Natlog DCG, in generation mode, can iterate over possible styles and content elements of
a desired painting as in the following example:

image => style, subject, verb, object.

style => @photorealistic rendering.
style => @a dreamy 'Marc' 'Chagall' style picture.
style => Q@an action video game graphics style image.

subject => @of, adjective, noun.
noun => Qrobot.

verb => Q@walking.

adjective => @shiny.

object => location, Qwith, instrument.
location => @on planet 'Mars'.

instrument => @high hills and a blue purse.
instrument => @a sombrero hat.




Natlog: Embedding Logic Programming into the Python Deep-Learning Ecosystem 13

This generates text ready to be passed via the OpenAl Python APIs to DALL.E:

?7- image Words (), “to_tuple Words Ws, #writeln Ws, nl, fail.

photorealistic rendering of shiny robot walking on planet Mars with high hills
and a blue purse

photorealistic rendering of shiny robot walking on planet Mars with a sombrero hat

Besides the expected dependence on the style component, as an illustration of GPT3’s stereo-
typing bias, female and respectively male features would would be derived from the generated
robot pictures depending on the purse vs. sombrero hat picked by the DCG (see pictures in
Appendix).

5 Related Work

An introduction to Natlog, its initial proof-of-concept implementation and its content-driven in-
dexing mechanism are covered in (Tarau 2021), but the language constructs and application dis-
cussed in this paper are all part of a fresh, “from scratch” implementation. We have implemented
similar First-Class Logic Engines in the BinProlog (Tarau 2000) and Jinni Prolog systems (Tarau
1999), but their addition to Natlog, is motivated by their strong similarity with Python’s own
coroutining mechanisms. The use of coroutining in languages like C#, JavaScript and Python
has also been used in the Yield Prolog system (Thmpson 2019) as a facilitator for implementing
backtracking, similarly to our implementation. Contrary to Natlog, which adopts its own surface
syntax and reflection-based interaction with the host language, Yield Prolog requires idiomatic
use of the syntax of the target language, making it significantly more cumbersome to work with.

Interoperation with Python has been also used in Problog (De Raedt et al. 2007) and Deep-
Problog (Manhaeve et al. 2018), in the latter as a facilitator for neuro-symbolic computations. A
comprehensive overview of neuro-symbolic reasoning, including logic-based, term-rewriting and
graph-based is given in (Sarker et al. 2021). While in (Tarau 2021) we describe, as an example of
neuro-symbolic interaction the use of a neural network as an alternative multi-argument indexer
for Natlog, in this paper our focus is on the use of Natlog as an orchestrator for putting together
and training deep learning systems and as a prompt generator for Large Language Models.

OpenAI’s own GPT 3.5-based ChatGPT!! automates the mapping of more queries (e.g., ques-
tions, code generation, dialog sessions, etc.) using an extensive Reinforcement Learning With
Human Advice process (Ouyang et al. 2022). By contrast, our DCG-supported approach relies
exclusively on the pure GPT3 text-completion API on top of which we engineer task-specific
prompts.

6 Conclusion

Motivated by expressiveness challenges faced by logic-based programming languages in the
context of today’s competitive landscape of alternative paradigms as well as from neural net-
based machine learning frameworks, we have sketched some implementationally speaking “low-
hanging” enhancements to them, with emphasis on coroutining methods and neuro-symbolic
interoperation mechanisms. The main contributions of this work, likely to be reusable when

1T https://chat.openai.com/chat




14 Paul Tarau

bridging other Prolog systems to deep-learning ecosystems, are techniques that facilitate in-
teroperation in the presence of high-level language constructs like finite functions, generators,
on-demand computations, backtracking, nested immutable data types and strong reflection and
metaprogramming features. The use cases described in the paper show the practical expressive-
ness of the Natlog-Python symbiosis by enhancing interaction with today’s latest generation
deep-learning tools with the declarative convenience of a lightweight embedded logic program-
ming language.

References

BRADBURY, J., FROSTIG, R., HAWKINS, P., JOHNSON, M. J., LEARY, C., MACLAURIN, D., NECULA,
G., PASZKE, A., VANDERPLAS, J., WANDERMAN-MILNE, S., AND ZHANG, Q. 2018-2022. JAX:
composable transformations of Python+NumPy programs.

BROWN, T., MANN, B., RYDER, N., SUBBIAH, M., KAPLAN, J. D., DHARIWAL, P., NEELAKAN-
TAN, A., SHYAM, P., SASTRY, G., ASKELL, A., AGARWAL, S., HERBERT-VOSS, A., KRUEGER, G.,
HENIGHAN, T., CHILD, R., RAMESH, A., ZIEGLER, D., WU, J., WINTER, C., HESSE, C., CHEN,
M., SIGLER, E., LITWIN, M., GRAY, S., CHESS, B., CLARK, J., BERNER, C., MCCANDLISH, S.,
RADFORD, A., SUTSKEVER, 1., AND AMODEI, D. 2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, Eds. Vol. 33. Curran Associates, Inc., 1877-1901.

DE RAEDT, L., KIMMIG, A., AND TOIVONEN, H. 2007. ProbLog: A Probabilistic Prolog and Its Appli-
cation in Link Discovery. In IJCAI. Vol. 7. 2462-2467.

MANHAEVE, R., DUMANCIC, S., KIMMIG, A., DEMEESTER, T., AND DE RAEDT, L. 2018. Deep-
problog: Neural probabilistic logic programming. Advances in Neural Information Processing Sys-
tems 31.

OUYANG, L., WU, J., JIANG, X., ALMEIDA, D., WAINWRIGHT, C. L., MISHKIN, P., ZHANG, C., AGAR-
WAL, S., SLAMA, K., RAY, A., SCHULMAN, J., HILTON, J., KELTON, F., MILLER, L., SIMENS, M.,
ASKELL, A., WELINDER, P., CHRISTIANO, P., LEIKE, J., AND LOWE, R. 2022. Training language
models to follow instructions with human feedback.

RAMESH, A., PAVLOV, M., GOH, G., GRAY, S., V0SS, C., RADFORD, A., CHEN, M., AND SUTSKEVER,
I. 2021. Zero-shot text-to-image generation.

SARKER, M. K., ZHOU, L., EBERHART, A., AND HITZLER, P. 2021. Neuro-symbolic artificial intelli-
gence: Current trends.

TARAU, P. 1999. Inference and Computation Mobility with Jinni. In The Logic Programming Paradigm:
a 25 Year Perspective, K. Apt, V. Marek, and M. Truszczynski, Eds. Springer, Berlin Heidelberg, 33—48.
ISBN 3-540-65463-1.

TARAU, P. 2000. Fluents: A Refactoring of Prolog for Uniform Reflection and Interoperation with External
Objects. In Computational Logic—CL 2000: First International Conference, J. Lloyd, Ed. London, UK.
LNCS 1861, Springer-Verlag.

TARAU, P. 2021. Natlog: a Lightweight Logic Programming Language with a Neuro-symbolic Touch. In
Proceedings 37th International Conference on Logic Programming (Technical Communications) , 20-
27th September 2021, A. Formisano, Y. A. Liu, B. Bogaerts, A. Brik, V. Dahl, C. Dodaro, P. Fodor, G. L.
Pozzato, J. Vennekens, and N.-F. Zhou, Eds.

THMPSON, J. 2019. Yield Prolog.

VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L., GOMEZ, A. N., KAISER, L. U.,
AND POLOSUKHIN, I. 2017. Attention is all you need. In Advances in Neural Information Processing
Systems, 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds. Vol. 30. Curran Associates, Inc.

VISION, C. M. AND AT LMU MUNICH, L. R. G. 2018-2022. Stable Diffusion.



Natlog: Embedding Logic Programming into the Python Deep-Learning Ecosystem 15

Appendix

Images generated by Natlog’s DCG with DALL.E

Fig. 1: DALL.E picture for prompt = “’photorealistic rendering of shiny robot walking on planet
Mars with high hills and a blue purse”

Fig. 2: DALL.E picture for prompt = “’photorealistic rendering of shiny robot walking on planet
Mars with a sombrero hat”



16 Paul Tarau

Fig. 3: DALL.E picture for prompt = ”a dreamy Marc Chagall style picture of shiny robot walk-
ing on planet Mars with high hills and a blue purse”

Fig. 4: DALL.E picture for prompt = ’a dreamy Marc Chagall style picture of shiny robot walk-
ing on planet Mars with a sombrero hat ”



