
Natlog: a Lightweight Logic Programming Language
with a Neuro-symbolic Touch

Paul Tarau

University of North Texas

September 22, 2021

ICLP’2021

Paul Tarau University of North Texas Natlog: LP with a Neuro-symbolic Touch September 22, 2021 1 / 15

Motivations

a lightweight Logic Programming language can provide inference
services to the Python-based deep-learning ecosystem
besides seasoned logic programmers, the implementation should be
able to serve data scientists unfamiliar with the usual logic
programming tools
⇒ for that, a few things need to be made simpler (e.g., syntax, 2-way
interoperation with Python)
we also want to facilitate for logic programmers work with large
datasets and interaction with the deep-learning ecosystem
⇒ we need a natural framework to explore new neuro-symbolic
interaction mechanisms
⇒ Natlog

Paul Tarau University of North Texas Natlog: LP with a Neuro-symbolic Touch September 22, 2021 2 / 15

A (more) natural syntax, by examples

a transitive closure computation
cat is feline.
tiger is feline.
mouse is rodent.
feline is mammal.
rodent is mammal.
snake is reptile.
mammal is animal.
reptile is animal.

tc A Rel C : A Rel B, tc1 B Rel C.

tc1 B _Rel B.
tc1 B Rel C : tc B Rel C.

the usual permutation generator
perm () ().
perm (X Xs) Zs : perm Xs Ys, ins X Ys Zs.

ins X Xs (X Xs).
ins X (Y Xs) (Y Ys) : ins X Xs Ys.

Paul Tarau University of North Texas Natlog: LP with a Neuro-symbolic Touch September 22, 2021 3 / 15

A quick look at the interpreter

terms are immutable Python nested tuples
goals are unfolded against heads of “prototype“ clauses
on unification success, bodies of clauses are “relocated“ by replacing
their variables with fresh ones
variables point to term chunks from an environment implemented as
a Python list
variables or compound terms are allowed in predicate positions (Hilog
semantics)
code at: https://github.com/ptarau/pypro/blob/
master/natlog/natlog.py

to install and possibly embed in applications: pip3 install natlog

Paul Tarau University of North Texas Natlog: LP with a Neuro-symbolic Touch September 22, 2021 4 / 15

https://github.com/ptarau/pypro/blob/master/natlog/natlog.py
https://github.com/ptarau/pypro/blob/master/natlog/natlog.py

Integration in the Python Ecosystem

calling a Python function for its result and/or side effects
calling Python generators and having their yields collected into a logic
variable as if they were alternative bindings obtained on backtracking
pretending to be a Python generator:
n=natlog(text=prog)
for answer in n.solve("perm (a (b (c ()))) P?"):
print(answer[2])

ability to yield an answer from an arbitrary point in a program
n = natlog(text = "worm : ^o, worm.")
for i , answer in enumerate(n.solve("worm ?")):
print(answer[0])
if i >= 42 : break # stop after the first 42

The program will yield from the infinite stream generated by “worm”,
the result:
ooo

Paul Tarau University of North Texas Natlog: LP with a Neuro-symbolic Touch September 22, 2021 5 / 15

Reasons for a Content-driven Ground Database Indexer

traditional Prolog implementations conflate code-indexing and ground
database indexing
this looked like a good thing when code and data where comparable
in size (e.g., WAM)
typical use cases for Machine Learning (ML) involve much larger
datasets than the code handling them !
⇒ a logic programming language in an ML ecosystem needs a
“content-driven” indexing mechanism, besides the usual first or
multi-argument indexing of today’s Prolog systems

Paul Tarau University of North Texas Natlog: LP with a Neuro-symbolic Touch September 22, 2021 6 / 15

The Indexing Mechanism for Ground Term Databases

when adding a fact to the ground database (a nested tuple with
atomic constants occurring as leaves), we index it using the set of
constants occurring in it
we use for that a Python dictionary that associates to each constant
the set of clauses in which the constant occurs
if a constant occurs in the query, it must also occur in a ground term
that unifies with it, as the ground term has no variables in any
position that would match the constant otherwise
⇒ given a query (possibly containing variables), we compute all its
ground matches with the database
we filter out non-unifiable “false positives” as part of the usual
LD-resolution mechanisms

Paul Tarau University of North Texas Natlog: LP with a Neuro-symbolic Touch September 22, 2021 7 / 15

A few Optimizations

selecting the constant with the fewest occurrences in the database to
provide the set to start with
as tuples are immutable, the query term does not need to be copied
(or equivalently, heap-represented)
specializing Unification against ground terms (e.g., no occurs-check is
needed !)
bindings for each attempt to match a ground term in the database
can be discarded on failure, simply by throwing away the temporary
environment, with no trailing needed
the “Path-to-a-constant Indexing Mechanism”

paths to constants are represented as (“hashable” in Python) tuples
associated to a ground term

for ground term: (f a (g (f b) c)) the path is:
⇒ (0 f) (1 a) (2 0 g) (2 1 0 f) (2 1 1 b) (2 2 c)

Paul Tarau University of North Texas Natlog: LP with a Neuro-symbolic Touch September 22, 2021 8 / 15

Using a Neural Network Plug-in as a Content-Driven
Ground Term Database Indexer

a neural-net based equivalent of our content-driven indexing
algorithm is obtained by overriding its database constructor with a
neural-net trained database ndb() as shown below:
class neural_natlog(natlog):
def db_init(self):
self.db=ndb() # neural database equivalent

otherwise, the interface remains unchanged, the LD-resolution engine
being oblivious to working with the “symbolic” or “neural”
ground-fact database.

Paul Tarau University of North Texas Natlog: LP with a Neuro-symbolic Touch September 22, 2021 9 / 15

The Neural Ground Term Database

the code skeleton for the neural ground term database is at
https://github.com/ptarau/pypro/blob/master/
natlog/ndb.py

implemented as the ndb class below:
class ndb(db) :
def load(self,fname,learner=neural_learner):
overrides database loading mechanism to fit learner
...

def ground_match_of(self,query_tuple):
overrides database matching with learned predictions
...

the overridden load(...) method will fit a scikit-learn
machine learning algorithm
(e.g., a multi-layer perceptron neural network)
it yields, when used in inference mode the set of ground clauses likely
to match the query

Paul Tarau University of North Texas Natlog: LP with a Neuro-symbolic Touch September 22, 2021 10 / 15

https://github.com/ptarau/pypro/blob/master/natlog/ndb.py
https://github.com/ptarau/pypro/blob/master/natlog/ndb.py

A Neuro-Symbolic Natlog Program: training mode

1 load the dataset from a Natlog, .csv, .json file
2 have the superclass “db” create the index associating to each

constant the set of facts it occurs in
3 create a numpy diagonal matrix with one row for each constant (our

X array)
4 compute a OneHot encoding (a bitvector of fixed size) for the set of

clauses associated to each constant (our y array)
5 call the fit method of the the sklearn classifier (a neural net by

default, but swappable to any other, e.g., Random Forest, Stochastic
Gradient Descent, etc.) with the X,y training set

Paul Tarau University of North Texas Natlog: LP with a Neuro-symbolic Touch September 22, 2021 11 / 15

The Neuro-Symbolic Natlog Program: inference mode

1 compute the set of all constants in the query that occur in the
database

2 compute their OneHot encoding
3 use the classifier’s predict method to return a bitset encoding the

predicted matches
4 decode the bitset to integer indices of facts in the database and

return them as matches

Paul Tarau University of North Texas Natlog: LP with a Neuro-symbolic Touch September 22, 2021 12 / 15

Natlog program calling a database of properties of
chemical elements

the program: note the ~ prefix in the first clause
data Num Sym Neut Prot Elec Period Group Phase Type Isos Shells :

~ Num Sym Neut Prot Elec Period Group Phase Type Isos Shells.

an_el Num El :
data Num El 45 35 35 4 17 liq ’Halogen’ 19 4.

gases Num El :
data Num El _1 _2 _3 _4 _5 gas _6 _7 _8.

the ground database
1 H 0 1 1 1 1 gas Nonmetal 3 1
2 He 2 2 2 1 18 gas Noble Gas 5 1
3 Li 4 3 3 2 1 solid Alkali Metal 5 2
...
84 Po 126 84 84 6 16 solid Metalloid 34 6
85 At 125 85 85 6 17 solid Noble Gas 21 6
86 Rn 136 86 86 6 18 gas Alkali Metal 20 6

Paul Tarau University of North Texas Natlog: LP with a Neuro-symbolic Touch September 22, 2021 13 / 15

x

The Python program running the Natlog code and the neural-net:
def ndb_chem() :
nd = neural_natlog(
file_name="natprogs/elements.nat",
db_name="natprogs/elements.tsv"

)
nd.query("gases Num Element ?")

it will print out the atoms that occur as gases at normal temperature
answers are computed as candidates provided by the neural indexer
and then validated by a symbolic unification step:

ANSWER: (’gases’, 1, ’H’)
ANSWER: (’gases’, 2, ’He’)
...
ANSWER: (’gases’, 54, ’Xe’)
ANSWER: (’gases’, 86, ’Rn’)

Paul Tarau University of North Texas Natlog: LP with a Neuro-symbolic Touch September 22, 2021 14 / 15

Conclusions

Natlog’s tight integration with Python’s generators and coroutining
mechanisms enables extending machine-learning applications with an
easy to grasp logic programming subsystem
our departure from traditional Prolog’s predicate and term notation
puts forward a more readable syntax together with a more flexible
Hilog-like semantics
syntactic closeness to natural-language sentences facilitates adoption
by data-scientists not familiar with logic programming
the content-driven indexing against ground term fact databases is
new and it is a potentially useful addition to Prolog and Datalog
systems, especially in its extended path-to-the-constant form
our neural-net plugin mechanism identifies a new way to experiment
with integrating deep-learning and logic-based inferences while
validating correctness of the results of neural inferences symbolically

Paul Tarau University of North Texas Natlog: LP with a Neuro-symbolic Touch September 22, 2021 15 / 15

