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Abstract. This position paper sketches an analysis of the essential features that
logic-based programming languages will need to embrace to compete in a quickly
evolving field where learnability and expressiveness of language constructs, seen
as aspects of a learner’s user experience, have become dominant decision factors
for choosing a programming language or paradigm.
Our analysis centers on the main driving force in the evolution of programming
languages: automation of coding tasks, a recurring promise of declarative lan-
guages, instrumental for developing software artifacts competitively.
In this context we will focus on taking advantage of the close correspondence
between logic-based language constructs and their natural language equivalents,
the adoption of language constructs enhancing the expressiveness and learnability
of logic-based programming languages and their synergistic uses in interacting
declaratively with deep learning frameworks.
Keywords: logic-based programming language constructs, automation, expres-
siveness and learnability, coroutining with logic engines, definite clause gram-
mars as prompt generators, embedding of logic programming and in deep learn-
ing ecosystems.

1 Introduction

Driven by the importance of automation and simplification of coding tasks in a logic
programming context, the question we plan to answer is:

What features need to be improved or invented to ensure a lasting ability of
logic-based programming languages to compete with languages that have adopted
the latest innovations in usability, robustness and easy adoption by newcomers?

Our short answer is that we need to focus on closeness to natural language, learnability,
flexible execution mechanisms and highly expressive language constructs.

We will elaborate in the next sections on why these features matter, with hints on
what language constructs are needed for implementing them.

As an application, we will show the effectiveness of some of our proposed language
constructs via definite clause-grammar based prompt generators for today’s text-to-text
and text-to-image deep learning systems.



2 The Challenges

2.1 It is just Automation (again)

Automation, seen as a replacement of repetitive tasks, has been a persistent theme from
which essential computational processes including compilation, partial-evaluation and
meta-interpretation have emerged.

Besides competition from today’s functional programming languages and proof as-
sistants, all with strong declarative claims, logic-based languages face even stiffer com-
petition from the more radical approach to automation coming from deep learning.

To state it simply, this manifests as replacement of rule-based, symbolic encoding
of intelligent behaviors via machine learning, including unsupervised learning among
which transformers [9] trained on large language models have achieved outstanding
performance in fields ranging from natural language processing to computational chem-
istry and image processing. For instance, results in natural language processing with
prompt-driven generative models like GPT3 [1] or text-to-image generators like DALL.E
[5] or Stable Diffusion [10] have outclassed similarly directed symbolic efforts. In fact,
it is quite hard to claim that a conventional programming language (including a logic-
based one) is as declarative as entering a short prompt sentence describing a picture and
getting it back in a few seconds.

We will argue in the next sections that it makes sense for logic-based programming
languages to embrace rather than fight these emerging trends.

2.2 The Shifting of the Declarative Umbrella

Logic-based programming languages have shared with their functional counterparts and
a few data-base management tools the claim of being “declarative” in the very general
sense that the code seen as a specification of what needs to be done has clear enough
information for the implementation to be able to “automatically” figure out how it can
be done.

However it is becoming clearer every day that ownership of the declarative umbrella
is slowly transitioning to deep neural networks-based machine learning tools that, to
state it simply, replace human coding with models directly extracted from labeled and
more and more often from raw, unlabeled data. This suggests the usefulness of closely
embedding a logic-based language in this fast evolving ecosystem.

2.3 The Importance of Learnability

Learnability is not a crisply definable concept, but it becomes intuitively clear especially
as someone gets fluent in several programming languages and paradigms.

Learnability is experienced positively or negatively when teaching or learning a new
programming language and also when adopting it as an ideal software development
stage for a given project. Good barometers for learnability are the learning curves of
newcomers (including children in their early teens), the hurdles they experience and the
projects they can achieve in a relatively short period of time. Another one is how well
one can pick up the language inductively, simply by looking at coding examples.
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When thinking about what background can be assumed in the case of newcomers,
irrespectively of age, natural language pops up as a common denominator.

As logic notation originates in natural language there are conspicuous mappings
between verbs and predicates and nominal groups as their arguments. Spatial and tem-
poral event streams, in particular visual programming, animations and games relate to
logic in more intricate ways and at a more advanced level of mastering a logic-based
language.

That hints toward learning methods and language constructs easily mapped syntac-
tically and semantically to natural language equivalents.

2.4 The importance of Expressiveness

As part of their evolution, programming languages learn from each other. Expressive-
ness enhancements are contagious. More precisely, language constructs that encapsu-
late formally clear data objects and their typical usage patterns propagate, often crossing
heavily defended programming paradigm border walls.

As Python has been an early adopter of such expressiveness enhancers, it makes
sense to consider for adoption some of its language features that one is likely to be
impressed even at a first contact, as some of the following:

– ease of defining finite functions (dictionaries, mutable and immutable sequences
and sets), all exposed as first class citizens

– aggregation operations (list, set, dictionary comprehensions) exposed with a lightweight
and flexible syntax

– coroutining (via the yield statement or async annotations) exposed with a simple
and natural syntax

– nested parenthesizing and heavy punctuation avoided or reduced via indentation

Prolog shares some of those but it is usually via separate libraries or semantically
more intricate definitions (e.g., setof with care about how variables are quantified as
an implementation of set comprehensions). We will explore in the next sections some
language constructs covering features where logic-based languages are left behind.

3 A random Walk in the Space of Solutions

We will next have a glimpse at a “gradient descent” in the space of possible solutions
to these challenges with hints about suggested language design and language construct
improvements that apply specifically to Prolog and Prolog-like languages and to lesser
extent, also to their ASP or Datalog cousins.

3.1 The Testbed: Natlog, a Lightweight Prolog-dialect Embedded in Python

Our Python-based Natlog system has been originally introduced in [8], to which we re-
fer to for syntax, semantics and low level implementation details. It is currently evolv-
ing as a fresh implementation1, and it will be used as a testbed for the key ideas of this
paper.

1 at https://github.com/ptarau/natlog, ready to install with “pip3 install natlog”
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Prolog’s semantics, but with a lighter syntax While fixing semantics as the usual
SLD-resolution, we can keep the syntax and the pragmatics of a logic-based language
as close as possible to natural language2.

We have sketched an attempt to that in the Natlog system’s syntax, that we will
adopt here. As a hint of its syntactic simplifications, here is a short extract from the
usual family program in Natlog syntax:

sibling of X S: parent of X P, parent of S P, distinct S X.

grand parent of X GP: parent of X P, parent of P GP.

ancestor of X A : parent of X P, parent or ancestor P A.

parent or ancestor P P.

parent or ancestor P A : ancestor of P A.

3.2 A Quick Tour of a few Low-Hanging Expressiveness Lifters

Expressiveness is the relevant distinguishing factor between Turing-complete languages.
It can be seen as a pillar of code development automation as clear and compact notation
entails that more is delegated to the machine.

A finite function API Finite functions (tuples, lists, dictionaries, sets) are instrumental
in getting things done with focus on the problem to solve rather than its representation
in the language.

In Natlog they are directly borrowed from Python and in systems like SWI-Prolog
dictionaries are a built-in datatype. They can be easily emulated in Prolog but often with
a different complexity than if natively implemented.

In an immutable form as well as enabled with backtrackable and non-backtrackable
updates, finite functions implemented as dynamic arrays and hash-maps can offer a
less procedural and more expressive alternative to reliance on Prolog’s assert and
retract family of built-ins.

Built-ins as functions or generators Reversible code like in Prolog’s classic append/3
examples or the use of DCGs in both parsing and generation are nice and unique lan-
guage features derived from the underlying SLD-resolution semantics, but trying to
lend reversibility and more generally multi-mode uses to built-ins is often a source of
perplexity. Keeping built-ins uniform and predictable, while not giving up on flexibility,
can be achieved by restricting them to a few clearly specified uses:

– functions with no meaningful return like print, denoted in Natlog by prefixing
their Python calls with “#”.

2 but not closer, as unnecessary verbosity can hinder expressiveness
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– functions of N inputs returning a single output as the last argument of the cor-
responding predicate with N + 1 arguments, denoted in Natlog by prefixing their
calls with a backquote symbol “‘”. Note that this syntax, more generally, also cov-
ers Python’s callables and in particular class objects acting as instance constructors.

– generators with N inputs yielding a series of output values on backtracking by bind-
ing the N + 1-th argument of the corresponding predicate, denoted in Natlog by
prefixing their call with two backquotes “ ‘‘”.

This simplification (as implemented in Natlog) would also make type checking eas-
ier and enable type inference to propagate from the built-ins to predicates sharing their
arguments as a convenient mechanism to implement gradual typing.

4 A Step on “The Road Not Taken”: First Class Logic Engines

While constraint solvers and related coroutining primitives are present in most widely
used logic-based languages, first class logic engines, seen as on-demand reflection of
the full execution mechanism, as implemented in BinProlog [7], have been adopted only
in SWI Prolog relative recently3. Interestingly, similar constructs have been present as
far as in [2], where they were efficiently implemented at abstract machine level.

One can think about First Class Logic Engines as a way to ensure the full meta-level
reflection of the execution algorithm. As a result, they enable on-demand computations
in an engine rather than the usual eager execution mechanism of Prolog.

We will spend more time on them as we see them as “the path not taken” that
can bring significant expressiveness benefits to logic-based languages, similarly to the
way Python’s yield primitive supports creation of user-defined generators and other
compositional asynchronous programming constructs. To obtain the full reflection of
Natlog’s multiple-answer generation mechanism, we will make fresh instances of the
interpreter first-class objects.

4.1 A First-class Logic Engines API

A logic engine is a Natlog language processor reflected through an API that allows its
computations to be controlled interactively from another logic engine.

This is very much the same thing as a programmer controlling Prolog’s interactive
toplevel loop: launch a new goal, ask for a new answer, interpret it, react to it. The
exception is that it is not the programmer, but it is the program that does it! We will
next summarize the execution mechanism of Natlog’s first class logic engines.

The predicate “eng AnswerPattern Goal Engine” creates a new instance of the
Natlog interpreter, uniquely identified by Engine that shares its code with the currently
running program. It is initialized with Goal as a starting point. AnswerPattern ensures
that answers returned by the engine will be instances of the pattern.

The predicate “ask Engine AnswerInstance” tries to harvest the answer com-
puted from Goal, as an instance of AnswerPattern. If an answer is found, it is returned
as (the AnswerInstance), otherwise the atom no is returned. It is used to retrieve

3 https://www.swi-prolog.org/pldoc/man?section=engines
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successive answers generated by an engine, on demand. It is also responsible for actu-
ally triggering computations in the engine.

One can see this as transforming Natlog’s backtracking over all answers into a
deterministic stream of lazily generated answers.

Finally, the predicate “stop Engine” stops the Engine, reclaiming the resources it
has used and ensures that no is returned for all future queries to the engine.

Natlog’s yield operation: a key coroutining primitive Besides these predicates exposing
a logic engine as a first class object, the annotation “^Term” extends our coroutining
mechanism by allowing answers to be yielded from arbitrary places in the computa-
tion. It is implemented simply by using Python’s yield operation. As implemented in
Python, engines can be seen as a special case of generators that yield one answer at a
time, on demand.

4.2 Things that we can do with First Class Logic Engines

We will sketch here a few expressiveness improvements First Class Logic Engines can
bring to a logic-based programming language,

Source-level emulation of some key built-ins with engines We can emulate at source
level some key Prolog built-ins in terms of engine operations, shown here with Natlog’s
simplified syntax.

if_ C Y N : eng C C E, ask E R, stop E, pick_ R C Y N.

pick_ (the C) C Y _N : call Y.

pick_ no _C _Y N : call N.

not_ G : if_ G (fail) (true).

once_ G : if_ G (true) (fail).

findall_ X G Xs : eng X G E, ask E Y, collect_all_ E Y Xs.

collect_all_ _ no ().

collect_all_ E (the X) (X Xs) : ask E Y, collect_all_ E Y Xs.

An infinite Fibonacci stream with yield Like in a non-strict functional language, one
can create an infinite recursive loop from which values are yielded as the computation
advances:

fibo N Xs : eng X (slide_fibo 1 1) E, take N E Xs.

slide_fibo X Y : with X + Y as Z, ^X, slide_fibo Y Z.

Note that the infinite loop’s results, when seen from the outside, show up as a stream
of answers as if produced on backtracking. With help of the library predicate take, we
extract the first 5 (seen as a Python dictionary with name “X” of the variable as a key
and the nested tuple representation of Natlog’s list as a value), as follows:
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?- fibo 5 Xs?

ANSWER: {'Xs': (1, (1, (2, (3, (5, ())))))}

5 Borrowing some Magic: Logic Grammars as Prompt Generators

With magic wands on a lease from text-to-text generators like GPT3 [1] and text-to-
image generators like DALL-E [5] or Stable Diffusion [10] we can introduce Definite
Clause Grammars (DCGs) as prompt generators for such systems.

As examples of the natural synergy between declarative constructs of a logic-based
language and the declarative features of today’s deep learning systems, we will next
overview Natlog applications for text-to-text and text-to-image generation. We refer to
the Natlog code4 and its Python companion5 for full implementation details.

5.1 Prompt engineering by extending GPT3’s text completion

GPT3 is basically a text completion engine, which, when given an initial segment of a
sentence or paragraph as a prompt, it will complete it, often with highly coherent and
informative results.

Thus, to get from GPT3 the intended output (e.g., answer to a question, elations
extracted from a sentence, building analogies, etc.) one needs to rewrite the original
input into a prompt that fits GPT3’s text completion model.

We will use here Natlog’s syntactically lighter Definite Clause Grammars, with one
or more terminal symbols prefixed by “@” and “=>” replacing Prolog’s “-->”. A prompt
generator with ability to be specialized for several “kinds” of prompts is described by
the DCG rule:

prompt Kind QuestText => prefix Kind, sent QuestText, suffix Kind.

The predicate sent takes a question sentence originating from a user’s input and maps
it into a DCG non-terminal transforming cons-list Ws1 into cons-list Ws2:

sent QuestText Ws1 Ws2 :

`split QuestText List, to_cons_list List Ws, append Ws Ws2 Ws1.

The predicate query takes the DCG-generated prompt derived from user question Q

and converts it back to a string passed to GPT’3 completion API by a call to the function
complete, implemented in Python, with its answer returned in variable A.

query Kind Q A:

prompt Kind Q Ps (), to_list Ps List, `join List P, `complete P A.

Next we will describe specializations to question/answering, relation extraction and
analogy invention. An easy way to transform a question answering task into a comple-
tion task is to emulate a hypothetical conversation:

4 see https://github.com/ptarau/natlog/blob/main/apps/natgpt/chat.nat
5 see https://github.com/ptarau/natlog/blob/main/apps/natgpt/chat.py
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prefix question => @ 'If' you would ask me.

suffix question => @ 'I' would say that.

Extraction of subject-verb-object phrases can be mapped to completion tasks as in:

prefix relation => @ 'If' you would ask me what are the subject

and the verb and the object in .

suffix relation =>

@ 'I' would say subject is.

For analogy invention we will need to create a custom trigger as follows:

trigger X Y Z =>

@ given that X relates to Y by analogy

'I' would briefly say that Z relates to.

analogy X Y Z A:

trigger X Y Z Ps (), to_list Ps List, `join List P, `complete P A.

We will next show interaction examples for all these use cases.
First, question answering:

?- query question 'why is logic programming declarative' R?

ANSWER: {'R': 'logic programming is declarative because it expresses the

logic of a problem without describing its control flow. This means that

the programmer does not need to specify the order in which the operations

should be performed, as the logic programming language will determine

the most efficient way to solve the problem.'}

Next, relation extraction. Note that after some preprocessing, the extracted triplets
can be used as building blocks for knowledge graphs.

?- query relation 'the quick brown fox jumps over the lazy dog' R?

ANSWER: {'R':'"quick brown fox",verb is "jumps" and object is "lazy dog"'}

Finally, some examples of analogical reasoning that show GPT3 finding the missing
component and explaining its reasoning.

?- analogy car wheel bird A?

ANSWER: {'A': 'wing by analogy. This is because both car and wheel

are used for transportation, while bird and wing are used for flight.'}

?- analogy car driver airplane A?

ANSWER: {'A': 'pilot by analogy. The pilot is responsible for the safe

operation of the airplane, just as the driver is responsible for the

safe operation of the car.'}

5.2 Text-to-image with DALL.E

To declaratively specify the content of an image to DALL.E [5] or Stable Diffusion
[10], Natlog’s Definite Clause Grammars work as easy to customize prompt generators
for such systems.

8



As the same OpenAI API (with a slightly different Python call) can be used for text-
to-image generation (followed by displaying the generate picture in the user’s default
browser), the interaction with Python is expressed succinctly by the predicate paint

that receives as Prompt the description of the intended picture from the user.

paint Prompt: `paint Prompt URL, #print URL, #browse URL.

The query to visualize in the user’s browser such a DCG-generated prompts is:

?- paint '<text description of intended image>'.

with an example of output shown in Fig. 1

Fig. 1: paint ’photo of a cat playing on the shiny moon with a trumpet’.

The Natlog DCG, in generation mode, will iterate over possible styles and content
elements of a desired painting as in the following example:

image => style, subject, verb, object.

style => @photorealistic rendering.

style => @a dreamy 'Marc' 'Chagall' style picture.

style => @an action video game graphics style image.

subject => @of, adjective, noun.

noun => @robot.

adjective => @shiny.

verb => @walking.

object => location, @with, instrument.

location => @on planet 'Mars'.

instrument => @high hills and a blue purse.

instrument => @a sombrero hat.
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This generates text ready to be passed via the OpenAI Python APIs to DALL.E:

?- image Words (), `to_tuple Words Ws, #writeln Ws, nl, fail.

photorealistic rendering of shiny robot walking on planet Mars

with high hills and a blue purse

photorealistic rendering of shiny robot walking on planet Mars

with a sombrero hat

.....

Besides the expected dependence on the style component (photorealistic vs. Chagall-
style), as an illustration of GPT3’s stereotyping bias, female and respectively male fea-
tures would be derived from the generated robot pictures depending on the purse vs.
sombrero hat picked by the DCG, as can be seen in the generated images6.

6 Related Work

An introduction to Natlog, its initial proof-of-concept implementation and its content-
driven indexing mechanism are covered in [8], but the language constructs and ap-
plication discussed in this paper are all part of a fresh, “from scratch” implementation.
Interoperation with Python has been also used in Janus [6] connecting Python and XSB-
Prolog via their foreign language interfaces and systems like DeepProblog [3], in the
latter as a facilitator for neuro-symbolic computations.

OpenAI’s own GPT 3.5-based ChatGPT7 automates the mapping of more queries
(e.g., questions, code generation, dialog sessions, etc.) using an extensive Reinforce-
ment Learning With Human Advice process [4]. By contrast, our DCG-supported ap-
proach relies exclusively on the pure GPT3 text-completion API on top of which we
engineer task-specific prompts.

7 Conclusion

We have informally overviewed automation, learnability and expressiveness challenges
faced by logic-based programming languages in the context of today’s competitive land-
scape of alternatives from other programming paradigms as well as from neural net-
based machine learning frameworks. We have also sketched solutions to the challenges,
with some emphasis on coroutining methods and neuro-symbolic interoperation mecha-
nisms. We have illustrated the surprising synergies that emerge when joining declarative
logic programming constructs and declarative prompt-driven interactions with Large
Language Models based deep learning systems.
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