Birds of a Feather Flock Together: Embedding a
Logic-based Programming Language in the Python
Ecosystem

Paul Tarau

Department of Computer Science and Engineering
access University of North Texas
paul.tarau@unt.edu

Abstract. Driven by expressiveness commonalities of Python and our Python-
based embedded logic-based language Natlog, we design high-level interaction
patterns between equivalent language constructs and data types on the two sides.
By directly connecting generators and backtracking, nested tuples and terms,
reflection and meta-interpretation, coroutines and first-class logic engines, we
enable logic-based language constructs to access the full power of the Python
ecosystem.

We show the effectiveness of our design via Natlog apps working as orchestrators
for JAX and Pytorch training and inference pipelines and a DCG-driven DALL.E
prompt generator.

Caveat emptor: As the paper is about interoperation of language constructs be-
tween Python and a Prolog-like logic programming language implemented in it,
we assume that the reader is fluent in both. We also assume familiarity with essen-
tial features of today’s very high-level programming languages and deep learning
frameworks and the design decisions behind them.

Keywords: logic-based embedded languages, programming language design, high-
level inter-paradigm data exchanges, coroutining with logic engines, logic-based
neuro-symbolic symbiosis, logic-based neural network configuration and train-
ing.

1 Introduction

Turing-complete programming languages win users based on how easily one can make
computers do things, for which we will use here expressiveness as an umbrella concept.
Declarative programming has been seen over the years as an expressiveness enhancer,
assuming that telling what rather than how to do things makes it easier to achieve a
desired outcome. With this view of declarative programming in mind, besides com-
petition from today’s functional programming languages and proof assistants, all with
strong declarative claims, logic-based languages face an even stiffer competition from
the more radical approach coming from deep learning.

At a first level this manifests as replacement of rule-based, symbolic encoding of in-
telligent behaviors via machine learning, including unsupervised learning among which
transformers [15] trained on large language models have achieved outstanding perfor-
mance in fields ranging from natural language processing to computational chemistry

and image processing. For instance, results in natural language processing with prompt-
driven generative models like GPT3 [2] or prompt-to-image generators like DALL.E [7]
or Stable Diffusion [16] have outclassed similarly directed symbolic efforts. It is hard
to claim that a conventional programming language (including a logic-based one) is as
declarative as entering a short prompt sentence describing a picture and getting it back
in a dozen of seconds.

At the next level, “no-coding” or “low-coding” automation mechanisms that are re-
placing or radically reducing the work of human coders are emerging [6]. With training
performed on code fetched from open-source repositories, the output of these early Al-
driven code generation experiments results in fairly readable and useful Python code,
and it is actually marketed by github as a significant productivity accelerator.

Thus it is becoming clearer as time goes by, that ownership of the declarative um-
brella is slowly transitioning to deep neural networks-based machine learning tools that,
to state it simply, replace human coding (including that done in declarative languages)
with models directly extracted from labeled and more and more often from raw, unla-
beled data.

This forces us to question, as lucidly as possible, what contribution logic-based rea-
soning and more concretely logic-based language design can bring to this fast evolving
ecosystem.

We will focus in this paper on an easy answer to this question, while aware that
more accurate but also more intricate answers will come out in the near future as part
of emerging neuro-symbolic computing research’.

Let’s start by observing that the actual code base enabling most of today’s deep
learning systems is a convoluted, ungeneralizable mix of unstructured scripting, low
level GPU-acceleration and linear-algebra libraries. This suggests that there’s plenty
of room to enhance the design and implementation of the networks themselves in the
declarative frameworks logic-based programming languages provide.

As we will argue in the next sections, this requires revisiting some of the design
premises and language constructs that logic-based languages share among them, inde-
pendently of their execution models.

Several language features, not present when the blueprints for logic-based program-
ming languages were conceived, have evolved in the last 30+ years:

— laziness, seen as on demand execution driven by availability of data or readiness
for optimal execution

— ways to automate derivation of executable code from specifications

— syntactic simplifications ensuring readability and accelerating interactive develop-
ment loops

— movement from declared to inferred types and accommodation of gradual typing
as a mix of typed and untyped code

Laziness is instrumental in functional-programming inspired, highly declarative
deep learning frameworks like JAX [1]. In this case, laziness acts compositionally,
with declaratively specified array operations cooperating with neural network design
and compilation steps to achieve architecture independent execution, all in the same

1 a fast evolving research field, thoroughly overviewed in [9]

linguistic framework. The presence of such asynchronous execution mechanisms is fa-
cilitated by Python’s built-in coroutining constructs (e.g., async and yield).

To achieve comparative expressiveness, and to open the doors for using logic-based
languages as orchestrators for deep-learning tools, it makes sense to design a similar
component composition framework on top of something as simple as Prolog’s Horn
Clause logic. At the same time, the fact that logic notation originates in natural lan-
guage hints toward language constructs mapped syntactically closer to natural language
equivalents.

There’s also plenty of room to borrow, with focus on expressiveness enhancers often
in the inner loop of code development, for which Python stands out as the ideal “lender”.
Among the language features that one is likely to be impressed with at a first contact
with Python [8], the following stand out:

— easiness of defining finite functions (dictionaries, mutable and immutable sequences
and sets), all exposed as as first class citizens

— aggregation operations (list, set, dictionary comprehensions) exposed with a lightweight
and flexible syntax

— on demand execution via coroutining is exposed with a simple and natural syntax

— last but not least, nested parenthesizing is avoided or reduced via indentation.

We will explore in the next sections practical language constructs covering some
key features where logic-based languages are left behind. To make our language design
proposals experimentally testable, we have embedded in Python a lightweight Prolog-
like language, Natlog.

The paper is organized as follows. Section 2 introduces and motivates the key design
ideas behind the Natlog embedded logic-based language. Section 3 overviews Natlog’s
coroutining mechanisms using First-Class Logic Engines and their applications. Sec-
tion 4 shows uses of Natlog scripts as orchestrators for designing, training and testing
deep-learning systems in the JAX and Pytorch ecosystems as well as a use case of Nat-
log’s logic grammars as prompt generators for text-to-image large scale model neural
networks. Section 5 discusses related work and section 6 concludes the paper.

2 Key Design Ideas behind Natlog, a Lightweight Prolog-dialect
Embedded in Python

Our Natlog system has been originally introduced in [12], to which we refer to for
syntax, semantics and implementation details. It is currently evolving as a fresh imple-
mentation?, and it will be used as a testbed for the key ideas of this paper.

While keeping Natlog’s semantics as close as possible to Prolog, we have brought
its syntax a step closer to natural language. In particular, we are not requiring predicate
symbols to wrap parenthesized arguments or predicate symbols to be constants. As
a hint of its syntactic simplifications, here is a short extract from the usual “family”
program in Natlog syntax.

2 at https://github.com/ptarau/natlog, ready to install with “pip3 install natlog”

sibling of X S: parent of X P, parent of S P, distinct S X.

grand parent of X GP: parent of X P, parent of P GP.

ancestor of X A : parent of X P, parent or ancestor P A.

parent or ancestor P P.
parent or ancestor P A : ancestor of P A.

2.1 A Quick Tour of a few Low-Hanging Expressiveness Lifters

Expressiveness is the relevant distinguishing factor between Turing-complete languages.
It can be seen as a pillar of code development automation as clear and compact nota-
tion entails that more is delegated to the machine. At the same time, expressiveness
enhancers need to be kept as simple as possible, with their users experience in mind.

A finite function API Finite functions (tuples, lists, dictionaries, sets) are instrumental
in getting things done with focus on the problem to solve rather than its representation
in the language.

In Natlog they are directly borrowed from Python and in systems like SWI-Prolog
dictionaries are a built-in datatype. They can be easily emulated in any Prolog system,
but often with a different complexity than if natively implemented.

In an immutable form as well as enabled with backtrackable and non-backtrackable
updates, finite functions implemented as dynamic arrays and hash-maps offer a more
flexible and semantically simpler alternative to reliance on Prolog’s assert and retract
family of built-ins.

Built-ins as functions or generators Reversible code like in Prolog’s classic append/3
examples or the use of DCGs in both parsing and generation are nice and unique lan-

guage features derived from the underlying SLD-resolution semantics, but trying to

lend reversibility and multi-mode uses to built-ins obscures code and hinders debug-

ging. Keeping built-ins uniform and predictable, while not giving up on flexibility, can

be achieved by restricting them to:

— functions with no meaningful return like print, denoted in Natlog by prefixing
their Python calls with #.

— functions of N inputs returning a single output as the last argument of the cor-
responding predicate with N + 1 arguments, denoted in Natlog by prefixing their
calls with ‘. Note that this syntax, more generally, also covers Python’s callables
and in particular class names acting as instance constructors.

— generators with N inputs yielding a series of output values on backtracking by bind-
ing the N 4 1-th argument of the corresponding predicate, denoted in Natlog by
prefixing their call with “ ¢.

This simplification, as implemented in Natlog, also makes type checking easier and
enables type inference to propagate from the built-ins to predicates sharing their argu-
ments. Gradual typing via propagation of the types of uniquely-moded, function-style
built-ins is also a reducer of “brittleness”, seen as how easy is to break things without
warnings from the compiler or run-time system.

Interoperation with Python, as seen from a few Natlog library predicates Inter-
action with Python’s finite functions happens via function calls (with similar Python
names) as in:

to_dict Xs D : “to_dict Xs D.
from_dict D Xs : “from_dict D Xs.

arg I TX : "arg T I X.
setarg I T X : #setarg T I X.

or generator calls as in:

in_dict D K_V : ““in_dict D K_V.
argx I T X: "len T L, ““range O L I, “arg T I X.

Given Natlog’s expected practical uses as a Python package, even when inside Natlog’s
REPL, answers are shown as the corresponding Python objects, given the one-to-one
correspondence between terms and nested tuples and between variable binding and dic-
tionaries.

?- to_dict ((one 1) (two 2) (three 3)) D, arg two D X?
ANSWER: {'D': {'one': 1, 'two': 2, 'three': 3}, 'X': 2}

?7-eq (abc) T, argg I T X7

ANSWER: {'T': ('a', 'bD', 'c¢'), 'I': 0, 'X': 'a'}
ANSWER: {'T': ('a', 'b', '¢'), 'I': 1, 'X': 'b'}
ANSWER: {'T': ('a', 'b', 'c¢'), 'I': 2, 'X': 'c'}

Python’s built-in generators can be also exposed as backtracking operations, mim-
icking SWI-Prolog’s between/3:

between A B X : with B + 1 as SB, "~“range A SB X.

Natlog uses cons-lists like (1 (2 (3 ()))) for the usual, unification-based list op-
erations. A few built-in predicates support their conversion to/from Python tuples or
lists:

to_tuple Xs T : “from_cons_list_as_tuple Xs T.
to_list Xs T : “from_cons_list Xs T.
to_cons_list T Xs : “to_cons_list T Xs.

Reflecting metaprogramming constructs In function and generator calls, Python’s
eval is used to map the Natlog name of a function or generator to its Python defini-
tion. However, to conveniently access object and class attributes, Natlog implements
setprop and getprop relying directly on corresponding Python built-ins.

setprop 0 K V : #setattr 0 K V.
getprop 0 K V : “getattr 0 K V.

Similary, method calls are supported via the Python function meth_call as in the fol-
lowing stack manipulation API:

stack S : “list S. / note the use of the callable empty list constructor
push S X : #meth_call S append (X).
pop S X : “meth_call S pop () X.

This has a surprisingly simple definition, a testimony that elegant metaprogramming
constructs on the two sides make language interoperation unusually easy.

def meth_call(o, f, xs):
m = getattr(o, f)
return m(kxs)

As the reader familiar with Python will notice, a method “m” is simply an attribute of
an object “o”, directly callable once it has been retrieved from its name “f”.

These predicates are part of the Natlog library code in file 1ib.nat? that can be
included as part of a Natlog script with help of the Python function 1consult?.

9o G

Reflecting the type system As the following examples show, Python’s “type” built-in
can be used to reflect and inspect natlog’s types.

?7- “type (a b) T?

ANSWER: {'T': <class 'tuple'>}

?- “type a T1, “type b T2, eq T1 T2.

ANSWER: {'T1': <class 'str'>, 'T2': <class 'str'>}

?- “type X V, eq X a, “type X C?

ANSWER: {'X': 'a', 'V': <class 'mnatlog.unify.Var'>, 'C': <class 'str'>}

Note in the last example, that after unification, the type of a variable is dereferenced to
the type of its binding.

The two-clause meta-interpreter We next exemplify reflection in Natlog via a simple
two-clause metainterpreter and then point out an essential limitation that we would need
to overcome by introducing First Class Logic Engines.

The meta-interpreter metaint/1 uses a (difference)-list view of Horn clauses.

3 athttps://github.com/ptarau/natlog/blob/main/natlog/natprogs/lib.nat
4in file https://github.com/ptarau/natlog/blob/main/natlog/natlog. py

metaint (). % mo more goals left, succeed
metaint (G Gs) : % unify the first goal with the head of a clause
cls (G Bs) Gs, 7/ build a new list of goals from the body of the
/% clause exztended with the remaining goals as tail
metaint Bs. % interpret the extended body

— clauses are represented as facts of the form c1s/2
— the first argument representing the head of the clause + a list of body goals

— clauses (seen as “difference lists”) are terminated with a variable, also the second argument
of cls/2.

cls ((add 0 X X) Tail) Tail.
cls ((add (s X) Y (s Z)) ((add X Y Z) Tail)) Tail.
cls ((goal R) ((add (s (s 0)) (s (s 0)) R) Tail)) Tail.

The following example shows it in action:

?7- metaint ((goal R) ().
ANSWER: {'R': ('s', ('s', ('s', ('s', ON}

Note however that we are cheating here, as we borrow backtracking and the fresh
instance creation for clauses from the underlying runtime system. We will next delve
into the details of Natlog’s co-routining mechanism, which, while expressed as a small
set of strong metaprogramming primitives, is operationally quite close to Python’s own
yield built-in and its coroutining uses.

3 Natlog’s First Class Logic Engines

Constraint solvers bring to logic-based languages an automated coroutining mechanism
when they suspend computations until more data is available and propagate constraints
to the inner loops of SLD-derivations with impressive performance gains including on
NP-complete problems. However this implicit coroutining mechanism does not expose
the interpreter itself as a first-class object.

One can think about First Class Logic Engines as a way to ensure the full meta-level
reflection of the execution algorithm. As a result, they enable on-demand computations
in an engine rather than the usual eager execution mechanism of Prolog.

We will spend more time on them as we see them as “the path not taken” that
can bring significant expressiveness benefits to logic-based languages, similarly to the
way Python’s yield primitive supports creation of user-defined generators and other
compositional asynchronous programming constructs.

5 as it is also the case with metainterpreters written in Prolog

3.1 A First-class Logic Engines API

To obtain the full reflection of Natlog’s multiple-answer generation, we need to provide
these mechanisms more directly by making a fresh instance of the interpreter a first-
class object.

A logic engine is a Natlog language processor reflected through an API that allows
its computations to be controlled interactively from another logic engine.

This is very much the same thing as a programmer controlling Prolog’s interactive
toplevel loop: launch a new goal, ask for a new answer, interpret it, react to it. The
exception is that it is not the programmer, but it is the program that does it!

The execution mechanism of interoperating logic engines can be summarized as
follows.

The predicate eng AnswerPattern Goal Engine works as follows:

creates a new instance of the Natlog interpreter, uniquely identified by Engine
shares code with the currently running program

it is initialized with Goal as a starting point, but not started

AnswerPattern ensures that answers returned by the engine will be instances of
the pattern.

The predicate ask Engine AnswerInstance works as follows:

— tries to harvest the answer computed from Goal, as an instance of AnswerPattern

— if an answer is found, it is returned as (the AnswerInstance), otherwise the
atom no is returned

— it is used to retrieve successive answers generated by an Engine, on demand

— it is responsible for actually triggering computations in the engine

One can see this as transforming Natlog’s backtracking over all answers into a
deterministic stream of lazily generated answers.

The predicate stop (Engine) works as follows:

— stops the Engine, reclaiming the resources it has used
— ensures that no is returned for all future queries

In Natlog these are implemented as built-in operations.

3.2 The coroutining Mechanism Implemented by the Engine API

The yield operation: a key co-routining primitive The annotation “~“Term” extends
our coroutining mechanism by allowing answers to be yield from arbitrary places in
the computation. It works as follows:

— it saves the state of the engine and transfers control and a result Term to its client

— the client will receive a copy of Term simply by using its ask/2 operation

— an engine returns control to its client either by initiating a yield operation or when
a computed answer becomes available.

When implemented in Python, engines can be seen simply as a special case of genera-
tors that yield one answer at a time, on demand.

3.3 Things that we can do with First Class Logic Engines

We will outline here, with help from a few examples, a few expressiveness improve-
ments First Class Logic Engines can bring to a logic-based programming language.

An infinite Fibonacci stream with yield Like in a non-strict functional language, one
can create an infinite recursive loop from which values are yielded as the computation
advances:

fibo N Xs : eng X (slide_fibo 1 1) E, take N E Xs.

slide_fibo X Y : with X + Y as Z, ~X, slide_fibo Y Z.

Note that the infinite loop’s results, when seen from the outside, show up as a stream
of answers as if produced on backtracking. With help of the library function take, we
extract the first 5 (seen as a Python dictionary with name “X” of the variable as a key
and the nested tuple representation of Natlog’s list as a value), as follows:

?- fibo 5 Xs?
ANSWER: {'Xs': (1, (1, (2, (3, (5, O))N}

The trust operation When the special atom trust is yielded, the continuation that
follows it replaces the goal of the engine, with all backtracking below that point dis-
carded and all memory consumed so far made recoverable. As a practical consequence,
infinite loops can work in constant space, even in the absence of last call optimization.
Using it, the predicate 1loop generates an infinite sequence of natural numbers.

loop N N.
loop N X : with N + 1 as M, “trust loop M X.

? - loop O X7
ANSWER: {'X': 0}
ANSWER: {'X': 1}

A more interesting use case is throwing and catching an exception:

throw E : ~(exception E), fail.

catch Goal Catcher Recovery:
eng (just Goal) Goal Engine,
in Engine Answer,
maybe_caught Answer Catcher Goal Recovery.

maybe_caught (exception C) C _ Recovery : call Recovery, “trust true.
maybe_caught (exception C) Catcher : distinct C Catcher, throw C.
maybe_caught (just G) _ G

Source-level emulation of some key Natlog built-ins with engines While not of a
practical importance given that often these are handled by the implementation language
of the run-time system, they show the significant expressiveness lift first-class logic en-
gines can bring on top of a Horn Clauses-only sublanguage of Natlog.

if CYN : eng CCE, ask ER, stop E, pick_. R C Y N.

pick_ (the C) C Y _N : call Y.
pick_ no _.C _Y N : call N.

not_ G : if_ G (fail) (true).
once_ G : if_ G (true) (fail).

findall X G Xs : eng X G E, ask E Y, collect_all_E Y Xs.

collect_all_ _ no ().
collect_all_E (the X) (X Xs) : ask E Y, collect_all_E Y Xs.

copy_term_ T CT : eng T (true) E, ask E (the CT), stop E.

As a more convoluted example, one can test if a variable is free by ensuring that
it can be bound to two distinct values, while using double negation to ensure that such
bindings do not actually persist.

var_ X : not_ (not_ (eq X 1)), not_ (not_ (eq X 2)).

nonvar_ X: not_ (var_ X).

4 Natlog as an Orchestrator for Neuro-Symbolic Deep Learning
Systems

We will show here how the use of Natlog as an embedded logic-based scripting lan-
guage can simplify the design and the execution of neural networks as well as making
their internal logic easily understandable.

4.1 Interoperation with JAX and Pytorch

Interoperation with JAX A natural partner to logic-based languages when interacting
with deep learning systems is a declaratively designed neural-network like Google and
DeepMind’s JAX [1].

JAX is referentially transparent (no destructive assignments) and fully composi-
tional, via a lazy application of matrix/tensor operations, automatic gradient computa-
tions and a just-in-time compilation function also represented as a first-class language
construct.

10

The interaction with a logic-based programming language is facilitated by the lazy
functional syntax of JAX (seen as an embedded sublanguage in Python).

After defining a set of data loaders, initialization functions and basic neural net-
work layers, both learning and inference can be expressed in JAX as a composition of
functions (more exactly as a future consisting of such a composition to be eventually
activated after a compilation step).

In a Python-based logic language like Natlog, this orchestration process can be ex-
pressed as a set of Horn Clauses with logic variables bound to immutable JAX objects
transferring inputs and outputs between neural predicates representing the network lay-
ers. JAX’s high-level, referentially transparent matrix operations can be reflected safely
as Natlog predicates with the result of the underlying N-argument function unified with
their N+1-th extra argument. As such, they can be passed as bindings of logic variables
between clause heads and clause bodies in an easy to understand, goal-driven design
and execution model.

JAX’s equivalents of Natlog’s compound terms called pytrees hold arbitrary aggre-
gates of data and can be differentiated with JAX’s grad operator as a single unit.

Hyperparameter optimization searches can be naturally expressed as constraint-
driven optimization processes.

The synergy between the declarative neural framework and the declarative logic
orchestrator can also help with identifying the complex causal chains needed for de-
bugging, optimizing the network architecture as well as with the explainability of both
the design and the execution of the resulting neuro-symbolic system.

The following Natlog code snippet® generates a “deep xor’ dataset, known to be
unusually challenging even for deep neural nets.

xor 0 0 O.
xor 0 1 1.
xor 1 0 1.
xor 1 1 0.

The predicate iter recurses N times over the truth table of xor to obtain the truth table
of size 2V of X xor X» xor ...X, that we will use as our synthetic dataset.

iter N Op X Y: iter_op N Op () E O Y, to_tuple E X.

iter_op 0 _Op E E R R.

iter_op I Op E1 E2 R1 R3 :
when I > 0, with I - 1 as J,
Op X R1 R2,
with X + X as XX, % z=>2z-1 maps {0,1} into {-1,1} to facilitate
with XX - 1 as X1, [the work of the networks Linear Layers
iter_op J Op (X1 E1) E2 R2 R3.

The dataset will be passed to JAX after conversion to tuples of tuples.

%see https://github.com/ptarau/natlog/blob/main/apps/deepnat/natjax.nat

for more implementation details

11

dataset N Op Xss (Ys):
findall (X Y) (iter N Op X Y) XssVslist,
to_pairs XssYsList XssList YsList,
to_tuple XssList Xss,
to_tuple YsList Ys.

to_pairs OO () . % note Prolog's [X|Y] becoming (X Y) in Natlog
to_pairs ((Xs Y) Zss) (Xs Xss) (Y Ys) : to_pairs Zss Xss Vs.

We also generate, depending on the number of variables N, an appropriate list of
hidden-layer sizes (via the predicate hidden_sizes) for a Multi-Layer Perceptron that
we design in JAX to be trained on our synthetic dataset. We use the “’” marker to
indicate Python calls to functions like train model and test_model implemented in
a companion Python file”.

run N Op Seed Epochs Loss Acc LossT AccT:
dataset N Op Xss Vs,
split_dataset Xss Ys X Xt Y Yt,
hidden_sizes N Sizes,
#print hidden sizes are Sizes,
“train_model X Y Sizes Epochs (Model LossFun),
“test_model Model LossFun X Y (Loss Acc),
“test_model Model LossFun Xt Yt (LossT AccT).

Similar calls to pass the dataset to Python and to split it into “train” and “test” subsets,
as well as seamless interaction with objects like JAX-arrays (seen by Natlog as constant
symbols) are shown in the Natlog definition of split_dataset.

split_dataset Xss Ys Xtr Xt Ytr Yt:
“array Xss X,
“array Ys YO,
“transpose YO Y,
“split X Y 0 0.1 (Xtr Xt Ytr Yt),
show_sizes (X Y Xtr Xt Ytr Yt).

Something as simple as ‘array Xss X converts a Natlog tuple of tuples to a two-
dimensional JAX array, relying on the fact that JAX’s underlying numpy matrix library
does such operations automatically. Note that embedding of Natlog in Python makes
such data exchanges O(1) in time and space as no data-conversions need to be per-
formed. Note also that the same applies to compound terms that correspond one-to-one
to immutable nested tuples in Python and in particular to pytrees, instrumental in
creating more advanced neural nets in the JAX ecosystem.

Interoperation with Pytorch In the Pytorch ecosystem a combination of object-
orientation and callable models encapsulate the underlying complexities of dataset man-
agement, neural network architecture choices, automatic differentiation, backpropaga-

7 https://github.com/ptarau/natlog/blob/main/apps/deepnat/natjax.py

12

tion and optimization steps. However, we can follow a similar encapsulation of archi-
tectural components as we have shown for JAX, and delegate to Python the details of
building and initializing the network layers®.

Accessing the namespaces of the Python packages To ensure unimpeded access to
relevant Python objects that can be as many as a few hundred for packages like JAX or
Pytorch, we have devised a namespace sharing mechanism with the Python side. For
objects visible in the original namespace of the “natlog” package this can be achieved
by calling eval on the name of the function or generator. However, when Natlog itself
is imported as a package (as in the JAX and Pytorch apps relying on it) we will have
to collect to a dictionary the names visible in the Python client importing Natlog in
the app. To this end, we use the Python function share_syms to extend the shared
dictionary that is then passed to the Natlog class constructor and made available to the
run-time system to map strings naming functions, classes or objects to their definitions.

def share_syms(shared,names_to_avoid):
for n, £ in globals().items():
if n not in names_to_avoid:
shared[n] = £
return shared

4.2 Logic Grammars as Prompt Generators

Being embedded in the Python ecosystem offers an opportunity to combine the ex-
pressiveness of Definite Clause Grammars (DCGs) and Python’s API calls to neural
text-prompt-to-image generators.

With magic wands on a lease from generators like DALL-E [7] or Stable Diffu-
sion [16], Natlog’s Definite Clause Grammars can work as easy to customize prompt
generators for such systems.

We will use here Natlog’s lightweight DCG syntax, with “=>" standing for Prolog’s
“~=>" and @X standing for Prolog’s [X] used for terminal symbols.

@X (X Xs) Xs.

dall_e => @photo, Qof, subject, verb, object.

subject => Qa, Qcat.
subject => Qa, Qdog.

verb => @playing.

adjective => @golden.
adjective => @shiny.

8 see https://github.com/ptarau/natlog/blob/main/apps/deepnat/nattorch.nat
and https://github.com/ptarau/natlog/blob/main/apps/deepnat/nattorch.py
for the details of the implementation

13

object => Qon, Q@the, adjective, location, @with, @a, instrument.
location => @moon.

instrument => @violin.
instrument => @trumpet.

go: dall_e Words (), “to_tuple Words Ws, #writeln Ws, fail.
go.

This generates text ready to be passed via their Python APIs to DALL.E or Stable
Diffusion with the output for “photo of a cat playing on the shiny moon with a trumpet”
shown in Fig. 1.

7- go.

photo of a cat playing on the golden moon with a violin
photo of a cat playing on the golden moon with a trumpet
photo of a cat playing on the shiny moon with a violin
photo of a cat playing on the shiny moon with a trumpet
photo of a dog playing on the golden moon with a violin
photo of a dog playing on the golden moon with a trumpet
photo of a dog playing on the shiny moon with a violin
photo of a dog playing on the shiny moon with a trumpet

Fig. 1: Result of our DCG-generated DALL.E-prompt

5 Related Work

An introduction to Natlog, its initial proof-of-concept implementation and its content-
driven indexing mechanism are covered in [12], but the language constructs and ap-

14

plication discussed in this paper are all part of a fresh, “from scratch” implementa-
tion. We have implemented similar First-Class Logic Engines in the BinProlog [11]
and Jinni Prolog systems [10] as far as 20+ years ago, but, with the exception of their
adoption in SWI-Prolog® [17] they have not made it into other widely used Prolog
systems. This has, in part, motivated their addition to Natlog, given also their strong
similarity with Python’s own coroutining mechanisms. For some advanced applications
of engines, used for adding lazy stream constructs to SWI-Prolog, we refer to [13].
The use of coroutining in languages like C#, JavaScript and Python has also been used
in the Yield Prolog system [14] as a facilitator for implementing backtracking, simi-
larly to our implementation. Contrary to Natlog that adopts its own surface syntax and
reflection-based interaction with the host language, Yield Prolog requires idiomatic use
of the syntax of the target language, making it significantly more cumbersome to work
with. On-demand computation and integration with functional programming constructs
is also present in the Curry language [4] which has been implemented via compilation
to Prolog or Haskell. We also acknowledge here borrowing some of Curry’s lightweight
syntactic integration of logic and functional constructs. Interoperation with Python has
been also used in Problog [3] and DeepProblog [5], in the latter as a facilitator for
neuro-symbolic computations. A comprehensive overview of neuro-symbolic reason-
ing, including logic-based, term-rewriting and graph-based is given in [9]. While in
[12] we describe, as an example of neuro-symbolic interaction the use of a neural net-
work as an alternative multi-argument indexer for Natlog, in this paper our focus is
on the use of Natlog as an orchestrator for putting together and training deep learning
systems.

6 Conclusion

Motivated by expressiveness challenges faced by logic-based programming languages
in the context of today’s competitive landscape of alternative paradigms as well as
from neural net-based machine learning frameworks, we have sketched some imple-
mentationally speaking “low-hanging” solutions to them, with emphasis on coroutining
methods and neuro-symbolic interoperation mechanisms. The main contributions of
this work, likely to be reusable when bridging other Prolog systems to deep-learning
ecosystems, are techniques that facilitate interoperation in the presence of high-level
language constructs like finite functions, generators, on-demand computations, back-
tracking, nested immutable data types and strong reflection and metaprogramming fea-
tures. We have also overviewed several use cases showing the practical expressiveness
of the Natlog-Python symbiosis, with focus on using a logic-based language as an or-
chestrator for declaratively designed deep-learning applications.

References
1. Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin, D., Necula, G.,

Paszke, A., VanderPlas, J., Wanderman-Milne, S., Zhang, Q.: JAX: composable transforma-
tions of Python+NumPy programs (2018-2022), http://github. com/google/jax

 https://www.swi-prolog.org/pldoc/man?section=engines

15

10.

11.

12.

13.

14.
15.

16.

17.

. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A.,

Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever,
L., Amodei, D.: Language models are few-shot learners. In: Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems.
vol. 33, pp. 1877-1901. Curran Associates, Inc. (2020), https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper . pdf

. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A Probabilistic Prolog and Its Application

in Link Discovery. In: IJCAL vol. 7, pp. 2462-2467 (2007)

. Hanus, M.: Functional Logic Programming: From Theory to Curry. In: Programming Logics

(2013)

. Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., De Raedt, L.: Deepproblog: Neural

probabilistic logic programming. Advances in Neural Information Processing Systems 31
(2018)

. Raina, A.: The Rise of Low-Code/No-Code Application Platforms (March 2022), https:

//collabnix.com/

. Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., Sutskever,

L.: Zero-shot text-to-image generation (2021). https://doi.org/10.48550/ARXIV.2102.12092,
https://arxiv.org/abs/2102.12092

. van Rossum, G.: The Python Language Reference (2017), https://scicomp.ethz.ch/

public/manual/Python/3.6.0/reference.pdf

. Sarker, M.K., Zhou, L., Eberhart, A., Hitzler, P.: Neuro-symbolic artificial intelligence: Cur-

rent trends (2021). https://doi.org/10.48550/ARXIV.2105.05330, https://arxiv.org/
abs/2105.05330

Tarau, P.: Inference and Computation Mobility with Jinni. In: Apt, K., Marek, V., Truszczyn-
ski, M. (eds.) The Logic Programming Paradigm: a 25 Year Perspective. pp. 33—48. Springer,
Berlin Heidelberg (1999), iSBN 3-540-65463-1

Tarau, P.: Fluents: A Refactoring of Prolog for Uniform Reflection and Interoperation with
External Objects. In: Lloyd, J. (ed.) Computational Logic—CL 2000: First International Con-
ference. London, UK (Jul 2000), INCS 1861, Springer-Verlag

Tarau, P.: Natlog: a Lightweight Logic Programming Language with a Neuro-symbolic
Touch. In: Formisano, A., Liu, Y.A., Bogaerts, B., Brik, A., Dahl, V., Dodaro, C., Fodor,
P, Pozzato, G.L., Vennekens, J., Zhou, N.F. (eds.) Proceedings 37th International Confer-
ence on Logic Programming (Technical Communications) , 20-27th September 2021 (2021)
Tarau, P., Wielemaker, J., Schrijvers, T.: Lazy Stream Programming in Prolog. In: Bogaerts,
B., Erdem, E., Fodor, P., Formisano, A., Ianni, G., Inclezan, D., Vidal, G., Villanueva, A.,
Vos, M.D., Yang, F. (eds.) Technical Communications of ICLP 2019, EPTCS 309 (2019),
http://arxiv.org/abs/1907.11354

Thmpson, J.: Yield Prolog (2019), https://yieldprolog.sourceforge.net/

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u.,
Polosukhin, I.: Attention is all you need. In: Guyon, L., Luxburg, U.V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Process-
ing Systems. vol. 30. Curran Associates, Inc. (2017), https://proceedings.neurips.
cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper . pdf

Vision, CM., at LMU Munich, L.R.G.: JAX: composable transformations
of Python+NumPy programs (2018-2022), https://github.com/CompVis/
stable-diffusion

Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and Practice of
Logic Programming 12, 67-96 (1 2012). https://doi.org/10.1017/S1471068411000494

16

