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Analytics	for	Scientific	Middleware
• Goal:

• enabling	statistical	analysis	of	runtime	data	produced	by	scientific	middleware.
• Objectives:

• Developing	state	and	data	models	to	support	analytics	independent	from	the	specifics	of	
resources	and	middleware	implementations;

• Distinguishing	between	analytics	about	the	middleware	behavior	and	analytics	about	the	
workload	execution.

• Separating	back-end	and	front-end	for	analytics	to	decouple	data	collection,	wrangling,	
filtering,	analysis,	and	plotting	stages.

• Challenges:
• arbitrary	analytical	methodologies;
• arbitrary	type	and	number	of	resources;
• arbitrary	middleware	design	and	development;
• arbitrary	data	models	and	collection	mechanisms.



State	and	Data	Models
• Element:	functional	unit	of	the	middleware	code.	E.g.,	functions,	methods.
• Event:	moment	in	time	recorded	by	an	element.	E.g.,	bootstrap,	write	output.
• Entity:	logical	unit	of	the	middleware	or	of	the	workload.	E.g.,	manager,	agent,	task,	file.	
• State:	period	of	time	delimited	by	two	events,	i.e.,	transitions.	E.g.,	queuing,	executing,	staging.	

• State	model:	a	sequence	of	states,	assuming	sequences	of	atomic	state	transitions.
• Data	model:	events	and	transitions	as	recorded	by	a	middleware	implementation	while	executing	
a	given	workload.

• Each	transition	is	performed	by	a	specific	entity	of	the	middleware	on	a	specific	entity	of	the	
workload.	Transitions	of	a	state	and	of	a	state	model	are	assumed	to	be	ordered	as	a	time	series.	
E.g.,	<T0-S1t0,	T1-S1t1,	T2-S2t0,	T3-S2t1>.	

• Details	like	how	to	record	and	store	events	and	transitions,	the	time	stamp	precision,	or	the	
interfaces	to	access	the	records	are	implementation	specific.



RADICAL-Pilot	State	Model
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• Simplified:	each	state	can	transition	to	the	Failed	
and	Cancel	final	states.

• Gray	boxes:	physical	locations	where	the	code	is	
executed.

• Purple	boxes:	Entities	of	RADICAL-Pilot.
• White	boxes:	Third-party	software	components.
• Dark	gray	boxes:	Resource	software	components.
• Orange	boxes:	queues.
• Blue	boxes:	state	transitions.
• Green	box:	pilots.



RADICAL-Analytics
• API:

• session.describe()	
• session.list()
• session.get()
• session.filter()

• session.ranges()
• session.duration()
• session.concurrency()
• session.consistency()
• session.accuracy()

• Implementation:
• Coded	as	a	stand-alone	Python	module.	
• Currently,	it	embeds	the	specification	of	the	RADICAL-Pilot	state	model	but	it	has	been	
designed	to	work	with	arbitrary	state	models.

• Designed	to	be	extensible:	offers	a	minimal	but	not	complete	set	of	methods.	
• Designed	to	be	as	transparent	as	possible	to	the	experiment analysis.	No	higher	order	
methods	are	offered	for	run	aggregation,	comparison	or	plotting.

• GitHub	repository:	https://github.com/radical-cybertools/radical.analytics
• Documentation:	https://readthedocs.org/projects/radicalanalytics/



Example:	Analytics	Workflow
1. Raw	data:

2. Wrangled	data:

3. Analysis:	load	csv	file(s)	into	analytics	front	end.	E.g.,	R,	Pandas,	SPARK,	Stata,	SPSS	and	so	on.



XSEDE	OSG:	Time	To	Completion	(TTC)
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XSEDE	OSG:	Distribution	Task	Execution	Time	(Tx)
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Example	XSEDE	OSG:	Non-Correlation	Tx and	#Hosts
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XSEDE	OSG:	Concurrency	Pilots	and	Tasks
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Benefits	and	Challenges
• Benefits:

• Entities	modeled	as	logical	units	enable	analytics	for	both	middleware	and	workload.
• Explicit	definition	of	the	state	models	enables	the	automation	of	consistency	tests.	This	
works	both	for	middleware	implementation	and	workload	execution.

• Uniform	interpretation	across	publications	enables	data	comparison	and	reuse	across	
multiple	lines	of	research.

• Avoid	endless	duplication	of	scripted	solutions	for	specific	point	analyses.

• Challenges:
• Design-heavy	development	methodology	leads	to	slower	prototyping	but	(hopefully)	more	
robust	production	implementations.

• Automatic	derivation	of	state	and	data	models	from	code.	Models	inferred	from	the	code	
base	to	avoid	the	progressive	divergence	between	implementation	and	specification.

• Accounting	for	concurrency:	events,	transitions	and	states	can	be	recorded	by	and	for	
multiple	entities.	



Conclusions
• Defining	explicit	state	and	data	models.
• Decoupling	backend	and	frontend	for	analytics.
• Supporting	analytics	about	the	middleware	and	about	the	execution	of	the	workload.
• Automating	consistency	and	accuracy	tests.
• Uniform	data	model	across	diverse	analyses.
• Accounting	for	concurrency	of	multiple	timelines,	one	for	each	stateful entity.
• Agnostic	towards	type	and	design	of	the	middleware	used	to	produce	raw	data.
• Agnostic	towards	analysis	models	and	tools.	
• Agnostic	towards	library	or	service	oriented	frontends,	i.e.,	R	vs	Spark.


