
RADICAL-Analytics
Matteo	Turilli,	Andre	Merzky,	Alessio Angius,	Shantenu Jha

Rutgers	University



Outline
• Specificities	of	analytics	for	scientific	middleware.
• State	and	data	models	for	analytics	back	ends.	
• Benefits	and	Challenges	a	model-based	approach	to	analytics	back	ends.
• Case	study:	RADICAL-Pilot	and	RADICAL-Analytics.
• RADICAL-Analytics	workflow.
• Examples.
• Conclusions.



Analytics	for	Scientific	Middleware
• Goal:

• enabling	statistical	analysis	of	runtime	data	produced	by	scientific	middleware.
• Objectives:

• Developing	state	and	data	models	to	support	analytics	independent	from	the	specifics	of	
resources	and	middleware	implementations;

• Distinguishing	between	analytics	about	the	middleware	behavior	and	analytics	about	the	
workload	execution.

• Separating	back-end	and	front-end	for	analytics	to	decouple	data	collection,	wrangling,	
filtering,	analysis,	and	plotting	stages.

• Challenges:
• arbitrary	analytical	methodologies;
• arbitrary	type	and	number	of	resources;
• arbitrary	middleware	design	and	development;
• arbitrary	data	models	and	collection	mechanisms.



State	and	Data	Models
• Element:	functional	unit	of	the	middleware	code.	E.g.,	functions,	methods.
• Event:	moment	in	time	recorded	by	an	element.	E.g.,	bootstrap,	write	output.
• Entity:	logical	unit	of	the	middleware	or	of	the	workload.	E.g.,	manager,	agent,	task,	file.	
• State:	period	of	time	delimited	by	two	events,	i.e.,	transitions.	E.g.,	queuing,	executing,	staging.	

• State	model:	a	sequence	of	states,	assuming	sequences	of	atomic	state	transitions.
• Data	model:	events	and	transitions	as	recorded	by	a	middleware	implementation	while	executing	
a	given	workload.

• Each	transition	is	performed	by	a	specific	entity	of	the	middleware	on	a	specific	entity	of	the	
workload.	Transitions	of	a	state	and	of	a	state	model	are	assumed	to	be	ordered	as	a	time	series.	
E.g.,	<T0-S1t0,	T1-S1t1,	T2-S2t0,	T3-S2t1>.	

• Details	like	how	to	record	and	store	events	and	transitions,	the	time	stamp	precision,	or	the	
interfaces	to	access	the	records	are	implementation	specific.



RADICAL-Pilot	State	Model

MongoDB

Resource

pilot

Agent

User Workstation

Unit ManagerPilot Manager

Queue

Launcher

PMGR_LAUNCHING

PMGR_LAUNCHING_PENDING

NEW DONE

Scheduler

Stager

Queue

UMGR_SCHEDULING_PENDING

Queue

Stager

UMGR_STAGING_INPUT_PENDING

Stager

UMGR_SCHEDULING

NEW

UMGR_STAGING_INPUT

AGENT_STAGING_INPUT

Stager

UMGR_STAGING_OUTPUT

Queue

Queue

Executer

Queue

Scheduler

DONE

Queue

AGENT_STAGING_INPUT_PENDING

Queue

UMGR_STAGING_OUTPUT_PENDING

RM Queue

PMGR_ACTIVE_PENDING

PMGR_ACTIVE

AGENT_SCHEDULING_PENDING

AGENT_EXECUTING_PENDING

AGENT_STAGING_OUTPUT_PENDING

AGENT_EXECUTING

AGENT_SCHEDULING

AGENT_STAGING_OUTPUT

SAGA

Terminal

SSH

• Simplified:	each	state	can	transition	to	the	Failed	
and	Cancel	final	states.

• Gray	boxes:	physical	locations	where	the	code	is	
executed.

• Purple	boxes:	Entities	of	RADICAL-Pilot.
• White	boxes:	Third-party	software	components.
• Dark	gray	boxes:	Resource	software	components.
• Orange	boxes:	queues.
• Blue	boxes:	state	transitions.
• Green	box:	pilots.



RADICAL-Analytics
• API:

• session.describe()	
• session.list()
• session.get()
• session.filter()

• session.ranges()
• session.duration()
• session.concurrency()
• session.consistency()
• session.accuracy()

• Implementation:
• Coded	as	a	stand-alone	Python	module.	
• Currently,	it	embeds	the	specification	of	the	RADICAL-Pilot	state	model	but	it	has	been	
designed	to	work	with	arbitrary	state	models.

• Designed	to	be	extensible:	offers	a	minimal	but	not	complete	set	of	methods.	
• Designed	to	be	as	transparent	as	possible	to	the	experiment analysis.	No	higher	order	
methods	are	offered	for	run	aggregation,	comparison	or	plotting.

• GitHub	repository:	https://github.com/radical-cybertools/radical.analytics
• Documentation:	https://readthedocs.org/projects/radicalanalytics/



Example:	Analytics	Workflow
1. Raw	data:

2. Wrangled	data:

3. Analysis:	load	csv	file(s)	into	analytics	front	end.	E.g.,	R,	Pandas,	SPARK,	Stata,	SPSS	and	so	on.



XSEDE	OSG:	Time	To	Completion	(TTC)

22 23 24 25 26 27 28 29 210 211 212

Number of Pilots

�20000

0

20000

40000

60000

80000

100000
T

T
C

(s
)

8 units

16 units

32 units

64 units

128 units

256 units

512 units

1024 units

2048 units

XSEDE OSG Virtual Cluster
Time to completion (TTC) of 8, 16, 32, 64, 128, 256, 512, 1024, 2048 tasks when requesting 8 and 2048 pilots



XSEDE	OSG:	Distribution	Task	Execution	Time	(Tx)

0 500 1000 1500 2000
Tx (s)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
D

en
si

ty

XSEDE OSG Virtual Cluster
Density of Units Execution Time (Tx)

Note: Tail truncated at 2000s.

Units Execution Time (Tx)

Mean



Example	XSEDE	OSG:	Non-Correlation	Tx and	#Hosts

0 5000 10000 15000 20000 25000
Tasks per host

0

500

1000

1500

2000

2500

3000

3500

4000
M

ea
n

T
x

p
er

H
os

t
Mean Tx per host

XSEDE OSG Virtual Cluster
Relation between the number of tasks over the number of pilots on which they are executed



XSEDE	OSG:	Concurrency	Pilots	and	Tasks

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Time (s)

0

5

10

15

20

25

30

35
N

u
m

b
er

of
A

ct
iv

e
P

il
ot

s
an

d
U

n
it
s

Requested pilots

Active Units

Active Pilots

XSEDE OSG Virtual Cluster
Number of active pilots and units at runtime

2048 units submitted; 32 pilots requested.



Benefits	and	Challenges
• Benefits:

• Entities	modeled	as	logical	units	enable	analytics	for	both	middleware	and	workload.
• Explicit	definition	of	the	state	models	enables	the	automation	of	consistency	tests.	This	
works	both	for	middleware	implementation	and	workload	execution.

• Uniform	interpretation	across	publications	enables	data	comparison	and	reuse	across	
multiple	lines	of	research.

• Avoid	endless	duplication	of	scripted	solutions	for	specific	point	analyses.

• Challenges:
• Design-heavy	development	methodology	leads	to	slower	prototyping	but	(hopefully)	more	
robust	production	implementations.

• Automatic	derivation	of	state	and	data	models	from	code.	Models	inferred	from	the	code	
base	to	avoid	the	progressive	divergence	between	implementation	and	specification.

• Accounting	for	concurrency:	events,	transitions	and	states	can	be	recorded	by	and	for	
multiple	entities.	



Conclusions
• Defining	explicit	state	and	data	models.
• Decoupling	backend	and	frontend	for	analytics.
• Supporting	analytics	about	the	middleware	and	about	the	execution	of	the	workload.
• Automating	consistency	and	accuracy	tests.
• Uniform	data	model	across	diverse	analyses.
• Accounting	for	concurrency	of	multiple	timelines,	one	for	each	stateful entity.
• Agnostic	towards	type	and	design	of	the	middleware	used	to	produce	raw	data.
• Agnostic	towards	analysis	models	and	tools.	
• Agnostic	towards	library	or	service	oriented	frontends,	i.e.,	R	vs	Spark.


