Programming in Java
Advanced Imaging

Release 1.0.1
November 1999

X Sun

microsystems

JavaSoft

A Sun Microsystems, Inc. Business
901 San Antonio Road

Palo Alto, CA 94303 USA
415960-1300 fax 415 969-9131

0 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

The release described in this document may be protected by one or more U.S. patents, for-
eign patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontrans-
ferable, perpetual, worldwide limited license (without the right to sublicense) under
SUN’s intellectual property rights that are essential to practice this specification. This
license allows and is limited to the creation and distribution of clean-room implementa-
tions of this specification that (i) are complete implementations of this specification, (i)
pass all test suites relating to this specification that are available from SUN, (iii) do not
derive from SUN source code or binary materials, and (iv) do not include any SUN binary
materials without an appropriate and separate license from SUN.

Java, JavaScript, Java 3D, and Java Advanced Imaging are trademarks of Sun Microsys-
tems, Inc. Sun, Sun Microsystems, the Sun logo, Java and HotJava are trademarks or reg-
istered trademarks of Sun Microsystems, Inc. URIX a registered trademark in the
United States and other countries, exclusively licensed through X/Open Company, Ltd.
All other product names mentioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Contents

FIgUIES . . Xi
Preface Xiii
DISClaimer . . . Xiii
About ThiS BOOK. Xiii
Related Documentation.ttt XV
Additional Information XV
Style CoNVeNtioNS o XVi
1 Introduction to Java Advanced Imaging 1
1.1 TheEvolutionof ImaginginJdava....................ciiuun... 2
1.2 Why Another Imaging API? 2
1.3 JAIFEatUIES. . .o 3
1.3.1 Cross-platformImaging 3
1.3.2 Distributed Imaging 4

1.3.3 Object-oriented APl 4

1.34 Flexibleand Extensible 4
1.35 Devicelndependent 4
1.3.6 Powerful........ . .. 5
1.3.7 High Performance. 5
1.3.8 Interoperable........... 5
1.4 ASimple JAIProgram.t i e 6
2 Java AWT IMaging. e e e e 9
2.1 IntroducCtion e 9
211 TheAWTPushModel.......... 9
2.1.2 AWT Push Model Interfaces and Classes 11
2.2 The Immediate Mode Model. 11
2.2.1 RenderingIndependence 12
2.2.2 Rendering-independent Imaging in Java AWT 13
2.2.3 The Renderable Layer vs. the Rendered Layer 13
224 TheRenderContext............ 15
2.3 Renderable and Rendered Classes. 15
2.3.1 TheRenderableLayer 16
232 TheRenderedLayer............... .. i .. 18
2.4 Javalmage Data Representationc.coiiiean... 19

Release 1.0.1, November 1999

CONTENTS

2.5 Introducing the Java Advanced Imaging APl 21
2.5.1 Similarities withthe Java 2D API. 22
252 JAlDataClasses 22
3 Programming in Java Advanced Imaging 27
3.1 Introduction 27
3.2 AnOverviewof Graphs 28
3.3 Processing Graphs 29
3.3.1 RenderedGraphs................ 30
3.3.2 RenderableGraphs 32
3.3.3 ReusingGraphs. i 37
3.4 Remote EXecution 38
3.5 BaSiCJAIAPICIasSSESot 38
351 TheJAICIasS 38
3.5.2 ThePlanarimageClass 39
3.5.3 The Collectionimage Class....................... 39
3,54 TheTiledimageClass i, 40
355 TheOplmageClass..............iiiiiii... 40
3.5.6 The RenderableOpClass. 41
3.5.7 TheRenderedOpClass 42
3.6 JALAPIOpErators e 42
3.6.1 PointOperatorsot 43
3.6.2 AreaOperators 46
3.6.3 GeometricOperators. a7
3.6.4 Color Quantization Operators. 48
3.6.5 FileOperatorsc.. i 48
3.6.6 Frequency Operators.c.oiiiinnnnnnnenn.. 49
3.6.7 StatisticalOperatorsc.cviiiiii... 51
3.6.8 Edge Extraction Operatorsc...... 51
3.6.9 Miscellaneous Operators., 52
3.7 Creating Operationsttt e 52
3.7.1 OperationName 55
3.7.2 ParameterBIOCKS. 56
3.7.3 RenderingHints. 60
4 Image Acquisitionand Display. 65
4.1 IntroducCtion 65
411 ImageData e 67
41.2 BasicStorage TYPES v v iiii i 68
4.2 JAIIMage TYPeS. . .ottt 71
421 Planarimage 72
422 Tiledimage 74
423 Snapshotimage........ L, 81
424 Remotelmage........ ... 83
425 Collectionlmage...........c. .. 83
426 Image SeqUENCE.t 84
427 ImageStack........ ... 84
428 ImageMIPMap........... i 85

Programming in Java Advanced Imaging

429 ImagePyramid....... 89

4.2.10 Multi-resolution Renderable Images 95
4.3 SIEAMS . o oot e 97
4.4 ReadinglmageFiles i 101
4.4.1 Standard File Readers for Most Data Types. 103
442 ReadingTIFFImages., 104
4.4.3 Reading FlashPixImages........................ 109
444 ReadingJPEGImages 110
445 ReadingGIFImages............ciiiiieiiiin... 110
446 ReadingBMPImages..............co ... 111
447 ReadingPNGImages...........c.ovuiiiinnn.. 112
448 ReadingPNMImages., 117
449 Reading Standard AWT Images. 118
4410 ReadingURLImages...........ccoviiiiio.... 119
4.5 Reformattinganimage i 119
4.6 Converting a Rendered Image to Renderable 122
4.7 CreatingaConstantimage. 123
48 ImageDisplay 124
4.8.1 Positioning the Image inthe Panel. 127
482 ThelmageCanvasClass......................... 127
483 Imageorigin.t 128
5 ColorSpace 131
5.1 Introduction e 131
5.2 Color Management 132
521 ColorModels 132
522 ColorSpace. ... 135
5.2.3 ICC Profile and ICC Color Space. 138
5.3 TranSparenCyttt 139
5.4 Color CONVEersiON.t 140
5.5 Non-standard Linear Color Conversion (BandCombine) 141
6 Image Manipulation i 143
6.1 Introduction 143
6.2 RegionofInterestControl. 143
6.21 TheROICIasSot 144
6.22 TheROIShapeClass............ v, 151
6.3 Relational Operatorsc.. i 155
6.3.1 Finding the Maximum Values of Two Images. 156
6.3.2 Finding the Minimum Values of Two Images 157
6.4 Logical Operatorst 157
6.4.1 ANDINgTwoImagesuiiiuiennnn.n. 158
6.4.2 ANDing an Image witha Constant. 159
6.43 ORiIngTwolmages............. ... 160
6.4.4 ORinganimagewithaConstant.................. 161
6.45 XORingTwolmagescouviiinnnno... 162
6.4.6 XORing an Image witha Constant. 163
6.4.7 Taking the Bitwise NOT ofanlmage 164

Release 1.0.1, November 1999

Vi

CONTENTS

6.5 Arithmetic Operators 165
6.5.1 Adding Two Sourcelmages 166
6.5.2 Adding a Constant ValuetoanIimage.............. 167
6.5.3 Adding a Collectionoflmages 168
6.5.4 Adding Constants to a Collection of Rendered Images 169
6.5.5 Subtracting Two Sourcelmages 169
6.5.6 Subtracting a Constant fromanimage 170
6.5.7 Subtracting an Image froma Constant 171
6.5.8 Dividing One Image by AnotherIlmage 171
6.5.9 DividinganlmagebyaConstant................. 172
6.5.10 Dividing an Image intoaConstant 173
6.5.11 Dividing ComplexImages. 174
6.5.12 Multiplying Twolmages. 174
6.5.13 Multiplying an Image by aConstant. 175
6.5.14 Multiplying Two Complex Images................ 176
6.5.15 Finding the Absolute Value of Pixels 177
6.5.16 Taking the Exponentofanimage................. 177
6.6 Ditheringanimage. 178
6.6.1 OrderedDither.......... i, 178
6.6.2 Error-diffusion Dither 181
6.7 Clamping PixelValues. 184
6.8 Band CopYing.ot e 185
6.9 ConstructingaKernel. 186
7 Image Enhancement 191
7.1 IntroducCtion 191
7.2 AddingBorderstolmagesciiiiii i 191
721 TheBorderOperation................cc.ovviun. 192
7.2.2 Extendingthe Edge ofanimage.................. 193
7.3 CroppinganImage.ttt 199
7.4 AmplitudeRescaling 200
7.5 Histogram Equalization 202
7.5.1 Piecewise LinearMapping 202
7.5.2 Histogram Matching 203
7.6 Lookup Table Modification 205
7.6.1 CreatingtheLookup Table 207
7.6.2 PerformingtheLookup..............., 216
7.6.3 Other Lookup Table Operations 218
7.7 Convolution Filtering. e 221
7.7.1 Performing the Convolve Operation............... 223
772 BoxFilter...... 224
7.8 MedianFiltering. 226
7.9 Frequency Domain Processing., 228
7.9.1 Fourier Transform.......... 228
7.9.2 CosineTransform i 232
7.9.3 Magnitude Enhancement. 234
7.9.4 Magnitude-squared Enhancement. 235
7.9.5 PhaseEnhancement............ 235

Programming in Java Advanced Imaging

7.9.6 ComplexConjugateciiiiiina... 236

7.9.7 PeriodicShift 236
7.9.8 PolartoComplexXciiiiiiiiii 237
7.9.9 Images Based on a Functional Description 237
7.10 Single-image Pixel Point Processing. 240
7.10.1 Pixellnverting i 241
7.10.2 Logarithmic Enhancement 241
7.11 Dual Image Pixel Point Processing 242
7.11.1 Overlaylmages., 242
7.11.2 Image Compositing. 243
7.12 Thresholding 245
8 Geometric Image Manipulation. 249
8.1 INtroducCtion 249
8.2 Interpolation. 249
8.2.1 Nearest-neighbor Interpolation. 255
8.2.2 Bilinear Interpolation 256
8.2.3 Bicubic Interpolation L 256
8.2.4 Bicubic2 Interpolation L. 257
8.25 TablelInterpolation............ 258
8.3 Geometric Transformation. i 265
8.3.1 Translation Transformation 266
8.3.2 Scaling Transformation 268
8.3.3 Rotation Transformation. 270
8.3.4 Affine Transformation 272
8.4 Perspective Transformation. 275
8.4.1 Performingthe Transform 277
8.4.2 MappingaQuadrilateral......................... 277
8.4.3 MappingTriangles i 279
8.4.4 Inverse Perspective Transform. 279
8.4.5 Creating the Adjoint of the Current Transform 280
8.5 TranspoSiNg e 281
8.6 Shearing............. i 283
8.7 WarPiNgt e 285
8.7.1 Performing a Warp Operation 289
8.7.2 PolynomialWarp i 291
8.7.3 General Polynomial Warp 293
8.7.4 GridWarp. 296
8.75 QuadraticWarp.c.u i 299
876 CubicWarp. e 301
8.7.7 PerspectiveWarp 302
8.7.8 AffineWarp 303
9 Image Analysis 307
9.1 INtroduCtion 307
9.2 Finding the Mean Value of an Image Region 307
9.3 Finding the Extremaofanimage 308
9.4 Histogram Generation i 310

Release 1.0.1, November 1999 vii

CONTENTS

9.4.1 Specifying the Histogram 311
9.4.2 Performing the Histogram Operation 312
9.4.3 Reading the HistogramData..................... 313
9.4.4 Histogram Operation Example 315
9.5 EdgeDetection. 315
9.6 Statistical Operations it 321
10 Graphics Rendering i 323
10.1 Introduction 323
10.1.1 Simple2D Graphics 323
10.1.2 Renderable Graphics............. 324
10.2 A Review of Graphics Rendering. 325
10.2.1 Overview of the Rendering Process 325
10.2.2 Stroke Attributes 326
10.2.3 Rendering Graphics Primitives 330
10.3 Graphics2D Example 333
10.4 Adding Graphicsand Texttoanlmage 333
11 Image Properties 335
11.1 Introduction 335
11.1.1 The PropertySource Interface 337
11.1.2 The PropertyGenerator Interface. 337
11.2 Synthetic Properties 338
11.3 Regionsof Interest 338
11.4 ComplexData. 339
12 Client-Server Imaging.ot 341
12.1 Introduction 341
12.2 Server Name and Port Number. 342
12.3 Setting the Timeout Period and Number of Retries. 342
12.4 Remote Imaging TestExample, 343
12.4.1 Simple Remote Imaging Example. 343
12.4.2 Remotelmaging Example Across Two Nodes 348
12.5 Running Remote Imaging. it 350
12.5.1 Step 1: Create a Security Policy File. 350
12.5.2 Step 2: Startthe RMIRegistry 351
12.5.3 Step 3: Start the Remote Image Server. 351
12.5.4 Step 4: Run the Local Application 352
12.6 Internet Imaging Protocol (IIP), 352
12.6.1 lIPOperation. 352
12.6.2 IIPResolution Operation 357
13 Writing Image Files. 361
13.1 Introduction 361
13.2 Writingtoa File e 361
13.3 Writingtoan Output Stream 362
13.4 Writing BMP Image Files i 363

viii Programming in Java Advanced Imaging

1341 BMPVErSION oo 363

13.42 BMPDatalayout................ciiiiiine... 364
13.43 ExampleCode. i 364
13.5 Writing JPEG Image Files. 364
1351 JFIFHeader 365
13.5.2 JPEG DCT Compression Parameters. 366
13.5.3 QuantizationTable............................. 367
13.5.4 Horizontal and Vertical Subsampling. 368
13.5.5 CompressionQuality 369
13.5.6 Restartinterval............ 370
13.5.7 Writing an Abbreviated JPEG Stream 371
1358 ExampleCode. 371
13.6 Writing PNG Image Files i 375
13.6.1 PNGImagelayout............. ... 376
13.6.2 PNGFiltering.......... 376
13.6.3 BitDepth. 378
13.6.4 Interlaced DataOrder................. 379
13.6.5 PLTE Chunk for Palette Images. 380
13.6.6 Ancillary Chunk Specifications 381
13.7 Writing PNM Image Files 390
13.8 Writing TIFF Image Files i e 391
13.8.1 TIFF Compressionoiuiiennnnninnn.. 391
1382 TIFFTiledIimages 391
14 Extendingthe APIL. 393
141 IntroduCtiono 393
14.2 Package Naming Conventionc.iiiiinn... 393
14.3 Writing New Operators oot e e e 394
14.3.1 Extending the Oplmage Class 395
14.3.2 Extending the OperationDescriptor Interface. 397
144 MEratorso e e e 403
1441 Rectlter....... ... 404
1442 ROOKItEer 407
1443 Randomlter. i 410
1444 ExampleRectlter i 411
14.5 Writing New Image Decoders and Encoders. 414
1451 Image CodecCs.ot 414
A Program Examples 417
A.1 Lookup Operation Example. 417
A.2 Adding an OperationDescriptor Example 419
B Java Advanced Imaging APl Summary................... 429
B.l Java AWT Imagingcoviii it e 429
B.2 Java 2D Imagingo e 429
B.2.1 Java2D ImagingInterfaces 430
B.2.2 Java2DImagingClassescoiiu... 431

Release 1.0.1, November 1999 iX

CONTENTS

B.3 JavaAdvanced Imaging. 435

B.3.1 JAllInterfaces 436

B.3.2 JAICIASSES .. .ottt 437

B.3.3 JAllterator Interfaces 443

B.3.4 JAllteratorClasses., 444

B.3.5 JAlOperatorClasses.oiiiinna.n. 444

B.3.6 JAIWidgetInterfaces 453

B.3.7 JAlWidgetClasses...........ccouuiiiii... 453
GlOSSarY . . 455
INAEX . 459

Programming in Java Advanced Imaging

Figures

Figure 2-1
Figure 2-2
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 5-1
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Figure 7-12
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4

ARenderable Chain. 14
Deriving a Rendering from a Renderable Chain 18
An Example DAG e 28
Rendered Chain Example. i 32
Renderable Chain Example i 35
Renderable and Rendered Graphs after the getimage Call 36
Multi-band Image Structure 68
Bufferedimage 70
JAl Image Type Hierarchy. 72
JAI Stream Classes. . . .o 98
Grid Layout of Four Images. 126
Band Combine Example. 141
Ordered Dither Maskst e 180
Error Diffusion Dither Filters. 183
Error Diffusion Operationc. . i 183
Example Kernel 188
Image Borders 192
BorderExtenderZero Example 196
BorderExtenderConstant Example. 197
BorderExtenderCopy Example. 198
BorderExtenderWrap Example 198
BorderExtenderReflect Example 199
Crop Operationot 200
Lookup Table 206
Convolve Kernel. 222
Convolve Filter Samples 223
Median Filter Masks. 226
Pixel Inverting 241
Interpolation Samples. 253
Table Interpolation Padding. i 259
Table Interpolation Backwards Mapping. 260
Translate Operation e 267

Release 1.0.1, November 1999 Xi

Xii

Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 10-1
Figure 10-2
Figure 10-3
Figure 13-1
Figure 14-1
Figure 14-2
Figure 14-3

FIGURES

Scale Operation. 269
Rotate Operation 270
Affine Operation 273
Transpose OpPerationst e 282
Shearing Operationst i 283
Warp Grido 297
Example Histograms 310
Sobel Edge EnhancementMasks 317
Roberts’ Cross Edge EnhancementMasks 318
Prewitt Edge EnhancementMasks 319
Frei and Chen Edge EnhancementMasks. 320
Simple Text and Line Addedtoanimage. 323
Example Stroke Styles 328
Filling a Shape witha Gradient. 329
JPEG Baseline DCT Coding.o oottt e 366
Iterator Hierarchy e 404
Rectlter Traversal Pattern i 405
Rooklter Traversal Patterns. i 408

Programming in Java Advanced Imaging

Preface

THIS document introduces the Java™ Advanced Imaging APl and how to
program in it. This document is intended for serious programmers who want to
use Java Advanced Imaging for real projects. To best understand this document
and the examples, you need a solid background in the Java programming
language and some experience with imaging. In addition, you will need a
working knowledge of other Java Extension APIs, depending on your intended
application:

» Java 2D for simple graphics, text, and fundamental image manipulation

» Java Media Framework for components to play and control time-based
media such as audio and video

* Java Sound

« Java 3D

e Java Telephony
e Java Speech

Disclaimer

This version ofProgramming in Java Advanced Imagiigbased on release

1.0.1 of the Java Advanced Imaging API. Please do not rely on this document or
the Java Advanced Imaging software for production-quality or mission-critical
applications. If any discrepancies between this book and the javadocs are noted,
always consider the javadocs to be the most accurate, since they are generated
directly from the JAI files and are always the most up to date.

About This Book

Chapter 1, “Introduction to Java Advanced Imaging,” gives an overview of
the Java Advanced Imaging API, how it evolved from the original Java Advanced

Release 1.0.1, November 1999 Xiii

PREFACE

Windowing Toolkit (AWT), some of its features, and introduces the imaging
operations.

Chapter 2, “Java AWT Imaging,” reviews the imaging portions of the Java
AWT and examines the imaging features of the Java 2D API.

Chapter 3, “Programming in Java Advanced Imaging,” describes how to get
started programming with the Java Advanced Imaging API.

Chapter 4, “Image Acquisition and Display,” describes the Java Advanced
Imaging API image data types and the API constructors and methods for image
acquisition and display.

Chapter 5, “Color Space,” describes the JAI color space, transparency, and the
color conversion operators.

Chapter 6, “Image Manipulation,” describes the basics of manipulating
images to prepare them for processing and display.

Chapter 7, “Image Enhancement,”describes the basics of improving the
visual appearance of images through enhancement techniques.

Chapter 8, “Geometric Image Manipulation,” describes the basics of Java
Advanced Imaging’s geometric image manipulation functions.

Chapter 9, “Image Analysis,” describes the Java Advanced Imaging APl image
analysis operators.

Chapter 10, “Graphics Rendering,” describes the Java Advanced Imaging
presentation of shapes and text.

Chapter 11, “Image Properties,” describes the tools that allow a programmer
to add a simple database of arbitrary data that can be attached to images.

Chapter 12, “Client-Server Imaging,” describes Java Advanced Imaging’s
client-server imaging system.

Chapter 13, “Writing Image Files,” describes Java Advanced Imaging’s codec
system for encoding image data files.

Chapter 14, “Extending the API,” describes how the Java Advanced Imaging
API is extended.

Appendix A, “Program Examples,” contains fully-operational Java Advanced
Imaging program examples.

Xiv Programming in Java Advanced Imaging

PREFACE

Appendix B, “Java Advanced Imaging APl Summary,” summarizes the
imaging interfaces, and classes, including jhea.awt, java.awt.Image, and
javax.media.jai classes.

The Glossary contains descriptions of significant terms that appear in this book.

Related Documentation

To obtain a good understanding of the Java programming language, we suggest
you start with the SunSoft Press series of books:

* Instant Javaby John A. Pew

e Java in a Nutchell: A Desktop Quick ReferermeDavid Flanagan

» Java by Exampldy Jerry R. Jackson and Alan L. McClellan

e Just Javaby Peter van der Linden

» Core Javaby Gary Cornell and Gay S. Horstmann

» Java Distributed Computindpy Jim Farley
For more information on digital imaging, we suggest you refer to the following
books:

* Fundamentals of Digital Image Processity Anil K. Jain

» Digital Image Processing: Principles and Applicatiphy Gregory A.
Baxes

» Digital Image Processingy Kenneth R. Castleman
» Digital Image Processing2nd. ed., by William K. Pratt

Additional Information

Since Java Advanced Imaging continues to evolve and periodically add new
operators, it is always a good idea to occasionally check the JavaSoft JAl web
site for the latest information.

http://java.sun.com/products/java-media/jai/

The web site contains links to the latest version of JAl, email aliases for
obtaining help from the community of JAI developers, and a tutorial that
includes examples of the use of many JAI operators.

Release 1.0.1, November 1999 XV

XVi

PREFACE

Style Conventions
The following style conventions are used in this document:

* Lucida typeisused torepresent computer code and the names of files and
directories.
* Bold Lucida type is used for Java 3D API declarations.

» ltalic typeis used for emphasis and for equations.

Throughout the book, we introduce many API calls with the following format:

APIl: javax.media.jai.TiledImage

When introducing an API call for the first time, we add a short summary of the
methods, tagged with the API heading.

Programming in Java Advanced Imaging

CHAPTER 1

Introduction to Java
Advanced Imaging

THE Java™ programming language has continued to grow both in popularity
and scope since its initial release. Java in its current form is the culmination of
several years work, dating back to 1991 when it was conceived as a modular and
extensible programming language.

Java is based on the C and C++ programming languages, but differs from these
languages is some important ways. The main difference between C/C++ and
Java is that in Java all development is done with objects and classes. This main
difference provides distinct advantages for programs written in Java, such as
multiple threads of control and dynamic loading.

Another advantage to Java is its extensibility. Since the original release of Java,
several extensions have been added to the core code, providing greater flexibility
and power to applications. These extensions add objects and classes that improve
the Java programmer’s ability to use such features as:

» Java Swing — a component set to create grapical user interfaces with a
cross-platform look and feel

e Java Sound - for high-quality 32-channel audio rendering and MIDI-
controlled sound synthesis

» Java 3D - for advanced geometry and 3D spatial sound

» Java Media Framework — for components to play and control time-based
media such as audio and video

» Java Telephony (JTAPI) — for computer-telephony applications

» Java Speech — for including speech technology into Java applets and
applications

Release 1.0.1, November 1999 1

11

The Evolution of Imaging in Java INTRODUCTION TO JAVA ADVANCED IMAGING

1.1 The Evolution of Imaging in Java

Early versions of the Java AWT provided a simple rendering package suitable
for rendering common HTML pages, but without the features necessary for
complex imaging. The early AWT allowed the generation of simple images by
drawing lines and shapes. A very limited number of image files, such as GIF and
JPEG, could be read in through the use gbalkit object. Once read in, the
image could be displayed, but there were essentially no image processing
operators.

The Java 2D API extended the early AWT by adding support for more general
graphics and rendering operations. Java 2D added special graphics classes for
the definition of geometric primitives, text layout and font definition, color

spaces, and image rendering. The new classes supported a limited set of image
processing operators for blurring, geometric transformation, sharpening, contrast
enhancement, and thresholding. The Java 2D extensions were added to the core
Java AWT beginning with the Java Platform 1.2 release.

The Java Advanced Imaging (JAI) API further extends the Java platform
(including the Java 2D API) by allowing sophisticated, high-performance image
processing to be incorporated into Java applets and applications. JAl is a set of
classes providing imaging functionality beyond that of Java 2D and the Java
Foundation classes, though it is compatible with those APIs.

JAI implements a set of core image processing capabilities including image
tiling, regions of interest, and deferred execution. JAl also offers a set of core
image processing operators including many common point, area, and frequency-
domain operators.

JAl is intended to meet the needs of all imaging applications. The API is highly
extensible, allowing new image processing operations to be added in such a way
as to appear to be a native part of it. Thus, JAI benefits virtually all Java
developers who want to incorporate imaging into their applets and applications.

1.2 Why Another Imaging API?

Several imaging APIs have been developed — a few have even been marketed and
been fairly successful. However, none of these APIs have been universally
accepted because they failed to address specific segments of the imaging market
or they lacked the power to meet specific needs. As a consequence, many
companies have had to “roll their own” in an attempt to meet their specific
requirements.

Programming in Java Advanced Imaging

INTRODUCTION TO JAVA ADVANCED IMAGING Cross-platform Imaging

Writing a custom imaging APl is a very expensive and time-consuming task and
the customized API often has to be rewritten whenever a new CPU or operating
system comes along, creating a maintenance nightmare. How much simpler it
would be to have an imaging API that meets everyone’s needs.

Previous industry and academic experience in the design of image processing
libraries, the usefulness of these libraries across a wide variety of application
domains, and the feedback from the users of these libraries have been
incorporated into the design of JAI.

JAl is intended to support image processing using the Java programming
language as generally as possible so that few, if any, image processing
applications are beyond its reach. At the same time, JAI presents a simple
programming model that can be readily used in applications without a
tremendous mechanical programming overhead or a requirement that the
programmer be expert in all phases of the API's design.

JAl encapsulates image data formats and remote method invocations within a re-
usable image data object, allowing an image file, a network image object, or a
real-time data stream to be processed identically. Thus, JAI represents a simple
programming model while concealing the complexity of the internal

mechanisms.

1.3 JAIl Features

JAl is intended to meet the requirements of all of the different imaging markets,
and more. JAI offers several advantages for applications developers compared to
other imaging solutions. Some of these advantages are described in the following
paragraphs.

1.3.1 Cross-platform Imaging

Whereas most imaging APIs are designed for one specific operating system, JAI
follows the Java run time library model, providing platform independence.
Implementations of JAI applications will run on any computer where there is a
Java Virtual Machine. This makes JAI a true cross-platform imaging API,
providing a standard interface to the imaging capabilities of a platform. This
means that you write your application once and it will run anywhere.

Release 1.0.1, November 1999 3

1.3.2

Distributed Imaging INTRODUCTION TO JAVA ADVANCED IMAGING

1.3.2 Distributed Imaging

JAl is also well suited for client-server imaging by way of the Java platform’s
networking architecture and remote execution technologies. Remote execution is
based on Java RMI (remote method invocation). Java RMI allows Java code on a
client to invoke method calls on objects that reside on another computer without
having to move those objects to the client.

1.3.3 Object-oriented API

Like Java itself, JAl is totally object-oriented. In JAI, images and image
processing operations are defined as objects. JAl unifies the notions of image and
operator by making both subclasses of a common parent.

An operator object is instantiated with one or more image sources and other
parameters. This operator object may then become an image source for the next
operator object. The connections between the objects define the flow of
processed data. The resulting editable graphs of image processing operations
may be defined and instantiated as needed.

1.3.4 Flexible and Extensible

Any imaging APl must support certain basic imaging technologies, such as
image acquisition and display, basic manipulation, enhancement, geometric
manipulation, and analysis. JAI provides a core set of the operators required to
support the basic imaging technologies. These operators support many of the
functions required of an imaging application. However, some applications
require special image processing operations that are seldom, if ever, required by
other applications. For these specialized applications, JAIl provides an extensible
framework that allows customized solutions to be added to the core API.

JAI also provides a standard set of image compression and decompression
methods. The core set is based on international standards for the most common
compressed file types. As with special image processing functions, some
applications also require certain types of compressed image files. It is beyond the
scope of any API to support the hundreds of known compression algorithms, so
JAI also supports the addition of customized coders and decoders (codecs),
which can be added to the core API.

1.3.5 Device Independent

The processing of images can be specified in device-independent coordinates,
with the ultimate translation to pixels being specified as needed at run time. JAI's

Programming in Java Advanced Imaging

INTRODUCTION TO JAVA ADVANCED IMAGING Interoperable

“renderable” mode treats all image sources as rendering-independent. You can
set up a graph (or chain) of renderable operations without any concern for the
source image resolution or size; JAl takes care of the details of the operations.

To make it possible to develop platform-independent applications, JAl makes no
assumptions about output device resolution, color space, or color model. Nor
does the API assume a particular file format. Image files may be acquired and
manipulated without the programmer having any knowledge of the file format
being acquired.

1.3.6 Powerful

JAIl supports complex image formats, including images of up to three dimensions
and an arbitrary number of bands. Many classes of imaging algorithms are
supported directly, others may be added as needed.

JAl implements a set of core image processing capabilities, including image
tiling, regions of interest, and deferred execution. The API also implements a set
of core image processing operators, including many common point, area, and
frequency-domain operations. For a list of the available operators, see

Section 3.6, “JAl API Operators.”

1.3.7 High Performance

A variety of implementations are possible, including highly-optimized
implementations that can take advantage of hardware acceleration and the media
capabilities of the platform, such as MMX on Intel processors and VIS on
UltraSparc.

1.3.8 Interoperable

JAl is integrated with the rest of the Java Media APls, enabling media-rich
applications to be deployed on the Java platform. JAl works well with other Java
APIs, such as Java 3D and Java component technologies. This allows
sophisticated imaging to be a part of every Java technology programmer’s tool
box.

JAl is a Java Media API. It is classified as a Standard Extension to the Java
platform. JAI provides imaging functionality beyond that of the Java Foundation
Classes, although it is compatible with those classes in most cases.

Release 1.0.1, November 1999 5

A Simple JAI Program INTRODUCTION TO JAVA ADVANCED IMAGING

1.4 A Simple JAI Program

Before proceeding any further, let’s take a look at an example JAI program to get
an idea of what it looks like. Listing 1-1 shows a simple example of a complete
JAIl program. This example reads an image, passed to the program as a command
line argument, scales the image by ®ith bilinear interpolation, then displays

the result.

Listing 1-1 Simple Example JAIl Program

import java.awt.Frame;

import java.awt.image.renderable.ParameterBlock;
import java.io.IOException;

import javax.media.jai.Interpolation;

import javax.media.jai.JAI;

import javax.media.jai.RenderedOp;

import com.sun.media.jai.codec.FileSeekableStream;
import javax.media.jai.widget.ScrollingImagePanel;

/:': %
* This program decodes an image file of any JAI supported
formats, such as GIF, JPEG, TIFF, BMP, PNM, PNG, into a
RenderedImage, scales the image by 2X with biTlinear
interpolation, and then displays the result of the scale
* operation.
:':/
public class JAISampleProgram {

/** The main method. */
public static void main(String[] args) {
/* Validate input. */
if (args.length !'= 1) {
System.out.printin(“Usage: java JAISampleProgram “ +
“input_image_filename”);
System.exit(-1);
}

/-.'r
* Create an input stream from the specified file name
* to be used with the file decoding operator.
*/
FileSeekabTeStream stream = null;
try {
stream = new FileSeekableStream(args[0]);
} catch (IOException e) {
e.printStackTrace();
System.exit(0);

Programming in Java Advanced Imaging

INTRODUCTION TO JAVA ADVANCED IMAGING A Simple JAI Program

Listing 1-1 Simple Example JAI Program (Continued)

/* Create an operator to decode the image file. */
RenderedOp imagel = JAI.create(“stream”, stream);
/:“:
* Create a standard bilinear interpolation object to be
* used with the “scale” operator.
'.':/
Interpolation interp = Interpolation.getInstance(
Interpolation.INTERP_BILINEAR);

/7’::‘:
* Stores the required input source and parameters in a
* ParameterBlock to be sent to the operation registry,
* and eventually to the “scale” operator.
*/
ParameterBlock params = new ParameterBlock();
params.addSource(imagel);

params.add(2.0F); // x scale factor
params.add(2.0F); // y scale factor
params.add(0.0F); // x translate
params.add(0.0F); // y translate
params.add(interp); // interpolation method

/* Create an operator to scale imagel. */
RenderedOp image2 = JAI.create(“scale”, params);

/* Get the width and height of image2. */
int width = image2.getWidth();
int height = image2.getHeight();

/* Attach image2 to a scrolling panel to be displayed. */
ScrollingImagePanel panel = new ScrollingImagePanel(
image2, width, height);

/* Create a frame to contain the panel. */
Frame window = new Frame(“JAI Sample Program”);
window.add(panel);

window.pack(Q);

window.show();

Release 1.0.1, November 1999

1.4 A Simple JAI Program INTRODUCTION TO JAVA ADVANCED IMAGING

8 Programming in Java Advanced Imaging

CHAPTER2

Java AWT Imaging

DIGITAL imaging in Java has been supported since its first release, through
the java.awt andjava.awt.image class packages. The image-oriented part of
these class packages is referred t\@asT Imagingthroughout this guide.

2.1 Introduction
The Java Advanced Imaging (JAI) API supports three imaging models:

* The producer/consumer (push) model — the basic AWT imaging model
* The immediate mode model — an advanced AWT imaging model
* The pipeline (pull) model — The JAI model

Table 2-1 lists the interfaces and classes for each of the three models.

Table 2-1 Imaging Model Interfaces and Classes
Java 2D Immediate

AWT Push Model Mode Model Pull Model
Image BufferedImage RenderableImage
ImageProducer Raster RenderableImageOp
ImageConsumer BufferedImageOp RenderedOp
ImageObserver RasterOp RenderableOp

TiledImage

2.1.1 The AWT Push Model

The AWT push model, supported through theva.awt class package, is a

simple filter model of image producers and consumers for image processing. An
Image Object is an abstraction that is not manipulated directly; rather it is used to
obtain a reference to another object that implementgtlageProducer

interface. Objects that implement this interface are in turn attached to objects

Release 1.0.1, November 1999

211

10

The AWT Push Model JAVA AWT IMAGING

that implement th@mageConsumer interface. Filter objects implement both the
producer and consumer interfaces and can thus serve as both a source and sink
of image data. Image data has associated witlCéilarMode1 that describes the
pixel layout within the image and the interpretation of the data.

To process images in the push model,Iaage object is obtained from some
source (for example, through thAgplet.getImage() method). The
Image.getSource() method can then be used to get fimageProducer for that
Image. A series offFilteredImageSource objects can then be attached to the
ImageProducer, with each filter being afimageConsumer of the previous image
source. AWT Imaging defines a few simple filters for image cropping and color
channel manipulation.

The ultimate destination for a filtered image is an Aflage object, created by
a call to, for exampleComponent.createImage(). Once this consumer image
has been created, it can by drawn upon the screen by calling
Image.getGraphics() to obtain aGraphics object (such as a screen device),
followed by Graphics.drawImage().

AWT Imaging was largely designed to facilitate the display of images in a
browser environment. In this context, an image resides somewhere on the
network. There is no guarantee that the image will be available when required,
so the AWT model does not force image filtering or display to completion. The
model is entirely gpushmodel. AnImageConsumer can never ask for data; it
must wait for theImageProducer to “push” the data to it. Similarly, an
ImageConsumer has no guarantee about when the data will be completely
delivered; it must wait for a call to itsmageComplete() method to know that it
has the complete image. An application can also instantiatm&yeObserver
object if it wishes to be notified about completion of imaging operations.

AWT Imaging does not incorporate the idea of an image that is backed by a
persistent image store. While methods are provided to convert an input memory
array into animageProducer, or capture an output memory array from an
ImageProducer, there is no notion of a persistent image object that can be
reused. When data is wanted from Rrage, the programmer must retrieve a
handle to the Image'smageProducer to obtain it.

The AWT imaging model is not amenable to the development of high-
performance image processing code. The push model, the lack of a persistent
image data object, the restricted model of an image filter, and the relative paucity
of image data formats are all severe constraints. AWT Imaging also lacks a
number of common concepts that are often used in image processing, such as
operations performed on a region of interest in an image.

Programming in Java Advanced Imaging

JAVA AWT IMAGING The Immediate Mode Model

2.1.2 AWT Push Model Interfaces and Classes

The following are the Java interfaces and classes associated with the AWT push
model of imaging.

Table 2-2 Push Model Imaging Interfaces

Interface Description

Image ExtendsObject
The superclass of all classes that represent graphical images.

Table 2-3 Push Model Imaging Classes

Class Description

ColorModel An abstract class that encapsulates the methods for translating
a pixel value to color components (e.g., red, green, blue) and
an alpha component.

FilteredImageSource An implementation of th&mageProducer interface which
takes an existing image and a filter object and uses them to
produce image data for a new filtered version of the original
image.

ImageProducer The interface for objects that can produce the image data for
Images. Each image containsamgeProducer that is used
to reconstruct the image whenever it is needed, for example,
when a new size of tHenage is scaled, or when the width or
height of thelmage is being requested.

ImageConsumer The interface for objects expressing interest in image data
through theImageProducer interfaces. When a consumer is
added to an image producer, the producer delivers all of the
data about the image using the method calls defined in this
interface.

ImageQObserver An asynchronous update interface for receiving notifications
aboutImage information as th&mage is constructed.

2.2 The Immediate Mode Model

To alleviate some of the restrictions of the original AWT imaging model and to
provide a higher level of abstraction, a new specification calleddka 2DAPI

was developed. This new API extends AWT’s capabilities for both two-
dimensional graphics and imaging. In practice, the Java 2D package is how
merged into the AWT specification and is a part of the Java Core (and thus
available in all Java implementations). However, for purposes of discussion, the
distinction between Java 2D and the AWT is preserved in this chapter.

The Java 2D API specifies a set of classes that extend the Java AWT classes to
provide extensive support for both two-dimensional graphics and imaging. The
support for 2D graphics is fairly complete, but will not be discussed further here.

Release 1.0.1, November 1999 11

221

12

Rendering Independence JAVA AWT IMAGING

For digital imaging, the Java 2D API retains to some extent the AWT producer/
consumer model but adds the concept of a memory-backed persistent image data
object, an extensible set of 2D image filters, a wide variety of image data formats
and color models, and a more sophisticated representation of output devices. The
Java 2D API also introduces the notion of resolution-independent image
rendering by the introduction of tHeenderableand Renderednterfaces,

allowing images to be pulled through a chain of filter operations, with the image
resolution selected through a rendering context.

The concepts of rendered and renderable images contained in the Java 2D API
are essential to JAI. The next few sections explain these concepts; complete
information about the classes discussed can be foufithénJava 2D API
Specificatiorand theJava 2D APl White Paper

2.2.1 Rendering Independence

Rendering independence for images is a poorly understood topic because it is
poorly named. The more general problem is “resolution independence,” the
ability to describe an image as you want it to appear, but independent of any
specific instance of it. Resolution is but one feature of any such rendering. Others
are the physical size, output device type, color quality, tonal quality, and
rendering speed. A rendering-independent description is concerned with none of
these.

In this document, the termendering-independers for the more general concept
instead ofresolution-independenThe latter term is used to specifically refer to
independence from final display resolution.

For a rendering-independent description of an image, two fundamental elements
are needed:

* Anunrendered source (sometimes callegsalution-independent
sourcg. For a still image, this is, conceptually, the viewfinder of an
idealized camera trained on a real scene. It has no logical “size.” Rather,
one knows what it looks like and can imagine projecting it onto any
surface. Furthermore, the ideal camera has an ideal lens that is capable of
infinite zooming. The characteristics of this image are that it is
dimensional, has a native aspect ratio (that of the capture device), and may
have properties that could be queried.

» Operators for describing how to change the character of the image,
independent of its final destination. It can be useful to think of this as a pipe
of operations.

Programming in Java Advanced Imaging

JAVA AWT IMAGING The Renderable Layer vs. the Rendered Layer

Together, the unrendered source and the operators specify the visual character
that the image should have when it is rendered. This specification can then be

associated with any device, display size, or rendering quality. The primary power
of rendering independence is that the same visual description can be routed to
any display context with an optimal result.

2.2.2 Rendering-independent Imaging in Java AWT

The Java AWT API architecture integrates a model of rendering independence
with a parallel, device-dependent (rendered) model. The rendering-independent
portion of the architecture is a superset of, rather than a replacement for, the
traditional model of device-dependent imaging.

The Java AWT API architecture supports context-dependent adaptation, which is
superior to full image production and processing. Context-dependent adaptation
is inherently more efficient and thus also suited to network sources. Beyond
efficiency, it is the mechanism by which optimal image quality can be assured in
any context.

The Java AWT API architecture is essentially synchronous is nature. This has
several advantages, such as a simplified programming model and explicit
controls on the type and order of results. However, the synchronous nature of
Java AWT has one distinct disadvantage in that it is not well suited to notions of
progressive rendering or network resources. These issues are addressed in JA.

2.2.3 The Renderable Layer vs. the Rendered Layer

The Java AWT API architecture provides for two integrated imaging layers:
renderable and rendered.

2.2.3.1 Renderable Layer

The renderable layer is a rendering-independent layer. All the interfaces and
classes in the Java AWT API havenderable in their names.

The renderable layer provides image sources that can be optimally reused
multiple times in different contexts, such as screen display or printing. The
renderable layer also provides imaging operators that take rendering-independent
parameters. These operators can be linked to fdrains The layer is

essentially synchronous in the sense that it “pulls” the image through the chain
whenever a rendering (such as to a display or a file) is requested. That is, a
request is made at the sink end of the chain that is passed up the chain to the

Release 1.0.1, November 1999 13

2.2.3

14

The Renderable Layer vs. the Rendered Layer JAVA AWT IMAGING

source. Such requests are context-specific (such as device specific), and the chain
adapts to the context. Only the data required for the context is produced.

2.2.3.2 Rendered Layer

Image sources and operators in the pardtiehdered laye(the interfaces and
classes haveendered in their names) are context-specificRAnderedImage is

an image that has been rendered to fulfill the needs of the context. Rendered
layer operators can also be linked together to form chains. They take context-
dependent parameters. Like the Renderable layer, the Rendered layer implements
a synchronous “pull” model.

2.2.3.3 Using the Layers

Structurally, the Renderable layer is lightweight. It does not directly handle pixel
processing. Rather, it makes use of operator objects from the Rendered layer.
This is possible because the operator classes from the Rendered layer can
implement an interface (theéntextualRenderedImageFactory interface) that
allows them to adapt to different contexts.

Since the Rendered layer operators implement this interface, they house specific
operations in their entirety. That is, all the intelligence required to function in
both the Rendered and Renderable layers is housed in a single class. This
simplifies the task of writing new operators and makes extension of the
architecture manageable.

Figure 2-1 shows a renderable chain. The chain has a sink attached (a
Graphics2D obiject), but no pixels flow through the chain yet.

Renderable
Operator

ParameterBlock |

Renderable Graphics2D
Source Object

Figure 2-1 A Renderable Chain
You may use either the Renderable or Rendered layer to construct an application.

Many programmers will directly employ the Rendered layer, but the Renderable
layer provides advantages that greatly simplify imaging tasks. For example, a

Programming in Java Advanced Imaging

JAVA AWT IMAGING Renderable and Rendered Classes

chain of Renderable operators remains editable. Parameters used to construct the
chain can be modified repeatedly. Doing so does not cause pixel value
computation to occur. Instead, the pixels are computed only when they are
needed by a specific rendition obtained frorReaderableImage by passing it
definedrender contexts

2.2.4 The Render Context

The renderable layer allows for the construction of a chain of operators
(RenderableImageOps) connected to 8enderableImage source. The end of this
chain represents a neReénderableImage source. The implication of this is that
RenderableImageOps must implement the same interface as sources:
RenderableImageOp implementsRenderableImage.

Such a source can be asked to provide various speeifite redImages
corresponding to a specific context. The required size oRénderedImage in
the device space (the size in pixels) must be specified. This information is
provided in the form of an affine transformation from the user space of the
Renderable source to the desired device space.

Other information can also be provided to the source (or chain) to help it perform
optimally for a specific context. A preference for speed over image quality is an
example. Such information is provided in the form of an extensible hints table. It
may also be useful to provide a means to limit the request to a specific area of
the image.

The architecture refers to these parameters collectivelyrasder contextThe
parameters are housed irRenderContext class. Render contexts form a
fundamental link between the Renderable and Rendered layers. A
RenderableImage source is given &enderContext and, as a result, produces a
specific rendering, okenderedImage. This is accomplished by the Renderable
chain instantiating a chain of Render layer objects. That is, a chain of
RenderedImages corresponding to the specific context, RedderedImage

object at the end of the chain being returned to the user.

2.3 Renderable and Rendered Classes

Many users will be able to employ the Renderable layer, with the advantages of
its rendering-independent properties for most imaging purposes. Doing so
eliminates the need to deal directly with pixels, greatly simplifying image
manipulation. However, in many cases it is either necessary or desirable to work
with pixels and the Rendered layer is used for this purpose.

Release 1.0.1, November 1999 15

231

16

The Renderable Layer JAVA AWT IMAGING

The architecture of the provided classes is discussed in this section. Extending
the model by writing new operators or algorithms in the Java 2D APl is
discussed. Details of how the Rendered layer functions internally within the
Renderable layer are also covered.

2.3.1 The Renderable Layer

The renderable layer is primarily defined by thenderablelImage interface.

Any class implementing this interface is a renderable image source, and is
expected to adapt ®RenderContextsS. RenderableImages are referenced

through a user-defined coordinate system. One of the primary functions of the
RenderContext is to define the mapping between this user space and the specific
device space for the desired rendering.

A chain in this layer is a chain afenderableImages. Specifically, it is a chain
of RenderableImageOps (a class that implemenkenderableImage), ultimately
sourced by ®enderableImage.

There is only on®enderableImageOp class. It is a lightweight, general purpose
class that takes on the functionality of a specific operation through a parameter
provided at instantiation time. That parameter is the name of a class that
implements &ontextualRenderedImageFactory (known as a CRIF, for short).
Each instantiation oRenderableImageOp derives its specific functionality from

the named class. In this way, the Renderable layer is heavily dependent on the
Rendered layer.

Table 2-4 The Renderable Layer Interfaces and Classes
Type Name Description
Interface RenderableImage A common interface for rendering-

independent images (a notion that subsumes
resolution independence).

ContextualRenderedImage- ExtendsRenderedImageFactory

Factory Provides an interface for the functionality
that may differ between instances of
RenderableImageOp.

Programming in Java Advanced Imaging

JAVA AWT IMAGING The Renderable Layer

Table 2-4 The Renderable Layer Interfaces and Classes (Continued)

Type Name Description

Class ParameterBlock ExtendsObject
ImplementsCloneable, Serializable
Encapsulates all the information about
sources and parameters (expressed as base
types or Objects) required by a
RenderableImageOp and other future
classes that manipulate chains of imaging
operators.

RenderableImageOp ExtendsObject
ImplementsRenderableImage
Handles the renderable aspects of an
operation with help from its associated
instance of a
ContextualRenderedImageFactory.

RenderableImageProducer ExtendsObject
ImplementsImageProducer, Runnable
An adapter class that implements
ImageProducer to allow the asynchronous
production of &RenderableImage.

RenderContext ExtendsObject
ImplementsCloneable
Encapsulates the information needed to
produce a specific rendering from a
RenderableImage.

The other block involved in the construction RénderableImageOp is a
ParameterBlock. The ParameterBlock houses the source(s) for the operation,

plus parameters or other objects that the operator may require. The parameters
are rendering-independent versions of the parameters that control the (Rendered)

operator.

A Renderable chain is constructed by instantiating each successive
RenderableImageOp, passing in the lastenderableImage as the source in the
ParameterBlock. This chain can then be requested to provide a number of
renderings to specific device spaces throughgtitdmage method.

This chain, once constructed, remains editable. Both the parameters for the
specific operations in the chain and the very structure of the chain can be
changed. This is accomplished by thexParameterBlock method, setting new
controlling parameters and/or new sources. These edits only affect future
RenderedImages derived from points in the chain below the edits.
RenderedImages that were previously obtained from the Renderable chain are
immutable and completely independent from the chain from which they were
derived.

Release 1.0.1, November 1999

17

2.3.2

18

The Rendered Layer JAVA AWT IMAGING

2.3.2 The Rendered Layer

The Rendered layer is designed to work in concert with the Renderable layer.
The Rendered layer is comprised of sources and operations for device-specific
representations of images or renderings. The Rendered layer is primarily defined
by theRenderedImage interface. Sources such BsfferedImage implement this
interface.

Operators in this layer are simpRenderedImages that take other

RenderedImages as sources. Chains, therefore, can be constructed in much the
same manner as those of the Renderable layer. A sequeReerdefedImages is
instantiated, each taking the Ia&inderedImage as a source.

In Figure 2-2, when the user caligaphics2D.drawImage(), a render context is
constructed and used to call thetImage) method of the renderable operator.

A rendered operator to actually do the pixel processing is constructed and
attached to the source and sink of the renderable operator and is passed a clone
of the renderable operator’s parameter block. Pixels actually flow through the
rendered operator to the Graphics2D. The renderable operator chain remains
available to produce more renderings whenevegdtsmage () method is called.

Rendered I

> Operator I

7
\

|
| |

L
Renderable Renderable .
Source | ™ Operator I > Graphics2D
* _
L 4 RenderContext I* |

\
|
drawImage()

y
ParameterBlock I

ParameterBlock I

Figure 2-2 Deriving a Rendering from a Renderable Chain

Programming in Java Advanced Imaging

JAVA AWT IMAGING Java Image Data Representation

Table 2-5 The Rendered Layer Interfaces and Classes

Type Name Description

Interface RenderedImage A common interface for objects that contain
or can produce image data in the form of
Rasters.

Class BufferedImage ExtendsImage

ImplementsWritableRenderedImage
A subclass that describes an Image with an
accessible buffer of image data.

WritableRenderedImage ExtendsRenderedImage
A common interface for objects that contain
or can produce image data that can be
modified and/or written over.

A rendered image represents a virtual image with a coordinate system that maps
directly to pixels. A Rendered image does not have to have image data associated
with it, only that it be able to produce image data when requested. The
BufferedImage class, which is the Java 2D API's implementation of
RenderedImage, however, maintains a full page buffer that can be accessed and
written to. Data can be accessed in a variety of ways, each with different
properties.

2.4 Java Image Data Representation

In the Java AWT API, a sample is the most basic unit of image data. Each pixel
is composed of a set of samples. For an RGB pixel, there are three samples; one
each for red, green, and blue. All samples of the same kind across all pixels in an
image constitute dand For example, in an RGB image, all the red samples
together make up a band. Therefore, an RGB image contains three bands.

A three-color subtractive image contains three bands; one each for cyan,
magenta, and yellow (CMY). A four-color subtractive image contains four
bands; one each for cyan, magenta, yellow, and black (CMYK).

Release 1.0.1, November 1999 19

2.4

20

Java Image Data Representation JAVA AWT IMAGING

Table 2-6 Java 2D Image Data Classes

Type Name Description

Class DataBuffer ExtendsObject
Wraps one or more data arrays. Each data
array in theDataBuffer is referred to as a
bank.

Raster ExtendsObject
Represents a rectanglular array of pixels and
provides methods for retrieving image data.

SampleModel ExtendsObject
Extracts samples of pixels in images.

WriteableRaster ExtendsRaster
Provides methods for storing image data and
inherits methods for retrieving image data
from it's parent clasRaster.

The basic unit of image data storage is theaBuffer. TheDataBuffer is a

kind of raw storage that contains all of the samples for the image data but does
not maintain a notion of how those samples can be put together as pixels. The
information about how the samples are put together as pixels is contained in a
SampleModel. The SampleModel class contains methods for deriving pixel data
from aDataBuffer. Together, @ataBuffer and aSampleModel constitute a
meaningful multi-pixel image storage unit calle®a@ster.

A Raster has methods that directly return pixel data for the image data it
contains. There are two basic typesrRakters:

» Raster — a read-only object that has only accessors
* WritableRaster — A writable object that has a variety of mutators

There are separate interfaces for dealing with each raster type. The
RenderedImage interface assumes that the data is read-only and does not contain
methods for writing ®aster. TheWritableRenderedImage interface assumes

that the image data is writeable and can be modified.

Data from atile is returned in @aster object. A tile is not a class in the
architecture; it is a concept. A tile is one of a set of regular rectangular regions
that span the image on a regular grid. In Re@deredImage interface, there are
several methods that relate to tiles and a tile grid. These methods are used by the
JAI API, rather than the Java 2D API. In the Java 2D API, the implementation of
thewritableRenderedImage (BufferedImage) is defined to have a single tile.

This, thegetWritableTile method will return all the image data. Other methods
that relate to tiling will return the correct degenerative results.

Programming in Java Advanced Imaging

JAVA AWT IMAGING Introducing the Java Advanced Imaging API

RenderedImages do not necessarily maintainRaster internally. Rather, they
can return requested rectangles of image data in the formwfiadb1e)Raster
(through thegetData, getRect, andget(Writable)Tile methods). This
distinction allowsrenderedImages to be virtual images, producing data only
when needekenderedImages do, however, have an associatadpleModel,
implying that data returned iRasters from the same image will always be
written to the associatemhtaBuffer in the same way.

The Java 2[BufferedImage also adds an associatédlorModel, which is
different from theSampleModel. TheColorModel determines how the bands are
interpreted in a colorimetric sense.

2.5 Introducing the Java Advanced Imaging API

The JAI API builds on the foundation of the Java 2D API to allow more powerful
and general imaging applications. The JAI API adds the following concepts:

e Multi-tiled images

» Deferred execution

* Networked images

» Image property management

» Image operators with multiple sources
» Three-dimensional image data

The combination of tiling and deferred execution allows for considerable run-
time optimization while maintaining a simple imaging model for programmers.
New operators may be added and the new operators may participate as first-class
objects in the deferred execution model.

The JAI API also provides for a considerable degree of compatibility with the
Java AWT and Java 2D imaging models. JAI's operators can work directly on
Java 2DBufferedImage objects or any other image objects that implement the
RenderedImage interface. JAl supports the same rendering-independent model as
the Java 2D API. using device-independent coordinates. JAIl also supports Java
2D-style drawing on both Rendered and Renderable images usirtgdhiei cs
interface.

The JAI API does not make use of the image producer/consumer interfaces
introduced in Java AWT and carried forward into the Java 2D API. Instead, the
JAI API requires that image sources participate in the “pull” imaging model by
responding to requests for arbitrary areas, thus making it impossible to

Release 1.0.1, November 1999 21

251

22

Similarities with the Java 2D API JAVA AWT IMAGING

instantiate arimageProducer directly as a source. It is, however, possible to
instantiate artmageProducer that makes the JAl APl image data available to
older AWT applications.

2.5.1 Similarities with the Java 2D API

The JAI API is heavily dependent on the abstractions defined in the Java 2D API.
In general, the entire mechanism for handling Renderable and Rendered images,
pixel samples, and data storage is carried over into JAl. Here are some of the
major points of congruity between Java 2D and JAI:

* TheRenderableImage andRenderedImage interfaces defined in the Java
2D API are used as a basis for higher-level abstractions. Further, JAI
allows you to create and manipulate directed acyclic graphs of objects
implementing these interfaces.

» The primary data object, tha1edImage, implements the
WritableRenderedImage interface and can contain a regular tile grid of
Raster objects. However, unlike theufferedImage of the Java 2D API,
TiledImage does not require that@lorModel for photometric
interpretation of its image data be present.

» The JAIl operator objects are considerably more sophisticated than in the
Java 2D API. ThepImage, the fundamental operator object, provides
considerable support for extensibility to new operators beyone that in the
Java 2D API. JAl has a registry mechanism that automates the selection of
operations oRenderedImages.

* The Java 2D AP$ampleModel, DataBuffer, andRaster objects are
carried over into JAl without change, except tHatib1es andfloats are
allows to be used as the fundamental data type9@faBuffer in
addition to thebyte, short, andint data types.

2.5.2 JAIl Data Classes

JAI introduces two new data classes, which extend the Javea2EBuffer
image data class.

Table 2-7 JAI Data Classes

Type Name Description

Class DataBufferFloat ExtendsDataBuffer
Stores data internally in float form.

DataBufferDouble ExtendsDataBuffer
Stores data internally in double form.

Programming in Java Advanced Imaging

JAVA AWT IMAGING JAI Data Classes

2.5.2.1 The DataBufferFloat Class

API: javax.media.jai.DataBufferFloat

Release 1.0.1, November 1999

DataBufferFloat(int size)
constructs a float-based DataBuffer with a specified size.

Parameters size The number of elements in tibataBuffer.

DataBufferFloat(int size, int numBanks)

constructs a float-based DataBuffer with a specified number of banks, all of
which are of a specified size.

Parameters size The number of elements in each bank of the
DataBuffer.
numBanks The number of banks in theataBuffer.

DataBufferFloat(float[] dataArray, int size)

constructs a float-bas@dtaBuffer with the specified data array. Only the
first size elements are available for use by this data buffer. The array must be
large enough to holsti ze elements.

Parameters dataArray An array of floats to be used as the first and
only bank of thisbataBuffer.

size The number of elements of the array to be
used.

DataBufferFloat(float[] dataArray, int size, int offset)

constructs a float-bas@d taBuffer with the specified data array. Only the
elements betweestfset and pffset + size — 1) are available for use by this
DataBuffer. The array must be large enough to holeféet + size)
elements.

Parameters dataArray An array of floats to be used as the first and
only bank of thisbataBuffer.

size The number of elements of the array to be
used.
offset The offset of the first element of the array

that will be used.

23

252

24

JAI Data Classes JAVA AWT IMAGING

DataBufferFloat(float[][] dataArray, int size)

constructs a float-bas@dtaBuffer with the specified data arrays. Only the
first size elements of each array are available for use bythisBuffer. The
number of banks will be equal éataArray.length.

Parameters dataArray An array of floats to be used as banks of
this DataBuffer.

size The number of elements of each array to be
used.

DataBufferFloat(float[][] dataArray, int size, int[] offsets)

constructs a float-basedtaBuffer with the specified data arrays, size, and
per-bank offsets. The number of banks is equahtaArray.length. Each
array must be at least as largesage + the correspondingffset. There must
be an entry in theffsets array for each data array.

Parameters dataArray An array of arrays of floats to be used as
the banks of thi®ataBuffer.

size The number of elements of each array to be
used.

offset An array of integer offsets, one for each
bank.

2.5.2.2 The DataBufferDouble Class

API. javax.media.jai.DataBufferDouble

DataBufferDouble(int size)
constructs a double-basedtaBuffer with a specified size.

Parameters size The number of elements in tibataBuffer.

DataBufferDouble(int size, int numBanks)

constructs a double-baseataBuffer with a specified number of banks, all
of which are of a specified size.

Parameters size The number of elements in each bank of the
DataBuffer.
numBanks The number of banks in theataBuffer.

Programming in Java Advanced Imaging

JAVA AWT IMAGING JAI Data Classes

e« DataBufferDouble(double[] dataArray, int size)

constructs a double-baseataBuffer with the specified data array. Only the
first size elements are available for use by this databuffer. The array must be
large enough to holstize elements.

Parameters dataArray An array of doubles to be used as the first
and only bank of thiDataBuffer.

size The number of elements of the array to be
used.

e DataBufferDouble(doubTle[] dataArray, int size, int offset)

constructs a double-baseataBuffer with the specified data array. Only the
elements betweasffset and pffset + size — 1) are available for use by this
data buffer. The array must be large enough to hefd{et + size) elements.

Parameters dataArray An array of doubles to be used as the first
and only bank of thiDataBuffer.

size The number of elements of the array to be
used.
offset The offset of the first element of the array

that will be used.

o DataBufferDouble(double[][] dataArray, int size)

constructs a double-basesgl-aBuffer with the specified data arrays. Only the
first size elements of each array are available for use bythisBuffer. The
number of banks will be equal tataArray.length.

Parameters dataArray An array of doubles to be used as banks of
this DataBuffer.

size The number of elements of each array to be
used.

o DataBufferDouble(double[][] dataArray, int size, int[] offsets)

constructs a double-basealtaBuffer with the specified data arrays, size, and
per-bank offsets. The number of banks is equdhtaArray.length. Each

Release 1.0.1, November 1999 25

252 JAI Data Classes JAVA AWT IMAGING

array must be at least as largesage + the correspondingffset. There must
be an entry in the offsets array for each data array.

Parameters dataArray An array of arrays of doubles to be used as
the banks of thi®ataBuffer.

size The number of elements of each array to be
used.

offset An array of integer offsets, one for each
bank.

26 Programming in Java Advanced Imaging

CHAPTER3

Programming in Java
Advanced Imaging

THIS chapter describes how to get started programming with the Java
Advanced Imaging (JAI) API.

3.1 Introduction
An imaging operation within JAl is summarized in the following four steps:
1. Obtain the source image or images. Images may be obtained in one of
three ways (see Chapter 4, “Image Acquisition and Display”):
a. Load from an image file such as GIF, TIFF, or JPEG
b. Fetch the image from another data source, such as a remote server
c. Generate the image internally

2. Define the imaging graph. This is a two part process:
a. Define the image operators (see Section 3.6, “JAlI APl Operators”)
b. Define the parent/child relationship between sources and sinks

3. Evaluate the graph using one of three execution models:

a. Rendered execution model (Immediate mode — see Section 3.3.1,
“Rendered Graphs”)

b. Renderable execution model (Deferred mode — see Section 3.3.2,
“Renderable Graphs”)

c. Remote execution model (Remote mode — see Section 3.4, “Remote
Execution”)

Release 1.0.1, November 1999 27

3.2

28

An Overview of Graphs PROGRAMMING IN JAVA ADVANCED IMAGING

4. Process the result. There are four possible destinations:
a. Save the image in a file
b. Display the image on the screen
c. Print the image on a printer or other output device
d. Send the image to another API, such as Swing

3.2 An Overview of Graphs

In JAI, any operation is defined as an object. An operator object is instantiated
with zero or more image sources and other parameters that define the operation.
Two or more operators may be strung together so that the first operator becomes
an image source to the next operator. By linking one operator to another, we
create an imagingraphor chain

In its simplest form, the imaging graph is a chain of operator objects with one or
more image sources at one end and an insge(or “user”) at the other end.

The graph that is created is commonly known afiracted acyclic graph

(DAG), where each object ismodein the graph and object references form the
edgeg(see Figure 3-1).

iml
“constant”

im0
“constant”

iml

Nodes “add” Edges

/

Display
Widget

Figure 3-1 An Example DAG

Most APIs simply leave the DAG structure of images and operators implicit.
However, JAI makes the notion ofocessing graptexplicit and allows such
graphs to be considered as entities in their own right. Rather than thinking only
of performing a series of operations in sequence, you can consider the graph

Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Processing Graphs

structure produced by the operations. The graph form makes it easier to visualize
the operations.

A directed acyclic graph is a graph containing no cycles. This means that if there
is a route from node A to node B then there should be no way back. Normally,
when creating a graph by instantiating new nodes one at a time, cycles are
easily avoided. However, when reconfiguring a graph, you must be careful not
to introduce cycles into the graph.

3.3 Processing Graphs

JAI extends rendering independence, which was introduced in the Java 2D API.
With rendering independence, you have the ability to describe an image as you
want it to appear, independent of any specific instance of it.

In most imaging APIs, the application must know the exact resolution and size of
the source image before it can begin any imaging operations on the image. The
application must also know the resolution of the output device (computer
monitor or color printer) and the color and tonal quality of the original image. A
rendering-independent description is concerned with none of these. Rendering-
independent sources and operations permit operations to be specified in
resolution-independent coordinates.

Think of rendering independence a bit like how a PostScript file is handled in a
computer. To display a PostScript file on a monitor or to print the file to a high-
resolution phototypesetter, you don’t need to know the resolution of the output
device. The PostScript file is essentially rendering independent in that it displays
properly no matter what the resolution of the output device is.

JAl has a “renderable” mode in which it treats all image sources as rendering
independent. You can set up a graph (or chain) of renderable operations without
any concern for the source image resolution or size; JAl takes care of the details
of the operations.

JAIl introduces two different types of graphs: rendered and renderable.

Note: The following two sections, “Rendered Graphs” and “Renderable Graphs,”
are for advanced JAI users. Most programmers will use JAl's Rendered mode and
don't really need to know about the Renderable mode.

Release 1.0.1, November 1999 29

33.1

30

Rendered Graphs PROGRAMMING IN JAVA ADVANCED IMAGING

3.3.1 Rendered Graphs

Rendered graphs are the simplest form of rendering in JAI. Although Renderable
graphs have the advantage of rendering-independence, eliminating the need to
deal directly with pixels, Rendered graphs are useful when it is necessary to
work directly with the pixels.

A Rendered graph processes images in immediate mode. For any node in the
graph, the image source is considered to have been evaluated at the moment it is
instantiated and added to the graph. Or, put another way, as a new operation is
added to the chain, it appears to compute its results immediately.

A Rendered graph is composed of Rendered object nodes. These nodes are
usually instances of thieenderedOp class, but could belong to any subclass of
PlanarImage, JAl's version ofRenderedImage.

Image sources are objects that implementRireleredImage interface. These
sources are specified as parameters in the construction of new image objects.

Let’s take a look at an example of a rendered graph in Listing 3-1. This example,
which is a code fragment rather than an entire class definition, creates two
constant images and then adds them together.

Listing 3-1 Rendered Chain Example

import javax.jai.¥;
import javax.jai.widget.¥*;
import java.awt.Frame;

public class AddExample extends Frame {

// ScrollingImagePanel 1is a utility widget that
// contains a Graphics2D (i.e., is an image sink).
ScrollingImagePanel imagePanell;

// For simplicity, we just do all the work in the

// class constructor.

public AddExample(ParameterBlock paraml,
ParameterBlock param2) {

// Create a constant image
RenderedOp im@ = JAI.create(“constant”, paraml);

// Create another constant image.
RenderedOp iml = JAI.create(“constant”, param2);
// Add the two images together.

Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Rendered Graphs

Listing 3-1 Rendered Chain Example (Continued)

RenderedOp im2 = JAI.create(“add”, im@, iml);

// Display the original in a scrolling window
imagePanell = new ScrollingImagePanel(im2, 100, 100);

// Add the display widget to our frame.
add(imagePanell);

The first three lines of the example code specify which classes to import. The
classes prefixed withavax.jai are the Java Advanced Imaging classes. The
java.awt prefix specifies the core Java API classes.

import javax.jai.*;

import javax.jai.widget.*;

import java.awt.Frame;

The next line declares the name of the program and that it runiang, a
window with a title and border.

public class AddExample extends Frame {

The next line of code createssarol1ingImagePanel, which is the ultimate
destination of our image:

ScrollingImagePanel imagePanell;

Next, aParameterBlock for each source image is defined. The parameters
specify the image height, width, origin, tile size, and so on.

public AddExample(ParameterBlock paraml,
ParameterBlock param2) {

The next two lines define two operations that create the two “constant” images
that will be added together to create the destination image (see Section 4.7,
“Creating a Constant Image”).

RenderedOp im0 JAI.create(“constant”, paraml);
RenderedOp iml = JAI.create(“constant”, param2);

Next, our example adds the two images together (see Section 6.5.1, “Adding Two
Source Images”).

RenderedOp im2 = JAI.create(“add”, im@, iml);

Release 1.0.1, November 1999 31

3.3.2

32

Renderable Graphs PROGRAMMING IN JAVA ADVANCED IMAGING

Finally, we display the destination image in a scrolling window and add the
display widget to our frame.

imagePanell = new ScrollingImagePanel(im2, 100, 100);
add(imagePanell);

Once pixels start flowing, the graph will look like Figure 3-2. The display widget
drives the process. We mention this because the source images are not loaded
and no pixels are produced until the display widget actually requests them.

im0 iml
ConstantOplmage| [ConstantOplmage

iml
AddOpIimage

Display
Widget

Figure 3-2 Rendered Chain Example

3.3.2 Renderable Graphs

A renderable graphs a graph that is not evaluated at the time it is specified. The
evaluation is deferred until there is a specific request for a rendering. This is
known asdeferred executigrevaluation is deferred until there is a specific
request for rendering.

In a renderable graph, if a source image should change before there is a request
for rendering, the changes will be reflected in the output. This process can be
thought of as a “pull” model, in which the requestor pulls the image through the
chain, which is the opposite of the AWT imaging push model.

A renderable graph is made up of nodes implementinqRéhderableImage
interface, which are usually instances of #tuderableOp class. As the

renderable graph is constructed, the sources of each node are specified to form
the graph topology. The source of a renderable graph is a Renderable image
object.

Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Renderable Graphs

Let's take a look at an example of a renderable graph in Listing 3-2. This
example reads a TIFF file, inverts its pixel values, then adds a constant value to
the pixels. Once again, this example is a code fragment rather than an entire class
definition.

Listing 3-2 Renderable Chain Example

// Get rendered source object from a TIFF source.
// The ParameterBlock ‘pb@’ contains the name
// of the source (file, URL, etc.). The objects ‘hints@’,
// ‘hintsl’, and ‘hints2’ contain rendering hints and are
// assumed to be created outside of this code fragment.
RenderedOp sourceImg =

JAI.create(“TIFF”, pb0);

// Derive the RenderableImage from the source RenderedImage.
ParameterBlock pb = new ParameterBlock();
pb.addSource(sourcelmg);
pb.add(nul1).add(null).add(null).add(null).add(null);

// Create the Renderable operation.
RenderableImage ren = JAI.createRenderable("renderable", pb);

// Set up the parameter block for the first op.
ParameterBlock pbl = new ParameterBlock();
pbl.addSource(ren);

// Make first Op in Renderable chain an invert.
RenderableOp Opl = JAI.createRenderable(“invert”, pbl);

// Set up the parameter block for the second Op.
// The constant to be added 1is “2”.

ParameterBlock pb2 = new ParameterBlock();
pb2.addSource(0Opl); // Opl as the source
pb2.add(2.0f); // 2.0f as the constant

// Make a second Op a constant add operation.
RenderableOp 0p2 =
JAI.createRenderable(“addconst”, pb2);

// Set up a rendering context.
AffineTransform screenResolution = ...;
RenderContext rc = new RenderContext(screenResolution);

// Get a rendering.
RenderedImage rndImgl = Op2.createRendering(rc);

// Display the rendering onscreen using screenResolution.
imagePanell = new ScrollingImagePanel(rndImgl, 100, 100);

Release 1.0.1, November 1999 33

3.3.2

34

Renderable Graphs PROGRAMMING IN JAVA ADVANCED IMAGING

In this example, the image source is a TIFF image. A TRekderedOp is
created as a source for the subsequent operations:

RenderedOp sourcelmg =
JAI.create(“TIFF”, pb0);

The rendered source image is then converted to a renderable image:

ParameterBlock pb = new ParameterBlock();
pb.addSource(sourcelmg);
pb.add(null).add(null).add(nul1).add(null).add(null);
RenderableImage ren = JAI.createRenderable("renderable", pb);

Next, aParameterBlock is set up for the first operation. The parameter block
contains sources for the operation and parameters or other objects that the
operator may require.

ParameterBlock pbl = new ParameterBlock();
pbl.addSource(sourcelmage);

An “invert” RenderableOp is then created with the TIFF image as the source.
The invert operation inverts the pixel values of the source image and creates a
RenderableImage as the result of applying the operation to a tuple (source and
parameters).

RenderableOp Opl = JAI.createRenderable(“invert”, pbl);

The next part of the code example sets ugnaameterBlock for the next

operation. TheParameterBlock defines the previous operation (Opl) as the
source of the next operation and sets a constant with a value of 2.0, which will be
used in the next “add constant” operation.

ParameterBlock pb2 = new ParameterBlock();
pb2.addSource(0Opl); // Opl as the source
pb2.add(2.0f); // 2.0f as the constant

The second operatiomg2) is an add constantddconst), which adds the
constant value (2.0) to the pixel values of a source image on a per-band basis.
The pb2 parameter is th€arameterBlock set up in the previous step.

RenderableOp Op2 =
JAI.createRenderable(“addconst”, pb2);

After Op2 is created, the renderable chain thus far is shown in Figure 3-3.

Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Renderable Graphs

Source Image
RenderedOp

/
Source Image I

RenderableOp

/

Op1
RenderableOp

A
Op2 I

RenderableOp

Figure 3-3 Renderable Chain Example

Next, aRenderContext is created using anffineTransform that will produce
a screen-size rendering.

AffineTransform screenResolution = ...;
RenderContext rc = new RenderContext(screenResolution);

This rendering is created by calling tRenderableImage.createRendering
method orop2. ThecreateRendering method does not actually compute any
pixels, bit it does instantiateRenderedOp chain that will produce a rendering at
the appropriate pixel dimensions.

RenderedImage rndImgl = Op2.createRendering(rc);

The Renderable graph can be thought of &snaplatethat, when rendered,

causes the instantiation of a parallel Rendered graph to accomplish the actual
processing. Now let’s take a look at what happens back up the rendering chain in
our example:

* When thedp2.createRendering method is called, it recursively calls the
Opl.createRendering method with th&enderContext rc as the
argument.

» TheoOpl operation then calls theurceImg.getImage method, again with
rc as the argumentéourceImg creates a neRenderedImage to hold its
source pixels at the required resolution and inserts it into the chain. It then
returns a handle to this objectapn.

Release 1.0.1, November 1999 35

3.3.2 Renderable Graphs PROGRAMMING IN JAVA ADVANCED IMAGING

e Oplthen uses theperationRegistry to find a
ContextualRenderedImageFactory (CRIF) that can perform the “invert”
operation. The resultirRenderedOp object returned by the CRIF is
inserted into the chain with the handle returnedbyrceImg as its source.

» The handle to the “invertRenderedImage is returned t@p2, which
repeats the process, creating an “addcawstderedOp, inserting it into
the chain and returning a handlert@Imgl.

* Finally, rndImgl is used in the call to th&ro11ingImagePanel to
display the result on the screen.

After the creation of th&crol1ingImagePanel, the Renderable and Rendered
chains look like Figure 3-4.

Renderable Chain Rendered Chain
Source Image
RenderableOp
Y
Op1 (NoName) source
RenderableOp RenderedOp
Op2 (NoName) invert
RenderableOp RenderedOp

RenderedOp

(NoName) addconstI

rndimgl
RenderedOp

imagePanell
(display widget)

Figure 3-4 Renderable and Rendered Graphs after the getimage Call

36 Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Reusing Graphs

At this point in the chain, no pixels have been processed ar@bhages,

which actually calculate the results, have been created. Only when the
ScrollingImagePanel needs to put pixels on the screen aredhemages

created and pixels pulled through the Rendered chain, as done in the final line of
code.

imagePanell = new ScrollingImagePanel(rndImgl, 100, 100);

3.3.3 Reusing Graphs

Many times, it is more desirable to make changes to an existing graph and reuse
it than to create another nearly identical graph. Both Rendered and Renderable
graphs are editable, with certain limitations.

3.3.3.1 Editing Rendered Graphs

Initially, a node in a Rendered graph is mutable; it may be assigned new sources,
which are considered to be evaluated as soon as they are assigned, and its
parameter values may be altered. However, once rendering takes place at a node,
it becomes frozen and its sources and parameters cannot be changed.

A chain of Rendered nodes may be cloned without freezing any of its nodes by
means of th&enderedOp. createInstance method. Using thereateInstance
method, a Rendered graph may be configured and reused at will, as well as
serialized and transmitted over a network.

TheRenderedOp class provides several methods for reconfiguring a Rendered
node. ThesetParameter methods can be used to set the node’s parameters to a
byte, char, short, int, long, float, double, Or anObject. The

setOperationName method can be used to change the operation name. The
setParameterBlock method can be used to change the nodes’s
ParameterBTlock.

3.3.3.2 Editing Renderable Graphs

Since Renderable graphs are not evaluated until there is a specific request for a
rendering, the nodes may be edited at any time. The main concern with editing
Renderable graphs is the introduction of cycles, which must be avoided.

TheRenderableOp class provides several methods for reconfiguring a
Renderable node. TheetParameter methods can be used to set the node’s
parameters to hyte, char, short, int, Tong, float, double, Or anObject. The
setParameterBlock method can be used to change the nodes’s
ParameterBlock. The setProperty method can be used to change a node’s

Release 1.0.1, November 1999 37

3.4

38

Remote Execution PROGRAMMING IN JAVA ADVANCED IMAGING

local property. ThesetSource method can be used to set one of the node’s
sources to albject.

3.4 Remote Execution

Up to this point, we have been talking about standalone image processing. JAI
also provides for client-server image processing through what is called the
Remote Executiomodel.

Remote execution is based on Java RMI (remote method invocation). Java RMI
allows Java code on a client to invoke method calls on objects that reside on
another computer without having to move those objects to the client. The
advantages of remote execution become obvious if you think of several clients
wanting to access the same objects on a server. To learn more about remote
method invocation, refer to one of the books on Java described in “Related
Documentation” on page xv.

To do remote method invocation in JAl RamoteImage iS set up on the server
and aRenderedImage chain is set up on the client. For more information, see
Chapter 12, “Client-Server Imaging.”

3.5 Basic JAI API Classes

JAI consists of several classes grouped into five packages:

e javax.media.jai — contains the “core” JAl interfaces and classes

* javax.media.jai.iterator — contains special iterator interfaces and
classes, which are useful for writing extension operations

* javax.media.jai.operator — contains classes that describe all of the
image operators

* javax.media.jai.widget — contains interfaces and classes for creating
simple image canvases and scrolling windows for image display

Now, let's take a look at the most common classes in the JAI class hierarchy.

3.5.1 The JAI Class

The JAI class cannot be instantiated; it is simply a placeholder for static methods
that provide a simple syntax for creating Renderable and Rendered graphs. The
majority of the methods in this class are used to cre®enderedImage, taking

an operation name, RarameterBlock, andRenderingHints as arguments.

Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING The Collectionimage Class

There is one method to creat®RenderableImage, taking an operation name, a
ParameterBlock, andRenderingHints as arguments.

There are several variations of theeate method, all of which take sources and
parameters directly and construcParameterBlock automatically.

3.5.2 The Planarimage Class

ThePlanarImage class is the main class for describing two-dimensional images
in JAI. P1anarImage implements th&enderedImage interface from the Java 2D
API. TiledImage andOpImage, described later, are subclasse®tdnarImage.

TheRenderedImage interface describes a tiled, read-only image with a pixel
layout described by 8ampleModel and aDataBuffer. Each tile is a rectangle of
identical dimensions, laid out on a regular grid pattern. All tiles share a common
SampleModel.

In addition to the capabilities offered [RgnderedImage, P1anarImage

maintains source and sink connections between the nodes of rendered graphs.
Since graph nodes are connected bidirectionally, the garbage collector requires
assistance to detect when a portion of a graph is no longer referenced from user
code and may be discardetl.anarImage takes care of this by using théeak
References ARif Java 2.

Any RenderedImages from outside the API are “wrapped” to produce an
instance ofP1anarImage. This allows the API to make use of the extra
functionality of P1TanarImage for all images.

3.5.3 The Collectionimage Class

CollectionImage is the abstract superclass for four classes representing
collections ofP1anarImages:

» ImageStack — represents a set of two-dimensional images lying in a
common three-dimensional space, such as CT scans or seismic volumes.
The images need not lie parallel to one another.

* ImageSequence — represents a sequence of images with associated time
stamps and camera positions. This class can be used to represent video or
time-lapse photography.

* ImagePyramid — represents a series of images of progressively lesser
resolution, each derived from the last by means of an imaging operator.

Release 1.0.1, November 1999 39

3.54

40

The Tiledimage Class PROGRAMMING IN JAVA ADVANCED IMAGING

* ImageMIPMap — represents a stack of images with a fixed operational
relationship between adjacent slices.

3.5.4 The Tiledimage Class

TheTiledImage class represents images containing multiple tiles arranged into a
grid. The tiles form a regular grid, which may occupy any rectangular region of
the plane.

TiledImage implements theiritableRenderedImage interface from the Java
2D API, as well as extendinglanarImage. A TiledImage allows its tiles to be
checked out for writing, after which their pixel data may be accessed directly.
TiledImage also has a&reateGraphics method that allows its contents to be
altered using Java 2D API drawing calls.

A TiledImage contains a tile grid that is initially empty. As each tile is
requested, it is initialized with data fromPdanarImage source. Once a tile has
been initialized, its contents can be altered. The source image may also be
changed for all or part of theiledImage using itsset methods. In particular, an
arbitrary region of interest (ROI) may be filled with data copied from a
PTanarImage source.

TheTiledImage class includes a method that allows you to paiGtaphics2D
onto theTiledImage. This is useful for adding text, lines, and other simple
graphics objects to an image for annotating the image. For more on the
Tiledlmage class, see Section 4.2.2, “Tiled Image.”

3.5.5 The Oplmage Class
The Oplmage class is the parent class for all imaging operations, such as:
* AreaOpImage — for image operators that require only a fixed rectangular
source region around a source pixel to compute each destination pixel

* PointOpImage —forimage operators thatrequire only a single source pixel
to compute each destination pixel

* SourcelessOpImage — for image operators that have no image sources

* StatisticsOpImage — for image operators that compute statistics on a
given region of an image, and with a given sampling rate

* UntiledOpimage — for single-source operations in which the values of all
pixels in the source image contribute to the value of each pixel in the
destination image

Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING The RenderableOp Class

* WarpOpImage — for image operators that perform an image warp

* ScaleOpImage — for extension operators that perform image scaling
requiring rectilinear backwards mapping and padding by the resampling
filter dimensions

TheOpImage is able to determine what source areas are sufficient for the
computation of a given area of the destination by means of a user-supplied
mapDestRect method. For most operations, this method as well as a suitable
implementation ogetTile is supplied by a standard subclaspimage, such
asPointOpImage Of AreaOpImage.

An OpImage is effectively aPlanarImage that is defined computationally. In
PlanarImage, thegetTile method ofRenderedImage is left abstract, and
OpImage subclasses override it to perform their operation. Since it may be
awkward to produce a tile of output at a time, due to the fact that source tile
boundaries may need to be crossed,aimage class defines getTile method

to cobble (copy) source data as needed and to call a user-supptiggteRect
method. This method then receives contiguous sorieeers that are
guaranteed to contain sufficient data to produce the desired results. By calling
computeRect on subareas of the desired tilmImage is able to minimize the
amount of data that must be cobbled.

A second version of theomputeRect method that is called with uncobbled
sources is available to extenders. This interface is useful for operations that are
implemented usingterators (see Section 14.4, “Iterators”), which abstract away
the notion of tile boundaries.

3.5.6 The RenderableOp Class

TheRenderableOp class provides a lightweight representation of an operation in
the Renderable space (see Section 3.3.2, “Renderable GraphsidrableOps

are typically created using the-eateRenderable method of theJAI class, and
may be edited at willRenderab1eOp implements th&enderableImage

interface, and so may be queried for its rendering-independent dimensions.

When aRenderableOp is to be rendered, it makes use of the
OperationRegistry (described in Chapter 14) to locate an appropriate
ContextualRenderedImageFactory object to perform the conversion from the
Renderable space intorR@nderedImage.

Release 1.0.1, November 1999 41

3.5.7

42

The RenderedOp Class PROGRAMMING IN JAVA ADVANCED IMAGING

3.5.7 The RenderedOp Class

The RenderedOp is a lightweight object similar tBenderableOp that stores an
operation nameRarameterBlock, andRenderingHints, and can be joined into

a Rendered graph (see Section 3.3.1, “Rendered Graphs”). There are two ways of
producing a rendering of RenderedOp:

* Implicit — Any call to aRenderedImage method on &enderedOp causes
a rendering to be created. This rendering will usually consist of a chain of
OpImages with a similar geometry to tlRanderedOp chain. It may have
more or fewer nodes, however, since the rendering process may both
collapse nodes together by recognizing patterns, and expand nodes by the
use of theRenderedImageFactory interface. Th@perationRegistry
(described in Chapter 14) is used to guideréheleredImageFactory
selection process.

» Explicit — A call tocreateInstance effectively clones theenderedOp
and its sourc@enderedOps, resulting in an entirely new Rendered chain
with the same noRenderedOp sources (such as TedImages) as the
original chain. The bottom node of the cloned chain is then returned to the
caller. This node will then usually be implicitly rendered by calling
RenderedImage methods on it.

RenderedOps that have not been rendered may have their sources and parameters
altered. Sources are considered evaluated as soon as they are connected to a
RenderedOp.

3.6 JAI API Operators

The JAI API specifies a core set of image processing operators. These operators
provide a common ground for applications programmers, since they can then
make assumptions about what operators are guaranteed to be present on all
platforms.

The general categories of image processing operators supported include:

* Point Operators

* Area Operators

» Geometric Operators

» Color Quantization Operators
» File Operators

* Frequency Operators

Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Point Operators

e Statistical Operators

» Edge Extraction Operators

» Miscellaneous Operators
The JAI API also supports abstractions for many common types of image
collections, such as time-sequential data and image pyramids. These are intended

to simplify operations on image collections and allow the development of
operators that work directly on these abstractions.

3.6.1 Point Operators

Point operators allow you to modify the way in which the image data fills the
available range of gray levels. This affects the image’s appearance when
displayed. Point operations transform an input image into an output image in
such a way that each output pixel depends only on the corresponding input pixel.
Point operations do not modify the spatial relationships within an image.

Table 3-1 lists the JAI point operators.

Table 3-1 Point Operators

Operator Description Reference

Absolute Takes one rendered or renderable source image, anpage 177
computes the mathematical absolute value of each pixel.

Add Takes two rendered or renderable source images, apdge 166
adds every pair of pixels, one from each source image of
the corresponding position and band.

AddCollection Takes a collection of rendered source images, and guitge 168
every pair of pixels, one from each source image of the
corresponding position and band.

AddConst Takes a collection of rendered images and an array page 167
double constants, and for each rendered image in the
collection adds a constant to every pixel of its
corresponding band.

AddConstToCollection Takes a collection of rendered images and an array page 169
double constants, and for each rendered image in the
collection adds a constant to every pixel of its
corresponding band.

And Takes two rendered or renderable source images anghge 158
performs a bit-wise logical AND on every pair of pixels,
one from each source image, of the corresponding
position and band.

Release 1.0.1, November 1999 43

3.6.1

44

Point Operators

PROGRAMMING IN JAVA ADVANCED IMAGING

Table 3-1 Point Operators (Continued)

Operator

Description Reference

AndConst

Takes one rendered or renderable source image angage 159
array of integer constants, and performs a bit-wise logical

AND between every pixel in the same band of the source

and the constant from the corresponding array entry.

BandCombine

Takes one rendered or renderable source image anghage 141
computes a set of arbitrary linear combinations of the
bands using a specified matrix.

BandSelect

Takes one rendered or renderable source image, chquesges 185
N bands from the image, and copies the pixel data of

these bands to the destination image in the order

specified.

Clamp

Takes one rendered or renderable source image angagées184
all the pixels whose value is below a low value to that low

value and all the pixels whose value is above a high value

to that high value. The pixels whose value is between the

low value and the high value are left unchanged.

ColorConvert

Takes one rendered or renderable source image anghage 140
performs a pixel-by-pixel color conversion of the data.

Composite

Takes two rendered or renderable source images arphge 243
combines the two images based on their alpha values at
each pixel.

Constant

Takes one rendered or renderable source image anghage 123
creates a multi-banded, tiled rendered image, where all
the pixels from the same band have a constant value.

Divide

Takes two rendered or renderable source images, anpdge 171
every pair of pixels, one from each source image of the
corresponding position and band, divides the pixel from

the first source by the pixel from the second source.

DivideByConst

Takes one rendered source image and divides the ppage 172
values of the image by a constant.

DivideComplex

Takes two rendered or renderable source images page 174
representing complex data and divides them.

DivideIntoConst

Takes one rendered or renderable source image angage 173
array of double constants, and divides every pixel of the

same band of the source into the constant from the
corresponding array entry.

Exp Takes one rendered or renderable source image anghage 177
computes the exponential of the pixel values.
Invert Takes one rendered or renderable source image anghbage 241

inverts the pixel values.

Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING

Table 3-1

Point Operators (Continued)

Point Operators

Operator

Description Reference

Log

Takes one rendered or renderable source image anghage 241
computes the natural logarithm of the pixel values. The
operation is done on a per-pixel, per-band basis. For

integral data types, the result will be rounded and

clamped as needed.

Lookup

Takes one rendered or renderable source image angage 205
lookup table, and performs general table lookup by
passing the source image through the table.

MatchCDF

Takes one rendered or renderable source image anghage 203
performs a piecewise linear mapping of the pixel values

such that the Cumulative Distribution Function (CDF) of

the destination image matches as closely as possible a
specified Cumulative Distribution Function.

Max

Takes two rendered or renderable source images, anpdge 156
every pair of pixels, one from each source image of the
corresponding position and band, finds the maximum

pixel value.

Min

Takes two rendered or renderable source images angdge 157
every pair of pixels, one from each source image of the
corresponding position and band, finds the minimum pix-

el value.

Multiply

Takes two rendered or renderable source images, apdge 174
multiplies every pair of pixels, one from each source
image of the corresponding position and band.

MultipTyComplex

Takes two rendered source images representing conéee 176
data and multiplies the two images.

MuTltiplyConst

Takes one rendered or renderable source image angage 175
array of double constants, and multiplies every pixel of

the same band of the source by the constant from the
corresponding array entry.

Not

Takes one rendered or renderable source image anghage 164
performs a bit-wise logical NOT on every pixel from
every band of the source image.

Or

Takes two rendered or renderable source images anghpge 160
forms bit-wise logical OR on every pair of pixels, one

from each source image of the corresponding position

and band.

OrConst

Takes one rendered or renderable source image angage 161
array of integer constants, and performs a bit-wise logical

OR between every pixel in the same band of the source

and the constant from the corresponding array entry.

Overlay

Takes two rendered or renderable source images arghge 242
overlays the second source image on top of the first
source image.

Release 1.0.1, November 1999

45

3.6.2 Area Operators PROGRAMMING IN JAVA ADVANCED IMAGING

Table 3-1 Point Operators (Continued)

Operator Description Reference

Pattern Takes a rendered source image and defines a tiled inpage 80
consisting of a repeated pattern.

Piecewise Takes one rendered or renderable source image angbage 202
performs a piecewise linear mapping of the pixel values.

Rescale Takes one rendered or renderable source image and peges 200
the pixel values of an image from one range to another
range by multiplying each pixel value by one of a set of
constants and then adding another constant to the result
of the multiplication.

Subtract Takes two rendered or renderable source images, anpgdge 169
every pair of pixels, one from each source image of the
corresponding position and band, subtracts the pixel from
the second source from the pixel from the first source.

SubtractConst Takes one rendered or renderable source image angage 170
array of double constants, and subtracts a constant from
every pixel of its corresponding band of the source.

SubtractFromConst Takes one rendered or renderable source image angage 171
array of double constants, and subtracts every pixel of the
same band of the source from the constant from the
corresponding array entry.

Threshold Takes one rendered or renderable source image, angage 245
maps all the pixels of this image whose value falls within
a specified range to a specified constant.

Xor Takes two rendered or renderable source images, apdge 162
performs a bit-wise logical XOR on every pair of pixels,
one from each source image of the corresponding posi-
tion and band.

XorConst Takes one rendered or renderable source image angage 163
array of integer constants, and performs a bit-wise logical
XOR between every pixel in the same band of the source
and the constant from the corresponding array entry.

3.6.2 Area Operators

The area operators perform geometric transformations, which result in the
repositioning of pixels within an image. Using a mathematical transformation,
pixels are located from thekrandy spatial coordinates in the input image to new
coordinates in the output image.

There are two basic types of area operations: linear and nonlinear. Linear
operations include translation, rotation, and scaling. Non-linear operations, also
known aswarping transformationsintroduce curvatures and bends to the
processed image.

46 Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Geometric Operators

Table 3-2 lists the JAl area operators.

Table 3-2 Area Operators

Operator Description Reference
Border Takes one rendered source image and adds a border around it. page 191
BoxFilter Takes one rendered source image and determines the intgegiey 224

of a pixel in the image by averaging the source pixels within a

rectangular area around the pixel.

Convolve Takes one rendered source image and performs a spatiapage 221
operation that computes each output sample by multiplying
elements of a kernel with the samples surrounding a particular
source sample.

Crop Takes one rendered or renderable source image and crogatiee199
image to a specified rectangular area.

MedianFilter Takes a rendered source image and passes it through a mage 226

linear filter that is useful for removing isolated lines or pixels
while preserving the overall appearance of the image.

3.6.3 Geometric Operators

Geometric operators allow you to modify the orientation, size, and shape of an
image. Table 3-3 lists the JAl geometric operators.

Table 3-3 Geometric Operators

Operator Description Reference

Affine Takes one rendered or renderable source image and perfoages 272
(possibly filtered) affine mapping on it.

Rotate Takes one rendered or renderable source image and rotatpstjee270
image about a given point by a given angle, specified in
radians.

Scale Takes one rendered or renderable source image and trangtge268
and resizes the image.

Shear Takes one rendered source image and shears the image pither283
horizontally or vertically.

Translate Takes one rendered or renderable source image and copigate266
image to a new location in the plane.

Transpose Takes one rendered or renderable source image and flipgpage 281
rotates the image as specified.

Warp Takes one rendered source image and performs (possiblpage 285

filtered) general warping on the image.

Release 1.0.1, November 1999

3.6.4

48

Color Quantization Operators PROGRAMMING IN JAVA ADVANCED IMAGING

3.6.4 Color Quantization Operators

Color quantization, also known afithering, is often used to reduce the
appearance of amplitude contouring on monochrome frame buffers with fewer
than eight bits of depth or color frame buffers with fewer than 24 bits of depth.
Table 3-4 lists the JAI color quantization operators.

Table 3-4 Color Quantization Operators

Operator

Description Reference

ErrorDiffusion

Takes one rendered source image and performs color page 181
quantization by finding the nearest color to each pixel in a
supplied color map and “diffusing” the color quantization error

below and to the right of the pixel.

OrderedDither

Takes one rendered source image and performs color page 178
quantization by finding the nearest color to each pixel in a
supplied color cube and “shifting” the resulting index value by

a pseudo-random amount determined by the values of a

supplied dither mask.

3.6.5 File Operators

The file operators are used to read or write image files. Table 3-5 lists the JAl file

operators.

Table 3-5 File Operators

Operator Description Reference
AWTImage Converts a standard java.awt.Image into a rendered image. page 118
BMP Reads a standard BMP input stream. page 111
Encode Takes one rendered source image and writes the image tpaae 362
given OutputStream in a specified format using the supplied
encoding parameters.
FileLoad Reads an image from a file. page 104
FileStore Takes one rendered source image and writes the image tpaae 361
given file in a specified format using the supplied encoding
parameters.
Format Takes one rendered or renderable source image and refopages119
it. This operation is capable of casting the pixel values of an
image to a given data type, replacing the SampleModel and
ColorModel of animage, and restructuring the image’s tile grid
layout.
FPX Reads an image from a FlashPix stream. page 109
GIF Reads an image from a GIF stream. page 110

Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Frequency Operators

Table 3-5 File Operators (Continued)

Operator

Description Reference

IIP

Provides client-side support of the Internet Imaging Protopabe 352
(IIP) in both the rendered and renderable modes. It creates a
Renderedimage or a Renderablelmage based on the data
received from the IIP server, and optionally applies a sequence

of operations to the created image.

IIPResolution

Provides client-side support of the Internet Imaging Protopalye 357
(IIP) in the rendered mode. It is resolution-specific. It requests

from the IIP server an image at a particular resolution level,

and creates a Renderedimage based on the data received from
the server.

JPEG

Reads an image from a JPEG (JFIF) stream. page 110

PNG

Reads a standard PNG version 1.1 input stream. page 112

PNM

Reads a standard PNM file, including PBM, PGM, and PRidge 117
images of both ASCII and raw formats. It stores the image data
into an appropriate SampleModel.

Stream

Produces an image by decoding data from a SeekableSteage. 103
The allowable formats are those registered with the
com.sun.media.jai.codec.ImageCodec class.

TIFF

Reads TIFF 6.0 data from a SeekableStream. page 104

URL

Creates an output image whose source is specified by a page 119
Uniform Resource Locator (URL).

3.6.6 Frequency Operators

Frequency operators are used to decompose an image from its spatial-domain

form into a frequency-domain form of fundamental frequency components.
Operators also are available to perform an inverse frequency transform, in which
the image is converted from the frequency form back into the spatial form.

JAI supports several frequency transform types. The most common frequency

transform type is th&ourier transform JAI uses the discrete form known as the
discrete Fourier transformTheinverse discrete Fourier transforgan be used to
convert the image back to a spatial image. JAl also supportditiceste cosine
transformand its opposite, thiverse discrete cosine transform

Release 1.0.1, November 1999

49

3.6.6

50

Frequency Operators

PROGRAMMING IN JAVA ADVANCED IMAGING

Table 3-6 lists the JAI frequency operators.

Table 3-6 Frequency Operators

Operator

Description Reference

Conjugate

Takes one rendered or renderable source image containipgge 236
complex data and negates the imaginary components of the
pixel values.

DCT

Takes one rendered or renderable source image and compatgs232
the even discrete cosine transform (DCT) of the image. Each
band of the destination image is derived by performing a two-
dimensional DCT on the corresponding band of the source

image.

DFT

Takes one rendered or renderable source image and compatgs228
the discrete Fourier transform of the image.

IDCT

Takes one rendered or renderable source image and compatgs233
the inverse even discrete cosine transform (DCT) of the image.
Each band of the destination image is derived by performing a
two-dimensional inverse DCT on the corresponding band of

the source image.

IDFT

Takes one rendered or renderable source image and compatgs231
the inverse discrete Fourier transform of the image. A positive
exponential is used as the basis function for the transform.

ImageFunction

Generates an image on the basis of a functional descriptipage 237
provided by an object that is an instance of a class that
implements the ImageFunction interface.

Magnitude

Takes one rendered or renderable source image containipgge 234
complex data and computes the magnitude of each pixel.

MagnitudeSquared

Takes one rendered or renderable source image containipgge 235
complex data and computes the squared magnitude of each
pixel.

PeriodicShift

Takes a rendered or renderable source image and generaisses236
destination image that is the infinite periodic extension of the
source image, with horizontal and vertical periods equal to the
image width and height, respectively, shifted by a specified
amount along each axis and clipped to the bounds of the source
image.

Phase

Takes one rendered or renderable source image containipgge 235
complex data and computes the phase angle of each pixel.

PolarToComplex

Takes two rendered or renderable source images and creafeg@?237
image with complex-valued pixels from the two images the
respective pixel values of which represent the magnitude
(modulus) and phase of the corresponding complex pixel in the
destination image.

Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Edge Extraction Operators

3.6.7 Statistical Operators

Statistical operators provide the means to analyze the content of an image.
Table 3-7 lists the JAI statistical operators.

Table 3-7 Statistical Operators

Operator Description Reference

Extrema Takes one rendered source image, scans a specific region pate 308
image, and finds the maximum and minimum pixel values for
each band within that region of the image. The image data pass
through this operation unchanged.

Histogram Takes one rendered source image, scans a specific region péathe 310
image, and generates a histogram based on the pixel values
within that region of the image. The histogram data is stored in
the user supplied javax.media.jai.Histogram object, and may
be retrieved by calling the getProperty method on this
operation with'histogram" as the property name. The return
value will be of type javax.media.jai.Histogram. The image
data pass through this operation unchanged.

Mean Takes a rendered source image, scans a specific region, pade 307
computes the mean pixel value for each band within that region
of the image. The image data pass through this operation
unchanged.

3.6.8 Edge Extraction Operators

The edge extraction operators allow image edge enhancement. Edge
enhancement reduces an image to show only its edge details. Edge enhancement
is implemented through spatial filters that detect a spegifiel brightness slope

within a group of pixels in an image. A steep brightness slope indicates the
presence of an edge.

Table 3-8 lists the JAI edge extraction operators.

Table 3-8 Edge Extraction Operators

Operator Description Reference

GradientMagnitude Takes one rendered source image and computes the magmagse315
of the image gradient vector in two orthogonal directions.

Release 1.0.1, November 1999 51

3.6.9

52

Miscellaneous Operators PROGRAMMING IN JAVA ADVANCED IMAGING

3.6.9 Miscellaneous Operators

The miscellaneous operators do not fall conveniently into any of the previous
categories. Table 3-9 lists the JAI miscellaneous operators.

Table 3-9 Miscellaneous Operators
Operator Description Reference
Renderable Takes one rendered source image and produces a page 122

Renderablelmage consisting of a “pyramid” of
Renderedimages at progressively lower resolutions.

3.7 Creating Operations

Most image operation objects are created with some variation on the following
methods:

For a renderable graph:

There are four variations on methods for creating operations in the Renderable
mode, as listed in Table 3-10.

Table 3-10 JAIl Class Renderable Mode Methods

Method Parameters Description

createRenderable opName Creates &enderab1e0p that represents the named
parameterBlock operation, using the sources and parameters speci-
fied in theParameterBTock.

createRenderableNS opName The same as the previous method, only this version
parameterBlock is non-static.

createRenderable- opName Creates &ollection that represents the named

Collection parameterBlock operation, using the sources and parameters speci-

fied in theParameterBlock.

createRenderable- opName The same as the previous method, only this version

CollectionNS parameterBlock is non-static.

For example:

RenderableOp im = JAI.createRenderable(“operationName”,
paramBlock) ;

The JAI.createRenderable method creates a renderable node operation that
takes two parameters:

Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING

Creating Operations

* An operation name (see Section 3.7.1, “Operation Name”)

» Asource and a set of parameters for the operation contained in a parameter
block (see Section 3.7.2, “Parameter Blocks”)

For a rendered graph:

There are a great many more variations on methods for creating operations in the
Rendered mode, as listed in Table 3-11. The first five methods in the table take

sources and parameters specified #faaameterBlock. The remaining methods
are convenience methods that take various numbers of sources and parameters

directly.
Table 3-11 JAI Class Rendered Mode Methods
Method Parameters Description
create opName Creates &enderedOp that represents the named
parameterBlock operation, using the sources and parameters speci-
hints fied in theParameterBlock, and applying the
specified hints to the destination. This method is ap-
propriate only when the final results return a single
RenderedImage.
createNS opName The same as the previous method, only this version
parameterBlock is non-static.
hints
createCollection opName Creates &o1lection that represents the named
parameterBlock operation, using the sources and parameters speci-
hints fied in theParameterBlock, and applying the
specified hints to the destination. This method is ap-
propriate only when the final results retur@c -
Tection.
createCollectionNS opName The same as the previous method, only this version
parameterBlock is non-static.
hints
create opName Creates &enderedOp with null rendering hints.
parameterBlock
create opName Creates &enderedOp that takes one parameter.
param
create opName Creates &enderedOp that takes two parameters.
paraml There are two variations on this method, depending
param2 on the parameter data type (Object or int).
create opName Creates ®enderedOp that takes three parameters.
paraml There are two variations on this method, depending
param2 on the parameter data type (Object or int).
param3

Release 1.0.1, November 1999

53

3.7

54

Creating Operations

PROGRAMMING IN JAVA ADVANCED IMAGING

Table 3-11 JAI Class Rendered Mode Methods (Continued)

Method Parameters Description

create opName Creates &enderedOp that takes four parameters.
paraml There are two variations on this method, depending
param2 on the parameter data type (Object or int).
param3
paramé4

create opName Creates &enderedOp that takes one source image.
renderedImage

create opName Creates &enderedOp that takes one source collec-
Collection tion.

create opName Creates &enderedOp that takes one source and
renderedImage one parameter. There are two variations on this
param method, depending on the parameter data type (Ob-

ject or int).

create opName Creates &enderedOp that takes one source and
renderedImage two parameters. There are two variations on this
paraml method, depending on the parameter data type (Ob-
param2 ject or float).

create opName Creates &enderedOp that takes one source and
renderedImage three parameters. There are three variations on this
paraml method, depending on the parameter data type (Ob-
param2 ject, int, or float).
param3

create opName Creates &enderedOp that takes one source and
renderedImage four parameters. There are four variations on this
paraml method, depending on the parameter data type (Ob-
param2 ject, int, or float).
param3
param4

create opName Creates &enderedOp that takes one source and
renderedImage five parameters. There are three variations on this
paraml method, depending on the parameter data type (Ob-
param2 ject, int, or float).
param3
param4
param5

create opName Creates &enderedOp that takes one source and six
renderedImage parameters. There are two variations on this meth-
paraml od, depending on the parameter data type (Object or
param2 int).
param3
param4
param5
param6

create opName Creates ®enderedOp that takes two sources.
renderedImagel
renderedImage?

Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Operation Name

Table 3-11 JAI Class Rendered Mode Methods (Continued)

Method Parameters Description

create opName Creates ®&enderedOp that takes two sources and
renderedImagel four parameters.
renderedImage?2
paraml
param?2

createCollection opName Creates &o1Tection with nu11 rendering hints.
parameterBlock

Two versions of thereate method are non-static and are identified as
createNS. These methods may be used with a specific instance afathelass
and should only be used when the final result returned is a single
RenderedImage. However, the source (or sources) supplied may be a collection
of images or a collection of collections. The following is an example of one of
these methods:

RenderedOp im = JAI.createNS(“operationName”, source, paraml,
param2)

The rendering hints associated with this instanceaafare overlaid with the

hints passed to this method. That is, the set of keys will be the union of the keys
from the instance’s hints and the hints parameter. If the same key exists in both
places, the value from the hints parameter will be used.

Many of the JAIl operations have default values for some of the parameters. If
you wish to use any of the default values in an operation, you do not have to
specify that particular parameter in therameterBlock. The default value is
automatically used in the operation. Parameters that do not have default values
are required; failure to supply a required parameter results in a
NullPointerException.

3.7.1 Operation Name

The operation name describes the operator to be created. The operation name is
a string, such asadd” for the operation to add two images. See Section 3.6,
“JAlI API Operators,” for a list of the operator names.

The operation name is always enclosed in quotation marks. For example:

“Mean“
“BoxFiTlter”
“UnsharpMask”

Release 1.0.1, November 1999 55

3.7.2

56

Parameter Blocks PROGRAMMING IN JAVA ADVANCED IMAGING

The operation name parsing is case-insensitive. All of the following variations
are legal:

“OrConst”
“orConst”
“ORconst”
“ORCONST”
“orconst”

3.7.2 Parameter Blocks

The parameter block contains the source of the operation and a set parameters
used by the operation. The contents of the parameter block depend on the
operation being created and may be as simple as the name of the source image or
may contain all of the operator parameters (such as dredy displacement and
interpolation type for tharanslate operation).

Parameter blocks encapsulate all the information about sources and parameters
(Objects) required by the operation. The parameters specified by a parameter
block are objects.

These controlling parameters and sources can be edited through the
setParameterBlock method to affect specific operations or even the structure of
the rendering chain itself. The modifications affect futReaderedImages
derived from points in the chain below where the change took place.

There are two separate classes for specifying parameter blocks:

* java.awt.image.renderable.ParameterBlock — the main class for
specifying and changing parameter blocks.

e javax.media.jai.ParameterBlock]AI — extend®arameterBlock by
allowing the use of default parameter values and the use of parameter
names.

The parameter block must contain the same number of sources and parameters as
required by the operation (unless ParameterBlockJAI is used and the operation
supplies default values). Note that, if the operation calls for one or more source
images, they must be specified in the parameter block. For exampleddhe
operation requires two source images and no parameteradtfienst operator
requires one source and a parameter specifying the constant value.

If the sources and parameters do not match the operation requirements, an
exception is thrown. However, when therameterBlock]AI class is used, if the
required parameter values are not specified, default parameter values are

Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Parameter Blocks

automatically inserted when available. For some operations, default parameter
values are not available and must be supplied.

3.7.2.1 Adding Sources to a Parameter Block

Sources are added to a parameter block withathiSource () method. The
following example creates a neRarameterBlock hamedpb and then the
addSource() method is used to add the source imag®] to the
ParameterBTlock

ParameterBlock pb = new ParameterBlock();
pb.addSource(imo@) ;

To add two sources to a parameter block, use dddsource () methods.

ParameterBlock pb = new ParameterBlock();
pb.addSource(im0) ;
pb.addSource(iml);

3.7.2.2 Adding or Setting Parameters

As described before, there are two separate classes for specifying parameter
blocks:ParameterBlock andParameterBlock]JAI. Both classes work very much
alike, except for two difference®arameterBlockJAI automatically provides
default parameter values and allows setting parameters by name;
ParameterBlock does not.

ParameterBlock

The operation parameters are added rawameterBlock with the
ParameterBlock.add() method. The following example adds two valuese
and200) to theParameterBlock namedpb, which was created in the previous
example.

pb.add(150);
pb.add(200) ;

The add() method can be used with all of the supported data types: byte, short,
integer, long, float, and double. When using HaeameterBlock object, all
parameters that an operation requires must be added, else the operation will fail.

Release 1.0.1, November 1999 57

3.7.2

58

Parameter Blocks PROGRAMMING IN JAVA ADVANCED IMAGING

API. java.awt.image.renderable.ParameterBlock

o ParameterBlock addSource(Object source)

adds an image to the end of the list of sources. The image is stored as an object
to allow new node types in the future.

o ParameterBlock add(byte b)
adds a Byte to the list of parameters.

e ParameterBlock add(short s)
adds a Short to the list of parameters.

e ParameterBlock add(int i)
adds an Integer to the list of parameters.

 ParameterBlock add(long 1)
adds a Long to the list of parameters.

e ParameterBlock add(float f)
adds a Float to the list of parameters.

e ParameterBlock add(double d)
adds a Double to the list of parameters.

ParameterBlockJAI

Since theParameterBlock]JAI object already contains default values for the
parameters at the time of construction, the parameters must be changed (or set)
with the ParameterBlockJAI.set(value, index) methods rather than the

add () method. Theadd() methods should not be used since the parameter list is
already long enough to hold all of the parameters required by the
OperationDescriptor.

Listing 3-3 shows the creation offarameterBlock]AI intended to be passed to

a rotate operation. The rotate operation takes four parametersgin,

yOrigin, angle, andinterpolation. The default values foxOrigin and

yOrigin are 0.0F (for both). In this example, these two values are not set, as the
default values are sufficient for the operation. The other two parameteyse(

Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Parameter Blocks

andinterpolation) have default values afull and must therefore be set. The
source image must also be specified.

Listing 3-3 Example ParameterBlockJAI

// Specify the interpolation method to be used
interp = Interpolation.create(Interpolation.INTERP_NEAREST);

// Create the ParameterBlockJAI and add the interpolation to it
ParameterBlockJAI pb = new ParameterBlockJAI(Q);
pb.addSource(im); // The source image
pb.set(1.2F, “angle”); // The rotation angle in radians
pb.set(interp, “interpolation”); // The interpolation method

API: javax.media.jai.ParameterBlockJAI

e ParameterBlock set(byte b, String paramName)
sets a named parameter to a byte value.

o ParameterBlock set(char c, String paramName)
sets a named parameter to a char value.

e« ParameterBlock set(int i, String paramName)
sets a named parameter to an int value.

e ParameterBlock set(short s, String paramName)
sets a named parameter to a short value.

o ParameterBlock set(long 1, String paramName)
sets a named parameter to a long value.

o« ParameterBlock set(float f, String paramName)
sets a named parameter to a float value.

e ParameterBlock set(double d, String paramName)
sets a named parameter to a double value.

 ParameterBlock set(java.lang.Object obj, String paramName)
sets a named parameter to an Object value.

Release 1.0.1, November 1999 59

3.7.3

60

Rendering Hints PROGRAMMING IN JAVA ADVANCED IMAGING

3.7.3 Rendering Hints

The rendering hints contain a set of hints that describe how objects are to be
rendered. The rendering hints are always optional in any operation.

Rendering hints specify different rendering algorithms for such things as
antialiasing, alpha interpolation, and dithering. Many of the hints allow a choice
between rendering quality or speed. Other hints turn off or on certain rendering
options, such as antialiasing and fractional metrics.

There are two separate classes for specifying rendering hints:

e java.awt.RenderingHints —contains rendering hints that can be used by
theGraphics2D class, and classes that implem@arftferedImageOp and
Raster.

e javax.media.jai.JAI — provides methods to define the RenderingHints
keys specific to JAL.

3.7.3.1 Java AWT Rendering Hints
Table 3-12 lists the rendering hints inherited frgava.awt.RenderingHints.

Table 3-12 Java AWT Rendering Hints

Key Value Description
Alpha_Interpolation Alpha_Interpolation_ Rendering is done with the platform
Default default alpha interpolation.
Alpha_Interpolation_ Appropriate rendering algorithms
Quality are chosen with a preference for out-
put quality.

Alpha_Interpolation_Speed Appropriate rendering algorithms
are chosen with a preference for out-

put speed.
Antialiasing Antialias_Default Rendering is done with the platform
default antialiasing mode.
Antialias_Off Rendering is done without antialias-
ing.
Antialias_On Rendering is done with antialiasing

Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Rendering Hints

Table 3-12 Java AWT Rendering Hints (Continued)

Key Value Description
Color_Rendering Color_Render_Default Rendering is done with the platform
default color rendering.

Color_Render_Quality Appropriate rendering algorithms
are chosen with a preference for out-
put quality.

Color_Render_Speed Appropriate rendering algorithms
are chosen with a preference for out-
put speed.

Dithering Dither_Default Use the platform default for dither-
ing.

Dither_Disable Do not do dither when rendering.

Dither_Enable Dither with rendering when needed.

FractionalMetrics FractionalMetrics_Default Use the platform default for fraction-
al metrics.

FractionalMetrics_Off Disable fractional metrics.

FractionalMetrics_On Enable fractional metrics.

Interpolation Interpolation_Bicubic Perform bicubic interpolation.

Interpolation_Bilinear Perform bilinear interpolation.

Interpolation_Nearest_ Perform nearest-neighbor interpola-

Neighbor tion.

Rendering Render_Default The platform default rendering algo-
rithms will be chosen.

Render_Quality Appropriate rendering algorithms
are chosen with a preference for out-
put quality.

Render_Speed Appropriate rendering algorithms
are chosen with a preference for out-
put speed.

Text_Antialiasing Text_Antialias_Default Text rendering is done using the plat-
form default text antialiasing mode.

Text_Antialias_Off Text rendering is done without anti-
aliasing.

Text_Antialias_On Textrendering is done with antialias-
ing.

To set the rendering hints, creat®enderingHints object and pass it to the
JAI.create method you want to affect. Setting a rendering hint does not
guarantee that a particular rendering algorithm, will be used; not all platforms
support modification of the rendering code.

Release 1.0.1, November 1999

3.7.3

62

Rendering Hints PROGRAMMING IN JAVA ADVANCED IMAGING

In the following example, the rendering preference is set to quality.

qualityHints = new
RenderingHints (RenderingHints.KEY_RENDERING,
RenderingHints.VALUE_RENDER_QUALITY);

Now that aRenderingHints object,qualityHints, has been created, the hints
can be used in an operation usingAd . create method.

3.7.3.2 JAI Rendering Hints

Each instance of aAI object contains a set of rendering hints that will be used
for all image or collection creations. These hints are merged with any hints
supplied to thedAI. create method; directly supplied hints take precedence over
the common hints. When a neWI instance is constructed, its hints are
initialized to a copy of the hints associated with the default instance. The hints

associated with any instance, including the default instance, may be manipulated

using thegetRenderingHint, setRenderingHints, andclearRenderingHints
methods. As a conveniencgetRenderingHint, setRenderingHint, and
removeRenderingHint methods are provided that allow individual hints to be
manipulated. Table 3-13 lists the JAI rendering hints.

Table 3-13 JAI Rendering hints

Key Value Description

HINT_BORDER_EXTENDER BorderExtenderZero Extends an image’s border by filling
all pixels outside the image bounds

with zeros.
BorderExtenderCon- Extends an image’s border by filling
stant all pixels outside the image bounds

with constant values.

BorderExtenderCopy Extends an image’s border by filling
all pixels outside the image bounds
with copies of the edge pixels.

BorderExtenderWrap Extends an image’s border by filling
all pixels outside the image bounds
with copies of the whole image.

BorderExtenderReflect Extends animage’s border by filling
all pixels outside the image bounds
with copies of the whole image.

Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING

Table 3-13 JAI Rendering hints (Continued)

Rendering Hints

Key Value Description
HINT_IMAGE_LAYOUT Width The image’s width.
Height The image’s height
MinX The image’s minimunx coordinate.
MinY The image’s minimuny coordinate
TileGridX0ffset Thex coordinate of tile (0, 0).
TileGridYOffset They coordinate of tile (0, 0).
TileWidth The width of a tile.
TileHeight The height of a tile.
SampleModel The image’'sSampleModel.
ColorModel The image'LolorModeT.
HINT_INTERPOLATION InterpolationNearest Perform nearest-neighbor interpola-

tion.

InterpolationBilinear

Perform bilinear interpolation.

InterpolationBicubic

Perform bicubic interpolation.

InterpolationBicubic2

Perform bicubic interpolation.

HINT_OPERATION_BOUND OpImage.OP_COMPUTE_
BOUND

An operation is likely to spend its
time mainly performing computa-

tion.

OpImage.OP_IO_BOUND

An operation is likely to spend its
time mainly performing local I/O.

OpImage.OP_NETWORK_
BOUND

An operation is likely to spend its
time mainly performing network 1/O.

HINT_OPERATION_REGISTRY

Key forOperationRegistry ob-

ject values.

HINT_PNG_EMIT_SQUARE_ True

Scale non-square pixels read from a

PIXELS PNG format image file to square pix-
els.
False Do not scale non-square pixels.
HINT_TILE_CACHE capacity The capacity of the cache in tiles.
elementCount The number of elements in the cache.
revolver Offset to check for tile cache victims.

multiplier

Number of checks to make for tile

cache victims.

Release 1.0.1, November 1999

63

3.7.3 Rendering Hints PROGRAMMING IN JAVA ADVANCED IMAGING

Listing 3-4 shows an example of image layout rendering hints being specified for
a Scale operation. The image layout rendering hint specifies that the origin of the
destination opimage is set to 28Q00.

Listing 3-4 Example of JAlI Rendering Hints

// Create the parameter block for the scale operation.
ParameterBlock pb = new ParameterBlock();

pb.addSource(im@) ; // The source image
pb.add(4.0F); // The x scale factor
pb.add(4.0F); // The y scale factor
pb.add(interp); // The interpolation method

// Specify the rendering hints.
Tayout = new ImagelLayout();
Tayout.setMinX(200) ;
Tayout.setMinY(200) ;
RenderingHints rh =
new RenderingHints(JAI.KEY_IMAGE_LAYOUT, Tayout);

// Create the scale operation.
PlanarImage im2 = (PlanarImage)JAI.create("scale", pb, layout)

64 Programming in Java Advanced Imaging

CHAPTER I

Image Acquisition and
Display

THIS chapter describes the Java Advanced Imaging (JAI) APl image data
types and the API constructors and methods for image acquisition and display.

4.1 Introduction

All imaging applications must perform the basic tasks of acquiring, displaying,
and creating (recording) images. Images may be acquired from many sources,
including a disk file, the network, a CD, and so on. Images may be acquired,
processed, and immediately displayed, or written to a disk file for display at a
later time.

As described in Chapter 3, JAI offers the programmer the flexibility to render
and display an image immediately or to defer the display of the rendered image
until there is a specific request for it.

Image acquisition and display are relatively easy in JAl, in spite of all the high-
level information presented in the next several sections. Take for example, the
sample code in Listing 4-1. This is a complete code example for a simple
application calledi1eTest, which takes a single argument; the path and name
of the file to readFileTest reads the named file and displays it in a
ScrollingImagePanel. The operator that reads the image fité¢]eLoad, is
described in Section 4.4.1.2, “The FileLoad Operation.” The
ScrollingImagePanel is described in Section 4.8, “Image Display.”

Release 1.0.1, November 1999 65

41

66

Introduction

IMAGE ACQUISITION AND DISPLAY

Listing 4-1 Example Program to Read and Display an Image File

// Specify the classes to import.
java.awt.image.renderable.ParameterBlock;

import
import
import
import
import
import

public

java.

javax.
javax.
javax.
javax.

class

// Specify a
// one at run time.
public static final String DEFAULT_FILE =

io.File;

media.jai.
media.jai.
media.jai.

JAT;
PTlanarImage;
RenderedOp;

media.jai.widget.ScrollingImagePanel;

FileTest extends WindowContainer {

default image in case the user fails to specify

"./images/earth.jpg";

public static void main(String args[]) {

String fileName

= null;

// Check for a filename in the argument.

}

if(a
} el

} el

}

rgs.length
fileName =
se if(args.
fileName =
se {

System.out.

= 0) {
DEFAULT_FILE;
length == 1) {
args[0];
printIn("\nUsage: java " +
(new FileTest()).getClass() .getName() +
" [file]\n");

System.exit(0);

new FileTest(fileName);

public FileTest() {}
public FileTest(String fileName) {

// Read the image from the designated path.
System.out.println("Creating operation to load image from +

RenderedOp img =

fileName+"'");

JAI.create("fileload", fileName);

// Set display name and layout.
setTitle(getClass() .getName()+": "+fileName);

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Image Data

Listing 4-1 Example Program to Read and Display an Image File (Continued)

// Display the image.

System.out.println("DispTlaying image");

add(new ScrollingImagePanel(img, img.getWidth(),
img.getHeight()));

pack();

show();

4.1.1 Image Data

Image data is, conceptually, a three-dimensional array of pixels, as shown in
Figure 4-1. Each of the three arrays in the example is calleahal The number
of rows specifies the image height of a band, and the number of columns
specifies the image width of a band.

Monochrome images, such as a grayscale image, have only one band. Color

images have three or more bands, although a band does not necessarily have to

represent color. For example, satellite images of the earth may be acquired in

several different spectral bands, such as red, green, blue, and infrared.

In a color image, each band stores the red, green, and blue (RGB) components of

an additive image, or the cyan, magenta, and yellow (CMY) components of a
three-color subtractive image, or the cyan, magenta, yellow, and black (CMYK)

components of a four-color subtractive image. Each pixel of an image is
composed of a set gfamplesFor an RGB pixel, there are three samples; one
each for red, green, and blue.

An image is sampled into a rectangular array of pixels. Each pixel hagyan (
coordinate that corresponds to its location within the image.Xit@ordinate is
the pixel's horizontal location; thg coordinate is the pixel’s vertical location.
Within JAl, the pixel at location (0,0) is in the upper left corner of the image,
with the x coordinates increasing in value to the right ancbordinates
increasing in value downward. Sometimes ¥heoordinate is referred to as the
pixel number and thg coordinate as the line number.

Release 1.0.1, November 1999

67

41.2 Basic Storage Types IMAGE ACQUISITION AND DISPLAY

(0,0,2) X—
(0,0,1) .
(0,0,0) .

-« <

. (x%2)
. (x%1)
(x.%0)

Figure 4-1 Multi-band Image Structure

4.1.2 Basic Storage Types

In the JAI API, the basic unit of data storage is th&aBuffer object. The
DataBuffer object is a kind of raw storage that holds all the samples that make
up the image, but does not contain any information on how those samples are put
together as pixels. How the samples are put together is contained in a
SampleModel object. TheSampleModel class contains methods for deriving pixel
data from aDataBuffer.

JAIl supports several image data types, sobdmBuffer class has the following
subclasses, each representing a different data type:

* DataBufferByte — stores data internally as bytes (8-bit values)

* DataBufferShort — stores data internally as shorts (16-bit values)

* DataBufferUShort — stores data internally as unsigned shorts (16-bit
values)

* DataBufferInt — stores data internally as integers (32-bit values)

* DataBufferFloat — stores data internally as single-precision floating-
point values.

* DataBufferDouble — stores data internally as double-precision floating-
point values.

68 Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Basic Storage Types

Table 4-1 lists th@ataBuffer type elements.

Table 4-1 Data Buffer Type Elements

Name Description

TYPE_INT Tag for int data.

TYPE_BYTE Tag for unsigned byte data.
TYPE_SHORT Tag for signed short data.
TYPE_USHORT Tag for unsigned short data.
TYPE_DOUBLE Tag for double data.
TYPE_FLOAT Tag for float data.

TYPE_UNDEFINED Tag for undefined data.

JAIl also supports a large number of image data formats, saifiel eMode]
class provides the following types of sample models:

ComponentSampTleModel — used to extract pixels from images that store
sample data in separate data array elements in one babkwfBaffer
object.

ComponentSampleMode1JAI —used to extract pixels from images that store
sample data such that each sample of a pixel occupies one data element of
theDataBuffer.

BandedSampleModel — used to extract pixels from images that store each
sample in a separate data element with bands stored in a sequence of data
elements.

PixelInterleavedSampleModel —used to extract pixels from images that
store each sample in a separate data element with pixels stored in a
sequence of data elements.

MultiPixelPackedSampleModel — used to extract pixels from single-
banded images that store multiple one-sample pixels in one data element.

SinglePixelPackedSampleModel — used to extract samples from images
that store sample data for a single pixel in one data array elementin the first
bank of abataBuffer object.

FloatComponentSampleModel — storesn samples that make up a pixel in
n separate data array elements, all of which are in the same bank in a
DataBuffer object. This class supports different kinds of interleaving.

The combination of @ataBuffer object, aSampleModel object, and an origin
constitute a meaningful multi-pixel image storage unit call®dster. The

Release 1.0.1, November 1999 69

41.2

70

Basic Storage Types IMAGE ACQUISITION AND DISPLAY

Raster class has methods that directly return pixel data for the image data it
contains.

There are two basiRaster types:
* Raster —represents a rectangular array of pixels. This is a “read-only”

class that only has get methods.
* WritableRaster — extendRaster to provide pixel writing capabilities.

There are separate interfaces for dealing with each raster type:

» TheRenderedImage interface assumes the datais read-only and, therefore,
does not contain methods for writin@aster.

» ThewriteableRenderedImage interfaces assumes that the image data can
be modified.

A ColorModel class provides a color interpretation of pixel data provided by the
image’s sample model. The abstraefiorModel class defines methods for
turning an image’s pixel data into a color value in its associatddrSpace. See
Section 5.2.1, “Color Models.”

Bufferedimage

Raster ColorModel

SampleModel

DataBuffer

ColorSpace

Figure 4-2 Bufferedimage
As shown in Figure 4-2, the combination oRaster and aColorModel define a

BufferedImage. TheBufferedImage class provides general image management
for immediate mode imaging.

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY JAI Image Types

The BufferedImage class supports the following predefined image types:

Table 4-2 Supported Image Types

Name

Description

TYPE_3BYTE_BGR

TYPE_4BYTE_ABGR

TYPE_4BYTE_ABGR_PRE

TYPE_BYTE_BINARY
TYPE_BYTE_GRAY
TYPE_BYTE_INDEXED
TYPE_CUSTOM
TYPE_INT_ARGB

TYPE_INT_ARGB_PRE

TYPE_INT_BGR

TYPE_INT_RGB

TYPE_USHORT_555_RGB

TYPE_USHORT_565_RGB

TYPE_USHORT_GRAY

Represents an image with 8-bit RGB color components, corresponding
to a Windows-style BGR color model, with the colors blue, green, and
red stored in three bytes.

Represents an image with 8-bit RGBA color components with the colors
blue, green, and red stored in three bytes and one byte of alpha.

Represents an image with 8-bit RGBA color components with the colors
blue, green, and red stored in three bytes and one byte of alpha.

Represents an opaque byte-packed binary image.

Represents a unsigned byte grayscale image, non-indexed.
Represents an indexed byte image.

Image type is not recognized so it must be a customized image.

Represents an image with 8-bit RGBA color components packed into
integer pixels.

Represents an image with 8-bit RGB color components, corresponding
to a Windows- or Solaris- style BGR color model, with the colors blue,
green, and red packed into integer pixels.

Represents an image with 8-bit RGB color components, corresponding
to a Windows- or Solaris- style BGR color model, with the colors blue,
green, and red packed into integer pixels.

Represents an image with 8-bit RGB color components packed into
integer pixels.

Represents an image with 5-5-5 RGB color components (5-bits red, 5-
bits green, 5-bits blue) with no alpha.

Represents an image with 5-6-5 RGB color components (5-bits red, 6-
bits green, 5-hits blue) with no alpha.

Represents an unsigned short grayscale image, non-indexed).

4.2 JAl Image Types

The JAI API provides a set of classes for describing image data of various kinds.
These classes are organized into a class hierarchy, as shown in Figure 4-3.

Release 1.0.1, November 1999

71

421

72

Planar Image IMAGE ACQUISITION AND DISPLAY

java.awt.Image

Implements
Planarimage f — - - — = — — — — — > ImageJAl
Tiledimage Collection
Image
Snapshot
Image Image
Sequence
F}emote
mage
9 ImageStack
ImageMIPMap

ImagePyramid

Figure 4-3 JAI Image Type Hierarchy

4.2.1 Planar Image

ThePlanarImage class is the main class for defining two-dimensional images.
The PlanarImage implements thejava.awt.image.RenderedImage interface,
which describes a tiled, read-only image with a pixel layout described by a
SampTleModel and aDataBuffer. TheTiledImage andOpImage subclasses
manipulate the instance variables they inherit freranarImage, such as the
image size, origin, tile dimensions, and tile grid offsets, as well as the Vectors
containing the sources and sinks of the image.

All non-JAl RenderedImages that are to be used in JAI must be converted into
PlanarImages by means of th®enderedImageAdapter class and the
WriteableRenderedImageAdapter class. ThavrapRenderedImage () method
provides a convenient interface to both add a wrapper and take a snhapshot if the
image is writable. The standardanarImage constructor used bgpImages

performs this wrapping automatically. Images that already ext@adarImage

will be returned unchanged byrapRenderedImage ().

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Planar Image

Going in the other direction, existing code that makes use oféhéeredImage
interface will be able to uselanarImages directly, without any changes or
recompilation. Therefore within JAI, images are returned from methods as
PlanarImages, even though incomingenderedImages are accepted as
arguments directly.

API: javax.media.jai.PlanarImage

PTlanarImage()
creates ®lanarImage.

static PlanarImage wrapRenderedImage(RenderedImage im)

wraps an arbitrargenderedImage to produce ®lanarImage. PlanarImage

adds various properties to an image, such as source and sink vectors and the
ability to produce snapshots, that are necessary for JAI. If the image is not a
PlanarImage, it is wrapped in &enderedImageAdapter. If the image
implementsritableRenderedImage, a snapshot is taken.

Parameters a RenderedImage to be used as a
synchronous source.

PlanarImage createSnapshot()
creates a snapshot, that is, a virtual copy of the image’s current contents.

Raster getData(Rectangle region)
returns a specified region of this image iRaater.

Parameter region The rectangular region of this image to be
returned.

int getWidth(Q)
returns the width of the image.

int getHeight()
returns the height of the image.

int getMinXCoord()
returns the X coordinate of the leftmost column of the image.

int getMaxXCoord()
returns the X coordinate of the rightmost column of the image.

Release 1.0.1, November 1999 73

4.2.2

74

Tiled Image IMAGE ACQUISITION AND DISPLAY

e 1int getMinYCoord()
returns the X coordinate of the uppermost row of the image.

e« 1int getMaxYCoord()
returns the X coordinate of the bottom row of the image.

« Rectangle getBounds()
returns a Rectangle indicating the image bounds.

e int getTileWidth()
returns the width of a tile.

e 1int getTileHeight()
returns the height of a tile.

e 1int tilesAcross()

returns the number of tiles along the tile grid in the horizontal direction.
Equivalent tagetMaxTileX() - getMinTileX() + L.

e 1int tilesDown()

returns the number of tiles along the tile grid in the vertical direction.
Equivalent tagetMaxTileY() - getMinTileY() + 1.

There are lots more methods.

4.2.2 Tiled Image

The JAI API expands on the tile data concept introduced in the Java 2D API. In
Java 2D, a tile is one of a set of rectangular regions that span an image on a
regular grid. The JAI API expands on the tile image with TH@edImage class,
which is the main class for writable images in JAI.

A tile represents all of the storage for its spatial region of the image. If an image
contains three bands, every tile represents all three bands of storage. The use of
tiled images improves application performance by allowing the application to
process an image region within a single tile without bringing the entire image

into memory.

TiledImage provides a straightforward implementation of the
WritableRenderedImage interface, taking advantage of that interface’s ability to
describe images with multiple tiles. The tiles ofai tableRenderedImage must
share asampleModel, which determines their width, height, and pixel format.

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Tiled Image

The tiles form a regular grid that may occupy any rectangular region of the
plane. Tile pixels that exceed the image’s stated bounds have undefined values.

The contents of a@iledImage are defined by a singlelanarImage source,
provided either at construction time or by means of ¢he() method. The
set() method provides a way to selectively overwrite a portion of a
TiledImage, possibly using a soft-edged mask.

TiledImage also supports direct manipulation of pixels by means of the
getWritableTile method. This method returnswaitableRaster that can be
modified directly. Such changes become visible to readers according to the
regular thread synchronization rules of the Java virtual machine; JAI makes no
additional guarantees. When a writer is finished modifying a tile, it should call
thereleaseWritableTile method. A shortcut is to call theetData() method,
which copies a rectangular region from a suppkedter directly into the
TiledImage.

A final way to modify the contents of &i1edImage is through calls to the
createGraphics() method. This method returnsGaaphicsJAI object that can
be used to draw line art, text, and images in the usual AWT manner.

A TiledImage does not attempt to maintain synchronous state on its own. That
task is left toSnapshotImage. If a synchronous (unchangeable) view of a
TiledImage is desired, itxreateSnapshot() method must be used. Otherwise,
changes due to calls &t () or direct writing of tiles by objects that call
getWritableTile() will be visible.

TiledImage does not actually cause its tiles to be computed until their contents
are demanded. Once a tile has been computed, its contents may be discarded if it
can be determined that it can be recomputed identically from the source. The
TockTile() method forces a tile to be computed and maintained for the lifetime

of the TiTedImage.

Release 1.0.1, November 1999 75

4.2.2

76

Tiled Image IMAGE ACQUISITION AND DISPLAY

APIl: javax.media.jai.TiledImage

e TiledImage(Point origin, SampleModel sampleModel,
int tileWidth, int tileHeight)

constructs &1ledImage with aSampleModel that is compatible with a given
SampTleModel, and given tile dimensions. The width and height are taken from
theSampleModel, and the image begins at a specified point.

Parameters origin A Point indicating the image’s upper left
corner.

sampleModel A SampleModel with which to be
compatible.

tileWidth The desired tile width.
tileHeight The desired tile height.

e TiledImage(SampleModel sampleModel, int tileWidth,
int tileHeight)

constructs d1iledImage starting at the global coordinate origin.

Parameters sampleModel A SampleModel with which to be
compatible.

tileWidth The desired tile width.
tileHeight The desired tile height.

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Tiled Image

e TiledImage(int minX, int minY, int width, int height,
int tileGridXOffset, int tileGridYOffset,
SampleModel sampleModel, ColorModel colorModel)

constructs &1iledImage of a specified width and height.

Parameters minX The index of the leftmost column of tiles.
miny The index of the uppermost row of tiles.
width The width of theTiTedImage.
height The height of theli1edImage.
tileGridX- Thex coordinate of the upper-left pixel of
Offset tile (O, 0).
tileGridYy- They coordinate of the upper-left pixel of
Offset tile (O, 0).
sampleModel a SampleModel with which to be

compatible.

colorModel A ColorModel to associate with the image.

e void setData(Raster r)

sets aregion of & TedImage to be a copy of a suppliethster. TheRaster’'s
coordinate system is used to position it within the image. The computation of
all overlapping tiles will be forced prior to modification of the data of the
affected area.

Parameter r A Raster containing pixels to be copied
into theTiledImage.

e void setData(Raster r, ROI roi)

sets a region of & TedImage to be a copy of a suppliethster. TheRaster’s
coordinate system is used to position it within the image. The computation of
all overlapping tiles will be forced prior to modification of the data of the
affected area.

e WritableRaster getWritableTile(int tileX, int tileY)

retrieves a particular tile from the image for reading and writing. The tile will
be computed if it hasn’t been previously. Writes to the tile will become visible
to readers of this image in the normal Java manner.

Parameters tileX The x index of the tile.
tileY They index of the tile.

Release 1.0.1, November 1999 77

4.2.2 Tiled Image IMAGE ACQUISITION AND DISPLAY

e Raster getTile(int tileX, int tileY)

retrieves a particular tile from the image for reading only. The tile will be
computed if it hasn’t been previously. Any attempt to write to the tile will
produce undefined results.

Parameters tileX The x index of the tile.
tileY They index of the tile.

e boolean isTileWritable(int tileX, int tileY)
returns true if a tile has writers.

Parameters tileX Thex index of the tile.
tileY They index of the tile.

e boolean hasTileWriters()

returns true if any tile is being held by a writer, false otherwise. This provides
a quick way to check whether it is necessary to make copies of tiles — if there
are no writers, it is safe to use the tiles directly, while registering to learn of
future writers.

e void releaseWritableTile(int tileX, int tileY)

indicates that a writer is done updating a tile. The effects of attempting to
release a tile that has not been grabbed, or releasing a tile more than once are
undefined.

Parameters tileX The x index of the tile.
tileY They index of the tile.

e void set(RenderedImage im)

overlays a giveRenderedImage on top of the current contents of the
TiledImage. The source image must haveampleMode1 compatible with that
of this image.

Parameters im A RenderedImage source to replace the
current source.

78 Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Tiled Image

« void set(RenderedImage im, ROI roi)
overlays a giveRenderedImage on top of the current contents of the

TiledImage. The source image must haveampleMode1 compatible with that
of this image.

Parameters im A RenderedImage source to replace the
current source.

roi The region of interest.

e Graphics2D createGraphics()

creates @raphics2D object that can be used to paint text and graphics onto
theTiledImage.

4.2.2.1 Tile Cache

TheTileCache interface provides a central place faqgImages to cache tiles

they have computed. The tile cache is created with a given capacity (measured in
tiles). By default, the tile capacity for a new tile cache is 300 tiles. The default
memory capacity reserved for tile cache is 20M bytes.

TheTileCache to be used by a particular operation may be set during
construction, or by calling theAI.setTileCache method. This results in the
provided tile cache being added to the set of common rendering hints.

TheTileScheduler interface allows tiles to be scheduled for computation. In
various implementations, tile computation may make use of multithreading and
multiple simultaneous network connections for improved performance.

API. javax.media.jai

o« static TileCache createTileCache(int tileCapacity,
Tong memCapacity)
constructs &1ileCache with the given tile capacity in tiles and memory
capacity in bytes. Users may supply an instanceid&Cache to an operation
by supplying &enderingHint with aJAI.KEY_TILE_CACHE key and the
desiredrileCache instance as its value. Note that the absence of a tile cache
hint will result in the use of theileCache belonging to the defaulal
instance. To force an operation not to perform cachingj,l@aCache instance
with a tile capacity of 0 may be used.

Parameters tileCapacity The tile capacity, in tiles.
memCapacity The memory capacity, in bytes.

Release 1.0.1, November 1999 79

4.2.2

80

Tiled Image IMAGE ACQUISITION AND DISPLAY

static TileCache createTileCache()

constructs aileCache with the default tile capacity in tiles and memory
capacity in bytes.

void setTileCache(TileCache tileCache)

sets theiTeCache to be used by thi3AI instance. Tha1ileCache parameter
will be added to th@enderingHints of this JAl instance.

TileCache getTileCache()
returns the&ileCache being used by thi3AI instance.

4222 Pattern Tiles

A pattern tile consists of a repeated pattern. phetern operation defines a
pattern tile by specifying the width and height; all other layout parameters are
optional, and when not specified are set to default values. Each tile of the
destination image will be defined by a reference to a shared instance of the
pattern.

Thepattern operation takes three parameters:

Parameter Type Description

width Integer The width of the image in pixels.
height Integer The height of the image in pixels.
pattern Raster The Pattern pixel band values.

Listing 4-2 shows a code sample fopattern operation.

Listing 4-2 Example Pattern Operation

// Create the raster.
WritableRaster raster;
int[] bandOffsets = new int[3];

bandOffsets[0] = 2;
bandOffsets[1] = 1;
bandOffsets[2] = 0;

// width, height=64.

PixeTInterleavedSampleModel sm;

sm = new PixelInterleavedSampleModel(DataBuffer.TYPE_BYTE, 100,
100, 3, 3*100, bandOffsets);

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Snapshot Image

Listing 4-2 Example Pattern Operation (Continued)

// Origin is 0,0.

WritableRaster pattern = Raster.createWritableRaster(sm,
new Point(0, 0));

int[] bandValues = new int[3];

bandValues[0] = 90;

bandValues[1] 45;

bandValues[2] 45

// Set values for the pattern raster.

for (int y = 0; y < pattern.getHeight(Q); y++) {

for (int x = 0; x < pattern.getWidth(); x++) {
pattern.setPixel(x, y, bandValues);
bandvValues[1l] = (bandValues[1]+1)%255;
bandvValues[2] = (bandValues[2]+1)%255;
}

3

// Create a 100x100 image with the given raster.

PlanarImage im@ = (PlanarImage)JAI.create("pattern",
100, 100,
pattern);

4.2.3 Snapshot Image

The SnapshotImage class represents the main component of the deferred
execution engine. AnapshotImage provides an arbitrary number of
synchronous views of a possibly changingi tableRenderedImage.
SnapshotImage is responsible for stabilizing changing sources to allow deferred
execution of operations dependent on such sources.

Any RenderedImage may be used as the source ofraapshotImage. If the
source is a/ritableRenderedImage, the SnapshotImage will register itself as a
TileObserver and make copies of tiles that are about to change.

Multiple versions of each tile are maintained internally, as long as they are in
demandSnapshotImage is able to track demand and should be able to simply
forward requests for tiles to the source most of the time, without the need to
make a copy.

When used as a source, callsgiexT1i1e will simply be passed along to the
source. In other wordsnapshotImage is completely transparent. However, by
calling createSnapshot () an instance of a non-publ®lanarImage subclass
(calledsnapshot in this implementation) will be created and returned. This
image will always return tile data with contents as of the time of its construction.

Release 1.0.1, November 1999

4.2.3

82

Snapshot Image IMAGE ACQUISITION AND DISPLAY

4.2.3.1 Creating a Snapshotimage

This implementation ofnapshotImage makes use of a doubly-linked list of
Snapshot objects. A newsnapshot is added to the tail of the list whenever
createSnapshot() is called. Eaclsnapshot has a cache containing copies of

any tiles that were writable at the time of its construction, as well as any tiles that
become writable between the time of its construction and the construction of the
nextSnapshot.

4.2.3.2 Using Snapshotlmage with a Tile

When asked for a tile, anapshot checks its local cache and returns its version

of the tile if one is found. Otherwise, it forwards the request onto its successor.
This process continues until the latest Snapshot is reached; if it does not contain
a copy of the tile, the tile is requested from the real source image.

APIl: javax.media.jai.SnapShotImage

« SnapshotImage(PlanarImage source)
constructs &napshotImage from aPlanarImage source.

Parameters source aPlanarImage source.

o« Raster getTile(int tileX, int tileY)
returns a non-snapshotted tile from the source.

Parameters tileX the X index of the tile.
tileY the Y index of the tile.

e void tileUpdate(java.awt.image.WritableRenderedImage source,
int tileX, int tileY, boolean willBeWritable)

receives the information that a tile is either about to become writable, or is
about to become no longer writable.

Parameters source theWritableRenderedImage for which we
are an observer.
tileX the x index of the tile.
tileY they index of the tile.

willBeWrit- true if the tile is becoming writable.
able

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Collection Image

« PlanarImage createSnapshot()
creates a snapshot of this image. This snapshot may be used indefinitely, and
will always appear to have the pixel data that this image has currently. The
shapshot is semantically a copy of this image but may be implemented in a
more efficient manner. Multiple snapshots taken at different times may share
tiles that have not changed, and tiles that are currently static in this image’s
source do not need to be copied at all.

4.2.3.3 Disposing of a Snapshot Image

When aSnapshot is no longer needed, itsi spose () method may be called. The
dispose() method will be called automatically when tBeapshot is finalized

by the garbage collector. Th spose () method attempts to push the contents of
its tile cache back to the previodaapshot in the linked list. If that image
possesses a version of the same tile, the tile is not pushed back and may be
discarded.

Disposing of thesnapshot allows tile data held by the Snapshot that is not
needed by any otheéhapshot to be disposed of as well.

API. javax.media.jai.PlanarImage

e void dispose()
provides a hint that an image will no longer be accessed from a reference in
user space. The results are equivalent to those that occur when the program
loses its last reference to this image, the garbage collector discovers this, and
finalize is called. This can be used as a hint in situations where waiting for
garbage collection would be overly conservative.

4.2.4 Remote Image

A RemoteImage iS a sub-class dflanarImage which represents an image on a
remote server. RemoteImage may be constructed fromRenderedImage or

from an imaging chain in either the rendered or renderable modes. For more
information, seeChapter 12, “Client-Server Imaging.”

4.2.5 Collection Image

The CollectionImage class is an abstract superclass for classes representing
groups of images. Examples of groups of images include pyramids
(ImagePyramid), time sequencedifageSequence), and planar slices stacked to
form a volume {mageStack).

Release 1.0.1, November 1999 83

4.2.6

84

Image Sequence IMAGE ACQUISITION AND DISPLAY

API. javax.media.jai.CollectionImage

e (CollectionImage()
the default constructor.

e CollectionImage(java.util.Collection images)
constructs &ollectionImage object from a Vector afmageJAI objects.

Parameters images A Vector of ImageJAI objects.

4.2.6 Image Sequence

The ImageSequence class represents a sequence of images with associated
timestamps and a camera position. It can be used to represent video or time-lapse
photography.

The images are of the tygmageJAI. The timestamps are of the typeng. The
camera positions are of the typeint. The tuple (image, time stamp, camera
position) is represented by claSsquentialImage.

APIl: javax.media.jai.ImageSequence

« ImageSequence(Collection images)

constructs a class that represents a sequence of images from a collection of
SequentialImage.

4.2.7 Image Stack

The ImageStack class represents a stack of images, each with a defined spatial
orientation in a common coordinate system. This class can be used to represent
CT scans or seismic volumes.

The images are of the typvax.media.jai.PlanarImage; the coordinates are
of the typejavax.media.jai.Coordinate. The tuple (image, coordinate) is
represented by clagavax.media.jai.CoordinateImage.

APIl: javax.media.jai.ImageStack

o« ImageStack(Collection images)
constructs afimageStack object from a collection afoordinateImage.

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Image MIP Map

o« 1ImagelAI getImage(Coordinate coordinate)
returns the image associated with the specified coordinate.

e Coordinate getCoordinate(Imagel]AI image)
returns the coordinate associated with the specified image.

4.2.8 Image MIP Map

An image MIP map is a stack of images with a fixed operational relationship
between adjacent slices. Given the highest-resolution slice, the others may be
derived in turn by performing a particular operation. Data may be extracted slice
by slice or by special iterators.

A MIP map image MIP stands for the Latimultim im parvg meaning “many
things in a small space”) is usually associated with texture mapping. In texture
mapping, the MIP map image contains different-sized versions of the same
image in one location. To use mipmapping for texture mapping, you provide all
sizes of the image in powers of 2 from the largest image toxalImap.

The ImageMIPMap class takes the original source image at the highest resolution
level, considered to be level 0, and a RenderedOp chain that defines how the
image at the next lower resolution level is derived from the current resolution
level.

The RenderedOp chain may have multiple operations, but the first operation in
the chain must take only one source image, which is the image at the current
resolution level.

There are thre@mageMIPMap constructors:

o ImageMIPMap(RenderedImage image, AffineTransform transform,
Interpolation interpolation)

This constructor assumes that the operation used to derive the next lower
resolution is a standagedfine operation.

Parameters image The image at the highest resolution level.

transform The affine transform matrix used by
“affine” operation.

interpolation The interpolation method used by
“affine” operation.

Any number of versions of the original image may be derived by an affine
transform representing the geometric relationship between levels of the MIP

Release 1.0.1, November 1999 85

4.2.8 Image MIP Map IMAGE ACQUISITION AND DISPLAY

map. The affine transform may include translation, scaling, and rotation (see
“Affine Transformation” on page 272).

o ImageMIPMap(RenderedImage image, RenderedOp downSampler)

This constructor specifies tlewnSampler, which points to the RenderedOp
chain used to derive the next lower resolution level.

Parameters image The image at the highest resolution level.

downsampler The RenderedOp chain used to derive the
next lower resolution level. The first
operation of this chain must take one
source, but must not have a source
specified.

o ImageMIPMap(RenderedOp downSampler)
This constructor specifies only tdewnSampler.

The downSampler is a chain of operations used to derive the image at the next
lower resolution level from the image at the current resolution level. That is,
given an image at resolution levielthedownSampler is used to obtain the image
at resolution level + 1. The chain may contain one or more operation nodes;
however, each node must b&enderedOp.

The downsampler parameter points to the last node in the chain. The very first
node in the chain must beRenderedOp that takes on@enderedImage as its

source. All other nodes may have multiple sources. When traversing back up the
chain, if a node has more than one source, the first sossoece0, is used to

move up the chain. This parameter is saved by reference.

Listing 4-3 shows a complete code example of the useBnageMIPMap.
Listing 4-3 Example use of ImageMIPMap (Sheet 1 of 3)

import java.awt.geom.AffineTransform;

import java.awt.image.RenderedImage;

import java.awt.image.renderable.ParameterBlock;
import javax.media.jai.JAI;

import javax.media.jai.Interpolation;

import javax.media.jai.InterpolationNearest;
import javax.media.jai.ImageMIPMap;

import javax.media.jai.PlanarImage;

import javax.media.jai.RenderedOp;

import com.sun.media.jai.codec.FileSeekableStream;

public class ImageMIPMapTest extends Test {

86 Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Image MIP Map

Listing 4-3 Example use of ImageMIPMap (Sheet 2 of 3)

protected static String
file = “/import/jai/JAI_RP/src/share/sample/images/pond.jpg”;

protected Interpolation interp = new InterpolationNearest();
protected ImageMIPMap MIPMap;

protected RenderedOp image;
protected RenderedOp downSampler;

private void testl() {

AffineTransform at = new AffineTransform(0.8, 0.0, 0.0, 0.8,
0.0, 0.0);

InterpolationNearest interp = new InterpolationNearest();

MIPMap = new ImageMIPMap(image, at, interp);

display(MIPMap.getDownImage());
display(MIPMap.getImage(4));
display(MIPMap.getImage(1));

}

public void test2() {

downSampler = createScaleOp(image, 0.9F);
downSampler. removeSources();

downSampler = createScaleOp(downSampler, 0.9F);

MIPMap = new ImageMIPMap(image, downSampler);

display(MIPMap.getImage(0));
display(MIPMap.getImage(5));
display(MIPMap.getImage(2));
}

public void test3() {
downSampler = createScaleOp(image, 0.9F);
downSampler = createScaleOp(downSampler, 0.9F);

MIPMap = new ImageMIPMap(downSampler);

dispTay(MIPMap.getImage(5));
System.out.println(MIPMap.getCurrentLevel());
display(MIPMap.getCurrentImage());
System.out.println(MIPMap.getCurrentLevel());
display(MIPMap.getImage(1l));
System.out.println(MIPMap.getCurrentLevel());

Release 1.0.1, November 1999

4.2.8 Image MIP Map IMAGE ACQUISITION AND DISPLAY

Listing 4-3 Example use of ImageMIPMap (Sheet 3 of 3)

protected RenderedOp createScaleOp(RenderedImage src,
float factor) {
ParameterBlock pb = new ParameterBlock();
pb.addSource(src);
pb.add(factor);
pb.add(factor);
pb.add(1.0F);
pb.add(1.0F);
pb.add(interp);
return JAI.create(“scale”, pb);

3
public ImageMIPMapTest(String name) {
super(name) ;
try {

FileSeekableStream stream = new FileSeekableStream(file);
image = JAI.create(“stream”, stream);
} catch (Exception e) {
System.exit(0);
}
3

public static void main(String args[]) {
ImageMIPMapTest test = new ImageMIPMapTest(*“ImageMIPMap”);
// test.testl();
// test.test2(Q);
test.test3();

API: javax.media.jai.ImageMIPMap

« int getCurrentLevel()

returns the current resolution level. The highest resolution level is defined as
level 0.

« RenderedImage getCurrentImage()
returns the image at the current resolution level.

o« RenderedImage getImage(int level)

returns the image at the specified resolution level. The requested level must be
greater than or equal to the current resolution levelot will be returned.

88 Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Image Pyramid

« RenderedImage getDownImage()

returns the image at the next lower resolution level, obtained by applying the
downSampler on the image at the current resolution level.

4.2.9 Image Pyramid

The ImagePyramid class implements a pyramid operation OReaderedImage.
Supposing that we haveRanderedImage of 1024x 1024, we could generate ten
additional images by successively averagirng 2 pixel blocks, each time
discarding every other row and column of pixels. We would be left with images
of 512x 512, 256% 256, and so on down to % 1.

In practice, the lower-resolution images may be derived by performing any chain
of operations to repeatedly down sample the highest-resolution image slice.
Similarly, once a lower resolution image slice is obtained, the higher resolution
image slices may be derived by performing another chain of operations to
repeatedly up sample the lower resolution image slice. Also, a third operation
chain may be used to find the difference between the original slice of image and
the resulting slice obtained by first down sampling then up sampling the original
slice.

This brings us to the discussion of the parameters required of this class:

Parameter Description

downSampTler A RenderedOp chain used to derive the lower resolution images. The first
operation in the chain must take only one source. See Section 4.2.9.1, “The
Down Sampler.”

upSampler A RenderedOp chain that derives the image at a resolution level higher than
the current level. The first operation in the chain must take only one source.
See Section 4.2.9.2, “The Up Sampler.”

differencer A RenderedOp chain that finds the difference of two images. The first
operation in the chain must take exactly two sources. See Section 4.2.9.3,
“The Differencer.”

combiner A RenderedOp chain that combines two images. The first operation in the
chain must take exactly two sources. See Section 4.2.9.4, “The Combiner.”

Starting with the image at the highest resolution level, to find an image at a lower
resolution level we use thdownSampler. But, at the same time we also use the
upSampler to retrieve the image at the higher resolution level, then use the
differencer to find the difference image between the original image and the
derived image from thepSampler. We save this difference image for later use.

Release 1.0.1, November 1999 89

429

90

Image Pyramid IMAGE ACQUISITION AND DISPLAY

To find an image at a higher resolution, we usedupgampler, then combine the
earlier saved difference image with the resulting image usingdhiginer to get
the final higher resolution level.

For example:

We have an image at level

n+ 1 = downSamplen]

diff n = upSampler{ + 1)

diff n = differencenq, n') — This diffn is saved for each level
Later we want to gatfromn + 1

n' = upSampler(+ 1)

n = combinen(', diff n)

4.2.9.1 The Down Sampler

The downSampler is a chain of operations used to derive the image at the next
lower resolution level from the image at the current resolution level. That is,
given an image at resolution levielthedownSampler is used to obtain the image
at resolution levei + 1. The chain may contain one or more operation nodes;
however, each node must b&énderedop. The parameter points to the last node
in the chain. The very first node in the chain must IReederedOp that takes
oneRenderedImage as its source. All other nodes may have multiple sources.

When traversing back up the chain, if a node has more than one source, the first

source,source®, is used to move up the chain. This parameter is saved by
reference.

The getDownImage method returns the image at the next lower resolution level,
obtained by applying théownSampler on the image at the current resolution
level.

4.29.2 The Up Sampler

The upSampler is a chain of operations used to derive the image at the next
higher resolution level from the image at the current resolution level. That is,
given an image at resolution levieltheupSampler is used to obtain the image at
resolution levei — 1. The requirement for this parameter is similar to the
requirement for thelownSampler parameter.

The getUpImage method returns the image at the previous higher resolution
level. If the current image is already at level 0, the current image is returned
without further up sampling. The down-sampled image is obtained by first up
sampling the current image, then combining the resulting image with the

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Image Pyramid

previously-saved different image using th@nbiner op chain (see
Section 4.2.9.4, “The Combiner”).

4.2.9.3 The Differencer

Thedifferencer is a chain of operations used to find the difference between an
image at a particular resolution level and the image obtained by first down
sampling that image then up sampling the result image of the down sampling
operations. The chain may contain one or more operation nodes; however, each
node must be &enderedOp. The parameter points to the last node in the chain.
The very first node in the chain must b&enderedOp that takes two
RenderedImages as its sources. When traversing back up the chain, if a node has
more than one source, the first sourseyrce0, is used to move up the chain.

This parameter is saved by reference.

The getDiffImage method returns the difference image between the current
image and the image obtained by first down sampling the current image then up
sampling the resulting image of down sampling. This is done using the
differencer op chain. The current level and current image are not changed.

4.29.4 The Combiner

Thecombiner is a chain of operations used to combine the resulting image of the
up sampling operations and the different image saved to retrieve an image at a
higher resolution level. The requirement for this parameter is similar to the
requirement for theli fferencer parameter.

4.2.9.5 Example

Listing 4-4 shows a complete code example of the usenagePyramid.

Listing 4-4 Example use of ImagePyramid (Sheet 1 of 4)

import java.awt.image.RenderedImage;

import java.awt.image.renderable.ParameterBlock;
import javax.media.jai.JAI;

import javax.media.jai.Interpolation;

import javax.media.jai.ImageMIPMap;

import javax.media.jai.ImagePyramid;

import javax.media.jai.PlanarImage;

import javax.media.jai.RenderedOp;

import com.sun.media.jai.codec.FileSeekableStream;

public class ImagePyramidTest extends ImageMIPMapTest {

Release 1.0.1, November 1999 91

429 Image Pyramid IMAGE ACQUISITION AND DISPLAY

Listing 4-4 Example use of ImagePyramid (Sheet 2 of 4)

protected RenderedOp upSampler;
protected RenderedOp differencer;
protected RenderedOp combiner;

protected ImagePyramid pyramid;

private void testl() {
}

public void test2() {
downSampler = createScaleOp(image, 0.9F);
downSampler. removeSources();
downSampler = createScaleOp(downSampler, 0.9F);

upSampler = createScaleOp(image, 1.2F);
upSampler.removeSources();
upSampler = createScaleOp(upSampler, 1.2F);

differencer = createSubtractOp(image, image);
differencer.removeSources();

combiner = createAddOp(image, image);
combiner.removeSources();

pyramid = new ImagePyramid(image, downSampler, upSampler,
differencer, combiner);
display(pyramid.getImage(0));
display(pyramid.getImage(4));
display(pyramid.getImage(l));
display(pyramid.getImage(6));
}

public void test3() {
downSampler = createScaleOp(image, 0.9F);
downSampler = createScaleOp(downSampler, 0.9F);

upSampler = createScaleOp(image, 1.2F);
upSampler.removeSources();

differencer = createSubtractOp(image, image);
differencer.removeSources();

combiner = createAddOp(image, image);
combiner.removeSources();

92 Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY

Listing 4-4 Example use of ImagePyramid (Sheet 3 of 4)

Image Pyramid

pyramid = new ImagePyramid(downSampler, upSampler,
differencer, combiner);

// display(pyramid.getCurrentImage());
display(pyramid.getDownImage());
// display(pyramid.getDownImage());
display(pyramid.getUpImage());

}

public void test4d() {
downSampler = createScaleOp(image, 0.5F);

upSampler = createScaleOp(image, 2.0F);
upSampler.removeSources();

differencer = createSubtractOp(image, image);

differencer.removeSources();

combiner = createAddOp(image, image);
combiner.removeSources();

pyramid = new ImagePyramid(downSampler, upSampler,
differencer, combiner);

pyramid.getDownImage();

display(pyramid.getCurrentImage());

display(pyramid.getDiffImage());

display(pyramid.getCurrentImage());
}

protected RenderedOp createSubtractOp(RenderedImage srcl,
RenderedImage src2) {

ParameterBlock pb = new ParameterBlock();
pb.addSource(srcl);
pb.addSource(src2);
return JAI.create(“subtract”, pb);
}

protected RenderedOp createAddOp(RenderedImage srcl,
RenderedImage src2) {

ParameterBlock pb = new ParameterBlock();
pb.addSource(srcl);

pb.addSource(src2);

return JAI.create(“add”, pb);

Release 1.0.1, November 1999

93

429

94

Image Pyramid IMAGE ACQUISITION AND DISPLAY

Listing 4-4 Example use of ImagePyramid (Sheet 4 of 4)

public ImagePyramidTest(String name) {
super(name) ;
}

public static void main(String args[]) {
ImagePyramidTest test = new
ImagePyramidTest(“ImagePyramid”);
// test.test2(Q);
test.test3();
// test.testd4();

API. javax.media.jai.ImagePyramid

« ImagePyramid(RenderedImage image, RenderedOp downsampler,
RenderedOp upSampler, RenderedOp differencer,
RenderedOp combiner)

constructs aimagePyramid object. The parameters point to the last operation

in each chain. The first operation in each chain must not have any source
images specified; that is, its number of sources must be 0.

Parameters image The image with the highest resolution.

downsampler The operation chain used to derive the
lower-resolution images.

upsampler The operation chain used to derive the
higher-resolution images.

differencer The operation chain used to differ two
images.

combiner The operation chain used to combine two
images.

o ImagePyramid(RenderedOp downSampler, RenderedOp upSampler,
RenderedOp differencer, RenderedOp combiner)

constructs almagePyramid object. TheRenderedOp parameters point to the
last operation node in each chain. The first operation inld@Sampler chain
must have the image with the highest resolution as its source. The first
operation in all other chains must not have any source images specified; that
is, its number of sources must be 0. All input parameters are saved by
reference.

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Multi-resolution Renderable Images

public RenderedImage getImage(int level)

returns the image at the specified resolution level. The requested level must be
greater than or equal to O or null will be returned. The image is obtained by
either down sampling or up sampling the current image.

public RenderedImage getDownImage()

returns the image at the next lower resolution level, obtained by applying the
downSampler on the image at the current resolution level.

public RenderedImage getUpImage()

returns the image at the previous higher resolution level. If the current image
is already at level 0, the current image is returned without further up sampling.
The image is obtained by first up sampling the current image, then combining
the result image with the previously saved different image usingdhigi ner

op chain.

public RenderedImage getDiffImage()

returns the difference image between the currentimage and the image obtained
by first down sampling the currentimage then up sampling the result image of
down sampling. This is done using thefferencer op chain. The current

level and current image will not be changed.

4.2.10 Multi-resolution Renderable Images

TheMultiResolutionRenderableImage class produces renderings based on a
set of supplietkenderedImages at various resolutions. The
MultiResolutionRenderableImage is constructed from a specified dimension
(height; the width is derived by the source image aspect ratio and is not
specified) and a vector of renderedimages of progressively lower resolution.

Release 1.0.1, November 1999 95

4.2.10

96

Multi-resolution Renderable Images IMAGE ACQUISITION AND DISPLAY

API. javax.media.jai.MultiResolutionRenderableImage

e public MultiResolutionRenderableImage(Vector renderedSources,
float minX, float minY, float height)

constructs 8ul1tiResolutionRenderableImage with given dimensions from
aVector of progressively lower resolution versions of a Renderedimage.

Parameters rendered- A Vector of RenderedImages.
Sources
minX The minimumx coordinate of the

Renderable, as a float.

minY The minimumy coordinate of the
Renderable, as a float.

height The height of the Renderable, as a float.

« RenderedImage createScaledRendering(int width, int height,
RenderingHints hints)
returns a rendering with a given width, height, and rendering hints. If a JAI
rendering hint namemAI.KEY_INTERPOLATION is provided, its corresponding
Interpolation objectis used as an argument to the JAl operator used to scale
the image. If no such hintis present, an instancen@krpolationNearest is

used.

Parameters width The width of the rendering in pixels.
height The height of the rendering in pixels.
hints A Hashtable of rendering hints.

« RenderedImage createDefaultRendering()
returns a 100-pixel high rendering with no rendering hints.

e RenderedImage createRendering(RenderContext renderContext)

returns a rendering based oRenderContext. If a JAl rendering hint named
JAI.KEY_INTERPOLATION is provided, its correspondingterpolation

object is used as an argument to the JAI operator used to scale the image. If no
such hint is present, an instancaoferpolationNearest is used.

Parameters render- A RenderContext describing the transform
Context and rendering hints.

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Streams

Object getProperty(String name)

gets a property from the property set of this image. If the property name is not
recognizedjava.awt.Image.UndefinedProperty will be returned.

Parameters name The name of the property to get, as a
String.

String[] getPropertyNames()
returns a list of the properties recognized by this image.

float getWidth(
returns the floating-point width of ttlkenderableImage.

float getHeight()
returns the floating-point height of tRenderableImage.

float getMinX()
returns the floating-point minimumcoordinate of th@enderableImage.

float getMaxX()
returns the floating-point maximurncoordinate of th@enderableImage.

float getMinY()
returns the floating-point minimumcoordinate of th@enderableImage.

float getMaxY()
returns the floating-point maximuyncoordinate of th@enderableImage.

4.3 Streams

The Java Advanced Imaging API extends the Java family of stream types with
the addition of seven “seekable” stream classes, as shown in Figure 4-4.
Table 4-3 briefly describes each of the new classes.

Release 1.0.1, November 1999

97

4.3

98

Streams IMAGE ACQUISITION AND DISPLAY
InputStream
Seekable | Implements
Stream -»| Datalnput
File ByteArray Segmented Forward FileCache MemoryCache
Seekable Seekable Seekable Seekable Seekable Seekable
Stream Stream Stream Stream Stream Stream

Figure 4-4 JAI Stream Classes

The new seekable classes are used to cache the image data being read so that
methods can be used to seek backwards and forwards through the data without
having to re-read the data. This is especially important for image data types that
are segmented or that cannot be easily re-read to locate important information.

Table 4-3 JAI Stream Classes

Class

Description

SeekableStream

FileSeekableStream

ByteArraySeekableStream

SegmentedSeekableStream

ForwardSeekableStream

ExtendsInputStream

ImplementsDataInput

An abstract class that combines the functionality of
InputStream andRandomAccessFile, along with the ability
to read primitive data types in little-endian format.

ExtendsSeekableStream
Implements SeekableStream functionality on data stored in a
File.

ExtendsSeekableStream
ImplementsSeekab1eStream functionality on data stored in
an array of bytes.

ExtendsSeekableStream

Provides a view of a subset of anotBeekableStream

consisting of a series of segments with given starting positions
in the source stream and lengths. The resulting stream behaves
like an ordinaryseekableStream.

ExtendsSeekableStream

ProvidesSeekab1eStream functionality on data from an
InputStream with minimal overhead, but does not allow
seeking backward§orwardSeekableStream may be used
with input formats that support streaming, avoiding the need to
cache the input data.

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Streams

Table 4-3 JAI Stream Classes (Continued)

Class Description

FileCacheSeekableStream ExtendsSeekableStream
ProvidesSeekableStream functionality on data from an
InputStream with minimal overhead, but does not allow
seeking backwardsorwardSeekableStream may be used
with input formats that support streaming, avoiding the need to
cache the input data. In circumstances that do not allow the
creation of a temporary file (for example, due to security
consideration or the absence of local disk), the
MemoryCacheSeekableStream class may be used.

MemoryCacheSeekableStream ExtendsSeekableStream
ProvidesSeekableStream functionality on data from an
InputStream, using an in-memory cache to allow seeking
backwardsMemoryCacheSeekableStream should be used
when security or lack of access to local disk precludes the use of
FileCacheSeekableStream.

To properly read some image data files requires the ability to seek forward and
backward through the data so as to read information that describes the image.
The best way of making the data seekable is throughche a temporary file

stored on a local disk or in main memory. The preferred method of storage for
the cached data is local disk, but that it not always possible. For security
concerns or for diskless systems, the creation of a disk file cache may not always
be permitted. When a file cache is not permissible, an in-memory cache may be
used.

The SeekableStream class allows seeking within the input, similarly to the
RandomAccessFile class. Additionally, th@ataInput interface is supported and
extended to include support for little-endian representations of fundamental data

types.

The SeekableStream class adds severakad methods to the already extensive
java.iobataInput class, including methods for reading data in little-endian (LE)
order. In Java, all values are written in big-endian fashion. However, JAl needs
methods for reading data that is not produced by Java; data that is produced on
other platforms that produce data in the little-endian fashion. Table 4-4 is a
complete list of the methods to read data:

Table 4-4 Read Data Methods

Method Description

readInt Reads a signed 32-bit integer

readIntLE Reads a signed 32-bit integer in little-endian order
readShort Reads a signed 16-bit number

readShortLE Reads a 16-bit number in little-endian order

Release 1.0.1, November 1999 99

4.3

100

Streams IMAGE ACQUISITION AND DISPLAY
Table 4-4 Read Data Methods (Continued)

Method Description

readLong Reads a signed 64-bit integer

readLongLE Reads a signed 64-bit integer in little-endian order

readFloat Reads a 32-bit float

readFloatLE Reads a 32-bit float in little-endian order

readDouble
readDoubleLE
readChar
readCharLE
readByte
readBoolean
readUTF
readUnsignedShort
readUnsignedShortLE
readUnsignedInt
readUnsignedIntLE
readUnsignedByte

readLine

readFully

read()

Reads a 64-bit double

Reads a 64-bit double in little-endian order

Reads a 16-bit Unicode character

Reads a 16-bit Unicode character in little-endian order
Reads an signed 8-bit byte

Reads a Boolean value

Reads a string of characters in UTF (Unicode Text Format)
Reads an unsigned 16-bit short integer

Reads an unsigned 16-bit short integer in little-endian order
Reads an unsigned 32-bit integer

Reads an unsigned 32-bit integer in little-endian order
Reads an unsigned 8-hit byte

Reads in a line that has been terminated by a line-termination
character.

Reads a specified number of bytes, starting at the current stream
pointer

Reads the next byte of data from the input stream.

In addition to the familiar methods fromhputStream, the methods
getFilePointer() andseek(), are defined as in theandomAccessFile class.

The canSeekBackwards () method returngrue if it is permissible to seek to a
position earlier in the stream than the current valugeafFilePointer(). Some
subclasses dfeekableStream guarantee the ability to seek backwards while
others may not offer this feature in the interest of efficiency for those users who
do not require backward seeking.

Several concrete subclassesSeékableStream are supplied in the
com.sun.media.jai.codec package. Three classes are provided for the purpose
of adapting a standarthputStream to theSeekableStream interface. The
ForwardSeekableStream class does not allow seeking backwards, but is
inexpensive to use. The TeCacheSeekableStream class maintains a copy of all

of the data read from the input in a temporary file; this file will be discarded

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reading Image Files

automatically when th€ileSeekableStream is finalized, or when the JVM
exits normally.

TheFileCacheSeekableStream class is intended to be reasonably efficient apart
from the unavoidable use of disk space. In circumstances where the creation of a
temporary file is not possible, tthemoryCacheSeekableStream class may be

used. ThevemoryCacheSeekableStream class creates a potentially large in-
memory buffer to store the stream data and so should be avoided when possible.
TheFileSeekableStream class wraps &ile or RandomAccessFiTe. It forwards
requests to the real underlying fileileSeekableStream performs a limited

amount of caching to avoid excessive 1/O costs.

A convenience methodirapInputStream is provided to construct a suitable
SeekableStream instance whose data is supplied by a giteputStream. The
caller, by means of theanSeekBackwards parameter, determines whether
support for seeking backwards is required.

4.4 Reading Image Files

The JAI codec architecture consists of encoders and decoders capable of writing
and reading several different raster image file formats. This chapter describes
reading image files. For information on writing image files, €dmapter 13,

“Writing Image Files ”

There are many raster image file formats, most of which have been created to
support both image storage and interchange. Some formats have become widely
used and are considered de facto standards. Other formats, although very
important to individual software vendors, are less widely used.

JAIl directly supports several of the most common image file formats, listed in
Table 4-5. If your favorite file format is not listed in Table 4-5, you may either be
able to create your own file codec (S€hapter 14, “Extending the API”) or

use one obtained from a third party developer.

Table 4-5 Image File Formats

File Format

Name Description

BMP Microsoft Windows bitmap image file

FPX FlashPix format

GIF Compuserve’s Graphics Interchange Format

JPEG A file format developed by the Joint Photographic Experts Group

Release 1.0.1, November 1999 101

4.4

102

Reading Image Files IMAGE ACQUISITION AND DISPLAY
Table 4-5 Image File Formats (Continued)

File Format

Name Description

PNG Portable Network Graphics

PNM Portable aNy Map file format. Includes PBM, PGM, and PPM.

TIFF Tag Image File Format

An image file usually has at least two parts: a file header and the image data. The
header contains fields of pertinent information regarding the following image
data. At the very least, the header must provide all the information necessary to
reconstruct the original image from the stored image data. The image data itself
may or may not be compressed.

The main class for image decoders and encoders isnigeCodec class.
Subclasses afmageCodec are able to perform recognition of a particular file
format either by inspection of a fixed-length file header or by arbitrary access to
the source data stream. EablageCodec subclass implements one of two image

file recognition methods. The codec first calls th@NumHeaderBytes ()

method, which either returns 0 if arbitrary access to the stream is required, or
returns the number of header bytes required to recognize the format. Depending
on the outcome of thgetNumHeaderBytes () method, the codec either reads the
stream or the header.

Once the codec has determined the image format, either by reading the stream or
the header, it returns the name of the codec associated with the detected image
format. If no codec is registered with the name]1 is returned. The name of

the codec defines the subclass that is called, which decodes the image.

For most image types, JAI offers the option of reading an image data file as a
java.io.File object or as one of the subclassesjafa.io.InputStream.

JAI offers several file operators for reading image data files, as listed in
Table 4-6.

Table 4-6 Image File Operators

Operator Description

AWTImage Imports a standard AWT image into JAI.
BMP Reads BMP data from an input stream.
FileLoad Reads an image from a file.

FPX Reads FlashPix data from an input stream.
FPXFile Reads a standard FlashPix file.

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Standard File Readers for Most Data Types

Table 4-6 Image File Operators (Continued)

Operator Description

GIF Reads GIF data from an input stream.

JPEG Reads a standard JPEG (JFIF) file.

PNG Reads a PNG input stream.

PNM Reads a standard PNM file, including PBM, PGM, and PPM images of both ASCII
and raw formats.

Stream Readsjava.io.InputStrean files.

TIFF Reads TIFF 6.0 data from an input stream.

URL E:Jg?_t)es an image the source of which is specified by a Uniform Resource Locator

4.4.1 Standard File Readers for Most Data Types

You can read a file type directly with one of the available operation descriptors
(such as theiff operation to read TIFF files), by the stream file reader to read
InputStream files, or theFileLoad operator to read from a disk file. Tis@ream
andFilelLoad operations are generic file readers in the sense that the image file
type does not have to be known ahead of time, assuming that the file type is one
of those recognized by JAI. These file read operations automatically detect the
file type when invoked and use the appropriate file reader. This means that the
programmer can use the same graph to read any of the “recognized” file types.

The Stream andFilelLoad operations use a set 8érmatRecognizer classes to
guery the file types when the image data is called fokoAnatRecognizer may

be provided for any format that may be definitively recognized by examining the
initial portion of the data stream. A neFormatRecognizer may be added to the
OperationRegistry by means of theegisterFormatRecognizer method (see
Section 14.5, “Writing New Image Decoders and Encoders”).

4.4.1.1 The Stream Operation

The Stream operation reads an image fronseekableStream. If the file is one

of the recognized “types,” the file will be read. Thele operation will query the
set of registere@formatRecognizers. If a call to theisFormatRecognized

method returns true, the associated operation name is retrieved by calling the
getOperationName method and the named operation is instantiated.

If the operation fails to read the file, no other operation will be invoked since the
input will have been consumed.

Release 1.0.1, November 1999 103

4.4.2

104

Reading TIFF Images IMAGE ACQUISITION AND DISPLAY

The Stream operation takes a single parameter:

Parameter Type Description

stream SeekableStream TheSeekableStream to read from.

Listing 4-5 shows a code sample fosaream operation.

Listing 4-5 Example Stream Operation

// Load the source image from a Stream.
RenderedImage im = JAI.create("stream", stream);

4.4.1.2 The FileLoad Operation

The FileLoad operation reads an image from a file. LikeSttveeam operation, if

the file is one of the recognized “types,” the file will be read. If the operation
fails to read the file, no other operation will be invoked since the input will have
been consumed.

The FileLoad operation takes a single parameter:

Parameter Type Description

filename String The path of the file to read from.

Listing 4-6 shows a code sample foF#&lelLoad operation.

Listing 4-6 Example FileLoad Operation

// Load the source image from a file.
RenderedImage src = (RenderedImage)]AI.create("fileload",
fileName);

4.4.2 Reading TIFF Images

The Tag Image File Format (TIFF) is one of the most common digital image file
formats. This file format was specifically designed for large arrays of raster
image data originating from many sources, including scanners and video frame
grabbers. TIFF was also designed to be portable across several different
computer platforms, including UNIX, Windows, and Macintosh. The TIFF file
format is highly flexible, which also makes it fairly complex.

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reading TIFF Images

The TIFF operation reads TIFF data from a TIBEekableStream. The TIFF
operation takes one parameter:

Parameter Type Description

file SeekableStream TheSeekableStream to read from.

The TIFF operation reads the following TIFF image types:

» Bilevel or grayscale, white is zero

» Bilevel or grayscale, black is zero

» Palette-color images

* RGB full color (three samples per pixel)

» RGB full color (four samples per pixel) (Opacity + RGB)
* RGB full color with alpha data

» RGB full color with alpha data (with pre-multiplied color)
» RGB full color with extra components

» Transparency mask

The TIFF operation supports the following compression types:

* None (no compression)
» PackBits compression
* Modified Huffman compression (CCITT Group3 1-dimensional facsimile)

For an example of reading a TIFF file, see Listing A-1 on page 417.

4.4.2.1 Palette Color Images

For TIFF Palette color images, t®lorMap always has entries of short data

type, the color black being represented by 0,0,0 and white by
65536,65536,65536. To display these images, the default behavior is to dither the
short values down to 8 bits. The dithering is done by calling the
decodel6BitsTo8Bit method for each short value that needs to be dithered. The
method has the following implementation:

byte b;

short s;

S s & Oxffff;

b (byte) ((s >> 8) & 0xff);

Release 1.0.1, November 1999 105

4.4.2

106

Reading TIFF Images IMAGE ACQUISITION AND DISPLAY

If a different algorithm is to be used for the dithering, thiFFDecodeParam
class should be subclassed and an appropriate implementation should be
provided for thedecode16BitsTo8Bits method in the subclass.

If it is desired that the Palette be decoded such that the output image is of short
data type and no dithering is performed, use ¢beDecodePaletteAsShorts
method.

API: com.sun.media.jai.codec.TIFFDecodeParam

e void setDecodePaletteAsShorts(boolean decodePaletteAsShorts)

if set, the entries in the palette will be decoded as shorts and no short-to-byte
lookup will be applied to them.

« boolean getDecodePaletteAsShorts()

returnstrue if palette entries will be decoded as shorts, resulting in a output
image with short datatype.

« byte decodel6BitsTo8Bits(int s)
returns an unsigned 8-bit value computed by dithering the unsigned 16-bit
value. Note that the TIFF specified short datatype is an unsigned value, while
Java’sshort datatype is a signed value. Therefore the davat datatype
cannot be used to store the TIFF specified short value. Aidava used as
input instead to this method. The method deals correctly only with 16-bit
unsigned values.

4.4.2.2 Multiple Images per TIFF File

A TIFF file may contain more than one Image File Directory (IFD). Each IFD
defines asubfile which may be used to describe related images. To determine the
number of images in a TIFF file, use theFFDi rectory.getNumDirectories()
method.

API. com.sun.media.jai.codec.TIFFDirectory

e static int getNumDirectories(SeekableStream stream)

returns the number of image directories (subimages) stored in a given TIFF
file, represented by $eekableStream.

4.4.2.3 Image File Directory (IFD)

TheTIFFDirectory class represents an Image File Directory (IFD) from a TIFF
6.0 stream. The IFD consists of a count of the number of directories (humber of

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reading TIFF Images

fields), followed by a sequence of field entries identified by a tag that identifies
the field. A field is identified as a sequence of values of identical data type. The
TIFF 6.0 specification defines 12 data types, which are mapped internally into
the Java data types, as described in Table 4-7.

Table 4-7 TIFF Data Types

Java Data
TIFF Field Type Type Description
TIFF_BYTE byte 8-bit unsigned integer
TIFF_ASCII String Null-terminated ASCII strings.
TIFF_SHORT char 16-bit unsigned integers.
TIFF_LONG Tong 32-bit unsigned integers.
TIFF_RATIONAL Tong[2] Pairs of 32-bit unsigned integers.
TIFF_SBYTE byte 8-bit signed integers.
TIFF_UNDEFINED byte 16-bit signed integers.
TIFF_SSHORT short 1-bit signed integers.
TIFF_SLONG int 32-bit signed integers.
TIFF_SRATIONAL int[2] Pairs of 32-bit signed integers.
TIFF_FLOAT float 32-bit IEEE floats.
TIFF_DOUBLE double 64-bit IEEE doubles.

TheTIFFField class contains several methods to query the set of tags and to
obtain the raw field array. In addition, convenience methods are provided for
acquiring the values of tags that contain a single value that fits inta@ int,
Tong, float, Or double.

The getTag method returns the tag number. The tag number identifies the field.
The tag number is afnt value between 0 and 65,535. ThetType method
returns the type of data stored in the IFD. For a TIFF 6.0 file, the value will be
one of those defined in Table 4-7. ThetCount method returns the number of
elements in the IFD. The count (also knownl@sgthin earlier TIFF
specifications) is the number of values.

API: com.sun.media.jai.codec.TIFFField

e 1int getTag(Q)
returns the tag number, between 0 and 65535.

Release 1.0.1, November 1999 107

4.4.2

108

Reading TIFF Images IMAGE ACQUISITION AND DISPLAY

e int getType()
returns the type of the data stored in the IFD.

e 1int getCount()
returns the number of elements in the IFD.

4.4.2.4 Public and Private IFDs

Every TIFF file is made up of one or more public IFDs that are joined in a linked
list, rooted in the file header. A file may also contain so-cafigdate IFDs that
are referenced from tag data and do not appear in the main list.

The TIFFDecodeParam class allows the index of the TIFF directory (IFD) to be
set. In a multipage TIFF file, index O corresponds to the first image, index 1 to
the second, and so on. The index defaults to O.

API. com.sun.media.jai.codec.TIFFDirectory

e TIFFDirectory(SeekableStream stream, int directory)

constructs &IFFDirectory from aSeekableStream. The directory

parameter specifies which directory to read from the linked list present in the
stream; directory 0 is normally read but it is possible to store multiple images
in a single TIFF file by maintaining multiple directories.

Parameters stream A SeekableStream.
directory The index of the directory to read.

e TIFFDirectory(SeekableStream stream, long ifd_offset)

constructs a TIFFDirectory by readingeekableStream. Theifd_offset
parameter specifies the stream offset from which to begin reading; this
mechanism is sometimes used to store private IFDs within a TIFF file that are
not part of the normal sequence of IFDs.

e 1int getNumEntries()
returns the number of directory entries.

e TIFFField getField(int tag)
returns the value of a given tag as a TIFFField, or null if the tag is not present.

e boolean isTagPresent(int tag)
returns true if a tag appears in the directory.

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reading FlashPix Images

e int[] getTags(Q)
returns an ordered array of ints indicating the tag values.

e TIFFField[] getFields()
returns an array of TIFFFields containing all the fields in this directory.

e byte getFieldAsByte(int tag, int index)

returns the value of a particular index of a given tag as a byte. The caller is
responsible for ensuring that the tag is present and has type
TIFFField.TIFF_SBYTE, TIFF_BYTE, Or TIFF_UNDEFINED.

e byte getFieldAsByte(int tag)
returns the value of index O of a given tag as a byte.

e Tlong getFieldAsLong(int tag, int index)
returns the value of a particular index of a given tag as a long.

« Jlong getFieldAsLong(int tag)
returns the value of index 0 of a given tag as a long.

« float getFieldAsFloat(int tag, int index)
returns the value of a particular index of a given tag as a float.

« float getFieldAsFloat(int tag)
returns the value of a index 0 of a given tag as a float.

e double getFieldAsDouble(int tag, int index)
returns the value of a particular index of a given tag as a double.

o« double getFieldAsDoubTle(int tag)
returns the value of index 0 of a given tag as a double.

4.4.3 Reading FlashPix Images

FlashPix is a multi-resolution, tiled file format that allows images to be stored at
different resolutions for different purposes, such as editing or printing. Each
resolution is divided into 64 64 blocks, or tiles. Within a tile, pixels can be
either uncompressed, JPEG compressed, or single-color compressed.

Release 1.0.1, November 1999 109

4.4.4

110

Reading JPEG Images IMAGE ACQUISITION AND DISPLAY

The FPX operation reads an image from a FlashPix stream.FPReoperation
takes one parameter:

Parameter Type Description

stream SeekableStream TheSeekableStream to read from.

Listing 4-7 shows a code sample foFex operation.

Listing 4-7 Example of Reading a FlashPix Image

// Specify the filename.
File file = new File(filename);

// Specify the resolution of the file.
ImageDecodeParam param = new FPXDecodeParam(resolution);

// Create the FPX operation to read the file.

ImageDecoder decoder = ImageCodec.createImageDecoder("fpx",
file,
param) ;

RenderedImage im = decoder.decodeAsRenderedImage();
ScrollingImagePanel p =
new ScrollingImagePanel(im,
Math.min(im.getWidth(), 800) + 20,
Math.min(im.getHeight(), 800) + 20);

4.4.4 Reading JPEG Images

The JPEG standard was developed by a working group, known as the Joint
Photographic Experts Group (JPEG). The JPEG image data compression
standard handles grayscale and color images of varying resolution and size.

The JPEG operation takes a single parameter:

Parameter Type Description

file SeekableStream TheSeekableStream to read from.

4.4.5 Reading GIF Images

Compuserve’s Graphics Interchange Format (GIF) is limited to 256 colors, but
supported by virtually every platform that supports graphics.

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reading BMP Images

TheGIF operation reads an image from a GIF stream. Ttreoperation takes a
single parameter:

Parameter Type Description

stream SeekableStream TheSeekableStream to read from.

4.4.6 Reading BMP Images

The BMP (Microsoft Windows bitmap image file) file format is a commonly-
used file format on IBM PC-compatible computers. BMP files can also refer to
the OS/2 bitmap format, which is a strict superset of the Windows format. The
0S/2 2.0 format allows for multiple bitmaps in the same file, for the CCITT
Group3 1bpp encoding, and also a RLE24 encoding.

The BMP operation reads BMP data from an input stream. B operation
currently reads Version2, Version3, and some of the Version 4 images, as defined
in the Microsoft Windows BMP file format.

Version 4 of the BMP format allows for the specification of alpha values, gamma
values, and CIE colorspaces. These are not currently handled, but the relevant
properties are emitted, if they are available from the BMP image file.

The BMP operation takes a single parameter:

Parameter Type Description

stream SeekableStream TheSeekableStream to read from.

Listing 4-8 shows a code sample foGaF operation.
Listing 4-8 Example of Reading a BMP Image

// Wrap the InputStream in a SeekableStream.
InputStream is = new FileInputStream(filename);
SeekableStream s = SeekableStream.wrapInputStream(is, false);

// Create the ParameterBlock and add the SeekableStream to it.
ParameterBlock pb = new ParameterBlock();
pb.add(s);

// Perform the BMP operation
op = JAI.create("BMP", pb);

Release 1.0.1, November 1999 111

4.4.7

112

Reading PNG Images IMAGE ACQUISITION AND DISPLAY

API: com.sun.media.jai.codec.SeekableStream

o static SeekableStream wrapInputStream(java.io.InputStream is,
boolean canSeekBackwards)

returns a SeekableStream that will read from a given InputStream, optionally
including support for seeking backwards.

4.4.7 Reading PNG Images

The PNG (Portable Network Graphics) is an extensible file format for the

lossless, portable, compressed storage of raster images. PNG was developed as a
patent-free alternative to GIF and can also replace many common uses of TIFF.
Indexed-color, grayscale, and truecolor images are supported, plus an optional
alpha channel. Sample depths range from 1 to 16 bits.

For more information on PNG images, see the specification at the following
URL:

http://www.cdrom.com/pub/png/spec

The PNG operation reads a standard PNG input stream.PNaeoperation
implements the entire PNG specification, but only provides access to the final,
high-resolution version of interlaced images. The output image will always
include aComponentSampleModel and either a byte or shobataBuffer.

Pixels with a bit depth of less than eight are scaled up to fit into eight bits. One-
bit pixel values are output as 0 and 255. Pixels with a bit depth of two or four are
left shifted to fill eight bits. Palette color images are expanded into three-banded
RGB. PNG images stored with a bit depth of 16 will be truncated to 8 bits of
output unless th&EY_PNG_EMIT_16BITS hint is set toBoolean.TRUE. Similarly,

the output image will not have an alpha channel unlesgEMePNG_EMIT_ALPHA

hint is set. See Section 4.4.7.3, “Rendering Hints.”

The PNG operation takes a single parameter:

Parameter Type Description

stream SeekableStream TheSeekableStream to read from.

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reading PNG Images

Listing 4-9 shows a code sample folP®G operation.

Listing 4-9 Example of Reading a PNG Image

// Create the ParameterBlock.

InputStream image = new FileInputStream(filename);
ParameterBlock pb = new ParameterBlock();
pb.add(image);

// Create the PNG operation.
op = JAI.create("PNG", pb);

Several aspects of the PNG image decoding may be controlled. By default,
decoding produces output images with the following properties:

* Images with a bit depth of eight or less usga@&aBufferByte to hold the
pixel data. 16-bit images us®ataBufferUShort.

» Palette colorimages and non-transparent grayscale images with bit depths
of one, two, or four will have u1tiPixelPackedSampleModel and an
IndexColorModel. For palette color images, thelorModel palette
contains the red, green, blue, and optionally alpha palette information. For
grayscale images, the palette is used to expand the pixel data to cover the
range 0 to 255. The pixels are stored packed eight, four, or two to the byte.

» Allotherimages are stored usin@éxelInterleavedSampleModel with
each band of a pixel occupying its oyxte or short within the
DataBuffer. A ComponentColorModel is used, which simply extracts the
red, green, blue, gray, and/or alpha information from sepasateBuffer
entries.

Methods in thePNGDecodeParam class permit changes to five aspects of the
decode process:

» ThesetSuppressAlpha() method prevents an alpha channel from
appearing in the output.

» ThesetExpandPalette() method turns palette-color images into three-
or four-banded full-color images.

 ThesetOutput8BitGray() method causes one-, two-, or four-bit
grayscale images to be output in eight-bit form, using a
ComponentSampleModel andComponentColorModel.

* ThesetOuputGamma() method causes the output image to be gamma-
corrected using a supplied output gamma value.

Release 1.0.1, November 1999 113

4.4.7 Reading PNG Images IMAGE ACQUISITION AND DISPLAY

* ThesetExpandGrayAlpha() method causes two-banded gray/alpha (GA)
images to be output as full-color (GGGA) images, which may simplify
further processing and display.

API:

com.sun.media.jai.codec.PNGDecodeParam

114

pubTic void setSuppressAlpha(boolean suppressAlpha)
when set, suppresses the alpha (transparency) channel in the output image.

pubTlic void setExpandPalette(boolean expandPalette)

when set, causes palette color images (PNG color type 3) to be decoded into
full-color (RGB) output images. The output image may have three or four
bands, depending on the presence of transparency information. The default is
to output palette images using a single band. The palette information is used to
construct the output imagetsTorModel.

public void setOutput8BitGray(boolean output8BitGray)

when set, causes grayscale images with a bit depth of less than eight (one, two,
or four) to be output in eight-bit form. The output values will occupy the full
eight-bit range. For example, gray values zero, one, two, and three of a two-bit
image will be output as 0, 85, 170, and 255. The decoding of non-grayscale
images and grayscale images with a bit depth of 8 or 16 are unaffected by this
setting. The default is not to perform expansion. Grayscale images with a depth
of one, two, or four bits will be represented using a
MultiPixelPackedSampleModel and anindexColorModel.

public void setOutputGamma(float outputGamma)

sets the desired output gamma to a given value. In terms of the definitions in
the PNG specification, the output gamma is equal to the viewing gamma
divided by the display gamma. The output gamma must be positive. If the
output gamma is set, the output image will be gamma-corrected using an
overall exponent of output gamma/file gamma. Input files that do not contain
gamma information are assumed to have a file gamma of 1.0. This parameter
affects the decoding of all image types.

public void setExpandGrayAlpha(boolean expandGrayAlpha)

when set, causes images containing one band of gray and one band of alpha
(GA) to be output in a four-banded format (GGGA). This produces output that
may be simpler to process and display. This setting affects both images of color
type 4 (explicit alpha) and images of color type 0 (grayscale) that contain
transparency information.

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reading PNG Images

4.4.7.1 Gamma Correction and Exponents

PNG images can contain a gamma correction value. The gamma value specifies
the relationship between the image samples and the desired display output
intensity as a power function:

sample = light_o@™mma

The getPerformGammaCorrection method returnsrue if gamma correction is
to be performed on the image data. By default, gamma correctioruis

If gamma correction is to be performed, thetUserExponent and
getDisplayExponent methods are used in addition to the gamma value stored
within the file (or the default value of 1/2.2 is used if no value is found) to
produce a single exponent using the following equation:

user_exponent
gamma_from_filex display_exponent

decoding_exponent

The setUserExponent method is used to set theer_exponent value. If the
user_exponent value is set, the output image pixels are placed through the
following transformation:

integer_sample
(zbltdepth_ 1.0)

user_exponent
gamma_from_filex display_exponent

sample=

decoding_exponent

output = Samplgecodlng_exponent

wheregamma_from_file is the gamma of the file data, as determined by the
gAMA, sRGB, and iCCP chunkgisplay_exponent is the exponent of the
intrinsic transfer curve of the display, generally 2.2.

Input files that do not specify any gamma value are assumed to have a gamma of
1/2.2. Such images may be displayed on a CRT with an exponent of 2.2 using the
default user exponent of 1.0.

The user exponent may be used to change the effective gamma of a file. If a file
has a stored gamma &£ but the decoder believes that the true file gamme is
setting a user exponent §fX will produce the same result as changing the file
gamma.

Release 1.0.1, November 1999 115

4.4.7 Reading PNG Images IMAGE ACQUISITION AND DISPLAY

API: com.sun.media.jai.codec.PNGDecodeParam

o boolean getPerformGammaCorrection()

returnstrue if gamma correction is to be performed on the image data. The
default istrue.

o« void setPerformGammaCorrection(boolean performGammaCorrection)
turns gamma correction of the image data on or off.

« float getUserExponent()

returns the current value of the user exponent parameter. By default, the user
exponent is equal to 1.0F.

e« void setUserExponent(float userExponent)
sets the user exponent to a given value. The exponent must be positive.

« float getDisplayExponent()

returns the current value of the display exponent parameter. By default, the
display exponent is 2.2F.

« void setDisplayExponent(float displayExponent)
Sets the display exponent to a given value. The exponent must be positive.

4.4.7.2 Expanding Grayscale Images to GGGA Format

Normally, thePNG operation does not expand images that contain one channel of
gray and one channel of alpha into a four-channel (GGGA) format. If this type of
expansion is desired, use thetExpandGrayAlpha method. This setting affects
both images of color type 4 (explicit alpha) and images of color type 0
(grayscale) that contain transparency information.

API: com.sun.media.jai.codec.PNGDecodeParam

« void setExpandGrayAlpha(boolean expandGrayAlpha)

sets or unsets the expansion of two-channel (gray and alpha) PNG images to
four-channel (GGGA) images.

116 Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reading PNM Images

4.4.7.3 Rendering Hints
The PNG rendering hints are:

Hints Description

KEY_PNG_EMIT_ALPHA The alpha channel is set. The alpha channel, representing
transparency information on a per-pixel basis, can be included
in grayscale and truecolor PNG images.

KEY_PNG_EMIT_16BITS Defines a bit depth of 16 bits.

To read the hints, use tloperationDescriptorImpl.getHint method.

API. javax.media.jai.OperationDescriptorImp]l

e Object getHint(RenderingHints.Key key,
RenderingHints renderHints)
gueries the rendering hints for a particular hint key and copies it into the hints
observed Hashtable if found. If the hint is not found, null is returned and the
hints observed are left unchanged.

4.4.8 Reading PNM Images

The PNM operation reads a standard PNM file, including PBM, PGM, and PPM
images of both ASCII and raw formats. The PBM (portable bitmap) format is a
monochrome file format (single-banded), originally designed as a simple file
format to make it easy to mail bitmaps between different types of machines. The
PGM (portable graymap) format is a grayscale file format (single-banded). The
PPM (portable pixmap) format is a color image file format (three-banded).

PNM image files are identified bymagic numbein the file header that
identifies the file type variant, as follows:

Magic

Number File Type SampleModel Type

P1 PBM ASCII MultiPixelPackedSampleModel
P2 PGM ASCII PixelInterleavedSampleModel
P3 PPM ASCII PixelInterleavedSampleModel
P4 PBM raw MultiPixelPackedSampleModel
P5 PGM raw PixelInterleavedSampleModel
P6 PPM raw PixelInterleavedSampleModel

Release 1.0.1, November 1999 117

4.4.9 Reading Standard AWT Images IMAGE ACQUISITION AND DISPLAY

The PNM operation reads the file header to determine the file type, then stores the
image data into an appropriatampleModel. The PNM operation takes a single

parameter:
Parameter Type Description
stream SeekableStream TheSeekableStream to read from.

Listing 4-10 shows a code sample fopeM operation.
Listing 4-10 Example of Reading a PNM Image

// Create the ParameterBlock.

InputStream image = new FileInputStream(filename);
ParameterBlock pb = new ParameterBlock();
pb.add(image);

// Create the PNM operation.
op = JAI.create('"PNM", pb);

4.49 Reading Standard AWT Images

The AwTImage operation allows standard Java AWT images to be directly
imported into JAI, as a rendered image. By default, the width and height of the
image are the same as the original AWT image. The sample model and color
model are set according to the AWT image data. The layout ofthearImage

may be specified using thimagelLayout parameter at constructing time.

The AwTImage operation takes one parameter.

Parameter Type Description

awtImage Image The standard Java AWT image to be converted.

Listing 4-11 shows a code sample for &TImage operation.
Listing 4-11 Example of Reading an AWT Image

// Create the ParameterBlock.
ParameterBlock pb = new ParameterBlock();
pb.add(image);

// Create the AWTImage operation.
PTanarImage im = (PlanarImage)JAI.create("awtImage", pb);

118 Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reformatting an Image

API. javax.media.jai.PlanarImage

e void setImageParameters(ImagelLayout layout, RenderedImage im)

sets the image bounds, tile grid laydimpleModel, andColorModel to
match those of another image.

Parameters Tlayout An ImagelLayout used to selectively
override the image’s layousampleModel,
andColorModel. If null, all parameters will
be taken from the second argument.

im A RenderedImage used as the basis for the
layout.

4.4.10 Reading URL Images

The URL operation creates an image whose source is specified by a Uniform
Resource Locator (URL). TherRL operation takes one parameter.

Parameter Type Description
URL java.net.URL. The path of the file to read from.
class

Listing 4-12 shows a code sample foURL operation.
Listing 4-12 Example of Reading a URL Image

// Define the URL to the image.
url = new URL(“http://webstuff/images/duke.gif”);

// Read the image from the designated URL.
RenderedOp src = JAI.create("url", url);

4.5 Reformatting an Image

TheFormat operation reformats an image by casting the pixel values of an image
to a given data type, replacing tBempleModel andColorModel of an image,
and restructuring the image’s tile grid layout.

The pixel values of the destination image are defined by the following
pseudocode:

dst[x][yl[b] = cast(src[x][yl[b], dataType)

Release 1.0.1, November 1999 119

4.5

120

Reformatting an Image IMAGE ACQUISITION AND DISPLAY

wheredataType is one of the constanbataBuffer.TYPE_BYTE,
DataBuffer.TYPE_SHORT, DataBuffer.TYPE_USHORT,
DataBuffer.TYPE_INT, DataBuffer.TYPE_FLOAT, or
TDataBuffer.YPE_DOUBLE.

The outputSampleModel, ColorModel, and tile grid layout are specified by
passing arimagelLayout object as &enderingHint hamedImagelLayout. The
output image will have @ampleMode1 compatible with the one specified in the
layout hint wherever possible; however, for output data types of float and double
a ComponentSampleModel will be used regardless of the value of thimt
parameter.

The ImageLayout may also specify a tile grid origin and size which will be
respected.

The typecasting performed by tifermat operation is defined by the set of
expressions listed in Table 4-8, depending on the data types of the source and
destination. Casting an image to its current data type is a no-oplt@&edava
Language Specificatiofor the definition of type conversions between primitive

types.

In most cases, it is not necessary to explicitly perform widening typecasts since
they will be performed automatically by image operators when handed source
images having different datatypes.

Table 4-8 Format Actions

Destination
Source Type Type Action
BYTE SHORT (short)(x & Oxff)
USHORT (short)(x & 0xff)
INT (int)(x & Oxff)
FLOAT (float)(x & Oxff)
DOUBLE (double)(x & 0xff)
SHORT BYTE (byte)clamp((int)x, 0, 255)
USHORT (short)clamp((int)x, 0, 32767)
INT (int)x
FLOAT (float)x
DOUBLE (double)x

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reformatting an Image

Table 4-8 Format Actions (Continued)

Destination

Source Type Type Action

USHORT BYTE (byte)clamp((int)x & 0xffff, 0, 255)
SHORT (short)clamp((int)x & Oxffff, 0, 32767)
INT (int)(x & Oxffff)
FLOAT (float)(x & Oxffff)
DOUBLE (double)(x & Oxffff)

INT BYTE (byte)clamp(x, 0, 255)
SHORT (short)x
USHORT (short)clamp(x, 0, 65535)
FLOAT (float)x
DOUBLE (double)x

FLOAT BYTE (byte)clamp((int)x, 0, 255)
SHORT (short)x
USHORT (short)clamp((int)x, 0, 65535)
INT (int)x
DOUBLE (double)x

DOUBLE BYTE (byte)clamp((int)x, 0, 255)
SHORT (short)x
USHORT (short)clamp((int)x, 0, 65535)
INT (int)x
FLOAT (float)x

The c1amp function may be defined as:

int clamp(int x, int low, int high) {
return (x < low) ? Tow : ((x > high) ? high : x);
3

The Format operation takes a single parameter:

Parameter Type Description

dataType Integer The output data type (from
java.awt.image.DataBuffer). One ofTYPE_BYTE,
TYPE_SHORT, TYPE_USHORT, TYPE_INT, TYPE_FLOAT, or
TYPE_DOUBLE.

Release 1.0.1, November 1999 121

4.6

122

Converting a Rendered Image to Renderable IMAGE ACQUISITION AND DISPLAY

4.6 Converting a Rendered Image to Renderable

To use a Renderable DAG with a non-renderable image type, the image must first
be converted from a Rendered type to a Renderable type. For example, to use an
image obtained from a remote server in a Renderable chain, you would want to
treat the source image aRanderedImage, then convert it to a

RenderableImage for further processing.

TheRenderable operation producesRenderableImage from aRenderedImage
source. ThekenderableImage thus produced consists of a “pyramid” of
RenderedImages at progressively lower resolutions. The lower resolution images
are produced by invoking the chain of operations specified viadheSampler
parameter on the image at the next higher resolution level of the pyramid. The
downSampler operation chain must adhere to the specifications described for the
constructors of th&mageMIPMap class, which accept this type of parameter (see
Section 4.2.9.1, “The Down Sampler”).

The downSampler operation chain must reduce the image width and height at
each level of the pyramid. The default operation chaindtamSampler is a low
pass filter implemented using ax% separable Gaussian kernel derived from the
one-dimensional kernel:

[0.05 0.25 0.40 0.25 0.05]

followed by subsampling by 2. This filter is known as a Laplacian pyramidi
makes a perfectly googbwnSampler for most applications. If this downSampler
doesn’t work for your specific application, you can create your own and call it
with the downSampler parameter.

The number of levels in the pyramid will be such that the larger dimension
(width or height) of the lowest-resolution pyramid level is less than or equal to
the value of thenaxLowResDim parameter, which must be positive. The default
value for themaxLowResDim parameter is 64, meaning that the lowest-resolution
pyramid level will be an image whose largest dimension is 64 pixels or less.

The minimumx andy coordinates and height in rendering-independent
coordinates are supplied by the parameigrs, minY, andheight, respectively.
The value of theneight parameter must be positive. It is not necessary to supply
a value for the rendering-independent width as this is derived by multiplying the
supplied height by the aspect ratio (width divided by height) of the source

RenderedImage.

1. Burt, P.J. and Adelson, E.H., “The Laplacian pyramid as a compact image|&dtte,”
Transactions on Communicatiqrzp. 532-540, 1983.

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Creating a Constant Image

TheRenderable operation takes five parameters, as follows:

Parameter Type Description

downSamples RenderedOp The operation chain used to derive the lower resolution
images.

maxLowResDim Integer The maximum dimension of the lowest resolution pyramid
level.

minX Float The minimum rendering-independentoordinate of the
destination.

minY Float The minimum rendering-independentoordinate of the
destination.

height Float The rendering-independent height.

The default values for these parameters are:

* downSampler — a low-pass filter (see Section 4.2.9.1, “The Down

Sampler”)
* maxLowResDim — 64
e minX—0.0F
e minY—-0.0F

* height —1.0F

Listing 4-13 shows a code sample foRenderable operation. The default
parameters are used for all five parameters. The output (etfvzrable
operation fen) can be passed to the next renderable operation in the graph.

Listing 4-13 Example of Converting a Rendered Image to Renderable

// Derive the RenderableImage from the source RenderedImage.
ParameterBlock pb = new ParameterBlock();

pb.addSource(src);
pb.add(nul1).add(nul1l).add(null).add(null).add(null);

// Create the Renderable operation.
RenderableImage ren = JAI.createRenderable("renderable", pb);

4.7 Creating a Constant Image

The constant operation defines a multi-banded, tiled rendered image where all
the pixels from the same band have a constant value. The width and height of the
destination image must be specified and greater than 0.

Release 1.0.1, November 1999 123

4.8

124

Image Display IMAGE ACQUISITION AND DISPLAY

The constant operation takes three parameters, as follows:

Parameter Type Description

width Float The width of the image in pixels.
height Float The height of the image in pixels.
bandvalues Number The constant pixel band values.

At least one constant must be supplied. The number of bands of the image is
determined by the number of constant pixel values supplied ibdhévalues
parameter. The data type is determined by the type of the constant from the first
entry.

Listing 4-14 shows a code sample foCenstant operation.

Listing 4-14 Example Constant Operation

// Create the ParameterBlock.

Byte[] bandValues = new Byte[l];

bandvValues[@] = alphal;

pb = new ParameterBlock();

pb.add(new Float(srcl.getWidth())); // The width
pb.add(new Float(srcl.getHeight())); // The height
pb.add(bandValues); // The band values

// Create the constant operation.
PTlanarImage afal = (PlanarImage)JAI.create("constant", pb);

4.8 Image Display

JAIl uses the Java 2BufferedImage model for displaying images. The
BufferedImage manages an image in memory and provides ways to store pixel
data, interpret pixel data, and to render the pixel datadeaahics2D context.

The display of images in JAl may be accomplished in several ways. First, the
drawRenderedImage () call onGraphics2D may be used to produce an

immediate rendering. Another method is to instantiate a display widget that
responds to user requests such as scrolling and panning, as well as expose events,
and requests image data fromkénderedImage source. This technique allows

image data to be computed on demand.

It is for this purpose that JAI provides a widget, available in the
javax.media.jai.widget package, called 8&crollingImagePanel. The
ScrollingImagePanel takes aRenderedImage and a specified width and height

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Image Display

and creates a panel with scrolling bars on the right and bottom. The image is
placed in the center of the panel.

The scrolling image panel constructor takes three parameters. The first parameter
is the image itself, which is usually the output of some previous operation in the
rendering chain. The next two parameters are the image width and height, which
can be retrieved with thgetWidth andgetHeight methods of the node in which

the image was constructed (suchragaderedOp).

The width and height parameters do not have to be the same as the image’s width
and height. The parameters can be either larger or smaller than the image.

Once theScrollingImagePanel is created, it can be placed anywhere in a
Frame, just like any other AWT panel. Listing 4-15 shows a code sample
demonstrating the use of a scrolling image panel.

Listing 4-15 Example Scrolling Image Panel

// Get the image width and height.
int width = image.getWidth();
int height = image.getHeight();

// Attach the image to a scrolling panel to be displayed.
ScrollingImagePanel panel = new ScrollingImagePanel(
image, width, height);

// Create a Frame to contain the panel.

Frame window = new Frame(*Scrolling Image Panel Example”);
window.add(panel);

window.pack();

window.show();

For a little more interesting example, consider the display of four images in a
grid layout. The code sample in Listing 4-16 arranges four images intg & 2

grid. This example uses thava.awt.Panel and thejava.awt.GridLayout

objects. These objects are not described in this document. See the Java Platform
documentation for more information.

Listing 4-16 Example Grid Layout of Four Images

// Display the four images in row order in a 2 x 2 grid.
setLayout(new GridLayout(2, 2));

Release 1.0.1, November 1999 125

4.8 Image Display IMAGE ACQUISITION AND DISPLAY

Listing 4-16 Example Grid Layout of Four Images (Continued)

// Add the components, starting with the first entry in the
// first row, the second, etc.

add(new ScrollingImagePanel(iml, width, height));

add(new ScrollingImagePanel(im2, width, height));

add(new ScrollingImagePanel(im3, width, height));

add(new ScrollingImagePanel(im4, width, height));

pack(Q;
show();

The constructor for th@ridLayout object specifies the number of rows and
columns in the display (2 2 in this example). The four imagesn{, im2, im3,
andim4) are then added to the panel in sepagateo11ingImagePanels. The
resulting image is arranged as shown in Figure 4-5.

iml im2

im3 im4

Figure 4-5 Grid Layout of Four Images

API: javax.media.jai.RenderedOp

e int getWidth(Q
returns the width of the rendered image.

e 1int getHeight(
returns the height of the rendered image.

126 Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY The ImageCanvas Class

API: javax.media.jai.widget.ScrollingImagePanel

o« ScrollingImagePanel(RenderedImage im, int width, int height)
constructs &crollingImagePanel of a given size for a given

RenderedImage.
Parameters im The RenderedImage displayed by the
ImageCanvas.
width The panel width.
height The panel height.

4.8.1 Positioning the Image in the Panel

You can define the position of the image within $w@011ingImagePanel by
specifying either the position of the image origin or the image center location.
The setOrigin method sets the origin of the image to a giv&ny) position
within the Scrol11ingImagePanel. ThesetCenter method sets the image center
to a given k, y) position within theScro11ingImagePanel.

API: javax.media.jai.widget.ScrollingImagePanel

e void setOrigin(int x, int y)

sets the image origin to a given (X, y) position. The scrollbars are updated
appropriately.

Parameters x The imagex origin.

y The imagey origin.

e void setCenter(int x, int y)

sets the image center to a given (X, y) position. The scrollbars are updated
appropriately.

Parameters x The imagex center.
y The imagey center.

4.8.2 The ImageCanvas Class

A canvas in Java is a rectangular area in which you draw. JAl extends the
java.awt.Canvas class with thelmageCanvas class, which allows you to
“draw” an image in the canvas. Likeanvas, the ImageCanvas class inherits

Release 1.0.1, November 1999 127

4.8.3

128

Image Origin IMAGE ACQUISITION AND DISPLAY

most of its methods fromava. awt.Component, allowing you to use the same
event handlers for keyboard and mouse input.

The ImageCanvas class is a simple output widget forR@nderedImage and can
be used in any context that calls foCanvas. The ImageCanvas class monitors
resize and update events and automatically requests tiles from its source on
demand. Any displayed area outside the image is displayed in gray.

Use the constructor or theet method to include 8enderedImage in the canvas,
then use thaet0rigin method to set the position of the image within the
canvas.

API. javax.media.jai.widget.ImageCanvas

o ImageCanvas(RenderedImage im, boolean drawBorder)
constructs afimageCanvas to display &RenderedImage.

Parameters im A RenderedImage to be displayed.
drawBorder True if a raised border is desired.

e ImageCanvas(java.awt.image.RenderedImage im)
constructs afimageCanvas to display &RenderedImage.
Parameters im A RenderedImage to be displayed.
« void set(RenderedImage im)
changes the source image to a new Renderedimage.
Parameters im The newRenderedImage to be displayed.

e« void paint(java.awt.Graphics g)
paint the image onto@raphics object. The painting is performed tile-by-tile,

and includes a gray region covering the unused portion of image tiles as well

as the general background.

4.8.3 Image Origin

The origin of an image is set with thigageCanvas.setOrigin method. The
origin of an image is obtained with th@tX0rigin andgetYOrigin methods.

Geometric operators are treated differently with respect to image origin control.

SeeChapter 8, “Geometric Image Manipulation.”

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Image Origin

API. javax.media.jai.widget.ImageCanvas

e void setOrigin(int x, int y)
sets the origin of the image»aty.

e int getXOrigin(Q)
returns thex coordinate of the image origin.

e 1int getYOrigin(Q)
returns they coordinate of the image origin.

Release 1.0.1, November 1999 129

4.8.3 Image Origin IMAGE ACQUISITION AND DISPLAY

130 Programming in Java Advanced Imaging

CHAPTER5

Color Space

THIS chapter describes the JAI color space, transparency, and the color
conversion operators. JAI follows the Java AWT color model.

5.1 Introduction

Digital images, specifically digital color images, come in several different forms.
The form is often dictated by the means by which the image was acquired or by
the image’s intended use.

One of the more basic types of color image is RGB, for the three primary colors
(red, green, and blue). RGB images are sometimes acquired by a color scanner
or video camera. These devices incorporate three sensors that are spectrally
sensitive to light in the red, green, and blue portions of the spectrum. The three
separate red, green, and blue values can be made to directly drive red, green, and
blue light guns in a CRT. This type of color system is callecadditivelinear

RGB color system, as the sum of the three full color values produces white.

Printed color images are based osubtractivecolor process in which cyan,
magenta, and yellow (CMY) dyes are deposited onto paper. The amount of dye
deposited is subtractively proportional to the amount of each red, blue, and green
color value. The sum of the three CMY color values produce black.

The black produced by a CMY color system often falls short of being a true
black. To produce a more accurate black in printed images, black is often added
as a fourth color component. This is known as the CMYK color system and is
commonly used in the printing industry.

The amount of light generated by the red, blue, and green phosphors of a CRT is
not linear. To achieve good display quality, the red, blue, and green values must
be adjusted — a process knowngesnma correctionin computer systems,

Release 1.0.1, November 1999 131

5.2 Color Management COLOR SPACE

gamma correction often takes place in the frame buffer, where the RGB values
are passed through lookup tables that are set with the necessary compensation
values.

In television transmission systems, the red, blue, and green gamma-corrected
color video signals are not transmitted directly. Instead, a linear transformation
between the RGB components is performed to proddoenanancesignal and a
pair of chrominancesignals. The luminance signal conveys color brightness
levels. The two chrominance signals convey the color hue and saturation. This
color system is called YCC (or, more specifically, y&).

Another significant color space standard for JAl is CIEXYZ. This is a widely-
used, device-independent color standard developed by the Commission
Internationale de I'Eclairage (CIE). The CIEXYZ standard is based on color-
matching experiments on human observers.

5.2 Color Management
JAI uses three primary classes for the management of color:

* ColorModel — describes a particular way that pixel values are mapped to
colors. AColorModel is typically associated with a@mage or
BufferedImage and provides the information necessary to correctly
interpret pixel value<olorModel is defined in thgava.awt.image
package.

* ColorSpace — represents a system for measuring colors, typically using
three separate values or components.CbiierSpace class contains
methods for converting between the original color space and one of two
standard color spaces, CIEXYZ and R@BlorSpace is defined in the
java.awt.color package.

* Color — a fixed color, defined in terms of its components in a particular
ColorSpace. Color is defined in thgava.awt package.
5.2.1 Color Models
A ColorModel is used to interpret pixel data in an image. This includes:

* Mapping components in the bands of an image to components of a
particular color space
» Extracting pixel components from packed pixel data

» Retrieving multiple components from a single band using masks

132 Programming in Java Advanced Imaging

COLOR SPACE Color Models

» Converting pixel data through a lookup table

To determine the color value of a particular pixel in an image, you need to know
how the color information is encoded in each pixel. Th&orModel associated
with an image encapsulates the data and methods necessary for translating a
pixel value to and from its constituent color components.

JAI supports five color models:

* DirectColorModel — works with pixel values that represent RGB color
and alpha information as separate samples and that pack all samples for a
single pixel into a single int, short, or byte quantity. This class can be used
only with ColorSpaces of typelorSpace. TYPE_RGB.

* IndexColorModel —works with pixel values consisting of a single sample
thatis an index into a fixed colormap in the default SRGB ColorSpace. The
colormap specifies red, green, blue, and optional alpha components
corresponding to each index.

» ComponentColorModel —can handle an arbitratylorSpace and an array
of color components to match tkelorSpace. This model can be used to
represent most color models on most type&raphicsDevices.

* PackedColorModel —a base class for models that represent pixel values in
which the color components are embedded directly in the bits of an integer
pixel. A PackedColorModel stores the packing information that describes
how color and alpha components are extracted from the channel. The
DirectColorModel is aPackedColorModel.

* FloatDoubleColorModel — works with pixel values that represent color
and alpha information as separate samples, using float or double elements.

The following sample code shows the construction @b@ponentColorModel
for an RGB color model.

// Create an RGB color model
int[] bits = { 8, 8, 8 };
ColorModel colorModel = new
ComponentColorModeT(ColorSpace.getInstance(ColorSpace.CS_sRGB),
bits, false, false,
Transparency.OPAQUE,
DataBuffer.TYPE_BYTE);

Release 1.0.1, November 1999 133

521

134

Color Models COLOR SPACE

The following sample code shows the construction @b@ponentColorModel
for a grayscale color model.

// Create a grayscale color model.

ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);

int bits[] = new int[] {8};

ColorModel cm = new ComponentColorModel(cs, bits, false, false,
Transparency.0OPAQUE,
DataBuffer.TYPE_BYTE);

The following sample code shows the construction of a
FloatDoubleColorModel for a linear RGB color model.

ColorSpace colorSpace =
ColorSpace.getInstance(ColorSpace.CS_LINEAR_RGB);
int[] bits = new int[3];
bits[0] = bits[1] = bits[2] = 32;
ColorModel cm = new FloatDoubleColorModel(colorSpace,
false,
false,
Transparency.0OPAQUE,
DataBuffer.TYPE_FLOAT);

API. java.awt.image.ComponentColorModel

o« ComponentColorModel(ColorSpace colorSpace, int[] bits,
boolean hasAlpha, boolean isAlphaPremultiplied,
int transparency, int transferType)

constructs &omponentColorModel from the specified parameters.

Parameters colorSpace TheColorSpace associated with this color
model. See Section 5.2.2, “Color Space.”

bits The number of significant bits per
component.
hasAlpha If true, this color model supports alpha.

isAlphaPremu If true, alpha is premultiplied.
Ttiplied

Programming in Java Advanced Imaging

COLOR SPACE

transparency

transferType

Color Space

Specifies what alpha values can be
represented by this color model. See
Section 5.3, “Transparency.”

Specifies the type of primitive array used to
represent pixel values. One of
DataBuffer.TYPE_BYTE,
DataBuffer.TYPE_INT,
DataBuffer.TYPE_SHORT,
DataBuffer.TYPE_USHORT,
DataBuffer.TYPE_DOUBLE, Or
DataBuffer.TYPE_FLOAT

API. javax.media.jai.FloatDoubleColorModel

e FloatDoubleColorModel(ColorSpace colorSpace, boolean hasAlpha,
boolean isAlphaPremultiplied, int transparency,

int transferType)

constructs &loatDoubleColorModel from the specified parameters.

Parameters colorSpace
hasAlpha

isAlphaPremu
Ttiplied

transparency

transferType

5.2.2 Color Space

TheColorSpace associated with this color
model. See Section 5.2.2, “Color Space.”

If true, this color model supports alpha.
If true, alpha is premultiplied.

Specifies what alpha values can be
represented by this color model. See
Section 5.3, “Transparency.”

Specifies the type of primitive array used to
represent pixel values. One of
DataBuffer.TYPE_FLOAT oOr
DataBuffer.TYPE_DOUBLE.

The ColorSpace class represents a system for measuring colors, typically using
three or more separate numeric values. For example, RGB and CMYK are color
spaces. AColorSpace object serves as a color space tag that identifies the
specific color space of @Tl1or object or, through &@olorModel object, of an
Image, BufferedImage, Or GraphicsConfiguration

Release 1.0.1, November 1999

135

5.2.2

136

Color Space

COLOR SPACE

ColorSpace provides methods that transfoitalors in a specific color space to
and fromsRGB and to and from a well-define@lEXYZ color space. All

ColorSpace objects must be able to map a color from the represented color
space intasRGB and transform arRGB color into the represented color space.

Table 5-1 lists the variables used to refer to color spaces (suct_aRGB and
CS_CIEXYZ) and to color space types (SuchT&®E_RGB and TYPE_CMYK).

Table 5-1 Color Space Types

Name Description

CS_CIEXYZ A widely-used, device-independent color standard developed by the
Commission Internationale de Eclairage (CIE), based on color-matching
experiments on human observers.

CS_GRAY Grayscale color space.

CS_LINEAR_RGB Linear RGB. Images that have not been previously color-corrected.

CS_PYCC PhotoCD YCC conversion color space. A luminance/chrominance standard
for Kodak PhotoCD images.

CS_sRGB A proposed default “standard RGB” color standard for use over the Internet.

TYPE_2CLR A generic two-component color space.

TYPE_3CLR A generic three-component color space.

TYPE_4CLR A generic four-component color space.

TYPE_5CLR A generic five-component color space.

TYPE_6CLR A generic six-component color space.

TYPE_7CLR A generic seven-component color space.

TYPE_8CLR A generic eight-component color space.

TYPE_9CLR A generic nine-component color space.

TYPE_ACLR A generic 10-component color space.

TYPE_BCLR A generic 11-component color space.

TYPE_CCLR A generic 12-component color space.

TYPE_CMY Any of the family of CMY color spaces.

TYPE_CMYK Any of the family of CMYK color spaces.

TYPE_DCLR Generic 13-component color spaces.

TYPE_ECLR Generic 14-component color spaces.

TYPE_FCLR Generic 15-component color spaces.

TYPE_GRAY Any of the family of GRAY color spaces.

TYPE_HLS Any of the family of HLS color spaces.

TYPE_HSV Any of the family of HSV color spaces.

Programming in Java Advanced Imaging

COLOR SPACE Color Space

Table 5-1 Color Space Types (Continued)

Name Description

TYPE_Lab Any of the family of Lab color spaces.
TYPE_Luv Any of the family of Luv color spaces.
TYPE_RGB Any of the family of RGB color spaces.
TYPE_XYZ Any of the family of XYZ color spaces.
TYPE_YCbCr Any of the family of YCbCr color spaces.
TYPE_Yxy Any of the family of Yxy color spaces.

Conversion between Java color spaces is simplified by a set of methods that map
a color from a represented color space to either SRGB or CIEXYZ and transform
a sRGB or CIEXYZ color space to the represented color space. There are four
methods:

* ThetoRGB method transforms @Tor in the represented color space to a
Color in SRGB.

* ThetoCIEXYZ method transforms@lor in the represented color space
to aColor in CIEXYZ.

« ThefromRGB method takes @lor in SRGB and transforms into the
represented color space.

e ThefromCIEXYZ method takes@olorin CIEXYZ and transforms into the
represented color space.

The sRGB (which stands for “standard” RGB) color space is provided as a
convenience to programmers, since many applications are primarily concerned
with RGB images. Defining a standard RGB color space makes writing such
applications easier. TheoRGB and fromRGB methods are provided so that
developers can easily retrieve colors in this standard space. However, the SRGB
color space is not intended for use with highly accurate color correction or
conversions.

The sRGB color space is somewhat limited in that it cannot represent every color
in the full gamut (spectrum of representable colors) of CIEXYZ color. If a color

is specified in some space that has a different gammut than sRGB, using sRGB
as an intermediate color space results in a loss of information. The CIEXYZ
color space is used as an intermediate color space to avoid any loss of color
quality. The CIEXYZ color space is known as tbenversion spac#or this

reason. TheaoCIEXYZ andfromCIEXYZ methods support conversions between

any two color spaces at a reasonably high degree of accuracy, one color at a time.

Release 1.0.1, November 1999 137

5.2.3 ICC Profile and ICC Color Space COLOR SPACE

API. java.awt.color.ColorSpace

e abstract float[] toRGB(float[] colorvalue)

transforms a color value assumed to be in thitorSpace into a value in the
defaultCS_sRGB color space.

Parameter colorvalue A float array with length of at least the
number of components in th®1lorSpace.

e abstract float[] fromRGB(float[] rgbvalue)

transforms a color value assumed to be in the det@ukRGB color space into
this ColorSpace.

Parameter rgbvalue A float array with length of at least 3.

e abstract float[] toCIEXYZ(float[] colorvalue)

transforms a color value assumed to be in thitorSpace into theCS_CIEXYZ
conversion color space.

e abstract float[] fromCIEXYZ(float[] colorvalue)

transforms a color value assumed to be iCth&€IEXYZ conversion color
space into thiSolorSpace.

o« static ColorSpace getInstance(int colorspace)
returns a ColorSpace representing one of the specific predefined color spaces.

Parameter colorSpace A specific color space identified by one of
the predefined class constants (e.g.,
CS_sRGB, CS_LINEAR_RGB, CS_CIEXYZ,
CS_GRAY, or CS_PYCQ).

e int getType()

returns the color space type of thisiorSpace (for exampleTYPE_RGB,
TYPE_XYZ, etc.).

5.2.3 ICC Profile and ICC Color Space

The ColorSpace class is an abstract class. It is expected that particular
implementations of subclasses@florSpace will support high performance
conversion based on underlying platform color management systems. The
ICC_ColorSpace class is one such implementation provided in the base AWT.
Developers can define their own subclasses to represent arbitrary color spaces, as

138 Programming in Java Advanced Imaging

COLOR SPACE Transparency

long as the appropriate “to” and “from” conversion methods are implemented.
However, most developers can simply use the detRdB color space or color
spaces that are represented by commonly-available ICC profiles, such as profiles
for monitors and printers or profiles embedded in image data.

The ICC_ColorSpace class is based on ICC profile data as represented by the
ICC_Profile class. TheICC_Profile class is a representation of color profile
data for device-independent and device-dependent color spaces based@d the
Profile Format Specificatigriversion 3.4, August 15, 1997, from the
International Color Consortium. ICC profiles describeigput spaceand a
connection spaceand define how to map between them.

The ICC_Profile class has two subclasses that correspond to the specific color
types:

e ICC_ProfileRGB, which representsYPE_RGB color spaces

e ICC_ProfileGray, which representsYPE_GRAY color spaces

5.3 Transparency

Just as images can have color, they can also have transparency. Transparency
defines the specular transmission of light through transparent materials, such as
glass, or the lack of transparency for completely opaque objects. The amount of
transparency is specified by an alpld yalue. An alpha value of 0.0 specifies
complete translucency; an alpha value of 1.0 specifies complete opacity.

Images can carry transparency information, known as the alpha channel, for each
pixel in the image. The alpha value is particularly important when colors overlap.
The alpha value specifies how much of the previously-rendered color should
show through.

The Javarransparency interface defines the common transparency modes for
implementing classes. Table 5-2 lists the variables used to specify transparency.

Table 5-2 Transparency

Name Description

BITMASK Represents image data that is guaranteed to be either completely opaque, with an
alpha value of 1.0, or completely transparent, with an alpha value of 0.0.

OPAQUE Represents image data that is guaranteed to be completely opaque, meaning that
all pixels have an alpha value of 1.0.

TRANSLUCENT Represents image data that contains or might contain arbitrary alpha values
between and including 0.0 and 1.0.

Release 1.0.1, November 1999 139

54

140

Color Conversion COLOR SPACE

Transparency is specified as part of the color model (see Section 5.2.1, “Color
Models”).

5.4 Color Conversion

The ColorConvert operation performs a pixel-by-pixel color conversion of the

data in a rendered or renderable source image. The data are treated as having no
alpha channel, i.e., all bands are color bands. The color space of the source
image is specified by theolorSpace object of the source imagalorModel

which must not be null.

JAI does not attempt to verify that tl@1orModel of the destination image is
consistent with th&olorSpace parameter. To ensure that this is the case, a
compatibleColorMode1 must be provided via almagelLayout in the
RenderingHints (see Section 3.7.3, “Rendering Hints").

Integral data are assumed to occupy the full range of the respective data type;
floating point data are assumed to be normalized to the range [0.0,1.0]. By
default, the destination image bounds, data type, and number of bands are the
same as those of the source image.

The ColorConvert operation takes one parameter:

Parameters Type Description

colorSpace ColorSpace The destination color space.

For information on color space, see Section 5.2.2, “Color Space.”

Listing 5-1 shows a code sample foCalorConvert operation.

Listing 5-1 Example ColorConvert Operation

// Read the image from the specified file name.
RenderedOp src = JAI.create("fileload", fileName);

// Create the ParameterBlock.
ParameterBlock pb = new ParameterBlock();
pb.addSource(src).add(colorSpace);

// Perform the color conversion.
RenderedOp dst = JAI.create("ColorConvert", pb);

Programming in Java Advanced Imaging

COLOR SPACE Non-standard Linear Color Conversion (BandCombine)

5.5 Non-standard Linear Color Conversion
(BandCombine)

In JAl, theBandCombine operation performs a linear color conversion between
color spaces other than those listed in Table 5-1. BdielCombine operation
computes a set of arbitrary linear combinations of the bands of a rendered or
renderable source image, using a specified matrix. The matrix must have
dimension (# of source bands plus one) by (# of desired destination bands).

The BandCombine operation takes one parameter:

Parameter Type Description

matrix double The matrix specifying the band combination.

As an example, assume the three-band source image and the matrix shown in
Figure 5-1. The equation to calculate the value of the destination pixel in this
example would be:

dst= (255 * 0.25) + (157 * 0.5) + (28 * 0.75)

Matrix

Band 0 0.25| 0.5 |0.75

255 Band 1

157
Band 2

28

The source image

Figure 5-1 Band Combine Example

In this example, the number of columns in the matrix is equal to the number of
bands in the source image. The number of rows in the matrix must equal the
number of bands in the destination image. For a destination image with three
bands, the values in the second row of the matrix would be used to calculate the

Release 1.0.1, November 1999 141

5.5

142

Non-standard Linear Color Conversion (BandCombine) COLOR SPACE

values in the second band of the destination image and the values in the third row
would be used to calculate the values in the third band.

If the result of the computation underflows or overflows the minimum or
maximum value supported by the destination image, it will be clamped to the
minimum or maximum value, respectively.

Listing 5-2 shows a code sample foBandCombine operation.

Listing 5-2 Example BandCombine Operation

// Create the matrix.
// Invert center band.
double[][] matrix {
{ 1.eD, 0.0D, 0.0D, 0.0D 1},
{ 0.0D, -1.0D, 0.0D, 255.0D 1},
{ 0.0D, 0.0D, 1.0D, 0.0D 1,

1

// Identity.
double[][] matrix = {
{ 1.0D, 0.0D, 0.0D, 0.0D },
{ 0.0D, 1.0D, 0.0D, 0.0D },
{ 0.0D, 0.0D, 1.0D, 0.0D },
1

// Luminance stored into red band (3 band).
double[][] matrix = {
{ .114D, 0.587D, 0.299D, 0.0D }
{ .000D, 0.000D, 0.000D, 0.0D }
{ .000D, 0.000D, 0.000D, 0.0D }
};

// Luminance (single band output).
double[][] matrix = {
{ .114D, 0.587D, ©.299D, 0.0D }
};

// Create the ParameterBlock.
ParameterBlock pb = new ParameterBlock();
pb.addSource(src_image);

pb.add(matrix);

// Perform the band combine operation.
dst = (PlanarImage)JAI.create('"bandcombine", pb, null);

Programming in Java Advanced Imaging

CHAPTER6

Image Manipulation

THIS chapter describes the basics of manipulating images to prepare them for
further processing.

6.1 Introduction

The JAl image manipulation objects and methods are used to enhance and
geometrically modify images and to extract information from images. Image
manipulation includes:

* Region of interest (ROI) control

* Relational operators

» Logical operators

» Arithmetic operators

e Dithering

» Clamping pixel values

» Band copy

6.2 Region of Interest Control

Typically, any image enhancement operation takes place over the entire image.
While the image enhancement operation may improve portions of an image,
other portions of the image may lose detail. You usually want some way of
limiting the enhancement operation to specific regions of the image.

To restrict the image enhancement operations to specific regions of an image, a
region-of-interest mask is created. A region of interest (ROI) is conceptually a

Release 1.0.1, November 1999 143

6.2.1

144

The ROI Class IMAGE MANIPULATION

mask of true or false values. The ROl mask controls which source image pixels
are to be processed and which destination pixels are to be recorded.

JAI supports two different types of ROl mask: a Boolean mask and a threshold
value. TheROIShape class uses a Boolean mask, which allows operations to be
performed quickly and with compact storage. TRog class allows the

specification of a threshold value; pixel values greater than or equal to the
threshold value are included in the ROI. Pixel values less than the threshold are
excluded.

The region of interest is usually defined usingoaShape, which stores its area
using thejava. awt.Shape classes. These classes define an area as a geometrical
description of its outline. TheoI class stores an area as a single-banded image.

An ROI can be attached to an image as a property.GGempter 11, “Image
Properties.”

6.2.1 The ROI Class

The ROI class stores an area as a grayscale (single-banded) image. This class
represents region information in image form, and can thus be used as a fallback
where aShape representation is unavailable. Inclusion and exclusion of pixels is
defined by a threshold value. Source pixel values greater than or equal to the
threshold value indicate inclusion in the ROl and are processed. Pixel values less
than the threshold value are excluded from processing.

Where possible, subclasses sucR@kshape are used since they provide a more
compact means of storage for large regions.

The getAsShape () method may be called optimistically on any instanc@af.
However, it may return null to indicate thatSaape representation of throI is
not available. In this casgetAsImage() should be called as a fallback.

API: javax.media.jai.ROI

« ROI(RenderedImage im)

constructs aROI object from e&RenderedImage. The inclusion threshold is
taken to be halfway between the minimum and maximum sample values
specified by the imageSampleModel.

Parameters im A single-bande®kenderedImage.

Programming in Java Advanced Imaging

IMAGE MANIPULATION The ROI Class

e ROI(RenderedImage im, int threshold)
constructs arROI object from &RenderedImage. The inclusionthreshold is
specified explicitly.
Parameters im A single-bandedkenderedImage.

threshold The inclusion/exclusion threshold of the
ROI.

e Shape getAsShape()

returns ashape representation of the01, if possible. If none is available, null
is returned. A proper instanceRdI (one that is not an instance of any subclass
of ROT) will always return null.

e« PlanarImage getAsImage()

returns ePlanarImage representation of thI. This method will always
succeed.

e 1int getThreshold()
returns the inclusion/exclusion threshold value.

e void setThreshold(int threshold)
sets the inclusion/exclusion threshold value.

6.2.1.1 Determining the ROI Bounds

The getBounds methods in theR0I class read the bounds of tRel, as either a
Rectangle Or aRectangle2D.

API. javax.media.jai.ROI

« Rectangle getBounds()
returns the bounds of tiR@I as aRectangle.

« Rectangle2D getBounds2D()
returns the bounds of tiR@I as aRectangle2D.

6.2.1.2 Determining if an Area Lies Within or Intersects the ROI

The contains methods in th®oI class test whether a given point or rectangular
region lie within therROI. Theintersects methods test whether a given
rectangular region intersect with tiReI.

Release 1.0.1, November 1999 145

6.2.1

146

The ROI Class IMAGE MANIPULATION

API. javax.media.jai.ROI

e boolean contains(Point p)
returns true if theoint lies within theroI.

Parameters p A Point identifying the pixel to be queried.

« boolean contains(Point2D p)
returns true if th@oint2D lies within thero1.

Parameters p A Point2D identifying the pixel to be
gueried.

e boolean contains(int x, int y)
returns true if the point lies within ther.

Parameters x An int specifying thex coordinate of the
pixel to be queried.

y An int specifying they coordinate of the
pixel to be queried.

e boolean contains(double x, double y)
returns true if the point lies within ther.

Parameters x A double specifying thex coordinate of the
pixel to be queried.

y A double specifying thg coordinate of the
pixel to be queried.

« boolean contains(Rectangle rect)
returns true if th&ectangle lies within thero1.

Parameters rect A Rectangle specifying the region to be
tested for inclusion.

e boolean contains(Rectangle2D r)
returns true if th®ectangle2D lies within thero1.

Parameters r A Rectangle2D specifying the region to be
tested for inclusion.

Programming in Java Advanced Imaging

IMAGE MANIPULATION The ROI Class

boolean contains(int x, int y, int w, int h)
returns true if the rectangle lies within tkee.

Parameters x The intx coordinate of the upper left corner
of the region.

y The inty coordinate of the upper left corner
of the region.

w The int width of the region.
The int height of the region.

boolean contains(double x, double y, double w, double h)
returns true if the rectangle lies within tka.

Parameters x The doublex coordinate of the upper left
corner of the region.

y The doubley coordinate of the upper left
corner of the region.

w The double width of the region.
The double height of the region.

boolean intersects(Rectangle rect)
returns true if th®ectangle intersects theor.

Parameters rect A Rectangle specifying the region to be
tested for inclusion.

boolean intersects(Rectangle2D r)
returns true if th&ectangle2D intersects theor.

Parameters r A Rectangle2D specifying the region to be
tested for inclusion.

Release 1.0.1, November 1999

147

6.2.1 The ROI Class IMAGE MANIPULATION

e boolean intersects(int x, int y, int w, int h)
returns true if the rectangle intersectsriie

Parameters x The intx coordinate of the upper left corner
of the region.

y The inty coordinate of the upper left corner
of the region.

w The int width of the region.
The int height of the region.

e boolean intersects(double x, double y, double w, double h)
returns true if the rectangle intersectsrbe.

Parameters x The doublex coordinate of the upper left
corner of the region.

y The doubley coordinate of the upper left
corner of the region.

w The double width of the region.
The double height of the region.

6.2.1.3 Creating a New ROI from an Existing ROI

Several methods allow the creation of a @ from an existingROI. Theadd
method adds another ROI to an existing one, creating a new ROI.

API. javax.media.jai.ROI

« ROI add(ROI im)

adds anotheroI to this one and returns the result as a m@&. The addition
is performed by an “AddROIs” RIF to be specified. The supmadwill be
converted to a rendered form if necessary.

Parameters im An ROI.

e ROI subtract(ROI 1im)

subtracts anothe&o1 to this one and returns the result as a Relv The
subtraction is performed by a “SubtractROIs” RIF to be specified. The
suppliedroI will be converted to a rendered form if necessary.

Parameters im An ROI.

148 Programming in Java Advanced Imaging

IMAGE MANIPULATION The ROI Class

e ROI intersect(ROI im)

intersects th@0I with anotherR0I and returns the result as a net. The
intersection is performed by a “IntersectROIs” RIF to be specified. The
suppliedrOI will be converted to a rendered form if necessary.

Parameters im An ROI.

e ROI exclusiveOr(ROI im)
exclusive-ORs theoI with anotheROI and returns the result as a nkat.

The intersection is performed by an “XorROIs” RIF to be specified. The
suppliedroI will be converted to a rendered form if necessary.

Parameters im An ROI.

e ROI transform(AffineTransform at)

performs an affine transformation and returns the result as aaTewhe
transformation is performed by an “Affine” RIF.

Parameters at An AffineTransform specifying the
transformation.

e ROI performImageOp(RenderedImageFactory RIF, ParameterBTlock
paramBlock, int sourceIndex, Hashtable renderHints,
Hashtable renderHintsObserved)
transforms amor1 using an imaging operation. The operation is specified by a
RenderedImageFactory. The operation'®arameterBlock, minus the image
source itself is supplied, along with an index indicating where to insertthe
image. The usualenderHints andrenderHintsObserved arguments allow
rendering hints to be passed in and information on which hints were followed
to be passed out.

Parameters RIF A RenderedImageFactory that will be used
to create the op.

paramBlock A ParameterBlock containing all sources
and parameters for the operation except for
the ROI itself.

sourceIndex The index of theParameterBlock’s sources
where therR01I is to be inserted.

renderHints A Hashtable of rendering hints.

renderHints- A Hashtable of observed rendering hints.
Observed

Release 1.0.1, November 1999 149

6.2.1 The ROI Class IMAGE MANIPULATION

e ROI performImageOp(RenderedImageFactory RIF, ParameterBTlock
paramBlock, int sourceIndex)
transforms amOI using an imaging operation. The operation is specified by a
RenderedImageFactory. The operation'®arameterBlock, minus the image
source itself is supplied, along with an index indicating where to inserahe
image. Rendering hints are taken to be null.

Parameters RIF A RenderedImageFactory that will be used
to create the op.

paramBlock A ParameterBlock containing all sources
and parameters for the operation except for
theRo1I itself.

sourceIndex The index of theParameterBlock’s sources
where ther01I is to be inserted.

e« ROI performImageOp(String name, ParameterBlock paramBlock,

int sourceIndex, Hashtable renderHints,

Hashtable renderHintsObserved)
transforms amOI using an imaging operation. The operation is specified by
name; the default JAl registry is used to resolve this into a RIF. The operation’s
ParameterBlock, minus the image source itself is supplied, along with an
index indicating where to insert tReI image. The usualenderHints and
renderHintsObserved arguments allow rendering hints to be passed in and
information on which hints were followed to be passed out.

Parameters name The name of the operation to be performed.

paramBlock A ParameterBlock containing all sources
and parameters for the operation except for
the ROI itself.

sourceIndex The index of theParameterBlock’s sources
where theR01I is to be inserted.

renderHints A Hashtable of rendering hints.

renderHints- A Hashtable of observed rendering hints.
Observed

« ROI performImageOp(String name, ParameterBlock paramBlock,
int sourceIndex)

transforms amoI using an imaging operation. The operation is specified by
name; the default JAl registry is used to resolve this into a RIF. The operation’s
ParameterBlock, minus the image source itself is supplied, along with an

150 Programming in Java Advanced Imaging

IMAGE MANIPULATION The ROIShape Class

index indicating where to insert tlke1 image. Rendering hints are taken to be
null.

Parameters name The name of the operation to be performed.

paramBlock A ParameterBlock containing all sources
and parameters for the operation except for
theROI itself.

sourceIndex The index of theParameterBlock’s sources
where therR01I is to be inserted.

e Shape getAsShape()
returns a Shape representation ofRbg, if possible. If none is available, null

is returned. A proper instanceRdI (one that is not an instance of any subclass
of ROI) will always return null.

e« PlanarImage getAsImage()

returns ePlanarImage representation of thI. This method will always
succeed.

6.2.2 The ROIShape Class

TheROIShape class is used to store a region of interest within an image as an
instance of gjava.awt.Shape. Such regions are binary by definition. Using a
Shape representation allows Boolean operations to be performed quickly and
with compact storage. If BropertyGenerator responsible for generating the
ROI property of a particuladperationDescriptor (such as aarp) cannot
reasonably produce &®IShape representing the region, it should call the
getAsImage() method on its sources and produce its ougadtin image form.

API: javax.media.jai.ROIShape

« ROIShape(Shape s)
constructs aR0IShape from aShape.

Parameters s A Shape.

e« ROIShape(Area a)
constructs aR0IShape from anArea.

Parameters a An Area.

Release 1.0.1, November 1999

151

6.2.2

152

The ROIShape Class IMAGE MANIPULATION

6.2.2.1 Determining the ROI Bounds

The following methods in theoIShape class read the bounds of tReT.

API: javax.media.jai.ROIShape

« Rectangle getBounds()
returns the bounds of tiRe1 as aRectangle.

o« Rectangle2D getBounds2D()
returns the bounds of tirer as aRectangle2D.

6.2.2.2 Determining if an Area Lies Within or Intersects the ROIShape

TheR0IShape.contains method is used to determine if a given pixel lies within
the region of interest. ThROIShape.intersects method is used to determine if
a rectangular region of the image intersects the ROI.

API: javax.media.jai.ROIShape

e boolean contains(Point p)
returns true if the pixel lies within tiRa1.

Parameters p The coordinates of the pixel to be queried.
e boolean contains(Point2D p)

returns true if the pixel lies within tR®1T.

Parameters p The coordinates of the pixel to be queried.
e boolean contains(int x, int y)

returns true if the pixel lies within tiRoI.

Parameters x The x coordinate of the pixel to be queried.
y They coordinate of the pixel to be queried.

e boolean contains(double x, double y)
returns true if the pixel lies within tira1.

Parameters x The x coordinate of the pixel to be queried.
y They coordinate of the pixel to be queried.

Programming in Java Advanced Imaging

IMAGE MANIPULATION The ROIShape Class

e boolean contains(Rectangle rect)
returns true if the rectangular region is entirely contained withirdhe

Parameters rect The region to be tested for inclusion.
e boolean contains(Rectangle2D r)

returns true if the rectangular region is entirely contained withirdhe

Parameters r The region to be tested for inclusion.
e boolean contains(int x, int y, int w, int h)

returns true if the rectangular region is entirely contained withirdhe

Parameters x Thex coordinate of the pixel to be queried.
They coordinate of the pixel to be queried.
The width of the region.

o = K

The height of the region.

e boolean contains(double x, double y, double w, double h)
returns true if the rectangular region is entirely contained withirdhe
Parameters x The x coordinate of the pixel to be queried.
They coordinate of the pixel to be queried.
The width of the region.

> = K

The height of the region.

e boolean intersects(Rectangle rect)
returns true if the rectangular region intersectRtie

Parameters rect The region to be tested for inclusion.

e boolean intersects(Rectangle2D r)
returns true if the rectangular region intersecttiie

Parameters rect The region to be tested for inclusion.

Release 1.0.1, November 1999 153

6.2.2 The ROIShape Class IMAGE MANIPULATION

e boolean intersects(int x, int y, int w, int h)
returns true if the rectangular region intersectRdie

Parameters x Thex coordinate of the upper left corner of
the region.
y They coordinate of the upper left corner of
the region.
w The width of the region.

The height of the region.

e boolean intersects(double x, double y, double w, double h)
returns true if the rectangular region intersecttie

Parameters x Thex coordinate of the upper left corner of
the region.
y They coordinate of the upper left corner of
the region.
w The width of the region.

The height of the region.

6.2.2.3 Creating a New ROIShape from an Existing ROIShape

Several methods allow the creation of a NI Shape from the oldROIShape.

APIl. javax.media.jai.ROIShape

« ROI add(ROI im)

adds another mask to this one. This operation may force this mask to be
rendered.

Parameters im An ROI.

e ROI subtract(ROI im)

subtracts another mask from this one. This operation may force this mask to be
rendered.

Parameters im An ROI.

154 Programming in Java Advanced Imaging

IMAGE MANIPULATION Relational Operators

e ROI intersect(ROI im)

sets the mask to its intersection with another mask. This operation may force
this mask to be rendered.

Parameters im An ROI.

e ROI exclusiveOr(ROI im)

sets the mask to its exclusive-OR with another mask. This operation may force
this mask to be rendered.

Parameters im An ROI.

e ROI transform(AffineTransform at)

performs an affine transformation and returns the result as aoneWwhe
transformation is performed by an “Affine” RIF.

Parameters at The affine transform.

e Shape getAsShape()

returns the internahape representation or null if not possible. Since we have
a shape available, we simply return it.

e PlanarImage getAsImage()

returns the shape a®&anarImage. This requires performing an antialiased
rendering of the internahape. We use an eight-bit, single channel image with
aComponentColorModel and aColorSpace.TYPE_GRAY color space.

6.3 Relational Operators

Given two source images and a destination image, the JAI relational operators
allow you to:

» Find the larger of the pixels in the two source images and store the results
in the destinationMax).

» Find the smaller of the pixels in the two source images and store the results
in the destinationMin).

The relational operators require that both source images and the destination
image have the same data type and number of bands. The sizes of the two images
(height and width), however, need not be the same.

When determining the maximum and minimum pixels in the two images, JAI
performs a band-by-band comparison.

Release 1.0.1, November 1999 155

6.3.1

156

Finding the Maximum Values of Two Images IMAGE MANIPULATION

Note: Don't confuse the relational Min and Max operators with the Extrema
operation (see Section 9.3, “Finding the Extrema of an Image”), which finds the
image-wise minimum and maximum pixel values for each band of an image.

6.3.1 Finding the Maximum Values of Two Images

Themax operation takes two rendered images, and for every pair of pixels, one
from each source image of the corresponding position and band, finds the
maximum pixel value.

The two source images may have different numbers of bands and data types. By
default, the destination image bound is the intersection of the two source image
bounds. If the two source images don't intersect, the destination will have a

width and a height of 0. The number of bands of the destination image is the
same as the least number of bands of the source images, and the data type is the
biggest data type of the source images.

The pixel values of the destination image are defined by the following
pseudocode:

if (srcs[0][x][yl[b]l > srcs[1][x][yl[b]l) {
dst[x][y]l[b] = srcs[0][x][y]l[b];

} else {
dst[x][y]l[b] = srcs[1][x][y][b];

}

Themax operation takes two source images and no parameters. Listing 6-1 shows
a partial code sample of computing the pixelwise maximum value of two images
in the rendered mode.

Listing 6-1 Finding the Maximum Value of Two Images

// Create two constant images
RenderedOp im0 JAI.create(“constant”, paraml);
RenderedOp iml JAI.create(“constant”, param2);

// Find the maximum value of the two images
RenderedOp im2 = JAI.create(“max”, im@, iml);

Programming in Java Advanced Imaging

IMAGE MANIPULATION Logical Operators

6.3.2 Finding the Minimum Values of Two Images

Themin operation takes two rendered images, and for every pair of pixels, one
from each source image of the corresponding position and band, finds the
minimum pixel value.

The two source images may have different numbers of bands and data types. By
default, the destination image bound is the intersection of the two source image
bounds. If the two source images don't intersect, the destination will have a

width and a height of 0. The number of bands of the destination image is the
same as the least number of bands of the source images, and the data type is the
biggest data type of the source images.

The pixel values of the destination image are defined by the following
pseudocode:

if (srcs[0][x][yl[b]l < srcs[1][x]1[yl[b]) {
dst[x][y][b] = srcs[0][x][y][b];
} else {

) dst[x][y][b] = srcs[1]1[x][y][b];

Themin operation takes two rendered source images and no parameters.
Listing 6-2 shows a partial code sample of computing the pixelwise minimum
value of two images in the renderable mode.

Listing 6-2 Finding the Minimum Value of Two Images

// Set up the parameter block and add the two source images to it
ParameterBlock pb = new ParameterBlock();

pb.add(im@) ;

pb.add(iml);

// Find the maximum value of the two images
RenderableOp im2 = JAI.createRenderable(“min”, pb, hints);

6.4 Logical Operators

JAI supportamonadic dyadic andunarylogical operators. The monadic logical
operations include pixel-by-pixel AND, OR, and XOR operations between a
source image and a constant to produce a destination image. The dyadic logical
operations include pixel-by-pixel AND, OR, and XOR operations between two
source images to produce a destination image. The unary logical operation is a
NOT operation (complement image) on each pixel of a source image on a per-
band basis.

Release 1.0.1, November 1999 157

6.4.1 ANDing Two Images IMAGE MANIPULATION

JAI supports the following logical operations:

» Take the bitwise AND of the two source images and store the results in the
destination And)

» Take the bitwise AND of a source image and one of a set of per-band
constantsAndConst)

» Take the bitwise OR of the two source images and store the results in the
destination @r)

» Take the bitwise OR of a source image and one of a set of per-band
constantsrConst)

» Take the bitwise XOR (exclusiveOR) of the two source images and store
the results in the destinatioxo()

» Take the bitwise XOR of a source image and one of a set of per-band
constantsXorConst)

» Take the bitwise NOT of a source image on each pixel on a per-band basis
(Not)

As with the relational operators, the logical operations require that both source
images and the destination image have the same data type and number of bands.
The sizes of the two images (height and width), however, need not be the same.

6.4.1 ANDing Two Images

TheAnd operation takes two rendered or renderable source images, and performs
a bit-wise logical AND on every pair of pixels, one from each source image, of
the corresponding position and band.

Both source images must have integral data types. The two data types may be
different.

Unless altered by abmageLayout hint, the destination image bound is the
intersection of the two source image bounds. If the two sources don't intersect,
the destination will have a width and height of 0. The number of bands of the
destination image is equal to the lesser number of bands of the source images,
and the data type is the smallest data type with sufficient range to cover the range
of both source data types.

158 Programming in Java Advanced Imaging

IMAGE MANIPULATION ANDiIng an Image with a Constant

The following matrix defines the logicahd operation.

srcO srcl Result
0 0 0
0 1 0
1 0 0
1 1 1

The destination pixel values are defined by the following pseudocode:
dst[x][y]l[b] = srcs[0][x][yl[b] & srcs[1][x][y][b];

The And operation takes two rendered or renderable source images and no
parameters.

Listing 6-3 shows a partial code sample of using Ahe operation to AND two
images together.

Listing 6-3 ANDing Two Images

// Set up the parameter block and add the two source images to it.
ParameterBlock pb = new ParameterBlock();

pb.addSource(imo) ; // The first image
pb.addSource(iml); // The second image

// AND the two images together.
RenderableOp op = JAI.createRenderable(*and”, pb, hints);

6.4.2 ANDing an Image with a Constant

TheAndConst operation takes one rendered or renderable image and an array of
integer constants, and performs a bit-wise logical AND between every pixel in
the same band of the source and the constant from the corresponding array entry.
If the number of constants supplied is less than the number of bands of the
destination, then the constant from entry 0 is applied to all the bands. Otherwise,
a constant from a different entry is applied to each band.

The source image must have an integral data type. By default, the destination
image bound, data type, and number of bands are the same as the source image.

The following matrix defines the logicahdConst operation:

src const Result
0 0 0
0 1 0

Release 1.0.1, November 1999 159

6.4.3

160

ORing Two Images IMAGE MANIPULATION
src const Result

1 0 0

1 1 1

The destination pixel values are defined by the following pseudocode:

if (constants.length < dstNumBands) {
dst[x][yl[b] = srcs[x][y]l[b] & constants[0];
} else {
dst[x][yl[b] = srcs[x][y]l[b] & constants[b];

The AndConst operation takes one rendered or renderable source image and one
parameter:

Parameter Type Description

constants int The per-band constants to logically AND with.

Listing 6-4 shows a partial code sample of usingAhéConst operation to AND
a source image with a defined constant of value 1.2.

Listing 6-4 ANDing an Image with a Constant

// Set up the parameter block with the source and a constant
// value.

ParameterBlock pb = new ParameterBlock();

pb.addSource(im); // im as the source image
pb.add(1.2f); // The constant

// AND the image with the constant.
RenderableOp op = JAI.createRenderable(“andconst”, pb, hints);

6.4.3 ORing Two Images

The 0r operation takes two rendered or renderable images, and performs a bit-
wise logical OR on every pair of pixels, one from each source image of the
corresponding position and band.

Both source images must have integral data types. The two data types may be
different.

Unless altered by ammagelLayout hint, the destination image bound is the
intersection of the two source image bounds. If the two sources don't intersect,
the destination will have a width and height of 0. The number of bands of the
destination image is equal to the lesser number of bands of the source images,

Programming in Java Advanced Imaging

IMAGE MANIPULATION ORing an Image with a Constant

and the data type is the smallest data type with sufficient range to cover the range
of both source data types.

The following matrix defines the logicaR operation:

srcO srcl Result

0 0 0
0 1 1
1 0 1
1 1 1

The destination pixel values are defined by the following pseudocode:
dst[x][yl[b] = srcs[0][x]Lyl[b] | srcs[1][x]Lly]l[b];

Theor operation takes two rendered or renderable source images and no
parameters.

Listing 6-5 shows a partial code sample of using dheoperation to OR two
images.

Listing 6-5 ORing Two Images

// Read the first image.

pb = new ParameterBlock();
pb.addSource(filel);

RenderedOp srcl = JAI.create("stream", pb);

// Read the second image.

pb = new ParameterBlock();
pb.addSource(file2);

RenderedImage src2 = JAI.create("stream", pb);

// OR the two images.
RenderedOp dst = JAI.create("or", srcl, src2);

6.4.4 ORing an Image with a Constant

The0rConst operation takes one rendered or renderable image and an array of
integer constants, and performs a bit-wise logical OR between every pixel in the
same band of the source image and the constant from the corresponding array
entry. If the number of constants supplied is less than the number of bands of the
destination, the constant from entry 0 is applied to all the bands. Otherwise, a
constant from a different entry is applied to each band.

Release 1.0.1, November 1999 161

6.4.5 XORing Two Images IMAGE MANIPULATION

The source image must have an integral data type. By default, the destination
image bound, data type, and number of bands are the same as the source image.

The following matrix defines the logicalrConst operation:

src const Result
0 0 0
0 1 1
1 0 1
1 1 1

The destination pixel values are defined by the following pseudocode:

if (constants.length < dstNumBands) {
dst[x][y]l[b] = src[x][yl[b]l | constants[0];
} else {
dst[x][yl[b] = src[x][y]l[b] | constants[b];

}
The 0rConst operation takes one rendered or renderable source image and one
parameter:
Parameter Type Description
constants int The per-band constants to logically OR with.

6.4.5 XORing Two Images

The Xor operation takes two rendered or renderable images, and performs a bit-
wise logical XOR on every pair of pixels, one from each source image of the
corresponding position and band.

Both source images must have integral data types. The two data types may be
different.

Unless altered by ammagelLayout hint, the destination image bound is the
intersection of the two source image bounds. If the two source images don't
intersect, the destination will have a width and height of 0. The number of bands
of the destination image is equal to the lesser number of bands of the source
images, and the data type is the smallest data type with sufficient range to cover
the range of both source data types.

162 Programming in Java Advanced Imaging

IMAGE MANIPULATION XORing an Image with a Constant

The following matrix defines thigor operation:

srcO srcl Result
0 0 0
0 1 1
1 0 1
1 1 0

The destination pixel values are defined by the following pseudocode:
dst[x][y]l[b] = srcs[0][x][yl[b] A srcs[0][x][y][b];

The Xor operation takes one rendered or renderable source image and no
parameters.

6.4.6 XORing an Image with a Constant

TheXorConst operation takes one rendered or renderable image and an array of
integer constants, and performs a bit-wise logical OR between every pixel in the
same band of the source and the constant from the corresponding array entry. If
the number of constants supplied is less than the number of bands of the
destination, the constant from entry 0O is applied to all the bands. Otherwise, a
constant from a different entry is applied to each band.

The source image must have an integral data type. By default, the destination
image bound, data type, and number of bands are the same as the source image.

The following matrix defines the logicabrConst operation:

src const Result
0 0 0
0 1 1
1 0 1
1 1 0

The destination pixel values are defined by the following pseudocode:

if (constants.length < dstNumBands) {
dst[x][y]l[b] = src[x][yl[b] A constants[0];
} else {
dst[x][y]l[b] = src[x][yl[b] A constants[b];
3

Release 1.0.1, November 1999 163

6.4.7

164

Taking the Bitwise NOT of an Image IMAGE MANIPULATION

The XorConst operation takes one rendered or renderable source image and one
parameter:

Parameter Type Description

constant int The constant to logically XOR with.

6.4.7 Taking the Bitwise NOT of an Image

TheNot operation takes one rendered or renderable image, and performs a bit-
wise logical NOT on every pixel from every band of the source image. This
operation, also known as@mplemenbperation, creates an image that is
somewhat like a photographic negative.

TheNot operation looks at the values in the source image as binary values and
changes all the 1's in those values to 0's, and all the 0’s to 1's. The operation
then writes the one’s complement version of the source image to the destination.

The source image must have an integral data type. By default, the destination
image bound, data type, and number of bands are the same as the source image.

The following matrix defines the logical NOT operation.

src Result

1 0
0 1

The pixel values of the destination image are defined by the following

pseudocode:
dst[x][yl[b] = ~(src[x][yl[b])

TheNot operation takes one rendered or renderable source image and no
parameters.

Listing 6-6 shows a partial code sample of using the operation.
Listing 6-6 Taking the NOT of an Image

// Read the source image.

pb = new ParameterBlock();
pb.addSource(file);

RenderedOp src = JAI.create("stream", pb);

// Create the Not operation.
RenderedOp dst = JAI.create("Not", src);

Programming in Java Advanced Imaging

IMAGE MANIPULATION Arithmetic Operators

6.5 Arithmetic Operators

JAI supports botimonadicanddyadicarithmetic operators. The monadic
arithmetic operations include per-band addition, subtraction, division, and
multiplication operations between a source image and a constant to produce a
destination image. The dyadic arithmetic operations include per-band addition,
subtraction, division, and multiplication operations between two source images
to produce a destination image.

The JAI arithmetic operators allow you to:

Add two source images and store the results in a destination imje (

Add a constant value to the pixels in a source image and store the results
in a destination imageddConst)

Add a collection of images and store the results in a destination image
(AddCollection)

Add a an array of double constants to a collection of rendered images
(AddConstToCollection)

Subtract one source image from an other and store the results in a
destination imageS(@btract)

Subtract a constant value from the pixels in a source image and store the
results in a destination imaggubtractConst)

Divide one source image into an other and store the results in a destination
image pivide)

Divide two source images of complex data and store the results in a
destination imaged(videComplex)

Divide a source image by a constant valie{deByConst)
Divide a source image into a constant valie/{deIntoConst)

Multiply two source images and store the results in a destination image
(Multiply)

Multiply a source image by a constant valueltiplyConst)
Multiply two images representing complex datalipl1yComplex)

Find the absolute value of pixels in a source image and store the results in
a destination imageé\§solute)

Take the exponent of an image and store the results in a destination image
(Exp)

Release 1.0.1, November 1999 165

6.5.1

166

Adding Two Source Images IMAGE MANIPULATION

As with the relational and logical operators, the arithmetic operations require that
both source images and the destination image have the same data type and
number of bands. The sizes of the two images (height and width), however, need
not be the same.

When JAI adds two images, it takes the value at location 0,0 in one source
image, adds it to the value at location 0,0 in the second source image, and writes
the sum at location 0,0 in the destination image. It then does the same for all
other points in the images. Subtraction, multiplication, and division are handled
similarly.

Arithmetic operations on multi-band images are performed on corresponding
bands in the source images. That is, band O of the first image is added to band O
of the second image, and so on.

6.5.1 Adding Two Source Images

The Add operation takes two rendered or renderable source images, and adds
every pair of pixels, one from each source image of the corresponding position
and band. The two source images may have different numbers of bands and data
types. By default, the destination image bounds are the intersection of the two
source image bounds. If the sources don't intersect, the destination will have a
width and height of 0.

The default number of bands of the destination image is equal to the smallest
number of bands of the sources, and the data type is the smallest data type with
sufficient range to cover the range of both source data types (not necessarily the
range of their sums).

As a special case, if one of the source imageshhaands (wheréN is greater
than one), the other source has one band, anthageLayout hint is provided
containing a destinatiosampleModel with K bands (1 <K < N), then the single
band of the onel-banded source is added to each of th&fivahds of theN-
band source.

The destination pixel values are defined by the following pseudocode:

dst[x][y][dstBand] = clamp(srcs[0][x][y][src@OBand] +
srcs[1][x] [yl [srclBand]);

If the result of the addition underflows or overflows the minimum or maximum
value supported by the destination image, the value will be clamped to the
minimum or maximum value, respectively.

The Add operation two rendered or renderable source images and no parameters.

Programming in Java Advanced Imaging

IMAGE MANIPULATION Adding a Constant Value to an Image

Listing 6-7 shows a partial code sample of using Ale operation to add two
images.

Listing 6-7 Adding Two Images

// Read the two images.

pb = new ParameterBlock();

pb.addSource(sl);

RenderedImage srcl = (RenderedImage)]AI.create("stream", pb);

pb = new ParameterBlock();
pb.addSource(s2);
RenderedImage src2 = (RenderedImage)]AI.create("stream", pb);

// Create the ParameterBlock for the operation
pb = new ParameterBlock();

pb.addSource(srcl);

pb.addSource(src2);

// Create the Add operation.
RenderedImage dst = (RenderedImage)]AI.create("add", pb);

6.5.2 Adding a Constant Value to an Image

TheAddConst operation adds one of a set of constant values to every pixel value
of a source image on a per-band basis:

if (constants.length < dstNumBands) {
dst[x][yl[b] = src[x][yl[b]l + constants[0];
else {
dst[x][y]l[b] = src[x][yl[b] + constants[b]

The AddConst operation takes one rendered or renderable source image and one
parameter:

Parameter Type Description

constants double The per-band constants to be added.

The set ofconstants must contain one entry for each band of the source image.
If the number of constants supplied is less than the number of bands of the
destination image, the constant from entry O is applied to all the bands.
Otherwise, a constant from a different entry is applied to each band.

By default, the destination image bound, data type, and number of bands are the
same as the source image.

Release 1.0.1, November 1999 167

6.5.3

168

Adding a Collection of Images IMAGE MANIPULATION

If the result of the addition underflows or overflows the minimum or maximum
value supported by the destination image, the value will be clamped to the
minimum or maximum value, respectively.

Listing 6-8 shows a partial code sample of using AdeConst operation.

Listing 6-8 Adding a Constant to an Image

// Create the constant values.
RenderedImage iml, im2;
ParameterBlock pb;

double kO, k1, k2;

pb = new ParameterBlock();

pb.addSource(iml);

double[] constants = new double[3]; // or however many bands

// in iml

constants[0] ko;

constants[1] k1;

constants[2] = k2;

pb.add(constants);

// Construct the AddConst operation.
RenderedImage addConstImage = JAI.create("addconst", pb, null);

6.5.3 Adding a Collection of Images

The AddCollection operation takes a collection of rendered images and adds
every set of pixels, one from each source image of the corresponding position
and band.

There’s no restriction on the actual class type used to represent the source
collection, but each element of the collection must be of the class
RenderedImages. The number of images in the collection may vary from two to
n, and is only limited by memory size. The source images may have different
number of bands and data types.

By default, the destination image bound is the intersection of all the source
image bounds. If any of the two sources don'’t intersect, the destination will have
a width and a height of 0. The number of bands of the destination image is the
same as the least number of bands of all the sources, and the data type is the
biggest data type of all the sources.

The destination pixel values are calculated as:

dst[x][yl[b] = 0;
for (int i = 0; i < numSources; i++) {

Programming in Java Advanced Imaging

IMAGE MANIPULATION Subtracting Two Source Images

) dst[x][y][b] += srcs[i]l[x][y]l[b];

If the result of the operation underflows or overflows the minimum or maximum
value supported by the destination data type, the value will be clamped to the
minimum or maximum value, respectively.

The AddColTlection operation takes a collection of source images and no
parameters.

6.5.4 Adding Constants to a Collection of Rendered Images

TheAddConstToCollection operation takes a collection of rendered images and
an array of double constants, and for each rendered image in the collection adds
a constant to every pixel of its corresponding band.

The operation will attempt to store the result images in the same collection class
as that of the source images. If a new instance of the source collection class can
not be created, the operation will store the result imagesjiva.util.Vector.

The output collection will contain the same number of images as in the source
collection.

TheAddConstToCollection operation takes a collection of rendered images and
one parameter.

Parameter Type Description

constants double The constants to be added.

If the number of constants supplied is less than the number of bands of the
source image, the same constant from entry 0 is applied to all the bands.
Otherwise, a constant from a different entry is applied to each band.

6.5.5 Subtracting Two Source Images

The Subtract operation takes two rendered or renderable images, and for every
pair of pixels, one from each source image of the corresponding position and
band, subtracts the pixel from the second source from the pixel from the first
source.

The two source images may have different numbers of bands and data types. By
default, the destination image bounds are the intersection of the two source
image bounds. If the sources don't intersect, the destination will have a width
and height of 0.

Release 1.0.1, November 1999 169

6.5.6 Subtracting a Constant from an Image IMAGE MANIPULATION

The default number of bands of the destination image is equal to the smallest
number of bands of the source images, and the data type is the smallest data type
with sufficient range to cover the range of both source data types (not necessarily
the range of their sums).

As a special case, if one of the source imagesMbaands (wheréN is greater
than one), the other source has one band, arthageLayout hint is provided
containing a destinatiofampleModel with K bands (1 <K < N), then the single
band of the one-banded source is subtracted from or into each of th first
bands of theN-band source.

The destination pixel values are defined by the following pseudocode:

dst[x][y][dstBand] = clamp(srcs[@][x][y][src@Band] -
srcs[1][x] [yl [srclBand]);

If the result of the subtraction underflows or overflows the minimum or
maximum value supported by the destination image, the value will be clamped to
the minimum or maximum value respectively.

The Subtract operation takes two rendered or renderable source images and no
parameters.

6.5.6 Subtracting a Constant from an Image

The subtractConst operation takes one rendered or renderable image and an
array of double constants, and subtracts every pixel of the same band of the
source from the constant from the corresponding array entry. If the number of
constants supplied is less than the number of bands of the destination, the
constant from entry 0 is applied to all the bands. Otherwise, a constant from a
different entry is applied to each band.

By default, the destination image bound, data type, and number of bands are the
same as the source image.

The destination pixel values are defined by the following pseudocode:

if (constants.length < dstNumBands) {
dst[x][y]l[b] = constants[@] - src[x][y]l[b];
} else {
dst[x][y]l[b] = constants[b] - src[x][y][b];
3

170 Programming in Java Advanced Imaging

IMAGE MANIPULATION Dividing One Image by Another Image

The subtractConst operation takes rendered or renderable source image and
one parameter:

Parameter Type Description

constants double The per-band constants to be subtracted.

If the result of the subtraction underflows or overflows the minimum or
maximum value supported by the destination image, the value will be clamped to
the minimum or maximum value respectively.

6.5.7 Subtracting an Image from a Constant

The SubtractFromConst operation takes one rendered or renderable source
image and an array of double constants, and subtracts a constant from every pixel
of its corresponding band of the source image. If the number of constants
supplied is less than the number of bands of the destination, the constant from
entry 0 is applied to all the bands. Otherwise, a constant from a different entry is
applied to each band. By default, the destination image bounds, data type, and
number of bands are the same as the source image.

The destination pixel values are defined by the following pseudocode:

if (constants.length < dstNumBands) {
dst[x][y]l[b] = src[x][yl[b] - constants[0Q];
} else {
dst[x][y]l[b] = src[x][yl[b] - constants[b];
3

The SubtractFromConst operation takes one rendered or renderable source
image and one parameter:

Parameter Type Description

constants double The constants to be subtracted.

If the result of the subtraction underflows or overflows the minimum or
maximum value supported by the destination image, the value will be clamped to
the minimum or maximum value respectively.

6.5.8 Dividing One Image by Another Image

TheDivide operation takes two rendered or renderable images, and for every
pair of pixels, one from each source image of the corresponding position and
band, divides the pixel from the first source by the pixel from the second source.

Release 1.0.1, November 1999 171

6.5.9

172

Dividing an Image by a Constant IMAGE MANIPULATION

In case of division by 0, if the numerator is 0, the result is set to 0; otherwise, the
result is set to the maximum value supported by the destination data type.

TheDivide operation does not require any parameters.

The two source images may have different number of bands and data types. By
default, the destination image bound is the intersection of the two source image
bounds. If the two sources don't intersect, the destination will have a width and a
height of 0. The default number of bands of the destination image is the same as
the least number of bands of the source images, and the data type is the biggest
data type of the sources.

As a special case, if one of the source imageshhaands (wheréN is greater
than one), the other source has one band, anthageLayout hint is provided
containing a destinatiofampleModel with K bands (1 <K < N), then the single
band of the one-banded source will be divided by or into to each of theKfirst
bands of theN-band source.

If the result of the operation underflows or overflows the minimum or maximum
value supported by the destination data type, it will be clamped to the minimum
or maximum value respectively.

TheDivide operation takes two rendered or renderable source images and no
parameters.

6.5.9 Dividing an Image by a Constant

TheDivideByConst operation takes one rendered or renderable source image
and an array of double constants, and divides every pixel of the same band of the
source by the constant from the corresponding array entry. If the number of
constants supplied is less than the number of bands of the destination, the
constant from entry 0 is applied to all the bands. Otherwise, a constant from a
different entry is applied to each band.

In case of division by O, if the numerator is 0, the result is set to 0. Otherwise,
the result is set to the maximum value supported by the destination data type. By
default, the destination image bound, data type, and number of bands are the
same as the source image.

The destination pixel values are defined by the following pseudocode:

if (constants.length < dstNumBands) {
dst[x][yl[b] = srcs[x][y][b]/constants[0];
} else {
dst[x][yl[b] = srcs[x][y][b]/constants[b];

Programming in Java Advanced Imaging

IMAGE MANIPULATION Dividing an Image into a Constant

}

TheDivideByConst operation takes one rendered or renderable source image
and one parameter:

Parameter Type Description

constants double The per-band constants to divide by.

If the result of the division underflows or overflows the minimum or maximum
value supported by the destination image, the value will be clamped to the
minimum or maximum value, respectively.

6.5.10 Dividing an Image into a Constant

TheDivideIntoConst operation takes one rendered or renderable image and an
array of double constants, and divides every pixel of the same band of the source
into the constant from the corresponding array entry. If the number of constants
supplied is less than the number of bands of the destination, the constant from
entry 0 is applied to all the bands. Otherwise, a constant from a different entry is
applied to each band.

In case of division by O, if the numerator is 0, the result is set to 0. Otherwise,
the result is set to the maximum value supported by the destination data type.

By default, the destination image bound, data type, and number of bands are the
same as the source image.

The destination pixel values are defined by the following pseudocode:

if (constants.length < dstNumBands) {
dst[x][y]l[b] = constants[0]/src[x][y]l[b];
} else {
dst[x][y]l[b] = constants[b]/src[x][y]l[b];
}

TheDivideIntoConst operation takes one rendered or renderable source image
and one parameter:

Parameter Type Description

constants double The per-band constants to be divided into.

If the result of the division underflows or overflows the minimum or maximum
value supported by the destination image, the value will be clamped to the
minimum or maximum value, respectively.

Release 1.0.1, November 1999 173

6.5.11

174

Dividing Complex Images IMAGE MANIPULATION

6.5.11 Dividing Complex Images

The DivideComplex operation divides two images representing complex data.
The source images must each contain an even number of bands with the even-
indexed bands (0, 2, etc.) representing the real and the odd-indexed bands (1, 3,
etc.) the imaginary parts of each pixel. The destination image similarly contains
an even number of bands with the same interpretation and with contents defined

by:

src@[x] [yl [2k];
src@[x][yl[2k + 1];
srclx] [yl [2k];
srcl[x][yl[2k + 1];

QN T N

dst[x]1[y1[2k] = (a*c + b*d)/(c? + d%)
dst[x]1[y1[2k + 1] = (b*c - a*d) /(% + d?)

numBands

where0O<sk< >

With one exception, the number of bands of the destination image is the same as
the minimum of the number of bands of the two sources, and the data type is the
biggest data type of the sources. The exception occurs when one of the source
images has two bands, the other source imageNra2K bands wher is

greater than one, and dmagelLayout hint is provided containing a destination
SampTleModel that specifiedV = 2L bands for the destination image whéreés

greater than one and<£ K. In this special case if the first source has two bands,
its single complex component will be divided by each of the firebmplex
components of the second source. If the second source has two bands, its single
complex component will divide each of tlhecomplex components of the first
source.

If the result of the operation underflows or overflows the minimum or /maximum
value supported by the destination data type, it will be clamped to the minimum
or maximum value, respectively.

TheDivideComplex operation takes two rendered or renderable source images
representing complex data and no parameters.
6.5.12 Multiplying Two Images

TheMultiply operation takes two rendered or renderable images, and multiplies
every pair of pixels, one from each source image of the corresponding position
and band.

Programming in Java Advanced Imaging

IMAGE MANIPULATION Multiplying an Image by a Constant

The two source images may have different number of bands and data types. By
default, the destination image bound is the intersection of the two source image
bounds. If the two source images don't intersect, the destination will have a
width and a height of 0.

The default number of bands of the destination image is the same as the least
number of bands of the source images, and the data type is the biggest data type
of the source images. A special case may occur if one of the source images has
N bands wheré is greater than one, the other source has one band, and an
Imagelayout hint is provided containing a destinatisampleModel. If the
SampTleModel hint specifieK bands for the destination image whétés greater

than one anK < N, each of the firsK bands of theN-band source is multiplied

by the single band of the one-band source.

In the default case the destination pixel values are calculated as:

for (int h = 0; h < dstHeight; h++) {
for (int w = 0; w < dstWidth; w++) {
for (int b = 0; b < dstNumBands; b++) {
dst[h][w][b] = srcl[h][w][b] * src2[h][w][b];
}

}

TheMultiply operation takes two rendered or renderable source images and no
parameters.

If the result of the multiplication underflows or overflows the minimum or
maximum value supported by the destination image, the value will be clamped to
the minimum or maximum value, respectively.

6.5.13 Multiplying an Image by a Constant

TheMultiplyConst operation takes one rendered or renderable image and an
array of double constants, and multiplies every pixel of the same band of the
source by the constant from the corresponding array entry. If the number of
constants supplied is less than the number of bands of the destination, the
constant from entry O is applied to all the bands. Otherwise, a constant from a
different entry is applied to each band. By default, the destination image bound,
data type, and number of bands are the same as the source image.

The destination pixel values are calculated as:

if (constants.length < dstNumBands) {
dst[x][y]l[b] = srcs[x][y][b]*constants[0];
} else {

Release 1.0.1, November 1999 175

6.5.14

176

Multiplying Two Complex Images IMAGE MANIPULATION

dst[x][yl[b] = srcs[x][y][b]*constants[b];
}

TheMultiplyConst operation takes one rendered or renderable source image
and one parameter:

Parameter Type Description

constants double The per-band constants to multiply by.

If the result of the multiplication underflows or overflows the minimum or
maximum value supported by the destination image, the value will be clamped to
the minimum or maximum value respectively.

6.5.14 Multiplying Two Complex Images

TheMultiplyComplex operation multiplies two images representing complex
data. The source images must each contain an even number of bands, with the
with the even-indexed bands (0, 2, etc.) representing the real and the odd-indexed
bands (1, 3, etc.) the imaginary parts of each pixel. The destination image
similarly contains an even number of bands with the same interpretation and with
contents defined by:

a = srcOk][y][2K];
b = srcOk][y][2k + 1;
c = sreli[y][2K];
d = sreli[y][2k + 1J;

dstix][y][2K] = a* c — b*
dstix][v][2k + 1] =a*d + b*c;

numBands

whereO<k< >

With one exception, the number of bands of the destination image is the same as
the minimum of the number of bands of the two source images, and the data type
is the biggest data type of the sources. The exception occurs when one of the
source images has two bands, the other source imagd h&K bands wher&

is greater than one, and @magelLayout hint is provided containing a destination
SampleModel that specifiedM = 2L bands for the destination image whérés

greater than one arid< K. In this special case each of the fitstomplex
components in th&l-band source will be multiplied by the single complex
component in the one-band source.

Programming in Java Advanced Imaging

IMAGE MANIPULATION Taking the Exponent of an Image

If the result of the operation underflows or overflows the minimum or maximum
value supported by the destination data type, it will be clamped to the minimum
or maximum value, respectively.

TheMultiplyComplex operation takes two rendered source images representing
complex data and no parameters.

6.5.15 Finding the Absolute Value of Pixels

Images with signed integer pixels have an asymmetrical range of values from
—32,768 to 32,767, which is not very useful for many imaging operations. The
Absolute operation takes a single rendered or renderable source image, and
computes the mathematical absolute value of each pixel:

if (srcx]1[yl[b] < @) {
dst[x][yl[b] = -src[x][y]l[b];
} else {
dst[x]1[yl[b] = srclx][yl[h];
}

For signed integral data types, the smallest value of the data type does not have a
positive counterpart; such values will be left unchanged. This behavior parallels
that of the Java unary minus operator.

The Absolute operation takes one rendered or renderable source image and no
parameters

6.5.16 Taking the Exponent of an Image

The Exp operation takes the exponential of the pixel values of an image. The
pixel values of the destination image are defined by the following pseudocode:

dst[x][yl[b] = java.lang.Math.exp(src[x][y]l[b])
For integral image datatypes, the result will be rounded and clamped as needed.

The Exp operation takes one rendered or renderable source image and no
parameters.

Listing 6-9 shows a partial code sample of using tke operation to take the
exponent of an image.

Listing 6-9 Taking the Exponent of an Image

// Create a ParameterBlock with the source image.
pb = new ParameterBlock();
pb.addSource(src);

Release 1.0.1, November 1999 177

6.6

178

Dithering an Image IMAGE MANIPULATION

Listing 6-9 Taking the Exponent of an Image (Continued)

// Perform the Exp operation
RenderedImage dst = JAI.create("exp", pb);

6.6 Dithering an Image

The display of a 24-bit color image on an 8-bit frame buffer requires an
operation known adithering The dithering operation compresses the three
bands of an RGB image to a single-banded byte image.

The dithering operation uses a lookup table through which the source image is
passed to produce the destination image. The most-common use for the dithering
operation is to convert true-color (three-band byte) images to pseudo-color
(single-band byte) images.

JAI offers two operations for dithering an image: ordered dither and error-
diffusion dither. The choice of dithering operation depends on desired speed and
image quality, as shown in Table 6-1.

Table 6-1 Dithering Choices

Dither Type Relative Speed Relative Quality
Ordered Medium Medium
Error diffusion Slowest Best

6.6.1 Ordered Dither

The ordered dithering operation is somewhat faster than the error-diffusion dither
and produces a somewhat better destination image quality than the error-
diffusion dither. ThedrderedDither operation also differs from error-diffusion
dither in that it OrderedDither) uses a color cube rather than a general lookup
table.

TheorderedDither operation performs color quantization by finding the nearest
color to each pixel in a supplied color cube lookup table and “shifting” the
resulting index value by a pseudo-random amount determined by the values of a
supplieddither mask

Programming in Java Advanced Imaging

IMAGE MANIPULATION Ordered Dither

TheOrderedDither operation takes one rendered source image and two
parameters:

Parameter Type Description

colorMap ColorCube The color cube. See Section 6.6.1.1, “Color Map
Parameter.”

ditherMask KernelJAI[] The dither mask. See Section 6.6.1.2, “Dither Mask
Parameter.”

6.6.1.1 Color Map Parameter

The colorMap parameter can be either one of the predefia€ibrCubes, or a
custom color map can be created a®aorCube object. To create a custom
color map, see Section 7.6.1.3, “Creating a Color-cube Lookup Table.”

The predefined color maps are:

colorMap Description

BYTE_496 A ColorCube with dimensions 4:9:6, useful for dithering RGB images into 216
colors. The offset of this ColorCube is 38. This color cube dithers blue values in the
source image to one of four blue levels, green values to one of nine green levels, and
red values to one of six red levels. This is the default color cube for the ordered dither
operation.

BYTE_855 A ColorCube with dimensions 8:5:5, useful for dithering YCbCr images into 200
colors. The offset of this ColorCube is 54. This color cube dithers blue values in the
source image to one of eight blue levels, green values to one of five green levels, and
red values to one of five red levels.

6.6.1.2 Dither Mask Parameter

The dither mask is a three-dimensional array of floating point values, the depth
of which equals the number of bands in the image. The dither mask is supplied
as an array okernelJAI objects. Each element of the array igernel1JAI

object that represents the dither mask matrix for the corresponding band. All
Kerne1JAI objects in the array must have the same dimensions and contain
floating point values greater than or equal to 0.0 and less than or equal to 1.0.

The ditherMask parameter may either be one of the predefined dither masks or
a custom mask may be created. To create a custom dither mask, see Section 6.9,
“Constructing a Kernel.”

Release 1.0.1, November 1999 179

6.6.1

180

Ordered Dither IMAGE MANIPULATION

The predefined dither masks are (see Figure 6-1):

ditherMask

Description

DITHER_MASK_441 A 4 x 4 x 1 mask useful for dithering eight-bit grayscale images to one-bit

images

DITHER_MASK_443 A 4 x 4 x 3 mask useful for dithering 24-bit color images to eight-bit

pseudocolor images. This is the default dither mask fobtrizredDi ther
operation.

0.9375]0.4375]0.8125]0.3125
0.1875]0.6875]0.0625]0.5625
4 X 4 X 1 dither mask
(DITHER_MASK_441)
0.7500]0.2500/0.8750(0.3750
0.0000]0.5000/0.1250]0.6250
0.0000]0.5000]0.1250]0.6250 0.6250]0.1250]0.5000]0.0000 0.9375]0.4375]0.8125]0.3125
0.7500]0.2500/0.8750(0.3750 0.3750]0.8750]0.2500(0.7500 0.1875]0.6875]0.0625|0.5625
0.1875]0.6875]0.0625|0.5625 0.5625]0.0625]0.6875]0.1875 0.7500]0.2500/0.8750(0.3750
0.9375]0.4375]0.8125]0.3125 0.3125]0.8125]0.4375]0.9375 0.0000]0.5000/0.1250]0.6250
4 X 4 X 3 dither mask
(DITHER_MASK_443)
Figure 6-1 Ordered Dither Masks

Programming in Java Advanced Imaging

IMAGE MANIPULATION Error-diffusion Dither
6.6.1.3 OrderedDither Example

Listing 6-10 shows a partial code sample of usingdheeredDither operation.
Listing 6-10 Ordered Dither Example

// Create the color cube.
ColorCube colorMap =
srcRescale.getSampleModel () .getTransferType() ==
DataBuffer.TYPE_BYTE ?
ColorCube.BYTE_496 :
ColorCube.createColorCube(dataType, 38, new int[] {4, 9, 6});

// Set the dither mask to the pre-defined 4x4x3 mask.
KernelJAI[] ditherMask = KernelJAI.DITHER_MASK_443;

// Create a new ParameterBlock.
ParameterBlock pb = new ParameterBlock();
pb.addSource(srcRescale).add(colorMap) .add(ditherMask);

// Create a gray scale color model.

ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);

int bits[] = new int[] {8};

ColorModel cm = new ComponentColorModel(cs, bits, false, false,
Transparency.0OPAQUE,
DataBuffer.TYPE_BYTE);

// Create a tiled layout with the requested ColorModel.
Tayout = new Imagelayout();
Tayout.setTileWidth(TILE_WIDTH).setTileHeight(TILE_HEIGHT) ;
Tayout.setColorModel (cm);

// Create RenderingHints for the ImagelLayout.
rh = new RenderingHints(JAI.KEY_IMAGE_LAYOUT, layout);

// Create the ordered dither OpImage.
PTanarImage image = (PlanarImage)JAI.create("ordereddither",
pb, rh);

6.6.2 Error-diffusion Dither

The error-diffusion dithering operation produces the most accurate destination
image, but is more complex and thus takes longer than the ordered dither.

The ErrorDiffusion operation performs color quantization by finding the
nearest color to each pixel in a supplied lookup table, called a color map, and
“diffusing” the color quantization error below and to the right of the pixel.

Release 1.0.1, November 1999 181

6.6.2

182

Error-diffusion Dither IMAGE MANIPULATION

The source image and the color map must have the same data type and number
of bands. Also, the color map must have the same offset in all bands. The
resulting image is single-banded.

The ErrorDiffusion operation takes one rendered source image and two
parameters:

Parameter Type Description

colorMap LookupTab1e]AI The color map. A.ookupTableJAI (see Section 7.6.1,
“Creating the Lookup Table”) or@lorCube (see
Section 6.6.1.1, “Color Map Parameter”).

errorKernel KernelJAI The error filter kernel. See Section 6.6.2.1, “Error Filter
Kernel.”

6.6.2.1 Error Filter Kernel

The errorKernel parameter can be one of three predefined error filters or you
can create your own. To create your own, see Section 6.9, “Constructing a
Kernel.”

The predefined kernels are (see Figure 6-2):

errorKernel Description

ERROR_FILTER_FLOYD_STEINBERG Based on the Floyd-Steinberg filter model (the default if
none is specified).

ERROR_FILTER_JARVIS Based on the Jarvis-Judice-Ninke filter model.
ERROR_FILTER_STUCKI Based on the Stucki filter model

The error filter kernel, also known as teeror distribution filter, diffuses the

color quantization error below and to the right of the pixel. The elements of the
error filter kernel that are in the same row and to the right of the key element or
are in a row below that of the key element must be between 0.0 and 1.0 and must
sum to approximately 1.0. The other elements of the error filter kernel are
ignored.

In operation, the filter is laid on top of the source image so that its origin aligns
with the pixel to be passed through the lookup table. Figure 6-3 shows an
example using the Floyd-Steinberg filter. The diffusion operation then:

» Sets the pixel at 0,2 to 214 +%X57/16])

» Sets the pixel at 1,0 to 128 +%X53/16])

» Sets the pixel at 1,1 to 255 +%X45/16])

e Sets the pixel at 1,2 to 104 +%51/16])

Programming in Java Advanced Imaging

IMAGE MANIPULATION Error-diffusion Dither

The filter is then moved to the next pixel and the process is repeated. The result
of this process is an averaging that produces a smoother dithered image with
little or no contouring.

Origin Origin
7/16 7/48 | 5/48
3/16 | 5/16 | 1/16 3/48 | 5/48 | 7/48 | 5/48 | 3/48
Floyd-Steinberg filter 1/48 | 3/48 | 5/48 | 3/48 | 1/48
Jarvis-Judice-Ninke filter
Origin
7/42 | 5/42
2/42 | 4/42 | 8/42 | 4/42 | 2/42
1/42 | 2/42 | 4/42 | 2/42 | 1/42
Stucki filter
Figure 6-2 Error Diffusion Dither Filters
o 7/16
00— e 3/16 | 5/16 | 1/16
- - Kernel
56 | 18 | 214 | 31 | _ — -
128 | 2557 104 0 | — -
205 | 189 | 122 | 45
Source image
2,0 2,3
Figure 6-3 Error Diffusion Operation

Release 1.0.1, November 1999 183

6.7 Clamping Pixel Values IMAGE MANIPULATION

6.6.2.2 ErrorDiffusion Example

Listing 6-11 shows a partial code sample of usingheorDiffusion
operation.

Listing 6-11 Error Diffusion Example

// Create a color map with the 4-9-6 color cube and the
// Floyd-Steinberg error kernel.

ParameterBlock pb;

pb.addSource(src);

pb.add(ColorCube.BYTE_496) ;
pb.add(KernelJAI.ERROR_FILTER_FLOYD_STEINBERG) ;

// Perform the error diffusion operation.
dst = (PlanarImage)JAI.create("errordiffusion”, pb, null);

6.7 Clamping Pixel Values

The c1amp operation restricts the range of pixel values for a source image by
constraining the range of pixels to defined “low” and “high” values. The

operation takes one rendered or renderable source image, and sets all the pixels
whose value is below a low value to that low value and all the pixels whose value
is above a high value to that high value. The pixels whose value is between the
low value and the high value are left unchanged.

A different set of low and high values may be applied to each band of the source
image, or the same set of low and high values may be applied to all bands of the
source. If the number of low and high values supplied is less than the number of
bands of the source, the values from entry O are applied to all the bands. Each
low value must be less than or equal to its corresponding high value.

The pixel values of the destination image are defined by the following
pseudocode:

Towval = (low.length < dstNumBands) ?
Tow[@] : Tow[b];

highvVal = (high.length < dstNumBands) ?
high[0] : high[b];

if (src[x][y]l[b] < TowVal) {
dst[x][yl[b] = TowVval;

} else if (src[x][y][b] > highval) {
dst[x][y]l[b] = highval;

} else {
dst[x][y]l[b] = src[x][yl[b]l;

184 Programming in Java Advanced Imaging

IMAGE MANIPULATION Band Copying

}

The clamp operation takes one rendered or renderable source image and two
parameters:

Parameter Type Description
Tow Double The lower boundary for each band.
high DoubTe The upper boundary for each band

Listing 6-12 shows a partial code sample of usingthamp operation to clamp
pixels values to between 5 and 250.

Listing 6-12 Clamp Operation

// Get the source image width, height, and SampleModel.

int w = src.getWidth();
int h = src.getHeight();
int b = src.getSampleModel () .getNumBands();

// Set the Tow and high clamp values.
double[] Tow, high;

Tow = new double[b];

high = new double[b];

for (int i=0; i<b; i++) {
Tow[i] = 5; // The low clamp value
high[i] = 250; // The high clamp value

// Create the ParameterBlock with the source and parameters.
pb = new ParameterBlock();

pb.addSource(src);

pb.add(Tow) ;

pb.addChigh);

// Perform the operation.
RenderedImage dst = JAI.create("clamp", pb);

6.8 Band Copying

The BandSelect operation chooseN bands from a rendered or renderable

source image and copies the pixel data of these bands to the destination image in
the order specified. TheandIndices parameter specifies the source band

indices, and its sizeb@ndIndices.lengdhdetermines the number of bands of the
destination image. The destination image may have ay number of bands, and a

Release 1.0.1, November 1999 185

6.9

186

Constructing a Kernel IMAGE MANIPULATION

particular band of the source image may be repeated in the destination image by
specifying it multiple times in thé@andIndices parameter.

Each of thebandIndices value should be a valid band index number of the
source image. For example, if the source only has two bands, 1 is a valid band
index, but 3 is not. The first band is numbered 0.

The destination pixel values are defined by the following pseudocode:
dst[x][y]l[b] = src[x][y][bandIndices[b]];

Thebandselect operation takes one rendered or renderable source image and
one parameter:

Parameter Type Description

bandIndices int[] The indices of the selected bands of the image.

Listing 6-13 shows a partial code sample of usingBhedSelect operation.
Listing 6-13 BandSelect Operation

// Set the indices of three bands of the image.
int[] bandIndices;
bandIndices = new int[3];

bandIndices[0] = 0;
bandIndices[1] = 2;
bandIndices[2] = 2;

// Construct the ParameterBlock.
pb = new ParameterBlock();
pb.addSource(src);
pb.add(bandIndices);

// Perform the operation
RenderedImage dst = (RenderedImage)]AI.create("bandSelect",
pb);

6.9 Constructing a Kernel

TheKernelJAI class is an auxiliary class used with the convolve, ordered dither,
error diffusion dither, dilate, and erode operationXekne1JAI is characterized

by its width, height, and key element (origin) position. The key element is the
element that is placed over the current source pixel to perform convolution or
error diffusion.

Programming in Java Advanced Imaging

IMAGE MANIPULATION Constructing a Kernel

For theOrderedDi ther operation (see Section 6.6.1, “Ordered Dither"), an array
of Kerne1JAI objects is actually required with there being oenelJAI per

band of the image to be dithered. The location of the key element is in fact
irrelevant to thedrderedD1ither operation.

There are four constructors for creatingerne1JAI. The following constructor
constructs &ernel1JAI object with the given parameters.

KernelJAI(int width, int height, float[] data)

Thewidth andheight parameters determine the kernel size. Thea
parameter is a pointer to the floating point values stored in a data array. The key
element is set to

rwidth rheighty
tru g0 truncD--—-——2 0

The following constructor constructskarne1JAI object with the given
parameters.

KernelJAI(int width, int height, int xOrigin, int yOrigin,
float[] data)

ThexOrigin andyOrigin parameters determine the key element’s origin.

The following constructor constructs a separaddenelJAI object from two
float arrays.

KernelJAI(int width, int height, int xOrigin, int yOrigin,
float[] dataH, float[] dataV)

The dataH anddataVv parameters specify the float data for the horizontal and
vertical directions, respectively.

The following constructor constructskarne1JAI object from a
java.awt.image.Kernel object.

KernelJAI(java.awt.image.Kernel k)

Listing 6-14 shows a partial code sample for creating a simpie8Xernel with
the key element located at coordinates 1,1, as shown in Figure 6-4.

Release 1.0.1, November 1999 187

6.9 Constructing a Kernel IMAGE MANIPULATION

Listing 6-14 Constructing a KernelJAI

kernel = new KernelJAI;
float[] kernelData = {

0.0F, 1.0F, 0.0F,
1.0F, 1.0F, 1.0F,
0.0F, 1.0F, 0.0F

3
kernel = new KernelJAI(3, 3, 1, 1, kernelData);

Key element
0|1]0
11111
0|1]0

Figure 6-4 Example Kernel

The Java Advanced Imaging API provides a shorthand method for creating
several commonly-used kernels, listed in Table 6-2, which can simply be called
by name. These kernels and their use are described in more detail in

Section 6.6.1, “Ordered Dither,” Section 6.6.2, “Error-diffusion Dither,” and
Section 9.5, “Edge Detection.”

Table 6-2 Named Kernels

Kernel Name Description and Use

DITHER_MASK_441 Ordered dither filter. A 4 4 x 1 mask useful for dithering 8-
bit grayscale images to 1-bit images

DITHER_MASK_443 Ordered dither filter. A 4« 4 x 3 mask useful for dithering 24-

bit color images to 8-bit pseudocolor images.

ERROR_FILTER_FLOYD_STEINBERG Error diffusion filter, based on the Floyd-Steinberg model.

ERROR_FILTER_JARVIS Error diffusion filter, based on the Jarvis-Judice-Ninke
model.

ERROR_FILTER_STUCKI Error diffusion filter, based on the Stucki model

GRADIENT_MASK_SOBEL_ The horizontal gradient filter mask for theadient

HORIZONTAL operation.

GRADIENT_MASK_SOBEL_ The vertical gradient filter mask for thig-adient operation.

VERTICAL

The following code sample shows the format for creating a named kernel:
KernelJAI kernel = KernelJAI.ERROR_FILTER_FLOYD_STEINBERG;

188 Programming in Java Advanced Imaging

IMAGE MANIPULATION Constructing a Kernel

API. javax.media.jai.KernelJAI

e public KernelJAI(int width, int height, int xOrigin,
int yOrigin, float[] data)

constructs &erne1JAI with the given parameters. The data array is copied.

Parameters width The width of the kernel.
height The height of the kernel
x0rigin Thex coordinate of the key kernel element.
yorigin They coordinate of the key kernel element.
data The float data in row-major format.

e public KernelJAI(int width, int height, int xOrigin,
int yOrigin, float[] dataH, float[] dataV)

constructs a separatderne1]AI from two float arrays. The data arrays are
copied.

Parameters dataH The float data for the horizontal direction.
dataV The float data for the vertical direction.

e public KernelJAI(int width, int height, float[] data)

constructs &erne1JAI with the given parameters. The data array is copied.
The key element is set to (trunc(width/2), trunc(height/2)).

Parameters data The float data in row-major format.

e public KernelJAI(Kernel k)
constructs &ernelJAI from ajava.awt.image.Kernel object.

Release 1.0.1, November 1999 189

6.9 Constructing a Kernel IMAGE MANIPULATION

190 Programming in Java Advanced Imaging

CHAPTER ;

Image Enhancement

THIS chapter describes the basics of improving the visual appearance of
images through enhancement operations.

7.1 Introduction

The JAI API image enhancement operations include:

* Adding borders

» Cropping an image

e Amplitude rescaling

» Histogram equalization

» Lookup table modification

» Convolution filtering

» Median filtering

* Frequency domain processing

» Pixel point processing

» Thresholding (binary contrast enhancement)

7.2 Adding Borders to Images

JAI provides two different ways of adding a border to an image. These two ways
are described in the following paragraphs.

Release 1.0.1, November 1999 191

7.2.1

192

The Border Operation IMAGE ENHANCEMENT

7.2.1 The Border Operation

The Border operation allows you to add a simple filled border around a source
image. The border extends the source image’s boundaries by a specified number
of pixels.The amount of extension may be specified separately for the top,
bottom, and left and right sides. The following types of border fill may be
specified:

Zero fill — the border area is extended with zeBORKER_ZERO_FILL).

Constant fill — the border area is extended with a specified constant value
(BORDER_CONST_FILL). An array of constants must be supplied. The array
must have at least one element, in which case this same constant is applied
to all destination image bands. Or, it may have a different constant entry
for each corresponding band. For all other border types;dhésants
parameter may beul11.

Extend — the border area is created by copying the edge and corner pixels
(BORDER_COPY).

Reflection — the border area is created by reflection of the image’s outer
edge BORDER_REFLECT).

Wrap — the border area is extended by “wrapping” the image plane
toroidally, that is, joining opposite edges of the imaBPREER_WRAP).

topPadding

leftPadding rightPadding

bottomPadding

Figure 7-1 Image Borders

The image layout (tile width, height, and offse$amp1eMode1 andColorMode1)
is copied from the source. TiBarder operation takes one rendered source
image and six parameters:

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Extending the Edge of an Image

Parameters Type Description

TeftPad Integer The image’s left padding.

rightPad Integer The image’s right padding.

topPad Integer The image’s top padding.
bottomPad Integer The image’s bottom padding.

type Integer The border type. One 8DRDER_ZERO,

BORDER_CONST_FILL,BORDER_COPY,BORDER_REFLECT,
or BORDER_WRAP. The default iBORDER_ZERO.

constant double The constants used by tB@RDER_CONST_FILL.

7.2.2 Extending the Edge of an Image

Some area operations, such as convolve, scale, and rotate, benefit from the
addition of an extended border around the source image. The extended border
comes into play when the convolution kernel overlaps the source image as the
key value is scanned over it.

A BorderExtender may be applied to an operation using a suitable hint. The
hints are defined in Table 7-1.

Table 7-1 BorderExtender Hints

Name Description

BorderExtenderZero Extends an image’s border by filling all pixels outside the image
bounds with zeros. See Section 7.2.2.1, “BorderExtenderZero.”

BorderExtenderConstant Extends an image’s border by filling all pixels outside the image
bounds with constant values. See Section 7.2.2.2,
“BorderExtenderConstant.”

BorderExtenderCopy Extends an image’s border by filling all pixels outside the image
bounds with copies of the edge pixels. Useful as a way of padding
source images prior to area or geometric operations, such as
convolution, scaling, or rotation. See Section 7.2.2.3,
“BorderExtenderCopy.”

BorderExtenderWrap Extends an image’s border by filling all pixels outside the image
bounds with copies of the whole image. This form of extension is
appropriate for data that is inherently periodic, such as the Fourier
transform of an image, or a wallpaper pattern. See Section 7.2.2.4,
“BorderExtenderWrap.”

BorderExtenderReflect Extends an image’s border by filling all pixels outside the image
bounds with copies of the whole image. This form of extension
avoids discontinuities around the edges of the image. See
Section 7.2.2.5, “BorderExtenderReflect.”

TheBorderExtender class is the superclass for four classes that extend a
WritableRaster with additional pixel data taken frommd anarImage. Instances

Release 1.0.1, November 1999 193

7.2.2

194

Extending the Edge of an Image IMAGE ENHANCEMENT

of BorderExtender are used by th@lanarImage.getExtendedData and
PlanarImage.copyExtendedData methods.

The PlanarImage.getExtendedData method returns a copy of an arbitrary
rectangular region of the image inRRaster. The portion of the rectangle of
interest outside the bounds of the image will be computed by calling the given
BorderExtender. If the region falls entirely within the image, the extender will
not be used. Thus it is possible to useud1 value for theextender parameter
when it is known that no actual extension will be required. The returaeder
should be considered non-writable. TétwpyExtendedData method should be
used if the returnedaster is to be modified.

The PlanarImage.copyExtendedData method copies an arbitrary rectangular
region of therRenderedImage into a caller-suppliediritableRaster. The
portion of the suppliediritableRaster that lies outside the bounds of the
image is computed by calling the givearderExtender. The supplied
WritableRaster must have &leModel that is compatible with that of the
image.

Each instance dforderExtender has anextend method that takes a
WritableRaster and aPlanarImage. The portion of the raster that intersects the
bounds of the image will already contain a copy of the image data. The
remaining area is to be filled in according to the policy of BeederImage
subclass. The subclasses are described in Table 7-1.

API. javax.media.jai.Planarimage

» Raster getExtendedData(Rectangle region,
BorderExtender extender)

returns a copy of an arbitrary rectangular region of this image in a Raster.

Parameters region The region of the image to be returned.

extender An instance oBorderExtender, used only
if the region exceeds the image bounds.

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Extending the Edge of an Image

« void copyExtendedData(WritableRaster dest,
BorderExtender extender)

copies an arbitrary rectangular region of ReederedImage into a caller-
suppliedwritableRaster.

Parameters dest A WritableRaster to hold the returned
portion of the image.

extender An instance ofBorderExtender.

API: javax.media.jai.BorderExtender

e static BorderExtender createInstance(int extenderType)

returns an instance 8brderExtender that implements a given extension
policy. The policies understood by this method are:

Policy Description

BORDER_ZERO Set sample values to zero.

BORDER_COPY Set sample values to copies of the nearest valid pixel. For example, pixels
to the left of the valid rectangle will take on the value of the valid edge
pixel in the same row. Pixels both above and to the left of the valid
rectangle will take on the value of the upper-left pixel.

BORDER_REFLECT The output image is defined as if mirrors were placed along the edges of
the source image. Thus if the left edge of the valid rectangle lirs4t0,
pixel (9,y) will be a copy of pixel (10y); pixel (6,y) will be a copy of pixel
(13,y).

BORDER_WRAP The source image is tiled repeatedly in the plane.

e abstract void extend(WritableRaster raster, PlanarImage im)

fills in the portions of a giveRaster that lie outside the bounds of a given
PlanarImage with data derived from th&flanarImage.

7.2.2.1 BorderExtenderZero

TheBorderExtenderZero class is a subclass 8brderExtender that
implements border extension by filling all pixels outside of the image bounds
with zeros. For example, Figure 7-2 shows the result of using
BorderExtenderZero to extend an image by adding two extra rows to the top
and bottom and two extra columns on the left and right sides.

Release 1.0.1, November 1999 195

7.2.2 Extending the Edge of an Image IMAGE ENHANCEMENT

m|Ojo |o

o

v}

m
oO|lojlojo|o|O |O
oO|lojlojo|o|Oo |O

ojlol®|U|>»|o|o
ool m|wm|o |o
o|lo|lo|o|lo|o|o
o|lo|lo|o|lo|o|o

Figure 7-2 BorderExtenderZero Example

API. javax.media.jai.BorderExtenderZero

« final void extend(WritableRaster raster, PlanarImage im)
fills in the portions of a giveRaster that lie outside the bounds of a given

PlanarImage With zeros. The portion of Raster that lies within. getBounds
is not altered.

7.2.2.2 BorderExtenderConstant

TheBorderExtenderConstant class is a subclass 8brderExtender that
implements border extension by filling all pixels outside of the image bounds
with constant values. For example, Figure 7-3 shows the result of using
BorderExtenderConstant to extend an image by adding two extra rows to the
top and bottom and two extra columns on the left and right sides.

In the figure X is the constant fill value. The set of constants is clamped to the
range and precision of the data type of #a&ter being filled. The number of
constants used is given by the number of bands oR#keer. If the Raster has

b bands, and there areconstants, constants 0 through- 1 are used wheh <

c. If b > ¢, zeros are used to fill out the constants array.

196 Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Extending the Edge of an Image

M| O|IX|X

X

O

m
XXX | X|X|X|X
XX X[X|X|X|X

X | X|®O|O|>]|X|X

X[X|T|m|m|X|X

XX |X|X|X|X[X
XX | X | X |X]|X[X

Figure 7-3 BorderExtenderConstant Example

API. javax.media.jai.BorderExtenderConstant

e BorderExtenderConstant(double[] constants)

constructs an instance BérderExtenderConstant with a given set of
constants. The constants are specified as an artaylofes.

« final void extend(WritableRaster raster, PlanarImage im)

fills in the portions of a giveRaster that lie outside the bounds of a given
PlanarImage with constant values. The portionRafster that lies within
im.getBounds is not altered.

7.2.2.3 BorderExtenderCopy

The BorderExtenderCopy class is a subclass 8brderExtender that

implements border extension by filling all pixels outside of the image bounds
with copies of the edge pixels. For example, Figure 7-4 shows the result of using
BorderExtenderCopy to extend an image by adding two extra rows to the top
and bottom and two extra columns on the left and right sides.

Although this type of extension is not particularly visually appealing, it is useful
as a way of padding source images prior to area or geometric operations, such as
convolution, scaling, or rotation.

Release 1.0.1, November 1999 197

7.2.2 Extending the Edge of an Image IMAGE ENHANCEMENT

A|lA|A|B|C|C|C
A|lA|A|B|C|C]|C
AlB|C AlAlAa|B|cC]|c|cC
D/E|F == (D|D|D|E|F|F|F
G|H|I G|G|G|H|1]|1]
G|G[G|H|I]1]]
GIG|G|H|I|I]1

Figure 7-4 BorderExtenderCopy Example

APIl: javax.media.jai.BorderExtenderCopy

« final void extend(WritableRaster raster, PlanarImage im)
fills in the portions of a giveRaster that lie outside the bounds of a given

PlanarImage with copies of the edge pixels of the image. The portion of
Raster that lies withinim.getBounds is not altered.

7.2.2.4 BorderExtenderWrap

TheBorderExtenderWrap class is a subclass 8brderExtender that

implements border extension by filling all pixels outside of the image bounds
with copies of the whole image. For example, Figure 7-5 shows the result of
usingBorderExtenderWrap to extend an image by adding two extra rows to the
top and bottom and two extra columns on the left and right sides.

This form of extension is appropriate for data that is inherently periodic, such as
the Fourier transform of an image or a wallpaper pattern.

E|F|D|E|F|D|E
H|I|G|H|I |G|H
A|lB|C B|C|A|B|C|A|B
D F| == |E|F|D|E|F|D|E
G|H|I Hi1|G|H|I]|G|H
B|C|A|B|C|A|B
E|F|D|E|F|D|E

Figure 7-5 BorderExtenderWrap Example

198 Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Cropping an Image

API. javax.media.jai.BorderExtenderWrap

o« final void extend(WritableRaster raster, PlanarImage im)
Fills in the portions of a giveRaster that lie outside the bounds of a given

PlanarImage with copies of the entire image. The portionRafster that lies
within im.getBounds is not altered.

7.2.2.5 BorderExtenderReflect

TheBorderExtenderReflect class is a subclass 8brderExtender that
implements border extension by filling all pixels outside the image bounds with
reflected copies of the whole image. For example, Figure 7-6 shows the result of
usingBorderExtenderReflect to extend an image by adding two extra rows to
the top and bottom and one extra column on the left and right sides.

This form of extension avoids discontinuities around the edges of the image.

| 2 4
PaasdPajadha

| 2 Al 1|l 2408 Il 24
PaasadPaadqdPpa

Figure 7-6 BorderExtenderReflect Example

API. javax.media.jai.BorderExtenderReflect

« final void extend(WritableRaster raster, PlanarImage im)

Fills in the portions of a giveRaster that lie outside the bounds of a given
PlanarImage with suitably reflected copies of the entire image. The portion of
Raster that lies withinim.getBounds is not altered.

7.3 Cropping an Image

The Crop operation crops a rendered or renderable image to a specified
rectangular area. The y, width, and height values are clipped to the source

Release 1.0.1, November 1999 199

7.4

200

Amplitude Rescaling IMAGE ENHANCEMENT

image’s bounding box. These values are rounded to typdor rendered
images.

The Crop operation takes one rendered or renderable source image and four
parameters. None of the parameters have default values; all must be supplied.

Parameter Type Description
X Float Thex origin for each band.
y Float They origin for each band.
width Float The width for each band.
height Float The height for each band.
[7T e~]
\ \
— \ | —
\ |
et
Original image Crop region applied Resulting image

to original image

Figure 7-7 Crop Operation

7.4 Amplitude Rescaling

Amplitude rescaling provides a linear amplitude transformation of input pixel
values to output pixel values. Amplitude rescaling can be used to enhance images
that have insufficient contrast between the lightest and darkest values, such as
caused by underexposure or overexposure of the original image.

The full dynamic range of one band of an eight-bit image is 0 to 255. An
underexposed image may only contain pixel values from 10 to 180, resulting in
an image that does not fully use the dynamic range of the display. Such an image
can be greatly improved by linearly stretching the contrast range; mapping the
lowest values to 0 and the highest values to 255.

The rescale operation takes a rendered or renderable source image and maps
the pixel values of the image from one range to another range by multiplying
each pixel value by one of a set of constants and then adding another constant to
the result of the multiplication. If the number of constants supplied is less than

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Amplitude Rescaling

the number of bands of the destination, the constant from entry 0 is applied to all
the bands. Otherwise, a constant from a different entry is applied to each band.
There must be at least one entry in each of the constants and offsets arrays.

The pixel values of the destination image are defined by the following
pseudocode:

constant = (constants.length < dstNumBands) ?
constants[0@] : constants[b];
offset = (offsets.length < dstNumBands) ?
offsets[@] : offsets[b];

dst[x][y]l[b] = src[x][y]l[b]l*constant + offset;

The pixel arithmetic is performed using the data type of the destination image.
By default, the destination will have the same data type as the source image
unless arimagelLayout containing aSampleModel with a different data type is
supplied as a rendering hint.

The values of the lowest and highest pixel amplitudes must be known. This
information can be acquired through thetrema operation (see Section 9.3,
“Finding the Extrema of an Image”).

The following equations show the relationships between the extrema and the
scale and offset factors.

_ 255

scaldb) = (7.1)
_ 255xmin(b)

offset(b) = min(b) —max (7.2)

wheremaxb) andmin(b) are the largest and smallest pixel values in the band,
respectively.

The rescale operation takes one rendered or renderable source image and two
parameters:

Parameter Type Description
constants double The per-band constants to multiply by.
offsets double The per-band offsets to be added.

Release 1.0.1, November 1999 201

7.5

202

Histogram Equalization IMAGE ENHANCEMENT

7.5 Histogram Equalization

An image histogram is an analytic tool used to measure the amplitude
distribution of pixels within an image. For example, a histogram can be used to
provide a count of the number of pixels at amplitude 0, the number at amplitude
1, and so on. By analyzing the distribution of pixel amplitudes, you can gain
some information about the visual appearance of an image. A high-contrast
image contains a wide distribution of pixel counts covering the entire amplitude
range. A low contrast image has most of the pixel amplitudes congregated in a
relatively narrow range.

See Section 9.4, “Histogram Generation,” for information on how to generate a
histogram for an image. The next two sections describe JAI operations that use
an image histogram to enhance an image’s appearance.

7.5.1 Piecewise Linear Mapping

The Piecewise operation performs a piecewise linear mapping of an image’s
pixel values. The piecewise linear mapping is described by a set of breakpoints
that are provided as an array of the form:

float breakPoints[N][2][humBreakPoints]

where the value dil may be either unity or the number of bands in the source
image.

If N is unity, the same set of breakpoints will be applied to all bands in the
image. The abscissas of the supplied breakpoints must be monotonically
increasing.

The pixel values of the destination image are defined by the following
pseudocode:

if(src[x][y]l[b] < breakPoints[b][0][0])
dst[x][y]l[b] = breakPoints[b][1][0]);
} else if(src[x][y]l[b] > breakPoints[b][0][numBreakPoints-1]) {
dst[x][y]l[b] = breakPoints[b][1][numBreakPoints-1]);
} else {
int i = 0;
while(breakPoints[b][@][i+1] < src[x][yl[b]) {
J4+;
3
dst[x][y]l[b] = breakPoints[b][1][i] +
(src[x][y]l[b] - breakPoints[b][0@][i])*
(breakPoints[b][1][i+1] - breakPoints[b][1]1[i])/
(breakPoints[b][@][i+1] - breakPoints[b]l[0][i]);

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Histogram Matching

ThePiecewise operation takes one rendered or renderable source image and one
parameter:

Parameter Type Description

breakPoints Float The breakpoint array.

Listing 7-1 shows a code sample oP&ecewise operation, showing only the
construction of the piecewise-mapped image and the operation. The generation
of the source image, fmt, is not shown.

Listing 7-1 Example Piecewise Operation

// Create a piecewise-mapped image emphasizing low values.
float[]J[]1[] bp = new float[numBands][2][];
for(int b = 0; b < numBands; b++) {
bp[b][0] new float[] {0.0F, 32.0F, 64.0F, 255.0F};
bp[b][1] new float[] {0.0F, 64.0F, 112.0F, 255.0F};

}

// Create the Piecewise operation.
RenderedOp pw = JAI.create("piecewise”, fmt, bp);

7.5.2 Histogram Matching

It is sometimes desirable to transform an image so that its histogram matches
that of a specified functional form. TivatchCDF operation performs a piecewise
linear mapping of the pixel values of an image such that the cumulative
distribution function (CDF) of the destination image matches as closely as
possible a specified cumulative distribution function.

The CDF of an image is its area-normalized threshold area function. The desired
CDF for theMatchCDF operation is described by an array of the form:

float CDF[numBands] [numBins[b]]
wherenumBins denotes the number of bins in the histogram of the source
image for bandb.

Each element in the arrayF[b] must be non-negative, the array must represent

a non-decreasing sequence, and the last element of the array must be 1.0F. The
source image must havedastogram object available via itgetProperty

method.

Release 1.0.1, November 1999 203

7.5.2 Histogram Matching IMAGE ENHANCEMENT

TheMatchCDF operation takes one rendered or renderable source image and one

parameter:
Parameter Type Description
CDF Float The desired cumulative distribution function.

The operation requires that the image histogram be available.

Listing 7-2 shows a code sample ofatchCDF operation, showing only the
histogram operation, construction of two different CDFs, and the operations that
use them.

Listing 7-2 Example MatchCDF Operation

// Retrieves a histogram for the image.
private static Histogram getHistogram(RenderedOp img,
int binCount) {

// Get the band count.
int numBands = img.getSampleModel().getNumBands();

// Allocate histogram memory.
int[] numBins = new int[numBands];
doubTle[] TowValue = new double[numBands];
double[] highValue = new double[numBands];
for(int i = 0; i < numBands; i++) {
numBins[i] = binCount;
TowValue[i] = 0.0;
highvalue[i] = 255.0;
}

// Create the Histogram object.
Histogram hist = new Histogram(numBins, TowValue, highValue);

// Set the ROI to the entire image.
ROIShape roi = new ROIShape(img.getBounds());

// Create the histogram op.
RenderedOp histImage =
JAI.create("histogram", img,
hist, roi, new Integer(l), new Integer(l));

// Retrieve the histogram.
hist = (Histogram)histImage.getProperty("histogram");

return hist;

204 Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Lookup Table Modification

Listing 7-2 Example MatchCDF Operation (Continued)

// Create an equalization CDF.
float[][] CDFeq = new float[numBands][];
for(int b = 0; b < numBands; b++) {
CDFeq[b] = new float[binCount];
for(int i = 0; i < binCount; i++) {
CDFeq[b][i] = (float) (i+1)/(float)binCount;

}

// Create a normalization CDF.
double[] mean = new double[] {128.0, 128.0, 128.0};
double[] stDev = new double[] {64.0, 64.0, 64.0};
float[][] CDFnorm = new float[numBands][];
for(int b = 0; b < numBands; b++) {
CDFnorm[b] = new float[binCount];
double mu = mean[b];
doubTle twoSigmaSquared = 2.0*stDev[b]*stDev[b];
CDFnorm[b][0] =
(float)Math.exp(-mu*mu/twoSigmaSquared) ;
for(int i = 1; i < binCount; 1i++) {
double deviation = i - mu;
CDFnorm[b][i] = CDFnorm[b][i-1] +
(float)Math.exp(-deviation*deviation/twoSigmaSquared) ;
}
3
for(int b = 0; b < numBands; b++) {
double CDFnormLast = CDFnorm[b][binCount-1];
for(int i = 0; i < binCount; i++) {
CDFnorm[b][i] /= CDFnormLast;
}

}

// Create a histogram-equalized image.
RenderedOp eq = JAI.create("matchcdf", fmt, CDFeq);

// Create a histogram-normalized image.
RenderedOp nm = JAI.create("matchcdf"™, fmt, CDFnorm);

7.6 Lookup Table Modification

The lookup table modification provides a non-linear amplitude transformation.
Non-linear amplitude transformation is useful if you have a non-linear amplitude
response difference between the sensor that captures the image data and the
display.

Release 1.0.1, November 1999 205

7.6 Lookup Table Modification IMAGE ENHANCEMENT

The lookup table modification mechanism allows you to arbitrarily convert
between the source image byte, short, or integer pixel value and one or more
output values. The output value can be a byte, short, integer, float, or double
image pixel.

The input pixel value acts as an address to the lookup table inputs, as shown in
Figure 7-8. Each location in the lookup table stores the desired output value for
that particular address.

Lookup
Table

Source Adrs Data | Dest.
Image - Out 1 Image

Figure 7-8 Lookup Table

The lookup table is first loaded with the necessary data. Table 7-2 shows a patrtial
listing of an example lookup table. In this example, the input values range from
0 to 255. The output values provide a scaled square root transformation between
the input and output, according to the following equation:

output = 4/ 255x input

Table 7-2 Example Lookup Table

Input Output

0 0
1 16
2 23
3 28
253 254
254 255
255 255

This example provides a non-linear amplitude transformation between input and
output pixel values, in which the smaller input amplitude values are amplified

206 Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Creating the Lookup Table

and the larger input values are attenuated. Other types of lookup values can be
used to solve nearly any non-linear amplitude scaling problem.

7.6.1 Creating the Lookup Table

The LookupTableJAI object represents a single- or multi-banded table or a color
cube of any supported data types. A single- or multi-banded source image of
integer data types is passed through the table and transformed into a single- or
multi-banded destination image of both integral and float or double data types.

The LookupTableJAI object is used for th€rrorDiffusion operation, where it
describes a color map, and theokup operation, where it describes the lookup
table. For the.ookup operation, the table data may cover only a subrange of the
legal range of the input data type. The subrange is selected by means of an offset
parameter that is to be subtracted from the input value before indexing into the
table array.

The procedures for constructing a lookup table vary slightly, depending on
whether the input image is single-banded or multi-banded. For a single-band
input image, you construct a single lookup table. For a multi-band image, you
construct a single lookup table with entries for each band.

7.6.1.1 Creating a Single-band Lookup Table

The single-banded lookup table contains data for a single channel or image
component. To create a lookup table for a single-band input image, use one of
the single-band constructors. The constructors take up to three parameters:

» Apointerto the datato be stored in the table. The data may be obitee
Short, UShort, Int, Float, OrDouble.

» The offset. The offset selects the lookup table subrange. The offset value
is subtracted from the input value before indexing into the table array.

* Aboolean flag that indicates whether Short data is of type Short or UShort.

Listing 7-3 shows an example of the construction of a single-band byte lookup
table.

Release 1.0.1, November 1999 207

7.6.1 Creating the Lookup Table IMAGE ENHANCEMENT

Listing 7-3 Example Single-band Lookup Table

byte[] tableData = new byte[0x10000];
for (int i = 0; i < 0x10000; i++) {
tableData[i] = (byte)(i >> 8);

}

// Create a LookupTable]AI object to be used with the
// "Tlookup" operator.
LookupTableJAI table = new LookupTableJAI(tableData);

API. javax.media.jai.LookupTableJAI

o LookupTableJAI(byte[] data)
constructs a single-banded byte lookup table with an index offset of 0.

Parameters data The single-banded byte data

o LookupTableJAI(byte[] data, int offset)
constructs a single-banded byte lookup table with an index offset.
Parameters data The single-banded byte data
offset The offset

e LookupTableJAI(short[] data, boolean isUShort)

constructs a single-banded short or unsigned short lookup table with an index
offset of O.

Parameters data The single-banded short data

isUShort True if the data type is
DataBuffer.TYPE_USHORT; false if the data
type isDataBuffer.TYPE_SHORT.

e LookupTableJAI(short[] data, int offset, boolean isUShort)
constructs a single-banded short or unsigned short lookup table with an index

offset.

Parameters data The single-banded short data
offset The offset
isUShort True if the data type is

DataBuffer.TYPE_USHORT; false if the data
type isDataBuffer.TYPE_SHORT.

208 Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Creating the Lookup Table

e LookupTableJAI(int[] data)
constructs a single-banded int lookup table with an index offset

Parameters data The single-banded int data
e LookupTableJAI(int[] data, int offset)
constructs a single-banded int lookup table with an index offset

Parameters data The single-banded int data
offset The offset

e LookupTablelJAI(float[] data)
constructs a single-banded float lookup table with an index offset of O
Parameters data The single-banded float data

e LookupTableJAI(float[] data, int offset)
constructs a single-banded float lookup table with an index offset

Parameters data The single-banded float data
offset The offset

e LookupTableJAI(double[] data)
constructs a single-banded double lookup table with an index offset of O
Parameters data The single-banded double data

e LookupTableJAI(double[] data, int offset)
constructs a single-banded double lookup table with an index offset

Parameters data The single-banded double data
offset The offset

7.6.1.2 Creating a Multi-band Lookup Table

The multi-band lookup table contains data for more than one channels or image
components, such as separate arrays for R, G, and B. To create a lookup table for
a multi-band input image, use one of the multi-band constructors. Like the
single-band constructors, the multi-band constructors take up to three
parameters:

Release 1.0.1, November 1999 209

7.6.1 Creating the Lookup Table IMAGE ENHANCEMENT
» Apointerto the datato be stored in the table. The data may be of type Byte,
Short, UShort, Int, Float, or Double.

» The offset. The offset selects the lookup table subrange. The offset value
is subtracted from the input value before indexing into the table array. The
constructors allow you to specify one offset for all of the bands or separate
offsets for each band.

» Aboolean flag that indicates whether Short data is of type Short or UShort.

Listing 7-4 shows an example of the construction of a multi-banded byte lookup
table.

Listing 7-4 Example Multi-band Lookup Table

// Create the table data.

byte[][] tableData = new byte[3][0x10000];

for (int i = 0; i < 0x10000; i++) {

tableDatal[0][i] (byte) (i >> 8); // this may be different
tableData[1][i] (byte) (i >> 8); // for each band
tableData[2][1] (byte) (i >> 8);

3

// Create a LookupTableJAI object to be used with the
// "lookup" operator.
LookupTableJAI table = new LookupTablelAI(tableData);

APIl: javax.media.jai.LookupTable]AI

o LookupTableJAI(byte[][] data)
constructs a multi-banded byte lookup table with an index offset for each band
of 0.

Parameters data The multi-banded byte data in
[band][index] format

e LookupTablelAI(byte[][] data, int offset)

constructs a multi-banded byte lookup table where all bands have the same
index offset.

Parameters data The multi-banded byte data in
[band][index] format

offset The common offset for all bands

210 Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Creating the Lookup Table

e LookupTableJAI(byte[][] data, int[] offsets)

constructs a multi-banded byte lookup table where each band has a different
index offset.

Parameters data The multi-banded byte data in
[band][index] format

offsets The offsets for the bands

e LookupTablelJAI(short[][] data, boolean isUShort)

constructs a multi-banded short or unsigned short lookup table. The index
offset for each band is O

Parameters data The multi-banded short data in
[band][index] format.

isUShort True if the data type is
DataBuffer.TYPE_USHORT; false if the data
type isDataBuffer.TYPE_SHORT.

e LookupTablelJAI(short[][] data, int offset, boolean isUShort)

constructs a multi-banded short or unsigned short lookup table where all bands
have the same index offset

Parameters data The multi-banded short data in
[band][index] format
offset The common offset for all bands
isUShort True if the data type is

DataBuffer.TYPE_USHORT; false if the data
type isDataBuffer.TYPE_SHORT.

e LookupTableJAI(short[][] data, int[] offsets, boolean isUShort)

constructs a multi-banded short or unsigned short lookup table where each
band has a different index offset

Parameters data The multi-banded short data in
[band][index] format
offset The offsets for the bands
isUShort True if the data type is

DataBuffer.TYPE_USHORT; false if the data
type isDataBuffer.TYPE_SHORT.

Release 1.0.1, November 1999 211

7.6.1 Creating the Lookup Table IMAGE ENHANCEMENT

212

LookupTableJAI(int[][] data)
constructs a multi-banded int lookup table. The index offset for each band is O

Parameters data The multi-banded int data in [band][index]
format

LookupTabTeJAI(int[][] data, int offset)

constructs a multi-banded int lookup table where all bands have the same index
offset

Parameters data The multi-banded int data in [band][index]
format
offset The common offset for all bands

LookupTab1eJAI(int[][] data, int[] offsets)

constructs a multi-banded int lookup table where each band has a different
index offset

Parameters data The multi-banded int data in [band][index]
format
offset The offsets for the bands

LookupTabTeJAI(float[][] data)

constructs a multi-banded float lookup table. The index offset for each band is
0

Parameters data The multi-banded float data in
[band][index] format

LookupTableJAI(float[][] data, int offset)

constructs a multi-banded float lookup table where all bands have the same
index offset

Parameters data The multi-banded float data in
[band][index] format

offset The common offset for all bands

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Creating the Lookup Table

e LookupTableJAI(float[][] data, int[] offsets)

constructs a multi-banded float lookup table where each band has a different
index offset

Parameters data The multi-banded float data in
[band][index] format
offset The offsets for the bands

e LookupTableJAI(double[][] data)
constructs a multi-banded double lookup table. The index offset for each band
is0
Parameters data The multi-banded double data in
[band][index] format

e LookupTableJAI(double[][] data, int offset)

constructs a multi-banded double lookup table where all bands have the same
index offset

Parameters data The multi-banded double data in
[band][index] format

offset The common offset for all bands

e LookupTableJAI(double[][] data, int[] offsets)

constructs a multi-banded double lookup table where each band has a different
index offset

Parameters data The multi-banded double data in
[band][index] format

offsets The offsets for the bands

7.6.1.3 Creating a Color-cube Lookup Table

Dithering operations that use a color cube are considerably faster than those that
use a generic lookup table. However, the color cube provides less control over
the exact contents of the lookup table.

The ColorCube class is a subclass @bokupTableJAI and represents a color
cube lookup table. You create a colorcube using one of the
ColorCube.createColorCube methods. Rather than specifying the data to be
loaded into the lookup table, you provide an arraydfiensions. The

Release 1.0.1, November 1999 213

7.6.1

214

Creating the Lookup Table IMAGE ENHANCEMENT

dimensions parameter specifies the size (or number of levels) of each band of
the image.

Although a color cube implies three dimensions, that is not always the case. The
color cube has the same numberdafiensions as the image has bands. For
example, a monochrome image requires only étwension parameter.

The values in thelimensions parameter are signed. A positive value indicates
that the corresponding color ramp increases. A negative value indicates that the
ramp decreases.

JAI provides two predefined color cubes, which can be used for the ordered
dither operation (see Section 6.6.1, “Ordered Dither”):

ColorCube Description

BYTE_496 A ColorCube with dimensions 4:9:6, useful for dithering RGB images into 216
colors. The offset of this ColorCube is 38. This color cube dithers blue values in the
source image to one of 4 blue levels, green values to one of 9 green levels, and red
values to one of 6 red levels. This is the default color cube for the ordered dither
operation.

BYTE_855 A ColorCube with dimensions 8:5:5, useful for dithering ¥ images into 200
colors. The offset of this ColorCube is 54. This color cube dithers blue values in the
source image to one of 8 blue levels, green values to one of 5 green levels, and red
values to one of 5 red levels.

These color cubes are specified by thdorMap parameter that is required by
the OrderedDither operation.

API: javax.media.jai.ColorCube

e static ColorCube createColorCube(int dataType, int offset,
int[] dimensions)

creates a multi-bandem1orCube of a specified data type.

Parameters dataType The data type of th€olorCube. One of
DataBuffer.TYPE_BYTE,
DataBuffer.TYPE_SHORT,
DataBuffer.TYPE_USHORT,
DataBuffer.TYPE_INT,
DataBuffer.TYPE_FLOAT, or
DataBuffer.TYPE_DOUBLE.

offset The common offset for all bands.
dimensions The signed dimensions for each band.

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Creating the Lookup Table

e static ColorCube createColorCube(int dataType,
int[] dimensions)

create a multi-bandetblorCube of a specified data type with zero offset for
all bands.

Parameters dataType The data type of th€olorCube. One of
DataBuffer.TYPE_BYTE,
DataBuffer.TYPE_SHORT,
DataBuffer.TYPE_USHORT,
DataBuffer.TYPE_INT,
DataBuffer.TYPE_FLOAT, Or
DataBuffer.TYPE_DOUBLE

dimensions The signed dimensions for each band.

e static ColorCube createColorCubeByte(int[] dimensions)
constructs a multi-banded bytelorCube.

Parameters dimensions A list of signed sizes of each side of the
color cube.

e« static ColorCube createColorCubeByte(int offset,
int[] dimensions)

constructs a multi-banded byte ColorCube with an index offset common to all
bands.
Parameters offset The common offset for all bands.

dimensions A list of signed sizes of each side of the
color cube.

e static ColorCube createColorCubeShort(int[] dimensions)
constructs a multi-banded shastlorCube.

e static ColorCube createColorCubeShort(int offset,
int[] dimensions)

constructs a multi-banded shattlorCube with an index offset common to all
bands.

e static ColorCube createColorCubeUShort(int[] dimensions)
constructs a multi-banded unsigned sleofitorCube.

Release 1.0.1, November 1999 215

7.6.2

216

Performing the Lookup IMAGE ENHANCEMENT

static ColorCube createColorCubeUShort(int offset,
int[] dimensions)

constructs a multi-banded unsigned sldefttorCube with an index offset
common to all bands.

static ColorCube createColorCubeInt(int[] dimensions)
constructs a multi-banded i@dT1orCube.

static ColorCube createColorCubeInt(int offset,
int[] dimensions)

constructs a multi-banded i6éTorCube with an index offset common to all
bands.

static ColorCube createColorCubeFloat(int[] dimensions)
constructs a multi-banded fload1orCube.

static ColorCube createColorCubeFloat(int offset,
int[] dimensions)

constructs a multi-banded float ColorCube with an index offset common to all
bands.

static ColorCube createColorCubeDouble(int[] dimensions)

constructs a multi-banded doulilelorCube with an index offset common to
all bands.

static ColorCube createColorCubeDouble(int offset,

int[] dimensions)
constructs a multi-banded doulilelorCube with an index offset common to
all bands.

7.6.2 Performing the Lookup

The 1ookup operation performs a general table lookup on a rendered or
renderable image. The destination image is obtained by passing the source image
through the lookup table. The source image may be single- or multi-banded of
data typedyte, ushort, short, or int. The lookup table may be single- or
multi-banded of any JAl-supported data types.

The destination image must have the same data type as the lookup table, and its
number of bands is determined based on the number of bands of the source and
the table. If the source is single-banded, the destination has the same number of
bands as the lookup table; otherwise, the destination has the same number of
bands as the source.

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Performing the Lookup

If either the source or the table is single-banded and the other one is multi-
banded, the single band is applied to every band of the multi-banded object. If
both are multi-banded, their corresponding bands are matched up.

The table may have a set of offset values, one for each band. This value is
subtracted from the source pixel values before indexing into the table data array.

It is the user’s responsibility to make certain the lookup table supplied is suitable
for the source image. Specifically, the table data must cover the entire range of
the source data. Otherwise, the result of this operation is undefined.

By the nature of this operation, the destination may have a different number of
bands and/or data type from the source. ThepleModel of the destination is
created in accordance with the actual lookup table used in a specific case.

There are three specific cases of table lookup that determine the pixel values of
the destination image:

» If the source image is single-banded and the lookup table is single- or
multi-banded, the destination image has the same number of bands as the
lookup table:

for (int h = 0; h < dstHeight; h++) {
for (intw = 0; w < dstWidth; w++) {
for (int b = 0; b < dstNumBands; b++) {
dst[h][w][b] = table[b][src[h][w][@] - offsets[b]]
}

}

» Ifthe source image is multi-banded and the lookup table is single-banded,
the destination image has the same number of bands as the source image:
for (int h = 0; h < dstHeight; h++) {
for (int w = 0; w < dstWidth; w++) {
for (int b = 0; b < dstNumBands; b++) {
dst[h][w][b] = table[@][src[h][w][b] - offsets[0]]

}

» Ifthe source image is multi-banded and the lookup table is multi-banded,
with the same number of bands as the source image, the destination image
will have the same number of bands as the source image:

for (int h = 0; h < dstHeight; h++) {

for (int w = 0; w < dstWidth; w++) {
for (int b = 0; b < dstNumBands; b++) {

Release 1.0.1, November 1999 217

7.6.3

218

Other Lookup Table Operations IMAGE ENHANCEMENT

dst[h][w][b] = table[b][src[h][w][b] - offsets[b]]
}

}

The 1ookup operation takes one rendered or renderable source image and one
parameter:

Parameter Type Description

table LookupTableJAI The lookup table through which the source image is passed.

See Section 7.6.1, “Creating the Lookup Table” for more information.

For a complete example of theokup operation, see Listing A-1 on page 417.

7.6.3 Other Lookup Table Operations

7.6.3.1 Reading the Table Data

Several methods are available to read the current contents of the lookup table.
The choice of method depends on the data format: byte, short, integer, floating-
point, or double floating-point.

API: javax.media.jai.LookupTable]AI

e java.awt.image.DataBuffer getData()
returns the table data agaaBuffer.

o byte[][] getByteData()
returns the byte table data in array format.

o« byte[] getByteData(int band)
returns the byte table data of a specific band in array format.

e short[][] getShortData()
returns the short table data in array format.

o short[] getShortData(int band)
returns the short table data of a specific band in array format.

e int[][] getIntData()
returns the integer table data in array format.

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Other Lookup Table Operations

e int[] getIntData(int band)
returns the integer table data of a specific band in array format.

e float[][] getFloatData()
returns the float table data in array format.

o float[] getFloatData(int band)
returns the float table data of a specific band in array format.

e doubTle[][] getDoubleData()
returns the double table data in array format.

e double[] getDoubleData(int band)
returns the double table data of a specific band in array format.

7.6.3.2 Reading the Table Offsets

There are three methods for reading the offset values within the current lookup
table.

API. javax.media.jai.LookupTableJAI

e int[] getOffsets()
returns the index offsets of entry O for all bands.

e int getOffset()
returns the index offset of entry 0 for the default band.

e 1int getOffset(int band)
returns the index offset of entry O for a specific band.

Parameters band The band to read

7.6.3.3 Reading the Number of Bands

A single method is used to read the number of bands in the lookup table.

API. javax.media.jai.LookupTableJAI

e« 1int getNumBands()
returns the number of bands of the table.

Release 1.0.1, November 1999 219

7.6.3

220

Other Lookup Table Operations IMAGE ENHANCEMENT

7.6.3.4 Reading the Number of Entries Per Band

A single method is used to read the number of entries per band in the lookup
table.

API. javax.media.jai.LookupTableJAI

e 1int getNumEntries()
returns the number of entries per band of the table.

7.6.3.5 Reading the Data Type

A single method is used to read the data type of the lookup table.

API. javax.media.jai.LookupTableJAI

e« 1int getDataType()
returns the data type of the table data.

7.6.3.6 Reading the Destination Bands and SampleModel

API: javax.media.jai.LookupTable]AI

e 1int getDestNumBands(int sourceNumBands)

returns the number of bands of the destination image, based on the number of

bands of the source image and lookup table.

Parameters sourceNum- The number of bands of the source image.
Bands

« Jjava.awt.image.SampleModel
getDestSampleModel (java.awt.image.SampleModel
srcSampTleModel)
returns &leModel suitable for holding the output of a lookup operation on
the source data described by a gisenpleModel with this table. The width
and height of the destinatiGampleModel are the same as that of the source.
This method returns null if the soursampleModel has a non-integral data

type.

Parameters srcSample- TheSampleModel of the source image.
Model

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Convolution Filtering

« java.awt.image.SampleModel
getDestSampleModel(java.awt.image.SampleModel
srcSampleModel, int width, int height)
returns &leModel suitable for holding the output of a lookup operation on
the source data described by a gigamp1eMode with this table. This method
will return null if the sourcsampleModel has a non-integral data type.

Parameters srcSample- TheSampleModel of the source image.

Model
width The width of the destinatioRampTeModel.
height The height of the destinatiofampleModel.

7.7 Convolution Filtering

Convolution filtering is often used to reduce the effects of noise in images or to
sharpen the detail in blurred images. Convolution filtering is a forrapattial
filtering that computes each output sample by multiplying elements of a kernel
with the samples surrounding a particular source sample.

Convolution filtering operates on a group of input pixels surrounding a center
pixel. The adjoining pixels provide important information about brightness
trends in the area of the pixel being processed.

Convolution filtering moves across the source image, pixel by pixel, placing
resulting pixels into the destination image. The resulting brightness of each
source pixel depends on the group of pixels surrounding the source pixel. Using
the brightness information of the source pixel’s neighbors, the convolution
process calculates the spatial frequency activity in the area, making it possible to
filter the brightness based on the spatial frequency of the area.

Convolution filtering uses aonvolve kernglcontaining an array of convolution
coefficient values, callekey elementsas shown in Figure 7-9. The array is not
restricted to any particular size, and does not even have to be square. The kernel
canbe 1x 1,3x 3,5x5,Mx N, and so on. A larger kernel size affords a more
precise filtering operation by increasing the number of neighboring pixels used in
the calculation. However, the kernel cannot be bigger in any dimension than the
image data. Also, the larger the kernel, the more computations that are required
to be performed. For example, given a 64080 image and a 8 3 kernel, the
convolve operation requires over five million total multiplications and additions.

The convolution filtering operation computes each output sample by multiplying
the key elements of the kernel with the samples surrounding a particular source

Release 1.0.1, November 1999 221

7.7 Convolution Filtering IMAGE ENHANCEMENT

pixel. For each destination pixel, the kernel is rotated 180 degrees and its key
element is placed over the source pixel corresponding with the destination pixel.
The key elements are multiplied with the source pixels under them, and the
resulting products are summed together to produce the destination sample value.

The selection of the weights for the key elements determines the nature of the
filtering action, such ahkigh-passor low-pass If the values of the key elements
are the reciprocal of the number of key elements in the kernel (for example, 1/9
for a 3x 3 kernel), the result is a conventional low-pass averaging process. If the
weights are altered, certain pixels in the kernel will have an increased or
decreased influence in the average. Figure 7-10 shows three example convolve
filters, low-pass, high-pass, and Laplacian.

Kernel al|bjc|™
N Pixel being processed
dle]f AN
N
g | h i AN
N

e .
Key elements Source image

/
/s
~_|

Figure 7-9 Convolve Kernel

222 Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Performing the Convolve Operation

1/9 | 1/9 | 1/9 -1 |-1|-1 1 |-=2 1

1/9 | 1/9 | 1/9 -1]9 |1 -2 | 5 | =2

1/9 [1/9 | 1/9 -1 | -1 -1 1 -2 1
Example low-pass Example high-pass Example Laplacian

filter filter filter

Figure 7-10 Convolve Filter Samples

The low-pass filter, also known asbax filter, attenuates the high-spatial
frequency components of an image and has little affect on the low-frequency
components. The effect of passing an image through a low-pass filter is a slight
blurring. This is caused by attenuating the sharp brightness transitions between
edges and makes the image appear to have less detail. See also Section 7.7.2,
“Box Filter.”

The high-pass filter has the opposite effect of the low-pass filter, accentuating the
high-frequency components and offering little affect on the low-frequency
components. The effect of passing an image through a high-pass filter is a
sharper image with increased detail in the areas of brightness transition.

The Laplacian filter is another image detail sharpening filter that works well for
noise-free images. This filter subtracts the brightness values of the four
neighboring pixels from the central pixel. The result of applying this filter is to
reduce the gray level to zero.

7.7.1 Performing the Convolve Operation

The following example code showscanvolve operation on a single sample
dst[x][y], which assumes that the kernel is of siz& N and has already been
rotated through 180 degrees. The kernel's key element is located at position

(xKey, yKey).

dst[x][y] = 0;
for (int i = -x0Origin; i < -x0rigin + width; i++) {
for (int j = -yOrigin; j < -yOrigin + height; j++) {
dst[x][y] += src[x + i1[y + jl*kernel[x0rigin + i][yOrigin + j];
3
}

Convolution, or any neighborhood operation, leaves a band of pixels around the
edges undefined. For example, for & 3 kernel, only four kernel elements and

Release 1.0.1, November 1999 223

7.7.2 Box Filter IMAGE ENHANCEMENT

four source pixels contribute to the destination pixel located at (0,0). Such pixels
are not included in the destination image. A border extension may be added via
the BorderExtender class. The type of border extension can be specified as a
RenderingHint to theJAI.create method. If no border extension type is
provided, a default extension 8érderExtender.BORDER_COPY will be used to
perform the extension. See Section 3.7.3, “Rendering Hints.”

The convolve operation takes one rendered source image and one parameter:

Parameter Type Description
kernel KernelJAI The convolution kernel. See Section 6.9, “Constructing a
Kernel.”

The defaultkernel is null.

Listing 7-5 shows a code sample foCanvolve operation.

Listing 7-5 Example Convolve Operation

// Create the kernel.

kernel = new KernelJAI

float[] = { ©0.0F, -1.0F, 0.0F,
-1.0F, 5.0F, -1.0F,
0.0F, -1.0F, 0.0F };

// Create the convolve operation.
iml = JAI.create("convolve", im, kernel);

7.7.2 Box Filter

The BoxFilter operation is a special case of convolve operation in which each
source pixel contributes the same weight to the destination pixel. The box filter
operation determines the intensity of a pixel in an image by averaging the source
pixels within a rectangular area around the pixel. The pixel values of the
destination image are defined by the following pseudocode:

int count = width * height; // # of pixels in the box
for (int b = 0; b < numBands; b++) {

int total = 0;

for (int j = -yKey; j < -yKey + height; j++) {

for (int i = -xKey; i < -xKey + width; i++) {
total += src[x+i][y+j]1[b];
}
}
dst[x][y]l[b] = (total + count/2) / count; // round

224 Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Box Filter

TheBoxFilter operation uses a low-pass filter that passes (leaves untouched)
the low spatial frequency components of the image and attenuates the high-
frequency components. In an area of the image that has constant brightness, the
brightness values are passed untouched. When the filter passes over an area of
sharp black to white transitions, the brightness range is greatly attenuated.

Convolution, like any neighborhood operation, leaves a band of pixels around the
edges undefined. For example, for & 3 kernel, only four kernel elements and
four source pixels contribute to the convolution pixel at the corners of the source
image. Pixels that do not allow the full kernel to be applied to the source are not
included in the destination image.Byrder operation (see Section 7.2, “Adding
Borders to Images”) may be used to add an appropriate border to the source
image to avoid shrinkage of the image boundaries.

The kernel may not be bigger in any dimension than the image data.

TheBoxFilter operation takes one rendered source image and four parameters:

Parameter Type Description

width Integer The width of the box.

height Integer The height of the box.

xKey Integer Thex position of the key element.
yKey Integer They position of the key element.

Thewidth parameter is required. The remaining parameters maw beand, if
not supplied, default to the following values:

height = width

xKey = width
2
yKey = height

Listing 7-6 shows a code sample foBaxFilter operation.
Listing 7-6 Example BoxFilter Operation

// Read the arguments.

String fileName = args.length > @ ? args[@] : DEFAULT_FILE;

int width = args.length > 1 ?
Integer.decode(args[1]).intValue() : DEFAULT_SIZE;

int height = args.length > 2 ?
Integer.decode(args[2]).intValue() : width;

Release 1.0.1, November 1999 225

7.8 Median Filtering IMAGE ENHANCEMENT

Listing 7-6 Example BoxFilter Operation (Continued)

new BoxFilterExample(fileName, width, height);

}

public BoxFilterExample(String fileName, int width, int height)

// Load the image.
RenderedOp src = JAI.create("fileload", fileName);

// Create the BoxFilter operation.

RenderedOp dst = JAI.create("boxfilter", src,
width, height,
width/2, height/2);

7.8 Median Filtering

A median filter is used to remove impulse noise spikes from an image and thus
smoothing the image. Impulse noise spikes appear as bright or dark pixels
randomly distributed throughout the image. Noise spikes are normally
significantly brighter or darker than their neighboring pixels and can easily be
found by comparing the median value of a group of input pixels.

The median filter is a neighborhood-based ranking filter in which the pixels in
the neighborhood are ranked in the order of their levels. The median value of the
group is then stored in the output pixel. The resulting image is then free of pixel
brightnesses that are at the extremes in each input group of pixels.

The noise-reducing effect that the median filter has on an image depends on two
related things: the spatial extent of the neighborhood (the mask) and the number
of pixels involved in the computation. ThMadianFilter operation supports

three different mask shapes, a square, a plus, and an X-shape, as shown in

Figure 7-11.
Square Plus
mask mask X mask

Figure 7-11 Median Filter Masks

226 Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Median Filtering

TheMedianFilter operation may also be used to computeghparable median
of a 3x 3 or 5x 5 region of pixels. The separable median is defined as the

median of the medians of each row. For example, if the pixel values in 8 3

window are as follows:

the overall (non-separable) median value is 5, while the separable median is
equal to the median of the three row medians: median(1, 2, 3) = 2, median(5, 6,
7) = 6, and median(4, 8, 9) = 8, yielding an overall median of 6. The separable
median may be obtained by specifying a mask of type
MEDIAN_MASK_SQUARE_SEPARABLE.

TheMedianFilter operation takes one rendered source image and two
parameters:

Parameter Type Default Description

maskShape Integer MASK_ The shape of the mask to be used for Median Filtering
SQUARE

maskSize Integer 3 The size (width and height) of the mask to be used in

Median Filtering.

ThemaskShape parameter is one of the following:

maskShape Description

MEDIAN_MASK_SQUARE A square-shaped mask. The default.
MEDIAN_MASK_PLUS A plus-shaped mask.
MEDIAN_MASK_X An X-shaped mask.

MEDIAN_MASK_SQUARE_ A separable square mask, used for the separable median operation.
SEPARABLE

ThemaskSize parameter must be 1 1) or greater. The default value, if one is
not provided, is 3 (¥ 3). For large masks, the noise reduction effect of more
pixels used in the computation of the median value reaches a point of
diminishing returns. Typical mask sizes are 3 and 5x 5.

Release 1.0.1, November 1999 227

7.9

228

Frequency Domain Processing IMAGE ENHANCEMENT

7.9 Frequency Domain Processing

Images contain spatial details that are seen as brightness transitions, cycling from
dark to light and back to dark. The rate at which the transitions occur in an image
represent the image&patial frequency

An image’s spatial frequency can be measured horizontally, vertically, or at any
diagonal in between. An image contains many spatial frequencies that, when
combined in the correct magnitude and phase, form the complex details of the
image.

A frequency transforndecomposes an image from its spatial domain form of
brightness into a frequency domain form of fundamental frequency components.
Each frequency component contains a magnitude and phase valireekse
frequency transforngonverts an image from its frequency form back to its

spatial form.

7.9.1 Fourier Transform

JAI supports the most common type of frequency transformdiberete Fourier
transformand its inverse, the inverse discrete Fourier transform. The discrete
Fourier transform of an image is a two-dimensional process. The result of the
transform is a two-dimensional array of values, each having two parts: real and
imaginary. Each value represents a distinct spatial frequency component. The
frequency-transform image has as many values as there are pixels in the source
image.

The real portion of the values can be displayed as an image, visually showing the
frequency components of the source image. The result is in “wrap around” order,
with the zero-frequency point (also known as “DC” for direct current) at the
upper left corner and the high frequencies at the center.

7.9.1.1 Discrete Fourier Transform

The DFT (discrete Fourier transform) operation computes the discrete Fourier
transform of an image. A negative exponential is used as the basis function for
the transform. The operation supports real-to-complex, complex-to-complex, and
complex-to-real transforms. A complex image must have an even number of
bands, with the even bands (0, 2, etc.) representing the real parts and the odd
bands (1, 3, etc.) the imaginary parts of each complex pixel.

If an underlying fast Fourier transform (FFT) implementation is used that
requires that the image dimensions be powers of 2, the width and height may

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Fourier Transform

each be increased to the power of 2 greater than or equal to the original width
and height, respectively.

The dft operation takes one rendered or renderable source image and two
parameters.

Parameter Type Description

scalingType Integer The type of scaling to perform. One of
DFTDescriptor.SCALING_NONE
DFTDescriptor.SCALING_UNITARY, or
DFTDescriptor.SCALING_DIMENSIONS

dataNature Integer The nature of the data. One of
DFTDescriptor.REAL_TO_COMPLEX,
DFTDescriptor.COMPLEX_TO_COMPLEX, or
DFTDescriptor.COMPLEX_TO_REAL.

The default parameters for this operation 8€&LING_NONE and
REAL_TO_COMPLEX.

The scalingType parameter defines how the image dimensions may be scaled,
as follows:

scalingType Description
DFTDescriptor.SCALING_NONE The transform is not to be scaled (the default).

DFTDescriptor.SCALING_UNITARY The transform is to be scaled by the square root of the
product of its dimensions.

DFTDescriptor.SCALING_DIMENSIONS The transform is to be scaled by the product of its
dimensions.

The dataNature parameter specifies the nature of the source and destination
data, as follows.

dataNature Description

DFTDescriptor.REAL_TO_COMPLEX The source data are real and the destination data
complex.

DFTDescriptor.COMPLEX_TO_COMPLEX The source and destination data are both complex.

DFTDescriptor.COMPLEX_TO_REAL The source data are complex and the destination data
real.

If the source data are complex, the number of bands in the source image must be
a multiple of 2. The number of bands in the destination must match that which
would be expected given the number of bands in the source image and the
specified nature of the source and destination data. If the source image is real, the
number of bands in the destination will be twice that in the source. If the
destination image is real, the number of bands in the destination will be half that

Release 1.0.1, November 1999 229

7.9.1 Fourier Transform IMAGE ENHANCEMENT

in the source. Otherwise the number of bands in the source and destination must
be equal.

The DFT operation defines BropertyGenerator that sets th&€OMPLEX property

of the image taFALSE if the dataNature parameter i$OMPLEX_TO_REAL and to
TRUE if the dataNature parameter iREAL_TO_COMPLEX or

COMPLEX_TO_COMPLEX. The value of this property may be retrieved by calling the
getProperty() method withOMPLEX as the property name.

Listing 7-7 shows a code sample foDaT operation.

Listing 7-7 Example DFT Operation

// Create the ParameterBlock.
ParameterBlock pb = new ParameterBlock();
pb.addSource(src)
pb.add(DFTDescriptor.SCALING_NONE) ;
pb.add(DFTDescriptor.REAL_TO_COMPLEX) ;

// Create the DFT operation.
PlanarImage dft = (PlanarImage)JAI.create("dft", pb, null);

// Get the DFT image information.

int width = dft.getWidthQ;

int height = dft.getHeight();

int numBands = dft.getSampleModel () .getNumBands();
int dataType = dft.getSampleModel().getDataType();

// Calculate the cutoff "frequencies" from the threshold.
threshold /= 200.0F;

int minX = (int) (width*threshold);
int maxX = width - 1 - minX;
int minY = (int) (height*threshold);
int maxY = height - 1 - minY;

// Retrieve the DFT data.
Raster dftData = dft.getData();
double[] real =
dftData.getSamples(@, 0, width, height, 0, (double[])null);
double[] imag =
dftData.getSamples(@, 0, width, height, 1, (double[])null);

double[] HR = new double[real.length];
double[] HI new double[imag.length];
double[] LR = new double[real.Tlength];
double[] LI = new double[imag.Tength];

230 Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Fourier Transform

7.9.1.2 Inverse Discrete Fourier Transform

The IDFT (inverse discrete Fourier transform) operation computes the inverse
discrete Fourier transform of an image. A positive exponential is used as the
basis function for the transform. The operation supports real-to-complex,
complex-to-complex, and complex-to-real transforms. A complex image must
have an even number of bands, with the even bands (0, 2, etc.) representing the
real parts and the odd bands (1, 3, etc.) the imaginary parts of each complex
pixel.

If an underlying fast Fourier transform (FFT) implementation is used that
requires that the image dimensions be powers of 2, the width and height may
each be increased to the power of 2 greater than or equal to the original width
and height, respectively.

The IDFT operation takes one rendered or renderable source image and two
parameters.

Parameter Type Description

scalingType Integer The type of scaling to perform. One of
DFTDescriptor.SCALING_NONE
DFTDescriptor.SCALING_UNITARY, or
DFTDescriptor.SCALING_DIMENSIONS

dataNature Integer The nature of the data. One of
DFTDescriptor.REAL_TO_COMPLEX,
DFTDescriptor.COMPLEX_TO_COMPLEX, or
DFTDescriptor.COMPLEX_TO_REAL.

The default parameters for this operation 8€&LING_DIMENSIONS and
COMPLEX_TO_REAL.

The scalingType parameter defines how the image dimensions may be scaled,
as follows:

scalingType Description

DFTDescriptor.SCALING_NONE The transform is not to be scaled.

DFTDescriptor.SCALING_UNITARY The transform is to be scaled by the square root of the
product of its dimensions.

DFTDescriptor.SCALING_DIMENSIONS The transform is to be scaled by the product of its
dimensions (the default).

Release 1.0.1, November 1999 231

7.9.2

232

Cosine Transform IMAGE ENHANCEMENT

The dataNature parameter specifies the nature of the source and destination
data, as follows.

dataNature Description

DFTDescriptor.REAL_TO_COMPLEX The source data are real and the destination data
complex.

DFTDescriptor.COMPLEX_TO_COMPLEX The source and destination data are both complex.

DFTDescriptor.COMPLEX_TO_REAL The source data are complex and the destination data
real.

If the source data are complex, the number of bands in the source image must be
a multiple of 2. The number of bands in the destination must match that which
would be expected given the number of bands in the source image and the
specified nature of the source and destination data. If the source image is real, the
number of bands in the destination will be twice that in the source. If the
destination image is real, the number of bands in the destination will be half that
in the source. Otherwise the number of bands in the source and destination must
be equal.

The IDFT operation defines BropertyGenerator that sets th€OMPLEX property

of the image toFALSE if the dataNature parameter i$OMPLEX_TO_REAL and to
TRUE if the dataNature parameter iREAL_TO_COMPLEX Or

COMPLEX_TO_COMPLEX. The value of this property may be retrieved by calling the
getProperty() method withOMPLEX as the property name.

7.9.2 Cosine Transform

The discrete cosine transform (DCT) is similar to the discrete Fourier transform
(see Section 7.9.1.1, “Discrete Fourier Transform”). However, the DCT is better
at compactly representing very small images. Like the discrete Fourier transform
(DFT), the DCT also has an inverse operation, itheerse discrete cosine
transform(IDCT).

7.9.2.1 Discrete Cosine Transform (DCT)

The DCT operation computes the even discrete cosine transform of an image.
Each band of the destination image is derived by performing a two-dimensional
DCT on the corresponding band of the source image.

TheDCT operation takes one rendered or renderable source image and no
parameters.

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Cosine Transform

Listing 7-8 shows a code sample for a DCT operation.

Listing 7-8 Example DCT Operation

// Load the source image.
RenderedImage src = (RenderedImage)]AI.create("fileload",
fileName);

// Calculate a DCT image from the source image.
ParameterBlock pb = (new ParameterBlock()).addSource(src);
PlanarImage dct = JAI.create("dct", pb, null);

// Get the DCT image data.
int width = dct.getWidth();
int height = dct.getHeight();
int numBands = dct.getSampleModel () .getNumBands();
int dataType = dct.getSampleModel().getDataType();
double[] dctData =

dct.getData() .getPixels(@, 0, width, height,

(doubTe[1)nul1);

double[] pixels = new double[dctData.length];

7.9.2.2 Inverse Discrete Cosine Transform (IDCT)

The IDCT operation computes the inverse even discrete cosine transform of an
image. Each band of the destination image is derived by performing a two-
dimensional inverse DCT on the corresponding band of the source image.

The IDCT operation takes one rendered or renderable source image and no
parameters.

Listing 7-9 shows a code sample for an operation that first takes the discrete
cosine transform of an image, then computes the inverse discrete cosine
transform.

Listing 7-9 Example IDCT Operation

// Calculate a DCT image from the source image.
System.out.printin("Creating DCT of source image ...");
ParameterBlock pb = (new ParameterBlock()).addSource(src);
PlanarImage dct = JAI.create("dct", pb, null);

// Calculate an IDCT image from the DCT image.
System.out.printin("Creating IDCT of DCT of source image ...");
pb = (new ParameterBlock()) .addSource(dct);

PlanarImage idct = JAI.create("idct", pb, null);

Release 1.0.1, November 1999 233

7.9.3

234

Magnitude Enhancement IMAGE ENHANCEMENT

Listing 7-9 Example IDCT Operation

// Create display image for inverse DCT of DCT of source image.
System.out.println("Creating display image for IDCT of DCT");
pixels = idct.getData().getPixels(@, 0, width, height,
(doubTe[])pixels);
BufferedImage bi = createBI(colorImage, width, height, pixels);

7.9.3 Magnitude Enhancement

Themagnitude operation computes the magnitude of each pixel of a complex
image. The source image must have an even number of bands, with the even
bands (0, 2, etc.) representing the real parts and the odd bands (1, 3, etc.) the
imaginary parts of each complex pixel. The destination image has at most half
the number of bands of the source image with each sample in a pixel
representing the magnitude of the corresponding complex source sample.

The magnitude values of the destination image are defined by the following
pseudocode:

dstPixel[x][yl[b] = sqrt(src[x]1[yl[2bl? + src[x][yl[2b + 11%)

where the number of bantssaries from zero to one less than the number of
bands in the destination image.

For integral image data types, the result is rounded and clamped as needed.

Themagnitude operation takes one rendered or renderable source image
containing complex data and no parameters.

Listing 7-10 shows a code sample fomagnitude operation.
Listing 7-10 Example Magnitude Operation

// Calculate a DFT image from the source image.
pb = new ParameterBlock();

pb.addSource(src) .add(DFTDescriptor.SCALING_NONE) ;
PlanarImage dft = JAI.create("dft", pb, null);

// Create the ParameterBlock specifying the source image.
pb = new ParameterBlock();
pb.addSource(dft);

// Calculate the magnitude.
PlanarImage magnitude = JAI.create("magnitude", pb, null);

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Phase Enhancement

7.9.4 Magnitude-squared Enhancement

TheMagnitudeSquared operation computes the squared magnitude of each pixel
of a complex image. The source image must have an even number of bands, with
the even bands (0, 2, etc.) representing the real parts and the odd bands (1, 3,
etc.) the imaginary parts of each complex pixel. The destination image has at
most half the number of bands of the source image with each sample in a pixel
representing the magnitude of the corresponding complex source sample.

The squared magnitude values of the destination image are defined by the
following pseudocode:

dstPixel[x][y]l[b] = src[x]1[yl[2b]% + src[x][yl[2b + 1]°

where the number of banbwaries from zero to one less than the number of
bands in the destination image.

For integral image data types, the result is rounded and clamped as needed.

TheMagnitudeSquared operation takes one rendered or renderable source image
containing complex data and no parameters.

7.9.5 Phase Enhancement

The Phase operation computes the phase angle of each pixel of a complex
image. The source image must have an even number of bands, with the even
bands (0, 2, etc.) representing the real parts and the odd bands (1, 3, etc.) the
imaginary parts of each complex pixel. The destination image has at most half
the number of bands of the source image with each sample in a pixel
representing the phase angle of the corresponding complex source sample.

The angle values of the destination image are defined by the following
pseudocode:

dst[x][y]l[b] = atan2(src[x][yl[2b + 1], src[x]Lyl[2b])
where the number of banbwaries from zero to one less than the number of
bands in the destination image.

For integral image data types, the result is rounded and scaled so the “natural”
arctangent range from f&-1) is remapped into the range [0, MAXVALUE). The
result for floating point image data types is the value returned bythe2 O
method.

The phase operation takes one rendered or renderable source image containing
complex data and no parameters.

Release 1.0.1, November 1999 235

7.9.6 Complex Conjugate IMAGE ENHANCEMENT

7.9.6 Complex Conjugate

The Conjugate operation computes the complex conjugate of a complex image.
The operation negates the imaginary components of a rendered or renderable
source image containing complex data. The source image must contain an even
number of bands with the even-indexed bands (0, 2, etc.) representing the real
and the odd-indexed bands (1, 3, etc.) the imaginary parts of each pixel. The
destination image similarly contains an even number of bands with the same
interpretation and with contents defined by:

dst[x] [yl [2%k] src[x][yl1[2*k];
dst[x][y]l[2%k+1] -src[x][y][2*k+1];

where the indek varies from zero to one less than the number of complex
components in the destination image.

The Conjugate operation takes one rendered or renderable source image
containing complex data and no parameters.

7.9.7 Periodic Shift

The PeriodicShift operation computes the periodic translation of an image.
The destination image of theriodicShift operation is the infinite periodic
extension of the source image with horizontal and vertical periods equal to the
image width and height, respectively, shifted by a specified amount along each
axis and clipped to the bounds of the source image. Thus for eachbithed
destination image sample at locatiogyj is defined by:

if(x < width - shiftX) {
if(y < height - shiftY) {
dst[x][y]l[b] = src[x + shiftX][y + shiftY][b];
} else {
dst[x][yl[b] = src[x + shiftX][y - height + shiftY][b];
}

} else {
if(y < height - shiftY) {
dst[x][yl[b] = src[x - width + shiftX][y + shiftY][b];
} else {
dst[x][yl[b] = src[x - width + shiftX][y - height +
shiftY][b];
}
}

whereshiftX andshiftY denote the translation factors along ¥endy axes,
respectively.

236 Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Images Based on a Functional Description

The PeriodicShift operation takes one rendered or renderable source image
and two parameters.

Parameter Type Description
shiftX Integer The displacement in thedirection.
shiftY Integer The displacement in thedirection.

7.9.8 Polar to Complex

The PolarToComplex operation computes a complex image from a magnitude
and a phase image. The operation creates an image with complex-valued pixels
from two images, the respective pixel values of which represent the magnitude
(modulus) and phase of the corresponding complex pixel in the destination
image.

The source images should have the same number of bands. The first source
image contains the magnitude values and the second source image the phase
values. The destination will have twice as many bands with the even-indexed
bands (0, 2, etc.) representing the real and the odd-indexed bands (1, 3, etc.) the
imaginary parts of each pixel.

The pixel values of the destination image are defined for a given complex sample
by the following pseudocode:

dst[x][yl[2*b] src@[x][y][b]*Math.cos(srcl[x][y]l[b])
dst[x][y]l[2%b+1] src@[x][y][b]*Math.sin(srcl[x][y][b])

where the inde) varies from zero to one less than the number of bands in the
source images.

For phase images with integral data type, it is assumed that the actual phase
angle is scaled from the rangerfi; PI] to the range [OMAX_VALUE] where
MAX_VALUE is the maximum value of the data type in question.

The PolarToComplex operation takes two rendered or renderable source images
and no parameters.
7.9.9 Images Based on a Functional Description

The ImageFunction operation generates an image from a functional description.
This operation permits the creation of images on the basis of a functional
specification, which is provided by an object that is an instance of a class that
implements thegjavax.media.jai.ImageFunction interface. In other words, to

Release 1.0.1, November 1999 237

7.9.9

238

Images Based on a Functional Description IMAGE ENHANCEMENT

use this operation, a class containing the functional information must be created
and this class must implement theageFunction interface.

The ImageFunction interface merely defines the minimal set of methods
required to represent such a function. The actual implementation of a class
implementing this interface is left to the programmer.

For example, if the function you wanted to generate was the negative exponential
exp(=Ix| - lyD)
The javax.media.jai.ImageFunction implementation would return the
following values:
* jsComplex() would return false
e getNumElements() would return 1
e float[] real = new real[width*height];
getElements(x, y, width, height, real, null);
and the implementation would initialize the arregal such that
real[j*width + i] = exp(-|x + i| - |y + 3D
or, equivalently

real[k] = exp(-|x + (k % width)]| - |y + (k / width)|)
where 0< k < width*height.

The ,y) coordinates passed to theageFunction.getElements() methods are
derived by applying an optional translation and scaling to the inxeedy
coordinates. The imageandy coordinates as usual depend on the values of the
minimumx andy coordinates of the image, which need not be zero.

Specifically, the function coordinates passeddoElements() are calculated
from the image coordinates as:

functionX
functionY

xScale*imageX + xTrans;
yScale*imageY + yTrans;

The number of bands in the destination image will be equal to the value returned
by theImageFunction.getNumElements() method unless the
ImageFunction.isComplex() method returngrue, in which case it will be

twice that. The data type of the destination image is determined by the
SampTleModel specified by arimageLayout object provided via a hint. If no

layout hint is provided, the data type will default to single-precision floating
point.

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Images Based on a Functional Description

The double precision floating point form of thhetElements () method will be
invoked if and only if the data type is specified to dmuble. For all other data
types the single precision form gétElements () will be invoked and the
destination sample values will be clamped to the data type of the image.

The ImageFunction operation takes seven parameters.

Parameter Type Description

function ImageFunction The functional description.
width Integer The image width.

height Integer The image height.

xScale Float Thex scale factor.
yScale Float They scale factor.

xTrans Float Thex translation.

yTrans Float They translation.

The image width and height are provided explicitly as parameters. These values
override the width and height specified by RuageLayout if such is provided.

API. javax.media.jai.ImageFunction

e boolean isComplex();
returns whether or not each value’s elements are complex.

e 1int getNumElements();
returns the number of elements per value at each position.

Release 1.0.1, November 1999 239

7.10 Single-image Pixel Point Processing IMAGE ENHANCEMENT

« void getElements(float startX, float startY, float deltaX,
float deltaY, int countX, int countY, int element,
float[] real, float[] imag);

returns all values of a given element for a specified set of coordinates.

Parameters startX The x coordinate of the upper left location

to evaluate.

startY They coordinate of the upper left location
to evaluate.

deltaX The horizontal increment.

deltay The vertical increment.

countX The number of points in the horizontal
direction.

countY The number of points in the vertical
direction.

element The element.

real A pre-allocated float array of length at least

countX* countY in which the real parts of
all elements will be returned.

imag A pre-allocated float array of length at least
countX* countY in which the imaginary
parts of all elements will be returned; may
be null for real data, i.e., when
isComplex() returns false.

e void getElements(double startX, double startY, double deltaX,
double deltaY, int countX, int countY, int element,
double[] real, double[] imag);

returns all values of a given element for a specified set of coordinates.

7.10 Single-image Pixel Point Processing

Pixel point operations are the most basic, yet necessary image processing
operations. The pixel point operations are primarily contrast enhancement
operations that alter the gray levels of an image’s pixels. One-by-one, the gray
level of each pixel in the source image is modified to a new value, usually by a
mathematical relationship.

JAI supports the following single-image pixel point operations:

240 Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Logarithmic Enhancement

* Pixel inverting fnvert)
* Logarithmic enhancementdg)

7.10.1 Pixel Inverting

The Invert operation inverts the pixel values of an image. For source images
with signed data types, the pixel values of the destination image are defined by
the following pseudocode:

dst[x][y]l[b] = -src[x][y][b]

For unsigned data types, the destination values are defined by the following
pseudocode:

dst[x][y]l[b] = MAX_VALUE - src[x][y][b]

whereMAX_VALUE is the maximum value supported by the system of the data
type of the source pixel.

The Invert operation takes one rendered or renderable source image and no
parameters.

Figure 7-12 shows a simple example of Btvert operation.

Original image Pixel inverted

Figure 7-12 Pixel Inverting

7.10.2 Logarithmic Enhancement

Occasionally, it is desirable to quantize an image on a logarithmic scale rather
than a linear scale. The human eye has a logarithmic intensity response but some
images are digitized by equipment that quantizes the samples on a linear scale.
To make the image better for use by a human observer, these images may be
made to have a logarithmic response by ithg operation.

Release 1.0.1, November 1999 241

7.11 Dual Image Pixel Point Processing IMAGE ENHANCEMENT

The Log operation takes the logarithm of the pixel values of the source image.
The pixel values of the destination image are defined by the following
pseudocode:

dst[x][y]l[b] = java.lang.Math.Tog(src[x][y][b])

For integral image data types, the result is rounded and clamped as needed. For
all integral data types, the log of O is set to 0. For signed integral data types
(short andint), the log of a negative pixel value is set to —1. For all floating
point data typesf{loat anddouble), the log of O is set to Fnfinity, and the

log of a negative pixel value is set KaN.

The Log operation takes one rendered or renderable source image and no
parameters.

Listing 7-11 shows a code sample fotég operation.

Listing 7-11 Example Log Operation

// Create the ParameterBlock specifying the source image.
pb = new ParameterBlock();
pb.addSource(image);

// Create the Log operation.
RenderedImage dst = JAI.create("log", pb);

7.11 Dual Image Pixel Point Processing

The previous section described pixel point operations for single images. This
section deals with pixel point processing on two images, also knovduals
image point processindoual-image point processing maps two pixel
brightnesses, one from each image, to an output image.

JAI supports the following dual-image pixel point operations:

* Overlay imagesQverlay operation)
* Image compositingCpmposite operation)

7.11.1 Overlay Images

The Overlay operation takes two rendered or renderable source images, and
overlays the second source image on top of the first source image. Usually, the
images are identical scenes, but may have been acquired at different times
through different spectral filters.

242 Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Image Compositing

The two source images must have the same data type and number of bands.
However, theirsampleModel types may differ. The destination image will always
have the same bounding rectangle as the first source image, that is, the image on
the bottom, and the same data type and number of bands as the two source
images. If the two source images don't intersect, the destination will be the same
as the first source.

TheOverlay operation is defined by the following pseudocode:

if (srcs[1] contains the point (x, y)) {
dst[x][y]l[b] = srcs[1]1[x]L[y][b];

} else {

) dst[x][yl[b] = srcs[@][x]L[y]l[b];

TheoOverlay operation takes two rendered or renderable source images and no
parameters.

7.11.2 Image Compositing

The Composite operation merges unrelated objects from two images. The result

is a new image that didn’t exist before. Themposite operation combines two
images based on their alpha values at each pixel. This is done on a per-band
basis, and the source images are expected to have the same number of bands and
the same data type. The destination image has the same data type as the two
sources, but one extra band than the source images, which represents the result
alpha channel.

The destination pixel values may be viewed as representing a fractional pixel
coverage or transparency factor. Specifically, tbeposite operation
implements the Porter-Duff “over” rutein which the output color of a pixel
with source value and alpha tuples @) and @, b) is given by:

a*A + (1 —a)*(b*B)
The output alpha value is given by:
a+(l-a*b

For premultiplied sources tuplea*@, a) and @*B, b), the premultiplied output
value is simply:

(@*A) + (1 —a)*(b*B)

1. SeeComputer Graphicsiuly 1984 pp. 253-259.

Release 1.0.1, November 1999 243

7.11.2

244

Image Compositing IMAGE ENHANCEMENT

The color channels of the two source images are suppliedoviece1 and
source2. The two sources must either both be pre-multiplied by alpha or not.
Alpha channel should not be includeddnurcel andsource?2.

The Composite operation takes two rendered or renderable source images and
four parameters:

Parameter Type Description

sourcelAlpha PlanarImage An alphaimage to override the alpha for the first source.

source2Alpha PlanarImage An alphaimage to override the alpha for the second source.

alphaPremultiplied Boolean True if alpha has been premultiplied to both sources and the
destination.

destAlpha Integer Indicates if the destination image should include an extra
alpha channel, and if so, whether it should be the first or last
band. One of:

CompositeDescriptor.DESTINATION_ALPHA_FIRST
CompositeDescriptor.DESTINATION_ALPHA_LAST
CompositeDescriptor.NO_DESTINATION_ALPHA

The alpha channel of the first source images must be supplied via the
sourcelAlpha parameter. This parameter may not be null. The alpha channel of
the second source image may be supplied visthwece2A1pha parameter. This
parameter may be null, in which case the second source is considered completely
opague. The alpha images should be single-banded, and have the same data type
as the source image.

ThealphaPremultiplied parameter indicates whether or not the supplied alpha
image is premultiplied to both the source images.

The destination image is the combination of the two source images. It has the
color channels and one additional alpha channel (the band index depends on the
alphaFirst parameter). Whether the alpha value is pre-multiplied to the color
channels also depends on the valuatfhaPremultiplied (pre-multiplied if

true).

Listing 7-12 shows a code sample for a composite operation.

Listing 7-12 Example Composite Operation

// Get the first image.

pb = new ParameterBlock();

pb.add(s1);

RenderedImage srcl = (RenderedImage)]AI.create("jpeg", pb);

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Thresholding

Listing 7-12 Example Composite Operation (Continued)

// Get the second image

pb = new ParameterBlock();

pb.add(s2);

RenderedImage src2 = (RenderedImage)]AI.create("jpeg", pb);

// Create the ParameterBlock
pb = new ParameterBlock();
pb.addSource(srcl);
pb.addSource(src2);
pb.add(new Boolean(false));
pb.add(new Boolean(false));

// Create the composite operation.
RenderedImage dst = (RenderedImage)JAI.create("composite", pb);

7.12 Thresholding

Thresholding, also known dsnary contrast enhancememirovides a simple
means of defining the boundaries of objects that appear on a contrasting
background. Th&hreshold operation takes one rendered image, and maps all
the pixels of this image whose values fall within a specified range to a specified
constant. The range is specified by a low value and a high value.

The pixel values of the destination image are defined by the following
pseudocode:

Towval = (Tow.length < dstNumBands) ?
Tow[@] : Tow[b];
highval = (high.length < dstNumBands) ?
high[0] : high[b];
const = (constants.length < dstNumBands) ?
constants[@] : constants[b];

if (src[x][y]l[b] >= lowvVal && src[x][y]l[b] <= highval) {
dst[x][y]l[b] const;

} else {

) dst[x][yl[b] = srclx]ly]l[b];

Release 1.0.1, November 1999 245

7.12

246

Thresholding IMAGE ENHANCEMENT

TheThreshold operation takes one rendered or renderable source image and
three parameters:

Parameters Type Description

Tow double[] The low value.

high double[] The high value

constants double[] The constant the pixels are mapped to.

If the number of elements supplied via thiegh, Tow, andconstants arrays are

less than the number of bands of the source image, the element from entry O is
applied to all the bands. Otherwise, the element from a different entry is applied
to its corresponding band.

Thelow parameter defines the lower bound for tieesho1d operation for each
band of the image. The operation will affect only values greater than or equal to
Tow[@] in band 0, only values greater than or equaldéa@[1] in band 1, and so

on. Thehigh parameter defines the upper bound fortheesho1d operation for
each band of the image.

A common way to arrive at the optimal values for thav andhigh parameters
is to perform arextrema operation on the image (see Section 9.3, “Finding the
Extrema of an Image”).

Listing 7-13 shows a code sample fortlareshold operation in which the three
parameters are passed as arguments to the operation.

Listing 7-13 Example Threshold Operation

// Set up the operation parameters.
PTlanarImage src, dst;

Integer [] low, high, map;

int bands;

Tow new Integer[bands];
high new Integer[bands];
map = new Integer[bands];

for (int i = 0; i1 < bands; i++) {

Tow[i] = new Integer(args[1l]);
high[i] = new Integer(args[2]);
map[i] = new Integer(args[3]);

}

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Thresholding

Listing 7-13 Example Threshold Operation (Continued)

// Create the threshold operation.

pb = new ParameterBlock();

pb.addSource(src);

pb.add(Tow) ;

pb.addChigh);

pb.add(map);

RenderedImage dst = JAI.create("threshold", pb);

Release 1.0.1, November 1999 247

7.12 Thresholding IMAGE ENHANCEMENT

248 Programming in Java Advanced Imaging

CHAPTER8

Geometric Image
Manipulation

THIS chapter describes the basics of JAl's geometric image manipulation
functions. The geometric image manipulation operators are all part of the
javax.media.operator package.

8.1 Introduction
The JAI geometric image manipulation functions are:

e Geometric transformatiorrfanslate, Scale, Rotate, andAffine)

» Perspective transformatiohelrspectiveTransform)

» TransposingTranspose)

» Shearing §hear)

* Warping @arp, WarpAffine, WarpPerspective, WarpPolynomial,
WarpGeneralPolynomial, WarpQuadratic, andwarpOpImage)

Most of these geometric functions require an interpolation argument, so this
chapter begins with a discussion of interpolation.

8.2 Interpolation

Several geometric image operations, sucAffdne, Rotate, Scale, Shear,
Translate, andwarp, use a geometric transformation to compute the coordinate
of a source image point for each destination image pixel. In most cases, the
destination pixel does not lie at a source pixel location, but rather lands

Release 1.0.1, November 1999 249

8.2

250

Interpolation GEOMETRIC IMAGE MANIPULATION

somewhere between neighboring pixels. The estimated value of each pixel is set
in a process called interpolation mnage resampling

Resampling is the action of computing a pixel value at a possibly non-integral
position of an image. The image defines pixel values at integer lattice points, and
it is up to the resampler to produce a reasonable value for positions not falling on
the lattice. A number of techniques are used in practice, the most common being
the following:

* Nearest-neighbor, which simply takes the value of the closest lattice point
» Bilinear, which interpolates linearly between the four closest lattice points

» Bicubic, which applies a piecewise polynomial function toxa44
neighborhood of nearby points

The area over which a resampling function needs to be computed is referred to
as itssupport thus the standard resampling functions have supports of 1, 4, and
16 pixels respectively. Mathematically, the ideal resampling function for a band-
limited image (one containing no energy above a given frequency) is the sinc
function, equal to sin(x)/x. This has practical limitations, in particular its infinite
support, which lead to the use of the standard approximations described above.

In interpolation, each pixel in a destination image is located with integer
coordinates at a distinct poillt in the image plane. The geometric transfofm
identifies each destination pixel with a corresponding p8iint the source

image. ThusD is the point thafl maps toS. In generalSdoesn’t correspond to

a single source pixel; that is, it doesn’t have integer coordinates. Therefore, the
value assigned to the pix8l must be computed as an interpolated combination
of the pixel values closest t8in the source image.

For most geometric transformations, you must specify the interpolation method
to be used in calculating destination pixel values. Table 8-1 lists the names used
to call the interpolation methods.

Table 8-1 Interpolation Types

Name Description

INTERP_NEAREST Nearest-neighbor interpolation. Assigns to point D in the destination image
the value of the pixel nearest S in the source image. See Section 8.2.1,
“Nearest-neighbor Interpolation.”

INTERP_BILINEAR Bilinear interpolation. Assigns to Point D in the destination a value that is a
bilinear function of the four pixels nearest S in the source image. See
Section 8.2.2, “Bilinear Interpolation.”

Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Interpolation

Table 8-1 Interpolation Types (Continued)

Name Description

INTERP_BICUBIC Bicubic interpolation. Assigns to point D in the destination image a value that
is a bicubic function of the 16 pixels nearest S in the source
image.Section 8.2.3, “Bicubic Interpolation.”

INTERP_BICUBIC2 Bicubic2 interpolation. Similar to Bicubic, but uses a different polynomial
function. See Section 8.2.4, “Bicubic2 Interpolation.”

Occasionally, these four options do not provide sufficient quality for a specific
operation and a more general form of interpolation is called for. The more
general form of interpolation, calledble interpolationuses tables to store the
interpolation kernels. See Section 8.2.5, “Table Interpolation.”

Other interpolation functions may be required to solve problems other than the
resampling of band-limited image data. When shrinking an image, it is common
to use a function that combines area averaging with resampling to remove
undesirable high frequencies as part of the interpolation process. Other
application areas may use interpolation functions that operate under other
assumptions about image data, such as taking the maximum value »Ra 2
neighborhood. Thé&nterpolation class provides a framework in which a

variety of interpolation schemes may be expressed.

Many Interpolations are separable, that is, they may be equivalently rewritten as
a horizontal interpolation followed by a vertical one (or vice versa). In practice,
some precision may be lost by the rounding and truncation that takes place
between the passes. Theterpolation class assumes separability and
implements all vertical interpolation methods in terms of corresponding
horizontal methods, and definésSeparable to return true. A subclass may
override these methods to provide distinct implementations of horizontal and
vertical interpolation. Some subclasses may implement the two-dimensional
interpolation methods directly, yielding more precise results, while others may
implement these using a two-pass approach.

When interpolations that require padding the source such as Bilinear or Bicubic
interpolation are specified, the boundary of the source image needs to be
extended such that it has the extra pixels needed to compute all the destination
pixels. This extension is performed via therderExtender class. The type of
border extension can be specified a&eaderingHint to the JAI.create

method. If no border extension type is provided, a default extension of
BorderExtender.BORDER_COPY will be used to perform the extension. See
Section 3.7.3, “Rendering Hints.”

Release 1.0.1, November 1999 251

8.2 Interpolation GEOMETRIC IMAGE MANIPULATION

Listing 8-1 shows a code sample foratate operation. First, the type of
interpolation is specifiedINTERP_NEAREST in this example) using the
Interpolation.create method. Next, a parameter block is created and the
interpolation method is added to the parameter block, as are all the other
parameters required by the operation. Finallyp@ate operation is created with
the specified parameter block.

Listing 8-1 Example Using Nearest-neighbor Interpolation

// Specify the interpolation method to be used
interp = Interpolation.create(Interpolation.INTERP_NEAREST);

// Create the parameter block and add the interpolation to it
ParameterBlock pb = new ParameterBlock();

pb.addSource(im); // The source image
pb.add(0.0F); // The x origin to rotate about
pb.add(0.0F); // The y origin to rotate about
pb.add(theta); // The rotation angle 1in radians
pb.add(interp); // The 1interpolation method

// Create the rotation operation and include the parameter
// block
RenderedOp op JAI.create("rotate", pb, null);

ThelInterpolation class provides methods for the most common cases<df,2
1x2,4x1,1x4,2x2, and 4x 4 input grids, some of which are shown in
Figure 8-1. These methods are defined in the superdassrpolation) to

package their arguments into arrays and forward the call to the array versions, to
simplify implementation. These methods should be called only on
Interpolation objects with the correct width and height. In other words, an
implementor of arinterpolation subclass may implemenmbterpolateH(int

s0, int sl, int xfrac), assuming that the interpolation width is in fact equal

to 2, and does not need to enforce this constraint.

252 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Interpolation

Central sample Central sample

¥ ¥
sO [s1 s _[sO|sl|s2
Sample pair Sample quadruple
Central sample Central sample
¥
s00 |s01 s_|s 0fs1|s 2
s10(s11 s0_[s00 |s01 |s02
2 X 2 Grid sl [s10|s11|s12
s2_|s20|s21 |s22

4 X 4 grid

Figure 8-1 Interpolation Samples

Another possible source of inefficiency is the specification of the subsample
position. When interpolating integral image data, JAl uses a fixed-point
subsample position specification, that is, a number between 0 8ndi(Rfor
some small value af. The value o in the horizontal and vertical directions
may be obtained by calling thgtSubsampleBitsH andgetSubsampleBitsV
methods. In general, code that makes use of an externally-provided

Interpolation object must query that object to determine its desired positional

precision.

For float anddouble images, JAl uses &loat between 0.0F and 1.0F (not
including 1.0F) as a positional specifier in the interest of greater accuracy.

API. javax.media.jai.Interpolation

e static Interpolation getInstance(int type)

creates an interpolation of one of the standard types, wheeds one of
INTERP_NEAREST, INTERP_BILINEAR, INTERP_BICUBIC, Or
INTERP_BICUBIC_2.

Release 1.0.1, November 1999

253

8.2 Interpolation GEOMETRIC IMAGE MANIPULATION

e 1int interpolate(int[][] samples, int xfrac, int yfrac)

performs interpolation on a two-dimensional array of integral samples. By
default, this is implemented using a two-pass approach.

Parameters samples A two-dimensional array of ints.

xfrac The x subsample position, multiplied by
2subsampIeBit_s

yfrac They subsample position, multiplied by
ZsubsampIeBit_s

e float interpolate(float[][] samples, float xfrac, float yfrac)

performs interpolation on a two-dimensional array of floating-point samples.
This is the same as the above method, only using float values instead of ints.

e doubTle interpolate(double[][] samples, float xfrac,
float yfrac)

Performs interpolation on a 2-dimensional array of double samples.

e 1int interpolate(int s00, int s01, int s10, int sll, int xfrac,
int yfrac)

performs interpolation on a2 grid of integral samples. It should only be
called if width == height == 2 and leftPadding == topPadding == 0.

Thes0o, s01, s10, ands11 parameters are the sample values (see 2 @rid
illustration in Figure 8-1).

e float interpolate(float s00, float s@1, float s10, float sli,
float xfrac, float yfrac)

performs interpolation on a22 grid of integral samples. This is the same as
the above method, only using float values instead of ints.

e double interpolate(double s00, double s0@1, double s10, double
s11, float xfrac, float yfrac)

performs interpolation on a*222 grid of double samples.

e 1int interpolate(int s__, int s_0, int s_1, int s_2, int s0O_,
int s00, int s@1l, int s02, int sl_, int s10, int sll,
int s12, int s2_, int s20, int s21, int s22, int xfrac,
int yfrac)
performs interpolation on a*44 grid of integral samples. It should only be
called if width == height == 4 and leftPadding == topPadding == 1.

Thes__, through s22 parameters are the sample values (see ¥ grid
illustration in Figure 8-1).

254 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Nearest-neighbor Interpolation

« float interpolate(float s__, float s_0, float s_1, float s_2,
float s0_, float s00, float s0@1l, float s02, float sl_,
float s10, float sll1l, float sl12, float s2_, float s20,
float s21, float s22, float xfrac, float yfrac)
performs interpolation on a*4 grid of integral samples. This is the same as
the above method, only using float values instead of ints.

e abstract int getSubsampleBitsH()

returns the number of bits used to index subsample positions in the horizontal

direction. All integralxfrac parameters should be in the range of O to
2(getSubsampIeBitsH_)_ 1.

e« int getSubsampleBitsV(Q)

returns the number of bits used to index subsample positions in the vertical

direction. All integralyfrac parameters should be in the range of O to
2(getSubsampIeBitsV)_ 1.

8.2.1 Nearest-neighbor Interpolation

Nearest-neighbor interpolation, also known as zero-order interpolation, is the
fastest interpolation method, though it can produce image artifacts ¢adjgibs

or aliasing error. Jaggies are image artifacts in which the straight edges of
objects appear to be rough or jagged.

Nearest-neighbor interpolation simply assigns to pbiirt the destination image
the value of the pixel neareStin the source image.

Neighborhoods of sizes®21, 1x2,2x2,4x1,1x4,4x4, Nx 1, and 1x N,

that is, all theinterpolate() methods defined in thenterpolation class, are
supported in the interest of simplifying code that handles a number of types of
interpolation. In each case, the central sample is returned and the rest are
ignored.

API: javax.media.jai.InterpolationNearest

e InterpolationNearest()

constructs afinterpolationNearest. The return value of
getSubsampleBitsH() andgetSubsampleBitsV() will be 0.

Release 1.0.1, November 1999 255

8.2.2

256

Bilinear Interpolation GEOMETRIC IMAGE MANIPULATION

8.2.2 Bilinear Interpolation

Bilinear interpolation, also known as first-order interpolation, linearly
interpolates pixels along each row of the source image, then interpolates along
the columns. Bilinear interpolation assigns to Pdnin the destination a value
that is a bilinear function of the four pixels near&h the source image.

Bilinear interpolation results in an improvement in image quality over nearest-
neighbor interpolation, but may still result in less-than-desirable smoothing
effects.

Bilinear interpolation requires a neighborhood extending one pixel to the right
and below the central sample. If the subsample position is givem,hy,(the
resampled pixel value will be:

(1 —V) * [(1 —u) * p00 +u * p01] +Vv * [(1 —u) * p10 +u * p11]

APIl: javax.media.jai.InterpolationBilinear

e InterpolationBilinear(int subsampleBits)

constructs afinterpolationBiTlinear object with a given subsample
precision, in bits.

Parameters subsampleBits The subsample precision.

e InterpolationBilinear()

constructs aflnterpolationBilinear object with the default subsample
precision.

8.2.3 Bicubic Interpolation

Bicubic interpolation reduces resampling artifacts even further by using the 16
nearest neighbors in the interpolation and by using bicubic waveforms rather
than the linear waveforms used in bilinear interpolation. Bicubic interpolation
preserves the fine detail present in the source image at the expense of the
additional time it takes to perform the interpolation.

The bicubic interpolation routine assigns to pdintn the destination image a
value that is a bicubic function of the 16 pixels neai®st the source image.

Bicubic interpolation performs interpolation using the following piecewise cubic
polynomial:

Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Bicubic2 Interpolation

r) = @+ 2K - @+ 3)K +1,0sK<1
r(x) = ax- BaxP+8ax -4, 1< <2
r(x)=0 , otherwise

with a set to —0.5

Bicubic interpolation requires a neighborhood extending one sample to the left of
and above the central sample, and two samples to the right of and below the
central sample.

API. javax.media.jai.InterpolationBicubic

e InterpolationBicubic(int subsampleBits)

constructs afinterpolationBicubic with a given subsample precision, in
bits.

Parameters subsampleBits The subsample precision.

8.2.4 Bicubic2 Interpolation

Bicubic?2 interpolation is basically the same as bicubic interpolation, but uses a
different polynomial function. Bicubic?2 interpolation uses the following
piecewise cubic polynomial:

r(x) = @+ 2K - @+ 3)K? +1,0s <1
r(x) = ax®- Gax+8ax-4,1<sK <2
rx)=0 , otherwise

with a setto —1.0

Bicubic interpolation requires a neighborhood extending one sample to the left of
and above the central sample, and two samples to the right of and below the
central sample.

API: javax.media.jai.InterpolationBicubic2

e InterpolationBicubic2(int subsampleBits)

constructs aflinterpolationBicubic2 with a given subsample precision, in
bits.

Parameters subsampleBits The subsample precision.

Release 1.0.1, November 1999 257

8.2.5 Table Interpolation GEOMETRIC IMAGE MANIPULATION

8.2.5 Table Interpolation

The previous-described types of interpolation, nearest-neighbor, bilinear, bicubic,
and bicubic2, base the interpolation values on a relatively few pixels: one
(nearest-neighbor), four (bilinear), or 16 (bicubic and bicubic2). Occasionally,
these options don’t provide sufficient quality for a specific operation and a
general form of interpolation is called for. Table interpolation uses tables to store
the interpolation kernels. The set of subpixel positions is broken up into a fixed
number of “bins” and a distinct kernel is used for each bin. The number of bins
must be a power of two.

An InterpolationTable defines a separable interpolation, with a separate set of
kernels for the horizontal and vertical dimensions. The number of bins within
each kernel may vary between the two dimensions. The horizontal and vertical
kernels may be unique or the same. That is, you can either construct two separate
kernels or use the same kernel for both the horizontal and vertical interpolation.

The kernels are stored in both floating- and fixed-point form. The fixed point
representation has a user-specified fractional precision. You must specify an
appropriate level of precision that will not cause overflow when accumulating the
results of a convolution against a set of source pixels, using 32-bit integer
arithmetic.

To use table interpolation, create aiterpolationTable with either identical
horizontal and vertical resampling kernels or with different horizontal and
vertical resampling kernels. The table forms the kernels used for the
interpolation.

During a table interpolation operation, the key value of the resampling kernel,
generally the center value, is laid over the source image pixel to be processed.
The other kernel values lie over neighboring pixels much like a conventional

M x N kernel operation. Each source image pixel that is covered by the kernel is
then multiplied by the kernel value that lies over it. The multiplication products
are then summed together and this sum becomes the pixel value in the
destination.

To save memory space and computation time, the table interpolation operation
does not use a conventional #N kernel. Instead, the operation uses separate
horizontal and vertical vector arrays (essentiallyxMl and Nx 1) to calculate

the same values that a ¥IN kernel would calculate. The vector arrays allow
you to provide fewer data elements for the kernel values. This is particularly
significant for large tables with many subsamples.

The basic format for th@nterpolationTable constructor is:

258 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Table Interpolation

InterpolationTable(int leftPadding, int topPadding, int width,
int height, int subsampleBitsH,
int subsampleBitsV, int precisionBits,
float[] dataH, float[] dataV)

The parameters to the constructor are described in the following paragraphs.

8.2.5.1 Padding

The TeftPadding and topPadding parameters define the location of the central
sample or key value, relative to the left and top of the horizontal and vertical
kernels, respectively. These parameters actually define the number of samples to
the left of or above the central sample, as shown in Figure 8-2.

Central sample

‘ Horizontal kernel

—»|leftPadding |<—

52

topPadding

.\f Vertical kernel

Central sample

Figure 8-2 Table Interpolation Padding

8.2.5.2 Width and Height

Thewidth andheight parameters define the size of the horizontal and vertical
kernels, respectively. These parameters specify the number of data elements in
each subsample of the kernel. The horizontal and vertical tables can have
different kernel sizes. For the two examples shown in Figure 8-2ytheh
parameter would be 7, theaight parameter would be 5.

The getWidth andgetHeight methods return the number of samples required
for horizontal and vertical resampling, respectively.

Release 1.0.1, November 1999 259

8.25 Table Interpolation GEOMETRIC IMAGE MANIPULATION
8.2.5.3 Subsample Bits

The subsampleBitsH andsubsampleBitsV parameters define the number of

bins used to describe the horizontal and vertical subpixel positions, respectively.
The number of bins must be a power of two, so the values are integers expressed
as the log of the number of horizontal or vertical subsample positions,
respectively. The valusubsampleBitsH = 1 defines two subsamples per

horizontal samplesubsampl1eBitsH = 2 defines four subsamples per sample, and
S0 on.

For each subsample, you must define separate kernel data. Typically, the kernel
values for each subsample are weighted according to the subsample location’s
proximity to the pixels used in the calculation. The closer a pixel is to the
subsample location, the more weight it carries in the kernel.

Figure 8-3 shows how the interpolation tables are used to determine which kernel
applies to a particular subsample location. The figure shows a subsample of 4 in
both the horizontal and vertical directions.

Typically, the kernel values for each subsample are weighted according to the
subsample location’s proximity to the pixels used in the calculation. The closer a
pixel is to the subsample location, the more weight it carries in the kernel.

Horizontal interpolation table Vertical interpolation table
0 1 2 3

| o 12 3

0|

1| |

2 [~

3| |

The subpixel location specifies
ngch kernel to use

0

1 Backward mapping to
@ point S’s location

3

Figure 8-3 Table Interpolation Backwards Mapping

260 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Table Interpolation
8.2.5.4 Precision

TheprecisionBits parameter defines the number of fractional bits to be used
when resampling integral sample values. The same precision value is used for
both horizontal and vertical resampling. It is important to choose an appropriate
level of precision that will not cause overflow when accumulating the results of a
convolution against a set of source pixels, using 32-bit integer arithmetic.

8.2.5.5 Kernel Data

The kernel data for each table is an array of floating point numbersddtu
anddataV parameters specify the floating-point data values for the horizontal
and vertical kernels, respectively. The number of data elements in the kernel is:

width x 2subsampleBitshq - a4 ay

height x 25uUbsampleBits\fq o ¢ 5y

For a two-element kernel size with eight subsample binggampleBits = 4),

you need to define an array of 16 floating point values. The first two values
define the kernel for the first subsample, the second two values define the kernel
for the second subsample, and so on. For example:

float[] kernelData = {1.0, 0.0,
0.875, 0.125, // 7/8, 1/8
0.75, 0.25, // 6/8, 2/8
0.625, 0.375, // 5/8, 3/8
0.5, 0.5, // 4/8, 4/8
0.375, 0.625, // 3/8, 5/8
0.25, 0.75, // 2/8, 6/8
0.125, 0.875%}; // 1/8, 7/8

The above example creates a bilinear interpolation table with eight subsamples.
The kernel values indicate how much influence the source image pixels will have
on the destination value. A kernel value of 1 indicates that a source pixel
completely determines the value of the destination pixel. A kernel value of 0
indicates that the source pixel has no influence on the destination value.

To preserve the source image’s intensity in the destination image, the sum of the
data values in each interpolation kernel should equal one. If the kernel values
sum to greater than one, the destination image’s intensity will be increased.
Conversely, if the kernel values sum to less than one, the destination image’s
intensity will be decreased.

Release 1.0.1, November 1999 261

8.2.5

262

Table Interpolation GEOMETRIC IMAGE MANIPULATION

If a value ofnul1 is given fordataV, thedataH table data is used for vertical
interpolation as well, and theopPadding, height, andsubsampleBitsV
parameters are ignored.

API. javax.media.jai.InterpolationTable

InterpolationTable(int padding, int width, int subsampleBits,
int precisionBits, float[] data)

constructs aflnterpolationTable with identical horizontal and vertical
resampling kernels.

Parameters padding The number of samples to the left or above
the central sample to be used during
resampling.

width The width or height of a resampling kernel.

subsample- The log of the number of subsample bins.

Bits

precision- The number of bits of fractional precision

Bits to be used when resampling integral sample
values.

data The kernel entries, as a float array of

wi dth*2SubsampleBitsth nirjas

InterpolationTable(int padding, int width, int subsampleBits,
int precisionBits, double[] data)

constructs an InterpolationTable with identical horizontal and vertical
resampling kernels.

InterpolationTable(int padding, int width, int subsampleBits,
int precisionBits, int[] data)

Constructs an InterpolationTable with identical horizontal and vertical

resampling kernels.

InterpolationTable(int TeftPadding, int topPadding, int width,
int height, int subsampleBitsH, int subsampleBitsV,
int precisionBits, float[] dataH, float[] dataV)

constructs afinterpolationTable with specified horizontal and vertical
extents (support), number of horizontal and vertical bins, fixed-point fractional

Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION

precision, and kernel entries.

Table Interpolation

The kernel data values are organized as

2subsampleBityntries each containing dth floats.

Parameters leftPadding

topPadding

width

height

subsample-
BitsH

subsample-
BitsV

precision-
Bits

dataH

dataVv

The number of samples to the left of the
central sample to be used during horizontal
resampling.

The number of samples above the central
sample to be used during vertical
resampling.

The width of a horizontal resampling
kernel.

The height of a vertical resampling kernel.
Ignored ifdatav is null.

The log, of the number of horizontal
subsample bins.

The log, of the number of vertical
subsample bins. Ignored datav is null.

The number of bits of fractional precision
to be used when resampling integral sample
values. The same value is used for both
horizontal and vertical resampling.

The horizontal table entries, as a float array
of 2subsampleBitshpntries each of length
width.

The vertical table entries, as a float array of
2subsampleBitsVayries each of length
height, or null. If null, thedataH table is
used for vertical interpolation as well and
the topPadding, height, and
subsampleBitsV parameters are ignored.

« InterpolationTable(int leftPadding, int topPadding, int width,
int height, int subsampleBitsH, int subsampleBitsV,
int precisionBits, double[] dataH, double[] dataV)

constructs afinterpolationTable with specified horizontal and vertical
extents (support), number of horizontal and vertical bins, fixed-point fractional

precision, and kernel entries.

Release 1.0.1, November 1999

263

8.2.5 Table Interpolation GEOMETRIC IMAGE MANIPULATION

« InterpolationTable(int TeftPadding, int topPadding, int width,
int height, int subsampleBitsH, int subsampleBitsV,
int precisionBits, int[] dataH, int[] dataV)
constructs an InterpolationTable with specified horizontal and vertical extents
(support), number of horizontal and vertical bins, fixed-point fractional
precision, and int kernel entries.

8.2.5.6 Additional Interpolation Table-related Methods

TheInterpolationTable class provides several methods for retrieving an
interpolation table’s kernel data values, subsample size, and precision.

API. javax.media.jai.InterpolationTable

e int getSubsampTleBitsH(Q)

returns the number of bits used to index subsample positions in the horizontal
direction.

e 1int getSubsampleBitsV()

returns the number of bits used to index subsample positions in the vertical
direction.

e« int getPrecisionBits()

returns the number of bits of fractional precision used to store the fixed-point
table entries.

e« 1int getLeftPadding()

returns the number of bits of fractional precision used to store the fixed-point
table entries.

e 1int getTopPadding()
returns the number of samples required above the center.

e int getWidth(Q
returns the number of samples required for horizontal resampling.

e 1int getHeight(Q
returns the number of samples required for vertical resampling.

e 1int[] getHorizontalTableData()
returns the integer (fixed-point) horizontal table data.

264 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Geometric Transformation

e int[] getVerticalTableData()
returns the integer (fixed-point) vertical table data.

« float[] getHorizontalTableDataFloat()
returns the floating-point horizontal table data.

o« float[] getVerticalTableDataFloat()
returns the floating-point vertical table data.

o« double[] getHorizontalTableDataDouble()
returns the double horizontal table data.

e double[] getVerticalTableDataDouble()
returns the double vertical table data.

8.3 Geometric Transformation

Geometric transformations provide the ability to reposition pixels within an
image. Pixels may be relocated from thedyy] spatial coordinates in the source
image to new coordinates in the destination. Geometric transformations are used,
for example, to move (translate), rotate, and scale the geometry of an image. A
general type of geometric transformation, warp, is discussed later in this chapter
(see Section 8.7, “Warping”).

Geometric transformations are used to register multiple images, correct
geometric distortions introduced in the image acquisition process, or to add
visual effects. The geometric transformation operations discussed here include:

e Translation {ranslate) — moves an image up, down, left, or right

e Scaling 6cale) — enlarges or shrinks an image

* Rotation Rotate) — rotates an image about a given point

» Affine (Affine) —includes translation, scaling, and rotation in one
operation

All transformation operations are performed by moving pixel values from their
original spatial coordinates to new coordinates in the destination image. Every
pixel in the source image is passed through this transformation, creating a
geometrically-transformed output pixel location. Each pixel of the source image
is transformed, pixel by pixel, to its new location in the destination image.

With a very few exceptions, all transformations result in some output pixel
locations being missed because no input pixels were transformed there. The

Release 1.0.1, November 1999 265

8.3.1 Translation Transformation GEOMETRIC IMAGE MANIPULATION

missed locations will be devoid of any pixel values and result in a black hole in
the destination image. To overcome this problem, intermediate pixel values are
estimated through interpolation (See “Interpolation” on page 249). One of four
interpolation methods may be selected:

interpolation
Methods Description

INTERP_NEAREST Use nearest-neighbor interpolation

INTERP_BILINEAR Use bilinear interpolation

INTERP_BICUBIC Use bicubic interpolation

INTERP_BICUBIC2 Use bicubic2 interpolation (uses a different polynomial function)

8.3.1 Translation Transformation

Image translation is the spatial shifting of an image up, down, left, or right. The
relationships between the source and destination image coordinates are given by
the following equation:

Xp = Xg+i, o1
Yp = Ystiy (6.1)
where:

Xp andyp are the integer pixel coordinates of the destination image

t, andty are the translation values

X'sandy'sdenote the source image point from which the pixel estimate is
computed.

Translation is often used to register multiple images geometrically. The
translation is often carried out to align the images before performing a

combination operation, such as image addition, subtraction, division, or
compositing.

266 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Translation Transformation

Original image Image translated using
positive values in both x and y

Figure 8-4 Translate Operation

The translate operation takes one rendered or renderable source image and
three parameters:

Parameters Type Description

xTrans Float The displacement in thedirection. The default value is
0.0F.

yTrans Float The displacement in thedirection. The default value is
0.0F.

interpolation Interpolation The interpolation method for resampling. One of
INTERP_NEAREST, INTERP_BILINEAR,
INTERP_BICUBIC, or INTERP_BICUBIC2. The default
value isnul1.

The xTrans parameter corresponds tipand theyTrans parameter corresponds
toty in equation 8.1. IkTrans is positive, the translation is to the right; if
negative, to the left. I Trans is positive, the translation is down; if negative,
upward. If bothxTrans andyTrans are integral, the operation simplyrapsits
source image to change the image’s position in the coordinate plane.

When interpolations that require padding the source such as bilinear or bicubic
interpolation are specified, the boundary of the source image needs to be
extended such that it has the extra pixels needed to compute all the destination
pixels. This extension is performed via tRerderExtender class. The type of
border extension can be specified a&eaderingHint to the JAI.create

method. If no border extension type is provided, a default extension of
BorderExtender.BORDER_COPY will be used to perform the extension. See
Section 3.7.3, “Rendering Hints.”

Release 1.0.1, November 1999 267

8.3.2 Scaling Transformation GEOMETRIC IMAGE MANIPULATION

Listing 8-2 shows a code sample for a translate operation using nearest-neighbor
interpolation.

Listing 8-2 Example Translate Operation

// Create a ParameterBlock and specify the source and
// parameters.
ParameterBlock pb = new ParameterBlock();

pb.addSource(im); // The source image
pb.add((float)Math.max(-mx, 0)); // The x translation
pb.add((float)Math.max(-my, 0)); // The y translation

pb.add(new InterpolationNearest()); // The interpolation

// Create the translate operation
im = JAI.create("translate", pb, null);

8.3.2 Scaling Transformation

Scaling, also known asinificationandmagnification enlarges or shrinks an
image. Anx-value defines the amount of scaling in thdirection, and a-value
defines the amount of scaling in tyeirection. TheScale operation both
translates and resizes.

Scaling is often used to geometrically register multiple images prior to
performing a combination operation, such as image addition, subtraction,
division, or compositing. Scaling can also be used to correct geometric
distortions introduced in the image acquisition process, althoughfthime
operation (“Affine Transformation” on page 272) would be more suitable for this.

For each pixelX, y) of the destination, the source value at the fractional subpixel
position is constructed by means of mixerpolation object and written to the

destination.
, _ X=XTrans
X Z —
xScale
y = y—yTrans
yScale
The scale operation takes one rendered or renderable source image and five
parameters:
Parameters Type Description
xScale Float Thex scale factor.
yScale Float They scale factor.

268 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Scaling Transformation

Parameters Type Description
xTrans Float Thex translation.
xTrans Float They translation.

interpolation Interpolation The interpolation method for resampling. One of
INTERP_NEAREST, INTERP_BILINEAR,
INTERP_BICUBIC, or INTERP_BICUBIC2.

When applying scale factorsqcale andyScale) to a source image with width
of src_width and height ofsrc_height, the resulting image is defined to have
the following dimensions:

dst_width = src_width * xScale
dst_height = src_height * yScale

Scale factors greater than 1.0 magnify the image; less than 1.0 minify the image.
The xTrans parameter corresponds tipand theyTrans parameter corresponds
toty in equation 8.1. IkTrans is positive, the translation is to the right; if
negative, to the left. I§Trans is positive, the translation is down; if negative,
upward.

Original image Image scaled by a factor Image scaled by
of 1.2inxandy (no 0.8inxand1.0iny
translation (no translation)

Figure 8-5 Scale Operation

When interpolations that require padding the source such as Bilinear or Bicubic
interpolation are specified, the boundary of the source image needs to be
extended such that it has the extra pixels needed to compute all the destination
pixels. This extension is performed via therderExtender class. The type of
border extension can be specified a&eaderingHint to the JAI.create

method. See Section 3.7.3, “Rendering Hints.”

If no Border Extension is specified, the source will not be extended. The scaled
image size is still calculated according to the equation specified above. However
since there isn’t enough source to compute all the destination pixels, only that

Release 1.0.1, November 1999 269

8.3.3

270

Rotation Transformation GEOMETRIC IMAGE MANIPULATION

subset of the destination image’s pixels that can be computed will be written in
the destination. The rest of the destination will not be written.

Listing 8-3 shows a code sample fosaale operation using a scale factor of 1.2
and nearest-neighbor interpolation.

Listing 8-3 Example Scale Operation

// Create a ParameterBlock and specify the source and
// parameters
ParameterBlock pb = new ParameterBlock();

pb.addSource(im); // The source image
pb.add(1.2); // The xScale
pb.add(1.2); // The yScale
pb.add(0.0F); // The x translation
pb.add(0.0F); // The y translation

pb.add(new InterpolationNearest()); // The interpolation

// Create the scale operation
im = JAI.create("scale", pb, null);

8.3.3 Rotation Transformation

The rotate operation rotates an image about a given point by a given angle.
Specifiedx andy values define the coordinate of the source image about which to
rotate the image and a rotation angleadiansdefines the angle of rotation

about the rotation point. If no rotation point is specified, a default of (0,0) is
assumed.

A negative rotation value rotates the image counter-clockwise, while a positive
rotation value rotates the image clockwise.

Original image Image rotated 45 degrees
about the reference point
(0.0, 0.0)

Figure 8-6 Rotate Operation

Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Rotation Transformation

The rotate operation takes one rendered or renderable source image and four
parameters:

Parameters Type Description

x0rigin Float Thex origin to rotate about.
yorigin Float They origin to rotate about.
angle Float The rotation angle in radians.

interpolation Interpolation The interpolation method for resampling. One of
INTERP_NEAREST, INTERP_BILINEAR,
INTERP_BICUBIC, or INTERP_BICUBIC2.

When interpolations that require padding the source such as Bilinear or Bicubic
interpolation are specified, the boundary of the source image needs to be
extended such that it has the extra pixels needed to compute all the destination
pixels. This extension is performed via tRerderExtender class. The type of
border extension can be specified a&eaderingHint to the JAI.create

method. If no border extension type is provided, a default extension of
BorderExtender.BORDER_COPY will be used to perform the extension. See
Section 3.7.3, “Rendering Hints.”

Listing 8-4 shows a code sample foratate operation for a rotation angle of
45 degrees. Since the rotation angle must be specified in radians, the example
first converts 45 degrees to radians.

Listing 8-4 Example Rotate Operation

// Create the rotation angle (45 degrees) and convert to
// radians.

int value = 45;

float angle = (float)(value * (Math.PI/180.0F));

// Create a ParameterBlock and specify the source and
// parameters
ParameterBlock pb = new ParameterBlock();

pb.addSource(im); // The source image
pb.add(0.0F); // The x origin
pb.add(0.0F); // The y origin
pb.add(angle); // The rotation angle

pb.add(new InterpolationNearest()); // The interpolation

// Create the rotate operation
im = JAI.create("Rotate", pb, null);

Release 1.0.1, November 1999 271

8.3.4 Affine Transformation GEOMETRIC IMAGE MANIPULATION

8.3.4 Affine Transformation

An affine transfornis a transformation of an image in which straight lines

remain straight and parallel lines remain parallel, but the distance between lines
and the angles between lines may change. Affine transformations include
translation, scaling, and rotation.

Although there are separate JAI operations to handle translation, scaling, and
rotation, theAaffine operation can perform any of these transformations or any
combination, such as scale and rotate.

The Affine operation performs (possibly filtered) affine mapping between a
source and a destination image. For each pixey) of the destination, the
source value at the fractional subpixel positighy') is constructed by means of
anInterpolation object and written to the destination.

The affine operation takes one rendered or renderable source image and two

parameters:
Parameter Type Description
transform AffineTransform The affine transform matrix.

interpolation Interpolation The interpolation method for resampling. One of
INTERP_NEAREST, INTERP_BILINEAR,
INTERP_BICUBIC, or INTERP_BICUBIC2.

The mapping between the destination pixely) and the source positiox'(y")

is given by:
X' =m00 * x + mO1 * y + m02
y' =ml0 *x+ mll *y+ ml2 (8.2)

wheremis a 3x 2 transform matrix that inverts the matrix supplied as the
transform argument.

The six elements of the transform matrix @6®, mo1, m02, m10, m11l, andml2.
The constructor looks like this:

AffineTransform tr = new AffineTransform(mood, mlo,
m@l, mll,
mo2, ml2);

These six elements affect the transformation as follows:

Element Description

moo Thex coordinate scale element

m10 They coordinate shear element

272 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Affine Transformation

Element Description

mol Thex coordinate shear element
mll They coordinate scale element
mo2 Thex coordinate translate element
m12 They coordinate translate element

The following matrix will translate an image 100 pixels to the right and 200
pixels down:

The following matrix will zoom an image by a factor of 2 in both tkandy
directions:

AffineTransform tr = new AffineTransform(2.0,
0.0,
0.0,
2.0,
0.0,
0.0);
Original image Affine operation showing

a 45 degree counterclockwise
rotation about the center

Figure 8-7 Affine Operation
When interpolations that require padding the source such as Bilinear or Bicubic

interpolation are specified, the boundary of the source image needs to be
extended such that it has the extra pixels needed to compute all the destination

Release 1.0.1, November 1999 273

8.3.4

274

Affine Transformation GEOMETRIC IMAGE MANIPULATION

pixels. This extension is performed via therderExtender class. The type of
border extension can be specified a&eaderingHint to the JAI.create
method. If no border extension type is provided, a default extension of
BorderExtender.BORDER_COPY will be used to perform the extension. See
Section 3.7.3, “Rendering Hints.”

Listing 8-5 shows a code sample for afifine operation that performs a 45
degree counterclockwise rotation.

Listing 8-5 Example Affine Transform Operation

// Load the image.

String filename = "images/Trees.gif";

PTlanarImage im = (PlanarImage)JAI.create("fileload",
filename);

// Create the affine transform matrix.

AffineTransform tr = new AffineTransform(0.707107,
-0.707106,
0.707106,
0.707106,
0.0,
0.0);

// Specify the type of interpolation.
Interpolation interp = new InterpolationNearest();

// Create the affine operation.
PlanarImage im2 = (PlanarImage)JAI.create("affine", im, tr,
interp);

API. java.awt.geom.AffineTransform

o static AffineTransform getTranslatelnstance(double tx,
double ty)

returns a transform representing a translation transformation.

Parameters tx The distance by which coordinates are
translated in thex axis direction.

ty The distance by which coordinates are
translated in theg axis direction

Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Perspective Transformation

« static AffineTransform getRotateInstance(double theta)
returns a transform representing a rotation transformation.

Parameters theta The angle of rotation in radians.

e« static AffineTransform getRotateInstance(double theta,
double x, double y)

returns a transform that rotates coordinates around an anchor point.

Parameters theta The angle of rotation in radians.
X Thex coordinate of the anchor point of the
rotation.
y They coordinate of the anchor point of the
rotation.

o static AffineTransform getScalelnstance(double sx, double sy)
returns a transform representing a scaling transformation.

Parameters sx The factor by which coordinates are scaled
along thex axis direction.

sy The factor by which coordinates are scaled
along they axis direction.

e« static AffineTransform getShearInstance(double shx, double shy)
returns a transform representing a shearing transformation.

Parameters shx The multiplier by which coordinates are
shifted in the direction of the positiveaxis
as a factor of theiy coordinate.

shy The multiplier by which coordinates are
shifted in the direction of the positiveaxis
as a factor of theix coordinate.

8.4 Perspective Transformation

Perspective distortions in images are sometimes introduced when the camera is
at an angle to the subject. For an example, think of a camera in an aircraft above
the earth. If the camera is aimed straight down, the resulting image will be a flat
perspective image; that is, no distortion. All objects in the image appear in
correct size relative to one another. However, if the camera is angled toward the

Release 1.0.1, November 1999 275

8.4 Perspective Transformation GEOMETRIC IMAGE MANIPULATION

earth horizon, perspective distortion is introduced. Objects closer to the camera
appear larger than same-sized objects farther away from the camera. Perspective
distortion has reduced the scale of the objects farthest away.

Perspective distortion can be corrected by applyipg@spective transforniThe
perspective transform maps an arbitrary quadrilateral into another arbitrary
guadrilateral, while preserving the straightness of lines. Unlike an affine
transformation, the parallelism of lines in the source is not necessarily preserved
in the output.

The perspective transform is represented byxa38matrix that transforms
homogenous source coordinat&sy 1) into destination coordinateg (y', w).
To convert back into non-homogenous coordinateandy' are divided byw.

X mO00 m01 m02| | x mOOx + mO1ly + m02
m10 m11l m12||y| = [m10x + mlly + ml12
W m20 m21 m22| |1 m20x + m21y + m22

<
|

, _ mMOOx + mO1ly + mO2

X T 20X+ m2ly + m22
y = m10x + mlly + ml2
m20x + m21y + m22
x =X
w
V.
w

The perspective transform is used with the perspective warp operation. See
Section 8.7.7, “Perspective Warp.”

API: javax.media.jai.PerspectiveTransform

o PerspectiveTransform(float m@@, float m@l, float mo2,
float ml1l0, float mll, float ml2, float m20, float m21,
float m22)

constructs a neWerspectiveTransform from nine float values.

o PerspectiveTransform(float[] flatmatrix)

constructs a newerspectiveTransform from a one-dimensional array of
nine float values, in row-major order.

276 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Mapping a Quadrilateral

e PerspectiveTransform(float[][] matrix)

constructs a newerspectiveTransform from a two-dimensional array of
float values.

e« PerspectiveTransform(double m@@, double m@l, double m0@2,
double ml1@, double mll, double ml12, double m20, double m21,
double m22)

constructs a neWwerspectiveTransform from nine double values.

e PerspectiveTransform(double[] flatmatrix)

constructs a newerspectiveTransform from a one-dimensional array of
nine double values, in row-major order.

e PerspectiveTransform(double[][] matrix)

constructs a newerspectiveTransform from a two-dimensional array of
double values.

e PerspectiveTransform(AffineTransform transform)

constructs a newerspectiveTransform with the same effect as an existing
AffineTransform.

8.4.1 Performing the Transform

ThePerspectiveTransform class contains methods that perform the perspective
transform on a specified point, an array of point objects, an array of floating
point coordinates, or an array of double precision coordinates.

8.4.2 Mapping a Quadrilateral

ThePerspectiveTransform class contains methods that may be used to create a
perspective transform that can be used to map a unit square to or from an
arbitrary quadrilateral and to map an arbitrary quadrilateral onto another arbitrary
guadrilateral. ThgetSquareToQuad methods map the unit square onto an
arbitrary quadrilateral:

(0, 0) - (x0,y0)

(1,0) - (x1,y1)

(1,1) - (x2,y2)

(0,1) -~ (x3,¥3)
The getQuadToSquare methods map an arbitrary quadrilateral onto the unit
square:

(x0,y0) - (0, 0)

Release 1.0.1, November 1999 277

8.4.2

278

Mapping a Quadrilateral GEOMETRIC IMAGE MANIPULATION

(Xl, yl) - (11 0)
(X2!y2) - (11 1)
(X3!y3) - (0! 1)

The getQuadToQuad methods map an arbitrary quadrilateral onto another
arbitrary quadrilateral:

(XO,yO) - (Xop!yop)
(x1,y1) - (x1p,ylp)
(X2!y2) - (sz!ﬂp)
(X3!y3) - (X3p!y3p)

API. javax.media.jai.PerspectiveTransform

static PerspectiveTransform getSquareToQuad(double x0,
double y@, double x1, double yl, double x2, double y2,
double x3, double y3)

creates ®erspectiveTransform that maps the unit square onto an arbitrary
quadrilateral.

static PerspectiveTransform getSquareToQuad(float x0, float y0,
float x1, float yl, float x2, float y2, float x3, float y3)

creates ®erspectiveTransform that maps the unit square onto an arbitrary
quadrilateral.

static PerspectiveTransform getQuadToSquare(double x0,

double y@, double x1, double yl, double x2, double y2,

double x3, double y3)
creates @erspectiveTransformthat maps an arbitrary quadrilateral onto the
unit square.

static PerspectiveTransform getQuadToSquare(float x0, float y0,

float x1, float yl, float x2, float y2, float x3, float y3)
creates ®erspectiveTransformthat maps an arbitrary quadrilateral onto the
unit square.

static PerspectiveTransform getQuadToQuad(double x@, double y0,
double x1, double yl, double x2, double y2, double x3,
double y3, double xQp, double y@p, double x1lp, double ylp,
double x2p, double y2p, double x3p, double y3p)

creates ®erspectiveTransform that maps an arbitrary quadrilateral onto

another arbitrary quadrilateral.

Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Inverse Perspective Transform

e« static PerspectiveTransform getQuadToQuad(float x0, float yo,
float x1, float yl, float x2, float y2, float x3, float y3,
float x0p, float y@p, float xlp, float ylp, float x2p,
float y2p, float x3p, float y3p)

creates ®@erspectiveTransform that maps an arbitrary quadrilateral onto
another arbitrary quadrilateral.

8.4.3 Mapping Triangles

ThePerspectiveTransform class contains methods that may be used to create

a

perspective transform that can be used to map one arbitrary triangle to another

arbitrary triangle. This is done with one of thetTriToTri methods

API: javax.media.jai.PerspectiveTransform

o static AffineTransform getTriToTri(double x0, double y@, double
x1, double yl, double x2, double y2)

creates anffineTransform that maps an arbitrary triangle onto another
arbitrary triangle:

(x0,y0) - (xOp,yOp)
(x1,y1) - (x1p,ylp)
(x2,y2) - (x2p,y2p)

e« static AffineTransform getTriToTri(float x0, float y@, float
x1, float yl, float x2, float y2)
creates aaffineTransform that maps an arbitrary triangle onto another
arbitrary triangle:

(x0,y0) - (xOp, yOp)
(x1,y1) - (x1p,ylp)
(x2,¥2) - (x2p,y2p)

8.4.4 Inverse Perspective Transform

The PerspectiveTransform class contains methods to perform an inverse
perspective transform. One of theverseTransform methods inverse
transforms a specified Point2D to another Point2D. AnotheerseTransform
method inverse transforms an array of double-precision coordinates.

Release 1.0.1, November 1999

279

8.45 Creating the Adjoint of the Current Transform GEOMETRIC IMAGE MANIPULATION

API. javax.media.jai.PerspectiveTransform

e Point2D inverseTransform(Point2D ptSrc, Point2D ptDst)

inverse transforms the specifipdSrc and stores the result gxDst. If ptDst

is null, a newpoint2D object will be allocated before storing. In either case,
ptDst containing the transformed point is returned for convenience. Note that
ptSrc andptDst can the same. In this case, the input point will be overwritten
with the transformed point.

Parameters ptSrc The point to be inverse transformed.
ptDst The resulting transformed point.

e inverseTransform(double[] srcPts, int srcOff, double[] dstPts,
int dstOff, int numPts)

inverse transforms an array of double precision coordinates by this transform.

Parameters srcPts The array containing the source point
coordinates. Each point is stored as a pair
of x,y coordinates.

srcOff The offset to the first point to be
transformed in the source array.

dstPts The array where the transformed point
coordinates are returned. Each point is
stored as a pair of,y coordinates.

dstOoff The offset to the location where the first
transformed point is stored in the
destination array.

numPts The number of point objects to be
transformed.

8.4.5 Creating the Adjoint of the Current Transform

The PerspectiveTransform class contains a method for creating a new
PerspectiveTransform that is the adjoint of the current transform. The adjoint is
defined as the matrix of cofactors, which in turn are the determinants of the
submatrices defined by removing the row and column of each element from the
original matrix in turn.

The adjoint is a scalar multiple of the inverse matrix. Because points to be
transformed are converted into homogeneous coordinates, where scalar factors

280 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Transposing

are irrelevant, the adjoint may be used in place of the true inverse. Since it is
unnecessary to normalize the adjoint, it is both faster to compute and more
numerically stable than the true inverse.

API. javax.media.jai.PerspectiveTransform

e public PerspectiveTransform createAdjoint()
returns a new PerpectiveTransform that is the adjoint of the current transform.

8.5 Transposing

The Transpose operation is a combination of flipping and rotating. With a
Transpose operation, you can (see Figure 8-8):

* Flip an image vertically across an imaginary horizontal axis that runs
through the center of the imaga {P_VERTICAL).

* Flip an image horizontally across an imaginary vertical axis that runs
through the center of the image {P_HORIZONTAL).

» Flip animage across its main diagonal axis, which runs from the upper left
to the lower right corneiF(IP_DIAGONAL).

* Flipanimage across its main anti-diagonal axis, which runs from the upper
right to the lower left corneiF(IP_ANTIDIAGONAL).

* Rotate an image counterclockwise about its center by 90, 180, or 270
degreesROTATE_90, ROTATE_180, ROTATE_270).

Thetranspose operation takes one rendered or renderable source image and one
parameter:

Parameter Type Description

type Integer The type of flip operation to be performed. One of
FLIP_VERTICAL, FLIP_HORIZONTAL, FLIP_DIAGONAL,
FLIP_ANTIDIAGONAL, ROTATE_90, ROTATE_180, or
ROTATE_270

Release 1.0.1, November 1999 281

8.5 Transposing GEOMETRIC IMAGE MANIPULATION

Original image FLIP_VERTICAL FLIP_HORIZONTAL
FLIP_DIAGONAL FLIP_ANTIDIAGONAL
ROTATE_90 ROTATE_180 ROTATE_270

Figure 8-8 Transpose Operations
Listing 8-6 shows sample code for creatingranspose operation. The example

performs a horizontal flip on the source image and creates the destination image
im2.

282 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Shearing

Listing 8-6 Example Transpose Operation

// Create a pattern image.

ParameterBlock pb = new ParameterBlock();

pb.add(image);

PTanarImage im@ = (PlanarImage)JAI.create("awtImage", pb);

// Transpose type : O=FLIP_VERTICAL

// : 1=FLIP_HORIZONTAL
// : 2=FLIP_DIAGONAL

// : 3=FLIP_ANTIDIAGONAL
// : 4=ROTATE_90

// : 5=ROTATE_180

// : 6=ROTATE_270

int type = 1;

// Create the Transpose operation.
PlanarImage im2 = (PlanarImage)J]AI.create("transpose", im@,
type);

8.6 Shearing

Shearing can be visualized by thinking of an image superimposed onto a flexible
rubber sheet. If you hold the sides of the sheet and move them up and down in
opposite directions, the image will undergo a spatial stretching known as
shearing. Thehear operation shears an image either horizontally or vertically.

Original image Shear horizontal Shear vertical

Figure 8-9 Shearing Operations
For each pixelX, y) of the destination, the source value at the fractional subpixel

position ', y') is constructed by means of anterpolation object and written
to the destination (see “Interpolation” on page 249).

Release 1.0.1, November 1999 283

8.6 Shearing GEOMETRIC IMAGE MANIPULATION

The shear operation takes one rendered source image and five parameters:

Parameters Type Description

shear Float The shear value.

shearDir Integer The shear directiorSHEAR_HORIZONTAL or
SHEAR_VERTICAL

xTrans Float Thex translation.

yTrans Float They translation.

interpolation Interpolation The interpolation method for resampling. One of
INTERP_NEAREST, INTERP_BILINEAR,
INTERP_BICUBIC, or INTERP_BICUBIC2

For ashearDir parameter OSHEAR_HORIZONTAL:

X = X—xTrans —Y [khear
y =y
For ashearDir parameter OSHEAR_VERTICAL:

X = X
y

When interpolations that require padding the source such as Bilinear or Bicubic
interpolation are specified, the boundary of the source image needs to be
extended such that it has the extra pixels needed to compute all the destination
pixels. This extension is performed via tBerderExtender class. The type of
border extension can be specified a&eaderingHint to the JAI.create

method. If no border extension type is provided, a default extension of
BorderExtender.BORDER_COPY will be used to perform the extension. See
Section 3.7.3, “Rendering Hints.”

Y —yTrans — X [khear

Listing 8-7 shows a code sample foskear operation.

Listing 8-7 Example Shear Operation

// Load the image.

String filename = "images/Picketfence.gif";

PlanarImage im@ = (PlanarImage)JAI.create("fileload",
filename);

imagePanell = new ScrollingImagePanel(im@, 512, 512);

// Specify the type of interpolation.
Interpolation interp = new InterpolationNearest();

284 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Warping

Listing 8-7 Example Shear Operation (Continued)

// Set the shear direction:
// O = SHEAR_HORIZONTAL
// 1 = SHEAR_VERTICAL
int shear_dir = 1;

// Set the shear value and the x and y translation values.
float shear_amt = 0.7F;
float x_trans = 50.0F;
float y_trans = 100.0F;

// Create the Shear operation.

PTanarImage im2 = (PlanarImage)JAI.create("shear",
imo,
shear_amt,
shear_dir,
x_trans,
y_trans,
interp);

// Display the image.

imagePanel2 = new ScrollingImagePanel(im2, 512, 512);
add(imagePanel2);

pack(Q;

show();

8.7 Warping

The linear geometric transformations described in Section 8.3, “Geometric
Transformation,” cannot introduce curvature in the mapping process. Image
warping is a type of geometric transformation that introduces curvature into the
mapping process. The introduction of curvature is important when an image has
been distorted through lens aberrations and other non-linear processes.

Warping transformations, also known agber sheetransformations, can
arbitrarily stretch the image about defined points. This type of operation provides
a nonlinear transformation between source and destination coordinates.

JAI provides a transformation classgrp, that is used for non-linear image
coordinate transformation. As in tll@terpolation class (see Section 8.2,
“Interpolation”), pixel positions in th&arp class are represented using fixed-
point coordinates, yielding subpixel accuracy but still allowing the use of integer
arithmetic. The degree of precision is set by means of#SubSampleBi tsH
(horizontal) andgetSubSampleBitsV (vertical) parameters to thearpRect

method.

Release 1.0.1, November 1999 285

8.7 Warping GEOMETRIC IMAGE MANIPULATION

The key method of this class iarpRect, which provides the locations of the
pixels in source space that map to a given rectangular output region. The output
region is specified using normal integer (full pixel) coordinates. The source
positions returned by the method are specified in fixed-point, subpixel
coordinates.

JAI supports seven warping functions:
* Polynomial warp — a polynomial-based description of an image warp
(WarpPolynomial).

e General polynomial warp — a general polynomial-based description of an
image warp\WarpGeneralPolynomial).

» Grid warp —aregular grid-based description of an image wérpGrid).

» Quadratic warp — a quadratic-based description of an image warp
(WarpQuadratic).

» Cubic warp — a cubic-based description of an image wampCubic).
» Perspective warp — a perspective (projective) wedppPerspective).
» Affine warp — affine-based wargarpAffine).

APIl: javax.media.jai.Warp

e« int[] warpRect(int x, int y, int width, int height,
int subsampleBitsH, int subsampleBitsV, int[] destRect)
computes the source subpixel positions for a given rectangular destination
region. The destination region is specified using normal integral (full pixel)
coordinates. The source positions returned by the method are specified in fixed
point, subpixel coordinates using the current valugeaSubsampleBitsH()
andgetSubsampleBitsV().

Parameters x The minimumx coordinate of the
destination region.
y The minimumy coordinate of the
destination region.
width The width of the destination region.
height The height of the destination region.

subsampleBitsH The number of fractional bits used to
specify horizontal offsets in the
warpPositions data.

286 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Warping

subsampleBitsV The number of fractional bits used to
specify vertical offsets in the
warpPositions data.

destRect An int array containing at least
2*width*height elements, or null. If null,
a new array will be constructed.

As a convenience, an implementation is provided for this method that calls
warpSparseRect(). Subclasses may wish to provide their own
implementations for better performance.

o float[] warpRect(int x, int y, int width, int height,
float[] destRect)
computes the source subpixel positions for a given rectangular destination
region. The destination region is specified using normal integral (full pixel)
coordinates. The source positions returned by the method are specified in
floating point.

As a convenience, an implementation is provided for this method that calls
warpSparseRect(). Subclasses may wish to provide their own
implementations for better performance.

e dint[] warpPoint(int x, int y, int subsampleBitsH,
int subsampleBitsV, int[] destRect)
computes the source subpixel position for a given destination pixel. The
destination pixel is specified using normal integral (full pixel) coordinates. The
source position returned by the method is specified in fixed point, subpixel
coordinates using theibsampleBitsH andsubsampleBitsV parameters.

As a convenience, an implementation is provided for this method that calls
warpSparseRect(). Subclasses may wish to provide their own
implementations for better performance.

e float[] warpPoint(int x, int y, float[] destRect)

computes the source subpixel position for a given destination pixel. The
destination pixel is specified using normal integral (full pixel) coordinates. The
source position returned by the method is specified in floating point.

As a convenience, an implementation is provided for this method that calls
warpRect(). Subclasses may wish to provide their own implementations for
better performance.

Release 1.0.1, November 1999 287

8.7

288

Warping GEOMETRIC IMAGE MANIPULATION

int[] warpSparseRect(int x, int y, int width, int height,

int periodX, int periodY, int subsampleBitsH,

int subsampleBitsV, int[] destRect)
computes the source subpixel positions for a given rectangular destination
region, subsampled with an integral period. The destination region is specified
using normal integral (full pixel) coordinates. The source positions returned by
the method are specified in fixed point, subpixel coordinates using the
subsampleBitsH andsubsampleBitsV parameters.

Parameters x The minimumX coordinate of the

destination region.

y The minimumY coordinate of the
destination region.

width The width of the destination region.

height The height of the destination region.

periodX The horizontal sampling period.

periodY The horizontal sampling period.

subsample- The number of fractional bits used to
BitsH specify horizontal offsets in the
warpPositions data.

subsample- The number of fractional bits used to
BitsV specify vertical offsets in the
warpPositions data.

destRect An int array containing at least
2DNidth+periodX— 1xhe@hh-peﬁodYL b
] periodX periodY o

elements, or null. If null, a new array will
be constructed.

As a convenience, an implementation is provided for this method that calls
warpSparseRect () with a floatdestRect parameter. Subclasses may wish to
provide their own implementations for better performance.

abstract float[] warpSparseRect(int x, int y, int width,

int height, int periodX, int periodY, float[] destRect)
computes the source subpixel positions for a given rectangular destination
region, subsampled with an integral period. The destination region is specified
using normal integral (full pixel) coordinates. The source positions returned by
the method are specified in floating point.

Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Performing a Warp Operation

This method is abstract in this class and must be provided in concrete

subclasses.

» Rectangle mapDestRect(Rectangle destRect)
computes a rectangle that is guaranteed to enclose the region of the source that

is required in order to produce a given rectangular output region. The routine
may return null if it is infeasible to compute such a bounding box.

Parameters destRect

TheRectangle in destination coordinates.

The default (superclass) implementation returns null.

8.7.1 Performing a Warp Operation

Thewarp operation performs general warping on an image. Wde operation
takes one rendered source image and two parameters:

Parameters Type

Description

warp Warp

interpolation Interpolation

The warp object. One of
WarpAffine
WarpGrid
WarpPerspective
WarpPolynomial
WarpQuadratic
WarpOpImage

The interpolation method for resampling. One of
INTERP_NEAREST, INTERP_BILINEAR,
INTERP_BICUBIC, or INTERP_BICUBIC2

To create a warp operation:

1. Create the warp object, which specifies the type of warp operation. The
warp object will be one of the following:

Object Description

WarpAffine An affine-based image warp. See Section 8.7.8, “Affine
Warp.”

WarpCubic A cubic-based image warp. See Section 8.7.6, “Cubic

WarpGeneralPolynomial

WarpGrid

WarpPerspective

Warp.”

A polynomial-based image warp for polynomials of a
higher degree. See Section 8.7.3, “General Polynomial
Warp.”

A grid-based image warp where the image may be warped
in pieces. See Section 8.7.4, “Grid Warp.”

A perspective or projective image warp. See Section 8.7.7,
“Perspective Warp.”

Release 1.0.1, November 1999

289

8.7.1

290

Performing a Warp Operation GEOMETRIC IMAGE MANIPULATION

Object Description

WarpPolynomial A polynomial-based description of an image warp. See
Section 8.7.2, “Polynomial Warp.”

WarpQuadratic A quadratic-based description of an image warp. See
Section 8.7.5, “Quadratic Warp.”

Create th@arameterBlock object and add the source image and the
necessary parameters to it. Twaep operation takes two parameters:

Parameter Description

warp Thewarp object. One oWarpAffine, WarpCubic,
WarpGeneralPolynomial, WarpGrid, WarpPerspective,
WarpPolynomial, orWarpQuadratic.

interpolation The interpolation method for resampling. OneI&fTERP_NEAREST,
INTERP_BILINEAR, INTERP_BICUBIC, or INTERP_BICUBIC2.

When interpolations that require padding the source such as Bilinear or
Bicubic interpolation are specified, the boundary of the source image
needs to be extended such that it has the extra pixels needed to compute all
the destination pixels. This extension is performed via the

BorderExtender class. The type of border extension can be specified as a
RenderingHint to theJAI.create method. If no border extension type is
provided, a default extension B§rderExtender.BORDER_COPY will be

used to perform the extension. See Section 3.7.3, “Rendering Hints.”

3. Create the warp operation with the . create method.

Listing 8-8 shows a sample code for a simple second-order warp operation.

Listing 8-8 Example of a Second-order Warp

// Create WarpPolynomial object for a polynomial warp
// operation.
WarpPolynomial warp;

float[] coeffs = { 1.0F, 0.0F, 0.0F, 0.0F, 1.0F, 0.0F };

// Create the ParameterBlock and add the parameters to it.
ParameterBlock pb = new ParameterBlock();

pb.addSource(srcImage) ;
pb.add(warp);
pb.add(new InterpolationNearest());

// Create the warp operation.
dstImage = JAI.create("warp", pb);

Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Polynomial Warp

8.7.2 Polynomial Warp

ThewarpPolynomial class provides a polynomial-based description of an image
warp. The mapping is defined by two bivariate polynomial functi¥fs y) and

Y(X, y) that define the sourceandy positions that map to a given destination

(%, y) pixel coordinate.

The functionsX(x, y) andY(x, y) have the form:

n i o _
Za”&“wy (8.3)
i=0j=0

ThewarpPolynomial constructor takes aceffs parameter that must contain a
number of coefficients of the forrm(* 1)(n + 2) for somen, wheren is the
degree power of the polynomial. The coefficients appear in the following order:

n, X(n—l)y, o Xy(n—l) n

2 2
LXY X, Xy, ¥, ..., X Y%

with the coefficients of the polynomial defining the sourceoordinates
appearing before those defining theoordinates.

The sourceX, y) coordinate is pre-scaled by the factpreScaleX and

preScaleY prior to the evaluation of the polynomial. The result of the
polynomial evaluations are scaled pystScalex andpostScaleY to produce

the destination pixel coordinates. This process allows for better precision of the
results.

The number of points needed to control the alignment of the image relates
directly to the order of warp. Three control points constitute a first-order warp.
Six points constitute a second-order warp. The number of points required for
each degree of warp are as follows:

Degree of Number of
Warp Points

1 3

6

10
15
21
28
36

N o o B~ WN

Release 1.0.1, November 1999 291

8.7.2 Polynomial Warp GEOMETRIC IMAGE MANIPULATION

API. javax.media.jai.WarpPolynomial

e« WarpPolynomial(float[] coeffs)
constructs &arpPolynomial with pre- and post-scale factors of 1.

Parameters coeffs The destination to source transform
coefficients.

o« WarpPolynomial(float[] coeffs, float preScaleX, float
preScaleY, float postScaleX, float postScaleY)

constructs &arpPolynomial with a given transform mapping destination
pixels into source space. Note that this is the inverse of the customary
specification of the mapping of an image.

Parameters coeffs The destination-to-source transform
coefficients.

preScaleX The scale factor to apply to sourge
positions.

preScaleY The scale factor to apply to sourge
positions.

postScaleX The scale factor to apply to destinatian
positions.

postScaleY The scale factor to apply to destinatign
positions.

o float[] getCoeffs()
returns the raw coefficients array.

e 1int getDegree()
returns the degree of the warp polynomials.

292 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION General Polynomial Warp

e« static WarpPolynomial createWarp(float[] sourceCoords,
int sourceOffset, float[] destCoords, int destOffset,
int numCoords, float preScaleX, float preScaleY,
float postScaleX, float postScaleY, int degree)

returns an instance @hrpPolynomial or its subclasses that approximately
maps the given scaled destination image coordinates into the given scaled
source image coordinates.

Parameters sourceCoords An array of floats containing the source
coordinates withx andy alternating.

sourceOffset The initial entry ofsourceCoords to be
used.

destCoords An array of floats containing the destination
coordinates withx andy alternating.

destOffset The initial entry ofdestCoords to be used.

numCoords The number of coordinates from
sourceCoords anddestCoords to be used.

preScaleX The scale factor to apply to sourge
positions.

preScaleY The scale factor to apply to sourge
positions.

postScaleX The scale factor to apply to destinatign
positions.

postScaleY The scale factor to apply to destinatign
positions.

degree The desired degree of the warp
polynomials.

8.7.3 General Polynomial Warp

ThewarpGeneralPolynomial class provides a concrete implementation of
warpPolynomial for polynomials of a higher degree.

The mapping is defined by two bivariate polynomial functiits, y) andY(x, y)
that define the sourcé and positions that map to a given destinationy)
pixel coordinate.

The functionsX(x, y) andY(x, y) have the form:

Release 1.0.1, November 1999 293

8.7.3

294

General Polynomial Warp GEOMETRIC IMAGE MANIPULATION

n i
=i,
a; x 'Oy (8.4)
i=0j=0
The xCoeffs andyCoeffs parameters must contain the same number of
coefficients of the formr(+ 1)(n + 2)/2 for somen, wheren is the non-negative

degree power of the polynomial. The coefficients, in order, are associated with
the terms:

1, X, Y, 58, X%, Y2, . X0 X0 Dey ey (= 1) g0
and coefficients of value 0 can not be omitted.

The destination pixel coordinates (the arguments to the X() and Y() functions)
are given in normal integral pixel coordinates, while the output of the functions
is given in fixed-point, subpixel coordinates with a number of fractional bits
specified by theubsampleBitsH andsubsampleBitsV parameters.

API: javax.media.jai.WarpGeneralPolynomial

o« WarpGeneralPolynomial(float[] xCoeffs, float[] yCoeffs)
constructs &arpGeneralPolynomial with pre- and post-scale factors of 1.

Parameters xCoeffs The destination to source transform
coefficients for thex coordinate.

yCoeffs The destination to source transform
coefficients for they coordinate.

Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION General Polynomial Warp

e« WarpGeneralPolynomial(float[] xCoeffs, float[] yCoeffs,
float preScaleX, float preScaleY, float postScaleX,
float postScaleY)
constructs &arpGeneralPolynomial with a given transform mapping
destination pixels into source space. Note that this is the inverse of the
customary specification of the mapping of an image.

Parameters xCoeffs The destination to source transform
coefficients for thex coordinate.

yCoeffs The destination to source transform
coefficients for they coordinate.

preScaleX The scale factor to apply to sourge
positions.

preScaleY The scale factor to apply to sourge
positions.

postScaleX The scale factor to apply to destinatign
positions.

postScaleY The scale factor to apply to destinatign
positions.

o float[] warpSparseRect(int x, int y, int width, int height,
int periodX, int periodY, float[] destRect)

computes the source subpixel positions for a given rectangular destination
region, subsampled with an integral period.

Parameters x The minimumX coordinate of the
destination region.
y The minimumY coordinate of the
destination region.
width The width of the destination region.
height The height of the destination region.
periodX The horizontal sampling period.
periodY The horizontal sampling period.
destRect An int array containing at least
rwidth + periodX— 1, height+ periodY- L
0 periodX periodY o

elements, or null. If null, a new array will
be constructed.

Release 1.0.1, November 1999 295

8.7.4 Grid Warp GEOMETRIC IMAGE MANIPULATION

8.7.4 Grid Warp

If polynomial warping is impractical, the image may be warped in pieces using
grid warping, also known asontrol grid interpolation In the most common
implementation of grid warping, specified input control points form a grid of
contiguous, horizontally-oriented rectangles in the output image. The mapping
from destination pixels to source positions is described by bilinear interpolation
between a rectilinear grid of points with known mappings.

Given a destination pixel coordinate §) that lies within a cell having corners at
(x0, y0), (x1, y0), (X0, y1), and &1, y1), with source coordinates defined at each
respective corner equal texQ, sy0), (XL, syl), (X2, sy2), and X3, sy3), the
source positiondx, sy) that maps ontox V) is given by the following equations:

xfrac = X = X0
x1—x0 8.5)
yfrac = y=y0 .
yl-y0
s = X0+ (sxl—sx0) [kfrac
(8.6)
t = sy0+ (syl—sy0) [kfrac
U= sX+(sx3—sx2) [kfrac
(8.7)
v = sy2 + (sy3—sYy2) [kfrac
SX = s+ (U frac
(=30 ©.8)

sy = t+(v— 1) Oyfrac

The source andy values are interpolated horizontally along the top and bottom
edges of the grid cell, and the results are interpolated vertically, as shown in
Figure 8-10.

296 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Grid Warp

(x0, y0) — (x1, y0) -
(sx0, sy0) (sx1, syl)
X
(s 1)
(X! Y) -
(sx, sy) >
(u,v)
¥
(x0, y1) — (x1,yl) -
(sx2, sy2) (sx3, sy3)

Figure 8-10 Warp Grid

The grid is defined by a set of equal-sized cells startingstart, yStart). The
width of each cell is defined by thestep parameter and the height is defined by
theyStep parameter. There asélumCe11s cells horizontally and/NumCe11s

cells vertically.

The degree of warping within each cell is defined by the values in the
warpPositions parameter. This parameter must contain the following values:

warpPositions = 2(xnumCells + 1)(yNumCells + 1)

These values alternately contain the sow@ady coordinates that map to the
upper-left corner of each cell in the destination image. The cells are enumerated
in row-major order, that is, all the grid points along a row are enumerated first,
then the gird points for the next row are enumerated, and so on.

For example, ifkNumCe11s is 2 andyNumCel1s is 1, the order of the data in the
table would be as follows:

x00, yo00o, x10, ylo, x20, y20, x01, yol, x11, yll, x21, y21
for a total of 2(2 + 1)(1 + 1) = 12 elements.

Release 1.0.1, November 1999 297

8.7.4 Grid Warp GEOMETRIC IMAGE MANIPULATION

API: javax.media.jai.WarpGrid

e WarpGrid(int xStart, int xStep, int xNumCells, 1int yStart,
int yStep, int yNumCells, float[] warpPositions)

constructs aarpGrid with a given grid-based transform mapping destination
pixels into source space. Note that this is the inverse of the customary
specification of the mapping of an image.

Parameters xStart The minimumx coordinate of the grid.
xStep The horizontal spacing between grid cells.
xNumCe11s The number of grid cell columns.
yStart The minimumy coordinate of the grid.
yStep The vertical spacing between grid cells.
yNumCe11s The number of grid cell rows.

warp- A float array of length

Positions 2(xNumCells+ J(yNumcCells+ 3 containing
the warp positions at the grid points in row-
major order.

e WarpGrid(Warp master, int xStart, int xStep, int xNumCells,
int yStart, int yStep, int yNumCells)
constructs aarpGrid object by sampling the displacements given by another
Warp object of any kind.

Parameters master Thewarp object used to initialized the grid
displacements.
xStart The minimumx coordinate of the grid.
xStep The horizontal spacing between grid cells.

xNumCe1ls The number of grid cell columns.
yStart The minimumy coordinate of the grid.
yStep The vertical spacing between grid cells.
yNumCells The number of grid cell rows.

e float[] warpSparseRect(int x, int y, int width, int height,
int periodX, int periodY, float[] destRect)

computes the source subpixel positions for a given rectangular destination
region. The destination region is specified using normal integer (full pixel)

298 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Quadratic Warp

coordinates. The source positions returned by the method are specified in fixed
point, subpixel coordinates using thesabsampleBitsH and
subsampleBitsV parameters.

Parameters x The minimumx coordinate of the
destination region.
y The minimumy coordinate of the
destination region.
width The width of the destination region.
height The height of the destination region.
periodX The horizontal sampling period.
periodY The vertical sampling period.
destRect An int array containing at least
rwidth + periodX— 1 height+ periodY- 1§
U periodX periodY u

elements, or null. If null, a new array will
be constructed.
8.7.5 Quadratic Warp

ThewarpQuadratic class provides a quadratic-based description of an image
warp. The source positiox'(y") of a point §, y) is given by the following
quadratic bivariate polynomial:

P(X y) = C+CoX+cgy+ c4x2+ CgXy + cey2

: : 89
a(X Y) = C;+CgX+ Cgy + CjpX +CpyXy+ ¢y

y

API. javax.media.jai.WarpQuadratic

e WarpQuadratic(float[] xCoeffs, float[] yCoeffs,
float preScaleX, float preScaleY, float postScaleX,
float postScaleY)

constructs a WarpQuadratic with a given transform mapping destination pixels
into source space. Note that this is the inverse of the customary specification

Release 1.0.1, November 1999 299

8.7.5 Quadratic Warp GEOMETRIC IMAGE MANIPULATION

of the mapping of an image. The coeffs arrays must each contain six floats
corresponding to the coefficients c1, c2, etc. as shown in the class comment..

Parameters xCoeffs The six destination-to-source transform
coefficients for thex coordinate.

yCoeffs The six destination-to-source transform
coefficients for they coordinate.

preScaleX The scale factor to apply to sourge
positions.

preScaleY The scale factor to apply to sourge
positions.

postScaleX The scale factor to apply to destinatign
positions.

postScaleyY The scale factor to apply to destinatign
positions.

e WarpQuadratic(float[] xCoeffs, float[] yCoeffs)
constructs a WarpQuadratic with pre- and post-scale factors of 1.

o float[] warpSparseRect(int x, int y, int width, int height,
int periodX, int periodY, float[] destRect)
computes the source subpixel positions for a given rectangular destination
region, subsampled with an integral period. The destination region is specified
using normal integral (full pixel) coordinates. The source positions returned by
the method are specified in floating point.

Parameters x The minimumx coordinate of the
destination region.
y The minimumy coordinate of the
destination region.
width The width of the destination region.
height The height of the destination region.
periodX The horizontal sampling period.

300 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Cubic Warp

periodY The vertical sampling period.

destRect A float array containing at least
rwidth + periodX— 1 height+ periodY- 1§
U periodX periodY u

elements, or null. If null, a new array will
be constructed.

8.7.6 Cubic Warp

ThewarpCubic class performs a cubic-based image warp. The source position
(x,y) of a point &, y) is given by the following cubic polynomial:

X = P(X Y) = €+ CoX + Cay + CuXC +CXy + Gy’ +
3 2 2 3 (8.10)
C,X” + CgX Yy + CoXY +Cy0y
2 2
Y = 0(X Y) = CpqH+CipX+Cigy +CpuX” +CisXy + Gy + (6.11)
A1

3 2) 3
C17X T CygX Y+ CigXy +CpoY

API: javax.media.jai.WarpCubic

e WarpCubic(float[] xCoeffs, float[] yCoeffs, float preScaleX,
float preScaleY, float postScaleX, float postScaleY)
constructs &arpCubic with a given transform mapping destination pixels into
source space. Note that this is the inverse of the customary specification of the
mapping of an image. Theveffs array must contain 12 floats corresponding
to the coefficients a, b, etc. as shown in the class comment.

Parameters xCoeffs The ten destination to source transform
coefficients for thex coordinate.

yCoeffs The ten destination to source transform
coefficients for they coordinate.

preScaleX The scale factor to apply to sourge
positions.

preScaleY The scale factor to apply to sourge
positions.

Release 1.0.1, November 1999 301

8.7.7 Perspective Warp GEOMETRIC IMAGE MANIPULATION

postScaleX The scale factor to apply to destinatign
positions.

postScaleY The scale factor to apply to destinatign
positions.

e WarpCubic(float[] xCoeffs, float[] yCoeffs)
constructs &arpCubic with pre- and post-scale factors of 1.
o« float[] warpSparseRect(int x, int y, int width, int height,
int periodX, int periodY, float[] destRect)

computes the source subpixel positions for a given rectangular destination
region, subsampled with an integral period.

Parameters x The minimumx coordinate of the
destination region.
y The minimumy coordinate of the
destination region.
width The width of the destination region.
height The height of the destination region.
periodX The horizontal sampling period.
periodY The vertical sampling period.
destRect A float array containing at least
DNMH1+peﬁodX—-1xhe@hH-penodY— b
g periodX periodY o

elements, or null. If null, a new array will
be constructed.

8.7.7 Perspective Warp

Perspective distortions in images caused by camera-to-target viewing angle can
be restored through perspective warping. Perspective distortion appears as the
reduction in scale of an object that recedes from the foreground into the
background of the image.

TheWwarpPerspective class provides a perspective (projective) warp. The
transform is specified as a mapping from destination space to source space. In
other words, it is the inverse of the normal specification of a perspective image
transformation. See Section 8.4, “Perspective Transformation,” for a description
of the PerspectiveTransform class.

302 Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Affine Warp

API. javax.media.jai.WarpPerspective

e WarpPerspective(PerspectiveTransform transform)

constructs &arpPerspective with a given transform mapping destination
pixels into source space. Note that this is the inverse of the customary
specification of perspective mapping of an image.

Parameters transform The destination-to-source transform.

o PerspectiveTransform getTransform()

returns a clone of theerspectiveTransform associated with this
WarpPerspective object.

e 1int[] warpSparseRect(int x, int y, int width, int height,
int periodX, int periodY, float[] destRect)
computes the source subpixel positions for a given rectangular destination
regions subsampled with an integral period. The destination region is specified
using normal integral (full pixel) coordinates. The source positions returned by
the method are specified in floating-point.

Parameters x The minimumx coordinate of the
destination region.
y The minimumy coordinate of the
destination region.
width The width of the destination region.
height The height of the destination region.
periodX The horizontal sampling period.
periodY The vertical sampling period.
destRect A float array containing at least
2D/vidth+ periodX— 1>< height+ periodY- L
g periodX periodY]

elements, or null. If null, a new array will
be constructed.

8.7.8 Affine Warp

ThewarpAffine class provides an affine-based warp. The transform is specified
as a mapping from destination space to source space. In other words, it is the
inverse of the normal specification of an affine image transformation.

Release 1.0.1, November 1999 303

8.7.8

304

Affine Warp GEOMETRIC IMAGE MANIPULATION

The source positionx{, y') of a point &, y) is given by the quadratic bivariate
polynomial:

X = p(X y) = ¢ tCX = Cgy
Y =ad(xy) = cy+CgX+cgy

Listing 8-9 shows a code sample for an affine-based warp operation.

(8.12)

Listing 8-9 Example Affine Warp

// Create the transform parameter (WarpAffine).

double m00 = 0.8;
double ml1l0 = 0.3;
double m01l = -0.7;
double mll = 1.4;

double m@2 = 230.3;

double ml12 = -115.7;

AffineTransform transform = new AffineTransform(mood, mlo,
mol, mll,
mo2, ml2);

Warp warp = new WarpAffine(transform);

// Create the interpolation parameter.
Interpolation interp = new InterpolationNearest(8);

// Create the ParameterBlock.
ParameterBlock pb = new ParameterBlock();
pb.addSource(src);

pb.add(warp);

pb.add(interp);

// Create the warp operation.
return (RenderedImage)]AI.create("warp", pb);

APIl: javax.media.jai.WarpAffine

o« public WarpAffine(float[] xCoeffs, float[] yCoeffs,
float preScaleX, float preScaleY, float postScaleX,
float postScaleY)
constructs aarpAffine with a given transform mapping destination pixels
into source space. The transform is given by:
x’ = xCoeffs[0] + xCoeffs[1]*x + xCoeffs[2]*y;
y’ = yCoeffs[0] + yCoeffs[1]*x + yCoeffs[2]*y;

Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION

Affine Warp

where X' and y' are the source image coordinates and x and y are the destination

image coordinates.

Parameters xCoeffs

yCoeffs

preScaleX

preScaleY

postScaleX

postScaleY

The three destination-to-source transform
coefficients for thex coordinate.

The three destination-to-source transform
coefficients for they coordinate.

The scale factor to apply to sourge
positions.

The scale factor to apply to sourge
positions.

The scale factor to apply to destinatign
positions.

The scale factor to apply to destinatign
positions.

e WarpAffine(float[] xCoeffs, float[] yCoeffs)
constructs aarpAffine with pre- and post-scale factors of 1.

e public WarpAffine(AffineTransform transform, float preScaleX,
float preScaleY, float postScaleX, float postScaleY)

constructs &aarpAffine with a given transform mapping destination pixels

into source space.

Parameters transform

preScaleX
preScaleY
postScaleX

postScaleY

The destination-to-source transform.

The scale factor to apply to sourge
positions.

The scale factor to apply to sourge
positions.

The scale factor to apply to destinatign
positions.

The scale factor to apply to destinatign
positions.

e WarpAffine(AffineTransform transform)
constructs aarpAffine with pre- and post-scale factors of 1.

Parameters transform

Release 1.0.1, November 1999

An AffineTransform.

305

8.7.8 Affine Warp GEOMETRIC IMAGE MANIPULATION

o« AffineTransform getTransform()

returns a clone of theffineTransform associated with thigarpAffine
object.

o float[] warpSparseRect(int x, int y, int width, int height,
int periodX, int periodY, float[] destRect)
computes the source subpixel positions for a given rectangular destination
region, subsampled with an integral period. The destination region is specified
using normal integral (full pixel) coordinates. The source positions returned by
the method are specified in floating point.

Parameters x The minimumx coordinate of the
destination region.
y The minimumy coordinate of the
destination region.
width The width of the destination region.
height The height of the destination region.
periodX The horizontal sampling period.
periodY The vertical sampling period.
destRect A float array containing at least
2DNidth+periodX— 1xhe@hh-peﬁodYL b
] periodX periodY o

elements, or null. If null, a new array will
be constructed.

« Rectangle mapDestRect(Rectangle destRect)

computes &ectangle that is guaranteed to enclose the region of the source
that is required in order to produce a given rectangular output region.

Parameter destRect TheRectangle in destination coordinates.

306 Programming in Java Advanced Imaging

CHAPTER9

Image Analysis

THIS chapter describes the JAI APl image analysis operators.

9.1 Introduction

The JAI API image analysis operators are used to directly or indirectly extract
information from an image. The JAI API supports the following image analysis
functions:

* Finding the mean value of an image region

* Finding the minimum and maximum values in an image (extrema)

* Producing a histogram of an image

» Detecting edges in an image

» Performing statistical operations

9.2 Finding the Mean Value of an Image Region

TheMean operation scans a specified region of an image and computes the
image-wise mean pixel value for each band within the region. The region of
interest does not have to be a rectangle. If no region is specified (null), the entire
image is scanned to generate the histogram. The image data pass through the
operation unchanged.

Release 1.0.1, November 1999 307

9.3 Finding the Extrema of an Image IMAGE ANALYSIS

Themean operation takes one rendered source image and three parameters:

Parameter Type Description

roi ROI The region of the image to scanni11 value means the
whole image.

xPeriod Integer The horizontal sampling rate. May not be less than 1.

yPeriod Integer The vertical sampling rate. May not be less than 1.

The region of interest (ROI) does not have to be a rectangle. It maytie in
which case the entire image is scanned to find the image-wise mean pixel value
for each band.

The set of pixels scanned may be reduced by specifyingRrbeiod and
yPeriod parameters, which define the sampling rate along each axis. These
variables may not be less than 1. However, they mayud@, in which case the
sampling rate is set to 1; that is, every pixel in the ROI is processed.

The image-wise mean pixel value for each band may be retrieved by calling the
getProperty method with"mean" as the property name. The return value has
type java.lang.Number[#bands].

Listing 9-1 shows a partial code sample of finding the image-wise mean pixel
value of an image in the rendered mode.

Listing 9-1 Finding the Mean Value of an Image Region

// Set up the parameter block for the source image and
// the three parameters.
ParameterBlock pb = new ParameterBlock();

pb.addSource(im); // The source image

pb.add(null); // null ROI means whole image
pb.add(1); // check every pixel horizontally
pb.add(1); // check every pixel vertically

// Perform the mean operation on the source image.
RenderedImage meanImage = JAI.create('"mean”, pb, null);

// Retrieve and report the mean pixel value.
double[] mean = (double[])meanImage.getProperty("mean");

System.out.printin("Band @ mean = " + mean[0]);

9.3 Finding the Extrema of an Image

The Extrema operation scans a specific region of a rendered image and finds the
image-wise minimum and maximum pixel values for each band within that

308 Programming in Java Advanced Imaging

IMAGE ANALYSIS Finding the Extrema of an Image

region of the image. The image pixel data values pass through the operation
unchanged. Thextrema operation can be used to obtain information to compute
the scale and offset factors for the amplitude rescaling operation (see Section 7.4,
“Amplitude Rescaling”).

The region-wise maximum and minimum pixel values may be obtained as
properties. Calling thgetProperty method on this operation wittextrema” as

the property name retrieves both the region-wise maximum and minimum pixel
values. Calling it with“maximum” as the property name retrieves the region-wise
maximum pixel value, and withiminimum” as the property name retrieves the
region-wise minimum pixel value.

The return value foextrema has typedouble[2] [#bands], and those for
maximum andminimum have typedouble[#bands].

The region of interest (ROI) does not have to be a rectangle. It maytie in
which case the entire image is scanned to find the image-wise maximum and
minimum pixel values for each band.

The extrema operation takes one rendered source image and three parameters:

Parameter Type Description

roi ROI The region of the image to scan.

xPeriod Integer The horizontal sampling rate (may not be less than 1).
yPeriod Integer The vertical sampling rate (may not be less than 1).

The set of pixels scanned may be further reduced by specifyingPthe od and
yPeriod parameters that represent the sampling rate along each axis. These
variables may not be less than 1. However, they mayuié, in which case the
sampling rate is set to 1; that is, every pixel in the ROI is processed.

Listing 9-2 shows a partial code sample of usingékerema operation to obtain
both the image-wise maximum and minimum pixel values of the source image.

Listing 9-2 Finding the Extrema of an Image

// Set up the parameter block for the source image and
// the constants
ParameterBlock pb = new ParameterBlock();

pb.addSource(im); // The source image

pb.add(roi); // The region of the image to scan
pb.add(50); // The horizontal sampling rate
pb.add(50); // The vertical sampling rate

Release 1.0.1, November 1999 309

9.4 Histogram Generation IMAGE ANALYSIS

Listing 9-2 Finding the Extrema of an Image (Continued)

// Perform the extrema operation on the source image
RenderedOp op = JAI.create(“extrema”, pb);

// Retrieve both the maximum and minimum pixel value
double[][] extrema = (double[][]) op.getProperty(“extrema”);

9.4 Histogram Generation

An image histogram is an analytic tool used to measure the amplitude
distribution of pixels within an image. For example, a histogram can be used to
provide a count of the number of pixels at amplitude 0, the number at amplitude
1, and so on. By analyzing the distribution of pixel amplitudes, you can gain
some information about the visual appearance of an image. A high-contrast
image contains a wide distribution of pixel counts covering the entire amplitude
range. A low contrast image has most of the pixel amplitudes congregated in a
relatively narrow range.

Usually, the wider histogram represents a more visually-appealing image.

Pixel
count

Pixel
count

Amplitude Amplitude

High contrast image Low contrast image

Figure 9-1 Example Histograms

The primary tasks needed to perform a histogram operation are as follows:

1. Create &istogram object, which specifies the type of histogram to be
generated.

310 Programming in Java Advanced Imaging

IMAGE ANALYSIS Specifying the Histogram

2. Create &1istogram operation with the required parameters or create a
ParameterBlock with the parameters and pass it toHfhietogram
operation.

3. Read the histogram data stored in the object. The data consists of:
Number of bands in the histogram

Number of bins for each band of the image
Lowest value checked for each band

Highest value checked for each band

9.4.1 Specifying the Histogram

TheHistogram object accumulates the histogram information. A histogram
counts the number of image samples whose values lie within a given range of
values, or “bins.” The source image may be of any data type.

TheHistogram contains a set of bins for each band of the image. These bins
hold the information about gray or color levels. For example, to take the
histogram of an eight-bit grayscale image, tHietogram might contain 256
bins. When reading theistogram, bin 0 will contain the number of 0’s in the
image, bin 1 will contain the number of 1's, and so on.

TheHistogram need not contain a bin for every possible value in the image. Itis
possible to specify the lowest and highest values that will result in a bin count
being incremented. It is also possible to specify fewer bins than the number of
levels being checked. In this case, each bin will hold the count for a range of
values. For example, for i@ stogram with only four bins used with an 8-bit
grayscale image, the number of occurrences of values 0 through 63 will be stored
in bin 0, occurrences of values 64 through 127 will be stored in bin 1, and so on.

TheHistogram object takes three parameters:

Parameter Description

numBins An array ofints, each element of which specifies the number of bins to be used
for one band of the image. The number of elements in the array must match the
number of bands in the image.

Towvalue An array offToats, each element of which specifies the lowest gray or color
level that will be checked for in one band of the image. The number of elements
in the array must match the number of bands in the image.

highvalue An array offloats, each element of which specifies the highest gray or color
level that will be checked for in one band of the image. The number of elements
in the array must match the number of bands in the image.

Release 1.0.1, November 1999 311

9.4.2

312

Performing the Histogram Operation IMAGE ANALYSIS

For an example histogram, see Listing 9-3 on page 315.

APIl: javax.media.jai.Histogram

e Histogram(int[] numBins, float[] lowValue, float[] highValue)
constructs &1istogram that may be used to accumulate data within a given
range for each band of an image. The legal pixel range and the number of bins
may be controlled separately.

Parameters numBins The number of bins for each band of the
image;numBins.length must be equal to
the number of bands of the image which the
histogram is taken.

Towvalue The lowest pixel value checked for each
band.

highvalue The highest pixel value checked for each
band. Note when counting the pixel values,
thishighvalue is not included based on the
formula below.

If binwidth is defined ash(ighvalue —TowValue)/numBins, bin i will count
pixel values in the range from

lowValue+ i [binWidth < x <lowValue+ (i + 1) [hinWidth

9.4.2 Performing the Histogram Operation

Once you have created théstogram object to accumulate the histogram
information, you generate the histogram for an image withhtt¥ogram

operation. Thehistogram operation scans a specified region of an image and
generates a histogram based on the pixel values within that region of the image.
The region of interest does not have to be a rectangle. If no region is specified
(null), the entire image is scanned to generate the histogram. The image data
passes through the operation unchanged.

Thehistogram operation takes one rendered source image and four parameters:

Parameter Type Description

specification Histogram The specification for the type of histogram to be generated.
See Section 9.4.1, “Specifying the Histogram.”

roi ROI The region of the image to scan. See Section 6.2, “Region of
Interest Control.”

Programming in Java Advanced Imaging

IMAGE ANALYSIS Reading the Histogram Data

Parameter Type Description
xPeriod Integer The horizontal sampling rate. May not be less than 1.
yPeriod Integer The vertical sampling rate. May not be less than 1.

The set of pixels scanned may be further reduced by specifyingpthe od and
yPeriod parameters that represent the sampling rate along each axis. These
variables may not be less than 1. However, they may be null, in which case the
sampling rate is set to 1; that is, every pixel in the ROI is processed.

9.4.3 Reading the Histogram Data

The histogram data is stored in the user suppiiegktogram object, and may be
retrieved by calling thgetProperty method on this operation with
“histogram” as the property name. The return value will be of typetogram.

Several get methods allow you to check on the four histogram parameters:

e The bin data for all bandgdtBins)
* The bin data for a specified bar@{Bins)

» The number of pixel values found in a given bin for a given band
(getBinSize)

» The lowest pixel value found in a given bin for a given band
(getBinLowValue)

The set of pixels counted in the histogram may be limited by the use of a region
of interest (ROI), and by horizontal and vertical subsampling factors. These
factors allow the accuracy of the histogram to be traded for speed of
computation.

API: javax.media.jai.Histogram

e dnt[][] getBins()
returns the bins of the histogram for all bands.

e int[] getBins(int band)
returns the bins of the histogram for a specified band.

Parameters band The band to be checked

Release 1.0.1, November 1999 313

9.4.3 Reading the Histogram Data IMAGE ANALYSIS

e 1int getBinSize(int band, int bin)
returns the number of pixel values found in a given bin for a given band.
Parameters band The band to be checked
bin The bin to be checked

« float getBinLowValue(int band, int bin)
returns the lowest pixel value found in a given bin for a given band.

Parameters band The band to be checked
bin The bin to be checked

e void clearHistogram()
resets the counts of all bins to zero.

e void countPixels(java.awt.image.Raster pixels, ROI roi,
int xStart, int yStart, int xPeriod, int yPeriod)

adds the pixels of Raster that lie within a given region of interest (ROI) to
the histogram. The set of pixels is further reduced by subsampling factors in
the haorizontal and vertical directions. The set of pixels to be accumulated may
be obtained by intersecting the grid

(xStart+ i (kPeriod, yStart j [yPeriod; i, =0

with the region of interest and the bounding rectangle atdbeer.

Parameters pixels A Raster containing pixels to be
histogrammed.
roi The region of interest, as a ROI.
xStart The initial x sample coordinate.
yStart The initial y sample coordinate.
xPeriod The x sampling rate.
yPeriod They sampling rate.

314 Programming in Java Advanced Imaging

IMAGE ANALYSIS Edge Detection

9.4.4 Histogram Operation Example

Listing 9-3 shows a sample listing for a histogram operation on a three-banded
source image.

Listing 9-3 Example Histogram Operation

// Set up the parameters for the Histogram object.

int[] bins = {256, 256, 256}; // The number of bins.
double[] Tow = {0.0D, 0.0D, 0.0D}; // The low value.
double[] high = {256.0D, 256.0D, 256.0D}; // The high value.

// Construct the Histogram object.
Histogram hist = new Histogram(bins, Tow, high);

// Create the parameter block.
ParameterBlock pb = new ParameterBlock();

pb.addSource(image); // Specify the source image
pb.addChist); // Specify the histogram
pb.add(null); // No ROI

pb.add(1); // Sampling

pb.add(1); // periods

// Perform the histogram operation.
dst = (PlanarImage)JAI.create(“histogram”, pb, null);

// Retrieve the histogram data.
hist = (Histogram) dst.getProperty(“histogram”);

// Print 3-band histogram.
for (int i=0; i< histogram.getNumBins(); i++) {

System.out.printinChist.getBinSize(0, i) + “ * +
hist.getBinSize(1, i) + “ * +
hist.getBinSize(2, i) + “ * +

9.5 Edge Detection

Edge detection is useful for locating the boundaries of objects within an image.
Any abrupt change in image frequency over a relatively small area within an
image is defined as an edge. Image edges usually occur at the boundaries of
objects within an image, where the amplitude of the object abruptly changes to
the amplitude of the background or another object.

TheGradientMagnitude operation is an edge detector that computes the
magnitude of the image gradient vector in two orthogonal directions. This

Release 1.0.1, November 1999 315

9.5 Edge Detection IMAGE ANALYSIS

operation is used to improve an image by showing the directional information
only for those pixels that have a strong magnitude for the brightness gradient.

» It performs two convolution operations on the source image. One
convolution detects edges in one direction, the other convolution detects
edges the orthogonal direction. These two convolutions yield two
intermediate images.

» Itsquares all the pixel values in the two intermediate images, yielding two
more intermediate images.

» It takes the square root of the last two images forming the final image.

The result of the&GradientMagnitude operation may be defined as:

dstpdlyllb] = A(SH(xy.b)’ + (SV(xy.b)°

whereSH(x,y,b) andsv(x,y,b) are the horizontal and vertical gradient
images generated from babhaf the source image by correlating it with the
supplied orthogonal (horizontal and vertical) gradient masks.

The GradientMagnitude operation uses two gradient masks; one for passing
over the image in each direction. TheadientMagnitude operation takes one
rendered source image and two parameters.

Parameter Type Description
maskl Kerne1JAI A gradient mask.
mask?2 KernelJAI A gradient mask orthogonal to the first one.

The default masks for théradientMagnitude operation are:

* KernelJAI.GRADIENT_MASK_SOBEL_HORIZONTAL

* KernelJAI.GRADIENT_MASK_SOBEL_VERTICAL
These masks, shown in Figure 9-2 perform the Sobel edge enhancement
operation. The Sobel operation extracts all of the edges in an image, regardless

of the direction. The resulting image appears as an omnidirectional outline of the
objects in the original image. Constant brightness regions are highlighted.

316 Programming in Java Advanced Imaging

IMAGE ANALYSIS

Edge Detection

-1.0| -2.0| -1.0
0.0 0.0 0.0
1.0 2.0 1.0

Vertical mask

1.0 00 | -1.0
2.0 00 | 2.0
1.0 00 | -1.0

Horizontal mask

Figure 9-2

Sobel Edge Enhancement Masks

The Roberts’ cross edge enhancement operation uses the two masks shown in

Figure 9-3. This operation extracts edges in an image by taking the combined

differences of directions at right angles to each other to determine the gradient.
The resulting image appears as a fairly-coarse directional outline of the objects

within the image. Constant brightness regions become black and changing

brightness regions become highlighted. The following is a listing of how the two
masks are constructed.

float[] roberts_h_data

};

float[] roberts_v_data

1

KernelJAI kern_h
KerneTJAI kern_v

[SESRS]

(SIS

.0F,
.0F,
.0F,

.0F,
. OF,
.0F,

[SIS

(SIS

.0F,
.0F,
.0F,

.0F,
. OF,
.0F,

(SIS S

.0F,
.0F,
.OF

.0F,
. OF,
.0F

new KernellAI(3,3,roberts_h_data);
new KernelJAI(3,3,roberts_v_data);

Release 1.0.1, November 1999

317

9.5 Edge Detection IMAGE ANALYSIS

-1.0 | 0.0 0.0 0.0 0.0 | -1.0
0.0 | 1.0 | 0.0 0.0 | 1.0 | 0.0
0.0 0.0 0.0 0.0 0.0 0.0

Vertical mask Horizontal mask

Figure 9-3 Roberts’ Cross Edge Enhancement Masks

The Prewitt gradient edge enhancement operation uses the two masks shown in
Figure 9-4. This operation extracts the north, northeast, east, southeast, south,
southwest, west, or northwest edges in an image. The resulting image appears as
a directional outline of the objects within the image. Constant brightness regions
become black and changing brightness regions become highlighted. The
following is a listing of how the two masks are constructed.

float[] prewitt_h_data

I
-~
'—\
)
a

0.0F, -1.0F,
1.0F, 0.0F, -1.0F,
1.0F, 0.0F, -1.0F

s

float[] prewitt_v_data

I
-
-
)
L

-1.0F, -1.0F,
0.0F, 0.0F, 0.0F,
1.0F, 1.0F, 1.0F

};

KernelJAI kern_h
KernelJAI kern_v

new KernelJAI(3,3,prewitt_h_data);
new KernelJAI(3,3,prewitt_v_data);

318 Programming in Java Advanced Imaging

IMAGE ANALYSIS

Edge Detection

0.0 0.0 0.0

1.0 1.0 1.0

Vertical mask

1.0 00 | -1.0

1.0 00 | -1.0

1.0 00 | -1.0

Horizontal mask

Figure 9-4 Prewitt Edge Enhancement Masks

The Frei and Chen edge enhancement operation uses the two masks shown in

Figure 9-5. This operation, when compared to the other edge enhancement,
operations, is more sensitive to a configuration of relative pixel values
independent of the brightness magnitude. The following is a listing of how the

two masks are constructed.

float[] freichen_h_data

3
float[] freichen_v_data
1

KernelJAI kern_h
KernelJAI kern_v

{ 1.0F, 0.0F, -1.0F,
1.414F, 0.0F, -1.414F,
1.0F, 0.0F, -1.0F

{-1.0F, -1.414F, -1.0F,
0.0F, 0.0F, 0.0F,
1.0F, 1.414F, 1.0F

new KernelJAI(3,3,freichen_h_data);
new KernelJAI(3,3,freichen_v_data);

Release 1.0.1, November 1999

319

9.5 Edge Detection IMAGE ANALYSIS

-1.0 |-1.414(-1.0 1.0 0.0 | -1.0

0.0 0.0 0.0 1.414] 0.0 [-1.414

1.0 |1.414(1.0 1.0 0.0 | -1.0
Vertical mask Horizontal mask

Figure 9-5 Frei and Chen Edge Enhancement Masks

To use a different mask, see Section 6.9, “Constructing a Kernel.”

Listing 9-4 shows a sample listing forGaadientMagn1itude operation, using the
Frei and Chen edge detection kernel.

Listing 9-4 Example GradientMagnitude Operation

// Load the image.
PlanarImage im@ = (PlanarImage)JAI.create("fileload",

filename);
// Create the two kernels.
float data_h[] = new float[] { 1.0F, 0.0F, -1.0F,
1.414F, 0.0F, -1.414F,
1.0F, 0.0F, -1.0F};
float data_v[] = new float[] {-1.0F, -1.414F, -1.0F,
0.0F, 0.0F, 0.0F,

1.0F, 1.414F, 1.0F};

KernelJAI kern_h
KernelJAI kern_v

new KernellAI(3,3,data_h);
new KernellAI(3,3,data_v);

// Create the Gradient operation.
PTanarImage iml =
(PlanarImage)JAI.create(''gradientmagnitude”, im0,
kern_h, kern_v);

// Display the image.

imagePanel = new ScrollingImagePanel(iml, 512, 512);
add(imagePanel);
pack();
show();

320 Programming in Java Advanced Imaging

IMAGE ANALYSIS

Statistical Operations

9.6 Statistical Operations

TheStatisticsOpImage class is an abstract class for image operators that
compute statistics on a given region of an image and with a given sampling rate.

A subclass oftatisticsOpImage Simply passes pixels through unchanged from

its parent image. However, the desired statistics are available as a property or set
of properties on the image (see Chapter 11, “Image Properties”).

All instances ofStatisticsOpImage make use of a region of interest, specified
as anroI object. Additionally, they may perform spatial subsampling of the
region of interest according tPeriod andyPeriod parameters that may vary
from 1 (sample every pixel of theoI) upwards. This allows the speed and
guality of statistics gathering to be traded off against one another.

The accumulateStatistics method is used to accumulate statistics on a
specified region into the previously-created statistics object.

API: javax.media.jai.StatisticsOpImage

e StatisticsOpImage()

constructs a defaudttatisticsOpImage.

o« StatisticsOpImage(RenderedImage source, ROI roi, int xStart,
int yStart, int xPeriod, int yPeriod, int maxWidth,

int maxHeight)

constructs statisticsOpImage. The image layoutis copied from the source

image.

Parameters source
roi
xStart
ystart
xPeriod
yPeriod
maxWidth

maxHeight

Release 1.0.1, November 1999

A RenderedImage.

The region of interest, as ®R01I.

The initial x sample coordinate.

The initial y sample coordinate.

The x sampling rate.

They sampling rate.

The largest allowed width for processing.
The largest allowed height for processing.

321

9.6 Statistical Operations IMAGE ANALYSIS

322 Programming in Java Advanced Imaging

CHAPTER 10
1

Graphics Rendering

THIS chapter describes the JAI presentation of rendering shapes, text, and
images.

10.1 Introduction

JAI provides classes that support drawing operations beyonGirtpdics2D

class. Three different types of graphics rendering are offered: simple 2D
graphics, renderable graphics, and tiled image graphics. These are described in
more detail in the sections that follow.

You are here

Figure 10-1 Simple Text and Line Added to an Image

10.1.1 Simple 2D Graphics

TheGraphics2D class extends the even simptetaphics class to provide more
control over geometry, coordinate transformations, color management, and text

Release 1.0.1, November 1999 323

10.1.2

324

Renderable Graphics GRAPHICS RENDERING

layout. Graphics2D is the fundamental class for rendering two-dimensional
shapes, text and images:aphics2D supports geometric rendering by providing
a mechanism for rendering virtually any geometric shape, draw styled lines of
any width, and fill geometric shapes with virtually any texture.

The BufferedImage.createGraphics method creates @raphics2D object,
which can then be used to draw into tBisfferedImage.

Geometric shapes are provided through implementations dftthyee interface,
such asPolygon, Rectangle, CubicCurve2D, andQuadCurve2D. Fill and pen
styles are provided through implementations offhént andStroke interfaces.
For example, th@aint interface supportSolor, GradientPaint, and
TexturePaint. TheStroke interface supportBasicStroke, which defines a set
of attributes for the outlines of graphics primitives.

Text is added to graphics using tRent class, which represents character fonts.
A Font is defined by a collections @flyphs, which in turn are defined by
individual Shapes. Since text is represented by glyphs, text strings can also be
stroked and filled like other geometric objects.

10.1.2 Renderable Graphics

TheRenderableGraphics class is an implementation afaphics2D with
RenderableImage semantics. This means that content may be drawn into the
image using th&raphics2D interface and later be turned inkenderedImages
with different resolutions and characteristics.

The RenderableGraphics class allows you to store a sequence of drawing
commands and “replay” them at an arbitrary output resolution. By serializing an
instance oRenderableGraphics, you create a kind of metafile for storing the
graphical content.

The methods in th@enderableGraphics class override the methods in the
java.awt.Graphics andjava.awt.Graphics2D classes. This means that you
can use the methods RenderableGraphics to set your fonts and colors, to
create the graphics shapes and text, define a clipping path, and so on.

The only method unique tRenderableGraphics is thecreateRendering

method, which createsRenderedImage that represents a rendering of the image
using a giverRenderContext. This is the most general way to obtain a rendering
of aRenderableImage.

Programming in Java Advanced Imaging

GRAPHICS RENDERING Overview of the Rendering Process

10.2 A Review of Graphics Rendering

To render a graphic object, you set up tiraphics2D context and pass the

graphic object to one of theraphics2D rendering methods. Before rendering

the graphic object, you first need to set certain state attributes that define how the
Graphics2D context displays the graphics. For example, you specify:

* The stroke width
* How strokes are joined
* Aclipping path to limit the area that is rendered
» Define colors and patterns to fill shapes with
Graphi cs2D defines several methods that add or change attributes in the graphics

context. Most of these methods take an object that represents a particular
attribute, such as Baint or Stroke object.

10.2.1 Overview of the Rendering Process

When a graphic object is rendered, the geometry, image, and attribute
information are combined to calculate which pixel values must be changed on
the display.

The rendering process forShape is described into the following four steps:

1. If theShape is to be stroked, th&croke attribute in theGraphics2D
context is used to generate a nghvape that encompasses the stroked path.

2. The coordinates of th&hape’s path are transformed from user space into
device coordinate space according to the transform attribute in the
Graphics2D context.

3. TheShape’s path is clipped using the clip attribute in thr@phics2D
context.

4. The remaininghape is filled using theraint andComposi te attributes in
theGraphics2D context.

Rendering text is similar to renderingsaape, since the text is rendered as
glyphs and each glyph is$hape. However, you still must specify wh&bnt to
use for the text and get the appropriate glyphs fromrdre: before rendering.
The attributes are described in more detail in the following sections.

Release 1.0.1, November 1999 325

10.2.2 Stroke Attributes GRAPHICS RENDERING

10.2.2 Stroke Attributes

TheGraphics2D Stroke attribute defines the characteristics of strokes. The
BasicStroke object is used to define the stroke attributes faraphics2D
context.BasicStroke defines characteristics such as line width, endcap style,
segment join style, and pattern (solid or dashing). To changgtituke attribute

in the Graphics2D context, you call theetStroke method.

10.2.2.1 Line Width

The line width is specified ipoints(there are 72 points to the inch). To set the
stroke width, create BasicStroke object with the desired width and call
setStroke. The following example sets the stroke width to 12 points.

wideStroke = new BasicStroke(12.0);
g2.setStroke(wideStroke);

10.2.2.2 Endcap Style

Table 10-1 lists the endcap style attributes.
Table 10-1 Endcap Styles

Appearance Attribute Description
e CAP_BUTT Ends unclosed subpaths with no added decoration.
essssssssss CAP_ROUND Ends unclosed subpaths with a round end cap that has a
radius equal to half the pen width.
sssssssssm CAP_SQUARED Ends unclosed subpaths with a square projection that

extends beyond the end of the segment to a distance equal
to half the line width.

To set the endcap style, creat8asicStroke object with the desired attribute.
The following example sets the stroke width to 12 points and endcap style is set
to CAP_ROUND.

wideStroke = new BasicStroke(12.0, BasicStroke.CAP_ROUND);
g2.setStroke(roundStroke) ;

326 Programming in Java Advanced Imaging

GRAPHICS RENDERING Stroke Attributes

10.2.2.3 Join Style

Table 10-2 lists the join style attributes. These attributes affect the appearance of
line junctions.

Table 10-2 Join Styles

Appearance Attribute Description

JOIN_BEVEL Joins path segments by connecting the outer corners of their
wide outlines with a straight segment.

JOIN_ROUND Joins path segments by rounding off the corner at a radius
of half the line width.

JOIN_MITER Joins path segments by extending their outside edges until
they meet.

To set the join style, createBasicStroke object with the desired attribute. The
following example sets the stroke width to 12 points, an endcap style of
CAP_ROUND, and a join style oflOIN_ROUND.

wideStroke = new BasicStroke(12.0, BasicStroke.CAP_ROUND,
BasicStroke.JOIN_ROUND);
g2.setStroke(roundStroke) ;

10.2.2.4 Stroke Style
The stroke style is defined by two parameters:

» dash — an array that represents the dashing pattern. Alternating elements
in the array represent the dash size and the size of the space between
dashes. Element O represents the first dash, element 1 represents the first
space.

» dash_phase — an offset that defines where the dashing pattern starts.

Listing 10-1 shows a code sample in which two different dashing patterns are
created. In the first pattern, the size of the dashes and the space between them is

Release 1.0.1, November 1999 327

10.2.2

328

Stroke Attributes GRAPHICS RENDERING

constant. The second pattern uses a six-element array to define the dashing
pattern. The two dash patterns are shown in Figure 10-2.

Listing 10-1 Example Stroke Styles

// Define the first dashed Tine.

float dashl[] = {10.0f};

BasicStroke bs = new BasicStroke(5.0f, BasicStroke.CAP_BUTT,
BasicStroke.JOIN_MITER, 10.0f, dashl, 0.0f);

g2.setStroke(bs);
Line2D Tine = new Line2D.Float(20.0f, 10.0f, 100.0f, 10.0f);
g2.draw(line);

// Define the second dashed Tine.

float[] dash2 = {6.0f, 4.0f, 2.0f, 4.0f, 2.0f, 4.0f};

bs = new BasicStroke(5.0f, BasicStroke.CAP_BUTT,
BasicStroke.JOIN_MITER, 10.0f, dash2, 0.0f);

g2.setStroke(bs);

g2.draw(line);

Il I B B B . I I EEEEEE
dashl dash2

Figure 10-2 Example Stroke Styles

10.2.2.5 Fill Styles

The Paint attribute in theGraphics2D context defines the fill color or pattern
used when text anshapes are rendered.

Filling a Shape with a Gradient

TheGradientPaint class allows a shape to be filled with a gradient of one color
to another. When creating@adientPaint object, you specify a beginning
position and color, and an ending position and color. The fill color changes
proportionally from one color to the other along the line connecting the two
positions, as shown in Figure 10-3.

In all three stars, the gradient line extends from point P1 to point P2. In the
middle star, all of the points along the gradient line extending to the left of P1
take the beginning color and the points to the right of P2 take the ending color.

Programming in Java Advanced Imaging

GRAPHICS RENDERING Stroke Attributes

P1

Figure 10-3 Filling a Shape with a Gradient

To fill a shape with a gradient of one color to another:

1. Create &radientPaint object
2. CallGraphics2D.setPaint

3. Create thehape object

4. CallGraphics2D.fi11(shape)

Listing 10-2 shows sample code in which a rectangle is filled with a blue-green
gradient.

Listing 10-2 Example Filling a Rectangle with a Gradient

GradientPaint gp = new GradientPaint(50.0f, 50.0f, Color.blue,
50.0f, 250.0f, Color.green);

g2.setPaint(gp);

g2.fil11Rect (50, 50, 200, 200);

Filling a Shape with a Texture

TheTexturePaint class allows you to fill a shape with a repeating pattern.
When you create @exturePaint, you specify aBufferedImage to use as the
pattern. You also pass the constructor a rectangle to define the repetition
frequency of the pattern.

To fill a shape with a texture:

1. Create &exturePaint object
2. CallGraphics2D.setPaint

3. Create th&hape

4. CallGraphics2D.fi11(shape)

Release 1.0.1, November 1999 329

10.2.3

330

Rendering Graphics Primitives GRAPHICS RENDERING

Listing 10-3 shows sample code in which a shape is filled with texture.

Listing 10-3 Example Filling a Shape with Texture

// Create a buffered image texture patch of size 5 X 5.
BufferedImage bi = new BufferedImage(5, 5,

BufferedImage.TYPE_INT_RGB);
Graphics2D big bi.createGraphics(Q);

// Render into the BufferedImage graphics to create the texture.
big.setColor(Color.green);

big.fil1Rect(@, 0, 5, 5);

big.setColor(Color.lightGray);

big.filloval(oe, @, 5, 5);

// Create a texture paint from the buffered image.
Rectangle r = new Rectangle(@, 0, 5, 5);
TexturePaint tp = new

TexturePaint(bi, r, TexturePaint.NEAREST_NEIGHBOR);

// Add the texture paint to the graphics context.
g2.setPaint(tp);

// Create and render a rectangle filled with the texture.
g2.fil1Rect(0, 0, 200, 200);
3

10.2.3 Rendering Graphics Primitives

TheGraphics2D class provides methods for creatifigapes andText, and for
renderingImages. Table 10-3 lists these methods.

Table 10-3 Graphics Primitives Methods

Method Description

draw Strokes the outline of &hape using theStroke andPaint settings of
the currentiraphics2D context.

i1l Fills the interior of &hape using thePaint settings of the
Graphics2D context.

drawString Renders the specified text string usingRhént setting of the
Graphics2D context.

drawImage Renders the specificthage.
drawRenderableImage Renders the specifiRbnderableImage.

drawRenderedImage Renders the specifikbnderedImage.

Programming in Java Advanced Imaging

GRAPHICS RENDERING Rendering Graphics Primitives

10.2.3.1 Drawing a Shape

TheGraphics2D.draw method is used to render the outline of aétape. The
Graphics2D class also inherits draw methods from thaphics class, such as
drawlLine, drawRect, drawRoundRect, drawOval, drawArc, drawPolyline,
drawPolygon, anddraw3DRect.

When aShape is drawn, its path is stroked with tiseroke object in the
Graphics2D context. (See Section 10.2.2, “Stroke Attributes,” for more
information.) By setting an appropriaBasicStroke object in theGraphics2D
context, you can draw lines of any width or pattern. BaeicStroke object
also defines the line’s endcap and join attributes.

To render aShape’s outline:

1. Create th®asicStroke object
2. CallGraphics2D.setStroke
3. Create th&hape

4. CallGraphics2D.draw(shape)

Listing 10-4 shows a code example in whiclteneralPath object is used to
define a star and BasicStroke object is added to theraphics2D context to
define the star’s line width and join attributes.

Listing 10-4 Example Drawing a Shape

public void paint(Graphics g) {
Graphics2D g2 = (Graphics2D) g;

// Create and set the stroke.
g2.setStroke(new BasicStroke(4.0f));

// Create a star using a general path object.
GeneralPath p new GeneralPath(GeneralPath.NON_ZERO);
p.moveTo(- 100.0f, - 25.0f);

.1ineTo(+ 100.0f, - 25.0f);

.1ineTo(- 50.0f, + 100.0f);

.TineTo(+ 0.0f, - 100.01);

.TineTo(+ 50.0f, + 100.0f);

p.closePath();

T T T T

// Translate the origin towards the center of the canvas.
g2.translate(100.0f, 100.0f);

Release 1.0.1, November 1999

331

10.2.3

332

Rendering Graphics Primitives GRAPHICS RENDERING

Listing 10-4 Example Drawing a Shape (Continued)

// Render the star’s path.
g2.draw(p);
}

10.2.3.2 Filling a Shape

TheGraphics2D.fi11 method is used to fill anghape. When aShape is filled,
the area within its path is rendered with theint object in the Graphics2D
context: aColor, TexturePaint, or GradientPaint.

TheGraphics2D class also inherits fill methods from theaphics class, such as
fil1Rect, fi113DRect, fi11RoundRect, Fi110val, fi1lArc, fi11Polygon, and
clearRect.

To fill a Shape:

1. Set the fill color or pattern on theaphics2D context using
Graphics2D.setColor, OrGraphics2DsetPaint.

2. Create thshape
3. CallGraphics2D.fi11 to render th&hape

Listing 10-5 shows a code example in which #eColor method is called to
define a green fill for &ectangle2D.

Listing 10-5 Example Filling a Shape

Public void paint(Graphics g) {
Graphics2D g2 = (Graphics2D) g;

g2.setpaint(Color.green);
Rectangle2D r2 = new Rectangle2D.float(25, 25, 150, 150);

g2.fi11(r2);

10.2.3.3 Rendering Text

The entire subject of fonts and text layout is too extensive to try to describe here.
In this section, we'll give a brief overview of th&aphics2D.drawString
method, which is used to render a text string.

There are two basic variations on theawString method. Two methods takes a
String for an argument and two methods take an
AttributedCharacterIterator. If the argument is &tring, the currentont

Programming in Java Advanced Imaging

GRAPHICS RENDERING Adding Graphics and Text to an Image

in the Graphics2D context is used to convert the characters in$heing into a
set of glyphs with whatever basic layout and shaping algorithms the font
implements. If the argument is attributedCharacterIterator, the iterator

is asked to convert itself toBextLayout using its embedded font attributes. The
TextLayout implements more sophisticated glyph layout algorithms that
perform Unicode I-directional layout adjustments automatically for multiple
fonts of differing writing directions.

A third method used to render text is tbeaphics2D.drawGlyphVector

method, which takes @lyphvector as an argument. Th&lyphvector object
contains the appropriate font-specific glyph codes with explicit coordinates for
the position of each glyph.

The character outlines are filled with tReint object in the Graphics2D
context.

10.3 Graphics2D Example

Listing 10-6 shows a code sample for a Graphics2D example.

Listing 10-6 Graphics2D Example

// Read a RenderedImage and convert it to a BufferedImage.

imagePath = new String("./images/sample.jpg");

Image ai = loadAWTImage(imagePath, this);

RenderedImage ri = JAI.create("awtimage", ai);

BufferedImage bi = getBufferedImage(ri);

RenderedImage targetImage = null;

targetImage = new BufferedImage(bi.getWidth(),
bi.getHeight(),
bi.getType());

// Create a Graphics2D object to draw into the BufferedImage.
Graphics2D g2d = targetImage.createGraphics(Q);

10.4 Adding Graphics and Text to an Image

The java.awt.Graphics2D class enables you to draw lines, geometric shapes,
images, and text. These objects can then be “painted” ovéredImage.

Release 1.0.1, November 1999 333

10.4 Adding Graphics and Text to an Image GRAPHICS RENDERING

334 Programming in Java Advanced Imaging

CHAPTER 11
1

Image Properties

THIS chapter describes image properties.

11.1 Introduction

In addition to the pixel data, images occasionally have many other kinds of data
associated with them. These data, knowmpagperties is a simple database of
arbitrary data attached to the images. Each property is simply an Object with a
unique, case-insensitive name.

The properties are arbitrary and depend on the intended application. JAl provides
methods that enable effective use of properties in the context of an image
processing application but, in most cases, leaves the specification of the property
objects themselves to the developer.

Some examples of properties are:

» Descriptions of exotic shapes, such as hexagonal grids
* Mapping from digital pixel values to photometric values
» A defined region of interest (ROI) in the source image
Every node in an image chain may be queried for its properties. The value of a

property at a particular node may be derived by one of the following
mechanisms:

» It may becopiedfrom the node’s sources. This is the default behavior if
no other behavior is specified.

* It may beproducedby the node from non-property information available
in the node.

* It may besynthesizethy the node from a rendering.

Release 1.0.1, November 1999 335

111

336

Introduction IMAGE PROPERTIES

* Itmay beinheritedor produced computationally from the properties of the
node’s sources.

* It may beset explicitlyby thesetProperty method in one of the
appropriate classeBlanarimage, RenderedOp, OrRenderableOp.
Properties of a node may not be set once the node has been rendered.

When the value of a property is requested from a node in a rendered chain, i.e.,
aRenderedOp node, it will be derived from the first of the following for which it
is defined:

1. Synthetic properties (see below).

2. Local properties, i.e., those set by an invocation of setProperty() on the
node.

3. The source image of the operation specified by invoking the method
OperationRegsitry.copyPropertyFromSource().

4. The rendering of the node. Note however that properties set by invoking
setProperty() on the rendering of the node rather than on the node itself
will not be propagated back to the node itself.

5. Any PropertyGenerators either defined by the associated operation or
added by an invocation @knderedOp.addPropertyGenerator().
PropertyGenerators added by the latter method supersede those associated
with the operation, e.g., via its OperationDescriptor.

6. The sources of the operation. The first source has higher precedence than
the second source and so on.

The same order of precedence applies in the case of renderable chains, i.e.,
RenderableOp nodes, with the exception of item 4, viz., properties created
within the contextual rendering of the RenderableOp are not propagated back to
the RenderableOp node itself.

There are a couple of important items to note at this point. First, when a node is
created with another node or nodes as its source(s), it might invoke methods on
the source node that force the source node to be rendered. Consequently
properties should be set on a node before it is used as the source of other
operations. Second, the rendering of a node da¢mherit the properties of the
node itself nor are properties set on the rendering of the node propagated back to
the node. Image properties are controlled and generated I®y-dpertySource
andPropertyGenerator interfaces.

Programming in Java Advanced Imaging

IMAGE PROPERTIES The PropertyGenerator Interface

11.1.1 The PropertySource Interface

ThePropertySource interface contains methods from tRenderedImage and
RenderableImage interfaces that identify and read propertiBsanarImage,
RenderableOp, andRenderedOp all implementPropertySource.

The interface consists of th@tProperty andgetPropertyNames methods
familiar from theRenderedImage andRenderableImage interfaces.

PropertySource is implemented byimageJAI. Since all Renderedimages used
within JAI are descendents @flanarImage which implementsmage]AI, all
images may be assumed to implemenipertySource.

API: javax.media.jai.PropertySource

e String[] getPropertyNames()
returns an array cftrings recognized as names by this property source.

o String[] getPropertyNames(String prefix)

returns an array dftrings recognized as names by this property source that
begin with the suppliedrefix. If the method cannot find any property names
that match, null is returned.

e Object getProperty(String name)
returns the value of a property.

Parameters name The name of the property, assaring.

11.1.2 The PropertyGenerator Interface

The PropertyGenerator interface allows you to affect the property inheritance
computation of an operation. AropertyGenerator simply implements two
methods:

» ThegetPropertyNames method returns a list of the names of all available
properties.

» ThegetProperty method returns the value of the property, given the
property name andRenderedOp.

New PropertyGenerators may be added to th@perationRegistry to be
applied at a particular operation node. TiparationRegistry also allows an
existing property on a node to be suppressed if it is no longer useful. See

Release 1.0.1, November 1999 337

11.2

338

Synthetic Properties IMAGE PROPERTIES

Chapter 14, “Extending the API,” for more information on the
OperationRegistry.

APIl: javax.media.jai.PropertyGenerator

o« String[] getPropertyNames()

returns an array dftrings naming properties emitted by this property
generator.

e Object getProperty(String name, RenderedOp op)
computes the value of a property relative to an environment of pre-existing
properties emitted by the sources ®femderedop, and the parameters of that
operation.

Parameters name The name of the property, asSaring.
op TheRenderedOp representing the operation.

The operation name, sources, ®aédameterBlock of theRenderedOp being
processed may be obtained by means ofjthgetOperationName,
op.getSources(), andop.getParameterBlock() methods. Itis legal to call
getProperty() on the operation’s sources.

11.2 Synthetic Properties

Certain properties argynthesizedvhen a node is rendered. These synthetic
properties are image widtlirfage_width), image height{mage_height),
minimum x coordinate {mage_min_x_coord), and minimumy coordinate
(image_min_y_coord). All of these properties have a value of class
java.lang.Integer. These properties are fixed and any attempt to set them will
result in an error.

11.3 Regions of Interest

The specification of a region of interest (ROI) is a common property that is
supported by all of the standard operators. The ROI is simply a description of
some portion of an image. This description is propogated, along with the image,
through the rendering chain. The ROI is transformed appropriately (inherited) for
all geometric and area operators. For all other types of operations it is simply
copied. The ROI has no bearing on the processing of image pixels, although in

Programming in Java Advanced Imaging

IMAGE PROPERTIES Complex Data

its rendered form it can be used as input to histogram operations. For more
information, see Section 6.2, “Region of Interest Control.”

The ROI may be used as an argument totihtedImage.set and
TiledImage.setData methods so as to copy a selected area of a source or
Raster into an existingriledImage (see Section 4.2.2, “Tiled Image"The ROI
may also be used as an argument to many compositing (see Section 7.11.2,
“Image Compositing”) and statistical operators (see Chapter 9, “Image
Analysis”).

11.4 Complex Data

The COMPLEX property has value of clagsva.lang.Boolean and indicates
whether the pixel values of an image represent complex-value data. (A complex-
valued image wherein each pixel has N complex elements contains 2N bands
with the real and imaginary components of tttecomplex element being stored

in bands 2i and 2i + 1, respectively.) This property maypbeducedby a given

node either with a fixed value or with a value dependent on the parameters of the
node. See Section 7.9, “Frequency Domain Processing.”

Release 1.0.1, November 1999 339

114 Complex Data IMAGE PROPERTIES

340 Programming in Java Advanced Imaging

CHAPTER 12
1

Client-Server Imaging

THIS chapter describes JAl's client-server imaging system.

12.1 Introduction

Client-server imaging provides the ability to distribute computation between a
set of processing nodes. For example, it is possible to set up a large, powerful
server that provides image processing services to several thin clients. With JAI, it
is possible for a client to set up a complex imaging chain on a server, including
references to source images on other network hosts, and to request rendered
output from the server.

JAl uses Java Remote Method Invocation (RMI) to implement client-server
imaging. To communicate using Remote Method Invocation, both the client and
server must be running Java.sfubobject is instantiated on the client. The stub
object forwards its method calls to a corresponding server object. Method call
arguments and return values are transmitted between the client and server by
means of the Java Development Environmesésalizationcapability.

The hostname and port depend on the local setup. The host must be running an
RMI registry process and haverRamoteImageServer listening at the desired
port.

This call will result in the creation of a server-sid@IImageImp1 object and a
client-side stub object. The client stub serializes its method arguments and
transfers them to the server over a socket; the server serializes its return values
and returns them in the same manner.

Release 1.0.1, November 1999 341

12.2

342

Server Name and Port Number CLIENT-SERVER IMAGING

12.2 Server Name and Port Number

TheRemoteImage constructor requires serverName parameter that consists of a
host name and port number, in the following format:

host:port
For example:
camus.eng.sun.com:1099

The port number is optional and need be supplied only if the host name is
supplied. If theserverName parameter is null, the default is to search for the
RMIImage service on the local host at the defaniiregistry port (1099.

APIl: javax.media.jai.RemoteImage

 RemoteImage(String serverName, RenderedImage source)
constructs ®emoteImage from aRenderedImage.

Parameters serverName The name of the server in the appropriate
format.

source A RenderedImage source.

e RemoteImage(String serverName, RenderedOp source)
constructs &emoteImage from aRenderedOp, i.e., an imaging DAG (directed

acyclic graph). Note that the properties of Re@oteImage will be those of
theRenderedOp node and not of its rendering.

« RemoteImage(String serverName, RenderableOp source,
RenderContext renderContext)

constructs ®&emoteImage from aRenderableOp andRenderContext. The
entireRenderable0p DAG will be copied over to the server. Note that the
properties of th@emoteImage will be those of th&kenderab1e0p node and not
of its rendering.

12.3 Setting the Timeout Period and Number of Retries

A network error or a delay caused by the server failing to respond to the request
for an image is dealt with through retries. If, on the first attempt, the server fails
to respond, the program will wait a specified amount of time and then make
another request for the image. When the limit of retries is exceeded, a null
Raster may be returned.

Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING Simple Remote Imaging Example

The amount of time to wait between retries defaults to 1 second (1000

milliseconds). TheyetTimeout method is used to get the amount of time

between retries, in milliseconds. ThetTimeout method is used to set the
amount of time between retries.

The number of times the program will attempt to read the remote image may be
read with thegetNumRetries method. ThesetNumRetries method is used to set
the maximum number of retries.

API. javax.media.jai.RemoteImage

e void setTimeout(int timeout)
sets the amount of time between retries.

Parameter timeout The time interval between retries in
milliseconds.

e int getTimeout()
returns the amount of time between retries.

e void setNumRetries(int numRetries)
sets the number of retries.

Parameter numRetries The maximum number of retries. If this is a
negative value, the number of retries is
unchanged.

12.4 Remote Imaging Test Example

This section contains two examples of remote imaging programs.

12.4.1 Simple Remote Imaging Example

Listing 12-1 shows a complete code example @kaoteImaging test. This
example displays a 2 2 grid of Scro11ingImagePanels, with each window
displaying the sum of two byte images that were rescaled to the range [0,127]
prior to addition. The panels display the following specific results:

» upper left: local rendering

» upper right: result of remote rendering of a RenderedOp graph

» lower left: result of remote loading of a Renderedimage

Release 1.0.1, November 1999 343

12.4.1

344

Simple Remote Imaging Example CLIENT-SERVER IMAGING

» lower right: result of remote rendering of a RenderableOp graph

The lower right image is a dithered version of the sum image passed through a
color cube lookup table and may appear slightly different from the other three
images, which should be identical.

Listing 12-1 Remote Imaging Example Program (Sheet 1 of 4)

import java.awt.*;

import java.awt.event.WindowEvent;

import java.awt.geom.*;

import java.awt.image.*;

import java.awt.image.renderable.*;

import java.util.¥*;

import javax.media.jai.*;

import javax.media.jai.operator.¥;

import javax.media.jai.widget.*;

public class RemoteImagingTest extends WindowContainer {

/** Default remote server. */
private static final String DEFAULT_SERVER =
"camus.eng.sun.com:1099";

/** Tile dimensions. */
private static final int TILE_WIDTH = 256;
private static final int TILE_HEIGHT = 256;

public static void main(String args[]) {
String fileNamel = null;
String fileName2 = null;

// Check args.
if(!(args.length >= 0 & args.length <= 3)) {
System.out.println("\nUsage: java RemoteImagingTest "+
"[[[serverName] | [fileNamel fileName2]] | "+
"[serverName fileNamel fileName2]]1"+"\n");
System.exit(l);
}

// Set the server name.
String serverName = null;
if(args.length == @ || args.length == 2) {
serverName = DEFAULT_SERVER;
System.out.println("\nUsing default server ""+
DEFAULT_SERVER+"'\n");
} else {
serverName = args[0];

}

Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING Simple Remote Imaging Example

Listing 12-1 Remote Imaging Example Program (Sheet 2 of 4)

// Set the file names.
if(args.length == 2) {
fileNamel = args[0];
fileName2 = args[1];
} else if(args.length == 3) {

fileNamel = args[1];
fileName2 = args[2];
} else {

fileNamel = "/import/jai/JAI_RP/test/images/Boat_At_Dock.tif";
fileName2 = "/import/jai/JAI_RP/test/images/FarmHouse.tif";

System.out.println("\nUsing default images '"+
fileNamel + "' and '" + fileName2 + "'\n");

}

RemoteImagingTest riTest =
new RemoteImagingTest(serverName, fileNamel, fileName2);

3
/7'::“:

* Run a remote imaging test.

* @param serverName The name of the remote server to use.

* @param fileNamel The first addend image file to use.

* @param fileName2 The second addend image file to use.

*/

RemoteImagingTest(String serverName, String fileNamel, String
fileName2) {

// Create the operations to Toad the images from files.

RenderedOp srcl = JAI.create("fileload", fileNamel);

RenderedOp src2 = JAI.create("fileload", fileName2);

// Render the sources without freezing the nodes.
PTlanarImage renl = srcl.createlnstance();
PlanarImage ren2 = src2.createInstance();

Release 1.0.1, November 1999

345

12.4.1 Simple Remote Imaging Example CLIENT-SERVER IMAGING

Listing 12-1 Remote Imaging Example Program (Sheet 3 of 4)

// Create TiledImages with the file images as their sources
// thereby ensuring that the serialized images are truly tiled.
SampleModel sampleModell =
renl.getSampleModel().createCompatibleSampleModel (TILE_WIDTH,
TILE_HEIGHT);
TiledImage til = new TiledImage(renl.getMinX(), renl.getMinY(),
renl.getWidth(), renl.getHeight(Q),
renl.getTileGridXOffset(),
renl.getTileGridYOffset(),
sampleMode1l, renl.getColorModel());
til.set(srcl);
SampTleModel sampleModel2 =
ren2.getSampleModel () .createCompatibleSampleModel (TILE_WIDTH,
TILE_HEIGHT);
TiledImage ti2 = new TiledImage(ren2.getMinX(), ren2.getMinY(Q),
ren2.getWidth(), ren2.getHeight(),
ren2.getTileGridX0ffset(),
ren2.getTileGridYOffset(),
sampleModel2, ren2.getColorMode1());
ti2.set(src2);

// Create a hint to specify the tile dimensions.
ImagelLayout Tayout = new ImagelLayout();
Tayout.setTileWidth(TILE_WIDTH) .setTileHeight (TILE_HEIGHT);
RenderingHints rh = new
RenderingHints (JAI.KEY_IMAGE_LAYOUT, Tayout);

// Rescale the images to the range [0, 127].
ParameterBlock pb = (new ParameterBlock());
pb.addSource(til);

pb.add(new double[] {0.5}).add(new double[] {0.03});
RenderedOp addendl = JAI.create('rescale", pb, rh);
pb = (new ParameterBlock());

pb.addSource(ti2);

pb.add(new double[] {0.5}).add(new double[] {0.0});
RenderedOp addend2 = JAI.create('rescale", pb, rh);

// Add the rescaled images.
pb = (new
ParameterBlock()) .addSource(addendl) .addSource(addend?2);
RenderedOp sum = JAI.create("add", pb, rh);

// Dither the sum of the rescaled images.
pb = (new ParameterBlock()).addSource(sum);

pb.add(ColorCube.BYTE_496) .add(KerneT1JAI.DITHER_MASK_443);
RenderedOp dithered = JAI.create("ordereddither", pb, rh);

346 Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING Simple Remote Imaging Example

Listing 12-1 Remote Imaging Example Program (Sheet 4 of 4)

// Construct a RemoteImage from the RenderedOp chain.
RemoteImage remoteImage = new RemoteImage(serverName, sum);

// Set the display title and window Tayout.
setTitle(getClass().getName());
setLayout(new GridLayout(2, 2));

// Local rendering.

add(new ScrollingImagePanel(sum,
sum.getWidth(),
sum.getHeight()));

// RenderedOp remote rendering.

add(new ScrollingImagePanel(remoteImage,
remoteImage.getWidth(),
remoteImage.getHeight()));

// RenderedImage remote rendering

PlanarImage sumImage = sum.getRendering();

remoteImage = new RemoteImage(serverName, sumImage);

add(new ScrollingImagePanel(remoteImage,
remoteImage.getWidth(Q),
remoteImage.getHeight()));

// RenderableOp remote rendering.
pb = new ParameterBlock();
pb.addSource(dithered);
RenderableOp absImage = JAI.createRenderable("absolute", pb);
pb = new ParameterBlock();
pb.addSource(absImage) .add(ColorCube.BYTE_496);
RenderableOp lutImage = JAI.createRenderable("Tookup", pb);
AffineTransform tf =
AffineTransform.getScalelnstance(384/dithered.getWidth(),
256/dithered.getHeight());
Rectangle aoi = new Rectangle(128, 128, 384, 256);
RenderContext rc = new RenderContext(tf, aoi, rh);
remoteImage = new RemoteImage(serverName, TutImage, rc);
add(new ScrollingImagePanel(remoteImage,
remoteImage.getWidth(Q),
remoteImage.getHeight()));

// Finally display everything
pack();
show();

Release 1.0.1, November 1999 347

12.4.2

348

Remotelmaging Example Across Two Nodes CLIENT-SERVER IMAGING

12.4.2 Remotelmaging Example Across Two Nodes

Listing 12-2 shows an example of a Remotelmaging chain spread across two
remote nodes, and displays the results locally.

Listing 12-2 Remotelmaging Example Program Using Two Nodes (Sheet 1 of 2)

import java.awt.image.*;

import java.awt.image.renderable.ParameterBlock;
import javax.media.jai.*;

import javax.media.jai.widget.*;

/-k %
* This test creates an imaging chain spread across two remote
* nodes and displays the result locally.

7‘:/

public class MultiNodeTest extends WindowContainer {
public static void main(String[] args) {
if(args.length != 3) {
throw new RuntimeException(“Usage: java MultiNodeTest “+
“file nodel node2”);

}
new MultiNodeTest(args[@], args[1l], args[2]);
}
public MultiNodeTest(String fileName, String nodel, String

node2) {

// Create a chain on node 1.
System.out.printin(“Creating dstl = Tog(invert(fileload(“+
fileName+”))) on “+nodel);
RenderedOp src JAI.create(“fileload”, fileName);
RenderedOp opl JAI.create(“invert”, src);
RenderedOp op2 = JAI.create(“log”, opl);
RemoteImage rmtl = new RemoteImage(nodel, op2);

// Create a chain on node 2.

System.out.println(“Creating dst2 = not(exp(dstl)) on
RenderedOp op3 = JAI.create(“exp”, rmtl);
RenderedOp op4 = JAI.create(“not”, op3);
RemoteImage rmt2 = new RemoteImage(node2, op4);

‘+hode2);

Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING Remotelmaging Example Across Two Nodes

Listing 12-2 Remotelmaging Example Program Using Two Nodes (Sheet 2 of 2)

// Display the result of node 2.
System.out.println(“Displaying results”);
setTitle(getClass().getName()+” “+fileName);
add(new ScrollingImagePanel(rmt2, rmt2.getWidth(Q),
rmt2.getHeight()));
pack();
show();

API. javax.media.jai.RemoteImage

e 1int getWidth()
returns the width of thRemoteImage.

e 1int getHeight()
returns the height of thiemoteImage.

« Raster getData()
returns the entire image as one large tile.

e Raster getData(Rectangle rect)
returns an arbitrary rectangular region of Re@oteImage.

Parameters rect The region of theRemoteImage to be
returned.

e WritableRaster copyData(WritableRaster raster)

returns an arbitrary rectangular region of ReeoteImage in a user-supplied
WritableRaster. The rectangular region is the entire image if the argument is
null or the intersection of the argument bounds with the image bounds if the
region is non-null. If the argument is non-null but has bounds that have an
empty intersection with the image bounds, the return value will be null. The
return value may also be null if the argument is non-null but is incompatible
with theRaster returned from the remote image.

Parameters raster A WritableRaster to hold the returned
portion of the image.

If the raster argument is null, the entire image will be copied into a newly-
created WritableRaster with a SampleModel that is compatible with that of the
image.

Release 1.0.1, November 1999 349

125 Running Remote Imaging CLIENT-SERVER IMAGING

o« Raster getTile(int x, int y)
returns a tilexX, y). Note thaix andy are indices into the tile array, not pixel

locations. Unlike in the truRenderedImage interface, th®aster that is
returned should be considered a copy.

Parameters x The x index of the requested tile in the tile
array

y They index of the requested tile in the tile
array

12.5 Running Remote Imaging

To run remote imaging in JAI, you have to do the following:

1.
2.
3.
4,

Create a security policy file
Start the RMI registry
Start the remote image server

Run the local application

These four steps are explained in more detail in the following sections.

12.5.1 Step 1: Create a Security Policy File

The default RMI security policy implementation is specified within one or more
policy configuration files. These configuration files specify what permissions are
allowed for code from various sources. There is a default system-wide policy file
and a single user policy file. For more information on policy files and
permissions, see:

http://java.sun.com/products/jdk/1.2/docs/guide/security/
PolicyFiles.html
http://java.sun.com/products/jdk/1.2/docs/guide/security/
permissions.html

The policy file is located in the base directory where Java Advanced Imaging is
installed. If$JAT is the base directory where Java Advanced Imaging is installed,
use any simple text editor to create a text file naed /po1icy containing the
following:

grant {
// Allow everything for now

350

permission java.security.AlTPermission;

Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING Step 3: Start the Remote Image Server
s

Note that this policy file is for testing purposes only.

12.5.2 Step 2: Start the RMI Registry

The RMI registry is a simple server-side name server that allows remote clients
to get a reference to a remote object. Typically, the registry is used only to locate
the first remote object an application needs to talk to. Then that object in turn
provides application-specific support for finding other objects.

Note: Before starting the rmiregistry, make sure that the shell or window in which
you will run the registry either has M@ ASSPATH set or has @LASSPATH that does

not include the path to any classes you want downloaded to your client, including
the stubs for your remote object implementation classes.

To start the registry on the server, log in to the remote system where the image
server will be running and execute theiregistry command.

For example, in th&olaris operating environment using a Bourne-compatible
shell (e.g., /bin/sh):

$ unset CLASSPATH
$ rmiregistry &

Note that theCLASSPATH environment variable is deliberately not set.
For example, otwindows 95 or Windows NT:
start rmiregistry

If the start command is not available, ugavaw.

12.5.3 Step 3: Start the Remote Image Server

While still logged in to the remote server system, set@wSSPATH and
LD_LIBRARY_PATH environment variables as required for JAl (see IRETALL
file) and start the remote imaging server. For example:

$ CLASSPATH=$JAI/1ib/jai.jar:\
$JAI/1ib/mlibwrapper_jai.jar

export CLASSPATH

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAI/T1ib

export LD_LIBRARY_PATH

java \

© A A n

Release 1.0.1, November 1999 351

1254

352

Step 4: Run the Local Application CLIENT-SERVER IMAGING

-Djava.rmi.server.codebase=\
file:$JAI/1ib/jai.jar \

-Djava.rmi.server.useCodebaseOnly=false \

-Djava.security.policy=file:$JAI/policy \
com.sun.media.jai.rmi.RMIImageImpl

For example, when the above steps are executed on a machine with IP address
123.456.78.90 the following is printed:

Server: using host 123.456.78.90 port 1099
Registering image server as
"rmi://123.456.78.90:1099/RemoteImageServer".
Server: Bound RemoteImageServer into
the registry.

12.5.4 Step 4: Run the Local Application

After completing steps 1 through 3, you are ready to run the local application.
When running the local application, make sure thatsine,erName parameter of

any Remotelmage constructors corresponds to the machine on which the remote
image server is running. For example, if the machine with IP address
123.456.78.90 above is namegserver, theserverName parameter of any
RemoteImage() constructors should bényserver".

12.6 Internet Imaging Protocol (1IP)

There are two JAI operations that support Internet Imaging Protocol (11P)
operations. Two separate operations provide client-side support of the Internet
Imaging Protocol. These operatiorigP andIIPResolution, request an image
from an IIP server then create either a Renderedimage or a Renderablelmage.

12.6.1 lIP Operation

The IIP operation provides client-side support of the Internet Imaging Protocol
(IIP) in both the rendered and renderable modes. It creakeaderedImage oOr
aRenderableImage based on the data received from the IIP server, and
optionally applies a sequence of operations to the created image.

The operations that may be applied and the order in which they are applied are
defined in section 2.2.1.1 of tHaternet Imaging Protocol Specificatiorersion

1.0.5. Some or all of the requested operations may be executed on the IIP server
if it is determined that the server supports such operations. Any of the requested

Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING IIP Operation

operations not supported by the server will be executed on the host on which the
operation chain is rendered.

The processing sequence for the supplied operations is as follows:

» Filtering (blur or sharpen)

* Tone and color correction (“color twist”)

e Contrast adjustment

» Selection of source rectangle of interest

» Spatial orientation (rendering-independent affine transformation)

» Selection of destination rectangle of interest

» Rendering transformation (renderable mode only)

e Transposition (rotation and/or mirroring).
As indicated, the rendering transformation is performed only in renderable mode
processing. This transformation is derived from the AffineTransform supplied in
the RenderContext when rendering actually occurs. Rendered mode processing

creates a Renderedimage which is the default rendering of the Renderablelmage
created in renderable mode processing.

The IIP operation takes 14 parameters.

Parameter Type Description

URL String The URL of the IIP image

subImages int[] The sub-images to be used by the server for images at each
resolution level

filter Float The filtering value

colorTwist float[] The color twist matrix

contrast Float The contrast value

sourceROI Rectangle2D.Float The source rectangle of interest in rendering-independent
coordinates

transform AffineTransform The rendering-independent spatial orientation transform

aspectRatio Float The aspect ratio of the destination image

destROI Rectangle2D.Float The destination rectangle of interest in rendering-
independent coordinates

rotation Integer The counterclockwise rotation angle to be applied to the
destination

mirrorAxis String The mirror axis

ICCProfile color.ICC_Profile The ICC profile used to represent the color space of the
source image

Release 1.0.1, November 1999 353

12.6.1

354

IIP Operation CLIENT-SERVER IMAGING

Parameter Type Description
JPEGQuality Integer The JPEG quality factor
JPEGTable Integer The JPEG compression group index number

The URL parameter specifies the URL of the IIP image gawaa.lang.String.
It must represent a valid URL and include any required FIF or SDS commands.
It cannot be null.

The subImages parameter optionally indicates the sub-images to be used by the
server to get the images at each resolution level. The values inrthiarray

cannot be negative. If this parameter is not specified, or if the array is too short
(length is 0), or if a negative value is specified, this operation will use the zeroth
sub-image of the resolution level actually processed.

The fil1ter parameter specifies a blur or sharpen operation; a positive value
indicates sharpen and a negative value blur. A unit step should produce a
perceptible change in the image. The default value is 0 which signifies that no
filtering will occur.

The colorTwist parameter represents a4 matrix stored in row-major order

and should have an array length of at least 16. If an array of length greater than
16 is specified, all elements from index 16 and beyond are ignored. Elements 12,
13, and 14 must be 0. This matrix will be applied to the (possibly padded) data
in an intermediate normalized PhotoYCC color space with a premultiplied alpha
channel. This operation will force an alpha channel to be added to the image if
the last column of the last row of the color twist matrix is not 1.0F. Also, if the
image originally has a grayscale color space it will be cast up to RGB if casting
the data back to grayscale after applying the color twist matrix would result in
any loss of data. The default value is null.

The contrast parameter specifies a contrast enhancement operation with
increasing contrast for larger value. It must be greater than or equal to 1.0F. A
value of 1.0F indicates no contrast adjustment. The default value is 1.0F.

The sourceROI parameter specifies the rectangle of interest in the source image
in rendering-independent coordinates. The intersection of this rectangle with the
rendering-independent bounds of the source image must equal itself. The
rendering-independent bounds of the source image are defined to be (0.0F, 0.0F,
r, 1.0F) where r is the aspect ratio (width/height) of the source image. Note that
the source image will not in fact be cropped to these limits but values outside of
this rectangle will be suppressed.

Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING IIP Operation

The transform parameter represents an affine backward mapping to be applied
in rendering-independent coordinates. Note that the direction of transformation is
opposite to that of the AffineTransform supplied in the RenderContext which is a
forward mapping. The default value of this transform is the identity mapping.
The supplied AffineTransform must be invertible.

The aspectRatio parameter specifies the rendering-independent width of the
destination image and must be positive. The rendering-independent bounds of the
destination image are (0.0F, 0.0F, aspectRatio, 1.0F). If this parameter is not
provided, the destination aspect ratio defaults to that of the source.

The destROI parameter specifies the rectangle of interest in the destination
image in rendering-independent coordinates. This rectangle must have a non-
empty intersection with the rendering-independent bounds of the destination
image but is not constrained to the destination image bounds.

The rotation parameter specifies a counter-clockwise rotation angle of the
destination image. The rotation angle is limited to 0, 90, 180, or 270 degrees. By
default, the destination image is not rotated.

ThemirrorAxis parameter may be null, in which case no flipping is applied, or
a String ofx, X, y, or.

TheICCProfile parameter may only be used with client-side processing or with
server-side processing if the connection protocol supports the ability to transfer a
profile.

The JPEGQuality andJPEGTable parameters are only used with server-side
processing. If provided]PEGQuality must be in the range [0,100] and
JPEGTable in [1,255].

There is no source image associated with this operation.

Listing 12-3 shows a code sample for 2IP operation.

Listing 12-3 IIP Operation Example

public static final String SERVER = "http://istserver:8087/";
public static final String DEFAULT_IMAGE = "cat.fpx";
public static final int DEFAULT_HEIGHT = 512;

public static void main(String[] args) {
String imagePath = DEFAULT_IMAGE;

Release 1.0.1, November 1999 355

12.6.1 IIP Operation CLIENT-SERVER IMAGING

Listing 12-3 1IP Operation Example (Continued)

for(int i = 0; i < args.length; i++) {
if(args[i].equalsIgnoreCase("-image™)) {
imagePath = args[++i];
if(! (imagePath.toLowerCase().endsWith(".fpx"))) {
imagePath += ".fpx";
3

3
String url = SERVER + "FIF=" + imagePath;

new IIPTest(url);
}

// Define the parameter block.
ParameterBlock pb = (new ParameterBlock()).addCurl);

// Default sub-image array
pb.set(-10.0F, 2); // filter
float[] colorTwist = new float[]

{1.0F, 0.0F, 0.0F, 0.0F,

0.0F, 0.0F, 1.0F, 0.0F,

0.0F, 1.0F, 0.0F, 0.0F,

0.0F, 0.0F, 0.0F, 1.0F};
pb.set(colorTwist, 3); //color-twist
pb.set(2.0F, 4); // contrast
pb.set(new Rectangle2D.Float(0.10F, 0.10F,

0.80F*aspectRatioSource, 0.80F),
5); // srcROI

AffineTransform afn = AffineTransform.getShearInstance(0.2,
0.1);

pb.set(afn, 6); // transform

Rectangle2D destBounds = null;

try {
Rectangle2D sourceRect =
new Rectangle2D.Float(@0.0F, 0.0F, aspectRatioSource,
1.0F);
Shape shape =
afn.createlnverse().createTransformedShape(sourceRect);
destBounds = shape.getBounds2D();
} catch(Exception e) {
}

356 Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING IIPResolution Operation

Listing 12-3 1IP Operation Example (Continued)

float aspectRatio = (float)destBounds.getHeight();
pb.set(aspectRatio, 7); // destination aspect ratio
pb.set(new Rectangle2D.Float(0.0F, 0.0F,

0.75F*aspectRatio, 0.75F), 8); // dstROI
pb.set(90, 9); // rotation angle
pb.set("x", 10); // mirror axis

// Default ICC profile
// Default JPEG quality
// Default JPEG table 1index

int height = DEFAULT_HEIGHT;
AffineTransform at =
AffineTransform.getScaleInstance(height*aspectRatioSource,
height);
RenderContext rc = new RenderContext(at);

// Create a RenderableImage.
Renderablelmage renderable = JAI.createRenderable("iip", pb);

12.6.2 lIPResolution Operation

The IIPResolution operation provides client-side support of the Internet
Imaging Protocol (IIP) in the rendered mode. It is resolution-specific. It requests
from the IIP server an image at a particular resolution level, and creates a
RenderedImage based on the data received from the server. Once the
RenderedImage is created, the resolution level cannot be changed.

The layout of the created Renderedimage is set as follows:

« minX, minY, tileGridXOffset, and tileGridYOffset are set to O
» width and height are determined based on the specified resolution level
» tileWidth and tileHeight are set to 64

» sampleModel is of the typreixelInterleavedSampleModel with byte
data type and the appropriate number of bands

» colorModel is of the typgava.awt.image .ComponentColorModel, with
the ColorSpace set to sSRGB, PhotoYCC, or Grayscale, depending on the
color space of the remote image; if an alpha channel is present, it will be
premultiplied

Release 1.0.1, November 1999 357

12.6.2 lIPResolution Operation CLIENT-SERVER IMAGING

The IIPResolution operation takes three parameters.

Parameter Type Description

URL String The URL of the IIP image

resolution Integer The resolution level to request
subImage Integer The sub-image to be used by the server

The URL parameter specifies the URL of the IIP image gawaa.lang.String.
It must represent a valid URL, and include any required FIF or SDS commands.
It cannot be null.

The resolution parameter specifies the resolution level of the requested IIP
image from the server. The lowest resolution level is 0, with larger integers
representing higher resolution levels. If the requested resolution level does not
exist, the nearest resolution level is used. If this parameter is not specified, it is
set to the default valuBIPResoTlutionDescriptor.MAX_RESOLUTION, which
indicates the highest resolution level.

The subImage parameter indicates the sub-image to be used by the server to get
the image at the specified resolution level. This parameter cannot be negative. If
this parameter is not specified, it is set to the default value 0.

There is no source image associated with this operation.

If available from the IIP server certain properties may be set on the
Renderedlmage. The names of properties and the class types of their associated
values are listed in the following table. See the IIP specification for information
on each of these properties.

Property Type

affine-transform java.awt.geom.AffineTransform
app-name java.lang.String

aspect-ratio java.lang.Float

author java.lang.String

colorspace int[]

color-twist float[16]

comment java.lang.String

contrast-adjust java.lang.Float
copyright java.lang.String

create-dtm java.lang.String

358 Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING

Property Type

edit-time java.lang.String
filtering-value java.lang.Float
iip java.lang.String
iip-server java.lang.String
keywords java.lang.String
last-author java.lang.String
last-printed java.lang.String
last-save-dtm java.lang.String
max-size int[2]

resolution-numberava. Tang.Integer

rev-number java
roi-iip java
subject java
title java

.Tang

.String

.awt.geom.Rectangle2D.Float

.Tang
.Tang

.String

.String

IIPResolution Operation

Listing 12-4 shows a code sample for ZIPResolution operation.

Listing 12-4 IIPResolution Operation Example

public static final String SERVER = "http://istserver:8087/";
public static final String DEFAULT_IMAGE =
public static final int DEFAULT_RESOLUTION

public static void main(String[] args) {
String imagePath = DEFAULT_IMAGE;
int resolution = DEFAULT_RESOLUTION;

for(int i = 0; i < args.length; i++) {

if(args[i].equalsIgnoreCase("-image")) {

imagePath = args[++i];
if(!(imagePath.toLowerCase().endsWith(".fpx"))) {
imagePath += ".fpx";

}

"cat.fpx";

} else if(args[i].equalsIgnoreCase("-res")) {
resolution = Integer.valueOf(args[++i]).intValue(Q);

}
}

String url = SERVER + "FIF=" + imagePath;

new IIPResolutionTest(url,

resolution);

Release 1.0.1, November 1999

359

12.6.2 lIPResolution Operation CLIENT-SERVER IMAGING

Listing 12-4 1IPResolution Operation Example (Continued)

ParameterBlock pb = new ParameterBlock();
pb.add(url).add(resolution);
PTlanarImage pi = JAIL.create("iipresolution”, pb);

360 Programming in Java Advanced Imaging

CHAPTER 13

Writing Image Files

THIS chapter describes JAl's codec system for writing image data files.

13.1 Introduction

The JAI codec system supports a variety of image formats for writing an image
to a file or to arbutputStream for further manipulation. For writing an image to

a file, theFileStore operation (see Section 13.2, “Writing to a File”) writes an
image to a specified file in the specified format. For encoding an image to an
OutputStream, theEncode operation (see Section 13.3, “Writing to an Output
Stream”) writes an image to a giv@atputStream in a specified format using

the encoding parameters supplied via IhegeEncodeParam operation

parameter.

13.2 Writing to a File

The FileStore operation writes an image to a given file in a specified format
using the specified encoding parameters. This operation is much simpler than the
encoders described in the remainder of this chapter.

TheFileStore operation takes one rendered source image and three parameters:

Parameter Type Description

filename String The path of the file to write to.
format String The format of the file.

param ImageEncodeParam The encoding parameters.

The filename parameter must be supplied or the operation will not be
performed. Also, the specified file path must be writable.

Release 1.0.1, November 1999 361

13.3

362

Writing to an Output Stream WRITING IMAGE FILES

The format parameter defaults toi ff if no value is provided. Table 13-1 lists
the recognized JAI file formats.

Table 13-1 JAl Writable File Formats

File Format Description

BMP Microsoft Windows bitmap image file

JPEG A file format developed by the Joint Photographic Experts Group
PNG Portable Network Graphics

PNM Portable aNy Map file format. Includes PBM, PGM, and PPM
TIFF Tag Image File Format

Theparam parameter must either be null or an instance ofayeEncodeParam
subclass appropriate to the format.

Listing 13-1 shows a code sample demonstrating the use of botintée and
FileStore operations.

13.3 Writing to an Output Stream

The Encode operation writes an image to a giveatputStream in a specified
format using the encoding parameters supplied vialitz@eEncodeParam
operation parameter.

The Encode operation takes one rendered source image and three parameters:

Parameter Type Description

stream OutputStream TheOutputStream to write to.
format String The format of the created file.
param ImageEncodeParam The encoding parameters.

Theparam parameter must either be null or an instance ofeeyeEncodeParam

subclass appropriate to the specified image format. The image encode parameter

depends on the type of image file to be encoded. This parameter contains all of
the information about the file type that the encoder needs to create the file. For
example, the BMP format requires two parameter values, as described in the
BMPEncodeParam class:

e Version number — One of three valuegsRSION_2, VERSION_3, or
VERSION_4.

» Data layout — One of two valueEP_DOWN or BOTTOM_UP.

Programming in Java Advanced Imaging

WRITING IMAGE FILES BMP Version

These parameters are described in detail in Section 13.4, “Writing BMP Image
Files.”

Listing 13-1 shows a code sample demonstrating the use of botintlode and
FileStore operations.

Listing 13-1 Writing an OutputStream and a File

// Define the source and destination file names.
String inputFile = /images/FarmHouse.tif
String outputFile = /images/FarmHouse.bmp

// Load the input image.
RenderedOp src = JAI.create("fileload", inputFile);

// Encode the file as a BMP image.
FileOutputStream stream =

new FileOutputStream(outputFile);
JAI.create("encode", src, stream, BMP, null);

// Store the image in the BMP format.
JAI.create("filestore", src, outputFile, BMP, null);

13.4 Writing BMP Image Files

As described above, the encoding of BMP images requires the specification of
two parameters: version and data layout. By default, these values are:

e \ersion — VERSION_3
» Data layout — pixels are stored in bottom-up order

The JAI BMP encoder does not support compression of BMP image files.

13.4.1 BMP Version

JAI currently reads and writes Version2, Version3, and some of the Version 4
images. The BMP version number is read and specified gétlversion and
setVersion methods in the8MPEncodeParam class. The BMP version
parameters are as follows:

Parameter Description

VERSION_2 Specifies BMP Version 2
VERSION_3 Specifies BMP Version 3
VERSION_4 Specifies BMP Version 4

Release 1.0.1, November 1999 363

13.4.2 BMP Data Layout WRITING IMAGE FILES

If not specifically setyERSION_3 is the default version.

API: com.sun.media.jai.codec.BMPEncodeParam

e void setVersion(int versionNumber)
sets the BMP version to be used.

e 1int getVersion()
returns the BMP version to be used.

13.4.2 BMP Data Layout

The scan lines in the BMP bitmap are stored from the bottom up. This means
that the first byte in the array represents the pixels in the lower-left corner of the
bitmap, and the last byte represents the pixels in the upper-right corner.

The in-memory layout of the image data to be encoded is specified with
getDatalayout andsetDatalayout methods in the8MPEncodeParam class.

API: com.sun.media.jai.codec.BMPEncodeParam

e void setTopDown(boolean topDown)
sets the data layout to be top down.

13.4.3 Example Code

Listing 13-2 shows a code sample for encoding a BMP image.

Listing 13-2 Encoding a BMP Image

OutputStream os = new FileOutputStream(fileToWriteTo);

BMPEncodeParam param = new BMPEncodeParam();

ImageEncoder enc = ImageCodec.createImageEncoder("BMP", os,
param) ;

enc.encode(op);

os.close();

13.5 Writing JPEG Image Files

The JPEG standard was developed by a working group, known as the Joint
Photographic Experts Group (JPEG). The JPEG image data compression
standard handles grayscale and color images of varying resolution and size.

364 Programming in Java Advanced Imaging

WRITING IMAGE FILES JFIF Header

JPEG compression identifies and discards “extra” data that is beyond what the
human eye can see. Since it discards data, the JPEG compression algorithm is
considered “lossy.” This means that once an image has been compressed and
then decompressed, it will not be identical to the original image. In most cases,
the difference between the original and compressed version of the image is
indistinguishable.

An advantage of JPEG compression is the ability to select the quality when
compressing the image. The lower the quality, the smaller the image file size, but
the more different it will appear than the original.

Table 13-2 lists the JPEG encode parameters that may be set and the default
values. The remaining sections describe these settings and how to change them.

Table 13-2 JPEG Encode Parameters

Parameter Description Default Value

writeJFIFHeader Controls whether the encoder writes a JFIF True
header using the APPO marker. See
Section 13.5.1, “JFIF Header.”

gTabS1ot[0],[1],[2] Quantization tables. See Section 13.5.3, 0 for Y channel, 1 for

“Quantization Table.” Cb and Cr channels
qTab[0],[1],[2] Quantization table contents. See Section 13.8l@l] for all three
“Quantization Table.” channels
gqTabSet[0],[1],[2] Quantization table usage. See Section 13.5.%alse for all three
“Quantization Table.” channels
hSamp[0@],[1],[2] Horizontal subsampling. See Section 13.5.4, 1 for Y channel, 2 for
“Horizontal and Vertical Subsampling.” Cb and Cr channels
vSamp[0],[1],[2] Vertical subsampling. See Section 13.5.4, 1 forY channel, 2 for
“Horizontal and Vertical Subsampling.” Cb and Cr channels
qual Quality setting. See Section 13.5.5, 0.75F
“Compression Quality.”
rstInterval Restart interval. Section 13.5.6, “Restart 0
Interval.”
writeImageOnly Controls whether encoder writes only the False

compressed image data. See Section 13.5.7,
“Writing an Abbreviated JPEG Stream.”

13.5.1 JFIF Header

The JPEG File Interchange Format (JFIF) is a minimal file format that enables
JPEG bitstreams to be exchanged between a wide variety of platforms and
applications. This minimal format does not include any of the advanced features
found in the TIFF JPEG specification or any application-specific file format. The

Release 1.0.1, November 1999 365

13.5.2 JPEG DCT Compression Parameters WRITING IMAGE FILES

sole purpose of this simplified format is to allow the exchange of JPEG
compressed images.

The JFIF features are:

» Uses the JPEG baseline image compression algorithm
» Uses JPEG interchange format compressed image representation
e Compatible with most platforms (PC, Mac, or Unix)

» Standard color space: one or three components. For three components,
YC,C, (CCIR 601-256 levels)

An APPO marker is used to identify a JFIF file. The marker provides information
that is missing from the JPEG stream, such as version numbedy pixel

density (dots per inch or dots per cm.), pixel aspect ratio (derived ramdy

pixel density), and thumbnail. TheetWritelFIFHeader method controls

whether the encoder writes a JFIF header using the APPO marker.

API: com.sun.media.jai.codec.]JPEGEncodeParam

e void setWriteJFIFHeader(boolean writelFIF)

controls whether the encoder writes a JFIF header using the APPO marker. By
default an APPO marker is written to create a JFIF file.

Parameter write]FIF If true, writes a JFIF header.

13.5.2 JPEG DCT Compression Parameters

JAI uses the JPEG baseline DCT coding process, shown in Figure 13-1.

Compressed
Image
Image - , Array
Array iscrete Data
Cosine Quantizer EEgégodpgr >
Transform

Encoder

Figure 13-1 JPEG Baseline DCT Coding

For encoding, the image array is divided intx 8 pixel blocks and a discrete
cosine transform (DCT) is taken of each block, resulting in an8&rray of

366 Programming in Java Advanced Imaging

WRITING IMAGE FILES Quantization Table

transform coefficients. The DCT is a mathematical operation that takes the block
of image samples as its input and converts the information from the spatial
domain to the frequency domain. Thex8 matrix input to the DCT represents
brightness levels at specific y coordinates. The resulting»88 matrix values
represent relative amounts of 64 spatial frequencies that make up the spectrum of
the input data.

The next stage in the encoder quantizes the transform coefficients by dividing
each DCT coefficient by a value from a quantization table. The quantization
operation discards the smaller-valued frequency components, leaving only the
larger-valued components.

After an image block has been quantized, it enters the entropy encoder, which
creates the actual JPEG bitstream. The entropy encoder assigns a binary
Huffman code to coefficient values. The length of each code is chosen to be
inversely proportional to the expected probability of occurrence of a coefficient
amplitude — frequently-occurring coefficient values get short code words,
seldom-occurring coefficient values get long code words. The entropy encoder
uses two tables, one for the AC frequency components and one for the DC
frequency components.

The JPEG decoding process is essentially the inverse of the encoding process.
The compressed image array data stream passes through the entropy encoder,
which recreates the quantized coefficient values. Then, the quantized coefficients
are reconstructed by multiplication with the quantizer table values. Finally, an
inverse DCT is performed and the reconstructed image array is produced.

The following are the parameters that may be specified for JPEG DCT
compression.
13.5.3 Quantization Table

The setQTable andgetQTable methods are used to specify and retrieve the
guantization table that will be used in encoding a particular band of the image.
There are, by default, two quantizer tables:

Table Band
0 Band O
1 All other bands

The parametetableNum is usually a value between 0 and 3. This value indicates
which of four quantization tables you are specifying. Table 0 is designed to be

Release 1.0.1, November 1999 367

1354

368

Horizontal and Vertical Subsampling WRITING IMAGE FILES

used with the luminance band of eight-bit YCC images. Table 1 is designed to be
used with the chrominance bands of eight-bit YCC images. The two tables can
also be set individually using the:tLumaQTable (table 0) and

setChromaQTable (table 1) methods. Tables 2 and 3 are not normally used.

> com.sun.media.jai.codec.JPEGEncodeParam

void setQTable(int component, int tableNum, int[] qTable)

sets a quantization table to be used for a component. This method allows up to
four independent tables to be specified. This disables any quality setting.

Parameters component The band to which this table applies.

tabTeNum The table number that this table is assigned
to (0 to 3).

qTable Quantization table values in “zig-zag”
order.

int[] getQTable(int component)

returns the contents of the quantization table used for a component. If this
method is called before the quantization table is set, an error is thrown.

void setLumaQTable(int[] gTable)

sets the quantization table to be used for luminance data. This is a convenience
method that explicitly sets the contents of quantization table 0. The length of
the table must be 64. This disables any quality setting.

void setChromaQTable(int[] qTable)

sets the quantization table to be used for luminance data. This is a convenience
method that explicitly sets the contents of quantization table 0. The length of
the table must be 64. This method assumes that all chroma components will use
the same table. This disables any quality setting.

int getQTableSTot(int component)

returns the quantization table slot used for a component. If this method is called
before the quantization table data is set, an error is thrown.

13.5.4 Horizontal and Vertical Subsampling

JPEG allows the image components to be subsampled to reduce their resolution
prior to encoding. This is typically done with YCC images, where the two
chroma components can be subsampled, usually by a factor of two in both axes.

Programming in Java Advanced Imaging

WRITING IMAGE FILES Compression Quality

This is possible due to the human visual system’s low sensitivity to color images
relative to luminance (Y) errors By default, the sampling factors for YCC input
images are set to {1, 2, 2} for both horizontal and vertical axes.

API: com.sun.media.jai.codec.JPEGEncodeParam

e« void setHorizontalSubsampling(int component, int subsample)

sets the horizontal subsampling to be applied to an image band. Defaults to 1
for grayscale and (1,2,2) for RGB.

Parameter component The band for which to set horizontal
subsampling.

subsample The horizontal subsampling factor.

o« void setVerticalSubsampling(int component, int subsample)

sets the vertical subsampling to be applied to an image band. Defaults to 1 for
grayscale and (1,2,2) for RGB.

e 1int getHorizontalSubsampling(int component)
returns the horizontal subsampling factor for a band.

e 1int getVerticalSubsampling(int component)
returns the vertical subsampling factor for a band.

13.5.5 Compression Quality

Compression quality specifies a factor that relates to the desired tradeoff between
image quality and the image data compression ratio. The quality valugl ima
between 0.0 and 1.0. A setting of 1.0 produces the highest quality image at a
lower compression ratio. A setting of 0.0 produces the highest compression ratio,
with a sacrifice to image quality. The quality value is typically set to 0.75.

The compression quality value controls image quality and compression ratio by
determining a scale factor the encoder will use in creating scaled versions of the
guantization tables. Some guidelines:

Quality
Value Meaning

1.0 Highest quality, no compression

0.75 High quality, good compression ratio

Release 1.0.1, November 1999 369

13.5.6 Restart Interval WRITING IMAGE FILES

Quality

Value Meaning

0.5 Medium quality, medium compression ratio
0.25 Low quality, high compression ratio

Note: The values stored in the quantization table also affect image quality and
compression ratio. See also Section 13.5.3, “Quantization Table.”

API: com.sun.media.jai.codec.]JPEGEncodeParam

e void setQuality(float quality)

sets the compression quality factor. Creates new quantization tables that
replace the currently-installed quantization tables.

Parameter quality The desired quality level; a value of 0.0 to
1.0. The default value is 0.75.

o« float getQuality()

returns the quality setting for this encoding. This is a number between 0.0 and
1.0.

e boolean isQualitySet()
tests if the quality parameter has been set infHESEncodeParam.

13.5.6 Restart Interval

JPEG images use restart markers to define multiple strips or tiles. The restart
markers are inserted periodically into the image data to delineate image segments
known asrestart intervals To limit the effect of bitstream errors to a single

restart interval, JAl provides methods to set the restart interval in JPEG
Minimum Coded Units (MCUs). The default is zero (no restart interval markers).

API: com.sun.media.jai.codec.JPEGEncodeParam

e void setRestartInterval(int restartInterval)
sets the restart interval in Minimum Coded Units (MCUS).

Parameter restartInterval Number of MCUs between restart
markers.

370 Programming in Java Advanced Imaging

WRITING IMAGE FILES Example Code

e 1int getRestartInterval()
returns the restart interval.

13.5.7 Writing an Abbreviated JPEG Stream

Normally, both the JPEG table data and compressed (or uncompressed) image
data is written to the output stream. However, it is possible to write just the table

data or just the image data. ThetwriteTablesOnly method instructs the
encoder to write only the table data to the output stream. The

setWriteImageOnly method instructs the encoder to write only the compressed

image data to the output stream.

API: com.sun.media.jai.codec.JPEGEncodeParam

e void setWriteTablesOnly(boolean tablesOnly)
instructs the encoder to write only the table data to the output stream.

Parameter tablesOnly If true, only the tables will be written.

e void setWriteImageOnly(boolean imageOnTly)

instructs the encoder to write only the image data to the output stream.

Parameter imageOnly If true, only the compressed image will be

written.

13.5.8 Example Code

Listing 13-3 shows a code sample for encoding a JPEG image.
Listing 13-3 Encoding a JPEG Image (Sheet 1 of 5)

oo

import java.awt.*;
import java.awt.event.*;

import java.awt.image.*;

import java.awt.image.renderable.*;
import java.io.*;

import javax.media.jai.*;

import javax.media.jai.widget.¥*;
import com.sun.media.jai.codec.¥;

public class JPEGWriterTest extends WindowContainer {

private ImageEncoder encoder = null;
private JPEGEncodeParam encodeParam = null;

Release 1.0.1, November 1999

371

13.5.8 Example Code WRITING IMAGE FILES

Listing 13-3 Encoding a JPEG Image (Sheet 2 of 5)

// Create some Quantization tables.
private static int[] gtablel = {
i,1,1,1,1,1,1,1,

111,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1

1

private static int[] gtable2 = {
2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2

1

private static int[] gtable3 = {
3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3

1

// Really rotten quality Q Table

private static int[] qtable4 = {
200,200,200,200,200,200,200,200),
200,200,200,200,200,200,200,200),
200,200,200,200,200,200,200,200),
200,200,200,200,200,200,200,200,
200,200,200,200,200,200,200,200,
200,200,200,200,200,200,200,200,
200,200,200,200,200,200,200,200),
200,200,200,200,200,200,200,200

372 Programming in Java Advanced Imaging

WRITING IMAGE FILES Example Code

Listing 13-3 Encoding a JPEG Image (Sheet 3 of 5)

public static void main(String args[]) {
JPEGWriterTest jtest = new JPEGWriterTest(args);
}

// Load the source image.
private PlanarImage loadImage(String imageName) {
ParameterBlock pb = (new
ParameterBlock()) .add(imageName);
PlanarImage src = JAI.create(“fileload”, pb);
if (src == null) {
System.out.println(“Error in loading image
System.exit(1);
}

return src;

+ imageName) ;

}

// Create the image encoder.
private void encodeImage(PlanarImage img, FileOutputStream out)
{
encoder = ImageCodec.createImageEncoder(“JPEG”, out,
encodeParam) ;
try {
encoder.encode(img);
out.close();
} catch (IOException e) {
System.out.println(“IOException at encoding..”);
System.exit(l);

}

private FileOutputStream createOutputStream(String outFile) {

FileOutputStream out = null;

try {
out = new FileOutputStream(outFile);

} catch(IOException e) {
System.out.println(“IOException.”);
System.exit(l);

}

return out;

}

public JPEGWriterTest(String args[]) {
// Set parameters from command Tine arguments.
String inFile = “images/Parrots.tif”;

Release 1.0.1, November 1999

373

13.5.8 Example Code WRITING IMAGE FILES

Listing 13-3 Encoding a JPEG Image (Sheet 4 of 5)

FiTeOutputStream outl = createOutputStream(“outl.jpg”);
FiTeOutputStream out2 = createOutputStream(“out2.jpg”);
FiTeOutputStream out3 = createOutputStream(“out3.jpg”);

// Create the source op image.
PlanarImage src = loadImage(inFile);

double[] constants = new double[3];
constants[Q] = 0.0;

constants[1l] = 0.0;

constants[2] = 0.0;

ParameterBlock pb = new ParameterBlock();
pb.addSource(src);

pb.add(constants);

// Create a new src image with weird tile sizes

ImagelLayout layout = new ImagelLayout();

Tayout.setTileWidth(57);

Tayout.setTileHeight(57);

RenderingHints hints = new RenderingHints(JAI.KEY_IMAGE_LAYOUT,
Tayout);

PTlanarImage srcl = JAI.create("addconst", pb, hints);

/] ----- End src Toading ------

// Set the encoding parameters if necessary.
encodeParam = new JPEGEncodeParam();

encodeParam.setQuality(0.1F);

encodeParam.setHorizontalSubsampling(@, 1);
encodeParam.setHorizontalSubsampling(l, 2);
encodeParam.setHorizontalSubsampling(2, 2);

encodeParam.setVerticalSubsampling(@, 1);
encodeParam.setVerticalSubsampTling(l, 1);
encodeParam.setVerticalSubsampling(2, 1);

encodeParam.setRestartInterval (64);

//encodeParam.setWriteImageOnly(false);
//encodeParam.setWriteTablesOnly(true);
//encodeParam.setWritelFIFHeader(true);

// Create the encoder.
encodeImage(src, outl);
PlanarImage dstl = ToadImage(“outl.jpg”);

// - End first encode ---------

374 Programming in Java Advanced Imaging

WRITING IMAGE FILES Writing PNG Image Files

Listing 13-3 Encoding a JPEG Image (Sheet 5 of 5)

encodeParam.setLumaQTable(qtablel);
encodeParam.setChromaQTable(qtable2);

encodeImage(src, out2);
PlanarImage dst2 = loadImage(“out2.jpg”);

/] ——==- End second encode --—————--

encodeParam = new JPEGEncodeParam();
encodeImage(loadImage(“images/BlackCat.tif”), out3);
PTanarImage dst3 = loadImage(“out3.jpg”);

// ---—- End third encode ---------

setTitle (“JPEGWriter Test”);
setLayout(new GridLayout(2, 2));
ScrollingImagePanel panell = new ScrollingImagePanel(src, 512,

400);
ScrolTlingImagePanel panel2 = new ScrollingImagePanel(dstl, 512,
400);
ScrollingImagePanel panel3 = new ScrollingImagePanel(dst2, 512,
400) ;
ScrollingImagePanel panel4 = new ScrollingImagePanel(dst3, 512,
400);
add(panell);
add(panel2);
add(panel3);
add(panel4);
pack(;
show(Q); }

13.6 Writing PNG Image Files

The Portable Network Graphics (PNG) format is a file standard for compressed
lossless bitmapped image files. A PNG file consists of an eight-byte PNG
signaturefollowed by severathunks The signature identifies the file as a PNG
file. The chunks provide additional information about the image. The JAI codec
architecture supports PNG 1.1 and provides control over several of the chunks as
described in this section.

Release 1.0.1, November 1999 375

13.6.1 PNG Image Layout WRITING IMAGE FILES

13.6.1 PNG Image Layout

PNG images can be encoded in one of three pixel types, as defined by the
subclass oPNGEncodeParam, as follows:

Pixel Type Description

PNGEncodeParam.Palette Also known asndexed-colorwhere each pixel is represented by a
single sample that is an index into a supplied color palette. The
com.sun.media.jai.codec.PNGEncodeParam.Palette
class supports the encoding of palette pixel images.

PNGEncodeParam.Gray Each pixel is represented by a single sample that is a grayscale
level. The
com.sun.media.jai.codec.PNGEncodeParam.Gray class
supports the encoding of grayscale pixel images.

PNGEncodeParam.RGB Also known agruecolor, where each pixel is represented by three
samples: red, green, and blue. The
com.sun.media.jai.codec.PNGEncodeParam.RGB class
supports the encoding of RGB pixel images.

Optionally, grayscale and RGB pixels can also include an alpha sample (see
Section 13.6.6.12, “Transparency (tRNS Chunk)”).

A call to thegetDefaultEncodeParam method returns an instance of:

* PNGEncodeParam.Palette for an image with afindexColorModel.
* PNGEncodeParam.Gray for an image with only one or two bands.
* PNGEncodeParam.RGB for all other images.
This method provides no guarantee that the image can be successfully encoded

by the PNG encoder, since the encoder only performs a superficial analysis of the
image structure.

API: com.sun.media.jai.codec.PNGEncodeParam

e static PNGEncodeParam getDefaultEncodeParam(RenderedImage im)

returns an instance ®NGEncodeParam.Palette, PNGEncodeParam.Gray, Or
PNGEncodeParam.RGB appropriate for encoding the given image.

13.6.2 PNG Filtering

The PNG file definition allows the image data to be filtered before it is
compressed, which can improve the compressibility of the data. PNG encoding

376 Programming in Java Advanced Imaging

WRITING IMAGE FILES PNG Filtering

supports five filtering algorithms, including “none,” which indicates no filtering.
The filtering algorithms are described below.

Table 13-3 PNG Filtering Algorithms

Parameter Description

PNG_FILTER_NONE No filtering — the scanline is transmitted unaltered.

PNG_FILTER_SUB The filter transmits the difference between each byte and the value of the
corresponding byte of the prior pixel.

PNG_FILTER_UP Similar to the Sub filter, except that the pixel immediately above the
current pixel, rather than just to its left, is used as the predictor.

PNG_FILTER_AVERAGE The filter uses the average of the two neighboring pixels (left and above)
to predict the value of a pixel.

PNG_FILTER_PAETH The filter computes a simple linear function of the three neighboring pixels
(left, above, upper left), then chooses as predictor the neighboring pixel
closest to the computed value.

The filtering can be different for each row of an image by usingftiiecerRow
method. The method can be overridden to provide a custom algorithm for
choosing the filter type for a given row.

The filterRow method is supplied with the current and previous rows of the
image. For the first row of the image, or of an interlacing pass, the previous row
array will be filled with zeros as required by the PNG specification.

The method is also supplied with five scratch arrays. These arrays may be used
within the method for any purpose. At method exit, the array at the index given
by the return value of the method should contain the filtered data. The return
value will also be used as the filter type.

The default implementation of the method performs a trial encoding with each of
the filter types, and computes the sum of absolute values of the differences
between the raw bytes of the current row and the predicted values. The index of
the filter producing the smallest result is returned.

As an example, to perform only “sub” filtering, this method could be
implemented (non-optimally) as follows:

for (int i = bytesPerPixel; i < bytesPerRow + bytesPerPixel; i++)
{
int curr = currRow[i] & Oxff;
int Teft = currRow[i - bytesPerPixel] & Oxff;
scratchRow[PNG_FILTER_SUB][i] = (byte)(curr - Teft);
3
return PNG_FILTER_SUB;

Release 1.0.1, November 1999 377

13.6.3 Bit Depth WRITING IMAGE FILES

API: com.sun.media.jai.codec.PNGEncodeParam

e 1int filterRow(byte[] currRow, byte[] prevRow,
byte[][] scratchRows, int bytesPerRow, int bytesPerPixel)

returns the type of filtering to be used on a row of an image.

Parameters currRow The current row as an array bjtes of
length at leasbytesPerRow +
bytesPerPixel. The pixel data starts at
index bytesPerPixel; the initial
bytesPerPixel bytes are zero.

prevRow The current row as an array bytes. The
pixel data starts at indebytesPerPixel;
the initial bytesPerPixel bytes are zero.

scratchRows An array of 5byte arrays of length at
leastbytesPerRow + bytesPerPixel,
usable to hold temporary results. The
filtered row will be returned as one of the
entries of this array. The returned filtered
data should start at index
bytesPerPixel; The initial
bytesPerPixel bytes are not used.

bytesPerRow The number of bytes in the image row.
This value will always be greater than 0.

bytesPerPixel The number of bytes representing a single
pixel, rounded up to an integer. This is
the bpp parameter described in the PNG
specification.

13.6.3 Bit Depth

The PNG specification identifies the following bit depth restrictions for each of
the color types:

Table 13-4 PNG Bit Depth Restrictions

Color Allowed Bit

Type Depths Description
0 1,2,4,8,16 Grayscale. Each pixel is a grayscale sample.
2 8, 16 Truecolor (RGB) without alpha. Each pixel is an RGB triple.

378 Programming in Java Advanced Imaging

WRITING IMAGE FILES Interlaced Data Order

Table 13-4 PNG Bit Depth Restrictions (Continued)
Color Allowed Bit

Type Depths Description
3 1,2,4,8 Indexed color (Palette). Each pixel is a palette index.
4 8, 16 Grayscale with alpha. Each pixel is a grayscale sample followed by an

alpha sample.

6 8, 16 Truecolor (RGB) with alpha. Each pixel is an RGB triple followed by an
alpha sample.

The bit depth is specified by thetBithDepth method in the class type.

API. com.sun.media.jai.codec.PNGEncodeParam.Palette

e void setBitDepth(int bitDepth)
sets the desired bit depth for a palette image. The bit depth mustbe 1, 2, 4, or 8.

API. com.sun.media.jai.codec.PNGEncodeParam.Gray

e public void setBitDepth(int bitDepth)

sets the desired bit depth for a grayscale image. The bit depth must be 1, 2, 4,
8, or 16.

API: com.sun.media.jai.codec.PNGEncodeParam.RGB

e void setBitDepth(int bitDepth)
sets the desired bit depth for an RGB image. The bit depth must be 8 or 16.

13.6.4 Interlaced Data Order

The interlaced data order indicates the transmission order of the image data. Two
settings are currently allowed: no interlace and Adam?7 interlace. With interlacing
turned off, pixels are stored sequentially from left to right, and scanlines
sequentially from top to bottom. Adam? interlacing (named after its author,
Adam M. Costello), consists of seven distinct passes over the image; each pass
transmits a subset of the pixels in the image.

API: com.sun.media.jai.codec.PNGEncodeParam

e void setInterlacing(boolean uselnterlacing)
turns Adam? interlacing on or off.

Release 1.0.1, November 1999 379

13.6.5

380

PLTE Chunk for Palette Images WRITING IMAGE FILES

e boolean getInterlacing()
returnstrue if Adam? interlacing will be used.

13.6.5 PLTE Chunk for Palette Images

The PLTE chunk provides the palette information palette or indexed-color
images. The PLTE chunk must be supplied for all palette (color type 3) images
and is optional for RGB (color type 2 and 6) images.

The PLTE chunk contains from 1 to 256 palette entries, each a three-byte series
of the alternating red, green, and blue values, as follows:

* Red: one byte (0 = black, 255 = red)

* Green: one byte (0 = black, 255 = green)

e Blue: one byte (0 = black, 255 = blue)
The number of elements in the palette must be a multiple of 3, between 3 and

768 (3x 256). The first entry in the palette is referenced by pixel value 0, the
second by pixel value 1, and so on.

For RGB (color type 2 and 6) images, the PLTE chunk, if included, provides a
suggested set of from 1 to 256 colors to which the RGB image can be quantized
in case the viewing system cannot display RGB directly.

API: com.sun.media.jai.codec.PNGEncodeParam

e void setPalette(int[] rgb)
sets the RGB palette of the image to be encoded.

Parameters rgb An array ofints.

o« int[] getPalette()
returns the current RGB palette.

e void unsetPalette()
suppresses the PLTE chunk from being output.

e boolean isPaletteSet()
returns true if a PLTE chunk will be output.

Programming in Java Advanced Imaging

WRITING IMAGE FILES Ancillary Chunk Specifications

13.6.6 Ancillary Chunk Specifications

All ancillary PNG chunks are optional but are recommended. Most of the PNG
chunks can be specified prior to encoding the imagediymethods in the
PNGEncodeParam class. The chunks that can be set and the methods used to set
them are described in the following paragraphs.

13.6.6.1 Background Color (bKGD Chunk)

Methods are provided to set and read the suggested background color, which is
encoded by the bKGD chunk.

For Palette (indexed color) images, the bKGD chunk contains a single value,
which is the palette index of the color to be used as the background.

For Grayscale images, the bKGD chunk contains a single value, which is the
gray level to be used as the background. The range of values ishHARPY— 1.

For RGB (truecolor) images, the bKGD chunk contains three values, one each
for red, green, and blue. Each value has the range of 83— 1.

API. com.sun.media.jai.codec.PNGEncodeParam.Palette

e« void setBackgroundPaletteIndex(int index)
sets the palette index of the suggested background color.

e« 1int getBackgroundPaletteIndex()
returns the palette index of the suggested background color.

API: com.sun.media.jai.codec.PNGEncodeParam.Gray

« void setBackgroundGray(int gray)
sets the suggested gray level of the background.

e 1int getBackgroundGray()
returns the suggested gray level of the background.

API. com.sun.media.jai.codec.PNGEncodeParam.RGB

e« void setBackgroundRGB(int[] rgb)

sets the RGB value of the suggested background colorgbhgarameter
should have three entries.

Release 1.0.1, November 1999 381

13.6.6

382

Ancillary Chunk Specifications WRITING IMAGE FILES

e int[] getBackgroundRGB()
returns the RGB value of the suggested background color.

13.6.6.2 Chromaticity (cHRM Chunk)

Applications that need device-independent specification of colors in a PNG file
can specify the 1931 CIEfy) chromaticities of the red, green, and blue
primaries used in the image, and the referenced white point.

The chromaticity parameter should b&®at array of length 8 containing the
white pointX andY, red X andY, greenX andY, and blueX andY values in order.

API: com.sun.media.jai.codec.PNGEncodeParam

o« void setChromaticity(float[] chromaticity)
sets the white point and primary chromaticities in Gif) (space.
e« void setChromaticity(float whitePointX, float whitePointY,

float redX, float redY, float greenX, float greenY,
float blueX, float blueY)

a convenience method that calls the array version.

o float[] getChromaticity()
returns the white point and primary chromaticities in Gif) (space.

13.6.6.3 Gamma Correction (JAMA Chunk)

The gamma value specifies the relationship between the image samples and the
desired display output intensity as a power function:

sample = light_oymma

If the image’s gamma value is unknown, the gAMA chunk should be suppressed.
The absence of the gAMA chunk indicates that the gamma is unknown.

API: com.sun.media.jai.codec.PNGEncodeParam

e void setGamma(float gamma)
sets the gamma value for the image.

« float getGamma()
returns the gamma value for the image.

Programming in Java Advanced Imaging

WRITING IMAGE FILES Ancillary Chunk Specifications

e void unsetGamma()
suppresses the gAMA chunk from being output.

13.6.6.4 Palette Histogram (hIST Chunk)

The palette histogram is a value that gives the approximate usage frequency of
each color in the color palette. If the viewer is unable to provide all the colors
listed in the palette, the histogram may help decide how to choose a subset of
colors for display. The hIST chunk is only valid with Palette images.

API. com.sun.media.jai.codec.PNGEncodeParam.Palette

e void setPaletteHistogram(int[] paletteHistogram)
sets the palette histogram for the image.

e int[] getPaletteHistogram()
returns the palette histogram for the image.

e« void unsetPaletteHistogram()
suppresses the hIST chunk from being output.

13.6.6.5 Embedded ICC Profile Data (iCCP Chunk)

You can specify that RGB image samples conform to the color space presented
by the embedded International Color Consortium profile. The color space of the
ICC profile must be an RGB color space.

API. com.sun.media.jai.codec.PNGEncodeParam

e void setICCProfileData(byte[] ICCProfileData)
sets the ICC profile data.

e byte[] getICCProfileData()
returns the ICC profile data.

« void unsetICCProfileData()
suppresses the iCCP chunk from being output.

Release 1.0.1, November 1999 383

13.6.6

384

Ancillary Chunk Specifications WRITING IMAGE FILES

13.6.6.6 Physical Pixel Dimensions (pHYS Chunk)

The intended pixel size or aspect ratio for display of the image may be specified
in the pHYS chunk. The physical pixel dimensions information is presented as
three integer values:

» Pixels per unitx axis

» Pixels per unity axis

* Unit specifier

The unit specifier may have one of two values:

0 = Unit is unknown
1 = Unit is meters

When the unit specifier is 0, the pHYS chunk defines pixel aspect ratio only; the
actual size of the pixels remains unspecified.

API: com.sun.media.jai.codec.PNGEncodeParam

e void setPhysicalDimension(int[] physicalDimension)
sets the physical pixel dimension.

o« void setPhysicalDimension(int xPixelsPerUnit,
int yPixelsPerUnit, int unitSpecifier)

a convenience method that calls the array version.

e« int[] getPhysicalDimension()
returns the physical pixel dimension.

13.6.6.7 Significant Bits (sBIT Chunk)

For PNG data that has been converted from a lower sample depth, the significant
bits information in the sBIT chunk stores the number of significant bits in the
original image. This value allows decoders to recover the original data losslessly,
even if the data had a sample depth not directly supported by PNG.

The number of entries in theignificantBits array must be equal to the
number of output bands in the image:

1 -—foragrayscale image
» 2 —for a grayscale image with alpha
» 3 -—for palette or RGB images

Programming in Java Advanced Imaging

WRITING IMAGE FILES Ancillary Chunk Specifications

* 4 —for RGB images with alpha

API: com.sun.media.jai.codec.PNGEncodeParam.RGB

e void setSignificantBits(int[] significantBits)
sets the significant bits.

e int[] getSignificantBits()
returns the significant bits.

e« void unsetSignificantBits()
suppresses the sBIT chunk from being output.

13.6.6.8 Suggested Palette (SPLT Chunk)

A suggested palette may be specified when the display device is not capable of
displaying the full range of colors in the image. This palette provides a
recommended set of colors, with alpha and frequency information, that can be
used to construct a reduced palette to which the image can be quantized.

The suggested palette, as defined byRkE&SuggestedPaletteEntry class,
consists of the following:

* A palette name — a String that provides a convenient name for referring to
the palette

* A sampleDepth parameter — must be either 8 or 16

* Red sample

» Green sample

e Blue sample

* Alpha sample

* Frequency —the value is proportional to the fraction of pixels in the image
that are closest to that palette entry in RGBA space, before the image has
been composited against any background

API: com.sun.media.jai.codec.PNGEncodeParam.Palette

« void setSuggestedPalette(PNGSuggestedPaletteEntry[] palette)
sets the suggested palette.

Release 1.0.1, November 1999 385

13.6.6

386

Ancillary Chunk Specifications WRITING IMAGE FILES

o PNGSuggestedPaletteEntry[] getSuggestedPalette()
returns the suggested palette.

e void unsetSuggestedPalette()
suppresses the sPLT chunk from being output.

13.6.6.9 PNG Rendering Intent (SRGB Chunk)

If the PNG image includes an sRGB chunk, the image samples confirm to the
SRGB color space and should be displayed using the specified rendering “intent.”
The rendering intent specifies tradeoffs in colorimetric accuracy. There are four
rendering intents:

Table 13-5 PNG Rendering Intent

Parameter Description

INTENT_PERCEPTUAL The “perceptual” intent is for images that prefer good adaptation to the
output device gamut at the expense of colorimetric accuracy, such as
photographs.

INTENT_RELATIVE The “relative colorimetric” intent is for images that require color
appearance matching.

INTENT_SATURATION The “saturation” intent is for images that prefer preservation of saturation
at the expense of hue and lightness.

INTENT_ABSOLUTE The “absolute colorimetric” intent is for images that require absolute
colorimetry.

API: com.sun.media.jai.codec.PNGEncodeParam.RGB

e« void setSRGBIntent(int SRGBIntent)
sets the PNG rendering intent.

Parameter SRGBIntent The sRGB rendering intent to be stored
with the image. The legal values are 0 =
Perceptuall = Relative colorimetric, 2 =
Saturation, add 3 = Absolute colorimetric.

e int getSRGBIntent()
returns the rendering intent.

e void unsetSRGBIntent()
suppresses the sSRGB chunk from being output.

Programming in Java Advanced Imaging

WRITING IMAGE FILES Ancillary Chunk Specifications

13.6.6.10 Textual Data (tEXt Chunk)

Textual data can be encoded along with the image in the tEXt chunk. The
information stored in this chunk can be an image description or copyright notice.
A keyword indicates what the text string contains. The following keywords are
defined:

Title A title or caption for the image

Author The name of the image’s creator

Description A description of the image

Copyright A copyright notice

Creation Time The time the original image was created
Software The software used to create the image
Disclaimer A legal disclaimer

Warning A warning of the nature of the image content
Source The hardware device used to create the image
Comment Miscellaneous information

API: com.sun.media.jai.codec.PNGEncodeParam

e void setText(String[] text)
sets the text string to be encoded with the image.

e String[] getText()
returns the text string to be encoded with the image.

e void unsetText()
suppresses the tEXt chunk from being output.

13.6.6.11 Image Modification Timestamp (tIME Chunk)

The tIME chunk provides information on the last time the image was modified.
The tIME information is ebate and the internal storage format uses UTC
regardless of how theodificationTime parameter was created.

API: com.sun.media.jai.codec.PNGEncodeParam

« void setModificationTime(Date modificationTime)
sets the image modification time asate that will be sent in the tIME chunk.

Release 1.0.1, November 1999 387

13.6.6

388

Ancillary Chunk Specifications WRITING IMAGE FILES

« Date getModificationTime()
returns the image modification time data that will be sent in the tIME chunk.

e void unsetModificationTime()
suppresses the tIME chunk from being output.

13.6.6.12 Transparency (tRNS Chunk)

The tRNS chunk specifies that the image uses simple transparency. Simple
transparency means either alpha values associated with palette entries for Palette
images, or a single transparent color, for Grayscale and RGB images.

For Palette images, the tRNS chunk should contain a series of one-byte alpha
values, one for each RGB triple in the palette. Each entry indicates that pixels of
the corresponding palette index must be treated as having the specified alpha
value.

For grayscale images, the tRNS chunk should contain a single gray level value,
stored as an int. Pixels of the specified gray value are treated as transparent. If
the grayscale image has an alpha value, setting the gray level causes the image’s
alpha channel to be ignored.

For RGB images, the tRNS chunk should an RGB color value, stored as an int.
Pixels of the specified gray value are treated as transparent. If the RGB image
has an alpha value, setting the gray level causes the image’s alpha channel to be
ignored.

API. com.sun.media.jai.codec.PNGEncodeParam.Palette

e void setPaletteTransparency(byte[] alpha)

sets the alpha values associated with each palette entry. The alpha parameter
should have as many entries as there are RGB triples in the palette.

« byte[] getPaletteTransparency()
returns the alpha values associated with each palette entry.

API: com.sun.media.jai.codec.PNGEncodeParam.Gray

e void setTransparentGray(int transparentGray)

sets the gray value to be used to denote transparency. Setting this attribute will
cause the alpha channel of the input image to be ignored.

Programming in Java Advanced Imaging

WRITING IMAGE FILES Ancillary Chunk Specifications

e« 1int getTransparentGray()
returns the gray value to be used to denote transparency.

API: com.sun.media.jai.codec.PNGEncodeParam.RGB

e void setTransparentRGB(int[] transparentRGB)

sets the RGB value to be used to denote transparency. Setting this attribute will
cause the alpha channel of the input image to be ignored.

e int[] getTransparentRGB()
returns the RGB value to be used to denote transparency.

13.6.6.13 Compressed Text Data (zTXt Chunk)

Text data may be stored in the zTXt chunk, in addition to the text in the tEXt
chunk. The zTXt chunk is intended for storing large blocks of text, since the text
is compressed.

API: com.sun.media.jai.codec.PNGEncodeParam

e void setCompressedText(String[] text)
sets the compressed text to be sent in the zTXt chunk.

e String[] getCompressedText()
returns the compressed text to be sent in the zTXt chunk.

e void unsetCompressedText()
suppresses the zTXt chunk from being output.

13.6.6.14 Private Chunks

Private chunks may be added to the output file. These private chunks carry
information that is not understood by most other applications. Private chunks
should be given names with lowercase second letters to ensure that they do not
conflict with any future public chunk information. See the PNG specification for
more information on chunk naming conventions.

API: com.sun.media.jai.codec.PNGEncodeParam

e synchronized void addPrivateChunk(String type, byte[] data)
adds a private chunk to the output file.

Release 1.0.1, November 1999 389

13.7 Writing PNM Image Files WRITING IMAGE FILES

e« synchronized int getNumPrivateChunks()
returns the number of private chunks to be written to the output file.

e« synchronized String getPrivateChunkType(int index)

returns the type of the private chunk at a given index, as a four-character
String. The index must be smaller than the return value of
getNumPrivateChunks

o synchronized void removeUnsafeToCopyPrivateChunks()

removes all private chunks associated with this parameter instance whose
“safe-to-copy” bit is not set. This may be advisable when transcoding PNG
images.

e« synchronized void removeAllPrivateChunks()
remove all private chunks associated with this parameter instance.

13.7 Writing PNM Image Files

The PNM format is one of the extensions of the PBM file format (PBM, PGM,
and PPM). The portable bitmap format is a lowest-common-denominator
monochrome file format. It was originally designed to make it reasonable to mail
bitmaps between different types of machines. It now serves as the common
language of a large family of bitmap conversion filters.

The PNM format comes in six variants:

 PBM ASCII — three-banded images
 PBM raw — three-banded images
PGM ASCII - single-banded images
PGM raw - single-banded images

* PPM ASCII - single-banded images
 PPM raw - single-banded images

The parameter values, then & andASCII.

Listing 13-4 shows a code sample for encoding a PNM image.

Listing 13-4 Encoding a PNM Image

// Create the OutputStream.
OutputStream out = new FileOutputStream(fileToWriteTo);

390 Programming in Java Advanced Imaging

WRITING IMAGE FILES TIFF Tiled Images

Listing 13-4 Encoding a PNM Image (Continued)

// Create the ParameterBlock.
PNMEncodeParam param = new PNMEncodeParam();
param.setRaw(true.equals("raw"));

//Create the PNM image encoder.

ImageEncoder encoder = ImageCodec.createImageEncoder("PNM",
out,
param) ;

API: com.sun.media.jai.codec.PNMEncodeParam

e void setRaw(boolean raw)
sets the RAWBITS option flag.

e boolean getRaw()
retrieves the RAWBITS option flag.

13.8 Writing TIFF Image Files

The TIFF file format is a tag-based file format for storing and interchanging
raster images. TIFF files typically come from scanners, frame grabbers, and
paint- or photo-retouching programs.

By default, TIFF images in JAI are encoded without any compression and are
written out in strips rather than tiles. However, JAl does support image
compression, and the writing of tiled TIFF images.

13.8.1 TIFF Compression

JAI currently does not support compression of TIFF images.

13.8.2 TIFF Tiled Images

By default, the JAI encoder organizes TIFF images into strips. For low- to
medium-resolution images, this is adequate. However, for high-resolution (large)
images, the images can be accessed more efficiently if the image is divided into
roughly square tiles instead of strips.

Writing of tiled TIFF images can be enabled by calling thewriteTiled
method.

Release 1.0.1, November 1999 391

13.8.2 TIFF Tiled Images WRITING IMAGE FILES

API. com.sun.media.jai.codec.TIFFEncodeParam

e void setWriteTiled(boolean writeTiled)
enables writing of TIFF images in tiles rather than in strips.

Parameter writeTiled Specifies whether the image data should be
written out in tiled format.

e boolean getWriteTiled()
returns the value of theiteTiled parameter.

392 Programming in Java Advanced Imaging

CHAPTER 1 |

Extending the API

THIS chapter describes how the JAI APl may be extended.

14.1 Introduction

No image processing API can hope to capture the enormous variety of
operations that can be performed on a digital image. Although the JAI API
supports a large number of imaging operations, it was designed from the
beginning to encourage programmers to write extensions rather than
manipulating image data directly. JAl allows virtualiyy image processing
algorithm to be added to the APl and used as if it were a native part of the API.

The mechanism for adding functionality to the API can be presented at multiple
levels of encapsulation and complexity. This allows programmers who wish to
add simple things to the API to deal with simple concepts, while more complex
extensions have complete control over their environment at the lowest levels of
abstraction. The API also supports a variety of programming styles, including an
immediate mode and a deferred mode of execution for different types of imaging
applications.

14.2 Package Naming Convention

All extensions to JAI require the addition of new classes. All new classes are
grouped into packages as a convenient means of organizing the new classes and
separating the new classes from code libraries provided by others.

All new packages are given@oduct nameA product name is the accepted

Java method of using your company’s reversed Internet address to name new
packages. This product naming convention helps to guarantee the uniqueness of
package names. Supposing that your company'’s Internet address is

Release 1.0.1, November 1999 393

14.3

394

Writing New Operators EXTENDING THE API

WebStuff.COM and you wish to create a new package namedhitt. A good
choice of package name would be

com.webstuff.Prewitt
Or, even
com.webstuff.media.jai.Prewitt
To uniquely identify the package as part of JAI.

The above newrewitt class file must now be placed into a subdirectory that
matches the product name, such as:

com/webstuff/media/jai for Solaris-based systems
or
com\webstuff\media\jai for Windows systems

The Java convention for class naming is to use initial caps for the name, as in the
Prewitt example above. So called multi-word class names use initial caps for
each word. For exampleddOpImage.

Vendors are encouraged to use unique product names (by means of the Java
programming language convention of reversed internet addresses) to maximize
the likelihood of a clean installation.

14.3 Writing New Operators

To extend the JAI API by creating new operations, you will need to write a new
OpImage subclass. This may be done by subclassing one or more existing utility
classes to automate some of the details of the operator you wish to implement.
For most operators, you need only supply a routine that is capable of producing
an arbitrary rectangle of output, given contiguous source data.

Once created, new operators may be made available to users transparently and
without user source code changes using the JAI registry mechanism. Existing
applications may be tuned for new hardware platforms by strategic insertion of
new implementations of existing operators.

To create a new operator, you need to create the following new classes:

» Aclass that extends tld@Image class or any of its subclasses. This new
class does the actual processing. See Section 14.3.1, “Extending the
Oplmage Class.”

Programming in Java Advanced Imaging

EXTENDING THE API Extending the Oplmage Class

» A class that extends tloperationDescriptor class. This new class
describes the operation such as name, parameter list, and so on. See
Section 14.3.2, “Extending the OperationDescriptor Interface.”

» If the operator will function in the Rendered mode only, a class that
implementsjava. awt.image.renderable.RenderedImageFactory.
14.3.1 Extending the Oplmage Class

Every new operator being written must be a subclas@dhage or one of its
subclasses. ThepImage class currently has the following subclasses:

Table 14-1 Oplmage Subclasses

Class Description

AreaOpImage An abstract base class for image operators that require only a fixed
rectangular source region around a source pixel in order to compute each
destination pixel.

Nul10pImage Extends:PointOpImage
A trivial OpImage subclass that simply transmits its source unchanged.
Potentially useful when an interface require®pimage but another
sort ofRenderedImage (such as &iledImage) is to be used.

PointOpImage An abstract base class for image operators that require only a single
source pixel in order to compute each destination pixel.

ScaleOpImage ExtendsWarpOpImage
An abstract base class for scale-like operations that require rectilinear
backwards mapping and padding by the resampling filter dimensions.

SourcelessOpImage An abstract base class for image operators that have no image sources.

StatisticsOpImage An abstract base class for image operators that compute statistics on a
given region of an image, and with a given sampling rate.

UntiledOpImage A general class for single-source operations in which the values of all
pixels in the source image contribute to the value of each pixel in the
destination image.

WarpOpImage A general implementation of image warping, and a superclass for other
geometric image operations.

Release 1.0.1, November 1999 395

14.3.2

396

Extending the OperationDescriptor Interface EXTENDING THE API

All abstract methods defined pImage must be implemented by any new
OpImage subclass. Specifically, there are two fundamental methods that must be
implemented:

Method Description

getTile Gets a tile for reading. This method is called by the object that has the new
operator name as its source with a rectangle as its parameter. The operation is
responsible for returning a rectangle filled in with the correct values.

computeRect Computes a rectangle of output, givkaster sources. The method is called by
getTile to do the actual computation. The extension must override this method.

First, you have to decide which of tlipImage subclasses to extend. To write a
new statistics operation, you would most likely extend ShetisticsOpImage
class. Each subclass has a specific purpose, as described in Table 14-1.

14.3.2 Extending the OperationDescriptor Interface

Operations that are to be created using one ofittie create methods must be
defined in theregistryFile, which is included in thgai_core.jar. Each
operation has an OperationDescriptor (denotedodssc” in the

registryFile), which provides a textual description of the operation and
specifies the number and type of its sources and parameters. The
OperationDescriptor also specifies whether the operation supports rendered
mode, renderable mode, or both.

Listing 14-1 shows a sample of thregistryFile contents. Note that this is not
the entireregistryFile, only a small sample showing two operators (absolute
and addconst).

Programming in Java Advanced Imaging

EXTENDING THE API Extending the OperationDescriptor Interface

Listing 14-1 registryFile Example

odesc javax.media.jai.operator.AbsoluteDescriptor absolute
odesc javax.media.jai.operator.AddConstDescriptor addconst

rif com.sun.media.jai.opimage.AbsoluteCRIF

com.sun.media.jai absolute sunabsoluterif
rif com.sun.media.jai.mlib.MTibAbsoTuteRIF

com.sun.media.jai absolute mlibabsoluterif
rif com.sun.media.jai.opimage.AddConstCRIF

com.sun.media.jai addconst sunaddconstrif
rif com.sun.media.jai.mlib.MTibAddConstRIF

com.sun.media.jai addconst mlibaddconstrif

crif com.sun.media.jai.opimage.AbsoluteCRIF absolute
crif com.sun.media.jai.opimage.AddConstCRIF addconst

All high-level operation names in JAI (such Rstate, Convolve, and

AddConst) are mapped to instances RdnderedImageFactory (RIF) and/or
ContextualRenderedImageFactory (CRIF) that are capable of instantiating
OpImage chains to perform the named operation. The RIF is for rendered mode
operations only; the CRIF is for operations that can handle renderable mode or
both rendered and renderable modes.

To avoid the problems associated with directly editing tbgistryFile and

then repackaging it, you can register OperationDescriptors and RIFs and CRIFs
using the OperationRegistrytegisterOperationDescription, and

registerRIF andregisterCRIF methods. The only drawback to this method of
registration is that the new operator will not be automatically reloaded every time
a JAIl program is executed., since the operation is not actually present in the
registryFile. This means that to use the new operation, the operation will
always have to be invoked beforehand.

To temporarily register a new operation:

1. Register the operation name

The high-level operation name, calledaperation descriptqris
registered by calling theegisterOperationByName () method or the
registerOperationDescriptor() method. The operation descriptor
name must be unique.

Once an operation descriptor is registered, it may be obtained by name by
calling thegetOperationDescriptor() method.

2. Register the set of rendered image factory objects.
The rendered image factory (RIF) is registered usingdbésterRIF

Release 1.0.1, November 1999 397

14.3.2 Extending the OperationDescriptor Interface EXTENDING THE API

method. Each RIF is registered with a specific operation name and is given
a product name. Similar methods exist for registering a contextual image
factory (CRIF).

TheoOperationDescriptor interface provides a comprehensive description of a
specific image operation. All of the information regarding the operation, such as
the operation name, version, input, and property, should be listed. Any conditions
placed on the operation, such as its input format and legal parameter range,
should also be included, and the methods to enforce these conditions should be
implemented. A set ofropertyGenerators may be specified to be used as a
basis for the operation’s property management.

Each family of the image operation in JAl must have a descriptor that
implements this interface. The following basic resource data must be provided:

» GlobalName —a global operation name that is visible to all and is the same
in all Locales

» LocalName — a localized operation name that may be used as a synonym
for the global operation name

* Vendor — the name of the vendor (company name) defining this operation
» Description — a brief description of this operation

* DocURL —a URL where additional documentation on this operation may
be found (the javadoc for the operation)

» Version — the version of the operation

» argODesc, arglDesc, etc. — descriptions of the arguments. There must be a
property for each argument.

» hintODesc, hintlDesc, etc. — descriptions of the rendering hints. There
must be a property for each hint.

Additional information about the operation must be provided when appropriate.
It is also good idea to provide a detailed description of the operation’s
functionality in the class comment. When all of the above data is provided, the
operation can be added to @perationRegistry.

Listing 14-2 shows an example of an operation descriptor for the Clamp
operation. Note that the descriptor also contains descriptions of the two required
operation parameters, but no hints as these aren'’t required for the operation.

398 Programming in Java Advanced Imaging

EXTENDING THE API Extending the OperationDescriptor Interface

Listing 14-2 Operation Descriptor for Clamp Operation

public class ClampDescriptor extends OperationDescriptorImpl {
/7‘::’:

* The resource strings that provide the general documentation
* and specify the parameter 1list for this operation.

*/
private static final String[][] resources = {
{"GlobaTName", "Clamp"},
{"LocalName", "Clamp"},
{"Vendor", "com.sun.javax.media.jai"},
{"Description”, “Clamps the pixel values of a rendered image”},
{"DocURL", "http://java.sun.com/products/java-media/jai/

forDevelopers/jaiapi/
javax.media.jai.operator.ClampDescriptor.htm1"},

{"Version", “Beta”)},
{"arg@Desc", “The Tower boundary for each band.”},
{"arglDesc", “The upper boundary for each band.”}

};

As described in Section 3.3, “Processing Graphs,” JAl has two image modes:
Rendered and Renderable. An operation supporting the Rendered mode takes
RenderedImages as its sources, can only be used in a Rendered op chain, and
produces ®&enderedImage. An operation supporting the Renderable mode takes
RenderableImages as its sources, can only be used in a Renderable op chain,
and produces RenderableImage. Therefore, the class types of the sources and
the destination of an operation are different between the two modes, but the
parameters must be the same for both modes.

All operations must support the rendered mode and implement those methods
that supply the information for this mode. Those operations that support the
renderable mode must specify this feature usingidRenderableSupported
method and implement those methods that supply the additional information for
the Renderable mode.

Table 14-2 lists the Rendered mode methods. Table 14-3 lists the Renderable
mode methods. Table 14-4 lists the methods relative to operation parameters.

Table 14-2 Rendered Mode Methods

Method Description

isRenderedSupported Returnstrue if the operation supports the Rendered image
mode. This must berue for all operations.

isImmediate Returnstrue if the operation should be rendered immediately
during the call taJAI. create; thatis, the operation is placed
in immediate mode.

Release 1.0.1, November 1999 399

14.3.2 Extending the OperationDescriptor Interface EXTENDING THE API

Table 14-2 Rendered Mode Methods (Continued)

Method

Description

getSourceClasses

getDestClass

validateArguments

Returns an array df1asses that describe the types of sources
required by this operation in the Rendered image mode.

Returns &lass that describes the type of destination this
operation produces in the Rendered image mode.

Returnstrue if this operation is capable of handling the input
rendered source(s) and/or parameter(s) specified in the
ParameterBlock

Table 14-3 Renderable Mode Methods

Method

Description

isRenderableSupported

getRenderableSourceClasses

getRenderableDestClass

validateRenderableArguments

Returnstrue if the operation supports the Renderable image
mode.

Returns an array df1asses that describe the types of sources
required by this operation in the Renderable image mode.

Returns &lass that describes the type of destination this
operation produces in the Renderable image mode.

Returnstrue if this operation is capable of handling the input
Renderable source(s) and/or parameter(s) specified in the
ParameterBlock

Table 14-4 Parameter Methods

Method

Description

getNumParameters

getParamClasses

getParamNames

getParamDefaults

getParamDefaultValue

getParamMinValue

getParamMaxValue

Returns the number of parameters (not including the sources)
required by this operation.

Returns an array d@flasses that describe the types of
parameters required by this operation.

Returns an array &ftrings that are the localized parameter
names of this operation.

Returns an array @bjects that define the default values of
the parameters for this operation.

Returns the default value of a specified parameter.

Returns the minimum legal value of a specified numeric
parameter for this operation.

Returns the maximum legal value of a specified humeric
parameter for this operation.

400

Programming in Java Advanced Imaging

EXTENDING THE API Extending the OperationDescriptor Interface

APIl: javax.media.jai.OperationRegistry

e void registerOperationDescriptor(OperationDescriptor odesc,
String operationName)

registers amperationDescriptor with the registry. Each operation must
have arbperationDescriptor beforeregisterRIF() may be called to add
RIFs to the operation.

Parameter odesc An OperationDescriptor containing
information about the operation.
operationName The operation name asSaring.

A OperationDescriptor cannot be registered under an operation name under
which anothebperationDescriptor was registered previously. If such an
attempt is made, an Error will be thrown.

« void registerOperationByName(String odescClassName,
String operationName)
registers aMperationDescriptor by its class name.

Parameter odescClassName The fully-qualified class name of the
OperationDescriptor.

operationName The operation name asSaring.

e« void unregisterOperationDescriptor(String operationName)
unregisters anperationDescriptor from the registry.

e void registerRIF(String operationName, String productName,
RenderedImageFactory RIF)

registers &IF with a particular product and operation.

Parameter operationName The operation name asSaring.

productName The product name, asSring.
RIF The RenderedImageFactory to be
registered.

Release 1.0.1, November 1999 401

14.4 Iterators EXTENDING THE API

e void registerRIFByClassName(String operationName,
String productName, String RIFClassName)
registers &IF with a particular product and operation, constructing an
instance using its class name.

Parameter operationName The operation name asSaring.
productName The product name, as&ring.

RIFClassName The fully-qualified class name of a
RenderedImageFactory.

14.4 lterators

Iterators are provided to help the programmer who writes extensions to the JAI
API and does not want to use any of the existing APl methods for traversing
pixels. Iterators define the manner in which the source image pixels are traversed
for processing. Iterators may be used both in the implementatioompfiteRect
methods owetTile methods of Oplmage subclasses, and for ad-hoc pixel-by-
pixel image manipulation.

Iterators provide a mechanism for avoiding the need to cobble sources, as well as
to abstract away the details of source pixel formatting. An iterator is instantiated
to iterate over a specified rectangular area of a soRegéeredImage Or Raster.

The iterator returns pixel values imt, float, or double format, automatically
promoting integral values smaller than 32 bitsita: when reading, and

performing the corresponding packing when writing.

JAI offers three different types of iterator, which should cover nearly all of a
programmer’s needs. However, extenders may wish to build others for more
specialized needs.

The most basic iterator fectIter, which provides the ability to move one line

or pixel at a time to the right or downwards, and to step forward in the list of
bandsRookIter offers slightly more functionality thaRectIter, allowing

leftward and upward movement and backwards motion through the set of bands.
Both RectIter andRookIter allow jumping to an arbitrary line or pixel, and
reading and writing of a random band of the current pixel. RbekIter also

allows jumping back to the first line or pixel, and to the last line or pixel.

RandomIter allows an unrelated set of samples to be read by specifyingxheir
andy coordinates and band offset. TRendomIter will generally be slower than
either therRectIter or RookIter, but remains useful for its ability to hide pixel
formats and tile boundaries.

402 Programming in Java Advanced Imaging

EXTENDING THE API Rectlter

Figure 14-1 shows the Iterator package hierarchy. The classes are described in
the following paragraphs.

14.4.1 Redctlter

TheRectIter interface represents an iterator for traversing a read-only image in
top-to-bottom, left-to-right order (Figure 14-2). The Rectlter traversal will
generally be the fastest style of iterator, since it does not need to perform bounds
checks against the top or left edges of tiles. WhétableRectIter interface
traverses a read/write image in the same manner as the Rectlter.

The iterator is initialized with a particular rectangle as its bounds. The
initialization takes place in a factory method (thectIterFactory class) and is

not a part of the iterator interface itself. Once initialized, the iterator may be reset
to its initial state by means of thetartLines (), startPixels(), and

startBands () methods. Its position may be advanced usingriéecLine(),
jumpLines(), nextPixel(), jumpPixels(), andnextBand() methods.

Class Hierarchy

Object
RandomIterFactory
RectIterFactory
RookIterFactory

Interface Hierarchy

RandomIter
L—Writab1eRandomIter

RectIter
WritableRectIter
RookIter

_writableRookIter

Figure 14-1 Iterator Hierarchy

Release 1.0.1, November 1999 403

14.41 Rectlter EXTENDING THE API

/ Bounds

Figure 14-2 Rectlter Traversal Pattern

ThewritableRookIter interface adds the ability to alter the source pixel values
using the variougsetSample() andsetPixel() methods.

An instance oRectIter may be obtained by means of the
RectIterFactory.create() method, which returns an opaque object
implementing this interface.

API: javax.media.jai.iterator.RectIterFactory

e static RectIter create(RenderedImage im, Rectangle bounds)
constructs and returns an instanc@eaftIter suitable for iterating over the

given bounding rectangle within the givRenderedImage source. If the
bounds parameter is null, the entire image will be used.

Parameters im A read-onlyRenderedImage source.
bounds The boundinRectangTe for the iterator, or
null.

404 Programming in Java Advanced Imaging

EXTENDING THE API Rectlter

e« static RectIter create(Raster ras, Rectangle bounds)
constructs and returns an instanc@eftIter suitable for iterating over the

given bounding rectangle within the giveaster source. If thébounds
parameter is null, the entire Raster will be used.

Parameters ras A read-onlyRaster source.
bounds The boundinRectangle for the iterator, or
null.

e static WritableRectIter createWritable(WritableRenderedImage
im, Rectangle bounds)
constructs and returns an instanc@oftableRectIter suitable for iterating
over the given bounding rectangle within the giweritableRenderedImage
source. If thebounds parameter is null, the entire image will be used.

Parameters im A WritableRenderedImage source.
bounds The boundinRectangTe for the iterator, or
null.

e static WritableRectIter createWritable(WritableRaster ras,
Rectangle bounds)
constructs and returns an instanc@oftableRectIter suitable for iterating
over the given bounding rectangle within the giwemtableRaster source.
If the bounds parameter is null, the entiRaster will be used.

Parameters ras A WritableRaster source.
bounds The boundingRectangle for the iterator, or
null.

API. javax.media.jai.iterator.RectIter

e void startLines()

sets the iterator to the first line of its bounding rectangle. The pixel and band
offsets are unchanged.

e void startPixels()

sets the iterator to the leftmost pixel of its bounding rectangle. The line and
band offsets are unchanged.

Release 1.0.1, November 1999 405

14.4.2

406

Rooklter EXTENDING THE API

e void startBands()

sets the iterator to the first band of the image. The pixel column and line are
unchanged.

e void nextLine()
sets the iterator to the next line of the image. The pixel and band offsets are

unchanged. If the iterator passes the bottom line of the rectangles, calls to
get() methods are not valid.

e void jumpLines(int num)

jumps downwardhum lines from the current position. Them parameter may
be negative. The pixel and band offsets are unchanged.

e void nextPixel()

sets the iterator to the next pixel in the image (that is, move rightward). The
line and band offsets are unchanged.

e void jumpPixels(int num)

jumps rightwarchum pixels from the current position. Them parameter may
be negative. The line and band offsets are unchanged.

e void nextBand()

sets the iterator to the next band in the image. The pixel column and line are
unchanged.

14.4.2 Rooklter

TheRookIter interface represents an iterator for traversing a read-only image
using arbitrary up-down and left-right moves (Figure 14-3 shows two of the
possibilities for traversing the pixels). The Rooklter traversal will generally be
somewhat slower than a corresponding instanckeotIter, since it must

perform bounds checks against the top and left edges of tiles in addition to their
bottom and right edges. ThaitableRookIter interface traverses a read/write
image in the same manner as the Rooklter.

An instance of Rooklter may be obtained by means of the
RookIterFactory.create() Or RookIterFactory.createWritable()

methods, which return an opaque object implementing this interface. The iterator
is initialized with a particular rectangle as its bounds. This initialization takes
place in a factory method (thRwokIterFactory class) and is not a part of the
iterator interface itself.

Programming in Java Advanced Imaging

EXTENDING THE API Rooklter

Once initialized, the iterator may be reset to its initial state by means of the
startLines(), startPixels(), andstartBands () methods. As witlRectIter,
its position may be advanced using thextLine(), jumpLines(),

nextPixel(), jumpPixels(), andnextBand() methods.

*»

D S /Bounds

Or

Figure 14-3 Rooklter Traversal Patterns

Release 1.0.1, November 1999 407

14.4.2 Rooklter EXTENDING THE API

API. avax.media.jai.iterator.RookIterFactory

o« static RookIter create(RenderedImage im, Rectangle bounds)
constructs and returns an instanc@afkIter suitable for iterating over the

given bounding rectangle within the givRenderedImage source. If the
bounds parameter is null, the entire image will be used.

Parameters im A read-onlyRenderedImage source.
bounds The boundinRectangle for the iterator, or
null.

o« static RookIter create(Raster ras, Rectangle bounds)
constructs and returns an instanc@afkIter suitable for iterating over the

given bounding rectangle within the giveaster source. If the bounds
parameter is null, the entirRaster will be used.

Parameters ras A read-onlyRaster source.
bounds The boundinRectangle for the iterator, or
null.

o« static WritabTeRookIter createWritable(WritableRenderedImage
im, Rectangle bounds)
constructs and returns an instanc@oftableRookIter suitable for iterating
over the given bounding rectangle within the giweri tableRenderedImage
source. If thevounds parameter is null, the entire image will be used.

Parameters im A WritableRenderedImage source.
bounds The boundinRectangTe for the iterator, or
null.

e static WritableRookIter createWritable(WritableRaster ras,
Rectangle bounds)
constructs and returns an instanc@oftableRookIter suitable for iterating
over the given bounding rectangle within the givemitableRaster source.
If the bounds parameter is null, the entiraster will be used.

Parameters ras A WritableRaster source.
bounds The boundinRectangTe for the iterator, or
null.

408 Programming in Java Advanced Imaging

EXTENDING THE API Randomiter

14.4.3 Randomlter

TheRandomIter interface represents an iterator that allows random access to any

sample within its bounding rectangle. The flexibility afforded by this class will
generally exact a corresponding price in speed and setup overhead.

The iterator is initialized with a particular rectangle as its bounds. This
initialization takes place in a factory method (tkendomIterFactory class) and
is not a part of the iterator interface itself. An instancekaidomIter may be
obtained by means of ttRandomIterFactory.create() method, which returns
an opague object implementing this interface.

The getSample(), getSampleFloat(), andgetSampleDouble() methods are
provided to allow read-only access to the source data.geéhrixel() methods
allow retrieval of all bands simultaneously.

API: javax.media.jai.iterator.RandomIterFactory

e« static RandomIter create(RenderedImage im, Rectangle bounds)
constructs and returns an instanc@afdomIter suitable for iterating over the

given bounding rectangle within the givRenderedImage source. If the
bounds parameter is null, the entire image will be used.

Parameters im A read-onlyRenderedImage source.
bounds The boundinRectangTe for the iterator, or
null.

e static RandomIter create(Raster ras, Rectangle bounds)
constructs and returns an instanceafdomIter suitable for iterating over the

given bounding rectangle within the givRaster source. If theéounds
parameter is null, the entirRaster will be used.

Parameters ras A read-onlyRaster source.
bounds The boundingRectangle for the iterator, or
null.

o static WritabTeRandomIter createWritable(WritableRenderedImage
im, Rectangle bounds)

constructs and returns an instanc@mftableRandomIter suitable for
iterating over the given bounding rectangle within the given

Release 1.0.1, November 1999

409

14.4.4 Example Rectlter EXTENDING THE API

WritableRenderedImage source. If thébounds parameter is null, the entire
image will be used.

Parameters im A WritableRenderedImage source.
bounds The boundinRectangle for the iterator, or
null.

e static WritableRandomIter createWritable(WritableRaster ras,
Rectangle bounds)
constructs and returns an instanc@roftableRandomIter suitable for
iterating over the given bounding rectangle within the giwentableRaster
source. If thebounds parameter is null, the entire Raster will be used.

Parameters ras A read-onlyRaster source.
bounds The boundinRectangle for the iterator, or
null.

14.4.4 Example Rectlter
Listing 14-3 shows an example of the construction of a RewtIter.

Listing 14-3 Example Rectlter (Sheet 1 of 4)

import java.awt.Rectangle;

import java.awt.image.ColorModel;

import java.awt.image.DataBuffer;

import java.awt.image.PixelInterleavedSampleModel;
import java.awt.image.SampleModel;

import java.util.Random;

import javax.media.jai.*;

import javax.media.jai.iterator.*;

class RectIterTest {
int width = 10;
int height = 10;
int tileWidth = 4;
int tileHeight = 4;

public static void main(String[] args) {
new RectIterTest();
}

public RectIterTest() {

410 Programming in Java Advanced Imaging

EXTENDING THE API Example Rectlter

Listing 14-3 Example Rectlter (Sheet 2 of 4)

Random rand = new Random(1L);
Rectangle rect = new Rectangle();

int[] bandOffsets = { 2, 1, 0 };
SampleModel sampleModel =
new PixelInterleavedSampleModel(DataBuffer.TYPE_BYTE,
tileWidth, tileHeight,
3, 3*tileWidth,
bandOffsets);
ColorModel colorModel = null;

TiledImage im = new TiledImage(@, 0, width, height, 0, 0,
sampleModel,
colorModel);

int[J[][] check = new int[width][height][3];
int x, y, b;

for (int i 0; i <10; i++) {
rect.Xx = rand.nextInt(width);
rect.width = rand.nextInt(width - rect.x) + 1;

rect.y = rand.nextInt(height);
rect.height = rand.nextInt(height - rect.y) + 1;

System.out.println(“Filling rect + rect + “ with “ + 1i);
WritableRectIter witer = RectIterFactory.createWritable(im,
rect);

b =0;
witer.startBands();
while (!witer.finishedBands()) {
y = rect.y;
witer.startLines();
while (!witer.finishedLines()) {
X = rect.x;
witer.startPixels();
while (!witer.finishedPixels()) {
witer.setSample(i);
check[xI[yl[b] = i3

++X;
witer.nextPixel();

Release 1.0.1, November 1999

411

14.4.4 Example Rectlter EXTENDING THE API

Listing 14-3 Example Rectlter (Sheet 3 of 4)

++Y;
witer.nextLine();
}
++b;
witer.nextBand();
}
}
rect.x = 0;
rect.y = 0;

rect.width = width;
rect.height = height;
RectIter iter = RectIterFactory.createWritable(im, rect);

b = 0;

jter.startBands(Q);

while (liter.finishedBands()) {
System.out.println(Q);

y = 0;
iter.startLines();
while (!iter.finishedLines()) {

X = 0;

iter.startPixels();

while (!iter.finishedPixels()) {
int val = iter.getSample(Q);
System.out.print(val);

if (val != check[x][yl[b]l) {
System.out.print(“(" + check[x][yl[b]l + “) “);

} else {
System.out.print(" “);
}
+4X;
iter.nextPixel();
}
++Y;

iter.nextLine();
System.out.println(Q;

412 Programming in Java Advanced Imaging

EXTENDING THE API Image Codecs

Listing 14-3 Example Rectlter (Sheet 4 of 4)

++b;
iter.nextBand();

14.5 Writing New Image Decoders and Encoders

The sample directory contains an example of how to create a new image codec.
The example is of a PNM codec, but can be used as a basis for creating any
codec. The PNM codec consists of three files:

File Name Description

SamplePNMCodec. java Defines a subclass a@fageCodec for handling the PNM
family of image files.

SamplePNMImageDecoder.java DefinesarimageDecoder forthe PNM family of image files.
Necessary for reading PNM files.

SamplePNMImageEncoder.java DefinesarimageEncoder forthe PNM family of image files.
Necessary for writing PNM files.

14.5.1 Image Codecs

Note: The codec classes are provided for the developer as a convenience for file
0. These classes are not part of the official Java Advanced Imaging APl and are
subject to change as a result of the near future File 10 extension API. Until the
File IO extension APl is defined, these classes and functions will be supported for
JAIl use.

The ImageCodec class allows the creation of image decoders and encoders.
Instances offmageCodec may be registered by name. ThegisterCodec

method associates @nageCodec with the given name. Any codec previously
associated with the name is discarded. Once a codec has been registered, the
name associated with it may be used asrthige parameter in the
createImageEncoder andcreateImageDecoder methods.

The ImageCodec class maintains a registry 6brmatRecognizer objects that
examine artnputStream and determine whether it adheres to the format
handled by a particulaimageCodec. A FormatRecognizer is added to the

Release 1.0.1, November 1999 413

145.1

414

Image Codecs EXTENDING THE API

registry with theregisterFormatRecognizer method. The
unregisterFormatRecognizer method removes a previously registered
FormatRecognizer from the registry.

The getCodec method returns th&mageCodec associated with a given name. If
no codec is registered with the given namel1 is returned.

API: com.sun.media.jai.codec.ImageCodec

« static ImageEncoder createImageEncoder(String name,
OutputStream dst, ImageEncodeParam param)

returns arimageEncoder object suitable for encoding to the supplied
OutputStream, using the supplielinageEncodeParam object.

Parameter name The name associated with the codec.
dst An OutputStream to write to.
param An instance of ImageEncodeParam suitable

for use with the named codec, or null.

o static ImageEncoder createImageEncoder(String name,
OutputStream dst)
returns arimageEncoder object suitable for encoding to the supplied
OutputStream object. A nullimageEncodeParam is used.

o static ImageDecoder createImageDecoder(String name,
InputStream src, ImageDecodeParam param)
returns arimageDecoder object suitable for decoding from the supplied
InputStream, using the suppliefinageDecodeParam object.

Parameter name The name associated with the codec.
src An InputStream to read from.
param An instance of ImageEncodeParam suitable

for use with the named codec, or null.

o static ImageDecoder createImageDecoder(String name,
InputStream src)

returns arimageDecoder object suitable for decoding from the supplied
InputStream. A null ImageDecodeParam is used.

Programming in Java Advanced Imaging

EXTENDING THE API Image Codecs

e« static void registerCodec(String name, ImageCodec codec)

associates armageCodec with the given name. Case is not significant. Any
codec previously associated with the name is discarded.

Parameter name The name associated with the codec.

codec The ImageCodec object to be associated
with the given name.

e static void unregisterCodec(String name)

removes the association between a givate and arimageCodec object. Case
is not significant.

« static ImageCodec getCodec(String name)

returns the&mageCodec associated with the given name. If no codec is
registered with the given name, null is returned. Case is not significant.

Parameter name The name associated with the codec.

Release 1.0.1, November 1999 415

145.1 Image Codecs EXTENDING THE API

416 Programming in Java Advanced Imaging

APPENDIXI \

Program Examples

THIS appendix contains fully-operational JAl program examples.

The examples in this appendix are provided to demonstrate how to create simple
programs using JAI. Although these examples can be compiled and run, they are
not intended to be used that way since they are pretty simple and would not be
particularly interesting, visually.

A.1 Lookup Operation Example

Listing A-1 shows an example of theokup operation. This example program
decodes a TIFF image file intorR@nderedImage. If the TIFF image is an

unsigned short type image, the program performsdkup operation to convert

the image into a byte type image. Finally, the program displays the byte image.

Listing A-1 Example Lookup Program (Sheet 1 of 3)

import java.awt.Frame;

import java.awt.RenderingHints;

import java.awt.image.DataBuffer;

import java.awt.image.renderable.ParameterBlock;
import java.io.IOException;

import javax.media.jai.J]AI;

import javax.media.jai.lLookupTablelAI;

import javax.media.jai.RenderedOp;

import com.sun.media.jai.codec.FileSeekableStream;
import com.sun.media.jai.codec.TIFFDecodeParam;
import javax.media.jai.widget.ScrollingImagePanel;

public class LookupSampleProgram {

// The main method.
public static void main(String[] args) {

Release 1.0.1, November 1999 417

Al Lookup Operation Example PROGRAM EXAMPLES

Listing A-1 Example Lookup Program (Sheet 2 of 3)

// Validate 1input.
if (args.length !'= 1) {
System.out.println(“Usage: java LookupSampleProgram “ +
“TIFF_image_filename”);
System.exit(-1);
}

// Create an input stream from the specified file name to be
// used with the TIFF decoder.
FileSeekableStream stream = null;
try {
stream = new FileSeekableStream(args[0]);
} catch (IOException e) {
e.printStackTrace();
System.exit(0);
}

// Store the input stream in a ParameterBlock to be sent to
// the operation registry, and eventually to the TIFF
// decoder.
ParameterBlock params = new ParameterBlock();
params.add(stream);

// Specify to TIFF decoder to decode images as they are and

// not to convert unsigned short images to byte images.
TIFFDecodeParam decodeParam = new TIFFDecodeParam();
decodeParam.setDecodePaletteAsShorts(true);

// Create an operator to decode the TIFF file.
RenderedOp imagel = JAI.create(“tiff”, params);

// Find out the first image’s data type.
int dataType = imagel.getSampleModel().getDataType();
RenderedOp image2 = null;
if (dataType == DataBuffer.TYPE_BYTE) {
// Display the byte image as it is.
System.out.printIn(“TIFF image is type byte.”);
image2 = imagel;
} else if (dataType == DataBuffer.TYPE_USHORT) {

// Convert the unsigned short image to byte image.
System.out.println(“TIFF image is type ushort.”);

418 Programming in Java Advanced Imaging

PROGRAM EXAMPLES Adding an OperationDescriptor Example

Listing A-1 Example Lookup Program (Sheet 3 of 3)

// Setup a standard window-Tevel Tookup table. */
byte[] tableData = new byte[0x10000];
for (int i = 0; i < 0x10000; i++) {

tableData[i] = (byte)(i >> 8);
}

// Create a LookupTablelAI object to be used with the
// “lookup” operator.
LookupTableJAI table = new LookupTableJAI(tableData);

// Create an operator to lookup imagel.
image2 = JAI.create(“lookup”, imagel, table);

} else {
System.out.printTn(“TIFF image is type “ + dataType +
“, and will not be displayed.”);

System.exit(0);
}

// Get the width and height of image2.
int width = image2.getWidth();
int height = image2.getHeight();

// Attach image2 to a scrolling panel to be displayed.
ScrollingImagePanel panel = new ScrollingImagePanel(
image2, width, height);

// Create a frame to contain the panel.
Frame window = new Frame(“Lookup Sample Program”);
window.add(panel);
window.pack(Q);
window.show();

A.2 Adding an OperationDescriptor Example

Chapter 14, “Extending the API,” describes how to extend the API by writing
custom OperationDescriptors. Listing A-2 shows the construction of an
OperationDescriptor, calledSampleDescriptor, that is both an

Release 1.0.1, November 1999 419

A.2 Adding an OperationDescriptor Example PROGRAM EXAMPLES

OperationDescriptor and aRenderedImageFactory. The operation created
here is calledsample and takes two parameters for the operation.

Listing A-2 Example OperationDescriptor (Sheet 1 of 8)

import java.awt.Rectangle;

import java.awt.RenderingHints;

import java.awt.image.ComponentSampleModel;
import java.awt.image.DataBuffer;

import java.awt.image.DataBufferByte;

import java.awt.image.Raster;

import java.awt.image.RenderedImage;

import java.awt.image.SampleModel;

import java.awt.image.WritableRaster;

import java.awt.image.renderable.ParameterBlock;
import java.awt.image.renderable.RenderedImageFactory;
import javax.media.jai.ImagelLayout;

import javax.media.jai.OperationDescriptorImpl;
import javax.media.jai.OpImage;

import javax.media.jai.PointOpImage;

import javax.media.jai.RasterAccessor;

// A single class that is both an OperationDescriptor and

// a RenderedImageFactory along with the one OpImage it is

// capable of creating. The operation implemented is a variation

// on threshold, although the code may be used as a template for

// a variety of other point operations.

public class SampleDescriptor extends OperationDescriptorImpl
implements RenderedImageFactory {

// The resource strings that provide the general documentation
// and specify the parameter Tist for the “Sample” operation.
private static final String[][] resources = {

{“GlobalName”, “Sample”},

{“LocalName”, “Sample”},

{“Vendor”, “com.mycompany”},

{“Description”, “A sample operation that thresholds source
pixels”},

{“DocURL"”, “http://www.mycompany.com/
SampTleDescriptor.html”},

{“Version”, “1.0"}%,

{“arg0@Desc”, “paraml”},

{“arglDesc”, “param2”}

1

420 Programming in Java Advanced Imaging

PROGRAM EXAMPLES Adding an OperationDescriptor Example

Listing A-2 Example OperationDescriptor (Sheet 2 of 8)

// The parameter names for the “Sample” operation. Extenders may
// want to rename them to something more meaningful.
private static final String[] paramNames = {
“paraml”, “param2”

};

// The class types for the parameters of the “Sample” operation.
// User defined classes can be used here as long as the fully
// qualified name is used and the classes can be loaded.
private static final Class[] paramClasses = {
java.lang.Integer.class, java.lang.Integer.class

1

// The default parameter values for the “Sample” operation
// when using a ParameterBlockJAI.
private static final Object[] paramDefaults = {
new Integer(@), new Integer(255)
};

// Constructor.
public SampleDescriptor() {
super(resources, 1, paramClasses, paramNames, paramDefaults);

}

// Creates a SampleOpImage with the given ParameterBlock if the
// SampleOpImage can handle the particular ParameterBlock.
public RenderedImage create(ParameterBlock paramBlock,
RenderingHints renderHints) {
if (!validateParameters(paramBlock)) {
return null;
}
return new SampleOpImage(paramBlock.getRenderedSource(0),
new ImagelLayout(),
(Integer)paramBlock.getObjectParameter(0),
(Integer)paramBlock.getObjectParameter(l));

Release 1.0.1, November 1999

421

A.2 Adding an OperationDescriptor Example PROGRAM EXAMPLES

Listing A-2 Example OperationDescriptor (Sheet 3 of 8)

// Checks that all parameters in the ParameterBlock have the
// correct type before constructing the SampleOpImage
public boolean validateParameters(ParameterBlock paramBlock) {
for (int i = 0; i < this.getNumParameters(); i++) {
Object arg = paramBlock.getObjectParameter(i);
if (arg == null) {
return false;
}

if (!(arg instanceof Integer)) {
return false;
}
}

return true;

}

// SampleOpImage is an extension of PointOpImage that takes two
// integer parameters and one source and performs a modified

// threshold operation on the given source.

class SampleOpImage extends PointOpImage {

private int paraml;
private int param2;

// A dummy constructor used by the class Toader. */
public SampleOpImage() {}

/*%* Constructs an SampleOpImage. The image dimensions are copied
* from the source image. The tile grid layout, SampleModel, and
ColorModel may optionally be specified by an ImagelLayout

object.

* @param source a RenderedImage.
* @param layout an ImagelLayout optionally containing the tile
* grid layout, SampleModel, and ColorModel, or
* null.
*/
public SampleOpImage(RenderedImage source,
ImagelLayout layout,
Integer paraml,
Integer param2) {
super(source, null, Tayout, true);
this.paraml = paraml.intValue(Q);
this.param2 = param2.intValue(Q);

422 Programming in Java Advanced Imaging

PROGRAM EXAMPLES Adding an OperationDescriptor Example

Listing A-2 Example OperationDescriptor (Sheet 4 of 8)
/7‘::‘:

* Performs a modified threshold operation on the pixels in a

* given rectangle. Sample values below a lower Timit are clamped
* to @, while those above an upper 1imit are clamped to 255. The
* results are returned in the input WritableRaster dest. The

* sources are cobbled.

* @param sources an array of sources, guarantee to provide all
* necessary source data for computing the rectangle.
* @param dest a tile that contains the rectangle to be computed.
* @param destRect the rectangle within this OpImage to be

* processed.

-.':/

protected void computeRect(Raster[] sources,
WritableRaster dest,
Rectangle destRect) {
Raster source = sources[0];
Rectangle srcRect = mapDestRect(destRect, 0);

// RasterAccessor is a convienient way to represent any given
// Raster in a usable format. It has very little overhead if
// the underlying Raster is in a common format (PixelSequential
// for this release) and allows generic code to process

// a Raster with an exotic format. Essentially, it allows the
// common case to processed quickly and the rare case to be

// processed easily.

// This “best case” formatTag is used to create a pair of
// RasterAccessors for processing the source and dest rasters

RasterFormatTag[] formatTags = getFormatTags();
RasterAccessor srcAccessor =
new RasterAccessor(sources[@], srcRect, formatTags[Q],
getSource (@) .getColorModel());
RasterAccessor dstAccessor =
new RasterAccessor(dest, destRect, formatTags[1l],
getColorModel());

Release 1.0.1, November 1999 423

A.2 Adding an OperationDescriptor Example PROGRAM EXAMPLES

Listing A-2 Example OperationDescriptor (Sheet 5 of 8)

// Depending on the base dataType of the RasterAccessors,
// either the bytelLoop or intLoop method is called. The two
// functions are virtually the same, except for the data type
// of the underlying arrays.
switch (dstAccessor.getDataType()) {
case DataBuffer.TYPE_BYTE:
bytelLoop(srcAccessor,dstAccessor);
break;
case DataBuffer.TYPE_INT:
intLoop(srcAccessor,dstAccessor);
break;
default:
String className = this.getClass().getName();
throw new RuntimeException(className +
“ does not implement computeRect” +
“ for short/float/double data”);
}

// If the RasterAccessor object set up a temporary buffer for the
// op to write to, tell the RasterAccessor to write that data
// to the raster now that we’re done with it.
if (dstAccessor.isDataCopy()) {
dstAccessor.clampDataArrays();
dstAccessor.copyDataToRaster();

Computes an area of a given byte-based destination Raster using
* a souce RasterAccessor and a destination RasterAccesor.

“ Processing is done as if the bytes are unsigned, even though
* the Java language has support only for signed bytes as a

* primitive datatype.

*/

private void bytelLoop(RasterAccessor src, RasterAccessor dst) {
int dwidth = dst.getWidth(Q);

int dheight = dst.getHeight(Q);

int dnumBands = dst.getNumBands();

byte dstDataArrays[][] = dst.getByteDataArrays(Q);
int dstBandOffsets[] = dst.getBandOffsets();

int dstPixelStride = dst.getPixelStride();

int dstScanlineStride = dst.getScanlineStride();

424 Programming in Java Advanced Imaging

PROGRAM EXAMPLES Adding an OperationDescriptor Example

Listing A-2 Example OperationDescriptor (Sheet 6 of 8)

byte srcDataArrays[][] = src.getByteDataArrays();
int srcBandOffsets[] = src.getBandOffsets();

int srcPixelStride = src.getPixelStride();

int srcScanlineStride = src.getScanlineStride();

byte bpl
byte bp2

(byte) (paraml & Oxff);
(byte) (param2 & Oxff);

// A standard imaging Toop
for (int k = 0; k < dnumBands; k++) {
byte dstData[] = dstDataArrays[k];
byte srcData[] = srcDataArrays[k];
int srcScanlineOffset = srcBandOffsets[k];
int dstScanlineOffset = dstBandOffsets[k];
for (int j = 0; j < dheight; j++) {
int srcPixelOffset = srcScanlineOffset;
int dstPixelOffset = dstScanlineOffset;
for (int i = 0; i < dwidth; i++) {

// This code can be specialized by rewriting the
// following block of code to do some other

// operation.

//

// Some examples:

// InvertOp:

// dstData[dstPixel0ffset] =

// (byte) (Oxff & ~srcData[srcPixel0ffset]);

//

// AddConst:

// dstData[dstPixel0ffset] =

// (byte) (Oxff & (srcData[srcPixel0ffset]+paraml));
//

// Currently, the operation performs a threshold.

int pixel = srcData[srcPixelOffset] & Oxff;

if (pixel < paraml) {
dstData[dstPixel0ffset] = 0; // bpl;

} else if (pixel > param2) {
dstData[dstPixel0ffset] = (byte)255; // bp2;

} else {

dstData[dstPixel0ffset] = srcData[srcPixelOffset];
}

Release 1.0.1, November 1999 425

A.2 Adding an OperationDescriptor Example PROGRAM EXAMPLES

Listing A-2 Example OperationDescriptor (Sheet 7 of 8)

srcPixel0Offset += srcPixelStride;
dstPixel0ffset += dstPixelStride;
}
srcScanlineOffset += srcScanlineStride;
dstScanlineOffset += dstScanlineStride;

/ £33
* Computes an area of a given int-based destination Raster using
* a source RasterAccessor and a destination RasterAccesor.
* /
private void intLoop(RasterAccessor src, RasterAccessor dst) {
int dwidth = dst.getWidth(Q);
int dheight = dst.getHeight();
int dnumBands = dst.getNumBands();

int dstDataArrays[][] = dst.getIntDataArrays(Q);
int dstBandOffsets[] = dst.getBandOffsets();
int dstPixelStride = dst.getPixelStride();

int dstScanlineStride = dst.getScanlineStride();

int srcDataArrays[][] = src.getIntDataArraysQ);
int srcBandOffsets[] = src.getBandOffsets();
int srcPixelStride = src.getPixelStride();

int srcScanlineStride = src.getScanlineStride();

426 Programming in Java Advanced Imaging

PROGRAM EXAMPLES Adding an OperationDescriptor Example

Listing A-2 Example OperationDescriptor (Sheet 8 of 8)

for (int k = 0; k < dnumBands; k++) {
int dstData[] dstDataArrays[k];
int srcData[] = srcDataArrays[k];
int srcScanTlineOffset = srcBandOffsets[k];
int dstScanTlineOffset = dstBandOffsets[k];
for (int j = 0; j < dheight; j++) {
int srcPixelOffset = srcScanlineOffset;
int dstPixelOffset = dstScanlineOffset;
for (int i = 0; i < dwidth; i++) {
int pixel = srcData[srcPixelOffset];
if (pixel < paraml) {
dstData[dstPixel0ffset]
} else if (pixel > param2)
dstData[dstPixel0ffset]
} else {
dstData[dstPixel0ffset] = srcData[srcPixel0ffset];
}
srcPixel0Offset += srcPixelStride;
dstPixel0ffset += dstPixelStride;

Q;

I~

255;

}
srcScanlineOffset += srcScanlineStride;
dstScanlineOffset += dstScanlineStride;

Release 1.0.1, November 1999 427

A.2 Adding an OperationDescriptor Example PROGRAM EXAMPLES

428 Programming in Java Advanced Imaging

APPENDIX B

Java Advanced Imaging API
Summary

THIS appendix summarizes the imaging interfaces and classes for Java AWT,
Java 2D, and Java Advanced Imaging API.

B.1 Java AWT Imaging

Table B-1 lists and describes theva.awt imaging classes.

Table B-1 java.awt Imaging Classes

Class Description

Image ExtendsObject
The superclass of all classes that represent graphical images.

B.2 Java 2D Imaging

The Java 2D API is a set of classes for advanced 2D graphics and imaging. It
encompasses line art, text, and images in a single comprehensive model. The
API provides extensive support for image compositing and alpha channel
images, a set of classes to provide accurate color space definition and
conversion, and a rich set of display-oriented imaging operators.

The Java 2D classes are provided as additions tgdbe. awt and
java.awt.image packages (rather than as a separate package).

Release 1.0.1, November 1999 429

B.2.1

430

Java 2D Imaging Interfaces

JAVA ADVANCED IMAGING APl SUMMARY

B.2.1 Java 2D Imaging Interfaces

Table B-2 lists and briefly describes the imaging interfaces defined in the
java.awt.image (Java 2D) API.

Table B-2

java.awt.image Interfaces

Interface

Description

BufferedImageOp

ImageConsumer

ImageObserver

ImageProducer

ImaginglLib

RasterImageConsumer

RasterOp

RenderedImage

TileChangelListener

WriteableRenderedImage

Describes single-input/single-output operations performed on
Bufferedimage objects. This is implemented by such classes
asAffineTransformOp, ConvolveOp, BandCombineOp
andLookupOp.

Used for objects expressing interest in image data through the
ImageProducer interfaces.

Receives notifications aboiiihage information as th@&mage
is constructed.

Used for objects that can produce the image datarfages.

Each image contains dmageProducer that is used to
reconstruct the image whenever it is needed, for example,
when a new size of the Image is scaled, or when the width or
height of the Image is being requested.

Provides a hook to access platform-specific imaging code.

ExtendsImageConsumer

The interface for objects expressing interest in image data
through thelmageProducer interfaces. When a consumer is
added to an image producer, the producer delivers all of the
data about the image using the method calls defined in this
interface.

Describes single-input/single-output operations performed on
Raster objects. This is implemented by such classes as
AffineTransformOp, ConvolveOp, andLookupOp.

A common interface for objects that contain or can produce
image data in the form &asters.

An interface for objects that wish to be informed when tiles of
aWritableRenderedImage become modifiable by some
writer via a call togetWritab1eTi1e, and when they become
unmodifiable via the last call tceTeaseWritableTile.

ExtendsRenderedImage
A common interface for objects that contain or can produce
image data that can be modified and/or written over.

Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING APl SUMMARY Java 2D Imaging Classes

B.2.2 Java 2D Imaging Classes

Table B-3 lists and briefly describes the imaging classes defined in the
java.awt.image (Java 2D) API.

Table B-3 java.awt.image Classes

Class Description

AffineTransformOp ExtendsObject
ImplementsBufferedImageOp, RasterOp
An abstract class that uses an affine transform to perform a
linear mapping from 2D coordinates in the source image or
Raster to 2D coordinates in the destination image or Raster.

AreaAveragingScaleFilter ExtendsReplicateScaleFilter
An ImageFilter class for scaling images using a simple area
averaging algorithm that produces smoother results than the
nearest-neighbor algorithm.

BandCombineOp ExtendsObject
ImplementsRaster0Op
Performs an arbitrary linear combination of bands in a Raster,
using a specified matrix.

BandedSampTeModel ExtendsSampleModel
Provides more efficent implementations for accessing
image data than are providedSamp1eModel. Used when
working with images that store sample data for each band in a
different bank of the DataBuffer.

BilinearAffineTransformOp ExtendsAffineTransformOp
Uses an affine transformation with bilinear interpolation to
transform an image or Raster.

BufferedImage ExtendsImage
ImplementsWritableRenderedImage
Describes an Image with an accessible buffer of image data.

BufferedImageFilter ExtendsImageFilter
ImplementsRasterImageConsumer, Cloneable
Provides a simple means of using a single-source/single-
destination image operat@ufferedImageOp) to filter a
BufferedImage orRaster in the Image Producer/
Consumer/Observer paradigm.

Release 1.0.1, November 1999 431

B.2.2 Java 2D Imaging Classes JAVA ADVANCED IMAGING APl SUMMARY

Table B-3 java.awt.image Classes (Continued)

Class Description

BytelLookupTable Extends:LookupTable
Defines a lookup table object. The lookup table contains byte
data for one or more tile channels or image components (for
example, separate arrays for R, G, and B), and it contains an
offset that will be subtracted from the input value before
indexing the array.

ColorConvertOp ExtendsObject
ImplementsBufferedImageOp, RasterOp
Performs a pixel-by-pixel color conversion of the data in the
source image. The resulting color values are scaled to the
precision of the destination image data type.

CoTlorModel ExtendsObject
ImplementsTransparency
An abstract class that encapsulates the methods for translating
from pixel values to color components (e.g., red, green, blue)
for an image.

ComponentColorModel ExtendsColorModel
A ColorModel class that can handle an arbitréoj orSpace
and an array of color components to matchiborSpace.

ComponentSampTeModel Extends:SampleModel
Stores the N samples that make up a pixel in N separate data
array elements all of which are in the same bank of a
dataBuffer.

ConvolveOp ExtendsObject
ImplementsBufferedImageOp, RasterOp
Implements a convolution from the source to the destination.
Convolution using a convolution kernel is a spatial operation
that computes the output pixel from an input pixel by
multiplying the kernel with the surround of the input pixel.

CropImageFilter ExtendsImageFilter
An ImageFilter class for cropping images.

DataBuffer ExtendsObject
Wraps one or more data arrays. Each data array in the
DataBuffer is referred to as a bank. Accessor methods for
getting and setting elements of thetaBuffer’s banks exist
with and without a bank specifier.

DataBufferByte ExtendsDataBuffer
Stores data internally as bytes.

432 Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING APl SUMMARY Java 2D Imaging Classes

Table B-3 java.awt.image Classes (Continued)

Class Description

DataBufferInt ExtendsDataBuffer
Stores data internally as ints.

DataBufferShort ExtendsDataBuffer
Stores data internally as shorts.

DirectColorModel Extends:PackedColorModel
Represents pixel values that have RGB color components
embedded directly in the bits of the pixel itself.

FilteredImageSource ExtendsObject
ImplementsImageProducer
An implementation of th&mageProducer interface which
takes an existing image and a filter object and uses them to
produce image data for a new filtered version of the original
image.

ImageFilter ExtendsObject
ImplementsImageConsumer, Cloneable
Implements a filter for the set of interface methods that are
used to deliver data from a@mageProducer to an
ImageConsumer.

IndexColorModel ExtendsiColorModel
Represents pixel values that are indices into a fixed colormap
in theColorMode1’s color space.

Kernel ExtendsObject
Defines a Kernel object — a matrix describing how a given
pixel and its surrounding pixels affect the value of the given
pixel in a filtering operation.

LookupOp ExtendsObject
ImplementsBufferedImageOp, RasterOp
Implements a lookup operation from the source to the
destination.

LookupTable ExtendsObject
Defines a lookup table object. The subclasses are
BytelLookupTable andShortLookupTable, which contain
byte and short data, respectively.

MemoryImageSource ExtendsObject
ImplementsImageProducer
An implementation of th&mageProducer interface, which
uses an array to produce pixel values for an Image.

Release 1.0.1, November 1999 433

B.2.2 Java 2D Imaging Classes JAVA ADVANCED IMAGING APl SUMMARY

Table B-3 java.awt.image Classes (Continued)

Class Description

MultiPixelPackedSampleModel ExtendsSampleModel
Stores one-banded images, but can pack multiple one-sample
pixels into one data element.

NearestNeighborAffine- ExtendsAffineTransformOp
TransformOp Uses an affine transformation with nearest neighbor
interpolation to transform an image or Raster.

PackedCoTlorModel ExtendsiColorModel
An abstract ColorModel class that represents pixel values that
have the color components embedded directly in the bits of an
integer pixel.

PixelGrabber ExtendsObject
ImplementsImageConsumer
Implements alImageConsumer which can be attached to an
Image or ImageProducer object to retrieve a subset of the
pixels in that image.

RGBImageFilter ExtendsImageFilter
Provides an easy way to createlarageFi1ter that modifies
the pixels of an image in the default RGB ColorModel. It is
meant to be used in conjunction with a
FilteredImageSource object to produce filtered versions
of existing images.

Raster ExtendsObject
Represents a rectanglular array of pixels and provides methods
for retrieving image data. It contain®ataBuffer object
that holds a buffer of image data in some format, a
SampTeModel that describes the format is capable of storing
and retrieving Samples from the DataBuffer, amgat that
defines the coordinate space of the raster (upper left corner,
width and height).

ReplicateScaleFilter ExtendsImageFilter
Scales images using the simplest algorithm.

RescaleOp ExtendsObject
ImplementsBufferedImageOp, RasterOp
Performs a pixel-by-pixel rescaling of the data in the source
image by multiplying each pixel value by a scale factor and
then adding an offset.

434 Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING APl SUMMARY

Table B-3 java.awt.image Classes (Continued)

Class Description

SampleModel ExtendsObject
Defines an interface for extracting samples of an image
without knowing how the underlying data is stored in a
DataBuffer.

ShortLookupTable Extends:LookupTable

SinglePixelPackedSample-
Model

Thresho1dOp

TileChangeMulticaster

WritableRaster

Defines a lookup table object. The lookup table contains short
data for one or more tile channels or image components (for
example, separate arrays for R, G, and B), and it contains an
offset that will be subtracted from the input value before
indexing the array.

ExtendsSampleModel
Stores (packs) the N samples that make up a single pixel in one
data array element. All data array elements reside in the first
bank of a DataBuffer.

ExtendsObject

ImplementsBufferedImageOp, RasterOp

Performs thresholding on the source image by mapping the
value of each image component (BurfferedImages) or
channel element (fdtasters) that falls between a low and a
high value, to a constant.

ExtendsObject
A convenience class that takes care of the details of
implementing thd@i1eChangelListener interface.

ExtendsRaster
Provides methods for storing image data and inherits methods
for retrieving image data from it's parent cl®sster.

B.3 Java Advanced Imaging

The Java Advanced Imaging API consists of the following packages:

* javax.media.jai — contains the “core” JAl interfaces and classes

* javax.media.jai.iterator — contains special iterator interfaces and
classes, which are useful for writing extension operations

* javax.media.jai.operator — contains classes that describe all of the

image operators

* javax.media.jai.widget — contains interfaces and classes for creating
simple image canvases and scrolling windows for image display

Release 1.0.1, November 1999

Java Advanced Imaging

435

B.3.1 JAI Interfaces JAVA ADVANCED IMAGING APl SUMMARY

B.3.1 JAIl Interfaces

Table B-4 lists and briefly describes the interfaces defined in the Java Advanced
Imaging API (avax.media.jai).

Table B-4 Summary of jai Interfaces

Interface Description

CollectionImageFactory Abbreviated CIF, this interface is intended to be implemented
by classes that wish to act as factories to produce different
collection image operators.

ImageFunction A common interface for vector-valued functions that are to be
evaluated at positions in the X-Y coordinate system.

ImageJAI The top-level JAl image type, implemented by all JAl image
classes.

OperationDescriptor Describes a family of implementations of a high-level
operation (RIF) that are to be added to an
OperationRegistry.

PropertyGenerator An interface through which properties may be computed
dynamically with respect to an environment of pre-existing
properties.

PropertySource Encapsulates the set of operations involved in identifying and
reading properties.

TileCache Implements a caching mechanism for image tiles. The
TileCache is a central place for Oplmages to cache tiles they
have computed. The tile cache is created with a given capacity,
measured in tiles.

TileScheduler Implements a mechanism for scheduling tile calculation.

436 Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING APl SUMMARY JAI Classes

B.3.2 JAI Classes

Table B-5 lists and briefly describes the classes defined in the Java Advanced
Imaging API Gavax.media.jai).

Table B-5 Summary of jai Classes

Class Description

AreaOpImage ExtendsOpImage
An abstract base class for image operators that require only a
fixed rectangular source region around a source pixel in order
to compute each each destination pixel.

BorderExtender An abstract superclass for classes that extend a
WritableRaster with additional pixel data taken from a
PTanarImage.

BorderExtenderConstant ExtendsBorderExtender

Implements border extension by filling all pixels outside of the
image bounds with constant values.

BorderExtenderCopy ExtendsBorderExtender
Implements border extension by filling all pixels outside of the
image bounds with copies of the edge pixels.

BorderExtenderReflect ExtendsBorderExtender
Implements border extension by filling all pixels outside of the
image bounds with copies of the whole image.

BorderExtenderWrap ExtendsBorderExtender
Implements border extension by filling all pixels outside of the
image bounds with copies of the whole image.

BorderExtenderZero ExtendsBorderExtender
Implements border extension by filling all pixels outside of the
image bounds with zeros.

CanvasJAI Extends: ava.awt.Canvas
Automatically returns an instance @faphicsJAI from its
getGraphics method.

CollectionImage Extends:Image]AI
Implementsjava.util.Collection
An abstract superclass for classes representing a collection of
objects.

ColTlectionOp ExtendsiCollectionImage
A node in a rendered imaging chain representing a
CollectionImage.

Release 1.0.1, November 1999 437

B.3.2

438

JAI Classes

JAVA ADVANCED IMAGING APl SUMMARY

Table B-5 Summary of jai Classes (Continued)

Class

Description

ColorCube

ComponentSampTeMode1JAI

CoordinateImage

DataBufferDouble

DataBufferFloat

DispTlayOpImage

FloatDoubTeColorModel

GraphicsJAI

Histogram

Imagelayout

ImageMIPMap

ImagePyramid

Extends:LookupTableJAI
Represents a color cube lookup table that provides a fixed,
invertible mapping between tables indices and sample values.

ExtendsComponentSampleModel
Represents image data that is stored such that each sample of
a pixel occupies one data element ofDheaBuffer.

Extends:java.lang.0Object
Represents an image that is associated with a coordinate. This
class is used witlimageStack.

Extends;java.awt.image.DataBuffer
StoresDataBuffer data internally in double form.

Extends: ava.awt.image.DataBuffer
StoresDataBuffer data internally in float form.

ExtendsOpImage
A placeholder for display functionality.

ExtendsComponentColorModel

A ColorModel class that works with pixel values that
represent color and alpha information as separate samples,
using float or double elements, and that store each sample in a
separate data element.

Extends;java.awt.Graphics2D

An extension ofjava.awt.Graphics and
java.awt.Graphics2D that will support new drawing
operations.

Extends:java.lang.0Object

Accumulates histogram information on an image. A histogram
counts the number of image samples whose values lie within a
given range of values, din.

Extends;java.lang.0Object
Implementsjava.lang.Clonable
Describes the desired layout of @iImage.

ExtendsImageCollection
Represents a stack of images with a fixed operational
relationship between adjacent slices.

ExtendsImageCollection
Represents a stack of images with a fixed operational
relationship between adjacent slices.

Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING APl SUMMARY

JAI Classes

Table B-5 Summary of jai Classes (Continued)

Class Description

ImageSequence ExtendsImageCollection
Represents a sequence of images with associated timestamps
and camera positions that can be used to represent video or
time-lapse photography.

ImageStack ExtendsImageCollection
Represents a group of images, each with a defined spatial
orientation in a common coordinate system, such as CT scans
or seismic volumes.

IntegerSequence Extends;java.lang.Object

Interpolation

InterpolationBicubic

InterpolationBicubic2

InterpolationBilinear

InterpolationNearest

InterpolationTable

JAI

KernelJAIL

LookupTable]AI

Represents an image that is associated with a coordinate. This
class is used withmageStack.

Extends;java.lang.Object

Encapsulates a particualr algorithm for performing sampling
on a regular grid of pixels using a local neighborhood. It is
intended to be used by operations that resample their sources,
including affine mapping and warping.

ExtendsInterpolationTable
Performs bicubic interpolation.

ExtendsInterpolationTable
Performs bicubic interpolation using a different polynomial
thanInterpolationBicubic.

ExtendsInterpolation
Represents bilinear interpolation.

ExtendsInterpolation
Represents nearest-neighbor interpolation.

ExtendsInterpolation
Represents nearest-neighbor interpolation.

Extends;java.lang.Object
A convenience class for instantiating operations.

Extends;java.lang.Object
A convolution kernel, used by tli®nvolve operation.

Extends;java.lang.Object
A lookup table object for theookup operation.

Release 1.0.1, November 1999

439

B.3.2 JAI Classes JAVA ADVANCED IMAGING APl SUMMARY

Table B-5 Summary of jai Classes (Continued)

Class Description

MultiResolutionRenderable- Extends:java.lang.Object

Image Implementsjava.awt.image.renderable,
RenderableImage
A RenderableImage that produces renderings based on a set
of suppliedRenderedImages at various
resolution.

Nul10pImage Extends:PointOpImage
A trivial OpImage subclass that simply transmits its source
unchanged. Potentially useful when an interface requires an
OpImage but another sort dfenderedImage (such as a
TiledImage) is to be used.

OperationDescriptorImp]l Extends:java.lang.Object
ImplementsOperationDescriptor
A concrete implementation of ti@perationDescriptor
interface, suitable for subclassing.

OperationRegistry Extends;java.lang.Object
Implementsjava.io.Externalizable
Maps an operation name int®RenderedImageFactory
capable of implementing the operation, given a specific set of
sources and parameters.

OpImage ExtendsiPlanarImage
The parent class for all imaging operaticdysImage
centralizes a number of common functions, including
connecting sources and sinks during constructiddpdfage
chains, and tile cache management.

ParameterBlockJAI Extends;java.awt.image.renderable,
ParameterBlock
A convenience subclass PdirameterBlock that allows the
use of default parameter values and getting/setting parameters
by name.

PerspectiveTransform Extends:java.lang.0Object
Implementsjava.lang.Cloneable,
java.io.Serializable
A 2D perspective (or projective) transform, used by various
Oplmages.

PTanarImage Extends;java.awt.Image
Implementsjava.awt.image.RenderedImage
A fundamental base class representing two-dimensional
images.

440 Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING APl SUMMARY

Table B-5 Summary of jai Classes (Continued)
Class Description
PointOpImage ExtendsOpImage

PropertyGeneratorImpl

RasterAccessor

RasterFactory

RasterFormatTag

RemotelImage

RenderableGraphics

RenderableImageAdapter

RenderableOp

RenderedImageAdapter

RenderedOp

ROI

An abstract base class for image operators that require only a

single source pixel to compute each destination pixel.

Extends:;java.lang.Object
A utility class to simplify the writing of property generators.

Extends:java.lang.Object

An adapter class for presenting image data in a
ComponentSampleModel format, even if the data is not
stored that way.

A convenience class for the construction of various types of
WritableRaster andSampTleModel objects.

Encapsulates some of the information needed for
RasterAccessor to understand howRaster is laid out.

Extends:PlanarImage
Animplementation oRenderedImage that uses &MIImage
as its source.

ExtendsGraphics2D

ImplementsRenderableImage, Serializable

An implementation oG raphics2D with RenderableImage
semantics.

Extends:java.lang.Object

Implements:
java.awt.image.renderable.RenderableImage
PropertySource

An adapter class for externally-generated
RenderableImages.

Extends:
java.awt.image.renderable.RenderableImageOp
ImplementsPropertySource

A JAI version ofRenderab1eImageOp.

Extends:PlanarImage
A PlanarImage wrapper for a non-writable
RenderedImage

Extends:PlanarImage
A node in a rendered imaging chain.

Extends:java.lang.Object
Represents a region of interest of an image.

Release 1.0.1, November 1999

JAI Classes

441

B.3.2

442

JAI Classes JAVA ADVANCED IMAGING API SUMMARY
Table B-5 Summary of jai Classes (Continued)
Class Description
ROIShape ExtendsROI

Represents a region of interest within an imageSspe.
ScaleOpImage ExtendswarpOpImage

SequentialImage

SnapshotImage

SourcelessOpImage

StatisticsOpImage

TiledImage

UntiTledOpImage

Warp

WarpAffine

WarpCubic

WarpGeneralPolynomial

Used by further extension classes that perform scale-like
operations and thus require rectilinear backwards mapping and
padding by the resampling filter dimensions.

Extends:java.lang.0Object
Represents an image that is associated with a time stamp and
a camera position. Used with ImageSequence.

Extends:PlanarImage:

Implements: java.awt.image.TileObserver

Provides an arbitrary number of synchronous views of a
possibly changin@ritableRenderedImage

ExtendsOpImage
An abstract base class for image operators that have no image
sources.

ExtendsOpImage

An abstract base class for image operators that compute
statistics on a given region of an image and with a given
sampling rate.

Extends:PlanarImage
Implementsjava.awt.image.WritableRenderedImage
A concrete implementation @fitableRenderedImage.

ExtendsOpImage

A general class for single-source operations in which the
values of all pixels in the source image contribute to the value
of each pixel in the destination image.

Extends:;java.lang.Object
A description of an image warp.

ExtendswarpPolynomial
A description of an Affine warp.

ExtendswarpPolynomial
A cubic-based description of an image warp.

ExtendswarpPolynomial
A general polynomial-based description of an image warp.

Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING APl SUMMARY JAI Iterator Interfaces

Table B-5 Summary of jai Classes (Continued)

Class Description
WarpGrid Extendswarp
A regular grid-based description of an image warp.
WarpOpImage ExtendsOpImage
A general implementation of image warping, and a superclass
for other geometric image operations.
WarpPerspective Extendswarp

WarpPolynomial

WarpQuadratic

WritableRenderedImage-
Adapter

A description of a perspective (projective) warp.

Extendswarp
A polynomial-based description of an image warp.

ExtendswarpPolynomial
A quadratic-based description of an image warp.

ExtendsRenderedImageAdapter
Implements;java.awt.image.WritableRenderedImage
A PlanarImage wrapper for &/ritableRenderedImage.

B.3.3 JAI lterator Interfaces

Table B-6 lists the JAl iterator classemyax.media.jai.iterator).

Table B-6 JAI Iterator Interfaces

Interface Description

RandomIter An iterator that allows random read-only access to any sample
within its bounding rectangle.

RectIter An iterator for traversing a read-only image in top-to-bottom,
left-to-right order.

RookIter An iterator for traversing a read-only image using arbitrary up-
down and left-right moves.

WritableRandomIter ExtendsRandomIter
An iterator that allows random read/write access to any sample
within its bounding rectangle.

WritableRectIter ExtendsRectIter
An iterator for traversing a read/write image in top-to-bottom,
left-to-right order.

WritableRookIter ExtendsRookIter,WritableRectIter

An iterator for traversing a read/write image using arbitrary
up-down and left-right moves.

Release 1.0.1, November 1999

443

B.3.4

444

JAI lterator Classes JAVA ADVANCED IMAGING APl SUMMARY

B.3.4 JAI Iterator Classes

Table B-7 lists the JAl iterator classemyax.media.jai.iterator).
Table B-7 JAI Iterator Classes

Class Description

RandomIterFactory Extends:java.lang.Object
Afactory class to instantiate instances of Ra@domIter and
WritableRandomIter interfaces on sources of typaster,
RenderedImage, andWritableRenderedImage.

RectIterFactory Extends;java.lang.Object
A factory class to instantiate instances ofReetIter and
WritableRectIter interfaces on sources of typester,
RenderedImage, andwritableRenderedImage.

RookIterFactory Extends:;java.lang.0Object
A factory class to instantiate instances ofRhekIter and
WritableRookIter interfaces on sources of typester,
RenderedImage, andWritableRenderedImage.

B.3.5 JAI Operator Classes

Table B-8 lists the JAI operator classgayax.jai.operator). These classes
extend the JAbperationDescriptor class.

Table B-8 JAI Operator Classes

Class Description

AbsoluteDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for thbsolute operation, which
gives the mathematical absolute value of the pixel values of a
source image.

AddCollectionDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for thieddCo11ect1ion operation,
which takes a collection of rendered images, and adds every
set of pixels, one from each source image of the corresponding
position and band.

AddConstDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for thieddConst operation, which
adds one of a set of constant values to the pixel values of a
source image on a per-band basis.

Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING APl SUMMARY

JAI Operator Classes

Table B-8 JAI Operator Classes (Continued)
Class Description
AddConstToCollection- ExtendsOperationDescriptorImp]l

Descriptor

AddDescriptor

AffineDescriptor

AndConstDescriptor

AndDescriptor

AWTImageDescriptor

BandCombineDescriptor

BandSelectDescriptor

BMPDescriptor

BorderDecriptor

An OperationDescriptor for theddConstToColTlection
operation, which adds constants to a collection of rendered
images.

ExtendsOperationDescriptorImpl
An OperationDescriptor for thiedd operation, which adds the
pixel values of two source images on a per-band basis.

ExtendsOperationDescriptorImpl

An OperationDescriptor for theffine operation, which
performs an affine mapping between a source and a
destination image.

ExtendsOperationDescriptorImpl

An OperationDescriptor for thendConst operation, which
performs a bitwise logical AND between the pixel values of a
source image with one of a set of per-band constants.

ExtendsOperationDescriptorImpl

An OperationDescriptor for thend operation, which
performs a bitwise logical AND between the pixel values of
the two source images on a per-band basis.

ExtendsOperationDescriptorImpl
An OperationDescriptor for th@TImage operation, which
imports a standard AWT image into JAI.

ExtendsOperationDescriptorImp]l

An OperationDescriptor for thgandCombine operation,

which computes an arbitrary linear combination of the bands
of a source image for each band of a destination image, using
a specified matrix.

ExtendsOperationDescriptorImpl

An OperationDescriptor for thgandSelect operation,

which copies the pixel data from a specified number of bands
in a source image to a destination image in a specified order.

ExtendsOperationDescriptorImpl
An OperationDescriptor for th@MP operation, which reads
BMP image data file from an input stream.

ExtendsOperationDescriptorImp]l
An OperationDescriptor for tHeorder operation, which adds
a border around an image.

Release 1.0.1, November 1999

B.3.5 JAI Operator Classes JAVA ADVANCED IMAGING APl SUMMARY

Table B-8 JAI Operator Classes (Continued)

Class Description

BoxFilterDescriptor ExtendsOperationDescriptorImpl

An OperationDescriptor for theoxFi1ter operation, which
determines the intensity of a pixel in an image by averaging the
source pixels within a rectangular area around the pixel.

ClampDescriptor ExtendsOperationDescriptorImpl

An OperationDescriptor for th&lamp operation, which sets
all the pixel values below a “low” value to that low value, and
sets all the pixel values above a “high” value to that high value.

ColorConvertDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theolorConvert operation,
which performs a pixel-by-pixel color conversion of the data
in a source image.

CompositeDescriptor ExtendsOperationDescriptorImpl

An OperationDescriptor for theomposi te operation, which
combines two images based on their alpha values at each pixel.

ConjugateDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theonjugate operation, which
negates the imaginary components of pixel values of an image
containing complex data.

ConstantDescriptor ExtendsOperationDescriptorImpl

An OperationDescriptor for théonstant operation, which
defines a multi-banded, tiled rendered image with constant
pixel values.

ConvolveDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theonvolve operation, which
computes each output sample by multiplying elements of a
kernel with the samples surrounding a particular source
sample.

CropDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for thérop operation, which crops a
rendered or renderable image to a specified rectangular area.

DCTDescriptor ExtendsOperationDescriptorImpl
An operation descriptor for tHECT operation, which
computes the even discrete cosine transform of an image.

DFTDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theFT operation, which
computes the discrete Fourier transform of an image.

446 Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING APl SUMMARY

Table B-8

JAI Operator Classes

JAI Operator Classes (Continued)

Class

Description

DivideByConstDescriptor

DivideComplexDescriptor

DivideDescriptor

DivideIntoConstDescriptor

EncodeDescriptor

ErrorDiffusionDescriptor

ExpDescriptor

ExtremaDescriptor

FileLoadDescriptor

FileStoreDescriptor

FormatDescriptor

ExtendsOperationDescriptorImp]l

An OperationDescriptor for th#ivideByConst operation,
which divides the pixel values of a source image by a constant.

ExtendsOperationDescriptorImpl

An OperationDescriptor for thivideComplex operation,
which divides two images representing complex data.

ExtendsOperationDescriptorImp]l

An OperationDescriptor for thei vide operation, which
divides the pixel values of one first source image by the pixel
values of another source image on a per-band basis.

ExtendsOperationDescriptorImpl

An OperationDescriptor for thivideIntoConst
operation, which divides a constant by the pixel values of a
source image.

ExtendsOperationDescriptorImpl
An OperationDescriptor for thencode operation, which
stores an image to @utputStream.

ExtendsOperationDescriptorImpl

An OperationDescriptor for therrorDi ffusion operation,
which performs color quantization by finding the nearest color
to each pixel in a supplied color map.

ExtendsOperationDescriptorImpl

An OperationDescriptor for thexp operation, which takes the
exponential of the pixel values of an image.

ExtendsOperationDescriptorImp]l

An OperationDescriptor for thextrema operation, which
scans an image and finds the image-wise maximum and
minimum pixel values for each band.

ExtendsOperationDescriptorImp]l
An OperationDescriptor for thiei 1eLoad operation, which
reads an image from a file.

ExtendsOperationDescriptorImpl
An OperationDescriptor for thei 1eStore operation, which
stores an image to a file.

ExtendsOperationDescriptorImp]l
An OperationDescriptor for theormat operation, which
reformats an image.

Release 1.0.1, November 1999

447

B.3.5

448

JAI Operator Classes

JAVA ADVANCED IMAGING APl SUMMARY

Table B-8 JAI Operator Classes (Continued)

Class Description

FPXDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for thePX operation, which reads
FlashPix data from an input stream.

GIFDescriptor ExtendsOperationDescriptorImpl

GradientMagnitudeDescriptor

HistogramDecriptor

IDCTDescriptor

IDFTDescriptor

IIPDescriptor

IIPResolutionDescriptor

ImageFunctionDescriptor

InvertDescriptor

An OperationDescriptor for th&LF operation, which reads
GIF data from an input stream.

ExtendsOperationDescriptorImpl

An OperationDescriptor for theradient operation, which is
an edge detector that computes the magnitude of the image
gradient vector in two orthogonal directions.

ExtendsOperationDescriptorImpl

An OperationDescriptor for thigi stogram operation, which
scans a specified region of an image and generates a histogram
based on the pixel values within that region of the image.

ExtendsOperationDescriptorImpl
An OperationDescriptor for theEDCT operation, which
computes the inverse discrete cosine transform of an image.

ExtendsOperationDescriptorImpl
An OperationDescriptor for thEDFT operation, which
computes the inverse discrete Fourier transform of an image.

ExtendsOperationDescriptorImpl

An OperationDescriptor for thELP operation, which reads an
image from an IIP server and creates a Renderedimage or a
Renderablelmage based on data from the server.

ExtendsOperationDescriptorImpl

An OperationDescriptor for thELIPResoTution operation,

which reads an image at a particular resolution from an 1P
server and creates a Renderedimage based on the data from the
server.

ExtendsOperationDescriptorImpl

An OperationDescriptor for thEmageFunction operation,
which generates an image on the basis of a functional
description provided by an object that is an instance of a class
that implements thémageFunction interface.

ExtendsOperationDescriptorImpl
AnOperationDescriptor fortheInvert operation, which
inverts the pixel values of an image.

Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING APl SUMMARY JAI Operator Classes

Table B-8 JAI Operator Classes (Continued)

Class Description

JPEGDescriptor ExtendsOperationDescriptorImp]l
An OperationDescriptor for theJPEG operation, which
reads a standard JPEG (JFIF) file.

LogDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theLog operation, which
takes the logarithm of the pixel values of an image.

LookupDescriptor ExtendsOperationDescriptorImpl

AnOperationDescriptor for theLookup operation, which
performs general table lookup on an image.

MagnitudeDescriptor ExtendsOperationDescriptorImp]l

An OperationDescriptor for theMagnitude operation,
which computes the magnitude of each pixel of an image.

MagnitudeSquaredDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theMagnitudeSquared
operation, which computes the squared magnitude of each
pixel of a complex image.

MatchCDFDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theMatchCDF operation,
which matches pixel values to a supplied cumulative
distribution function (CDF).

MaxDescriptor ExtendsOperationDescriptorImp]l
An OperationDescriptor for theMax operation, which
computes the pixelwise maximum value of two images.

MeanDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theMean operation, which
scans a specified region of an image and computes the image-
wise mean pixel value for each band within the region.

MedianFiTlterDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theMedianFilter
operation, which is useful for removing isolated lines or pixels
while preserving the overall appearance of an image.

MinDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theMin operation, which
computes the pixelwise minimum value of two images.

MultiplyComplexDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theMultiplyCompTlex
operation, which multiplies two images representing complex
data.

Release 1.0.1, November 1999 449

B.3.5

450

JAI Operator Classes

Table B-8

JAVA ADVANCED IMAGING APl SUMMARY

JAI Operator Classes (Continued)

Class

Description

MultiplyConstDescriptor

MultiplyDescriptor

NotDescriptor

OrConstDescriptor

OrderedDitherDescriptor

OrDescriptor

OverlayDescriptor

PatternDescriptor

PeriodicShiftDescriptor

PhaseDescriptor

ExtendsOperationDescriptorImpl

An OperationDescriptor for theMultiplyConst

operation, which multiplies the pixel values of a source image
with a constant on a per-band basis.

ExtendsOperationDescriptorImpl

An OperationDescriptor for theMultiply operation,
which multiplies the pixel values of two source images on a
per-band basis.

ExtendsOperationDescriptorImpl

An OperationDescriptor for theMultiply operation,
which performs a bitwise logical NOT operation on each pixel
of a source image on a per-band basis.

ExtendsOperationDescriptorImpl

An OperationDescriptor for theOrConst operation,

which performs a bitwise logical OR between the pixel values
of a source image with a constant on a per-band basis.

ExtendsOperationDescriptorImpl

An OperationDescriptor for theOrderedDither

operation, which performs color quantization by finding the
nearest color to each pixel in a supplied color cube and
“shifting” the resulting index value by a pseudo-random
amount determined by the values of a supplied dither mask.

ExtendsOperationDescriptorImpl

An OperationDescriptor for theOr operation, which
performs a bitwise logical OR between the pixel values of the
two source images on a per-band basis.

ExtendsOperationDescriptorImpl
An OperationDescriptor for theOverlay operation,
which overlays one image on top of another image.

ExtendsOperationDescriptorImpl
An OperationDescriptor for thePattern operation,
which defines a tiled image consisting of a repeated pattern.

ExtendsOperationDescriptorImpl

An OperationDescriptor for thePeriodicShift
operation, which computes the periodic translation of an
image.

ExtendsOperationDescriptorImpl
An OperationDescriptor for thePhase operation, which
computes the phase angle of each pixel of an image.

Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING APl SUMMARY

Table B-8

JAI Operator Classes

JAI Operator Classes (Continued)

Class

Description

PiecewiseDescriptor

PNGDescriptor

PNMDescriptor

PolarToComplexDescriptor

RenderableDescriptor

RescaleDescriptor

RotateDescriptor

ScaleDescriptor

ShearDescriptor

StreamDescriptor

SubtractConstDescriptor

ExtendsOperationDescriptorImp]l
An OperationDescriptor for thePiecewise operation,
which applies a piecewise pixel value mapping to an image.

ExtendsOperationDescriptorImpl
An OperationDescriptor for thePNG operation, which
reads a PNG input stream.

ExtendsOperationDescriptorImpl

An OperationDescriptor for thePNM operation, which
reads a standard PNM file, including PBM, PGM, and PPM
images of both ASCII and raw formats.

ExtendsOperationDescriptorImpl

An OperationDescriptor for thePolarToComplex
operation, which computes a complex image from a
magnitude and a phase image.

ExtendsOperationDescriptorImp]l

An OperationDescriptor for theRenderable operation,
which produces 8enderableImage from a
RenderedImage.

ExtendsOperationDescriptorImp]l

An OperationDescriptor for theRescale operation,

which maps the pixel values of an image from one range to
another range.

ExtendsOperationDescriptorImpl
AnOperationDescriptor fortheRotate operation, which
rotates an image about a given point by a given angle.

ExtendsOperationDescriptorImpl
An OperationDescriptor for theScale operation, which
translates and resizes an image.

ExtendsOperationDescriptorImpl
An OperationDescriptor for theShear operation, which
shears an image horizontally or vertically.

ExtendsOperationDescriptorImpl
AnOperationDescriptor fortheStreamoperation, which
readsjava.io.InputStrean files.

ExtendsOperationDescriptorImp]l

An OperationDescriptor for theSubtractConst

operation, which subtracts one of a set of constant values from
the pixel values of a source image on a per-band basis.

Release 1.0.1, November 1999

B.3.5 JAI Operator Classes JAVA ADVANCED IMAGING APl SUMMARY

Table B-8 JAI Operator Classes (Continued)

Class Description

SubtractDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theSubtract operation,
which subtracts the pixel values of the second source image
from the first source image on a per-band basis.

SubtractFromConstDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theSubtractFromConst
operation, which subtracts the pixel values of a source image
from one of a set of constant values on a per-band basis.

ThresholdDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theThreshold operation,
which maps all the pixel values of an image that fall within a
given range to one of a set of per-band constants.

TIFFDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theTIFF operation, which
reads TIFF 6.0 data from an input stream.

TranslateDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theTranslate operation,
which copies an image to a new location in the plane.

TransposeDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theTranspose operation,
which flips or rotates an image.

URLDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theURL operation, which
reads an image from a file, via a URL path.

WarpDescriptor ExtendsOperationDescriptorImpl

An OperationDescriptor for thewWarp operation, which
performs general warping on an image.

XorConstDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theXorConst operation,
which performs a bitwise logical XOR between the pixel
values of a source image with a constant.

XorDescriptor ExtendsOperationDescriptorImpl
An OperationDescriptor for theXor operation, which
performs a bitwise logical XOR between the pixel values of
two source images on a per-band basis.

452 Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING APl SUMMARY JAI Widget Classes

B.3.6 JAI Widget Interfaces

Table B-9 lists the JAI widget interfacegavax.media.jai.widget).
Table B-9 JAI Widget Interfaces

Interface Description

ViewportListener Used by the&scrol1ingImagePanel class to inform
listeners of the current viewable area of the image.

B.3.7 JAI Widget Classes

Table B-10 lists the JAIl widget classem(ax.media.jai.widget).
Table B-10 JAI Widget Classes

Class Description

ImageCanvas Extends:java.awt.Canvas
A simple output widget for &enderedImage. This class can
be used in any context that calls fatanvas.

ScrollingImagePanel Extends:java.awt.Panel
Implementsjava.awt.event.AdjustmentListener,
java.awt.event.MouselListener,
java.awt.event.MouseMotionListener
An extension ofjava.awt.Panel that contains an
ImageCanvas and vertical and horizontal scrollbars.

Release 1.0.1, November 1999

453

B.3.7 JAI Widget Classes JAVA ADVANCED IMAGING APl SUMMARY

454 Programming in Java Advanced Imaging

Glossary

THIS glossary contains descriptions of significant terms that appear in this
book.

affine transformation
Geometric image transformation, such as translation, scaling, or rotation.

band

The set of all samples of one type in an image, such as all red samples or all
green samples.

box filter

A low-pass spatial filter composed of uniformly-weighted convolution
coefficients.

bicubic interpolation

Two-dimensional cubic interpolation of pixel values based on the 16 pixels in a
4 x 4 pixel neighborhood. See al&dlinear interpolation nearest-neighbor
interpolation

bilinear interpolation

Two-dimensional linear interpolation of pixel values based on the four pixels in
a 2 x 2 pixel neighborhood. See alicubic interpolation nearest-neighbor
interpolation

binary image
An image that consists of only two brightness levels: black and white.

chain code

A pixel-by-pixel direction code that defines boundaries of objects within an
image. The chain code records an object boundary as a series of direction codes.

Release 1.0.1, November 1999 455

456

GLOSSARY

cobble
To assemble multiple tile regions into a single contiguous region.

color space conversion

The conversion of a color using one space to another color space, such as RGB
to CMYK.

components
Values of samples independent of color interpretation.

compression ratio
In image compression, the ratio of an uncompressed image data file size to its
compressed counterpart.

data element

Primitive types used as units of storage of image data. Data elements are
individual members of @ataBuffer array.

directed graph (digraph)
A graph with one-way edges. See allicected acyclic graph (DAG)

directed acyclic graph (DAG)
A directed graph containing no cycles. This means that if there is a route from
node A to node B then there is no way back.

first-order interpolation
Seebilinear interpolation

high-pass filter
A spatial filter that accentuates an image’s high-frequency detail or attenuates
the low-frequency detail. Contrast witbw-pass filtey median filter

histogram
A measure of the amplitude distribution of pixels within an image.

Lempel-Ziv-Welch (LZW) compression

A lossless image coding method that scans the image for repeating patterns of
blocks of pixels and codes the patterns into a code list.

Programming in Java Advanced Imaging

low-pass filter

A spatial filter that attenuates an image’s high-frequency detail or accentuates
the low-frequency detail. Contrast wittigh-pass filter median filter

median filter
A non-linear spatial filter used to remove noise spikes from an image.

nearest-neighbor interpolation

Two-dimensional interpolation of pixel values in which the amplitude of the
interpolated sample is the amplitude of its nearest neighbor. Sedialguic
interpolation bilinear interpolation

perspective warp
An image distortion in which objects appear trapezoidal due to foreshortening.

projective warp
Seeperspective warp

guantization
The conversion of discrete image samples to digital quantities.

ROI

Abbreviation forregion of interestAn area or pixel group within an image that
has been selected for processing.

run-length coding

A type of lossless image data compression that scans for sequences of pixels
with the same brightness level and codes them into a reduced description.

Sobel edge detection

A spatial edge detection filter that detects edges by finding the gradient of an
image.

square pixel
A pixel with equal height and width.

thresholding

A point operation that maps all the pixel values of an image that fall within a
given range to one of a set of per-band constants.

Release 1.0.1, November 1999 457

458

GLOSSARY

transform coding

A form of lossy block coding that transforms blocks of an image from the spatial
domain to the frequency domain.

trapping
An image manipulation technique used in printing that uses dilation and
erosion to compensation for misregistration of colors.

unsharp masking
An image enhancement technique using a high-frequency accentuating filter.

zero-order interpolation
Seenearest-neighbor interpolation

Programming in Java Advanced Imaging

Index

2D image filters 12

A

AbsoTute operation 177

absolute value, finding177
accumulateStatistics method 321
Adam?7 interlace, PNG images79
Add operation 166

AddCollection operation 168
AddConst operation 167

AddConstToCollection operation
169

adding
a collection of images 168
a constant to an imagei67

constants to a collection of images
169

two images 166
adjoint transform 280
affine

transform 272

warp 303
Affine operation 272
AffineTransform class 272
alpha channel suppressionl4
alpha transparency139

Alpha_Interpolation rendering
hint 60

amplitude rescaling 200

analysis, image 307-321

ancillary chunks, PNG images81
And operation 158

AndConst operation 159
ANDing

Release 1.0.1, November 1999

an image with a constantl59

two images 158
Antialiasing rendering hint 60
API extension 393-416
Applet.getImage method 10
area operators46

Border 191

BoxFilter 224

Convolve 223

Crop 199

MedianFilter 226
AreaOpImage class 40, 395
argODesc 399
arithmetic operators 165-178

Absolute 177

Add 166

AddConst 167

Divide 171

DivideByConst 172

DivideComplex 174

DividelntoConst 173

Exp 177

Multiply 174

MultiplyComplex 176

MultiplyConst 175

Subtract 169

SubtractConstant170
AWT producer/consumer model.2
AWTImage operation 118

B

background color, PNG images81
band copying 185

459

460

BandCombine operation 141
BandedSampleModel data format 69
BandSelect operation 186
BasicStroke class 324, 326

bicubic interpolation 251, 256 266, 267,
269, 271, 272, 284, 289

bicubic?2 interpolation 251, 257, 266, 267,
269, 271, 272, 284, 289

bilevel images 105

bilinear interpolation 250, 256 266, 267,
269, 271, 272, 284, 289

binary contrast enhancemert45
bit depth for palette images379
BITMASK transparency hint139
bKGD chunk 381
BMP images

decoding 111

encoding 363-364
BMP operation 111
Border operation 191
BORDER_CONST_FILL hint 192
BORDER_COPY hint 192,195
BORDER_REFLECT hint 192, 195
BORDER_WRAP hint 192, 195
BORDER_ZERO hint 195
BORDER_ZERO_FILL hint 192

BorderExtender class 193 224, 251,
267,271, 274, 284, 290

BorderExtenderConstant class 193,
196

BorderExtenderCopy class 193, 197

BorderExtenderReflect class 193,
199

BorderExtenderWrap class 193, 198
BorderExtenderZero class 193, 195
box filter 223

BoxFilter operation 224

bpp parameter (PNG imagesj78
BufferedImage class 70, 124
BYTE_496 hint 179, 214

BYTE_855 hint 179, 214
ByteArraySeekableStream class 98

INDEX

C

canSeekBackwards method 100
canvas 127

CAP_BUTT attribute 326
CAP_ROUND attribute 326
CAP_SQUARED attribute 326
CCITT Group3 1bpp encodingl11

CCITT Group3 1D facsimile
compression 105

chain graph 28
cHRM chunk 382
chromaticity, PNG images382
CIE colorspaces 111
CIEXYZ color 137
CIEXYZ color space 136
Clamp operation 184
clamp pixel values 184
clipping path 325
codecs 414
CollectionImage class 39, 83
color
conversion 140, 141
profile 139

guantization operators
ErrorDiffusion 181
OrderedDither 178

space 131-142
Color class 132,324

color cube lookup table213
Color_Rendering rendering hint 61
ColorConvert operation 140
ColorCube class 213

colorMap parameter 179

ColorModel class 10, 70, 132
ColorSpace class 132,135 138
combiner (ImagePyramid)91
CompTement operation 164

complex conjugate 236

complex data 339

complex image 234, 235, 236, 237
COMPLEX property 339
COMPLEX_TO_COMPLEX hint 229, 232
COMPLEX_TO_REAL hint 229, 232
Component.createImage method 10
ComponentColorModel class 113,133

Programming in Java Advanced Imaging

INDEX

ComponentSampleModel data format
69

ComponentSampTleModelJAI data
format 69

Composite operation 243
compressed data, PNG imagess9
compression quality, JPEG image369
Conjugate operation 236

constant image 123

Constant operation 123

contains method 146, 152

ContextualRenderedImageFactory
interface 16

control grid interpolation 296
conversion space137

convolution filtering 221

convolve kernel 221

Convolve operation 223
coordinates 67
copyExtendedData method 194
createImageDecoder method 414
createImageEncoder method 414
Crop operation 199

cross mask 226

CS_CIEXYZ color space 136
CS_GRAY color space 136
CS_LINEAR_RGB color space 136
CS_PYCC color space 136

CS_sRGB color space 136

cubic warp 301

cumulative distribution function (CDF)
203

D

dash parameter 327
dash_phase parameter 327

data type, reading220
DataBufferByte data type 68
DataBufferDouble data type 68
DataBufferFloat data type 68
DataBufferInt data type 68
DataBufferShort data type 68
DataBufferUShort data type 68

Release 1.0.1, November 1999

DCT operation 232

decodel6BitsTo8Bit method 105

decoding image files 101-119

BMP 111

FlashPix 109

GIF 110

JPEG 110

PNG 112

PNM 117

TIFF 104
Description 399
DFT operation 229
differencer 91
DirectColorModel class 133
directed acyclic graph (DAG)28

discrete cosine transform (DCT}66
discrete Fourier transform (DFT228

display component 115
dither
error-diffusion 181
mask 179
ordered 178
DITHER_MASK_441 hint 180, 188
DITHER_MASK_443 hint 180, 188
dithering operation 105, 178
color cube 213
Dithering rendering hint 61
ditherMask parameter 179
Divide operation 171
DivideByConst operation 172
DivideComplex operation 174
DivideIntoConst operation 173
dividing
an image by a constant.72
an image into a constant73
complex images 174
one image by anotheri71
DocURL 399
down sampling 89
downSampler 86, 90, 122
drawing a shape331
drawing operations 323
dyadic logical operations157
AND 158
OR 160

461

462

XOR 162

E

edge detection 315-320
Frei and Chen 319
GradientMagnitude 315
Prewitt gradient 318
Robert’s cross 317

edge extraction operatorsl

Encode operation 362

encoding
BMP images 363-364
image files 361-392
JPEG images 364-375
PNG images 375-390
PNM images 390-391

endcap style 326

entropy encoder 367

error distribution filter 182

ERROR_FILTER_FLOYD_STEINBERG
hint 182, 188

ERROR_FILTER_JARVIS hint 182,188
ERROR_FILTER_STUCKI hint 182, 188
error-diffusion dither 181
ErrorDiffusion operation 181
errorKernel parameter 182
example program 6, 417-427
exclusion threshold (ROI)144

Exp operation 177

exponent, taking 177

extended border193

extending the API 393-416

Extrema operation 308

F

features 3-5

file operators 48
AWTImage 118
BMP 111
FileLoad 104
Format 119

INDEX

FPX 110

GIF 111

JPEG 110

PNG 112

PNM 117

Stream 103

TIFF 105

URL 119
FileCacheSeekableStream class 99
FilelLoad operation 104
FileSeekableStream class 98
FileStore operation 361
fill color or pattern 328
filling a shape 332
FilteredImageSource object 10
filtering algorithms, PNG images376
filtering, convolution 221
filterRow method 377

finding the maximum values of two
images 156

finding the minimum values of two
images 157

first-order interpolation 256
FlashPix images, reading.09
FLIP_ANTIDIAGONAL hint 281
FLIP_DIAGONAL hint 281
FLIP_HORIZONTAL hint 281
FLIP_VERTICAL hint 281
flipping an image 281
FloatComponentSampleModel data
format 69
FloatDoubleColorModel class 133
Floyd-Steinberg filter 182, 188
Font class 324
Format operation 119
FormatRecognizer class 103, 414
ForwardSeekableStream class 98
Fourier transform 228
FPX operation 110
FractionalMetrics rendering hint 61
Frei and Chen edge enhancemesit9
frequency
domain processing228
transform 228
frequency operators49

Programming in Java Advanced Imaging

INDEX

Conjugate 236

DCT 232

DFT 228, 229

IDCT 233

IDFT 231

ImageFunction 237

Magnitude 234

MagnitudeSquared235

PeriodicShift 236

Phase 235

PolarToComplex 237
fromCIEXYZ method 137
fromRGB method 137

functional description, images based on
237

G

gAMA chunk 382
gamma correction, PNG image$15, 382
gamma value 113, 114
general polynomial warp293
general table lookup216
geometric image manipulatiorp49-306
geometric operators

Affine 272

Rotate 271

Scale 268

Shear 283

Translate 267

Transpose 281

Warp 289
geometric transformations265
getAsImage method 145
getAsShape method 145
getBounds method 145, 152
getBounds2D method 145, 152
getCodec method 415
getDefaultEncodeParam method 376
getETlements method 239
getExtendedData method 194
getFilePointer method 100
getHeight method 259
getHint method 117

Release 1.0.1, November 1999

getOperationDescriptor method
398

getProperty method 308, 309, 313, 337
getPropertyNames method 337
getQTable method 367
getQuadToQuad method 278
getQuadToSquare method 277
getSquareToQuad method 277
getTag method 107
getTriToTri method 279
getWidth method 259

GGGA images 114

GIF images, reading110

GIF operation 111

GlobalName 399

glossary 455-458

GRADIENT_MASK_SOBEL_HORIZONTAL
gradient filter 188, 316

GRADIENT_MASK_SOBEL_VERTICAL
gradient filter 188, 316

GradientMagnitude edge detectiodl5
GradientMagnitude operation 315
GradientPaint class 324, 328
graph

overview 28

renderable 32

rendered 30
Graphics class 323
graphics primitives, rendering330
graphics rendering323-333
Graphics.drawImage method 10
Graphics2D class 323
grayscale color spacel36
grayscale images105, 113
grid warp 296
GridLayout class 125

H

high-pass filter 223

HINT_BORDER_EXTENDER rendering
hint 62

HINT_IMAGE_LAYOUT rendering hint 63

HINT_INTERPOLATION rendering hint
63

464

HINT_OPERATION_BOUND rendering
hint 63

HINT_OPERATION_REGISTRY rendering
hint 63

HINT_PNG_EMIT_SQUARE_PIXELS
rendering hint 63

HINT_TILE_CACHE rendering hint 63
hintODesc 399

hIST chunk 383

histogram generation310
Histogram operation 312

Huffman compression 105

ICC Profile Format Specification139
ICC profile, PNG images 383
ICC profiles 139
ICC_ColorSpace class 138
ICC_Profile class 139
ICC_ProfileGray class 139
ICC_ProfiTleRGB class 139
iCCP chunk 383
IDCT operation 233
IDFT operation 231
IIP operation 352
IIPResolution operation 357
image
analysis 307-321
compositing 243
data 67
enhancement 191-247
file formats 101
file operators 102
format conversion 119
histogram 202, 310
layout, PNG images376
manipulation 143-189

modification timestamp, PNG
images 387

properties 335-339
resampling Seeinterpolation
translation 266-268
warping 285-306

INDEX

image coordinates67

Image File Directory (IFD) 106
Image object 9
Image.getGraphics method 10
Image.getSource method 10
ImageCanvas class 127,129
ImageCodec class 102, 414
ImageComplete method 10
ImageConsumer interface 10
ImageFunction interface 237
ImageFunction operation 237
ImageMIPMap class 40, 85
ImageObserver object 10
ImageProducer interface 9,10
ImagePyramid class 39, 89
ImageSequence class 39, 84
ImageStack class 39, 84
imaging graph 28

impulse noise spikes226
inclusion threshold (ROI) 144
IndexColorModel class 113,133
input memory array 10
INTENT_ABSOLUTE hint 386
INTENT_PERCEPTUAL hint 386
INTENT_RELATIVE hint 386
INTENT_SATURATION hint 386
interlaced data order, PNG image&9
interlaced images112

Internet Imaging Protocol (11P)352
INTERP_BICUBIC hint 251, 266
INTERP_BICUBIC2 hint 251, 266
INTERP_BILINEAR hint 250, 266
INTERP_NEAREST hint 250, 266
interpolation 249-262

bicubic 251, 256 266, 267, 269, 271,
272, 284, 289

bicubic2 251, 257, 266, 267, 269, 271,
272, 284, 289

bilinear 250, 256 266, 267, 269, 271,
272, 284, 289

nearest-neighbor250, 255 266, 267,
269, 271, 272, 284, 289

table 258-262
Interpolation rendering hint 61
InterpolationTable object 258

Programming in Java Advanced Imaging

INDEX

intersects method147, 153

inverse discrete cosine transform
(IDCT) 233

inverse discrete Fourier transform
(IDFT) 231

inverse perspective transform279
inverseTransform method 279
Invert operation 241

iterators 403

J

JAI class 38

Jarvis-Judice-Ninke filter 182, 188
Java 2D API 11

Java 3D API 1

Java Media Framework1

Java Sound API 1

Java Speech1l

Java Swing 1

Java Telephony1
javax.media.jai package 38, 435

javax.media.jai.iterator
package 38, 435

javax.media.jai.operator
package 38, 435

javax.media.jai.widget package
38, 435
join style 327
JOIN_BEVEL attribute 327
JOIN_MITER attribute 327
JOIN_ROUND attribute 327
JPEG images
abbreviated stream371
baseline DCT coding 366
compression quality 369
decoding 110
encoding 364-375
file format 364-375
Minimum Coded Units (MCUSs) 370
quantization table 367
restart interval 370
subsampling 368
JPEG operation 110

Release 1.0.1, November 1999

K

KernelJAI class 186, 187
key elements 221

KEY_PNG_EMIT_16BITS rendering
hint 112,117

KEY_PNG_EMIT_ALPHA rendering hint
112, 117

L

Laplacian filter 223
line number 67
line width 326
linear RGB color spacel36
LocalName 399
Log operation 242
logarithmic enhancement41
logical operators 157

AND 158

AND constant 159

NOT 164

OR 160

OR constant 161

XOR 162

XOR constant 163
Lookup operation 216
lookup table

creating 207
multi-banded 209
single-banded 207

modification 205
reading data 218
low-pass filter 223

M

magic number, PNM imagesl17
magnification 268

magnitude 237

magnitude enhancemen234
Magnitude operation 234
magnitude-squared enhancemengs
MagnitudeSquared operation 235

465

466

MatchCDF operation 203

Max operation 156

Mean operation 307

median filtering 226
MEDIAN_MASK_PLUS hint 227
MEDIAN_MASK_SQUARE hint 227

MEDIAN_MASK_SQUARE_ SEPARABLE
hint 227

MEDIAN_MASK_SQUARE_SEPARABLE
hint 227

MEDIAN_MASK_X hint 227
MedianFilter operation 226

memory-backed persistent image data
object 12

MemoryCacheSeekableStream class
Min operation 157
minification 268
modified Huffman compression105
modulus 237
monadic logical operations157
ANDConst 159
OrConst 161
XorConst 163
multi-banded lookup table209

MultiPixelPackedSampleModel data
format 69, 113

Multiply operation 174
MuTltiplyComplex operation 176
MultiplyConst operation 175
multiplying

an image by a constant.75

two complex images 176

two images 174

MultiResolutionRenderableImage
class 95

N

nearest-neighbor interpolatior2s0, 255
266, 267, 269, 271, 272, 284, 289

noise spikes, impulse226
non-standard color conversion41
Not operation 164

Nul10pImage class 395

number of bands, readin@19

INDEX

number of entries per band, readinzgo

O

offset values, reading219
one’s complement 164
OPAQUE transparency hint139
operation name 55

OperationDescriptor interface 397,
399

OperationRegistry class 337
operations, creating52-64
operators, writing new 394
OpImage class 40
Or operation 160
OrConst operation 161
ordered dither 178
OrderedDither operation 178
ORing
an image with a constanti61
two images 160
output gamma 114
output memory array 10
OverTlay operation 242

P

PackBits compression105
PackedColorModel class 133
Paeth filter 377

Paint attribute 328

Paint interface 324

palette color images105, 113, 114
palette histogram, PNG images83
Panel class 125

parameter block 56
ParameterBlock class 56, 57
ParameterBlockJAI class 56-59
Pattern operation 80

pattern tiles 80

PBM (portable bitmap) imagesL17
periodic shift 236

periodic translation 236

Programming in Java Advanced Imaging

INDEX

PeriodicShift operation 236
perspective

transform 276, 279

warp 302

PerspectiveTransform class 277-
280

PGM (portable graymap) imageg17
phase 237

phase enhancemen235

Phase operation 235

PhotoCD YCC conversion color space
136

pHYS chunk 384
Piecewise operation 202
pixel

dimensions, PNG images384

inverting 241
pixel number 67
pixel point processing

dual image 242

single image 240
PixelInterleavedSampleModel data

format 69,113

PlanarImage class 39,72, 193
PLTE chunk 380
plus mask 226
PNG color type 3 114
PNG images

decoding 112

encoding 375-390
PNG operation 112
PNG_FILTER_AVERAGE hint 377
PNG_FILTER_NONE hint 377
PNG_FILTER_PAETH hint 377
PNG_FILTER_SUB hint 377
PNG_FILTER_UP hint 377
PNGDecodeParam class 113
PNGEncodeParam class 376

PNGSuggestedPaletteEntry class
385

PNM images
encoding 390-391
reading 117

PNM operation 117

point operators 43

Release 1.0.1, November 1999

Absolute 177
Add 166
AddCollection 168
AddConst 167

AddConstToCollection 169

And 158
AndConst 159
BandCombine 141
BandSelect 186
Clamp 184
Composite 243
Constant 123
Divide 171
DivideByConst 172
DivideComplex 174
DividelntoConst 173
Exp 177

Invert 241

Log 242

Lookup 216
MatchCDF 203
Max 156

Min 157

Multiply 174
MultiplyComplex 176
MultiplyConst 175
Not 164

Or 160

OrConst 161
Overlay 242
Pattern 80
Piecewise 202
Rescale 200
Subtract 169
SubtractConst 170
SubtractFromConst171
Threshold 246

Xor 162
XorConst 163

PointOpImage class 40, 395
PolarToComplex operation 237
polynomial warp 291
portable bitmap (PBM) imagesL17
portable graymap (PGM) imageg17
portable pixmap (PPM) imaged17

467

468

Porter-Duff “over” rule 243

PPM (portable pixmap) imaged17
Prewitt gradient edge enhancemest8
private chunks (PNG images}89
private IFDs 108

product name 393

projective warp 302

properties 335-339
PropertyGenerator interface 337
PropertySource interface 337
push model 10

pyramid operation 89

Q

quadratic warp 299
quantization table 367

R

RandomIter interface 410
RandomIterFactory class 410
Raster class 70

read data method99

reading image files 101-119
REAL_TO_COMPLEX hint 229, 232
RectIter interface 404
RectIterFactory class 404, 405
reformatting an image 119

region of interest (ROI) control143
registerCodec method 414

registerFormatRecognizer
method 415

registerOperationByName method
398

registerOperationDescriptor
method 398

relational operators155

remote execution 38

remote imaging 83

remote method invocation (RMI)4, 38
RemoteImage class 38

renderable graph32

INDEX

Renderable operation 122
RenderableGraphics class 324
RenderableImage interface 16
RenderableOp class 41
rendered graphs30
RenderedImage interface 70
RenderedImageAdapter class 72
RenderedOp class 42
rendering hints 60-64
alpha interpolation 60
antialiasing 60
border extender 62
color rendering 61
dithering 61
fractional metrics 61
image layout 63
interpolation 61, 63
operation bound 63
operation registry 63
PNG images 117
PNG_Emit_16Bits 112, 117
PNG_Emit_Alpha 112, 117
PNG_Emit_Square_Pixels3
rendering 61
text antialiasing 61
tile cache 63
rendering intent, PNG images$86
Rendering rendering hint 61
rendering text 332
RenderingHints class 60
Rescale operation 200
rescaling, amplitude 200
restart interval 370
RGB full color images 105
RLE24 encoding 111
Roberts’ cross edge enhancemesit7
ROI class 144
ROIShape class 151
RookIter interface 407
RookIterFactory class 407
Rotate operation 271
ROTATE_180 hint 281
ROTATE_270 hint 281
ROTATE_90 hint 281
rubber sheet transformatior28s

Programming in Java Advanced Imaging

INDEX

S

SampleModel class 20, 39, 68, 69
sBIT chunk 384

Scale operation 268
ScaleOpImage class 41, 395
scaling 268

SCALING_DIMENSIONS hint 229,231
SCALING_NONE hint 229, 231
SCALING_UNITARY hint 229, 231
ScrollingImagePanel class 124
seek method 100
SeekableStream class 98
SegmentedSeekableStream class 98
separable interpolation258
separable kernel187

separable median227
setBithDepth method 379
setCenter method 127

setDecodePaletteAsShorts
method 106

setExpandGrayAlpha method 114
setExpandPalette method 113
setOrigin method 127
setOuputGamma method 113
setOutput8BitGray method 113
setQTable method 367
setSuppressAlpha method 113
Shape interface 324

shape, drawing 331

shape, filling 332

Shear operation 283
SHEAR_HORIZONTAL hint 284
SHEAR_VERTICAL hint 284
significant bits, PNG images384
single-banded lookup table07

SinglePixelPackedSampleModel
data format 69

SnapshotImage class 81

Sobel edge enhancemenss, 316
SourcelessOpImage class 40, 395
spatial filtering 221

spatial frequency 228

SPLT chunk 385

square mask 226

Release 1.0.1, November 1999

sRGB chunk 386
sRGB color 137
standard RGB (sRGB)136
statistical operators51, 321
Extrema 308
Histogram 312
Mean 307
StatisticsOpImage class 40, 321 395
Stream operation 103
stroke attributes 326
Stroke interface 324
stroke style 327
stroke width 325
Stucki filter 182, 188
style conventions xvi
subsampling, JPEG images68
Subtract operation 169
SubtractConst operation 170
SubtractFromConst operation 171
subtracting
a constant from an imagei70
an image from a constant71
two images 169
suggested palette, PNG imagess5
synthetic properties338

T

table interpolation 258-262
Tag Image File Format (TIFF)104
tEXt chunk 387
text data, PNG images387
text, rendering 332
Text_Antialiasing rendering hint 61
texture mapping 85
TexturePaint class 324, 329
Threshold operation 246
thresholding 245
TIFF images
multiple images per file 106
Palette color images105
reading 104
tiled images 391
writing 391

469

470

TIFF operation 105
TIFFDecodeParam class 106, 108
TIFFDirectory class 106
TIFFField class 107
TileCache interface 79
TiledImage class 40,74, 75
TileScheduler interface 79
tIME chunk 387
toCIEXYZ method 137
toRGB method 137
transforms 265-279

affine 272

perspective 276-279
Translate operation 267
translation 266, 268
TRANSLUCENT transparency hint139
transparency

mask 105

modes 139

PNG images 388

suppression 114
Transparency interface 139
Transpose operation 281
tRNS chunk 388
TYPE_3BYTE_BGR image type 71
TYPE_4BYTE_ABGR image type 71
TYPE_4BYTE_ABGR_PRE image type 71
TYPE_BYTE data type 69
TYPE_BYTE_BINARY image type 71
TYPE_BYTE_GRAY image type 71
TYPE_BYTE_INDEXED image type 71
TYPE_CUSTOM image type 71
TYPE_DOUBLE data type 69
TYPE_FLOAT data type 69
TYPE_INT data type 69
TYPE_INT_ARGB image type 71
TYPE_INT_ARGB_PRE image type 71
TYPE_INT_BGR image type 71
TYPE_INT_RGB image type 71
TYPE_SHORT data type 69
TYPE_UNDEFINED data type 69
TYPE_USHORT data type 69
TYPE_USHORT_555_RGB image type 71
TYPE_USHORT_565_RGB image type 71
TYPE_USHORT_GRAY image type 71

INDEX

U

unary logical operations157

unregisterFormatRecognizer
method 415

UntiTledOpImage class 395
UntiledOpimage class 40
up sampling 89

upSampler 90

URL images, reading119
URL operation 119

user exponent115

V

Vendor 399
Version 399
VERSION_2 hint 363
VERSION_3 hint 363
VERSION_4 hint 363

W

warp 285-306

affine 303

cubic 301

general polynomial 293

grid 296

perspective 302

polynomial 291

quadratic 299
Warp operation 289
WarpAffine class 303
WarpCubic class 301
WarpGeneralPolynomial class 293
WarpOpImage class 41, 395
WarpPerspective class 302
WarpPolynomial class 291
WarpQuadratic class 299
warpRect method 285
wrapInputStream method 101
WritableRaster class 70
WritableRookIter interface 405, 407

Programming in Java Advanced Imaging

INDEX

WriteableRenderedImage interface

70
writing image files 361-392
BMP images 363-364
JPEG images 364-375
PNG images 375-390
PNM images 390-391

X

Xor operation 162
XorConst operation 163
XORing
an image with a constant63
two images 162

Y

YCC images 366, 368

Z

ZTXT chunk 389

Release 1.0.1, November 1999

471

INDEX

472 Programming in Java Advanced Imaging

	Contents
	Figures
	Preface
	Disclaimer
	About This Book
	Related Documentation
	Additional Information
	Style Conventions

	Introduction to Java Advanced Imaging
	1.1 The Evolution of Imaging in Java
	1.2 Why Another Imaging API?
	1.3 JAI Features
	1.3.1 Cross-platform Imaging
	1.3.2 Distributed Imaging
	1.3.3 Object-oriented API
	1.3.4 Flexible and Extensible
	1.3.5 Device Independent
	1.3.6 Powerful
	1.3.7 High Performance
	1.3.8 Interoperable

	1.4 A Simple JAI Program

	Java AWT Imaging
	2.1 Introduction
	2.1.1 The AWT Push Model
	2.1.2 AWT Push Model Interfaces and Classes

	2.2 The Immediate Mode Model
	2.2.1 Rendering Independence
	2.2.2 Rendering-independent Imaging in Java AWT
	2.2.3 The Renderable Layer vs. the Rendered Layer
	2.2.3.1 Renderable Layer
	2.2.3.2 Rendered Layer
	2.2.3.3 Using the Layers

	2.2.4 The Render Context

	2.3 Renderable and Rendered Classes
	2.3.1 The Renderable Layer
	2.3.2 The Rendered Layer

	2.4 Java Image Data Representation
	2.5 Introducing the Java Advanced Imaging API
	2.5.1 Similarities with the Java 2D API
	2.5.2 JAI Data Classes
	2.5.2.1 The DataBufferFloat Class
	2.5.2.2 The DataBufferDouble Class

	Programming in Java Advanced Imaging
	3.1 Introduction
	3.2 An Overview of Graphs
	3.3 Processing Graphs
	3.3.1 Rendered Graphs
	3.3.2 Renderable Graphs
	3.3.3 Reusing Graphs
	3.3.3.1 Editing Rendered Graphs
	3.3.3.2 Editing Renderable Graphs

	3.4 Remote Execution
	3.5 Basic JAI API Classes
	3.5.1 The JAI Class
	3.5.2 The PlanarImage Class
	3.5.3 The CollectionImage Class
	3.5.4 The TiledImage Class
	3.5.5 The OpImage Class
	3.5.6 The RenderableOp Class
	3.5.7 The RenderedOp Class

	3.6 JAI API Operators
	3.6.1 Point Operators
	3.6.2 Area Operators
	3.6.3 Geometric Operators
	3.6.4 Color Quantization Operators
	3.6.5 File Operators
	3.6.6 Frequency Operators
	3.6.7 Statistical Operators
	3.6.8 Edge Extraction Operators
	3.6.9 Miscellaneous Operators

	3.7 Creating Operations
	3.7.1 Operation Name
	3.7.2 Parameter Blocks
	3.7.2.1 Adding Sources to a Parameter Block
	3.7.2.2 Adding or Setting Parameters

	3.7.3 Rendering Hints
	3.7.3.1 Java AWT Rendering Hints
	3.7.3.2 JAI Rendering Hints

	Image Acquisition and Display
	4.1 Introduction
	4.1.1 Image Data
	4.1.2 Basic Storage Types

	4.2 JAI Image Types
	4.2.1 Planar Image
	4.2.2 Tiled Image
	4.2.2.1 Tile Cache
	4.2.2.2 Pattern Tiles

	4.2.3 Snapshot Image
	4.2.3.1 Creating a SnapshotImage
	4.2.3.2 Using SnapshotImage with a Tile
	4.2.3.3 Disposing of a Snapshot Image

	4.2.4 Remote Image
	4.2.5 Collection Image
	4.2.6 Image Sequence
	4.2.7 Image Stack
	4.2.8 Image MIP Map
	4.2.9 Image Pyramid
	4.2.9.1 The Down Sampler
	4.2.9.2 The Up Sampler
	4.2.9.3 The Differencer
	4.2.9.4 The Combiner
	4.2.9.5 Example

	4.2.10 Multi-resolution Renderable Images

	4.3 Streams
	4.4 Reading Image Files
	4.4.1 Standard File Readers for Most Data Types
	4.4.1.1 The Stream Operation
	4.4.1.2 The FileLoad Operation

	4.4.2 Reading TIFF Images
	4.4.2.1 Palette Color Images
	4.4.2.2 Multiple Images per TIFF File
	4.4.2.3 Image File Directory (IFD)
	4.4.2.4 Public and Private IFDs

	4.4.3 Reading FlashPix Images
	4.4.4 Reading JPEG Images
	4.4.5 Reading GIF Images
	4.4.6 Reading BMP Images
	4.4.7 Reading PNG Images
	4.4.7.1 Gamma Correction and Exponents
	4.4.7.2 Expanding Grayscale Images to GGGA Format
	4.4.7.3 Rendering Hints

	4.4.8 Reading PNM Images
	4.4.9 Reading Standard AWT Images
	4.4.10 Reading URL Images

	4.5 Reformatting an Image
	4.6 Converting a Rendered Image to Renderable
	4.7 Creating a Constant Image
	4.8 Image Display
	4.8.1 Positioning the Image in the Panel
	4.8.2 The ImageCanvas Class
	4.8.3 Image Origin

	Color Space
	5.1 Introduction
	5.2 Color Management
	5.2.1 Color Models
	5.2.2 Color Space
	5.2.3 ICC Profile and ICC Color Space

	5.3 Transparency
	5.4 Color Conversion
	5.5 Non-standard Linear Color Conversion (BandCombine)

	Image Manipulation
	6.1 Introduction
	6.2 Region of Interest Control
	6.2.1 The ROI Class
	6.2.1.1 Determining the ROI Bounds
	6.2.1.2 Determining if an Area Lies Within or Intersects the ROI
	6.2.1.3 Creating a New ROI from an Existing ROI

	6.2.2 The ROIShape Class
	6.2.2.1 Determining the ROI Bounds
	6.2.2.2 Determining if an Area Lies Within or Intersects the ROIShape
	6.2.2.3 Creating a New ROIShape from an Existing ROIShape

	6.3 Relational Operators
	6.3.1 Finding the Maximum Values of Two Images
	6.3.2 Finding the Minimum Values of Two Images

	6.4 Logical Operators
	6.4.1 ANDing Two Images
	6.4.2 ANDing an Image with a Constant
	6.4.3 ORing Two Images
	6.4.4 ORing an Image with a Constant
	6.4.5 XORing Two Images
	6.4.6 XORing an Image with a Constant
	6.4.7 Taking the Bitwise NOT of an Image

	6.5 Arithmetic Operators
	6.5.1 Adding Two Source Images
	6.5.2 Adding a Constant Value to an Image
	6.5.3 Adding a Collection of Images
	6.5.4 Adding Constants to a Collection of Rendered Images
	6.5.5 Subtracting Two Source Images
	6.5.6 Subtracting a Constant from an Image
	6.5.7 Subtracting an Image from a Constant
	6.5.8 Dividing One Image by Another Image
	6.5.9 Dividing an Image by a Constant
	6.5.10 Dividing an Image into a Constant
	6.5.11 Dividing Complex Images
	6.5.12 Multiplying Two Images
	6.5.13 Multiplying an Image by a Constant
	6.5.14 Multiplying Two Complex Images
	6.5.15 Finding the Absolute Value of Pixels
	6.5.16 Taking the Exponent of an Image

	6.6 Dithering an Image
	6.6.1 Ordered Dither
	6.6.1.1 Color Map Parameter
	6.6.1.2 Dither Mask Parameter
	6.6.1.3 OrderedDither Example

	6.6.2 Error-diffusion Dither
	6.6.2.1 Error Filter Kernel
	6.6.2.2 ErrorDiffusion Example

	6.7 Clamping Pixel Values
	6.8 Band Copying
	6.9 Constructing a Kernel

	Image Enhancement
	7.1 Introduction
	7.2 Adding Borders to Images
	7.2.1 The Border Operation
	7.2.2 Extending the Edge of an Image
	7.2.2.1 BorderExtenderZero
	7.2.2.2 BorderExtenderConstant
	7.2.2.3 BorderExtenderCopy
	7.2.2.4 BorderExtenderWrap
	7.2.2.5 BorderExtenderReflect

	7.3 Cropping an Image
	7.4 Amplitude Rescaling
	7.5 Histogram Equalization
	7.5.1 Piecewise Linear Mapping
	7.5.2 Histogram Matching

	7.6 Lookup Table Modification
	7.6.1 Creating the Lookup Table
	7.6.1.1 Creating a Single-band Lookup Table
	7.6.1.2 Creating a Multi-band Lookup Table
	7.6.1.3 Creating a Color-cube Lookup Table

	7.6.2 Performing the Lookup
	7.6.3 Other Lookup Table Operations
	7.6.3.1 Reading the Table Data
	7.6.3.2 Reading the Table Offsets
	7.6.3.3 Reading the Number of Bands
	7.6.3.4 Reading the Number of Entries Per Band
	7.6.3.5 Reading the Data Type
	7.6.3.6 Reading the Destination Bands and SampleModel

	7.7 Convolution Filtering
	7.7.1 Performing the Convolve Operation
	7.7.2 Box Filter

	7.8 Median Filtering
	7.9 Frequency Domain Processing
	7.9.1 Fourier Transform
	7.9.1.1 Discrete Fourier Transform
	7.9.1.2 Inverse Discrete Fourier Transform

	7.9.2 Cosine Transform
	7.9.2.1 Discrete Cosine Transform (DCT)
	7.9.2.2 Inverse Discrete Cosine Transform (IDCT)

	7.9.3 Magnitude Enhancement
	7.9.4 Magnitude-squared Enhancement
	7.9.5 Phase Enhancement
	7.9.6 Complex Conjugate
	7.9.7 Periodic Shift
	7.9.8 Polar to Complex
	7.9.9 Images Based on a Functional Description

	7.10 Single-image Pixel Point Processing
	7.10.1 Pixel Inverting
	7.10.2 Logarithmic Enhancement

	7.11 Dual Image Pixel Point Processing
	7.11.1 Overlay Images
	7.11.2 Image Compositing

	7.12 Thresholding

	Geometric Image Manipulation
	8.1 Introduction
	8.2 Interpolation
	8.2.1 Nearest-neighbor Interpolation
	8.2.2 Bilinear Interpolation
	8.2.3 Bicubic Interpolation
	8.2.4 Bicubic2 Interpolation
	8.2.5 Table Interpolation
	8.2.5.1 Padding
	8.2.5.2 Width and Height
	8.2.5.3 Subsample Bits
	8.2.5.4 Precision
	8.2.5.5 Kernel Data
	8.2.5.6 Additional Interpolation Table-related Methods

	8.3 Geometric Transformation
	8.3.1 Translation Transformation
	8.3.2 Scaling Transformation
	8.3.3 Rotation Transformation
	8.3.4 Affine Transformation

	8.4 Perspective Transformation
	8.4.1 Performing the Transform
	8.4.2 Mapping a Quadrilateral
	8.4.3 Mapping Triangles
	8.4.4 Inverse Perspective Transform
	8.4.5 Creating the Adjoint of the Current Transform

	8.5 Transposing
	8.6 Shearing
	8.7 Warping
	8.7.1 Performing a Warp Operation
	8.7.2 Polynomial Warp
	8.7.3 General Polynomial Warp
	8.7.4 Grid Warp
	8.7.5 Quadratic Warp
	8.7.6 Cubic Warp
	8.7.7 Perspective Warp
	8.7.8 Affine Warp

	Image Analysis
	9.1 Introduction
	9.2 Finding the Mean Value of an Image Region
	9.3 Finding the Extrema of an Image
	9.4 Histogram Generation
	9.4.1 Specifying the Histogram
	9.4.2 Performing the Histogram Operation
	9.4.3 Reading the Histogram Data
	9.4.4 Histogram Operation Example

	9.5 Edge Detection
	9.6 Statistical Operations

	Graphics Rendering
	10.1 Introduction
	10.1.1 Simple 2D Graphics
	10.1.2 Renderable Graphics

	10.2 A Review of Graphics Rendering
	10.2.1 Overview of the Rendering Process
	10.2.2 Stroke Attributes
	10.2.2.1 Line Width
	10.2.2.2 Endcap Style
	10.2.2.3 Join Style
	10.2.2.4 Stroke Style
	10.2.2.5 Fill Styles

	10.2.3 Rendering Graphics Primitives
	10.2.3.1 Drawing a Shape
	10.2.3.2 Filling a Shape
	10.2.3.3 Rendering Text

	10.3 Graphics2D Example
	10.4 Adding Graphics and Text to an Image

	Image Properties
	11.1 Introduction
	11.1.1 The PropertySource Interface
	11.1.2 The PropertyGenerator Interface

	11.2 Synthetic Properties
	11.3 Regions of Interest
	11.4 Complex Data

	Client-Server Imaging
	12.1 Introduction
	12.2 Server Name and Port Number
	12.3 Setting the Timeout Period and Number of Retries
	12.4 Remote Imaging Test Example
	12.4.1 Simple Remote Imaging Example
	12.4.2 RemoteImaging Example Across Two Nodes

	12.5 Running Remote Imaging
	12.5.1 Step 1: Create a Security Policy File
	12.5.2 Step 2: Start the RMI Registry
	12.5.3 Step 3: Start the Remote Image Server
	12.5.4 Step 4: Run the Local Application

	12.6 Internet Imaging Protocol (IIP)
	12.6.1 IIP Operation
	12.6.2 IIPResolution Operation

	Writing Image Files
	13.1 Introduction
	13.2 Writing to a File
	13.3 Writing to an Output Stream
	13.4 Writing BMP Image Files
	13.4.1 BMP Version
	13.4.2 BMP Data Layout
	13.4.3 Example Code

	13.5 Writing JPEG Image Files
	13.5.1 JFIF Header
	13.5.2 JPEG DCT Compression Parameters
	13.5.3 Quantization Table
	13.5.4 Horizontal and Vertical Subsampling
	13.5.5 Compression Quality
	13.5.6 Restart Interval
	13.5.7 Writing an Abbreviated JPEG Stream
	13.5.8 Example Code

	13.6 Writing PNG Image Files
	13.6.1 PNG Image Layout
	13.6.2 PNG Filtering
	13.6.3 Bit Depth
	13.6.4 Interlaced Data Order
	13.6.5 PLTE Chunk for Palette Images
	13.6.6 Ancillary Chunk Specifications
	13.6.6.1 Background Color (bKGD Chunk)
	13.6.6.2 Chromaticity (cHRM Chunk)
	13.6.6.3 Gamma Correction (gAMA Chunk)
	13.6.6.4 Palette Histogram (hIST Chunk)
	13.6.6.5 Embedded ICC Profile Data (iCCP Chunk)
	13.6.6.6 Physical Pixel Dimensions (pHYS Chunk)
	13.6.6.7 Significant Bits (sBIT Chunk)
	13.6.6.8 Suggested Palette (sPLT Chunk)
	13.6.6.9 PNG Rendering Intent (sRGB Chunk)
	13.6.6.10 Textual Data (tEXt Chunk)
	13.6.6.11 Image Modification Timestamp (tIME Chunk)
	13.6.6.12 Transparency (tRNS Chunk)
	13.6.6.13 Compressed Text Data (zTXt Chunk)
	13.6.6.14 Private Chunks

	13.7 Writing PNM Image Files
	13.8 Writing TIFF Image Files
	13.8.1 TIFF Compression
	13.8.2 TIFF Tiled Images

	Extending the API
	14.1 Introduction
	14.2 Package Naming Convention
	14.3 Writing New Operators
	14.3.1 Extending the OpImage Class
	14.3.2 Extending the OperationDescriptor Interface

	14.4 Iterators
	14.4.1 RectIter
	14.4.2 RookIter
	14.4.3 RandomIter
	14.4.4 Example RectIter

	14.5 Writing New Image Decoders and Encoders
	14.5.1 Image Codecs

	Program Examples
	A.1 Lookup Operation Example
	A.2 Adding an OperationDescriptor Example

	Java Advanced Imaging API Summary
	B.1 Java AWT Imaging
	B.2 Java 2D Imaging
	B.2.1 Java 2D Imaging Interfaces
	B.2.2 Java 2D Imaging Classes

	B.3 Java Advanced Imaging
	B.3.1 JAI Interfaces
	B.3.2 JAI Classes
	B.3.3 JAI Iterator Interfaces
	B.3.4 JAI Iterator Classes
	B.3.5 JAI Operator Classes
	B.3.6 JAI Widget Interfaces
	B.3.7 JAI Widget Classes

	Glossary
	Index

