
Unreliable Guide To Hacking The Linux Kernel

Paul Rusty Russell

rusty@rustcorp.com.au

Unreliable Guide To Hacking The Linux Kernel
by Paul Rusty Russell

Copyright © 2001 by Rusty Russell

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
For more details see the file COPYING in the source distribution of Linux.

Table of Contents
1. Introduction ...7
2. The Players...9

21...9
User Context ...9
Hardware Interrupts (Hard IRQs) ...9
Software Interrupt Context: Bottom Halves, Tasklets, softirqs9

3. Some Basic Rules ..11
31...11

4. ioctls: Not writing a new system call ..13
5. Recipes for Deadlock ...15

51...15
6. Common Routines ..17

printk() include/linux/kernel.h ...17
copy_[to/from]_user() / get_user() / put_user()

include/asm/uaccess.h ..17
kmalloc() /kfree() include/linux/slab.h ..17

61 ...18
current include/asm/current.h ...18
udelay() /mdelay() include/asm/delay.h include/linux/delay.h18
cpu_to_be32() /be32_to_cpu() /cpu_to_le32() /le32_to_cpu()

include/asm/byteorder.h ...18
local_irq_save() /local_irq_restore() include/asm/system.h19
local_bh_disable() /local_bh_enable() include/asm/softirq.h19
smp_processor_id ()/cpu_[number/logical]_map() include/asm/smp.h .19
__init/__exit/__initdata include/linux/init.h ..19
__initcall() /module_init() include/linux/init.h19
module_exit() include/linux/init.h ..20
MOD_INC_USE_COUNT/MOD_DEC_USE_COUNT include/linux/module.h20

7. Wait Queues include/linux/wait.h ...23
Declaring ...23
Queuing ...23
Waking Up Queued Tasks...23

8. Atomic Operations..25
9. Symbols ..27

EXPORT_SYMBOL() include/linux/module.h ..27
EXPORT_NO_SYMBOLS include/linux/module.h ...27
EXPORT_SYMBOL_GPL() include/linux/module.h ...27

10. Routines and Conventions..29
Double-linked lists include/linux/list.h ...29
Return Conventions ...29
Breaking Compilation..29
Initializing structure members ...29
GNU Extensions ...29

101 ...29
C++ ...30
#if ..30

11. Putting Your Stuff in the Kernel ..31
111 ...31

12. Kernel Cantrips ...33
13. Thanks...35

5

6

Chapter 1. Introduction

Welcome, gentle reader, to Rusty’s Unreliable Guide to Linux Kernel Hacking. This
document describes the common routines and general requirements for kernel code:
its goal is to serve as a primer for Linux kernel development for experienced C pro-
grammers. I avoid implementation details: that’s what the code is for, and I ignore
whole tracts of useful routines.

Before you read this, please understand that I never wanted to write this document,
being grossly under-qualified, but I always wanted to read it, and this was the only
way. I hope it will grow into a compendium of best practice, common starting points
and random information.

7

Chapter 1. Introduction

8

Chapter 2. The Players

At any time each of the CPUs in a system can be:

• not associated with any process, serving a hardware interrupt;

• not associated with any process, serving a softirq, tasklet or bh;

• running in kernel space, associated with a process;

• running a process in user space.

There is a strict ordering between these: other than the last category (userspace) each
can only be pre-empted by those above. For example, while a softirq is running on a
CPU, no other softirq will pre-empt it, but a hardware interrupt can. However, any
other CPUs in the system execute independently.

We’ll see a number of ways that the user context can block interrupts, to become truly
non-preemptable.

User Context
User context is when you are coming in from a system call or other trap: you can
sleep, and you own the CPU (except for interrupts) until you call schedule() . In
other words, user context (unlike userspace) is not pre-emptable.

Note: You are always in user context on module load and unload, and on operations on
the block device layer.

In user context, the current pointer (indicating the task we are currently executing)
is valid, and in_interrupt() (include/asm/hardirq.h) is false .

Caution
Beware that if you have interrupts or bottom halves disabled (see be-
low), in_interrupt() will return a false positive.

Hardware Interrupts (Hard IRQs)
Timer ticks, network cards and keyboard are examples of real hardware which
produce interrupts at any time. The kernel runs interrupt handlers, which services
the hardware. The kernel guarantees that this handler is never re-entered: if another
interrupt arrives, it is queued (or dropped). Because it disables interrupts, this han-
dler has to be fast: frequently it simply acknowledges the interrupt, marks a ‘software
interrupt’ for execution and exits.

You can tell you are in a hardware interrupt, because in_irq() returns true.

Caution
Beware that this will return a false positive if interrupts are disabled (see
below).

9

Chapter 2. The Players

Software Interrupt Context: Bottom Halves, Tasklets, softirqs
Whenever a system call is about to return to userspace, or a hardware interrupt han-
dler exits, any ‘software interrupts’ which are marked pending (usually by hardware
interrupts) are run (kernel/softirq.c).

Much of the real interrupt handling work is done here. Early in the transition to
SMP, there were only ‘bottom halves’ (BHs), which didn’t take advantage of multiple
CPUs. Shortly after we switched from wind-up computers made of match-sticks and
snot, we abandoned this limitation.

include/linux/interrupt.h lists the different BH’s. No matter how many CPUs
you have, no two BHs will run at the same time. This made the transition to SMP
simpler, but sucks hard for scalable performance. A very important bottom half is
the timer BH (include/linux/timer.h): you can register to have it call functions
for you in a given length of time.

2.3.43 introduced softirqs, and re-implemented the (now deprecated) BHs under-
neath them. Softirqs are fully-SMP versions of BHs: they can run on as many CPUs
at once as required. This means they need to deal with any races in shared data us-
ing their own locks. A bitmask is used to keep track of which are enabled, so the 32
available softirqs should not be used up lightly. (Yes, people will notice).

tasklets (include/linux/interrupt.h) are like softirqs, except they are dynamically-
registrable (meaning you can have as many as you want), and they also guarantee
that any tasklet will only run on one CPU at any time, although different tasklets can
run simultaneously (unlike different BHs).

Caution
The name ‘tasklet’ is misleading: they have nothing to do with ‘tasks’,
and probably more to do with some bad vodka Alexey Kuznetsov had
at the time.

You can tell you are in a softirq (or bottom half, or tasklet) using the in_softirq()
macro (include/asm/softirq.h).

Caution
Beware that this will return a false positive if a bh lock (see below) is
held.

10

Chapter 3. Some Basic Rules

No memory protection

If you corrupt memory, whether in user context or interrupt context, the whole
machine will crash. Are you sure you can’t do what you want in userspace?

No floating point or MMX

The FPU context is not saved; even in user context the FPU state probably won’t
correspond with the current process: you would mess with some user process’
FPU state. If you really want to do this, you would have to explicitly save/restore
the full FPU state (and avoid context switches). It is generally a bad idea; use
fixed point arithmetic first.

A rigid stack limit

The kernel stack is about 6K in 2.2 (for most architectures: it’s about 14K on the
Alpha), and shared with interrupts so you can’t use it all. Avoid deep recursion
and huge local arrays on the stack (allocate them dynamically instead).

The Linux kernel is portable

Let’s keep it that way. Your code should be 64-bit clean, and endian-independent.
You should also minimize CPU specific stuff, e.g. inline assembly should be
cleanly encapsulated and minimized to ease porting. Generally it should be re-
stricted to the architecture-dependent part of the kernel tree.

11

Chapter 3. Some Basic Rules

12

Chapter 4. ioctls: Not writing a new system call

A system call generally looks like this

asmlinkage int sys_mycall(int arg)
{

return 0;
}

First, in most cases you don’t want to create a new system call. You create a character
device and implement an appropriate ioctl for it. This is much more flexible than sys-
tem calls, doesn’t have to be entered in every architecture’s include/asm/unistd.h
and arch/kernel/entry.S file, and is much more likely to be accepted by Linus.

If all your routine does is read or write some parameter, consider implementing a
sysctl interface instead.

Inside the ioctl you’re in user context to a process. When a error occurs you return a
negated errno (see include/linux/errno.h), otherwise you return 0.

After you slept you should check if a signal occurred: the Unix/Linux way of han-
dling signals is to temporarily exit the system call with the -ERESTARTSYSerror. The
system call entry code will switch back to user context, process the signal handler
and then your system call will be restarted (unless the user disabled that). So you
should be prepared to process the restart, e.g. if you’re in the middle of manipulating
some data structure.

if (signal_pending())
return -ERESTARTSYS;

If you’re doing longer computations: first think userspace. If you really want to do
it in kernel you should regularly check if you need to give up the CPU (remember
there is cooperative multitasking per CPU). Idiom:

if (current- >need_resched)
schedule(); /* Will sleep */

A short note on interface design: the UNIX system call motto is "Provide mechanism
not policy".

13

Chapter 4. ioctls: Not writing a new system call

14

Chapter 5. Recipes for Deadlock

You cannot call any routines which may sleep, unless:

• You are in user context.

• You do not own any spinlocks.

• You have interrupts enabled (actually, Andi Kleen says that the scheduling code
will enable them for you, but that’s probably not what you wanted).

Note that some functions may sleep implicitly: common ones are the user space ac-
cess functions (*_user) and memory allocation functions without GFP_ATOMIC.

You will eventually lock up your box if you break these rules.

Really.

15

Chapter 5. Recipes for Deadlock

16

Chapter 6. Common Routines

printk() include/linux/kernel.h

printk() feeds kernel messages to the console, dmesg, and the syslog daemon. It is
useful for debugging and reporting errors, and can be used inside interrupt context,
but use with caution: a machine which has its console flooded with printk messages
is unusable. It uses a format string mostly compatible with ANSI C printf, and C
string concatenation to give it a first "priority" argument:

printk(KERN_INFO "i = %u\n", i);

See include/linux/kernel.h ; for other KERN_ values; these are interpreted by sys-
log as the level. Special case: for printing an IP address use

__u32 ipaddress;
printk(KERN_INFO "my ip: %d.%d.%d.%d\n", NIPQUAD(ipaddress));

printk() internally uses a 1K buffer and does not catch overruns. Make sure that
will be enough.

Note: You will know when you are a real kernel hacker when you start typoing printf as
printk in your user programs :)

Note: Another sidenote: the original Unix Version 6 sources had a comment on top of its
printf function: "Printf should not be used for chit-chat". You should follow that advice.

copy_[to/from]_user() / get_user() / put_user()
include/asm/uaccess.h

[SLEEPS]

put_user() and get_user() are used to get and put single values (such as an int,
char, or long) from and to userspace. A pointer into userspace should never be simply
dereferenced: data should be copied using these routines. Both return -EFAULT or 0.
copy_to_user() and copy_from_user() are more general: they copy an arbitrary
amount of data to and from userspace.

Caution
Unlike put_user() and get_user() , they return the amount of un-
copied data (ie. 0 still means success).

[Yes, this moronic interface makes me cringe. Please submit a patch and become my
hero –RR.]

The functions may sleep implicitly. This should never be called outside user context
(it makes no sense), with interrupts disabled, or a spinlock held.

17

Chapter 6. Common Routines

kmalloc() /kfree() include/linux/slab.h

[MAY SLEEP: SEE BELOW]

These routines are used to dynamically request pointer-aligned chunks of memory,
like malloc and free do in userspace, but kmalloc() takes an extra flag word. Impor-
tant values:

GFP_KERNEL

May sleep and swap to free memory. Only allowed in user context, but is the
most reliable way to allocate memory.

GFP_ATOMIC

Don’t sleep. Less reliable than GFP_KERNEL, but may be called from interrupt
context. You should really have a good out-of-memory error-handling strategy.

GFP_DMA

Allocate ISA DMA lower than 16MB. If you don’t know what that is you don’t
need it. Very unreliable.

If you see a kmem_grow: Called nonatomically from int warning message you called
a memory allocation function from interrupt context without GFP_ATOMIC. You should
really fix that. Run, don’t walk.

If you are allocating at least PAGE_SIZE(include/asm/page.h) bytes, consider using
__get_free_pages() (include/linux/mm.h). It takes an order argument (0 for page
sized, 1 for double page, 2 for four pages etc.) and the same memory priority flag
word as above.

If you are allocating more than a page worth of bytes you can use vmalloc() . It’ll
allocate virtual memory in the kernel map. This block is not contiguous in physical
memory, but the MMU makes it look like it is for you (so it’ll only look contiguous
to the CPUs, not to external device drivers). If you really need large physically con-
tiguous memory for some weird device, you have a problem: it is poorly supported
in Linux because after some time memory fragmentation in a running kernel makes
it hard. The best way is to allocate the block early in the boot process via the al-
loc_bootmem() routine.

Before inventing your own cache of often-used objects consider using a slab cache in
include/linux/slab.h

current include/asm/current.h

This global variable (really a macro) contains a pointer to the current task structure,
so is only valid in user context. For example, when a process makes a system call,
this will point to the task structure of the calling process. It is not NULL in interrupt
context.

udelay() /mdelay() include/asm/delay.h include/linux/delay.h

The udelay() function can be used for small pauses. Do not use large values with
udelay() as you risk overflow - the helper function mdelay() is useful here, or even
consider schedule_timeout() .

18

Chapter 6. Common Routines

cpu_to_be32() /be32_to_cpu() /cpu_to_le32() /le32_to_cpu()
include/asm/byteorder.h

The cpu_to_be32() family (where the "32" can be replaced by 64 or 16, and the
"be" can be replaced by "le") are the general way to do endian conversions in the
kernel: they return the converted value. All variations supply the reverse as well:
be32_to_cpu() , etc.

There are two major variations of these functions: the pointer variation, such as
cpu_to_be32p() , which take a pointer to the given type, and return the converted
value. The other variation is the "in-situ" family, such as cpu_to_be32s() , which
convert value referred to by the pointer, and return void.

local_irq_save() /local_irq_restore() include/asm/system.h

These routines disable hard interrupts on the local CPU, and restore them. They are
reentrant; saving the previous state in their one unsigned long flags argument.
If you know that interrupts are enabled, you can simply use local_irq_disable()
and local_irq_enable() .

local_bh_disable() /local_bh_enable() include/asm/softirq.h

These routines disable soft interrupts on the local CPU, and restore them. They are
reentrant; if soft interrupts were disabled before, they will still be disabled after this
pair of functions has been called. They prevent softirqs, tasklets and bottom halves
from running on the current CPU.

smp_processor_id ()/cpu_[number/logical]_map()
include/asm/smp.h

smp_processor_id() returns the current processor number, between 0 and NR_CPUS
(the maximum number of CPUs supported by Linux, currently 32). These values are
not necessarily continuous: to get a number between 0 and smp_num_cpus() (the
number of actual processors in this machine), the cpu_number_map() function is used
to map the processor id to a logical number. cpu_logical_map() does the reverse.

__init/__exit/__initdata include/linux/init.h

After boot, the kernel frees up a special section; functions marked with __init and
data structures marked with __initdata are dropped after boot is complete (within
modules this directive is currently ignored). __exit is used to declare a function which
is only required on exit: the function will be dropped if this file is not compiled as a
module. See the header file for use. Note that it makes no sense for a function marked
with __init to be exported to modules with EXPORT_SYMBOL()- this will break.

Static data structures marked as __initdata must be initialised (as opposed to ordi-
nary static data which is zeroed BSS) and cannot be const.

19

Chapter 6. Common Routines

__initcall() /module_init() include/linux/init.h

Many parts of the kernel are well served as a module (dynamically-loadable parts of
the kernel). Using the module_init() and module_exit() macros it is easy to write
code without #ifdefs which can operate both as a module or built into the kernel.

The module_init() macro defines which function is to be called at module insertion
time (if the file is compiled as a module), or at boot time: if the file is not compiled
as a module the module_init() macro becomes equivalent to __initcall() , which
through linker magic ensures that the function is called on boot.

The function can return a negative error number to cause module loading to fail (un-
fortunately, this has no effect if the module is compiled into the kernel). For modules,
this is called in user context, with interrupts enabled, and the kernel lock held, so it
can sleep.

module_exit() include/linux/init.h

This macro defines the function to be called at module removal time (or never, in the
case of the file compiled into the kernel). It will only be called if the module usage
count has reached zero. This function can also sleep, but cannot fail: everything must
be cleaned up by the time it returns.

MOD_INC_USE_COUNT/MOD_DEC_USE_COUNT include/linux/module.h

These manipulate the module usage count, to protect against removal (a module also
can’t be removed if another module uses one of its exported symbols: see below). Ev-
ery reference to the module from user context should be reflected by this counter (e.g.
for every data structure or socket) before the function sleeps. To quote Tim Waugh:

/* THIS IS BAD */
foo_open (...)
{

stuff..
if (fail)

return -EBUSY;
sleep.. (might get unloaded here)
stuff..
MOD_INC_USE_COUNT;
return 0;

}

/* THIS IS GOOD /
foo_open (...)
{

MOD_INC_USE_COUNT;
stuff..
if (fail) {

MOD_DEC_USE_COUNT;
return -EBUSY;

}
sleep.. (safe now)
stuff..
return 0;

}

20

Chapter 6. Common Routines

You can often avoid having to deal with these problems by using the owner field of
the file_operations structure. Set this field as the macro THIS_MODULE.

For more complicated module unload locking requirements, you can set the can_unload
function pointer to your own routine, which should return 0 if the module is unload-
able, or -EBUSY otherwise.

21

Chapter 6. Common Routines

22

Chapter 7. Wait Queues include/linux/wait.h

[SLEEPS]

A wait queue is used to wait for someone to wake you up when a certain condition is
true. They must be used carefully to ensure there is no race condition. You declare a
wait_queue_head_t, and then processes which want to wait for that condition declare
a wait_queue_t referring to themselves, and place that in the queue.

Declaring
You declare a wait_queue_head_t using the DECLARE_WAIT_QUEUE_HEAD()macro, or
using the init_waitqueue_head() routine in your initialization code.

Queuing
Placing yourself in the waitqueue is fairly complex, because you must put yourself in
the queue before checking the condition. There is a macro to do this: wait_event_interruptible()
include/linux/sched.h The first argument is the wait queue head, and the second
is an expression which is evaluated; the macro returns 0 when this expression is true,
or -ERESTARTSYS if a signal is received. The wait_event() version ignores signals.

Do not use the sleep_on() function family - it is very easy to accidentally introduce
races; almost certainly one of the wait_event() family will do, or a loop around
schedule_timeout() . If you choose to loop around schedule_timeout() remem-
ber you must set the task state (with set_current_state()) on each iteration to
avoid busy-looping.

Waking Up Queued Tasks
Call wake_up() include/linux/sched.h ;, which will wake up every process in the
queue. The exception is if one has TASK_EXCLUSIVEset, in which case the remainder
of the queue will not be woken.

23

Chapter 7. Wait Queues include/linux/wait.h

24

Chapter 8. Atomic Operations

Certain operations are guaranteed atomic on all platforms. The first class of oper-
ations work on atomic_t include/asm/atomic.h ; this contains a signed integer (at
least 24 bits long), and you must use these functions to manipulate or read atomic_t
variables. atomic_read() and atomic_set() get and set the counter, atomic_add() ,
atomic_sub() , atomic_inc() , atomic_dec() , and atomic_dec_and_test() (returns
true if it was decremented to zero).

Yes. It returns true (i.e. != 0) if the atomic variable is zero.

Note that these functions are slower than normal arithmetic, and so should not be
used unnecessarily. On some platforms they are much slower, like 32-bit Sparc where
they use a spinlock.

The second class of atomic operations is atomic bit operations on a long, defined
in include/asm/bitops.h . These operations generally take a pointer to the bit pat-
tern, and a bit number: 0 is the least significant bit. set_bit() , clear_bit() and
change_bit() set, clear, and flip the given bit. test_and_set_bit() , test_and_clear_bit()
and test_and_change_bit() do the same thing, except return true if the bit was pre-
viously set; these are particularly useful for very simple locking.

It is possible to call these operations with bit indices greater than BITS_PER_LONG.
The resulting behavior is strange on big-endian platforms though so it is a good idea
not to do this.

Note that the order of bits depends on the architecture, and in particular, the bitfield
passed to these operations must be at least as large as a long.

25

Chapter 8. Atomic Operations

26

Chapter 9. Symbols

Within the kernel proper, the normal linking rules apply (ie. unless a symbol is de-
clared to be file scope with the static keyword, it can be used anywhere in the kernel).
However, for modules, a special exported symbol table is kept which limits the entry
points to the kernel proper. Modules can also export symbols.

EXPORT_SYMBOL() include/linux/module.h

This is the classic method of exporting a symbol, and it works for both modules and
non-modules. In the kernel all these declarations are often bundled into a single file to
help genksyms (which searches source files for these declarations). See the comment
on genksyms and Makefiles below.

EXPORT_NO_SYMBOLS include/linux/module.h

If a module exports no symbols then you can specify

EXPORT_NO_SYMBOLS;

anywhere in the module. In kernel 2.4 and earlier, if a module contains neither EX-
PORT_SYMBOL()nor EXPORT_NO_SYMBOLS then the module defaults to export-
ing all non-static global symbols. In kernel 2.5 onwards you must explicitly specify
whether a module exports symbols or not.

EXPORT_SYMBOL_GPL() include/linux/module.h

Similar to EXPORT_SYMBOL()except that the symbols exported by EXPORT_SYMBOL_GPL()
can only be seen by modules with a MODULE_LICENSE()that specifies a GPL compat-
ible license.

27

Chapter 9. Symbols

28

Chapter 10. Routines and Conventions

Double-linked lists include/linux/list.h

There are three sets of linked-list routines in the kernel headers, but this one seems
to be winning out (and Linus has used it). If you don’t have some particular pressing
need for a single list, it’s a good choice. In fact, I don’t care whether it’s a good choice
or not, just use it so we can get rid of the others.

Return Conventions
For code called in user context, it’s very common to defy C convention, and return
0 for success, and a negative error number (eg. -EFAULT) for failure. This can be
unintuitive at first, but it’s fairly widespread in the networking code, for example.

The filesystem code uses ERR_PTR() include/linux/fs.h ; to encode a negative er-
ror number into a pointer, and IS_ERR() and PTR_ERR() to get it back out again:
avoids a separate pointer parameter for the error number. Icky, but in a good way.

Breaking Compilation
Linus and the other developers sometimes change function or structure names in
development kernels; this is not done just to keep everyone on their toes: it reflects
a fundamental change (eg. can no longer be called with interrupts on, or does extra
checks, or doesn’t do checks which were caught before). Usually this is accompanied
by a fairly complete note to the linux-kernel mailing list; search the archive. Simply
doing a global replace on the file usually makes things worse.

Initializing structure members
The preferred method of initializing structures is to use the gcc Labeled Elements
extension, eg:

static struct block_device_operations opt_fops = {
open: opt_open,
release: opt_release,
ioctl: opt_ioctl,
check_media_change: opt_media_change,

};

This makes it easy to grep for, and makes it clear which structure fields are set. You
should do this because it looks cool.

GNU Extensions
GNU Extensions are explicitly allowed in the Linux kernel. Note that some of the
more complex ones are not very well supported, due to lack of general use, but the
following are considered standard (see the GCC info page section "C Extensions" for
more details - Yes, really the info page, the man page is only a short summary of the
stuff in info):

29

Chapter 10. Routines and Conventions

• Inline functions

• Statement expressions (ie. the ({ and }) constructs).

• Declaring attributes of a function / variable / type (__attribute__)

• Labeled elements

• typeof

• Zero length arrays

• Macro varargs

• Arithmetic on void pointers

• Non-Constant initializers

• Assembler Instructions (not outside arch/ and include/asm/)

• Function names as strings (__FUNCTION__)

• __builtin_constant_p()

Be wary when using long long in the kernel, the code gcc generates for it is horri-
ble and worse: division and multiplication does not work on i386 because the GCC
runtime functions for it are missing from the kernel environment.

C++
Using C++ in the kernel is usually a bad idea, because the kernel does not provide
the necessary runtime environment and the include files are not tested for it. It is still
possible, but not recommended. If you really want to do this, forget about exceptions
at least.

#if
It is generally considered cleaner to use macros in header files (or at the top of .c files)
to abstract away functions rather than using ‘#if’ pre-processor statements through-
out the source code.

30

Chapter 11. Putting Your Stuff in the Kernel

In order to get your stuff into shape for official inclusion, or even to make a neat
patch, there’s administrative work to be done:

• Figure out whose pond you’ve been pissing in. Look at the top of the source files,
inside the MAINTAINERSfile, and last of all in the CREDITSfile. You should coordi-
nate with this person to make sure you’re not duplicating effort, or trying some-
thing that’s already been rejected.

Make sure you put your name and EMail address at the top of any files you create
or mangle significantly. This is the first place people will look when they find a
bug, or when they want to make a change.

• Usually you want a configuration option for your kernel hack. Edit Config.in in
the appropriate directory (but under arch/ it’s called config.in). The Config Lan-
guage used is not bash, even though it looks like bash; the safe way is to use only
the constructs that you already see in Config.in files (see Documentation/kbuild/config-
language.txt). It’s good to run "make xconfig" at least once to test (because it’s
the only one with a static parser).

Variables which can be Y or N use bool followed by a tagline and the config define
name (which must start with CONFIG_). The tristate function is the same, but al-
lows the answer M (which defines CONFIG_foo_MODULE in your source, instead
of CONFIG_FOO) if CONFIG_MODULES is enabled.

You may well want to make your CONFIG option only visible if CONFIG_EXPERIMENTAL
is enabled: this serves as a warning to users. There many other fancy things you
can do: see the various Config.in files for ideas.

• Edit the Makefile : the CONFIG variables are exported here so you can condition-
alize compilation with ‘ifeq’. If your file exports symbols then add the names to
export-objs so that genksyms will find them.

Caution
There is a restriction on the kernel build system that objects which
export symbols must have globally unique names. If your object
does not have a globally unique name then the standard fix is to
move the EXPORT_SYMBOL()statements to their own object with a
unique name. This is why several systems have separate export-
ing objects, usually suffixed with ksyms.

• Document your option in Documentation/Configure.help. Mention incompatibil-
ities and issues here. Definitely end your description with “ if in doubt, say N ” (or,
occasionally, ‘Y’); this is for people who have no idea what you are talking about.

• Put yourself in CREDITS if you’ve done something noteworthy, usually beyond a
single file (your name should be at the top of the source files anyway). MAINTAIN-
ERSmeans you want to be consulted when changes are made to a subsystem, and
hear about bugs; it implies a more-than-passing commitment to some part of the
code.

• Finally, don’t forget to read Documentation/SubmittingPatches and possibly
Documentation/SubmittingDrivers .

31

Chapter 11. Putting Your Stuff in the Kernel

32

Chapter 12. Kernel Cantrips

Some favorites from browsing the source. Feel free to add to this list.

include/linux/brlock.h:

extern inline void br_read_lock (enum brlock_indices idx)
{

/*
* This causes a link-time bug message if an
* invalid index is used:
*/

if (idx >= __BR_END)
__br_lock_usage_bug();

read_lock(&__brlock_array[smp_processor_id()][idx]);
}

include/linux/fs.h :

/*
* Kernel pointers have redundant information, so we can use a
* scheme where we can return either an error code or a dentry
* pointer with the same return value.
*
* This should be a per-architecture thing, to allow different
* error and pointer decisions.
*/
#define ERR_PTR(err) ((void *)((long)(err)))
#define PTR_ERR(ptr) ((long)(ptr))
#define IS_ERR(ptr) ((unsigned long)(ptr) > (unsigned long)(-1000))

include/asm-i386/uaccess.h:

#define copy_to_user(to,from,n) \
(__builtin_constant_p(n) ? \

__constant_copy_to_user((to),(from),(n)) : \
__generic_copy_to_user((to),(from),(n)))

arch/sparc/kernel/head.S:

/*
* Sun people can’t spell worth damn. "compatability" indeed.
* At least we *know* we can’t spell, and use a spell-checker.
*/

/* Uh, actually Linus it is I who cannot spell. Too much murky
* Sparc assembly will do this to ya.
*/

C_LABEL(cputypvar):
.asciz "compatability"

/* Tested on SS-5, SS-10. Probably someone at Sun applied a spell-checker. */
.align 4

C_LABEL(cputypvar_sun4m):
.asciz "compatible"

arch/sparc/lib/checksum.S:

33

Chapter 12. Kernel Cantrips

/* Sun, you just can’t beat me, you just can’t. Stop trying,
* give up. I’m serious, I am going to kick the living shit
* out of you, game over, lights out.
*/

34

Chapter 13. Thanks

Thanks to Andi Kleen for the idea, answering my questions, fixing my mistakes, fill-
ing content, etc. Philipp Rumpf for more spelling and clarity fixes, and some excellent
non-obvious points. Werner Almesberger for giving me a great summary of dis-
able_irq() , and Jes Sorensen and Andrea Arcangeli added caveats. Michael Eliza-
beth Chastain for checking and adding to the Configure section. Telsa Gwynne for
teaching me DocBook.

35

Chapter 13. Thanks

36

	Table of Contents
	Chapter 1. Introduction
	Chapter 2. The Players
	User Context
	Hardware Interrupts (Hard IRQs)
	Software Interrupt Context: Bottom Halves, Tasklets, softirqs

	Chapter 3. Some Basic Rules
	Chapter 4. ioctls: Not writing a new system call
	Chapter 5. Recipes for Deadlock
	Chapter 6. Common Routines
	printk() include/linux/kernel.h
	copy[to/from]user() / getuser() / putuser() include/asm/uaccess.h
	kmalloc()/kfree() include/linux/slab.h
	current include/asm/current.h
	udelay()/mdelay() include/asm/delay.h include/linux/delay.h
	cputobe32()/be32tocpu()/cputole32()/le32tocpu() include/asm/byteorder.h
	localirqsave()/localirqrestore() include/asm/system.h
	localbhdisable()/localbhenable() include/asm/softirq.h
	smpprocessorid()/cpu[number/logical]map() include/asm/smp.h
	init/exit/initdata include/linux/init.h
	initcall()/moduleinit() include/linux/init.h
	moduleexit() include/linux/init.h
	MODINCUSECOUNT/MODDECUSECOUNT include/linux/module.h

	Chapter 7. Wait Queues include/linux/wait.h
	Declaring
	Queuing
	Waking Up Queued Tasks

	Chapter 8. Atomic Operations
	Chapter 9. Symbols
	EXPORTSYMBOL() include/linux/module.h
	EXPORTNOSYMBOLS include/linux/module.h
	EXPORTSYMBOLGPL() include/linux/module.h

	Chapter 10. Routines and Conventions
	Double-linked lists include/linux/list.h
	Return Conventions
	Breaking Compilation
	Initializing structure members
	GNU Extensions
	C++
	if

	Chapter 11. Putting Your Stuff in the Kernel
	Chapter 12. Kernel Cantrips
	Chapter 13. Thanks

