BIP - Bayesian Inference with Python

Documentation
Release 0.5.13

Flavio Codeco Coelho

2014-05-27

CONTENTS

Contents 3
LI OVerview oo e e e e e 3
1.2 Parameter Estimation in DynamicModels 00, 3
1.3 Stochastic Differential Equations L 7
Modules 9
Indices and tables 1

BIP - Bayesian Inference with Python Documentation, Release 0.5.13

This documentation corresponds to version 0.5.13.

CONTENTS 1

BIP - Bayesian Inference with Python Documentation, Release 0.5.13

2 CONTENTS

CHAPTER
ONE

CONTENTS

1.1 Overview

The Bip Package is a collection of useful classes for basic Bayesian inference. Currently, its main goal is to be a
tool for learning and exploration of Bayesian probabilistic calculations.

Currently it also includes subpackages for stochastic simulation tools which are not strictly related to Bayesian
inference, but are currently being developed within BIP. One such package is the BIP.SDE which contains a
parallelized solver for stochastic differential equations, an implementation of the Gillespie direct algorithm.

The Subpackage Bayes also offers a tool for parameter estimation of Deterministic and Stochastic Dynamical
Models. This tool will be fully described briefly in a scientific paper currently submitted for publication.

1.2 Parameter Estimation in Dynamic Models

A growing theme in mathematical modeling is uncertainty analysis. The Melding Module provides a Bayesian
framework to analyze uncertainty in mathematical models. It includes tools that allow modellers to integrate Prior
information about the model’s parameters and variables into the model, in order to explore the full uncertainty
associated with a model.

This framework is inspired on the original Bayesian Melding paper by Poole and Raftery ', but extended to handle
dynamical systems and different posterior sampling mechanisms, i.e., the user has the choice to use Sampling
Importance resampling, Approximate Bayesian computations or MCMC. A deeper description of the methodology
implemented in this package is available as published research paper . This paper also contains a more extensive
example of parameter estimation. If you intend to use this package for a scientific publication, you should cite this
paper .

Once a model is thus parameterized, we can simulate the model, with full uncertainty representation and also fit
the model to available data to reduce that uncertaity. Markov chain Monte Carlo algorithms are at the core of the
framework, which requires a large number of simulations of the models in order to explore parameter space.

1.2.1 Single Session Retrospective estimation

Frequently, we have a complete time series corresponding to one or more state variables of our dynamic model.
In such cases it may be interesting to use this information, to estimate the parameter values which maximize the
fit of our model to the data. Below are examples of such inference situations.

! Poole, D., & Raftery, A. E. (2000). Inference for Deterministic Simulation Models: The Bayesian Melding Approach. Journal of the
American Statistical Association, 95(452), 1244-1255. doi:10.2307/2669764

2 Coelho FC, Codego CT, Gomes MGM (2011) A Bayesian Framework for Parameter Estimation in Dynamical Models. PLoS ONE 6(5):
€19616. doi:10.1371/journal.pone.0019616

BIP - Bayesian Inference with Python Documentation, Release 0.5.13

Example Usage

This first example includes a simple ODE (an SIR epidemic model) model which is fitted against simulated data
to which noise is added:

#—%— coding: utf-8 —#-—

Parameter estimation and series forcasting based on simulated data with moving window.
Deterministic model

#

Copyright 2009- by Flavio Codeco Coelho
License gpl v3

#

from BIP.Bayes.Melding import FitModel
from scipy.integrate import odeint

import scipy.stats as st

import numpy as np

beta = 1 #Transmission coefficient
tau = .2 #infectious period. FIXED
tf = 36

yO = [.999,0.001,0.0]
def model (theta) :
beta = thetal0]
def sir(y,t):
/770ODE model’’”’
S, I,R =y
return [-betaxI*S, #dsS/dt
beta*I+S - tauxl, #dI/dt
tauxI1] #dR/dt
y = odeint (sir,inits,np.arange(0,tf, 1))
return y

F = FitModel (500, model,yO,tf, ["beta’],[’s",’1”,'R"],
wl=36,nw=1,verbose=0,burnin=100)

F.set_priors(tdists=[st.norm],tpars=[(1.1,.2)],tlims=[(0.5,1.5)],
pdists=[st.uniform]*3,ppars=[(0,.1), (0,.1), (.8,.2)],plims=[(0,1)]1*3)

d = model([1.0]) #simulate some data

noise = st.norm(0,0.01).rvs (36)

dt = {’I’:d[:,1]+noise} # add noise

F.run(dt, "MCMC’, likvar=le-5,pool=True,monitor=[])

#==Uncomment the line below to see plots of the results

F.plot_results()

The code above starts by defining the models parameters and initial conditions, and a function which takes in the
parameters runs the model and returns the output.

After that, we Instantiate our fitting Object:

F = FitModel (300, model,y0,tf, ["beta’],["S",’I",'"R" 1],
wl=36,nw=1,verbose=False,burnin=100)

Here we have to pass a few arguments: the first (K=300) is the number of samples we will take from the joint
prior distribution of the parameters to run the inference. The second one (mode1l) is the callable(function) which
corresponds to the model you want to fit to data. Then you have the initial condition vector(init s=y0), the list of
parameter names (thetanames = [’beta’]), the list of variable names (phinames=[’S’,’I’,'R"]),
inference window length (w1=36), number of juxtaposed windows (nw=1), verbosity flag (verbose=False)
and finally the number of burnin samples (burnin=1000), which is only needed for if the inference method
chosen is MCMC.

One should always have verbose=True on a first fitting run of a model or if the simulations seems to be taking
longer than expected. When verbose is true, printed and graphical is generated regarding the behavior of fitting,
which can be useful to fine tune its parameters.

4 Chapter 1. Contents

BIP - Bayesian Inference with Python Documentation, Release 0.5.13

The next line of code also carries a lot of relevant information about the inference: the specification of the prior
distributions. By now you must have noticed that not all parameters included in the model need to be included in
the analysis. any number of them except for one can be set constant, which is what happens with the parameter
tau in this example:

F.set_priors(tdists=[st.norm],tpars=[(1.1,.2)],tlims=[(0.5,1.5)1,
pdists=[st.uniform] «3,ppars=[(0,.1), (0, .1), (.8,.2)],plims=[(0,1)]%*3)

here we set the prior distributions for the theta (the model’s parameters) and phi (the model’s variables). tdists,
tpars and t1lims are theta’s distributions, parameters, and ranges. For example here we use a Normal distri-
bution (st . norm) for beta, with mean and standard deviation equal to 1.1 and .2, respectively. we also set the
range of beta to be from 0.5 to 1.5. We do the same for phi.

The remaining lines just generate some simulated data to fit the model with, run the inference and plot the results
which should include plots like this:

Simulated vs Observed series

1.0

+ + Observed |

0.8
0.4

0.2 F ey

0.0

days

Figure 1.1: Series posterior distributions. Colored areas represent 95% credible intervals.

One important argument in the run call, is the likvar, Which is the initial value for the likelihood variance. Try
to increase its value if the acceptance ratio of the markov chain is too llow. Ideal levels for the acceptance ratio
should be between 0.3 and 0.5.

The code for the above example can be found in the examples directory of the BIP distribution as
deterministic.py

Stochastic Model Example

This example fits a stochastic model to simulated data. It uses the SDE package of BIP:

#—%— coding:utf-8 —*-—

mmn

Parameter estimation and series forcasting based on simulated data with moving window.
Stochastic model

mmn

#

Copyright 2009- by Flavio Codeco Coelho

License gpl v3

#

from BIP.SDE.gillespie import Model

1.2. Parameter Estimation in Dynamic Models 5

BIP - Bayesian Inference with Python Documentation, Release 0.5.13

18

16

L8 e

T P T RSN

0.8 |-

0.6 - - - W

0.4

Weeks

Figure 1.2: Parameters prior and posterior distributions.

from BIP.Bayes.Melding import FitModel
import numpy as np
from scipy import stats as st

mu = 0.0 #birth and death rate.FIXED

beta = 0.00058 #Transmission rate

eta = .5 #infectivity of asymptomatic infections relative to clinical ones. FIXED
epsilon = .1 #latency period

alpha = .2 #Probability of developing clinical influenza symptoms

sigma = .5 #reduced risk of re-infection after recovery

tau = .01 #infectious period. FIXED

Initial conditions
global inits,tf

tf= 140
inits = [490,0,10,0,0]
pars = [beta,alpha, sigma]

propensity functions
def fl(r,inits):return r[0]+inits[0]* (inits[2]+inits[3]) #S—>E
def f2(r,inits) :return r[1l]+inits[1]#E—>T
def f3(r,inits) :return r([3]*inits[2]#I->R
def f4(r,inits) :return r([2]+inits[1] #E—>A
def f5(r,inits) :return r([4]+inits[3]#A-—>R
def runModel (theta):
global tf,inits
step = 1
#setting parameters
beta,alpha,sigma = thetal:3]
vnames = [’'S’,'E","T1","A","R"]
#rates: b,ki,ka,ri,ra
#r = (0.001, 0.1, 0.1, 0.01, 0.01)
r = (beta, alphaxepsilon, (l-alpha)=*epsilon, tau, tau)
#print r,inits
propensity functions

6 Chapter 1. Contents

BIP - Bayesian Inference with Python Documentation, Release 0.5.13

propf = (f1,f2,f3,f4,£5)
[0, 0, 01,
’ 1711 O]I

tmat = np.array([[-1, O
1,-1, O
o, 1,-1, 0, 01,
0, 0, O
0, 0, 1

[

’

’ 1171]1
0, 1]

(
['
[’

1)
M=Model (vnhames=vnames, rates = r,inits=inits,tmat=tmat, propensity=propf)
#t0 = time.time ()
M.run (tmax=tf, reps=1,viz=0,serial=True)
t,series, steps,events = M.getStats()
ser = st.nanmean (series,axis=0)
#print series.shape, ser.shape
return ser

d = runModel ([beta,alpha,sigmal)
#~ import pylab as P

#~ P.plot (d)

#~ P.show()

dt = {’s’:d[:,0],’E":d[:,1]," 1" :d[:,2], A" :d[:,3], R :d[:,4]}
F = FitModel (900, runModel, inits,tf, ['beta’,’alpha’,’signa’],[’S’,'E","T","A","R"],
wl=140,nw=1, verbose=0,burnin=100)
F.set_priors(tdists=[st.uniform]*3,tpars=[(0.00001,.0006), (.1,.5), (0.0006,1)],tlims=[(0,.001), (.0
pdists=[st.uniform]*5,ppars=[(0,500)]*5,plims=[(0,500)]1%5)

F.run(dt,"MCMC’, likvar=1lel,pool=0,monitor=[])

#~ print F.optimize (data=dt,p0=[0.1,.5,.1], optimizer=’oo’,tol=1le-55, verbose=1, plot=1)
#==Uncomment the line below to see plots of the results

F.plot_results()

This example can be found in the examples folder of BIP under the name of f1u_stochastic.py.

1.2.2 lterative Estimation and Forecast
In some other types of application, one’s data accrue gradually and it may be interesting to use newly available
data to improve previously obtained parameter estimations.

Here we envision two types of scenarios: one assuming constant parameters and another where parameter values
can actually vary with time. These two scenarios lead to the two fitting strategies depicted on figure

1.2.3 References

1.3 Stochastic Differential Equations

The SDE package in BIP, was born out of the need to simulate stochastic model to test the Parameters estimation
routines in the Bayes Package. However, it is useful in many general-purpose application since it provides a pure
Python implementation of an SDE solver.

Currently it provides a single solving algorithm, the Gillespie SSA. but other algorithms are planned for future
releases

1.3. Stochastic Differential Equations 7

BIP - Bayesian Inference with Python Documentation, Release 0.5.13

s: Recursive Bayesian fitting sessions;
Posteriors generated in smaller windows
become priors for larger;

Cons: Fixed parameters only;

Goals: Parameter estimation;
Model-based forecasting

-

First week

Figure 1.3: Fitting scenarios: Moving windows and expanding windows.

8 Chapter 1. Contents

CHAPTER
TWO

MODULES

BIP Bayesian Inference Package containing usefull classes and functions for doing inference in various :
BIP.Bayes Basic Likelihood tools such as functions for computing likelihoods, Latin Hypercube sampling (effi
BIP.Bayes.Samplers

BIP - Bayesian Inference with Python Documentation, Release 0.5.13

10 Chapter 2. Modules

CHAPTER
THREE

INDICES AND TABLES

* genindex
* modindex

e search

11

	Contents
	Overview
	Parameter Estimation in Dynamic Models
	Stochastic Differential Equations

	Modules
	Indices and tables

