
Buckets Graph Description

(in progress –– ​*warning*​ some information might be incorrect or incomplete)

This is meant to be fast in implementation. The buckets graph has degree and there are m2 m
times as many buckets as things in buckets, and two things match if their buckets are
connected so there’s no need for a further comparison function. Because many nearby things
are compared to buckets at the exact same offset, it’s possible to implement this efficiently by
making a bitfield of which buckets have something in them then doing bitshifts and & and
comparing to zero.

The buckets graph is organized as follows:

Buckets are grouped into b-groups, and b-groups are grouped into c-groups. “B-group size”
refers to the number of buckets per b-group, and “c-group size” refers to the number of b-groups
per c-group.

Let be the b-group size, let be the c-group size, and let be the totalgrSzB grSzC umCgrn
number of c-groups.

Then the number of b-groups is , and the number of buckets isumBgr grSz umCgrn = C * n

.umBuc grSz umBgrn = B * n

Let the total degree of each bucket be for .m2 m∋ ℤ

The four variable parameters for graph construction, then, are: , , , and .grSzB grSzC umCgrn m

For each edge of the graph, we define 3 offsets: the c-group offset, the b-group offset, and the
bucket offset. The c-group offset is 1 for all edges. The b-group offset (which is the offset
between b-groups within a c-group) is , where ranges as . And the bucket offsetr r 0 ≤ r < m
(which is the offset between buckets within a b-group) is , where for outgoing edges fromq
buckets in even-indexed c-groups, , , and for outgoing edges from buckets in2r)q = (2 0 ≤ r < m
odd-indexed c-groups, , . The bucket offsets therefore alternate between2r)q = (+ 1 2 0 ≤ r < m

 and from c-group to c-group.2r)q = (2 2r)q = (+ 1 2

For each bucket , let be ’s c-group index, let be ’s b-group index within thex ndIi x ndJi x
c-group, and let be ’s bucket index within the b-group. We can define these as follows:ndKi x

,ndI loor i = f { x
BgrSz CgrSz* } ,ndJ loor i = f { BgrSz

x−(indI BgrSz CgrSz* * }

.ndKi = x − (indI grSz grSz)[* B * C + (indJ grSz)* B]

The set of buckets connected to via ’s outgoing edges is given by:{y }i x x
 yr = { (indI) numCgr grSz grSz}[+ 1 %] * B * C + { (indJ) CgrSz grSz}[+ r %] * B + (q) BgrSz[2 + x %]

, for each in the range , and such that if is located in an even-indexed c-group,r 0 ≤ r < m x
then , whereas if is located in an odd-index c-group, then .2r)q = (2 x 2r)q = (+ 1 2

The set of buckets connected to via ’s incoming edges are all of those buckets whose set ofx x
outgoing connections is such that .{y }i x∋ {y }i

For the bucket graph used in Chia’s proof-of-space, each bucket has , witheg m 4d = 2 = 6

 outgoing edges and incoming edges.2m = 3 2m = 3

The nodes graph is inherited from the buckets graph. A comparison function is unnecessary
because buckets only rarely contain a node and much more rarely contain multiple nodes.

Let us now prove that this graph contains no 4-cycles. [[Need to add something here about the
parameter constraints under which the graph contains no 4-cycles.]]

Consider the following two types of 4-cycles:

Type 4-A:

Type 4-B:

We first consider the following construction, different from the one described above, in which for
each bucket, and for ranging as , we have the following: the c-group offset is 1, ther 0 ≤ r < m
b-group offset within the c-group is , and the bucket offset within the b-group is . The set ofr r2
buckets connected to via ’s outgoing edges is therefore given by:{y }i x x

 yr = { (indI) numCgr grSz grSz}[+ 1 %] * B * C + { (indJ) CgrSz grSz}[+ r %] * B + (x) BgrSz[+ r2 %]
, for each in the range .r 0 ≤ r < m

Type 4-A:

Such a 4-cycle would occur when both and mod CgrSza − b + c − d = 0

. For now we will disregard the different moduli and address that mod BgrSza2 − b2 + c2 − d2 = 0
issue later on.

Assuming that , we want to check for the conditions under which it’s possiblea − b + c − d = 0
that .a2 − b2 + c2 − d2 = 0

Note the identity , which can be rearranged to express each variable in terms of thea − b = d − c
other three.

We then have:

a) a ab ac bc)a2 − b2 + c2 − d2 = a2 − b2 + c2 − (− b + c 2 = a2 − b2 + c2 − (2 − 2 + 2 + b2 − 2 + c2
 ab ac b bc (ab c c) = 2 − 2 − 2 2 + 2 = 2 − a − b2 + b

Setting this expression equal to zero, we have:

(ab c c) b c c a)(b)2 − a − b2 + b = 0 ⇒ a − a − b2 + b = 0 ⇒ (− b − c = 0

Therefore, a 4-cycle of type 4-A is possible whenever or . Equivalently, carrying outa = b b = c
this prescription but instead substituting for the other variables –– , , and –– yieldsc b a
(respectively) the following conditions: or ; or ; and or .a = b a = d a = d c = d b = c c = d
Clearly, 4-cycles of this kind appear only in cases when an edge is identical to the previous
edge in a sequence, indicating a repeated edge. Because our graph does not allow repeated
edges, 4-A cycles are not possible in this graph.

Type 4-B:

Such a 4-cycle would occur when both and mod CgrSza + b − c − d = 0

. For now we will disregard the different moduli and address that mod BgrSza2 + b2 − c2 − d2 = 0
issue later on.

Assuming that , we want to check for the conditions under which it’s possiblea + b − c − d = 0
that .a2 + b2 − c2 − d2 = 0

Note the identity which can be rearranged to express each variable in terms of thea + b = c + d
other three.

We have:

a) a ab ac bc)a2 + b2 − c2 − d2 = a2 + b2 − c2 − (+ b − c 2 = a2 + b2 − c2 − (2 + 2 − 2 + b2 − 2 + c2

 − ab ac bc c − (ab c c) = 2 + 2 − 2 − 2 2 = 2 − a + b + c2

Setting this expression equal to zero, we have:

(ab c c) b c c a)(b)− 2 − a + b + c2 = 0 ⇒ a − a + b + c2 = 0 ⇒ (− c − c = 0

Therefore, a 4-cycle of type 4-B is possible whenever or . Equivalently, carrying outa = c b = c
this prescription but instead substituting for the other variables –– , , and –– yieldsc b a
(respectively) the following conditions: or ; or ; and or . It isa = d b = d a = c a = d b = c b = d
obvious that the conditions in which equal edges share a node (i.e. and) areb = c a = d
impossible because our graph does not allow repeated edges. However, the conditions in which
the equal edges do not share a node do allow 4-cycles to occur. We address this issue in the
following way.

Note that the conditions which concern us are and . Say that bucket , from whicha = c b = d 1
edges and originate, is located in the c-group at index . Then buckets and , froma d i 2 3
which edges and , respectively, originate, are located in the c-group at index . Wec b i + 1
therefore impose the following rule: for a bucket in an even-indexed c-group, let its outgoing
edges have bucket offsets ranging through each even-valued in the range , andr2 r 0 ≤ r < m
for a bucket in an odd-indexed c-group, let its outgoing edges have bucket offsets for eachr2
odd-valued in the range . The bucket offsets therefore alternate from c-group tor 0 ≤ r < m r2
c-group between using even-valued values and using odd-valued values.r r

