Buckets Graph Description
(in progress — *warning® some information might be incorrect or incomplete)

This is meant to be fast in implementation. The buckets graph has degree 2m and there are m
times as many buckets as things in buckets, and two things match if their buckets are
connected so there’s no need for a further comparison function. Because many nearby things
are compared to buckets at the exact same offset, it’'s possible to implement this efficiently by
making a bitfield of which buckets have something in them then doing bitshifts and & and
comparing to zero.

The buckets graph is organized as follows:

Buckets are grouped into b-groups, and b-groups are grouped into c-groups. “B-group size”
refers to the number of buckets per b-group, and “c-group size” refers to the number of b-groups
per c-group.

Let BgrSz be the b-group size, let CgrSz be the c-group size, and let numCgr be the total
number of c-groups.

Then the number of b-groups is numBgr = CgrSz * numCgr , and the number of buckets is

numBuc = BgrSz * numBgr .
Let the total degree of each bucket be 2m for m = Z.
The four variable parameters for graph construction, then, are: BgrSz, CgrSz, numCgr,and m.

For each edge of the graph, we define 3 offsets: the c-group offset, the b-group offset, and the
bucket offset. The c-group offset is 1 for all edges. The b-group offset (which is the offset
between b-groups within a c-group) is », where r ranges as 0 <r <m. And the bucket offset

(which is the offset between buckets within a b-group) is ¢, where for outgoing edges from
buckets in even-indexed c-groups, ¢ = (2r)2 , 0 <r<m, and for outgoing edges from buckets in
odd-indexed c-groups, g = 2r + 1)2 , 0 <r<m. The bucket offsets therefore alternate between
g =) and ¢ = (2r+1)* from c-group to c-group.



For each bucket x, let indl be x’s c-group index, let indJ be x’s b-group index within the

c-group, and let indK be x’s bucket index within the b-group. We can define these as follows:

. _ X . _ x—(indl*BgrSz+CgrSz
indl = floor {BgrSz*CgrSz} ,  indJ = floor { Farse ,

indK = x — [(indl * BgrSz * CgrSz) + (indJ * BgrSz)].

The set of buckets {y;} connected to x via x’s outgoing edges is given by:

¥, = {[(indl + 1) % numCgr] * BgrSz * CgrSz} + {[(indJ + r) % CgrSz] * BgrSz} + [(¢* +x) % BgrSz]
, for each r in the range 0 <r <m, and such that if x is located in an even-indexed c-group,
then ¢ = (2r)*, whereas if x is located in an odd-index c-group, then ¢ = (2r+ 1)*.

The set of buckets connected to x via x’s incoming edges are all of those buckets whose set of
outgoing connections {y;} is such that x = {y,} .

For the bucket graph used in Chia’s proof-of-space, each bucket has deg = 2m = 64, with
m = 32 outgoing edges and m = 32 incoming edges.

The nodes graph is inherited from the buckets graph. A comparison function is unnecessary
because buckets only rarely contain a node and much more rarely contain multiple nodes.

Let us now prove that this graph contains no 4-cycles. [[ Need to add something here about the
parameter constraints under which the graph contains no 4-cycles. ]]

Consider the following two types of 4-cycles:

Type 4-A:




Type 4-B:

®
o\ /@

@

We first consider the following construction, different from the one described above, in which for
each bucket, and for » ranging as 0 <r <m, we have the following: the c-group offset is 1, the

b-group offset within the c-group is r, and the bucket offset within the b-group is . The set of
buckets {y,} connected to x via x’s outgoing edges is therefore given by:

Y, = A[(indl + 1) % numCgr] * BgrSz * CgrSz} + {[(indJ +r)% CgrSz] * BgrSz} + [(x + ) % BgrSz]
, foreach r intherange 0 <r<m.

Type 4-A:

Such a 4-cycle would occur when both a—b+c¢—d=0 mod CgrSz and
a> —b*+2—d* =0 mod BgrSz . For now we will disregard the different moduli and address that
issue later on.

Assuming that a — b5 +c¢—d =0, we want to check for the conditions under which it's possible
that a2 —b*+2—d* = 0.



Note the identity a — b =d — ¢, which can be rearranged to express each variable in terms of the
other three.

We then have:

P+ = -+ —(@-b+e) =a> b+ — (a2 —2ab+2ac+b>—2bc+c?)
=2ab - 2ac — 2b* + 2bc = 2(ab — ac — b* + bc)

Setting this expression equal to zero, we have:
2(ab—ac—b2+bc)=0 =Sab—ac— b +bc=0= (a—b)b—c)=0

Therefore, a 4-cycle of type 4-A is possible whenever a = b or b= c¢. Equivalently, carrying out
this prescription but instead substituting for the other variables — ¢, b, and a — yields
(respectively) the following conditions: a=b or a=d; a=d or c=d;and b=c or c=d.
Clearly, 4-cycles of this kind appear only in cases when an edge is identical to the previous
edge in a sequence, indicating a repeated edge. Because our graph does not allow repeated
edges, 4-A cycles are not possible in this graph.
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Type 4-B:

Such a 4-cycle would occur when both a+b—c¢—d=0 mod CgrSz and

2+b—ct—d* =0 mod BgrSz . For now we will disregard the different moduli and address that
issue later on.

Assuming that a +b—c—d =0, we want to check for the conditions under which it's possible
that a> +b* -2 —d* = 0.

Note the identity a + b = ¢ +d which can be rearranged to express each variable in terms of the
other three.

We have:



P -2 =+ -2 —(a+tb—c) =a>+b>—2—(a®+2ab—2ac+b> —2bc + c?)
=—2ab + 2ac — 2bc — 2¢* =— 2(ab — ac + bc + ¢?)

Setting this expression equal to zero, we have:
—2(ab—ac+bc+c)=0=>ab—ac+bc+c*=0=(a—c)b—c)=0

Therefore, a 4-cycle of type 4-B is possible whenever a = ¢ or b= c. Equivalently, carrying out
this prescription but instead substituting for the other variables — ¢, b, and a — yields
(respectively) the following conditions: a=d or b=d; a=c ora=d;and b=c or b=d. ltis
obvious that the conditions in which equal edges share a node (i.e. b=c and a=d) are

impossible because our graph does not allow repeated edges. However, the conditions in which
the equal edges do not share a node do allow 4-cycles to occur. We address this issue in the
following way.

Note that the conditions which concern us are a = ¢ and b =d. Say that bucket 1, from which
edges « and d originate, is located in the c-group at index i. Then buckets 2 and 3, from
which edges ¢ and b, respectively, originate, are located in the c-group at index i+ 1. We

therefore impose the following rule: for a bucket in an even-indexed c-group, let its outgoing
edges have bucket offsets 7> ranging through each even-valued r in the range 0 <r <m, and

for a bucket in an odd-indexed c-group, let its outgoing edges have bucket offsets »? for each
odd-valued r in the range 0 <r <m. The bucket offsets »? therefore alternate from c-group to
c-group between using even-valued r values and using odd-valued r values.



