Module khive_crystal.crystal_structure
Functions
def e(i: int) ‑> collections.abc.Callable[[khive_crystal.khive.KHive | list[khive_crystal.khive.KHive]], khive_crystal.khive.KHive | None | list[khive_crystal.khive.KHive | None]]
-
The entry point of e_i. Given H and i, return e_i(H) by appropriate crystal structure.
Args
i
:int
- i in I
Returns
Callable[[Union[KHive, List[KHive]]], int]
- f_i
Examples
>>> H: KHive = KHive( ... n=3, ... alpha=[3, 2, 0], ... beta=[2, 3, 0], ... gamma=[0, 0, 0], ... Uij=[[1, 0], [0]] ... ) >>> e(i=1)(H) KHive(n=3, alpha=[3, 2, 0], beta=[3, 2, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])
>>> H = KHive( ... n=3, ... alpha=[1, 1, 0], ... beta=[1, 0, 1], ... gamma=[0, 0, 0], ... Uij=[[0, 0], [1]] ... ) >>> e(i=2)(H) KHive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])
>>> H: KHive = KHive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]) >>> e(i=2)([H, H])
def epsilon(i: int) ‑> collections.abc.Callable[[khive_crystal.khive.KHive | list[khive_crystal.khive.KHive]], int]
-
The entry point of epsilon_i. Given H and i, return epsilon_i(H) by appropriate crystal structure.
Args
i
:int
- i in I
Returns
Callable[[Union[KHive, List[KHive]]], int]
- epsilon_i
Examples
>>> H: KHive = KHive( ... n=3, ... alpha=[3, 2, 0], ... beta=[2, 3, 0], ... gamma=[0, 0, 0], ... Uij=[[1, 0], [0]] ... ) >>> epsilon(i=1)(H) 1
>>> H: KHive = KHive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]) >>> epsilon(i=2)(H) 0
>>> H: List[KHive] = [ ... KHive(n=3, alpha=[1, 1, 0], beta=[1, 0, 1], gamma=[0, 0, 0], Uij=[[0, 0], [1]]), ... KHive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]), ... ] >>> epsilon(i=2)(H) 1
def f(i: int) ‑> collections.abc.Callable[[khive_crystal.khive.KHive | list[khive_crystal.khive.KHive]], khive_crystal.khive.KHive | None | list[khive_crystal.khive.KHive | None]]
-
The entry point of f_i. Given H and i, return f_i(H) by appropriate crystal structure.
Args
i
:int
- i in I
Returns
Callable[[Union[KHive, List[KHive]]], int]
- f_i
Examples
>>> H: KHive = KHive(n=3, alpha=[3, 2, 0], beta=[3, 2, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]) >>> f(i=1)(H) KHive(n=3, alpha=[3, 2, 0], beta=[2, 3, 0], gamma=[0, 0, 0], Uij=[[1, 0], [0]])
>>> H: KHive = KHive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]) >>> f(i=2)(H) KHive(n=3, alpha=[1, 1, 0], beta=[1, 0, 1], gamma=[0, 0, 0], Uij=[[0, 0], [1]])
>>> H: KHive = KHive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]) >>> f(i=2)([H, H]) [KHive(n=3, alpha=[1, 1, 0], beta=[1, 0, 1], gamma=[0, 0, 0], Uij=[[0, 0], [1]]), KHive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])]
def phi(i: int) ‑> collections.abc.Callable[[khive_crystal.khive.KHive | list[khive_crystal.khive.KHive]], int]
-
The entry point of phi_i. Given H and i, return phi_i(H) by appropriate crystal structure.
Args
i
:int
- i in I
Returns
Callable[[Union[KHive, List[KHive]]], int]
- phi_i
Examples
>>> H: KHive = KHive(n=3, alpha=[3, 2, 0], beta=[3, 2, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]) >>> phi(i=1)(H) 1
>>> H: KHive = KHive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]) >>> phi(i=2)(H) 1
>>> H: KHive = KHive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]) >>> phi(i=2)([H, H]) 2