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ABSTRACT

MINPACK-1 is a package of Fortran subprograms for the
numerical solution of systems of nonlinear equations and
nonlinear least squares problems. This report provides an
overview of the algorithms and software in the package and
includes the documentation and program listings.

Preface

The MINPACK Project is a research effort whose goal is the development of
a systematized collection of quality optimization software. The first step
towards this goal has been realized in MINPACK-1, a package of Fortran
programs for the numerical solution of systems of nonlinear equations and

nonlinear least squares problems.

The design of the algorithms and software in MINPACK-1 has several

objectives; the main ones are reliability, ease of use, and transportability.

At the algorithmic level, reliability derives from the underlying
algorithms having a sound theoretical basis. Entirely satisfactory global
convergence results are available for the MINPACK-1 algorithms and, in

addition, their properties allow scale invariant implementatioms.

At the software level, reliability derives from extensive testing. The
heart of the testing aids is a large collection of test problems (Moré,
Garbow, and Hillstrom [1978]). These test problems have been used to measure
the performance of the software on the following computing systems: IBM
360/370, CDC 6000-7000, Univac 1100, Cray-1l, Burroughs 6700, DEC PDP-10,
Honeywell 6000, Prime 400, Itel AS/6, and ICL 2980. At Argonne, software
performance has been further measured with the help of WATFIV and BRNANL
(Fosdick [1974]). WATFIV detects run-time errors such as undefined variables
and out-of-range subscripts, while BRNANL provides execution counts for each
block of a program and, in particular, has established that the MINPACK-1 test

problems execute every non-trivial program block.

Reliability further implies efficient and robust implementations. For
example, MINPACK-1 programs access matrices sequentially along columns (rather
than rows), since this improves efficiency, especially on paged systems.

Also, there are extensive checks on the input parameters, and computations are




formulated to avoid destructive underflows and overflows. Underflows can then
be safely ignored; overflows due to the problem should of course be

investigated.

Ease of use derives from the design of .the user interface. Each
algorithmic path in MINPACK-1 includes a core subroutine and a driver with a
simplified calling sequence made possible by assuming default settings for
certain parameters and by returning a limited amount of information; many
applications do not require full flexibility and in these cases the drivers
can be invoked. On the other hand, the core subroutines enable, for example,
scaling of the variables and printing of intermediate results at specified

iterations.

Ease of use is also facilitated by the documentation. Machine-readable
documentation is provided for those programs normally called by the user. The
documentation includes discussions of all calling sequence parameters and an
actual example illustrating the use of the corresponding algorithm. In
addition, each program includes detailed prologue comments on its purpose and
the roles of its parameters; in-line comments introduce major blocks in the

body of the program.

To further clarify the wunderlying structure of the algorithms, the
programs have been formatted by the TAMPR system of Boyle and Dritz [1974].
TAMPR produces implementations in which the loops and logical structure of the
programs are clearly delineated. In addition, TAMPR has been used to produce
the single precision version of the programs from the master (double

precision) version.

Transportability requires that a satisfactory transfer to a different
computing system be possible with only a small number of changes to the
software. In MINPACK-1, a change to a new computing system only requires
changes to one program in each precision; all other programs are written in a
portable subset of ANSI standard Fortran acceptable to the PFORT verifier
(Ryder [1974]). This one machine-dependent program provides values of the
machine precision, the smallest magnitude, and the largest magnitude. Most of
the values for these parameters were obtained from the corresponding PORT

library program (Fox, Hall, and Schryer [1978]); in particular, values are

provided for all of the computing systéms on which the programs were tested.



MINPACK-1 is fully supported. Comments, questions, and reports of poor

or incorrect performance of the MINPACK-1 programs should be directed to

Burton S. Garbow

Applied Mathematics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

Phone: (312) 972-7184

Of particular interest would be reports of performance of the MINPACK-1

package on machines not covered in the testing.

The MINPACK-1 package consists of the programs, their documentation, and
the testing aids. The package comprises approximately 28,000 card images and
is transmitted on magnetic tape. The tape is available from the following two

sources.

National Energy Software Center
Argonne National Laboratory
9700 South Cass Avenue

Argonne, IL 60439

Phone: (312) 972-7250

IMSL

Sixth Floor-NBC Building

7500 Bellaire Blvd.

Houston, TX 77036

Phone: (713) 772-1927
The package includes both single and double precision versions of the
programs, and for those programs normally called by the user machine-readable
documentation is provided in both single and double precision forms. An

implementation guide (Garbow, Hillstrom, and More [1980]). is also included

with the tape.
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CHAPTER 1
Introduction to MINPACK-1

The purpose of this chapter is to provide an overview of the algorithms
and software in MINPACK-1. Most users need only be acquainted with the first
six sections of this chapter; the remaining two sections describe lower-level

software called from the main programs.

1.1 Systems of Nonlinear Equations

If n functions fl,fz,...,fn of the n wvariables xj,x9,...,X, are
specified, then MINPACK-1 subroutines can be wused to find values for

X]sX9,.++,X, that solve the system of nonlinear equations

n

fi(Xl,Xz,...,Xn)=0 N 1__<_15_n .

To solve this system we have implemented a modification of Powell's hybrid
algorithm. There are two variants of this algorithm. The first variant only
requires that the user calculate the functions f;, while the second variant
requires that the user calculate both the functions f; and the n by n Jacobian

matrix

9f. (x)
1

9x . ’
]

1<i<n, 1<j<n.

1.2 Nonlinear Least Squares Problems

If m functions f;,fy,...,f are specified

m ©f the n variables x],x9,...,x

k n
with m > n, then MINPACK-1 subroutines can be used to find values for

X],X9,...,X, that solve the nonlinear least squares problem

n

by 2 n
min{ ) fi(X) : x €R } .

i=1

To solve this problem we have implemented a modification of the Levenberg-

Marquardt algorithm. There are three variants of this algorithm. The first
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variant only requires that the user calculate the functions £;, while the
second variant requires that the user calculate both the functions £; and the

m by n Jacobian matrix

3fi(x)

9x . )
J

1<im, 1<j<n.

The third variant also requires that the user calculate the functions and
the Jacobian matrix, but the latter only one row at a time. This organization
only requires the storage of an n by n matrix (rather than m by n), and is
thus attractive for nonlinear least squares problems with a large number of

functions and a moderate number of variables.

1.3 Derivative Checking

The main advantage of providing the Jacobian matrix is increased
reliability; for example, the algorithm is then much less sensitive to
functions subject to errors. However, providing the Jacobian matrix is an
error-prone task. To help identify errors, MINPACK-1 also contains a
subroutine CHKDER that checks the Jacobian matrix for consistency with the

function values.

1.4 Algorithmic Paths: Core Subroutines and Easy-to-Use Drivers

There are five general algorithmic paths in MINPACK-1. Each path
includes a core subroutine and an easy-to-use driver with a simplified calling
sequence made possible by assuming default settings for certain parameters and
by returning a limited amount of information; many applications do not require
full flexibility and in these cases easy-to-use drivers can be invoked. On
the other hand, the core subroutines enable, for example, scaling of the

variables and printing of intermediate results at specified iterations.

1.5 MINPACK-]1 Subroutines: Systems of Nonlinear Equations

The MINPACK-1 subroutines for the numerical solution of systems of
nonlinear equations are HYBRD1, HYBRD, HYBRJ1l, and HYBRJ. These subroutines

provide alternative ways to solve the system of nonlinear equations

£;(X),%9,0005%,) = 0, 1<i<n
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by a modification of Powell's hybrid algorithm. The principal requirements of

the subroutines are as follows (see also Figure 1).

HYBRD1, HYBRD

The wuser must provide a subroutine to calculate the functions
fl’fZ”"’fn‘ The Jacdbian matrix 1s then calculated by a forward-
difference approximation or by an update formula of Broyden. HYBRDI is

the easy~to-use driver for the core subroutine HYBRD.

HYBRJ1, HYBRJ

The user must provide a subroutine to calculate the functions

fl’fZ"‘°’fn and the Jacobian matrix
3fi(x)
5 -5 | 1<ifn, 1<j<n.
- ;

(Subroutine CHKDER can be used to check the Jacobian matrix for
consistency with the function values.) HYBRJl is the easy-to-use driver

for the core subroutine HYBRJ.

Is the Jacobian
Yes . . No
———— | matrix available?

Is flexibility No Yes Is flexibility

Yes . .
required? —_ required?

No

HYBRJ HYBRJ1 ] HYBRD HYBRDI1

Figure 1
Decision Tree for Systems of Nonlinear Equations
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1.6 MINPACK-1 Subroutines: Nonlinear Least Squares Problems

The MINPACK-1 subroutines for the numerical solution of nonlinear least
squares problems are IMDIFl, LMDIF, IMDERl, LMDER, IMSTRl, and IMSTR. These

subroutines provide alternative ways to solve the nonlinear least squares

min{
i

by a modification of the Levenberg-Marquardt algorithm. The principal

problem

I ~8

f.(x)2: X € Rn}
1 1

requirements of the subroutines are as follows (see also Figure 2).

IMDIF1, IMDIF

The wuser must provide a subroutine to calculate the functions
El,fz,...,fm. The Jacobian matrix is then calculated by a forward-
difference approximation. IMDIFl is the easy-to-use driver for the core

subroutine IMDIF.

IMDER1, IMDER

The wuser must provide a subroutine to calculate the functions

£1,£9,...,f, and the Jacobian matrix
afi(x)
v R 1<im, 1<j<n.
J

(Subroutine CHKDER can be used to check the Jacobian matrix for
consistency with the function values.) LMDER]l is the easy-to-use driver

for the core subroutine IMDER.

IMSTR1, IMSTR
The wuser must provide a subroutine to calculate the functions

f1,£9,...,f, and the rows of the Jacobian matrix

9f. (x)
1

9x. ’
]

1<i<m, i<j<n,

one row per call. (Subroutine CHKDER can be used to check the row of the
Jacobian matrix for consistency with the corresponding function value.)

IMSTR] is the easy-to-use driver for the core subroutine IMSTR.
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Yes Is the Jacobian No
matrix available?

g

Is storage Is flexibility
limited? Mo lEEEi required?

~ IMDIF | IMDIF1 .

Yes

el I i
Yes Is flex%blllty No Yes |18 flex%blllty No
| required? —1 required? —]

' IMSTR l IMSTRI l{IMDER | IMDER]

Figure 2
Decision Tree for Nonlinear Least Squares Problems

1.7 Machine-Dependent Constants

There are three machine-dependent constants that have to be set before
the single or double precision version of MINPACK-l can be used; for most
machines the correct values of these constants are encoded into DATA state-
ments in functions SPMPAR (single precision) and DPMPAR (double precision).
These constants are:

61-2

, the machine precision ,

e . -1
g MM " the smallest magnitude ,

_g. e
(1 -84 MaX ' the largest magnitude ,

where £ is the number of base B digits on the machine, ep;, is the smallest

machine exponent, and e ., is the largest machine exponent.

ax
The most critical of the constants is the machine precision €y, since the

MINPACK-1 subroutines treat two numbers a and b as equal if they satisfy

|b-a| _S eMlaI s
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and the above test forms the basis for deciding that no further improvement 1is

possible with the algorithm.

1.8 MINPACK-1 Internal Subprograms

Most users of MINPACK-1 need only be acquainted with the core subroutines
and easy—-to-use drivers described in the previous sections. Some users,
however, may wish to experiment by modifying an algorithmic path to improve
the performance of the algorithm on a particular application. A modification
to an algorithmic path can often be achieved by modifying or replacing one of
the internal subprograms. Additionally, the internal subprograms may be
useful independent of the MINPACK-1 algorithmic paths in which they are
employed.

For these reasons brief descriptions of the MINPACK-1 internal
subprograms are included below; more complete descriptions can be found in the

prologue comments in the program listings of Chapter 5.

DOGLEG

Given the QR factorization of an m by n matrix A, an n by n nonsingular
diagonal matrix D, an m-vector b, and a positive number A, this
subroutine determines the convex combination of the Gauss-Newton and

scaled gradient directions that solves the problem
min{#Ax-bll : IDxl < A}

ENORM

This function computes the Euclidean norm of a vector x.

FDJAC!
This subroutine computes a forward-difference approximation to the
Jacobian matrix associated with n functions in n variables. It includes

a banded Jacobian option.

FDJAC2
This subroutine computes a forward-difference approximation to the

Jacoblan matrix assocliated with m functions in n variables.

N



IMPAR
Given the QR factorization of an m by n matrix A, an n by n nonsingular
diagonal matrix D, an m-vector b, and a positive number &, this subrou-

tine is used to solve the problem

min{lAx-bl : IDxl < A}

QFORM
Given the QR factorization of a rectangular matrix, this subroutine

accumulates the orthogonal matrix Q from its factored form.

QRFAC
This subroutine uses Householder transformations with optional column
pivoting to compute a QR factorization of an arbitrary rectangular

matrix.

QRSOLV
Given the QR factorization of an m by n matrix A, an n by n diagonal
matrix D, and an m-vector b, this subroutine solves the linear least

squares problem

RWUPDT
This subroutine is used in updating the upper triangular part of the QR

decomposition of a matrix A after a row is added to A.

RIMPYQ
This subroutine multiplies a matrix by an orthogonal matrix given as a

product of Givens rotations.

RI1UPDT
This subroutine is used in updating the lower triangular part of the LQ

decomposition of a matrix A after a rank-l matrix is added to A.
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CHAPTER 2

Algorithmic Details

The purpose of this chapter 1is to provide information about the
algorithms and to point out some of the ways in which this information can be
used to improve their performance. The first two sections are essential for
the rest of the chapter since they provide the necessary background, but the

other sections are independent of each other.

2.1 Mathematical Background

To describe the algorithms for the solution of systems of nonlinear
equations and nonlinear least squares problems, it is necessary to introduce

some notation.

Let R® represent the n-dimensional Euclidean space of real n-vectors
*1
*2

X
n

and lxl the Euclidean norm of x,

1
2
X.

n
hxh = | )
2

J

A function F with domain in R" and range in R™ is denoted by F: R? » R™,  Such
a function can be expressed as
fl(f)
) = f?(x) N
f;(x)

where the component function f;: R® » R is sometimes called the i-th residual
of F. The terminology derives from the fact that a common problem is to fit a

model g(t,x) to data y, in which case the f; are of the form
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fi(x) =y; - 8lt;,x) ,

where y,; 1is measured at t; and x is the set of fit parameters.

In this notation a system of nonlinear equations is specified by a

function F: R™ * R, and a solution vector x* in R" is such that
F(x*) = 0

Similarly, a nonlinear least squares problem is specified by a function

F: R" > R™ with m 2 n, and a solution vector x* in R" is such that
IF(x*)Il < IF(x)l for x & N(x*) ,

where N(x*) is a neighborhood of x*. If N(x*) is the entire domain of
definition of the function, then x* is a global solution; otherwise, x¥* is a

local solution.

Some of the MINPACK-1 algorithms require the specification of the
Jacobian matrix of the mapping F: R™ » R™; that is, the m by n matrix F'(x)

whose (i,j) entry is

3fi(x)
9x, ’
J
A related concept is the gradient of a function f: R™ * R, which is the

mapping V£: R® + R® defined b
y

9f(x)

Vf(x) = T

If(x)

Ix
n

Note that the i-th row of the Jacobian matrix F'(x) is the gradient VE (%) of

the i-th residual.
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It is well-known that if x* is a solution of the nonlinear least squares

problem, then x* solves the system of nonlinear equations

m
izlfi(x)vfi(x) =0

In terms of the Jacobian matrix this implies that .
1 T =
F'(x*) F(x*) = 0,

and shows that at the solution the vector of residuals is orthogonal to the
columns of the Jacobian matrix. This orthogonality condition 1is also
satisfied at maximizers and saddle points, but algorithms usually take

precautions to avoid these critical points.

2.2 Overview of the Algorithms

Consider a mapping F: R® » R™, where m = n for systems of nonlinear
equations and m > n for nonlinear least squares problems. The MINPACK-1

algorithms in these two problem areas seek a solution x* of the problem
() min{IF(x)l: x € R"}

In particular, if m = n it is expected that F(x¥*) = 0.

Our initial description of the algorithms will be at the macroscopic

level where the techniques used in each problem area are similar.

With each algorithm the user provides an initial approximation X = X, to
the solution of the problem. The algorithm then determines a correction p to
x that produces a sufficient decrease in the residuals of F at the new point

x+p; it then sets

X, =x t+tp

and begins a new iteration with x, replacing x.

A sufficient decrease in the residuals implies, in particular, that

AuF(x+p)u < UF(x
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and thus the algorithms guarantee that
IF(x I < IF(x)I

The correction p depends upon a diagonal scaling matrix D, a step bound
A, and an approximation J to the Jacobian matrix of F at x. Users of the core

subroutines can specify initial values Dj and A in the easy-to-use drivers

o’

D, and Ao are set internally. If the user is providing the Jacobian matrix,

then J, = F'(x,); otherwise the algorithm sets J, to a forward difference

approximation to F'(x.).

To compute p, the algorithm solves (approximately) the problem
(2) min{W£+Jpl: WDpl < A}

where f is the m-vector of residuals of F at x. If the solution of this
problem does not provide a suitable correction, then A is decreased and, if
appropriate, J is updated. A new problem is now solved, and this process is
repeated (usually only once or twice) until a p is obtained at which there is
sufficient decrease in the residuals, and then x is replaced by x+p. Before

the start of the next iteration, D, 4, and J are also replaced.

The motivation for using (2) to obtain the correction p is that for
appropriate choices of J and 4, the solution of (2) is an approximate solution
of

min{ IF(x+p)i: UDpl < A}
It follows that if there is a solution x* such that
(3) ID(x=x*)I < A,

then x+p 1s close to x*. If this is not the case, then at least x+p 1is a
better approximation to x¥* than x. Under reasonable conditions, it can be

shown that (3) eventually holds.

The algorithms for systems of nonlinear equations and for nonlinear least

squares problems differ, for example, in the manner in which the correction p



is obtained as an approximate solution of (2). The nonlinear equations

algorithm obtains a p that minimizes If+Jpl in a two-dimensional subspace of
the ellipsoid {p: iDpl S_A}. The nonlinear least squares algorithm obtains a
p that is the exact solution of (2) with a small (10%) perturbation of 4.
Other differences in the algorithms include convergence criteria (Section 2.3)

and the manner in which J is computed (Section 2.4).

It is appropriate to close this overview of the algorithms by discussing
two of their limitations. First, the algorithms are limited by the precision
of the computations. Although the algorithms are globally convergent under
reasonable conditions, the convergence proofs are only valid in exact
arithmetic and the algorithms may fail in finite precision due to roundoff.
This implies that the algorithms tend to perform better in higher precision.
It also implies that the calculation of the function and the Jacobian matrix
should be as accurate as possible and that improved performance results when

the user can provide the Jacobian analytically.

Second, the algorithms are only designed to find local solutions. To

illustrate this point, consider
_ .3
F(x) = x~ - 3x + 18
In this case, problem (1) has the global solution x* = -3 with F(x*) = 0 and
the local solution x* = 1 with F(x*) = 16; depending on the starting point,

the algorithms may converge either to the global solution or to the local

solution.

2.3 Convergence Criteria

The convergence test in the MINPACK-1 algorithms for systems of nonlinear
equations is based on an estimate of the distance between the current approxi-
mation x and an actual solution x* of the problem. If D is the current
scaling matrix, then this convergence test (X-convergence) attempts to

guarantee that

(1) ID(x=-x*)I < XTOLeIDx*I ,

where XTOL is a user-supplied tolerance.
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There are three convergence tests in the MfNPACK—l algorithms for
nonlinear least squares problems. One test is again for X-convergence, but
the main convergence test is based on an estimate of the distance between the
Euclidean norm WF(x)!l of the residuals at the current approximation x and the
optimal value IF(x*)ll at an actual solution x* of the problem. This conver-

gence test (F-convergence) attempts to guarantee that
(2) IF(x)! < (1 + FTOL)*IF(x*)I

where FTOL is a second user-supplied tolerance.

The third convergence test for the nonlinear least squares problem
(G-convergence) guarantees that
|a?f|
(3) maxm: liiﬁn SGTOL,

1

where a),as,...,a, are the columns of the current approximation to the
Jacobian matrix, f is the vector of residuals, and GTOL is a third user-

supplied tolerance.

Note that individual specification of the above three tolerances for the
nonlinear least squares problem requires direct user call of the appropriate
core subroutine. The easy-to-use driver only accepts the single value TOL.

It then internally sets FTOL = XTOL = TOL and GTOL = O.

The X-convergence condition (1) is a relative error test; it thus fails
when x* = 0 unless x = 0 also. Also note that if (1) is satisfied with
XTOL = IO_k, then the larger components of Dx have k significant digits, but
smaller components may not be as accurate. For example, if D is the identity

matrix, XTOL = 0.001, and

x* = (2.0, 0.003) ,
then

x = (2.001, 0.002)

satisfies (1), yet the second compoment of x has no significant digits. This

may or may not be important. However, note that if instead
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D = diag(1,1000) ,

then (1) is not satisfied even for XTOL = 0.1. These scaiing considerations
can make it important to choose D carefully. See Section 2.5 for more

information on scaling.

Since x* 1s unknown, the actual criterion for X-convergence cannot be
based on (l); instead it depends on the step bound A. That is, the actual
convergence test is

A < XTOLe IDx!

The F-convergence condition (2) is a relative error test; it thus fails

. when F(x*) = 0 unless F(x) = 0 also. It is for this reason that F-convergence

is not tested for systems of nonlinear equations where F(x*) = 0 1is the
expected result. Also note that if (2) is satisfied with FTOL = 107K,
then IF(x)Il has k significant digits, but x may not be as accurate. For
example, if FTOL = 107 and
x -1
F(x) = ,

1
then x* =1, IF(x*)l = 1, and if x = 1.001 then (2) 1is satisfied with
FTOL = 10™%, but (1) is only satisfied with XTOL = 1073,

In many least squares problems, if FTOL = (XTOL)2 then X-convergence
implies F-convergence. This result, however, does not hold if WF(x*)I is very
small. For example, if

x -1
F(x) = ,
0.0001
then x* = 1 and IF(x*)l = 0.0001, but if x = 1.001 then (1) is satisfied with
XTOL = 1073 and yet

IF(x)I > 100F(x*)I

Since IF(x*)Il is unknown, the actual criterion for F-convergence cannot

be literally (2); instead it is based on estimates of the terms in (2). If £
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and f, are the vectors of residuals at the current solution approximation x

and at x+p, respectively, then the (relative) actual reduction is
ACTRED = (Wfl - Ilf+IIJ/llfII ,

while the (relative) predicted reduction is
PRERED = (£l - WE+Ipl )/ £l

The F-convergence test then requires that

PRERED < FTOL
| ACTRED| < FTOL
ACTRED < 2°*PRERED

all hold.

The X-convergence and F-convergence tests are quite reliable, but it 1is
important to note that their validity. depends critically on the correctness of
the Jacobian. If the user is providing the Jacobian, he may make an error.
(CHKDER can be used to check the Jacobian.) If the algorithm is estimating
the Jacobian matrix, then the approximation may be incorrect if, for example,
the function is subject to large errors and EPSFCN is chosen poorly. (For
more details see Section 2.4,) In either case the algorithm wusually
terminates suspiciously near the starting point; recommended action if this
occurs is to rerun the problem from a different starting point. If the
algorithm also terminates ncar the new starting point, then it is very likely

that the Jacobian is being determined incorrectly.

The X-convergence and F-convergence tests may also fail if the tolerances
are too large. In general, XTOL and FTOL should be smaller than 10-5;
recommended values for these tolerances are on the order of the square root of
the machine precision. As described in Section 1.7, the single precision
value of the machine precision can be obtained from the MINPACK-l function
SPMPAR and the double prec¢ision value from DPMPAR. Note, however, that on

some machines the square root of machine precision is larger than 1072,
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The G-convergence test (3) measures the angle between the residual vector
and the columns of the Jacobian matrix and thus can be expected to fail if
either F(x*) = 0 or any column of F'(x*) is zero. Also note that there is no
clear relationship between G-convergence and either X-convergence or
F-convergence. . Furthermore, the G-convergence test detects other critical
points, namely maximizers and saddle points; therefore, termination with

G-convergence should be examined carefully.

An important property of the tests described above is that they are scale
invariant. (See Section 2.5 for more details on scaling.) Scale invariance
is a feature not shared by many other convergence tests. For example, the

convergence test
(4) £l < AFTOL ,

where . AFTOL is a user-supplied tolerance, is not scale invariant, and this
makes it difficult to choose an appropriate AFTOL. As an illustration of the

difficulty with this test, consider the function
F(x) = (3x - 10)exp(10x) .

On a computer with 15 decimal digits
[F(x*)| > 1,

where x* is the closest machine-representable number to 10/3, and thus a

suitable AFTOL is not apparent.

If the user, however, wants to use (4) as a termination test, then he can
do this by setting NPRINT positive in the call to the respective core
subroutine. (See Section 2.9 for more information on NPRINT.) 'This provides
him periodic opportunity, through subroutine FCN with IFLAG = 0, to affect the
iteration sequence, and in this instance he might insert the following program

segment into FCN.
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IF (IFLAG .NE. 0) GO TO 10
FNORM = ENORM(LFVEC,FVEC)
IF (FNORM .LE. AFTOL) IFLAG = -1
RETURN

10 CONTINUE

In this program segment it is assumed that LFVEC = N for systems of nonlinear
equations and LFVEC = M for nonlinear least squares problems. It is also
assumed that the MINPACK-1 function ENORM is declared to the precision of the

computation.

2.4 Approximations to the Jacobian Matrix

If the user does not provide the Jacobian matrix, then the MINPACK-1
algorithms compute an approximation J. 1In the algorithms for nonlinear least
squares problems, J is always determined by a forward difference approxima-
tion, while in the algorithms for systems of nonlinear equations, J is
sometimes determined by a forward-difference approximation but more often by
an update formula of Broyden. It is important to note that the update formula
is also used in the algorithms for 'systems of nonlinear equations where the
user is providing the Jacobian matrix, since the updating tends to improve the

efficiency of the algorithms.

The forward-difference approximation to the j-th column of the Jacobian

matrix can be written

F(x+h.e.) - F(x)
J ]

J
where ey is the j-th column of the identity matrix and hj is the difference
parameter. The choice of hj depends on the precision of the function

evaluations, which is specified in the MINPACK-1 algorithms by the parameter
EPSFCN. To be specific,

1
hj = (EPSFCN)flij

unless x5 = 0, in which case
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hj = (EPSFCN)l/z .

In the easy-to-use drivers EPSFCN is set internally to the machine
precision (see Section 1.7), since these subroutines assume that the functions
can be evaluated accurately. In the core subroutines EPSFCN is a user-
supplied parameter; if there are errors in the evaluations of the functions,
then EPSFCN may need to be much larger than the machine precision. For
example, if the specification of the function requires the numerical
evaluation of an integral, then EPSFCN should probably be on the order of the

tolerance in the integration routine.

One advantage of approximation (1) is that it is scale invariant. (See
Section 2.5 for more details on scaling.) A disadvantage of (1) is that it
assumes EPSFCN the same for each variable, for each component function of F,
and for each vector x. These assumptions may make it difficult to determine a
suitable value for EPSFCN. The user who is uncertain of an appropriate value
of EPSFCN can run the algorithm with two or three values of EPSFCN and retain
the value that gives the best results. In general, overestimates are better

than underestimates.

The update formula of Broyden depends on the current approximation x, the

correction p, and J. Since
1
F(x+p) - F(x) =| [ F'(x+6p)d@|p ,
0

it is natural to ask that the approximation J, at x+p satisfy the equation
J,p = F(x+p) - F(x) ,

and among the possible choices be the one closest to J. To define an
appropriate measure of distance, let D be the current diagonal scaling matrix

and define the matrix norm

n uaju 2\
we- (1)
3=\ )

where aj,ag,...,a, are the columns of A. It is now easy to verify that the

solution of the problem
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min{"j-J"D: Jp = F(x+p)-F(x)} ,

is given by

J =7 + (F(X+P)‘F(x)-Jp)(DTDp)T

* 1ppl 2

There are many properties of this formula that justify its use in algorithms
for systems of nonlinear equations, but a discussion of these properties 1is

beyond the scope of this work.

2.5 Scaling

Scale invariance is a desirable feature of an optimization algorithm.
Algorithms for systems of nonlinear equations and nonlinear least squares

problems are scale invariant if, given problems related by the change of scale

(x) = aF(DVx)
= D-lx
o vV "0 °?

» Qe

where @ 1is a positive scalar and Dy is a diagonal matrix with positive

entries, the approximations x and x gernerated by the algorithms satisfy
x = D, x

Scale invariance is a natural requirement that can have a significant
effect on the implementation and performance of an algorithm. To the user
scale invariance meauns, in particular, that he can work with either problem

and obtain equivalent results.

The core subroutines in MINPACK-1 are scale invariant provided that the

initial choice of the scaling matrix satisfies

(1) Do = OtDVDo s

where D, and Do are the initial scaling matrices of the respective problems

defined by F and x_ and by F and ;o' If the user of the core subroutines has

(o]



1), then the internal scaling matrix is set

requested internal scaling (MODE

to
diag(ualn,nazu,,,.,uanu) ,

where a; is the i-th column of the initial Jacobian approximation, and (1)
holds. If the user has stipulated external scaling (MODE = 2), then the
initial scaling matrix is specified by the contents of the array DIAG, and

scale invariance is only achieved if the user's choice satisfies (1).

There are certain cases in which scale invariance may be lost, as when
the Jacobian matrix at the starting point has a column of zeroes and internal
scaling is requested. In this case Dj would have a zero element and-be
singular, but this possibility is not catered to in the current
implementation. Instead, the zero element is arbitrarily set to l, preserving
nonsingularity but giving up scale invariance. In practice, however, these

cases seldom arise and scale invariance is usually maintained.

Our experience is that internal scaling is generally preferable for
nonlinear least squares problems and external scaling for systems of nonlinear
equations. This experience is reflected in the settings built into the easy-
to-use drivers; MODE = 1 is specified in the drivers for nonlinear least
squares problems and MODE = 2 for systems of nonlinear equations. In the
latter case, D, is set to the identity matrix, a choice that generally works

out well in practice; if this choice is not appropriate, recourse to the core

subroutine would be indicated.

It is important to note that scale invariance does not relieve the user
of choosing an appropriate formuiation of the problem or a reasonable starting
point. In particular, note that an appropriate formulation may involve a
scaling of the equations or a nonlinear transformation of the variables and
that the performance of the MINPACK-1 algorithms can be affected by these
transformations. For example, the algorithm for systems ‘of nonlinear
equations usually generates different approximations for problems defined by

functions F and F, where

E(x) = DF(x) ,
X

= x
o o’
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and Dp is a diagonal matrix with positive entries. The main reason for this
is that the algorithm usually decides that x, is a better approximation than x
if

IF(x ) < IFGON
and it is entirely possible that

||F~(x+)u > IF(x)I

The user should thus scale his equations (i.e., choose Dg) so that the

expected errors in the residuals are of about the same order of magnitude.

2.6 Subroutine FCN: Calculation of the Function and Jacobian Matrix

The MINPACK-1 algorithms require that the user provide a subroutine with
name of his choosing, say FCN, to calculate the residuals of the function
F: R? > R™, where m = n for systems of nonlinear equations and m > n for
nonlinear least squares problems. Some of the algorithms also require that

FCN calculate the Jacobian matrix of the mapping F.

It is important that the calculation of the function and Jacobian matrix
be as accurate as possible. It is also important that the coding of FCN be as
efficient as possible, since the ti@ing of the algorithm 1is strongly
influenced by the time spent in FCN. In particular, when the residuals £;
have common subexpressions it is usually worthwhile to organize the .computa-
tion so that these subexpressions need be evaluated only once. For example,

if the residuals are of the form
fi(X) = g(x) + hi(X) , 1 <i<m

with g(x) common to all of them, then the coding of FCN is best expressed in

the following form.

T = g(x)
For i = 1,2, ,m
fi(x) =T+ hi(X)

As another example, assume that the residuals are of the form
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ht-3

fi(X) = (aijcos(xj) + Bijsin(xj)) s

j=1
where the aij and Bij are given constants. The following program segment

evaluates the f; efficiently.

For 1 = 1,2,...,m
fl(x) =0
For j = 1,2,...,n
Y = cos(xj)
o = sin(x.)
J
For i = 1,2,...,m

fi(x) = fi(X) + ya.. + oB..
1] 1]

If the user is providing the Jacobian matrix of the mapping F, then it is
important that 1its calculation also be as efficient as possible. In
particular, when the elements of the Jacobian matrix have common sub-
expressions, it is usually worthwhile to organize the computation so that

these subexpressions need be evaluated only once. For example, if
£,(x) = g(x) + h(x), 1<i<m,

then the rows of the Jacobian matrix are
Vfi(x) = Vg(x) + Vhi(x) . 1<i<m,

and the subexpression VYg(x) is thus common to all the rows of the Jacobian

matrix.

As another example, assume that

n
f£.(x) = a..cos(x.) + B, .sin(x,)
i jﬁlt 13°°%°%; pjsinGep) s
where the aij and Bij are given constants. In this case,
afi(x)
—-—= - a..sin(x.) + B..cos(x.) ,
xj 1] J 1] B
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and the following program segment evaluates the Jacobian matrix efficiently.

For j = 1,2,...,n

Y = cos(xj)
0= sin(xj)
For i = 1,2,...,m
afi(x)
————— = -0a., + YB.., .
axj ij ij

The previous example illustrates further the possibility of common sub-
expressions between the function and the Jacobian matrix. For the nonlinear
least squares algorithms advantage can be taken of this, because a call to FCN
to evaluate the Jacobian matrix at x is always preceded by a call to evaluate
the function at x. This 1is not the case for the nonlinear equations

algorithms.

To specifically illustrate this possibility of sharing information

between function and Jacobian matrix, assume that

£,(x) = g(x)2 + h;(x) 1<i<m.
Then the rows of the Jacobian matrix are

Vfi(x) = 2g(x)Vg(x) + Vhi(x) R 1<i<m,
and the coding of FCN is best done as follows.

1f FUNCTION EVALUATLON then
T = g(x)
Save T in COMMON
For i = 1,2,...,m
£,(x) = w2 4 h; (x)
If JACOBIAN EVALUATION then
v = Vg(x)
For i = 1,2,...,m

Vfi(x) = 2Tv + Vhi(x) .



2.7 Constraints

Systems of nonlinear equations and nonlinear least squares problems often
impose constraints on the solution. For example, on physical grounds it is

sometimes necessary that the solution vector have positive components.

At present there are no algorithms in MINPACK that formally admit
constraints, but in some cases they can be effectively achieved with ad hoc
strategies. In this section we describe two strategies for restricting the

solution approximations to a region D of R™".

The user has control over the initial approximation x,. It may happen,
however, that x is in D but the algorithm computes a correction p such that
x+p is not in D. If this correction is permitted, the algorithm may never
recover; that is, the approximations may now converge to an unacceptable

solution outside of D.

The simplest strategy to restrict the corrections is to impose a penalty
on the function if the algorithm attempts to step outside of D. For example,

let ‘U be any number such that

£ (x )] <u 1<i<m,
and in FCN define

£.(x) =w, 1 <i<m

whenever x does not belong to D. If FCN is coded in this way, a correction p
for which x+p lies outside of D will not decrease the residuals and is
therefore not acceptable. It follows that this penalty on FCN forces all the

approximations x to lie in D.

Note that this strategy restricts all the corrections, and as a conse-
quence may lead to very slow convergence if the solution 1s near the boundary
of D. It usually suffices to only restrict the initial correction, and users

of the core subroutines can do this in several ways.

Recall from Section 2.2 that the initial correction p, satisfies a bound

of the form
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where D, is a diagonal scaling matrix and A, is a step bound. The contents of
D, are governed by the parameter MODE. If MODE = 1 then D, is internally set,
while if MODE = 2 then D, is specified by the user through the array DIAG.
The step bound A, is determined from the parameter FACTOR. By definition

A = FACTOR*ID x Il ,
o oo
unless x, is the zero vector, in which case
A = FACTOR
o

It is clear from this definition that smaller values of FACTOR lead to smaller
steps. For a sufficiently small value of FACTOR (usually 0.0l suffices), an

improved point X,tp, will be found that belongs to D.

Be aware that the step restriction is on D,p, and not on p, directly. A
small element of D,, which can be set by internal scaling when MODE = 1, may
lead to a large component in the correction Po- In many cases it is not

necessary to control p, directly, but if this is desired then MODE = 2 must be

used.

When MODE = 2, the contents of D, are specified by the user, and this
allows direct control of Po- Lf, for example, it is desired to restrict the
components of p, to small relative corrections of the corresponding components

of X5 (assumed nonzero), then this can be done by setting

D = diag -rrrl Trrl 1—|-1
o 4 1 3 2 s H] gn H

where Ei is the i-th component of Xy>, and by choosing FACTOR appropriately.

To justify this choice, note that P, satisfies
ID p I <A = FACTOR*ID x Il ,
“ofo = o o"o

and that the choice of D, guarantees that
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1
ID x I =n%.
oo
Thus, if Py is the i-th component of p,, then
*

lp,| < n*FACTOR-[E; ] ,

which justifies the choice of D,.

2.8 Error Bounds

A problem of general interest is the determination of error bounds on the
components of a solution vector. It is beyond the scope of this work to
discuss this topic in depth, so the discussion below is limited to the compu-

tation of bounds on the sensitivity of the parameters, and of the covariance

matrix. The discussion is in terms of the nonlinear least squares problem,

but some of the results also apply to systems of nonlinear equations.

Let F: RM *» R® define a nonlinear least squares problem (m > n), and let
x* be a solution. Given € > 0, the problem is to determine sensitivity

(upper) bounds 01,02,...,0n such that, for each i, the condition

'|xi—x§l S_oi . with x. = xg for j # i',
implies that

IF(x)l < (1 + e)IF(x*)I .

Of particular interest are values of 0y which are large relative to Ixil,
since then the residual norm IF(x)! is insensitive to changes in the i-th
parameter and may therefore indicate a possible deficiency in the formulation

of the problem.

A first order estimate of the sensitivity bounds 0 shows that

|98 NE(x*) Il
= A
(1) 0i € F'(x* ‘ei ’

where F'(x*) is the Jacobian matrix of F at x* and e; is the i-th column of
the identity matrix. Note that if "F'(x*)'ei“ is small relative to IF(x*)I,

then the,:esidual.nbrm is 'insensitive to changes in the i-th parameter.
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If x is an approximation to the solution x* and J is an approximation to

F'(x*), then the bounds (1) can usually be replaced by

A IF(x)N
(2) o, = €% (Wj;fﬁ‘)

The MINPACK-1 nonlinear least squares programs (except IMDIFl) return enough
information to compute the sensitivity bounds (2). On a normal exit, these
programs return F(x) and part of the QR decomposition of J; namely, an upper

triangular matrix R and a permutation matrix P such that
(3 JP = QR

for some matrix Q with orthogonal columns. The vector F(x) is returned in the
array FVEC and the matrix R is returned in the upper triangular part of the
array FJAC. The permutation matrix P is defined by the contents of the

integer array IPVT; if
IPVT = (p(1),p(2),...,p(n)) ,

then the j-th column of P is the p(j)-th column of the identity matrix.

The norms of the columns of the Jacobian matrix can be computed by noting

that (3) implies that

Jep(j) = QRej s
and hence,

I . = lIRe.l ,

The following loop uses this relationship to store 1Je,ll in the £-th position
of an array FJNORM; with this information it is then easy to compute the

sensitivity bounds (2).

DO 10 J =1, N
L = IPVT(J)
FIJNORM(L) = ENORM(J,FJAC(1,J))
10 CONTINUE
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This loop assumes that ENORM and FJNORM have been declared to the precision of

the computation.

In addition to sensitivity bounds for the individual parameters, it 1is
sometimes desirable to determine a bound for the sensitivity of the residual
norm to changes in some linear combination of the parameters. Given € > 0 and

a vector v with lvl = 1, the problem is to determine a bound 0 such that
IF(x*+ov)l _<. (1 + e)lIF(x*)I .

A first order estimate of 0 is now

o[ _IEGR) .
TF (x*)evl | °

if IF'(x*)evl is small relative to IF(x*)l, then 0 is large and the residual
norm is insensitive to changes in the linear combination of the parameters

specified by v.

For example, if the level set
{x: WIF@)I < (1 + e)IF(x*)I}

is as in Figure 3, then the residual norm, although sensitive to changes in x;

and x,, is relatively insensitive to changes along v = (1,1).

I1f the residual norm is relatively insensitive to changes in some linear
combination of the parameters, then the Jacobian matrix at the solution is
nearly rank-deficient, and in these cases it may be worthwhile to attempt to
determine a set of linearly independent parameters. In some statistical

applications, the covariance matrix
(3TH-1

is used for this purpose.




Figure 3

Subroutine COVAR, which appears at the end of this section, will compute
the covariance matrix. The computation of the covariance matrix from the QR

factorization of J depends on the relationship
(4) TH™1 = prTR)71pT |

which is an easy consequence of (3). Subroutine COVAR overwrites R with the
upper triangular part of (RTR)™! and then computes the covariance matrix

from (4).

Note that for proper execution of COVAR the QR factorization of J must

have used column pivoting. This guarantees that for the.resulting R

(5) fte, | > dr..1 , k<i<j,
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thereby allowing a reasonable determination of the numerical rank of J. Most
of the MINPACK-1 nonlinear least squares subroutines return the correct

factorization; the QR factorization in IMSTRl and IMSTR, however, satisfies
JP) = QR

but R; does not usually satisfy (5). To obtain the correct factorization,

note that the QR factorization with column pivoting of R; satisfies
R1P2 = QR;
where R, satisfies (5), and therefore

is the desired €factorization of J. The program segment below uses the

MINPACK-1 subroutine QRFAC to compute R, from R;.

DO 30 J =1, N
JPl = J + 1
IF (N .LT. JP1) GO TO 20
DO 10 I = JP1, N
FJAC(I,J) = ZERO
10 CONTINUE
20 CONTINUE
30 CONT INUE
CALL QRFAC(N,N,FJAC,LDFJAC,.TRUE.,IPVT2,N,WAl,WA2,WA3)
DO 40 J = 1, N
FJAC(J,J) = WAl1(QJ)
L = IPVTZ(J)
IPVT2(J) = IPVTI1(L)
40 CONT INUE

Note that QRFAC sets the contents of the array IPVT2 to define the permutation

matrix P9, and the final loop in the program segment overwrites IPVT2 to

define the permutation matrix PyP,.
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SUBROUTINE COVAR(N,R,LDR,IPVT,TOL,WA)
INTEGER N,LDR

INTEGER IPVT(N)

DOUBLE PRECISION TOL

DOUBLE PRECISION R(LDR,N),WA(N)

alostuctoateitiati oty cloataots
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SUBROUTINE COVAR

GIVEN AN M BY N MATRIX A, THE PROBLEM IS TO DETERMINE
THE COVARIANCE MATRIX CORRESPONDING TO A, DEFINED AS

T
INVERSE (A *A)

THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM

IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE

QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF
A*P = Q*R, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL
COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL
ELEMENTS OF NONINCREASING MAGNITUDE, THEN COVAR EXPECTS

THE FULL UPPER TRIANGLE OF R AND THE PERMUTATION MATRIX P.
THE COVARIANCE MATRIX IS THEN COMPUTED AS

T T
P*INVERSE(R *R)*P

IF A IS NEARLY RANK DEFICIENT, IT MAY BE DESIRABLE TO COMPUTE
THE COVARIANCE MATRIX CORRESPONDING TO THE LINEARLY INDEPENDENT
COLUMNS OF A. TO DEFINE THE NUMERICAL RANK OF A, COVAR USES
THE TOLERANCE TOL. IF L IS THE LARGEST INTEGER SUCH THAT
ABS(R(L,L)) .GT. TOL*ABS(R(1,1)) ,
THEN COVAR COMPUTES THE COVARIANCE MATRIX CORRESPONDING TO
THE FIRST L COLUMNS OF R. FOR K GREATER THAN L, COLUMN
AND ROW IPVT(K) OF THE COVARIANCE MATRIX ARE SET TO ZERO.
THE SUBROUTINE STATEMENT IS
SUBROUTINE COVAR(N,R,LDR,IPVT,TOL,WA)
WHERE
N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.
R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE MUST
CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R. ON OUTPUT
R CONTAINS THE SQUARE SYMMETRIC COVARIANCE MATRIX.

LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.

IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE
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COVR0040
COVROO50
COVR0060
COVR0O070
COVR0O080
COVRO090
COVRO100
COVRO110
COVRO120
COVRO130
COVRO140
COVR0150
COVRO160
COVRO170
COVRO180
COVRO190
COVR0200
COVRO210
COVR0220
COVRO230
COVRO0240
COVRO250
COVR0260
COVRO270
COVR0280
COVRO290
COVRO300
COVRO310
COVR0320
COVRO0330
COVRO0340
COVRO350
COVRO360
COVRO0370
COVR0380
COVR0390
COVRO400
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PERMUTATION MATRIX P SUCH THAT A*P = Q*R. COLUMN J OF P
IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

TOL IS A NONNEGATIVE INPUT VARIABLE USED TO DEFINE THE
NUMERICAL RANK OF A IN THE MANNER DESCRIBED ABOVE.

WA IS A WORK ARRAY OF LENGTH N.
SUBPROGRAMS CALLED
- FORTRAN-SUPPLIED ... DABS

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. AUGUST 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

dlestectecthctntatestoatants
TAITIRRWRR

INTEGER I1,I1I1,J,JJ3,K,KM1,L

LOGICAL SING

DOUBLE PRECISION ONE,TEMP,TOLR,ZERO
DATA ONE,ZERO /1.0D0,0.0DO/

FORM THE INVERSE OF R IN THE FULL UPPER TRIANGLE OF R.-

TOLR = TOL*DABS(R(1,1))

L=0

DO 40 K= 1, N
IF (DABS(R(K,K)) .LE. TOLR) GO TO 50
R(K,K) = ONE/R(K,K)

KMl = K - 1
IF (KM1 .LT. 1) GO TO 30
DO 20 J = 1, KM1

TEMP = R(K,K)*R(J,K)
R(J,K) = ZERO
DO10I=1,J
R(I,K) = R(I,K) - TEMP*R(I,J)
CONTINUE
CONTINUE
CONTINUE
L =K
CONTINUE
CONTINUE

FORM THE FULL UPPER TRIANGLE OF THE INVERSE OF (R TRANSPOSE)*R
IN THE FULL UPPER TRIANGLE OF R.

IF (L .LT. 1) GO TO 110
DO 100 K =1, L
KM1 =K -1
IF (KM1 .LT. 1) GO TO 80
DO 70 J 1, KM1
TEMP = R(J,K)
DO 60 I =1, J
R(I,J) = R(1I,J) + TEMP*R(I,K)
CONTINUE
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CONTINUE

CONTINUE

TEMP = R(K,K)

DO 90 I =1, K
R(I,K) = TEMP*R(I,K)
CONTINUE

CONTINUE

CONTINUE

FORM THE FULL LOWER TRIANGLE OF THE COVARIANCE MATRIX
IN THE STRICT LOWER TRIANGLE OF R AND IN WA.

DO 130 J =1, N
JJ = IPVT(J)
SING = J .6T. L
DO 120 I =1, J
IF (SING) R(I,J) = ZERO
II = IPVT(I)

IF (II .GT. JJ) R(I1,JJ) = R(I,J)
IF (II .LT. JJ) R(JJ,1I) = R(I,J)
CONTINUE

WA(JJ) = R(J,J)

CONTINUE

SYMMETRIZE THE COVARIANCE MATRIX IN R.

DO 150 J =1, N
DO 140 I =1, J
R(I,J) = R(J,I)
CONTINUE
R(J,J) = WA(D)
CONTINUE
RETURN

LAST CARD OF SUBROUTINE COVAR.

END
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2.9 Printing

No printing is done in any of the MINPACK-1 subroutines. However,
printing of certain parameters through FCN can be facilitated with the integer
parameter NPRINT that is available to users of the core subroutines. For
these subroutines, setting NPRINT positive results in special calls to FCN
with IFLAG = 0 at the beginning of the first iteration and every NPRINT
iterations thereafter and immediately prior to return. On these calls to FCN,
the parameters X and FVEC are available for printing; FJAC is additionally
available if using LMDER.

Often it suffices to print some simple measure of the iteration progress,
and the Euclidean norm of the residuals is usually a good choice. This norm

can be printed by inserting the following program segment into FCN.

IF (IFLAG .NE. 0) GO TO 10
FNORM = ENORM(LFVEC,FVEC)
WRITE (---,1000) FNORM
1000 FORMAT (---)
RETURN
10 CONTINUE

In this program segment it is assumed that LFVEC = N for systems of nonlinear
equations and LFVEC = M for nonlinear least squares problems. It is also
assumed that the MINPACK-1 function ENORM is declared to the précision of the

computation.
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CHAPTER 3

Notes and References

This chapter provides notes relating the MINPACK-1 algorithms and

software to other work. The list of references appears at the end.

Powell's Hybrid Method

The MINPACK-1 version of Powell's [1970] hybrid method differs in many
respects from the original version. For example, the '"special iterations"
used in the original algorithm proved to be inefficient and have been
replaced. The updating method used is due to Broyden [1965]; the MINPACK-1
algorithm is a scaled version of the original. A comparison of an earlier
version of the MINPACK-1 algorithm with other algorithms for systems of non-

linear equations has been made by Hiebert [1980].

The Levenberg-Marquardt Algorithm

There are many versions of the algorithm proposed by Levenberg [1944] and
modified by Marquardt [1963]. An advantage of the MINPACK-1 version is that
it avoids the difficulties associated with choosing the Levenberg-Marquardt
parameter, and this allows a very strong global convergence result. The
MINPACK-1 algorithm is based on the work of Hebden [1973] and follows the
ideas of More [1977]. A comparison of an earlier version of the MINPACK-1
algorithm with other algorithms for nonlinear least squares problems has been

made by Hiebert [1979].

Derivative Checking

Subroutine CHKDER is new, but similar routines exist in the Numerical
Algorithms Group (NAG) library. An advantage of CHKDER is its generality; it
can be used to check Jacobians, gradients, and Hessians (second deriva-
tives). To enable this generality, CHKDER presumes no specific parameter
sequence for the function evaluation program, returning control instead to the

user. This in turn makes necessary a second call to CHKDER for each check.
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MINPACK-1 Internal Subprograms

Subroutines DOGLEG and IMPAR are used to generate search directions in
the algorithms for systems of nonlinear equations and nonlinear least squares
problems, respectively. The.algorithm used in DOGLEG is a fairly straight-
forward implementation of the ideas of Powell [1970]), while LMPAR is a refined
version of the algorithm described by More [1977]. The IMPAR algorithm is the
more complicated; in particular, it requires the solution of a sequence of
linear least squares problems of special form. It is for this purpose that

subroutine QRSOLV is used.

The algorithm used in ENORM is a simplified version of Blue's [1978]
algorithm. An advantage of the MINPACK-1 version is that it does not require
machine constants; a disadvantage 1is that nondestructive underflows are

allowed.

The banded Jacobian option ‘in FDJACl is based on the work of Curtis,

Powell, and Reid [1974].

QRFAC and RWUPDT are based on the corresponding algorithms in LINPACK
(Dongarra, Bunch, Moler, and Stewart [1979]).

The algorithm used in RIUPDT is based on the work of Gill, Golub, Murray,
and Saunders [1974].
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CHAPTER 4

Documentation

This chapter contains the double precision version of the MINPACK-1

documentation; both single and double precision versions of the documentation

are available in machihe-readable form with the MINPACK-1 package. The docu-

mentation appears in the following order:

Systems of nonlinear equations

HYBRD1, HYBRD, HYBRJ1, HYBRJ

Nonlinear least squares problems

IMDIF1, IMDIF, IMDER1, LMDER, LMSTRl, LMSTR

Derivative checking

CHKDER
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1.

2.

3.

Documentation for MINPACK subroutine HYBRD1

Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

Purpose.

The purpose of HYBRD1 is to find a zero of a system of N non-
linear functions in N variables by a modification of the Powell
hybrid method. This is done by using the more general nonlinear
equation solver HYBRD. The user must provide a subroutine which
calculates the functions. The Jacobian is then calculated by a
forward-difference approximation.

Subroutine and type statements.

SUBROUTINE HYBRD1(FCN,N, X, FVEC, TOL, INFO, WA, LWA)
INTEGER N, INFO, LWA

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(N),WA(LWA)

EXTERNAL FCN

Parameters.

Parameters designated as input parameters must be specified on
entry to HYBRD1 and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from HYBRD1.

FCN is the name of the user-supplied subroutine which calculates
the functions. FCN must be declared in an EXTERNAL statement
in the user calling program, and should be written as follows.

SUBROUTINE FCN(N, X, FVEC, IFLAG)
INTEGER N, IFLAG

DOUBLE PRECISION X(N),FVEC(N)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FEVEC.
RETURN

END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of HYBRDI1. In this case set
IFLAG to a negative integer.
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N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length N which contains the functions
evaluated at the output X. '

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates that the relative error between X and
the solution is at most TOL. Section 4 contains more details
about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 2 Number of calls to FCN has reached or exceeded
200* (N+1).

INFO = 3 TOL is too small. No further improvement in the.
approximate solution X is possible.

INFO = 4 Iteration is not making good progress.

Sections 4 and 5 contain more details about INFO.
WA is a work array of length LWA.

LWA is a positive integer input variable not less than
(N*(3*N+13))/2.

4. Successful completion.

The accuracy of HYBRD1l is controlled by the convergence parame-
ter TOL. This parameter is used in a test which makes a compar-
ison between the approximation X and a solution XSOL. HYBRD1
terminates when the test is satisfied. 1If TOL is less than the
machine precision (as defined by the MINPACK function
DPMPAR(1)), then HYBRD1l only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The test assumes that the functions are reasonably well behaved.
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If this condition is not satisfied, then HYBRD1 may incorrectly
indicate convergence. The validity of the answer can be
checked, for example, by rerunning HYBRD1l with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a

vector Z, then this test attempts to guarantee that
ENORM(X~-XSOL) .LE. TOL*ENORM(XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of X may have large relative errors, but the fast rate
of convergence of HYBRD1 usually avoids this possibility.

5. Unsuccessful completion.

Unsuccessful termination of HYBRD1 can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, errors in the functions, or lack of good prog-
ress.

Improper input parameters. INFO is set to O if N .LE. O, or

TOL .LT. 0.DO, or LWA .LT. (N*(3*N+13))/2.

Arithmetic interrupts. If these interrupts occur in the FCN

subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by HYBRDl. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead HYBRD, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Excessive number of function evaluations. If the number of

calls to FCN reaches 200%(N+1), then this indicates that the
routine is converging very slowly as measured by the progress
of FVEC, and INFO is set to 2. This situation should be unu-
sual because, as indicated below, lack of good progress is
usually diagnosed earlier by HYBRD1l, causing termination with
INFO = 4.

Errors in the functions. The choice of step length in the for-

ward-difference approximation to the Jacobian assumes that the
relative errors in the functions are of the order of the
machine precision. If this is not the case, HYBRD1 may fail
(usually with INFO = 4). The user should then use HYBRD
instead, or one of the programs which require the analytic
Jacobian (HYBRJ1l and HYBRJ). ‘
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HYBRD1 searches for a zero of the system

by minimizing the sum of the squares of the functions. In so
doing, it can become trapped in a region where the minimum
does not correspond to a zero of the system and, in this situ-
ation, the iteration eventually fails to make good progress.
In particular, this will happen if the system does not have a
zero. If the system has a zero, rerunning HYBRD1 from a dif-

ferent starting point

may be helpful.

6. Characteristics of the algorithm.

HYBRD1 is a modification of the Powell hybrid method. Two of
its main characteristics involve the choice of the correction as

a convex combination of
tions, and the updating
Broyden. The choice of
able conditions) global
the solution and a fast
approximated by forward
forward differences are

the Newton and scaled gradient direc-

of the Jacobian by the rank-1 method of
the correction guarantees (under reason-
convergence for starting points far from
rate of convergence. The Jacobian is
differences at the starting point, but
not used again until the rank-1 method

fails to produce satisfactory progress.

Timing. The time required by HYBRD1 to solve a given problem
depends on N, the behavior of the functions, the accuracy
requested, and the starting point. The number of arithmetic
operations needed by HYBRD1l is about 11.5*(N**2) to process
each call to FCN. Unless FCN can be evaluated quickly, the
timing of HYBRD1l will be strongly influenced by the time spent

in FCN.

Storage. HYBRDI1 requires (3*N**2 + 17*N)/2 double precision

“storage locations, in

addition to the storage regquired by the

program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied ...... FCN

MINPACK-supplied ... DOGLEG,DPMPAR, ENORM, FDJAC1, HYBRD,
QFORM, QRFAC, RIMPYQ, R1UPDT

FORTRAN-supplied ... DABS,DMAX1l,DMIN1,DSQRT,MINO, MOD

8. References.

M. J. D. Powell, A Hybrid Method for Nonlinear Equations.
Numerical Methods for Nonlinear Algebraic Equations,
P. Rabinowitz, editor. Gordon and Breach, 1970.

9. Example.
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The problem is to determine the values of x(1), x(2), ..., X(9),
which solve the system of tridiagonal equations

-1
-1, i=2-8

(3-2%x(1))*x(1) -2%x%(2)
-x(i=1) + (3-2*%x(i))*x(i) ) —2%x(i+1)
-x(8) + (3-2%*x(9))*x(9)

khkkkkhkkkhkhk

DRIVER FOR HYBRD1 EXAMPLE.
DOUBLE PRECISION VERSION

khkkkkhkhhkkkk

INTEGER J,N, INFO,LWA, NWRITE

DOUBLE PRECISION TOL, FNORM

DOUBLE PRECISION X(9),EVEC(9),WA(180)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

ONONONONONS)

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/
N =9

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.

Qo O 0

DO 10 J =1, 9
X(J) = -1.DO
10 CONTINUE

LWA = 180

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,

THIS IS THE RECOMMENDED SETTING.

TOL = DSQRT (DPMPAR(1))

Q oo O

CALL HYBRD1(FCN,N,X,FVEC, TOL, INFO,WA, LWA)
FNORM = ENORM(N, EVEC)
WRITE (NWRITE,1000) ENORM, INFO, (X(J),J=1,N)
STOP '
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,15H EXIT PARAMETER, 16X,I110 //
* 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))

LAST CARD OF DRIVER FOR HYBRD1l EXAMPLE.

Qoo

END

SUBROUTINE FCN(N, X, FVEC, IFLAG)
INTEGER N, IFLAG

DOUBLE PRECISION X(N),FVEC(N)
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SUBROUTINE FCN FOR HYBRD1 EXAMPLE.

INTEGER K :
DOUBLE PRECISION ONE, TEMP, TEMP1l, TEMP2, THREE, TWO, ZERO
DATA ZERO,ONE, TWO,THREE ,/0.D0,1.D0,2.DO,3.D0O/

1, N
TEMP = (THREE - TWO*X(K))*X(K)
TEMP1 = ZERO
IF (K .NE. 1) TEMP1 = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.
END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07
EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION

-0.5706545D+00 -0.6816283D+00 ~-0.7017325D+00

-0.7042129D+00 -0.7013690D+00 -0.6918656D+00
-0.6657920D+00 -0.5960342D+00 -0.4164121D+00

Page 6



Documentation for MINPACK subroutine HYBRD

Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

Purpose.

The purpose of HYBRD is to find a zero of a system of N non-
linear functions in N variables by a modification of the Powell
hybrid method. The user must provide a subroutine which calcu-
lates the functions. The Jacobian is then calculated by a for-
ward-difference approximation.

Subroutine and type statements.

SUBROUTINE HYBRD(FCN, N, X, FVEC, XTOL, MAXFEV, ML, MU, EPSFCN, DIAG,

* MODE , FACTOR, NPRINT, INFO, NFEV, FJAC, LDFJAC,

* R, LR, QTF, WAL, WA2,WA3,WA4)

INTEGER N,MAXFEV,ML,MU, MODE, NPRINT, INFO,NFEV, LDFJAC, LR

DOUBLE PRECISION XTOL,EPSFCN, FACTOR

DOUBLE PRECISION X(N),FVEC(N),DIAG(N), FJAC(LDFJAC,N),R(LR),QTEF(N),
* . WAL1(N),WA2(N),WA3(N),WA4(N)

EXTERNAL FCN

Parameters.

Parameters designated as input parameters must be specified on
entry to HYBRD and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from HYBRD.

FCN is the name of the user-supplied subroutine which calculates
the functions. FCN must be declared in an EXTERNAL statement
in the user calling program, and should be written as follows.

SUBROUTINE FCN(N,X,FVEC, IFLAG)
INTEGER N, IFLAG

DOUBLE PRECISION X(N),FVEC(N)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

The value of IFLAG should not be changed by FCN unless the
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user wants to terminate execution of HYRRD. In this case set
IFLAG to a negative integer.

N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. ©On output X contains the
final estimate of the solution vector.

FVEC 1is an output array of length N which contains the functions
evaluated at the output X.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN is at least MAXFEV by the end
of an iteration.

ML is a nonnegative integer input variable which specifies the
‘number of subdiagonals within the band of the Jacobian matrix.
If the Jacobian is not banded, set ML to at least N - 1.

MU is a nonnegative integer input variable which specifies the
number of superdiagonals within the band of the Jacobian
matrix. If the Jacobian is not banded, set MU to at least
N - 1.

EPSFCN is an input variable used in determining a suitable step
for the forward-difference approximation. This approximation
assumes that the relative errors in the functions are of the
order of EPSFCN. If EPSFCN is less than the machine preci-
sion, it is assumed that the relative errors in the functions
are of the order of the machine precision.

DIAG is an array of length N. If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the wvariables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. 1In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.



Page 3

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = O at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X and FVEC available for printing. If NPRINT
is not positive, no special calls of FCN with IFLAG = O are
made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Relative error between two consecutive iterates is
at most XTOL.

INFO = 2 Number of calls to FCN has reached or exceeded
MAXFEV.

INFO = 3 XTOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 4 Iteration is not making good progress, as measured
by the improvement from the last five Jacobian eval-
uations.

'INFO = 5 Iteration is not making good progress, as measured
by the improvement from the last ten iterations.

Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to
FCN.

FJAC is an output N by N array which contains the orthogonal
matrix Q produced by the QR factorization of the final approx-
imate Jacobian.

LDFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

R is an output array of length LR which contains the upper
triangular matrix produced by the QR factorization of the
final approximate Jacobian, stored rowwise.

LR is a positive integer input variable not less than
(N*(N+1))/2.

QTF is an output array of length N which contains the vector
(Q transpose)*FVEC.

WAl, WA2, WA3, and WA4 are work arrays of length N.
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4. Successful completion.

The accuracy of HYBRD is controlled by the convergence parameter
XTOL. This parameter is used in a test which makes a comparison
between the approximation X and a solution XSOL. HYBRD termi-
nates when the test is satisfied. If the convergence parameter
is less than the machine precision (as defined by the MINPACK
function DPMPAR(1)), then HYBRD only attempts to satisfy the
test defined by the machine precision. Further progress is not
usually possible.

The test assumes that the functions are reasonably well behaved.
If this condition is not satisfied, then HYBRD may incorrectly
indicate .convergence. The validity of the answer can be
checked, for example, by rerunning HYBRD with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a
vector 2 and D is the diagonal matrix whose entries are
defined by the array DIAG, then this test attempts to guaran-
tee that

ENORM(D* (X-XSOL)) .LE. XTOL*ENORM(D#*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of D*X may have large relative errors, but the fast rate
of convergence of HYBRD usually avoids this possibility.
Unless high precision solutions are required, the recommended
value for XTOL is the square root of the machine precision.

5. Unsuccessful completion.

~Unsuccessful termination of HYBRD can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or lack of good progress.

Improper input parameters. INFO is set to O if N .LE. O, or
XTOL .LT. 0.DO, or MAXFEV .LE. 0, or ML .LT. O, or MU .LT. O,
or FACTOR .LE. 0.DO, or LDFJAC .LT. N, or LR .LT. (N*(N+1l))/2.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by HYBRD. In this
case, it may be possible to remedy the situation by rerunning
HYBRD with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 200%(N+1). 1If the number of calls to FCN
reaches MAXFEV, then this indicates that the routine is con-
verging very slowly as measured by the progress of FVEC, and
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INFO.is set to 2. This situation should be unusual because,
as indicated below, lack of good progress is usually diagnosed
earlier by HYBRD, causing termination with INFO = 4 or

INFO = 5.

Lack of good progress. HYBRD searches for a zero of the system
by minimizing the sum of the sguares of the functions. In so
doing, it can become trapped in a region where the minimum
does not correspond to a zero of the system and, in this situ-
ation, the iteration eventually fails to make good progress.
In particular, this will happen if the system does not have a
zero. If the system has a zero, rerunning HYBRD from a dif-
ferent starting point may be helpful.

6. Characteristics of the algorithm.

HYBRD is a modification of the Powell hybrid method. Two of its
main characteristics involve the choice of the correction as a
convex combination of the Newton and scaled gradient directions,
and the updating of the Jacobian by the rank-1 method of Broy-
den. The choice of the correction guarantees (under reasonable
conditions) global convergence for starting points far from the
solution and a fast rate of convergence. The Jacobian is
approximated by forward differences at the starting point, but
forward differences are not used again until the rank-1 method
fails to produce satisfactory progress.

Timing. The time required by HYBRD to solve a given problem
depends on N, the behavior of the functions, the accuracy
requested, and the starting point. The number of arithmetic
operations needed by HYBRD is about 11.5*(N**2) to process
each call to FCN. Unless FCN can be evaluated quickly, the
timing of HYBRD will be strongly influenced by the time spent
in FCN.

Storage. HYBRD requires (3*N**2 + 17*N)/2 double precision
storage locations, in addition to the storage required by the
program. There are no internally declared storage arrays. ‘

7. Subprograms required.

USER-supplied ...... FCN

MINPACK-supplied ... DOGLEG,DPMPAR, ENORM, FDJAC1,
QFORM, QRFAC,R1IMPYQ, R1UPDT

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MINO, MOD

8. References.

M. J. D. Powell, A Hybrid Method for Nonlinear Equations.
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Numerical Methods for Nonlinear Algebraic Equations,
P. Rabinowitz, editor. Gordon and Breach, 1970.

Example.

10

The problem is to determine the values of x(1), x(2), ..., x(9),
which solve the system of tridiagonal equations

(3-2%x(1))*x(1) -2%x(2)
-x(i-1) + (3-2%x(i))*x(i) —2%x(i+1)
: -x(8) + (3-2%x(9))*x(9)

-1, i=2-8
-1

kkkhkkkikhkhkk

DRIVER FOR HYBRD EXAMPLE.
DOUBLE PRECISION VERSION

hkhkkhkhkkhhikhk

INTEGER J,N,MAXFEV,ML, MU, MODE, NPRINT, INFO, NFEV, LDFJAC, LR, NWRITE

DOUBLE PRECISION XTOL,EPSFCN, FACTOR, FNORM

DOUBLE PRECISION X(9),FVEC(9),DIAG(9),FJAC(9,9),R(45),0QTF(9),
WAL1(9),WA2(9),WA3(9),WA4(9)

DOUBLE PRECISION ENORM,DPMPAR

EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/
N =9

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.

DO 10 J =1, 9
X(J) = -1.DO
CONTINUE

LDFJAC = 9

LR = 45

SET XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.

XTOL = DSQRT(DPMPAR(1))

MAXFEV = 2000
ML =1

MU =1

EPSFCN = 0.DO
MODE = 2

DO 20 J =1, 9
DIAG(J) = 1



20 CONTINUE

FACTOR
NPRINT

1.D2
0

CALL HYBRD(FCN,N, X, FVEC, XTOL, MAXFEV, ML, MU, EPSFCN, DIAG,
* MODE , FACTOR, NPRINT, INFO, NFEV, FJAC, LDFJAC,
* R,LR,QTF,WAl,WA2,WA3,WA4)
FNORM = ENORM(N, FVEC)
WRITE (NWRITE,1000) ENORM,NFEV, INFO, (X(J),J=1,N)
STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,31H NUMBER OF FUNCTION EVALUATIONS,I10 //
* 5X,15H EXIT PARAMETER, 16X,110 //
* 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))

LAST CARD OF DRIVER FOR HYBRD EXAMPLE.

QO

END

SUBROUTINE FCN(N,X,FVEC, IFLAG)
INTEGER N, IFLAG

DOUBLE PRECISION X(N),FVEC(N)

SUBROUTINE FCN FOR HYBRD EXAMPLE.

QaQa

INTEGER K A

DOUBLE PRECISION ONE, TEMP, TEMP1, TEMP2, THREE, TWO, 2ERO
DATA ZERO,ONE,TWO,THREE ,0.D0O,1.DO,2.DO, 3.D0O/

IF (IFLAG .NE. 0) GO TO 5

INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.

aaQaQ Q

RETURN
5 CONTINUE
DO 10 K = 1, N
TEMP = (THREE - TWO*X(K))*X(K)
TEMP1 = ZERO
IF (K .NE. 1) TEMP1 = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
10 CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.

Qa0

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07

NUMBER OF FUNCTION EVALUATIONS 14
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EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION
-0.5706545D+00 ~0.6816283D+00 -0.7017325D+00

-0.7042129D+00 =-0.7013690D+00 -0.6918656D+00
-0.6657920D+00 -0.5960342D+00 -0.4164121D+00

Page 8
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Documentation for MINPACK subroutine HYBRJ1
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of HYBRJ1l is to find a zero of a system of N non-
linear functions in N variables by a modification of the Powell
hybrid method. This is done by using the more general nonlinear
equation solver HYBRJ. The user must provide a subroutine which
calculates the functions and the Jacobian.

2. Subroutine and type statements.

SUBROUTINE HYBRJl(FCN,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,WA,LWA)
INTEGER N, LDFJAC, INFO, LWA

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,6N), WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to HYBRJ1l and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from HYBRJ1.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an
EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(N, X, FVEC,FJAC,LDFJAC, IFLAG)
INTEGER N, LDFJAC, IFLAG

DOUBLE PRECISION X(N),EFVEC(N),FJAC(LDFJAC,N)
IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FEVEC.
RETURN

END

The value of IFLAG should not be changed by FCN unless the
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user wants to terminate execution of HYBRJl. In this case set
IFLAG to a negative integer.

N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length N which contains the functions
evaluated at the output X.

FJAC is an output N by N array which contains the orthogonal
matrix Q produced by the QR factorization of the final approx-
imate Jacobian. Section 6 contains more details about the
approximation to the Jacobian.

LDEFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates that the relative error between X and
the solution is at most TOL. Section 4 contains more details
about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = O Improper input parameters.

INFO = 1 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 2 Number of calls to FCN with IFLAG = 1 has reached
100* (N+1).

INFO

I
W

TOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 4 Iteration is not making good progress.
Sections 4 and 5 contain more details about INFO.
WA is a work array of length LWA.

LWA is a positive integer input variable not less than
(N*(N+13)) /2.

4. Successful cdppletion.

The accuracy of HYBRJ1l is controlled by the convergence
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parameter TOL. This parameter is used in a test which makes a
comparison between the approximation X and a solution XSOL.
HYBRJ1l terminates when the test is satisfied. 1If TOL is less
than the machine precision (as defined by the MINPACK function
DPMPAR(1)), then HYBRJ1l only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The test assumes that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then HYBRJ1l may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning HYBRJ1l with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a
vector Z, then this test attempts to guarantee that

ENORM(X-XSOL) .LE. TOL*ENORM(XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of X may have large relative errors, but the fast rate
of convergence of HYBRJ1l usually avoids this possibility.

5. Unsuccessful completion.

Unsuccessful termination of HYBRJ1l can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or lack of good progress.

Improper input parameters. INFO is set to O if N .LE. O, or
LDFJAC .LT. N, or TOL .LT. 0.DO, or LWA .LT. (N*(N+13))/2.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by HYBRJ1. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead HYBRJ, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN with IFLAG = 1 reaches 100*(N+1l), then this indi-
cates that the routine is converging very slowly as measured
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by the progress of FVEC, and INFO is set to 2. This situation
should be unusual because, as indicated below, lack of good
progress is usually diagnosed earlier by HYBRJ1l, causing ter-
mination with INFO = 4.

Lack of good progress. HYBRJ1l searches for a zero of the system
by minimizing the sum of the squares of the functions. In so
doing, it can become trapped in a region where the minimum
does not correspond to a zero of the system and, in this situ-
ation, the iteration eventually fails to make good progress.
In particular, this will happen if the system does not have a
zero. If the system has a zero, rerunning HYBRJ1l from a dif-
ferent starting point may be helpful.

6. Characteristics of the algorithm.

HYBRJ1l is a modification of the Powell hybrid method. Two of
its main characteristics involve the choice of the correction as
a convex combination of the Newton and scaled gradient direc-
tions, and the updating of the Jacobian by the rank-1l method of
Broyden. The choice of the correction guarantees (under reason-
able conditions) global convergence for starting points far from
the solution and a fast rate of convergence. The Jacobian is
calculated at the starting point, but it is not recalculated
until the rank-1 method fails to produce satisfactory progress.

Timing. The time required by HYBRJ1l to solve a given problem
depends on N, the behavior of the functions, the accuracy
requested, and the starting point. The number of arithmetic
operations needed by HYBRJ1l is about 11.5*(N**2) to process
each evaluation of the functions (call to FCN with IFLAG = 1)
and 1.3*(N**3) to process each evaluation of the Jacobian
(call to FCN with IFLAG = 2). Unless FCN can be evaluated
quickly, the timing of HYBRJ1l will be strongly influenced by
the time spent in FCN.

Storage. HYBRJ1l requires (3*N**2 + 17*N)/2 double precision
storage locations, in addition to the storage required by the
program. There are no internally declared storage arrays.

7. Subprograms reguired.

USER-supplied ...... FCN

MINPACK-supplied ... DOGLEG,DPMPAR, ENORM,HYBRJ,
QFORM, QRFAC, RIMPYQ, R1UPDT

FORTRAN-supplied ... DABS,DMAX1l,DMIN1,DSQRT,MINO, MOD

8. References.
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M. J. D. Powell, A Hybrid Method for Nonlinear Equations.
Numerical Methods for Nonlinear Algebraic Equations,
P. Rabinowitz, editor. Gordon and Breach, 1970.
ample.
The problem is to determine the values of x(1), x(2), ..., x(9),
which solve the system of tridiagonal equations
(3-2*%x(1))*x(1) -2*x(2) = =1
-x(i-1) + (3-2*%*x(1i))*x(1) -2*x(i+l) = -1, i=2-8

-x(8) + (3-2%x(9))*x(9)

khkkkkhkhkkk

DRIVER FOR HYBRJ1l EXAMPLE.
DOUBLE PRECISION VERSION

khkhkkkhkkk*k

INTEGER J,N,LDFJAC, INFO, LWA,NWRITE

. DOUBLE PRECISION TOL, FNORM

10

DOUBLE PRECISION X(9),FVEC(9),FJAC(9,9),WA(99)
DOUBLE PRECISION ENORM, DPMPAR
EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/
N =09
THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
DO 10 J = 1, 9
X(J) = -1.DO
CONTINUE

LDFJAC = 9
LWA = 99

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.

TOL = DSQRT(DPMPAR(1))

CALL HYBRJ1l(FCN,N,X,FVEC, FJAC, LDFJAC, TOL, INFO,WA, LWA)
FNORM = ENORM(N, FVEC) »

WRITE (NWRITE,1000) FNORM, INFO, (X(J),J=1,N)

STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //

* 5X,15H EXIT PARAMETER, 16X,I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))
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LAST CARD OF DRIVER FOR HYBRJ1l EXAMPLE.

END

SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER N, LDFJAC, IFLAG

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDEJAC,N)

SUBROUTINE FCN FOR HYBRJ1l EXAMPLE.

INTEGER J,K
DOUBLE PRECISION ONE,TEMP, TEMP1l,TEMPZ, THREE, TWO, ZERO
DATA ZERO, ONE, TWO, THREE, FOUR /0.D0O,1.D0O,2.D0O,3.D0,4.D0/

IF (IFLAG .EQ. 2) GO TO 20
DO 10 K =1, N
TEMP = (TIREE - TWO*X(K))*X(K)
TEMP1 = ZERO
IF (K .NE. 1) TEMP1 = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMP1l - TWO*TEMP2 + ONE
CONTINUE
GO TO 50
CONT INUE
DO 40 K = 1, N
DO 30 J = 1, N
FJAC(K,J) = ZERO

i

CONTINUE
FJAC(K,K) = THREE - FOUR*X(K)
IF (K .NE. 1) FJAC(K,K-1) = -ONE
IF (K .NE. N) FJAC(K,K+1) = -TWO
CONTINUE
CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.
END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07
EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION

-0.5706545D+00 -0.6816283D+00 -0.7017325D+00

-0.7042129D+00 -0.7013690D+00 -0.6918656D+00
-0.6657920D+00 =-0.5960342D+00 -0.4164121D+00

Page 6
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Documentation for MINPACK subroutine HYBRJ
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

Purpose.

The purpose of HYBRJ is to find a zero of a system of N non-
linear functions in N variables by a modification of the Powell
hybrid method. The user must provide a subroutine which calcu-
lates the functions and the Jacobian.

Subroutine and type statements.

SUBROUTINE HYBRJ(EFCN,N, X, FVEC, FJAC, LDFJAC, XTOL, MAXFEV,DIAG,
* MODE , FACTOR, NPRINT, INFO, NFEV, NJEV, R, LR, QTF,
* WA1l,WA2,WA3,WA4)

INTEGER N, LDFJAC, MAXFEV,MODE, NPRINT, INFO, NFEV,NJEV, LR

DOUBLE PRECISION XTOL,FACTOR

DOUBLE PRECISION X(N),EVEC(N), FJAC(LDFJAC,N),DIAG(N),R(LR),QTF(N),
* WAL (N),WA2(N),WA3(N),WA4(N)

Parameters.

Parameters designated as input parameters must be specified on
entry to HYBRJ and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from HYBRJ.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an
EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(N, X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER N,LDFJAC, IFLAG

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
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The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of HYBRJ. In this case set
IFLAG to a negative integer.

N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length N which contains the functions
evaluated at the output X.

FJAC is an output N by N array which contains the orthogonal
matrix Q produced by the QR factorization of the final approx-
imate Jacobian. Section 6 contains more details about the
approximation to the Jacobian.

LDFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

DIAG is an array of length N. 1If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. 1In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = O at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X and FVEC available for printing. FVEC and
FJAC should not be altered. If NPRINT is not positive, no
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special calls of FCN with IFLAG = O are made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = O Improper input parameters.

INFO = 1 Relative error between two consecutive iterates is
at most XTOL.

INFO = 2 Number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

INFO = 3 XTOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 4 Iteration is not making good progress, as measured
by the improvement from the last five Jacobian eval-
uations.

"
wn

INFO Iteration is not making good progress, as measured

by the improvement from the last ten iterations.
Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to
FCN with IFLAG = 1.

NJEV is an integer output variable set to the number of calls to
FCN with IFLAG = 2.

R is an output array of length LR which contains the upper
triangular matrix produced by the QR factorization of the
final approximate Jacobian, stored rowwise.

LR is a positive integer input variable not less than
(N*(N+1))/2.

QTF is an output array of length N which contains the vector
(Q transpose)*FVEC.

WAl, WA2, WA3, and WA4 are work arrays of length N.

4. Successful completion.

The accuracy of HYBRJ is controlled by the convergence parameter
XTOL. This parameter is used in a test which makes a comparison
between the approximation X and a solution XSOL. HYBRJ termi-
nates when the test is satisfied. 1If the convergence parameter
is less than the machine precision (as defined by the MINPACK
function DPMPAR(1)), then HYBRJ only attempts to satisfy the
test defined by the machine precision. Further progress is not
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usually possible.

The test assumes that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then HYBRJ may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning HYBRJ with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a
vector Z and D is the diagonal matrix whose entries are
defined by the array DIAG, then this test attempts to guaran-
tee that

ENORM(D* (X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of D*X may have large relative errors, but the fast rate
of convergence of HYBRJ usually avoids this possibility.

Unless high precision solutions are required, the recommended
value for XTOL is the square root of the machine precision.

5. Unsuccessful completion.

Unsuccessful termination of HYBRJ can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or lack of good progress.

Improper input parameters. INFO is set to O if N .LE. 0O, or
LDFJAC .LT. N, or XTOL .LT. 0.DO, or MAXFEV .LE. 0O, or
FACTOR .LE. 0.DO, or LR .LT. (N#*(N+1l))/2.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by HYBRJ. In this
case, it may be possible to remedy the situation by rerunning
HYBRJ with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 100*{N+1l). If the number of calls to FCN with
IFLAG = 1 reaches MAXFEV, then this indicates that the routine
is converging very slowly as measured by the progress of FVEC,
and INFO is set to 2. This situation should be unusual
because, as indicated below, lack of good progress is usually
diagnosed earlier by HYBRJ, causing termination with INFO = 4
or INFO = 5.

Lack of good progress. HYBRJ searches for a zero of the system
by minimizing the sum of the squares of the functions. 1In so
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doing, it can become trapped in a region where the minimum
does not correspond to a zero of the system and, in this situ-
ation, the iteration eventually fails to make good progress.
In particular, this will happen if the system does not have a
Zero. If the system has a zero, rerunning HYBRJ from a dif-
ferent starting point may be helpful.

6. Characteristics of the algorithm.

HYBRJ is a modification of the Powell hybrid method. Two of its
main characteristics involve the choice of the correction as a
convex combination of the Newton and scaled gradient directions,
and the updating of the Jacobian by the rank-1 method of Broy-
den. The choice of the correction guarantees (under reasonable
conditions) global convergence for starting points far from the
solution and a fast rate of convergence. The Jacobian is calcu-
lated at the starting point, but it is not recalculated until
the rank-1l method fails to produce satisfactory progress.

Timing. The time required by HYBRJ to solve a given problem

- depends on N, the behavior of the functions, the accuracy
requested, and the starting point. The number of arithmetic
operations needed by HYBRJ is about 11.5%(N**2) to process
each evaluation of the functions (call to FCN with IFLAG = 1)
and 1.3*(N**3) to process each evaluation of the Jacobian
(call to FCN with IFLAG = 2). Unless FCN can be evaluated
quickly, the timing of HYBRJ will be strongly influenced by
the time spent in FCN.

Storage. HYBRJ requires (3*N**2 + 17*N)/2 double precision

storage locations, in addition to the storage required by the
program. There are no internally declared storage arrays.

7. Subprograms required.
USER-supplied ...... FCN

MINPACK-supplied ... DOGLEG,DPMPAR, ENORM,
QFORM, QRFAC, R1IMPYQ, R1UPDT

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MINO,MOD

8. References.
M. J. D. Powell, A Hybrid Method for Nonlinear Equations.

Numerical Methods for Nonlinear Algebraic Equations,
P. Rabinowitz, editor. Gordon and Breach, 1970.

9. Example.
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The problem is to determine the values of x(1), x(2), ..., xX(9).
which solve the system of tridiagonal equations
(3=2*%x(1))*x(1) =2*x(2) = =1
-xX(1i=-1) + (3-2*x(1i))*x(i) -2*x(i+l) = -1, i=2-8

-x(8) + (3-2*%*x(9))*x(9) = -1

khkkhkhkkhkhkikk

DRIVER FOR HYBRJ EXAMPLE.
DOUBLE PRECISION VERSION

hhkhkkhkhhhkk

INTEGER J,N, LDFJAC,MAXFEV, MODE, NPRINT, INFO,NFEV,NJEV, LR, NWNRITE

DOUBLE PRECISION XTOL,FACTOR, FNORM

DOUBLE PRECISION X(9),FVEC(9),FJAC(9,9),DIAG(9),R(45),QTF(9),
WA1(9),WA2(9),WA3(9),WA4(9)

DOUBLE PRECISION ENORM, DPMPAR

EXTERNAL FCN

- LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

10

20

DATA NWRITE /6/
N=29
THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.

DO 10 J =1, 9

X(J) = -1.DO
CONTINUE
LDFJAC = 9
LR = 45

SET XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.

XTOL = DSQRT(DPMPAR(1))

MAXFEV = 1000

MODE = 2

DO 20 J =1, 9
DIAG(J) = 1.DO

CONTINUE
FACTOR = 1.D2
NPRINT = O

CALL HYBRJ(FCN,N, X, FVEC, FJAC, LDFJAC, XTOL, MAXFEV,DIAG,
MODE, FACTOR, NPRINT, INFO,NFEV,NJEV,R, LR, QTF,
WAl,WA2,WA3,WA4L)

FNORM = ENORM(N, FVEC)

WRITE (NWRITE,1000) FNORM,NFEV,NJEV, INFO, (X(J),J=1,N)
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STOP
FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,31H NUMBER OF FUNCTION EVALUATIONS,I10 //
* 5X,31H NUMBER OF JACOBIAN EVALUATIONS,I10 //
* 5X,15H EXIT PARAMETER,16X,110 //
* 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))
LAST CARD OF DRIVER FOR HYBRJ EXAMPLE.
END
SUBROUTINE FCN(N, X, FVEC, FJAC, LDFJAC, IFLAG)
INTEGER N,LDFJAC, IFLAG
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)
SUBROUTINE FCN FOR HYBRJ EXAMPLE.
INTEGER J,K
DOUBLE PRECISION ONE,TEMP, TEMP1,TEMP2, THREE, TWO, ZERO
DATA ZERO,ONE, TWO, THREE, FOUR ,/0.DO,1.D0,2.D0,3.D0,4.D0/
IF (IFLAG .NE. 0) GO TO 5
INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
RETURN
CONTINUE
IF (IFLAG .EQ. 2) GO TO 20
DO 10 K = 1, N
TEMP = (THREE - TWO*X(K))*X(K)
TEMP1 = ZERO
IF (K .NE. 1) TEMP1 = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
CONTINUE
GO TO 50
CONTINUE
DO 40 K = 1, N
DO 30 J = 1, N
FJAC(K,J) = ZERO
CONT INUE
FJAC(K,K) = THREE - FOUR*X(K)
IF (K .NE. 1) FJAC(K,K-1) = -ONE
IF (K .NE. N) FJAC(K,K+1) = -TWO
CONTINUE
CONTINUE
RETURN
LAST CARD OF SUBROUTINE FCN.

END

Results obtained with different compilers or machines
may be slightly different.
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FINAL L2 NORM OF THE RESIDUALS
NUMBER OF FUNCTION EVALUATIONS
NUMBER OF JACOBIAN EVALUATIONS
EXIT PARAMETER

FINAL APPROXIMATE SOLUTION
-0.5706545D+00 -0.6816283D+00

-0.7042129D+00 -0.7013690D+00
-0.6657920D+00 -0.5960342D+00

0.1192636D-07
11
1

1

-0.7017325D+00
-0.6918656D+00
-0.4164121D+00

Page 8
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Documentation for MINPACK subroutine LMDERI]
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMDER1l is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm. This is done by using the more
general least-squares solver LMDER. The user must provide a
subroutine which calculates the functions and the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMDER1(FCN,M,N, X,FVEC,FJAC,LDFJAC, TOL,
* INFO, IPVT,WA,LWA)

INTEGER M, N, LDFJAC, INFO, LWA

INTEGER IPVT(N)

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),6 WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMDER1 and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDER.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an
'EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(M,N,X,FVEC,FJAC, LDFJAC, IFLAG)
INTEGER M,N,LDFJAC, IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
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The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDER1l. 1In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector. :

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FJAC is an output M by N array. The upper N by N submatrix of
FJAC contains an upper triangular matrix R with diagonal ele-
ments of nonincreasing magnitude such that

T T T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower trapezoidal part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than M
which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates either that the relative error in the
sum of squares is at most TOL or that the relative error
between X and the solution is at most TOL. Section 4 contains
more details about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0O Improper input parameters.

INFO = 1 Algorithm estimates that the relative error in the
sum of squares is at most TOL.

INFO = 2 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 FVEC is orthogonal to the columns of the Jacobian to
machine precision.
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INFO = 5 Number of calls to FCN with IFLAG = 1 has reached
100* (N+1).

INFO = 6 TOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7 TOL is too small. No further improvement in the

approximate solution X is possible.
Sections 4 and 5 contain more details about INFO.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the

final calculated Jacobian, Q is orthogonal (not stored), and R

is upper triangular with diagonal elements of nonincreasing
magnitude. Column j of P is column IPVT(j) of the identity
matrix.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than 5*N+M.

4., Successful completion.

The accuracy of LMDER1 is controlled by the convergence parame-
ter TOL. This parameter is used in tests which make three types
of comparisons between the approximation X and a solution XSOL.
LMDER1 terminates when any of the tests is satisfied. 1If TOL is
less than the machine precision (as defined by the MINPACK func-
tion DPMPAR(1)), then LMDER1l only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMDER1l may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMDER1 with a tighter toler-
ance.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector 2, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with TOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also
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satisfied).

Second convergence test. If D is a diagonal matrix (implicitly
generated by LMDER1) whose entries contain scale factors for
the variables, then this test attempts to guarantee that

ENORM(D* (X-XSOL)) .LE. TOL*ENORM(D*XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but the choice of D is such
that the accuracy of the components of X is usually related to
their sensitivity.

Third convergence test. This test is satisfied when FVEC is
orthogonal to the columns of the Jacobian to machine preci=-
sion. There is no clear relationship between this test and
the accuracy of LMDER1, and furthermore, the test is equally
well satisfied at other critical points, namely maximizers and
saddle points. Therefore, termination caused by this test
(INFO = 4) should be examined carefully.

5. Unsuccessful completion.

Unsuccessful termination of LMDER1 can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to O if N .LE. 0O, or
M .LT. N, or LDFJAC .LT. M, or TOL .LT. 0.DO, or
LWA .LT. 5*N+M.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDER1. 1In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead LMDER, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN with IFLAG = 1 reaches 100*(N+1), then this indi-
cates that the routine is converging very slowly as measured
by the progress of FVEC, and INFO is set to 5. In this case,

it may be helpful to restart LMDER1l, thereby forcing it to

disregard old (and possibly harmful) information.
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6. Characteristics of the algorithm.

LMDER]1 is a modification of the
Two of its main characteristics
implicitly scaled variables and
rection. The use of implicitly
invariance of LMDER1l and limits

any direction where the functions are changing rapidly.

Levenberg-Marquardt algorithm.
involve the proper use of

an optimal choice for the cor-
scaled variables achieves scale

the correction in
The

the size of

optimal choice of the correction guarantees (under reasonable
conditions) global convergence from starting points far from the
solution and a fast rate of convergence for problems with small

residuals.
Timing.

racy requested,

The time required by LMDER1 to solve a given problem
depends on M and N, the behavior of the functions,
and the starting point.

the accu-
The number of arith-

metic operations needed by LMDER1l is about N**3 to process

each evaluation of the functions

(call to FCN with IFLAG

1)

and M#*(N**2) to process each evaluation of the Jacobian (call

to FCN with IFLAG 2).

Unless FCN can be evaluated quickly,

the timing of LMDER1 will be strongly influenced by the time

spent in FCN.

Storage. LMDER]1 requires M*N +

rage locations and N integer storage locations,
the storage required by the program.

declared storage arrays.

Subprograms regquired.

USER-supplied ......

MINPACK-supplied

FORTRAN-supplied

8. References.

9.

Jorge J. More,
and Theory. Numerical Analysis,

Lecture Notes in Mathematics 630,

Example.

The problem is to determine the values of x(1), x(2),

DABS, DMAX1,

The Levenberg-Marquardt Algorithm,

2*M + 6*N double precision sto-
in addition to
There are no internally

DPMPAR, ENORM, LMDER, LMPAR, QRFAC, QRSOLV

DMIN1,DSQRT,6 MOD

Implementation
G.. A. Watson, editor.
Springer-Verlag, 1977.

and x(3)

which provide the best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)),

to the data

i=1, 15
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y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),
where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The

i-th component of FVEC is thus defined by

y(i) = (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

khkkhkkkhkx

DRIVER FOR LMDER1 EXAMPLE.
DOUBLE PRECISION VERSION

kkhkkhkkkhhkhhkk

INTEGER J,M,N, LDFJAC, INFO, LWA, NWRITE

INTEGER IPVT(3)

DOUBLE PRECISION TOL, FNORM

DOUBLE PRECISION X(3),FVEC(15),FJAC(15,3),WA(30)
DOUBLE PRECISION ENORM,DPMPAR

EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/

M
N

15
3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

X(1l) = 1.DO
X(2) = 1.D0
X(3) = 1.DO

LDEJAC = 15
LWA = 30

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.

TOL = DSQRT(DPMPAR(1))

CALL LMDER1(FCN,M,N,X,FVEC, FJAC, LDFJAC, TOL,
* INFO, IPVT, WA, LWA)

FNORM = ENORM(M, FVEC)

WRITE (NWRITE,1000) FENORM, INFO, (X(J),J=1,N)

STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,15H EXIT PARAMETER, 16X,I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

LAST CARD OF DRIVER FOR LMDER1l EXAMPLE.
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END

SUBROUTINE FCN(M,N, X, FVEC, FJAC,LDFJAC, IFLAG)
INTEGER M, N, LDFJAC, IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

SUBROUTINE FCN FOR LMDER1l EXAMPLE.

INTEGER I

DOUBLE PRECISION TMP1,TMP2,TMP3, TMP4

DOUBLE PRECISION Y(15)

DATA Y(1),Y(2),Y(3),Y(4).Y(5),Y(6),Y(7),Y(8),
Y(9),Y(10),Y(11),¥(12),Y(13),Y(14),Y(15)

/1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,

3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0, 4.39D0/

IF (IFLAG .EQ. 2) GO TO 20

DO 10 I =1, 15
TMP1 = 1
TMP2 = 16 - 1
TMP3 = TMP1

IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(l) + TMP1/(X(2)*TMP2 + X(3)*TMP3))

CONTINUE
GO TO 40
CONTINUE
DO 30 I = 1, 15
TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
FJAC(I,1) = -1.DO
FJAC(I,2) = TMP1*TMP2/TMP4
FJAC(I,3) = TMP1*TMP3/TMP4
CONTINUE
CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01
EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01
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Documentation for MINPACK subroutine LMDER
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMDER is to minimize the sum of the squares of M
nonlinear functions in N wvariables by a modification of the
Levenberg-Marquardt algorithm. The user must provide a subrou-
tine which calculates the functions and the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMDER(FCN,M,N, X, FVEC, FJAC, LDFJAC, FTOL, XTOL, GTOL,
* MAXFEV,DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, NJEV,
* IPVT, QTF, WAl, WA2,WA3, WA4)

INTEGER M,N,LDFJAC, MAXFEV, MODE, NPRINT, INFO, NFEV, NJEV

INTEGER IPVT(N)

DOUBLE PRECISION FTOL,XTOL,GTOL, FACTOR

DOUBLE PRECISION X(N),EVEC(M), FJAC(LDFJAC,N),DIAG(N),QTF(N),
* WA1(N),WA2(N),WA3(N),6 WA4L(M)

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMDER and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDER.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an
EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(M,N,X,FVEC,FJAC, LDFJAC, IFLAG)
INTEGER M,N,LDFJAC, IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC.. DO NOT ALTER FVEC.
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The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDER. In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FJAC is an output M by N array. The upper N by N submatrix of
FJAC contains an upper triangular matrix R with diagonal ele-
ments of nonincreasing magnitude such that

T T T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower trapezoidal part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than M
which specifies the leading dimension of the array FJAC.

FTOL is a nonnegative input variable. Termination occurs when
both the actual and predicted relative reductions in the sum
of squares are at most FTOL. Therefore, FTOL measures the
relative error desired in the sum of squares. Section 4 con-
tains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

GTOL is a nonnegative input variable. Termination occurs when
the cosine of the angle between FVEC and any column of the
Jacobian is at most GTOL in absolute value. Therefore, GTOL
measures the orthogonality desired between the function vector
and the columns of the Jacobian. Section 4 contains more
details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN with IFLAG = 1 has reached
MAXFEV.
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DIAG is an array of length N. If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = 0 at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X, FVEC, and FJAC available for printing.
FVEC and FJAC should not be altered. If NPRINT is not posi-
tive, no special calls of FCN with IFLAG = O are made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Both actual and predicted relative reductions in the
sum of squares are at most FTOL.

INFO = 2 Relative error between two consecutive iterates is
at most XTOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 The cosine of the angle between FVEC and any column
of the Jacobian is at most GTOL in absolute value.

INFO = 5 Number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

INFO = 6 FTOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7 XTOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 8 GTOL is too small. FVEC is orthogonal to the
columns of the Jacobian to machine precision.

Sections 4 and 5 contain more details about INFO.
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NFEV is an integer output variable set to the number of calls to
FCN with IFLAG = 1.

NJEV is an integer output variable set to the number of calls to
FCN with IFLAG = 2.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular with diagonal elements of nonincreasing
magnitude. Column j of P is column IPVT(j) of the identity
matrix.

QTF is an output array of length N which contains the first N
elements of the vector (Q transpose)*FVEC.

WAl, WA2, and WA3 are work arrays of length N.

WA4 is a work array of length M.

4. Successful completion.

The accuracy of LMDER is controlled by the convergence parame-
ters FTOL, XTOL, and GTOL. These parameters are used in tests
which make three types of comparisons between the approximation
X and a solution XSOL. LMDER terminates when any of the tests
is satisfied. 1If any of the convergence parameters is less than
the machine precision (as defined by the MINPACK function
DPMPAR(1)), then LMDER only attempts to satisfy the test defined
by the machine precision. Further progress is not usually pos-
sible.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMDER may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMDER with tighter toler-
ances.

First convergence test. 1If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with FTOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied). Unless high precision solutions are required, the
recommended value for FTOL is the square root of the machine
precision.
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Second convergence test. If D is the diagonal matrix whose
entries are defined by the array DIAG, then this test attempts
to guarantee that

ENORM(D* (X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but if MODE = 1, then the
accuracy of the components of X is usually related to their
sensitivity. Unless high precision solutions are required,
the recommended value for XTOL is the square root of the
machine precision.

Third convergence test. This test is satisfied when the cosine
of the angle between FVEC and any column of the Jacobian at X
is at most GTOL in absolute value. There is no clear rela-
tionship between this test and the accuracy of LMDER, and
furthermore, the test is equally well satisfied at other crit-
ical points, namely maximizers and saddle points. Therefore,
termination caused by this test (INFO = 4) should be examined
carefully. The recommended value for GTOL is zero.

5. Unsuccessful completion.

Unsuccessful termination of LMDER can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to 0 if N .LE. O, or
M .LT. N, or LDFJAC .LT. M, or FTOL .LT. 0.DO, or
XTOL .LT. 0.DO, or GTOL .LT. 0.DO, or MAXFEV .LE. O, or
FACTOR .LE. 0.DO.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDER. In this
case, it may be possible to remedy the situation by rerunning
LMDER with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 100*(N+1). If the number of calls to FCN with
IFLAG = 1 reaches MAXFEV, then this indicates that the routine
is converging very slowly as measured by the progress of FVEC,
and INFO.is set to 5. In this case, it may be helpful to
restart LMDER with MODE set to 1.

6. Characteristics of the algorithm.

LMDER is a modification of the Levenberg-Marquardt algorithm.
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Two of its main characteristics involve the proper use of
implicitly scaled variables (if MODE = 1) and an optimal choice
for the correction. The use of implicitly scaled variables
achieves scale invariance of LMDER and limits the size of the
correction in any direction where the functions are changing
rapidly. The optimal choice of the correction guarantees (under
reasonable conditions) global convergence from starting points
far from the solution and a fast rate of convergence for prob-
lems with small residuals.

Timing. The time required by LMDER to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMDER is about N**3 to process each
evaluation of the functions (call to FCN with IFLAG = 1) and
M*(N**2) to process each evaluation of the Jacobian (call to
FCN with IFLAG = 2). Unless FCN can be evaluated quickly, the
timing of LMDER will be strongly influenced by the time spent
in FCN.

Storage. LMDER requires M*N + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms regquired.

USER~supplied ...... FCN
MINPACK-supplied ... DPMPAR, ENORM, LMPAR, QRFAC, QRSOLV
FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT, MOD

8. References.
Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

X(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i =1, 15
to the data

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),
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where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The
i-th component of FVEC is thus defined by

y(i) = (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

khkkkkkkhkkhk

DRIVER FOR LMDER EXAMPLE.
DOUBLE PRECISION VERSION

kkkkkhkkkhkkkk

INTEGER J,M, N, LDFJAC, MAXFEV, MODE, NPRINT, INFO, NFEV, NJEV, NWRITE

INTEGER IPVT(3)

DOUBLE PRECISION FTOL,XTOL,GTOL, FACTOR, FNORM

DOUBLE PRECISION X(3),FVEC(15),FJAC(15,3),DIAG(3),QTF(3),
WA1(3),WA2(3),WA3(3),WA4(15)

DOUBLE PRECISION ENORM,DPMPAR

EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/

M
N

15
3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

X(1) = 1.DO
X(2) = 1.DO
X(3) = 1.DO

LDFJAC = 15

SET FTOL AND XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION
AND GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE
REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.

FTOL = DSQRT(DPMPAR(1))
XTOL = DSQRT (DPMPAR(1))
GTOL = 0.DO

MAXFEV = 400

MODE = 1

FACTOR = 1.D2

NPRINT = O

CALL LMDER(FCN,M,N, X, FVEC, FJAC,LDFJAC, FTOL, XTOL, GTOL,
MAXFEV,DIAG,MODE, FACTOR,NPRINT, INFO,NFEV,NJEV,
IPVT,QTF, WAl ,WA2,WA3,WA4)

FNORM = ENORM(M, FVEC)

WRITE (NWRITE,1000) FNORM,NFEV,NJEV, INFO, (X(J),J=1,N)

STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
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5X,31H NUMBER OF FUNCTION EVALUATIONS,I10 //
5X,31H NUMBER OF JACOBIAN EVALUATIONS,I10 //
5X,15H EXIT PARAMETER, 16X,I110 //

5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

* ok ok ok

LAST CARD OF DRIVER FOR LMDER EXAMPLE.

QO

END

SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER M,N,LDFJAC, IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

SUBROUTINE FCN FOR LMDER EXAMPLE.

QQQ

INTEGER I

DOUBLE PRECISION TMP1, TMP2,TMP3, TMP4

DOUBLE PRECISION Y(15)

DATA Y(1),Y¥(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),

* ¥(9),Y(10),¥(11),¥(12),¥(13),¥(14),¥(15)

* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D~1,9.6D-1,1.34D0,2.1D0, 4.39D0/

IF (IFLAG .NE. 0) GO TO 5

INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.

Qa0 0

RETURN
5 CONTINUE
IF (IFLAG .EQ. 2) GO TO 20
1, 15
I
16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
10 CONTINUE
GO TO 40
20 CONTINUE
DO 30 I
TMP1
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
FJAC(I,1) = -1.DO
FJAC(I,2) = TMP1*TMP2/TMP4
FJAC(I,3) = TMP1*TMP3/TMP4
30 CONTINUE
40 CONTINUE
RETURN

=]
=
o
N
i nn

15

—
~

I

nn

LAST CARD OF SUBROUTINE FCN.

PRONQ!

END
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Results obtained with different compilers or machines

may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01

NUMBER OF FUNCTION EVALUATIONS 6
NUMBER OF JACOBIAN EVALUATIONS 5
EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01

Page 9
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Documentatien for MINPACK subroutine LMSTR1
Double precision version |
Argonne National Laboratory -
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMSTR1 is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm which uses minimal storage. This
is done by using the more general least-squares solver LMSTR.
The user must provide a subroutine which calculates the func-
tions and the rows of the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMSTR1(FCN,M,N,X,FVEC,FJAC,LDFJAC, TOL,
* INFO, IPVT, WA, LWA)

INTEGER M, N, LDFJAC, INFO, LWA

INTEGER IPVT(N)

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),6WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMSTR1 and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMSTRI.

FCN is the name of the user-supplied subroutine which calculates
the functions and the rows of the Jacobian. FCN must be
declared in an EXTERNAL statement in the user calling program,
and should be written as follows.

SUBROUTINE FCN(M,N, X, FVEC, FJROW, IFLAG)

INTEGER M,N, IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.
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END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMSTR1l. 1In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an . initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FJAC is an output N by N array. The upper triangle of FJAC con-
tains an upper triangular matrix R such that

T T T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower triangular part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than N
-which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates either that the relative error in the
sum of sgquares is at most TOL or that the relative error
between X and the solution is at most TOL. Section 4 contains
more details about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO 1 Algorithm estimates that the relative error in the

sum of squares is at most TOL.

INFO = 2 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 FVEC is orthogonal to the columns of the Jacobian to
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machine precision.

INFO = 5 Number of calls to FCN with IFLAG = 1 has reached
100*(N+1).

INFO = 6 TOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7 TOL is too small. No further improvement in the

approximate solution X is possible.
Sections 4 and 5 contain more details about INFO.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular. Column j of P is column IPVT(j) of the
identity matrix.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than 5*N+M.

4., Successful completion.

The accuracy of LMSTR1 is controlled by the convergence parame-
ter TOL. This parameter is used in tests which make three types
of comparisons between the approximation X and a solution XSOL.
LMSTR1 terminates when any of the tests is satisfied. If TOL is
less than the machine precision (as defined by the MINPACK func-
.tion DPMPAR(1l)), then LMSTR1l only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMSTR1l may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMSTR1 with a tighter toler-
ance.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

" ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),
where FVECS denotes the functions evaluated at XSOL. If this

condition is satisfied with TOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
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INFO is set to 1 (or to 3 if the second test is also satis-
fied).

Second convergence test. If D is a diagonal matrix (implicitly
generated by LMSTR1) whose entries contain scale factors for
the variables, then this test attempts to guarantee that

ENORM(D* (X-XSOL)) .LE. TOL*ENORM(D*XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but the choice of D is such
that the accuracy of the components of X is usually related to
their sensitivity..

Third convergence test. This test is satisfied when EFVEC is
orthogonal to the columns of the Jacobian to machine preci-
sion. There is no clear relationship between this test and
the accuracy of LMSTR1l, and furthermore, the test is equally
well satisfied at other critical points, namely maximizers and
saddle points. Therefore, termination caused by this test
(INFO = 4) should be examined carefully.

5. Unsuccessful completion.

Unsuccessful termination of LMSTR1 can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to O if N .LE. O, or
M .LT. N, or LDFJAC .LT. N, or TOL .LT. 0.DO, or
LWA .LT. S5*N+M.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMSTR1. 1In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead LMSTR, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN with IFLAG = 1 reaches 100*(N+1l), then this indi-
cates that the routine is converging very slowly as measured
by the progress of FVEC, and INFO is set to 5. 1In this case,
it may be helpful to restart LMSTR1, thereby forcing it to
disregard old (and possibly harmful) information.
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6. Characteristics of the algorithm.

LMSTR]1 is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables and an optimal choice for the cor-
rection. The use of implicitly scaled variables achieves scale
invariance of LMSTR1 and limits the size of the correction in
any direction where the functions are changing rapidly. The
optimal choice of the correction guarantees (under reasonable
conditions) global convergence from starting points far from the
solution and a fast rate of convergence for problems with small
residuals.

Timing. The time required by LMSTR1l to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMSTR1 is about N**3 to process
each evaluation of the functions (call to FCN with IFLAG = 1)
and 1.5*%(N**2) to process each row of the Jacobian (call to
FCN with IFLAG .GE. 2). Unless FCN can be evaluated quickly,
the timing of LMSTR1 will be strongly influenced by the time
spent in FCN.

Storage. LMSTR1 requires N**2 + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms reguired.

USER=-supplied ...... FCN

MINPACK-supplied ... DPMPAR, ENORM, LMSTR, LMPAR, QRFAC, QRSOLV,
RWUPDT

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT, MOD

8. References.
Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i =1, 15
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to the data
y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),
where u(i) = 1i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The

i-th component of FVEC is thus defined by

y(i) = (x(1) + u(i)/(v(1)*x(2) + w(i)*x(3))).

kkhkkhkkkkkkkk

DRIVER FOR LMSTR1 EXAMPLE.
DOUBLE PRECISION VERSION

khkkkkhkihsk

INTEGER J,M,N, LDFJAC, INFO, LWA, NWRITE

INTEGER IPVT(3)

DOUBLE PRECISION TOL, FNORM

DOUBLE PRECISION X(3),FVEC(15),FJAC(3,3),WA(30)
DOUBLE PRECISION ENORM, DPMPAR

EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/

M
N

15
3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

X(1) = 1.DO
X(2) = 1.D0
X(3) = 1.D0
LDFJAC = 3
LWA = 30

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED
THIS IS THE RECOMMENDED SETTING.

TOL = DSQRT(DPMPAR(1))

CALL LMSTR1(FCN,M,N,X,FVEC, FJAC,LDFJAC, TOL,
* INFO, IPVT, WA, LWA)

FNORM = ENORM(M, FVECY)

WRITE (NWRITE,1000) FNORM, INFO, (X(J),J=1,N)

STOP

1000 FORMAT (S5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,15H EXIT PARAMETER, 16X,I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)
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LAST CARD OF DRIVER FOR LMSTR1 EXAMPLE.

END

SUBROUTINE FCN(M,N, X, FVEC, FJROW, IFLAG)
INTEGER M, N, IFLAG

DOUBLE PRECISION X(N),FVEC(M), FJROW(N)

SUBROUTINE FCN FOR LMSTR1 EXAMPLE.

INTEGER 1 - '

DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4

DOUBLE PRECISION Y(15)

DATA Y(1),Y(2),¥(3),Y(4),Y(5),Y(6),Y(7),¥Y(8),
Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
/1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,

3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0, 4.39D0/

IF (IFLAG .GE. 2) GO TO 20

DO 10 I =1, 15
TMP1 = 1
TMPZ2 = 16 - 1
TMP3 = TMP1

IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))

CONTINUE
GO TO 40
CONTINUE
I = IFLAG - 1
TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)*%*2
FJROW(1) = -1.DO
FJROW(2) = TMP1*TMP2/TMP4
FJROW(3) = TMP1*TMP3/TMP4
CONTINUE :
CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01
EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01
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Documentation for MINPACK subroutine LMSTR
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMSTR is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm which uses minimal storage. The
user must provide a subroutine which calculates the functions
and the rows of the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMSTR(FCN,M,N, X, FVEC, FJAC, LDFJAC, FTOL, XTOL, GTOL,
* MAXFEV,DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, NJEV,
* IPVT, QTF,WAl, WA2,WA3, WA4)

INTEGER M,N, LDFJAC,MAXFEV,MODE, NPRINT, INFO,NFEV, NJEV

INTEGER IPVT(N)

DOUBLE PRECISION FTOL,XTOL,GTOL, FACTOR

DOUBLE PRECISION X(N),EFVEC (M), FJAC(LDFJAC,N),DIAG(N),QTF(N),

* " WAL(N),WA2(N),WA3(N),WA4(M)

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMSTR and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMSTR.

FCN is the name of the user~supplied subroutine which calculates
the functions and the rows of the Jacobian. FCN must be
declared in an EXTERNAL statement in the user calling program,
and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC,FJROW, IFLAG)

INTEGER M, N, IFLAG

DOUBLE PRECISION X(N),FVEC(M), FJROW(N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.
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END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMSTR. In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. ©On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FJAC is an output N by N array. The upper triangle of FJAC con-
tains an upper triangular matrix R such that

T T T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower triangular part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

FTOL is a nonnegative input variable. Termination occurs when
both the actual and predicted relative reductions in the sum
of squares are at most FTOL. Therefore, FTOL measures the
relative error desired in the sum of squares. Section 4 con-
tains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

GTOL is a nonnegative input variable. Termination occurs when
the cosine of the angle between FVEC and any column of the
Jacobian is at most GTOL in absolute value. Therefore, GTOL
measures the orthogonality desired between the function vector
and the columns of the Jacobian. Section 4 contains more
details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN with IFLAG = 1 has reached
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MAXFEV.

DIAG is an array of length N. If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = 0 at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X and FVEC available for printing. If NPRINT
is not positive, no special calls of FCN with IFLAG = O are
made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Both actual and predicted relative reductions in the
sum of squares are at most FTOL.

INFO = 2 Relative error between two consecutive iterates is
at most XTOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 The cosine of the angle between FVEC and any column
of the Jacobian is at most GTOL in absolute value.

INFO = 5 Number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

INFO = 6 FTOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7 XTOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 8 GTOL is too small. FVEC is orthogonal to the
columns of the Jacobian to machine precision.
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Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to
FCN with IFLAG = 1.

NJEV is an integer output variable set to the number of calls to
FCN with IFLAG = 2.

IPVT is an integer output array of length N. IPVT defines a
‘ permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular. Column j of P is column IPVT(j) of the
identity matrix.

QTF is an output array of length N which contains the first N
elements -of the vector (Q transpose)*FVEC.

WAl, WAZ, and WA3 are work arrays of length N.

WA4 is a work array of length M.

. 4. Successful completion.

The accuracy of LMSTR is controlled by the convergence parame-
ters FTOL, XTOL, and GTOL. These parameters are used in tests
which make three types of comparisons between the. approximation
X and a solution XSOL. LMSTR terminates when any of the tests
is satisfied. If any of the convergence parameters is less than
the machine precision (as defined by the MINPACK function
DPMPAR(1)), then LMSTR only attempts to satisfy the test defined
by the machine precision. Further progress is not usually pos-
sible.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMSTR may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMSTR with tighter toler-
ances.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with FTOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied). Unless high precision solutions are required, the
recommended value for FTOL is the square root of the machine
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precision.

Second convergence test. If D is the diagonal matrix whose
entries are defined by the array DIAG, then this test attempts
to guarantee that

ENORM(D* (X~XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(~K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but if MODE = 1, then the
accuracy of the components of X is usually related to their
sensitivity. Unless high precision solutions are required,
the recommended value for XTOL is the square root of the
machine precision.

Third convergence test. This test is satisfied when the cosine
of the angle between FVEC and any column of the Jacobian at X
is at most GTOL in absolute value. There is no clear rela-
tionship between this test and the accuracy of LMSTR, and
furthermore, the test is equally well satisfied at other crit-
ical points, namely maximizers and saddle points. Therefore,
termination caused by this test (INFO = 4) should be examined
carefully. The recommended value for GTOL is zero.

5. Unsuccessful completion.

Unsuccessful termination of LMSTR can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to O if N .LE. 0, or
M .LT. N, or LDFJAC .LT. N, or FTOL .LT. 0.DO, or
XTOL .LT. 0.DO, or GTOL .LT. 0.DO, or MAXFEV .LE. O, or
FACTOR .LE. 0.DO.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMSTR. 1In this
case, it may be possible to remedy the situation by rerunning
LMSTR with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 100*(N+1). If the number of calls to FCN with
IFLAG = 1 reaches MAXFEV, then this indicates that the routine
is converging very slowly as measured by the progress of FVEC,
and INFO is set to 5. 1In this case, it may be helpful to
restart LMSTR with MODE set to 1.

b. Characteristics of the algorithm.
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LMSTR is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables (if MODE = 1) and an optimal choice
for the correction. The use of implicitly scaled variables
achieves scale invariance of LMSTR and limits the size of the
correction in any direction where the functions are changing
rapidly. The optimal choice of the correction guarantees (under
reasonable conditions) global convergence from starting points
far from the solution and a fast rate of convergence for prob-
lems with small residuals.

Timing. The time required by LMSTR to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMSTR is about N**3 to process each
evaluation of the functions (call to FCN with IFLAG = 1) and
1.5*(N**2) to process each row of the Jacobian (call to FCN
with IFLAG .GE. 2). Unless FCN can be evaluated quickly, the
timing of LMSTR will be strongly influenced by the time spent
in FCN. :

Storage. LMSTR requires N**2 + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms required.

"USER-supplied ...... FCN
MINPACK-supplied ... DPMPAR, ENORM, LMPAR, QRFAC, QRSOLV, RWUPDT
FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,6 MOD

8. References.
Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(i), Xx(2), and x(3)
which provide the best fit (in the least squares sense) of

X(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i =1, 15
to the data

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),
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where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The
i-th component of FVEC is thus defined by

y(i) = (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

khkkkhkhkkkk K

DRIVER FOR LMSTR EXAMPLE.
DOUBLE PRECISION VERSION

khkkhkkkkhkkhkkhkk

INTEGER J,M,N, LDFJAC,MAXFEV, MODE, NPRINT, INFO, NFEV; NJEV, NWRITE

INTEGER IPVT(3)

DOUBLE PRECISION FTOL,XTOL,GTOL, FACTOR, FNORM

DOUBLE PRECISION X(3),FVEC(15),FJAC(3,3),DIAG(3),QTF(3),
WAL(3),WA2(3),WA3(3),WA4(15)

DOUBLE PRECISION ENORM,DPMPAR

EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/

M
N

15
3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

X(1l) = 1.D0
X(2) = 1.DO
X(3) = 1.D0
LDEJAC = 3

SET FTOL AND XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION
AND GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE
REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.

FTOL = DSQRT(DPMPAR(1))
XTOL = DSQRT (DPMPAR(1))
GTOL = 0.DO

MAXFEV = 400

MODE = 1

FACTOR = 1.D2

NPRINT = O

CALL LMSTR(FCN,M,N,X,FVEC, FJAC, LDFJAC, FTOL, XTOL, GTOL,
MAXFEV,DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, NJEV,
IPVT, QTF,WAl,WA2,WA3, WA4)

FNORM = ENORM(M, FVEC)

WRITE (NWRITE,1000) FNORM,NFEV,NJEV, INFO, (X(J),J=1,N)

STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
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5X,31H NUMBER OF FUNCTION EVALUATIONS,I1O //
5X,31H NUMBER OF JACOBIAN EVALUATIONS,I10 //
5X,15H EXIT PARAMETER,16X,I10 //

5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

LAST CARD OF DRIVER FOR LMSTR EXAMPLE.

END

SUBROUTINE FCN(M,N,X,FVEC,FJROW, IFLAG)
INTEGER M,N, IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

SUBROUTINE FCN FOR LMSTR EXAMPLE.

INTEGER I

DOUBLE PRECISION TMP1,TMP2,TMP3, TMP4

DOUBLE PRECISION Y(15)

DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6).Y(7),Y(8),
Y(9),Y(10),Y(11),¥Y(12),Y(13),Y(14),Y(15)
/1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,

3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0, 4.39D0/

IF (IFLAG .NE. 0) GO TO 5
INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.

RETURN
CONT INUE
IF (IFLAG .GE. 2) GO TO 20
DO 10 I = 1, 15
TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
CONTINUE

GO TO 40

CONTINUE

I = IFLAG -~ 1
TMP1 =1
T™P2 = 16 - I
TMP3 = TMP1

IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2

FJROW(1) = -1.DO
FJROW(2) = TMP1*TMP2/TMP4
FJROW(3) = TMP1*TMP3/TMP4
CONTINUE

CONTINUE

RETURN

LAST CARD OF SUBROUTINE FCN.

END



. Results obtained with different compilers or machines
- may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01

NUMBER OF FUNCTION EVALUATIONS 6
NUMBER OF JACOBIAN EVALUATIONS 5
EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01
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Documentation for MINPACK subroutine LMDIF1
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

Purpose.

The purpose of LMDIFl is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm. This is done by using the more
general least-squares solver LMDIF. The user must provide a
subroutine which calculates the functions. The Jacobian is then
calculated by a forward-difference approximation.

Subroutine and type statements.

SUBROUTINE LMDIF1(FCN,M,N,X,FVEC, TOL, INFO, IWA, WA, LWA)
INTEGER M,N, INFO, LWA

INTEGER IWA(N)

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),EVEC(M),WA(LWA)

EXTERNAL FCN

Parameters.

Parameters designated as input parameters must be specified on
entry to LMDIF1l and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDIF1.

FCN is the name of the user-supplied subroutine which calculates
the functions. FCN must be declared in an EXTERNAL statement
in the user calling program, and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC, IFLAG)
INTEGER M,N, IFLAG

DOUBLE PRECISION X(N),FVEC(M)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
RETURN

END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDIF1. In this case set
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IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates either that the relative error in the
sum of squares is at most TOL or that the relative error
between X and the solution is at most TOL. Section 4 contains

"more details about TOL.

INFO is an integer output variable. If the ﬁser has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Algorithm estimates that the relative error in the
sum of squares is at most TOL.

INFO = 2 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 FVEC is orthogonal to the columns of the Jacobian to
machine precision.

INFO = 5 Number of calls to FCN has reached or exceeded
200%* (N+1).

INFO = 6 TOL is too small. No further reduction in the sunm
of squares is possible.

INFO

]
~

TOL is too small. No further improvement in the
approximate solution X is possible.

Sections 4 and 5 contain more details about INFO.
IWA is an integer work array of length N.
WA is a work array of length LWA.

LWA is a positive integer input variable not less than
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M*N+5*N+M.

Successful completion.

The accuracy of LMDIF1l is controlled by the convergence parame-
ter TOL. This parameter is used in tests which make three types
of comparisons between the approximation X and a solution XSOL.
LMDIF1l terminates when any of the tests is satisfied. If TOL is
less than the machine precision (as defined by the MINPACK func-
tion DPMPAR(1)), then LMDIF1l only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The tests assume that the functions are reasonably well behaved.
If this condition is not satisfied, then LMDIF1l may incorrectly
indicate convergence. The validity of the answer can be
checked, for example, by rerunning LMDIFl with a tighter toler-
ance.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with TOL = 10#**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied).

Second convergence test. If D is a diagonal matrix (implicitly
generated by LMDIFl) whose entries contain scale factors for
the variables, then this test attempts to guarantee that

ENORM (D* (X-XSOL)) .LE. TOL*ENORM(D*XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but the choice of D is such
that the accuracy of the components of X is usually related to
their sensitivity.

Third convergence test. This test is satisfied when FVEC is
orthogonal to the columns of the Jacobian to machine preci-
sion. There is no clear relationship between this test and
the accuracy of LMDIFl, and furthermore, the test is equally
well satisfied at other critical points, namely maximizZers and
saddle points. Also, errors in the functions (see below) may
result in the test being satisfied at a point not close to the
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minimum. Therefore, termination caused by this test
(INFO = 4) should be examined carefully.

5. Unsuccessful completion.

Unsuccessful termination of LMDIFl can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or errors in the functions.

Improper input parameters. INFO is set to O if N .LE. O, or
M .LT. N, or TOL .LT. 0.DO, or LWA .LT. M*N+5*N+M.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDIFl. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead LMDIF, which
includes in its calling sequence the step-length-governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN reaches 200*(N+1), then this indicates that the
routine is converging very slowly as measured by the progress
of FVEC, and INFO is set to 5. In this case, it may be help-
ful to restart LMDIF1l, thereby forcing it to disregard old
(and possibly harmful) information.

Errors in the functions. The choice of step length in the for-
ward-difference approximation to the Jacobian assumes that the
relative errors in the functions are of the order of the
machine precision. If this is not the case, LMDIFl may fail
(usually with INFO = 4). The user should then use LMDIF
instead, or one of the programs which require the analytic
Jacobian (LMDER1 and LMDER).

6. Characteristics of the algorithm.

LMDIF1l is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables and an optimal choice for the cor-
rection. The use of implicitly scaled variables achieves scale
invariance of LMDIF1l and limits the size of the correction in
any direction where the functions are changing rapidly. The
optimal choice of the correction guarantees (under reasonable
conditions) global convergence from starting points far from the
solution and a fast rate of convergence for problems with small
residuals.

Timing. The time required by LMDIFl to solve a given problem
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depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMDIF1l is about N**3 to process
each evaluation of the functions (one call to FCN) and
M*(N**2) to process each approximation to the Jacobian (N
calls to FCN). Unless FCN can be evaluated quickly, the tim-
ing of LMDIF1l will be strongly influenced by the time spent in
FCN.

Storage. LMDIFl1l requires M*N + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

Subprograms regquired.

USER-supplied ...... FCN
MINPACK-supplied ... DPMPAR,ENORM, FDJAC2Z,LMDIF, LMPAR,
QRFAC, QRSOLV
FORTRAN-supplied ... DABS,DMAXl,DMINl,DSQRT,MOD
References.

Jorge J. More, The Levenberg-Marguardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

X(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i=1, 15
to the data

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The
i-th component of FVEC is thus defined by

y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

khkkkkhkkkk

DRIVER FOR LMDIF1 EXAMPLE.
DOUBLE PRECISION VERSION
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C khrhkkkhhr*k

INTEGER J,M,N, INFO, LWA, NWRITE
INTEGER IWA(3)

DOUBLE PRECISION TOL, FNORM

DOUBLE PRECISION X(3),EVEC(15),WA(75)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

QOO

DATA NWRITE /6/

M
N

15
3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

QOO

1.D0
1.D0
1.D0

X(1)
X(2)
X(3)

Q

LWA = 75

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,

THIS IS THE RECOMMENDED SETTING.

TOL = DSQRT(DPMPAR(1))

O oo

CALL LMDIF1(FCN,M,N,X,FVEC, TCL, INFO, IWA, WA, LWA)
FNORM = ENORM(M, EVEC) ‘
WRITE (NWRITE,1000) FNORM, INFO, (X(J),J=1,N)
STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,15H EXIT PARAMETER, 16X, 110 //
* 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

LAST CARD OF DRIVER FOR LMDIF1l EXAMPLE.

aQn

END
SUBROUTINE FCN(M,N, X, FVEC, IFLAG)
INTEGER M,N, IFLAG

DOUBLE PRECISION X(N),FVEC(M)

SUBROUTINE FCN FOR LMDIFl EXAMPLE.

QQaQ

INTEGER I
DOUBLE PRECISION TMP1,TMP2, TMP3

DOUBLE PRECISION Y(15)

DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
* Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0, 4.39D0/
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DO 10 I =1, 15
TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1

IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1l/(X(2)*TMP2 + X(3)*TMP3))
CONTINUE

RETURN

LAST CARD OF SUBROUTINE FCN.

END

Results obtained with different compilers or machines
may be slightly different. '

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01
EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION

0.8241057D-01 0.1133037D+01 0.2343695D+01

Page 7
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Documentation for MINPACK subroutine LMDIF
Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1..Purpose.

The purpose of LMDIF is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm. The user must provide a subrou-
tine which calculates the functions. The Jacobian is then cal-
culated by a forward-difference approximation.

2. Subroutine and type statements.

SUBROUTINE LMDIF(FCN,M,N, X, FVEC, FTOL, XTOL, GTOL , MAXFEV, EPSFCN,
* DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, FJAC, LDFJAC,
* IPVT, QTF, WAl, WA2,WA3,WA4)

INTEGER M, N, MAXFEV, MODE,NPRINT, INFO,NFEV, LDEJAC

INTEGER IPVT(N)

DOUBLE PRECISION FTOL, XTOL,GTOL,EPSFCN, FACTOR

DOUBLE PRECISION X(N),FVEC(M),DIAG(N),FJAC(LDFJAC,N),QTF(N),
* WAL1(N),WA2(N),WA3(N),WA4(M)

EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMDIF and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDIF.

FCN is the name of the user-supplied subroutine which calculates
the functions. FCN must be declared in an EXTERNAL statement
in the user calling program, and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC, IFLAG)
INTEGER M, N, IFLAG ‘

DOUBLE PRECISION X(N),EFVEC(M)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
RETURN

END
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The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDIF. 1In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On ocutput X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FTOL is a nonnegative input wvariable. Termination occurs when
both the actual and predicted relative reductions in the sum
of squares are at most FTOL. Therefore, FTOL measures the
relative error desired in the sum of squares. Section 4 con-
tains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

GTOL is a nonnegative input variable. Termination occurs when
the cosine of the angle between FVEC and any column of the
Jacobian is at most GTOL in absolute wvalue. Therefore, GTOL
measures the orthogonality desired between the function vector
and the columns of the Jacobian. Section 4 contains more
details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FECN is at least MAXFEV by the end
of an iteration.

EPSEFCN is an input variable used in determining a suitable step
for the forward-difference approximation. This approximation
assumes that the relative errors in the functions are of the
order of EPSFCN. If EPSFCN is less than the machine preci-
sion, it is assumed that the relative errors in the functions
are of the order of the machine precision.

DIAG is an array of length N. 1If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input wvariable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is
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specified by the input DIAG. Other values of MODE are equiva-
lent to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = 0 at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X and FVEC available for printing. If NPRINT
is not positive, no special calls of FCN with IFLAG = O are
made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Both actual and predicted relative reductions in the
sum of sguares are at most FTOL.

INFO = 2 Relative error between two consecutive iterates is
at most XTOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 The cosine of the angle between FVEC and any column
of the Jacobian is at most GTOL in absolute wvalue.

INFO = 5 Number of calls to FCN has reached or exceeded
MAXFEV.

INFO = 6 FTOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7 XTOL is too small. No further improvement in the
approximate solution X is possible.

INFO

n
[00]

GTOL is too small. - FVEC is orthogonal to the
columns of the Jacobian to machine precision.

Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to
FCN.

FJAC is an output M by N array. The upper N by N submatrix of
FJAC contains an upper triangular matrix R with diagonal ele-
ments of nonincreasing magnitude such that
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- T T T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower trapezoidal part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not lesé than M
which specifies the leading dimension of the array FJAC.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular with diagonal elements of nonincreasing
magnitude. Column j of P is column IPVT(j) of the identity
matrix.

OTF is an output array of length N which contains the first N
elements of the vector (Q transpose)*FVEC.

WAl, WA2, and WA3 are work arrays of length N.

WA4 is a work array of length M.

4. Successful completion.

The accuracy of LMDIF is controlled by the convergence parame-
ters FTOL, XTOL, and GTOL. These parameters are used in tests
which make three types of comparisons between the approximation
X and a solution XSOL. LMDIF terminates when any of the tests
is satisfied. If any of the convergence parameters is less than
the machine precision (as defined by the MINPACK function
DPMPAR(1)), then LMDIF only attempts to satisfy the test defined
by the machine precision. Further progress is not usually pos-
sible.

The tests assume that the functions are reasonably well behaved.
If this condition is not satisfied, then LMDIF may incorrectly
indicate convergence. The validity of the answer can be
checked, for example, by rerunning LMDIF with tighter toler-
ances.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector 2, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with FTOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied). Unless high precision solutions are required, the
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recommended value for FTOL is the square root of the machine
precision.

Second convergence test. If D is the diagonal matrix whose
entries are defined by the array DIAG, then this test attempts
to guarantee that

ENORM(D* (X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D#*X
may have large relative errors, but if MODE = 1, then the
accuracy of the components of X is usually related to their
sensitivity. Unless high precision solutions are required,
the recommended value for XTOL is the square root of the
machine precision.

Third convergence test. This test is satisfied when the cosine
of the angle between FVEC and any column of the Jacobian at X
is at most GTOL in absolute value. There is no clear rela-
tionship between this test and the accuracy of LMDIF, and
furthermore, the test is equally well satisfied at other crit-
ical points, namely maximizers and saddle points. Therefore,
termination caused by this test (INFO = 4) should be examined
carefully. The recommended value for GTOL is zero.

5. Unsuccessful completion.

Unsuccessful termination of LMDIF can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to O if N .LE. O, or
M .LT. N, or LDFJAC .LT. M, or FTOL .LT. 0.DO, or
XTOL .LT. 0.DO, or GTOL .LT. 0.DO, or MAXFEV .LE. O, or
FACTOR .LE. 0.DO.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDIF. 1In this
case, it may be possible to remedy the situation by rerunning
LMDIF with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 200*(N+1l). If the number of calls to FCN
reaches MAXFEV, then this indicates that the routine is con-
verging very slowly as measured by the progress of FVEC, and
INFO is set to 5. 1In this case, it may be helpful to restart
LMDIF with MODE set to 1.
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6. Characteristics of the algorithm.

LMDIF is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables (if MODE = 1) and an optimal choice
for the correction. The use of implicitly scaled variables
achieves scale invariance of LMDIF and limits the size of the
correction in any direction where the functions are changing
rapidly. The optimal choice of the correction guarantees (under
reasonable conditions) global convergence from starting points
far from the solution and a fast rate of convergence for prob-
lems with small residuals.

Timing. The time required by LMDIF to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMDIF is about N**3 to process each
evaluation of the functions (one call to FCN) and M*(N**2) to
process each approximation to the Jacobian (N calls to FCN) .
Unless FCN can be evaluated quickly, the timing of LMDIF will
be strongly influenced by the time spent in FCN.

Storage. LMDIF requires M*N + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms regquired.

USER-supplied ...... FCN
MINPACK-supplied ... DPMPAR, ENORM, FDJAC2, LMPAR, QRFAC, QRSOLV
FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT, MOD

8. References.
Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

X(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i =1, 15

to the data
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y = (O.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),
where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The

i-th component of EFVEC is thus defined by
y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

khkkkhkkihkk

DRIVER FOR LMDIF EXAMPLE.

- DOUBLE PRECISION VERSION

kkkkhkikkkhkkk

INTEGER J,M,N,MAXFEV, MODE, NPRINT, INFO,NFEV, LDFJAC, NWRITE

INTEGER IPVT(3)

DOUBLE PRECISION FTOL,XTOL,GTOL,EPSFCN, FACTOR, FNORM

DOUBLE PRECISION X(3),FVEC(15),DIAG(3),FJAC(15,3),QTF(3).
WAl (3),WA2(3),WA3(3),WA4(15) '

DOUBLE PRECISION ENORM,DPMPAR

EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/

M
N

15
3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

X(1l) = 1.D0
X(2) = 1.DO
X(3) = 1.DO

LDFJAC = 15

SET FTOL AND XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION
AND GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE
REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.

FTOL
XTOL
GTOL

DSQRT (DPMPAR(1))
DSORT (DPMPAR(1))
0.DO

800
0.DO0

1.D2
0

FACTOR
NPRINT

=2

O

@)

1

]
nmne=

CALL LMDIF(FCN,M,N,X,EVEC, FTOL, XTOL, GTOL, MAXFEV, EPSFCN,
DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, FJAC, LDFJAC,
IPVT, QTF,WAl,WA2,WA3,WA4)
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FNORM = ENORM(M, FVEC)
WRITE (NWRITE,1000) FNORM,NFEV, INFO, (X(J),J=1,N)
STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,31H NUMBER OF FUNCTION EVALUATIONS, I10 //
* 5X,15H EXIT PARAMETER, 16X,110 //
* 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)
C
C LAST CARD OF DRIVER FOR LMDIF EXAMPLE.
C
END
SUBROUTINE FCN(M,N, X, FVEC, IFLAG)
‘INTEGER M, N, IFLAG
DOUBLE PRECISION X(N),FVEC(M)
C .
C SUBROUTINE FCN FOR LMDIF EXAMPLE.
C
INTEGER 1
DOUBLE PRECISION TMP1,TMPZ2, TMP3
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
* ¥(9),Y(10),¥(11),Y(12),Y(13),Y(14),Y(15)
* /1.4D-1,1.8D-1,2.2D-1,2.5D~1,2.9D-1,3.2D-1,3.5D=-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0, 4.39D0/
c .
IF (IFLAG .NE. 0) GO TO 5
C
C INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
C
RETURN
5 CONTINUE
DO 10 I =1, 15
TMP1 =1
T™™P2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
10 CONTINUE
RETURN
C
C LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01
NUMBER OF FUNCTION EVALUATIONS 21
EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION
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0.8241057D-01 0.1133037D+01 0.2343695D+01
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Documentétion for MINPACK subroutine CHKDER
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

Purpose.

The purpose of CHKDER is to check the gradients of M nonlinear
functions in N variables, evaluated at a point X, for consis-
tency with the functions themselves. The user must call CHKDER
twice, first with MODE = 1 and then with MODE = 2.

Subroutine and type statements.

SUBROUTINE CHKDER(M,N, X, FVEC, FJAC, LDFJAC, XP, FVECP, MODE, ERR)
INTEGER M, N, LDFJAC, MODE

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),XP(N),FVECP(M),
* ERR (M)

Parameters.

Parameters designated as input parameters must be specified on
entry to CHKDER and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from CHKDER.

M is a positive integer input variable set to the number of
functions. '

N is a positive integer input variable set to the number of
variables.

X is an input array of length N.

FVEC is an array of length M. On input when MODE = 2, FVEC must
contain the functions evaluated at X.

FJAC is an M by N array. On input when MODE = 2, the rows of
FJAC must contain the gradients of the respective functions
evaluated at X.

LDFJAC is a positive integer input variable not lessbthan M
which specifies the leading dimension of the array FJAC.

XP is an array of length N. On output when MODE = 1, XP is set
to a neighboring point of X.
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FVECP is an array of length M. On input when MODE = 2, FVECP
must contain the functions evaluated at XP.

MODE is an integer input variable set to 1 on the first call and
2 on the second. Other values of MODE are equivalent to
MODE = 1.

ERR is an array of length M. On output when MODE = 2, ERR con-
tains measures of correctness of the respective gradients. If
there is no severe loss of significance, then if ERR(I) is 1.0
the I-th gradient is correct, while if ERR(I) is 0.0 the I-th
gradient is incorrect. For values of ERR between 0.0 and 1.0,
the categorization is less certain. In general, a value of
ERR(I) greater than 0.5 indicates that the I-th gradient is
probably correct, while a value of ERR(I) less than 0.5 indi-
cates that the I-th gradient is probably incorrect.

Successful completion.

CHKDER usually guarantees that if ERR(I) is 1.0, then the I-th
gradient at X is consistent with the I-th function. This sug-
gests that the input X be such that consistency of the gradient
at X implies consistency of the gradient at all points of inter-
est. If all the components of X are distinct and the fractional
part of each one has two nonzero digits, then X is likely to be
a satisfactory choice.

If ERR(I) is not 1.0 but is greater than 0.5, then the I-th gra-
dient is probably consistent with the I-th function (the more so
the larger ERR(I) is), but the conditions for ERR(I) to be 1.0
have not been completely satisfied. 1In this case, it is recom-
mended that CHKDER be rerun with other input values of X. If
ERR(I) is always greater than 0.5, then the I-th gradient is
consistent with the I-th function.

Unsuccessful completion.

CHKDER does not perform reliably if cancellation or rounding
errors cause a severe loss of significance in the evaluation of
a function. Therefore, none of the components of X should be
unusually small (in particular, zero) or any other value which
may cause loss of significance. The relative differences
between corresponding elements of FVECP and FVEC should be at
least two orders of magnitude greater than the machine precision
(as defined by the MINPACK function DPMPAR(1l)). If there is a
severe loss of significance in the evaluation of the I-th func-
tion, then ERR(I) may be 0.0 and yet the I-th gradient could be
correct.

If ERR(I) is not 0.0 but is less than 0.5, then the I-th gra-
dient is probably not consistent with the I-th function (the
more so the smaller ERR(I) is), but the conditions for ERR(I) to
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be 0.0 have not been completely satisfied. In this case, it is
recommended that CHKDER be rerun with other input values of X.
If ERR(I) is always less than 0.5 and if there is no severe loss
of significance, then the I-th gradient is not consistent with
the I-th function.

Characteristics of the algorithm.

CHKDER checks the I-th gradient for consistency with the I-th
function by computing a forward-difference approximation along a
suitably chosen direction and comparing this approximation with
the user-supplied gradient along the same direction. The prin-
cipal characteristic of CHKDER is its invariance to changes in
scale of the variables or functions.

Timing. The time required by CHKDER depends only on M and N.
The number of arithmetic operations needed by CHKDER is about
N when MODE = 1 and M*N when MODE = 2.

Storage. CHKDER requires M*N + 3*M + 2*N double precision stor-

age locations, in addition to the storage required by the pro-
gram. There are no internally declared storage arrays.

Subprograms required.

MINPACK-supplied ... DPMPAR
FORTRAN-supplied .... DABS,DLOG10,DSQRT
. References.
None.
Example.

This example checks the Jacobian matrix for the problem that
determines the values of x(1), x(2), and x(3) which provide the
best fit (in the least squares sense) of

k(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i =1, 15
to the data

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The
i-th component of FVEC is thus defined by

y(i) = (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).
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DRIVER FOR CHKDER EXAMPLE.
DOUBLE PRECISION VERSION
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INTEGER I,M,N,LDFJAC,MODE, NWRITE
DOUBLE PRECISION X(3),FVEC(15),FJAC(15,3),XP(3),FVECP(15),

* ERR(15)

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/

M
N

15
3

THE FOLLOWING VALUES SHOULD BE SUITABLE FOR
CHECKING THE JACOBIAN MATRIX.

X(1) = 9.2D-1
X(2) = 1.3D-1
X(3) = 5.4D-1

LDFJAC = 15

MODE = 1

CALL CHKDER(M,N, X, FVEC, FJAC,LDFJAC, XP,FVECP,MODE, ERR)
MODE = 2

CALL FCN(M,N,X,FVEC,FJAC,LDFJAC, 1)

CALL FCN(M,N,X,FVEC, FJAC,LDFJAC, 2)

CALL FCN(M,N,XP,FVECP,FJAC,LDFJAC, 1)

CALL CHKDER(M,N, X, FVEC, FJAC, LDFJAC, XP, FVECP,MODE, ERR)

DO 10 I =1, M
FVECP(I) = FVECP(I) - FVEC(I)
CONTINUE

WRITE (NWRITE,1U00) (FVEC(I),I=1,M)
WRITE (NWRITE,2000) (EVECP(I),I=1,M)
WRITE (NWRITE,3000) (ERR(I),I=1,M)

STOP

FORMAT (/5X,5H FVEC // (5X,3D15.7))

FORMAT (/SX,13H FVECP - FVEC // (5X,3D15.7))
FORMAT (/5X,4H ERR // (5X,3D15.7))

LAST CARD OF DRIVER FOR CHKDER EXAMPLE.

END

SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER M,N,LDFJAC, IFLAG ‘
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

SUBROUTINE FCN FOR CHKDER EXAMPLE.

Page 4
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40

INTEGER I

DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4

DOUBLE PRECISION Y(15)

DATA Y(1),Y(2),Y(3),Y(4).,Y(5),Y(6),¥Y(7),¥Y(8),

Y(9),Y(10),¥(11),¥(12),Y(13),Y(14),Y(15)

/1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0, 4.39D0/

IF (IFLAG .EQ. 2) GO TO 20
DO 10 I = 1, 15
TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
CONTINUE
GO TO 40
CONTINUE
DO 30 I = 1, 15
TMP1 = I
TMP2 = 16 - I
ERROR INTRODUCED INTO NEXT STATEMENT FOR ILLUSTRATION.
CORRECTED STATEMENT SHOULD READ TMP3 = TMP1
TMP3 = TMP2
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)*%2
FJAC(I,1) = -1.DO
FJAC(I,2) = TMP1*TMP2/TMP4
FJAC(I,3) = TMP1*TMP3/TMP4
CONTINUE
CONTINUE
RETURN

LAST CARD OF

SUBROUTINE FCN.

END

Results obtained with different compilers or machines

may be different.

In particular, the differences

FVECP =~ FVEC are machine dependent.

FVEC

-0.1181606D+01 -0.1429655D+01 -0.1606344D+01
-=0.1745269D+01 -0.1840654D+01 =-0.1921586D+01
~0.1984141D+01 -0.2022537D+01 -0.2468977D+01
-0.2827562D+01 -0.3473582D+01 =-0.4437612D+01
-0.6047662D+01 -0.9267761D+01 -0.1891806D+02
FVECP - FVEC

-0.7724666D-08 =-0.3432405D-08 -O.2034843D-09



0.
0.
0.
0.

ERR

eNoNoNoNe

2313685D-08
7363281D-08
2335850D-07
8266660D-07

.1141397D+00
.9980447D-01
.1526814D+00
.1000000D+01
.1000000D+01

oNoNoNeo)

loNoNoNeoXNo

138

.4331078D-08
.8531470D-08
.3522012D-07
.1419747D-06

.9943516D-01
.1073116D+00
.1000000D+01
.1000000D+01
.1000000D+01

oNoNeoNe

oNoNoReoNeo/

.5984096D-08
.1488591D-07
.5301255D-07
.3198990D-06

.9674474D-01
.1220445D+00
.1000000D+01
.1000000D+01
.1000000D+01
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CHAPTER 5

Program Listings

This chapter contains the double precision version of the MINPACK-1

program listings; both single and double precision versions of the subprograms

are available with the MINPACK-1 package. The 1listings appear

following (alphanumeric) order:

CHKDER, DOGLEG, ENORM, FDJACl, FDJAC2, HYBRD, HYBRDI,
HYBRJ, HYBRJ1, LMDER, IMDER1, LMDIF, ILMDIFl, LMPAR, LMSTR,

IMSTR1, QFORM, QRFAC, QRSOLV, RWUPDT, RIMPYQ, RIUPDT.

Functions SPMPAR (single precision) and DPMPAR (double precision),

provide the machine-dependent constants, appear at the end.

in

the

which
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SUBROUTINE CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)

INTEGER M,N,LDFJAC,MODE

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),XP(N),FVECP(M),
* ERR(M)

Sdekdehhdkhd

SUBROUTINE CHKDER

THIS SUBROUTINE CHECKS THE GRADIENTS OF M NONLINEAR FUNCTIONS
IN N VARIABLES, EVALUATED AT A POINT X, FOR CONSISTENCY WITH
THE FUNCTIONS THEMSELVES. THE USER MUST CALL CHKDER TWICE,
FIRST WITH MODE = 1 AND THEN WITH MODE = 2.

MODE = 1. ON INPUT, X MUST CONTAIN THE POINT OF EVALUATION.
’ ON OUTPUT, XP IS SET TO A NEIGHBORING POINT.
MODE = 2. ON INPUT, FVEC MUST CONTAIN THE FUNCTIONS AND THE

ROWS OF FJAC MUST CONTAIN THE GRADIENTS
OF THE RESPECTIVE FUNCTIONS EACH EVALUATED
AT X, AND FVECP MUST CONTAIN THE FUNCTIONS
EVALUATED AT XP.
ON OUTPUT, ERR CONTAINS MEASURES OF CORRECTNESS OF
THE RESPECTIVE GRADIENTS.

THE SUBROUTINE DOES NOT PERFORM RELIABLY IF CANCELLATION OR
ROUNDING ERRORS CAUSE A SEVERE LOSS OF SIGNIFICANCE IN THE
EVALUATION OF A FUNCTION. THEREFORE, NONE OF THE COMPONENTS
OF X SHOULD BE UNUSUALLY SMALL (IN PARTICULAR, ZERO) OR ANY
OTHER VALUE WHICH MAY CAUSE LOSS OF SIGNIFICANCE.
THE SUBROUTINE STATEMENT IS

SUBROUTINE CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)
WHERE

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES.

X IS AN INPUT ARRAY OF LENGTH N.

FVEC IS AN ARRAY OF LENGTH M. ON INPUT WHEN MODE = 2,
FVEC MUST CONTAIN THE FUNCTIONS EVALUATED AT X.

FJAC IS AN M BY N ARRAY. ON INPUT WHEN MODE = 2,
THE ROWS OF FJAC MUST CONTAIN THE GRADIENTS OF
THE RESPECTIVE FUNCTIONS EVALUATED AT X.

LDFJAC IS A POSITIVE INTEGER INPUT PARAMETER NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

CHDROO10
CHDR0020
CHDROO30
CHDRO040
CHDROO50
CHDROO060
CHDROO70
CHDROOS8O
CHDRO090
CHDRO100
CHDRO110
CHDRO120
CHDRO130
CHDRO140
CHDRO150
CHDRO160
CHDRO170
CHDRO180
CHDRO190
CHDRO200
CHDRO210
CHDRO220
CHDRO230
CHDR0O240
CHDRO250
CHDRO260
CHDRO270
CHDR0280
CHDR0290

"CHDRO0300

CHDRO0310
CHDR0320
CHDRO0330
CHDRO340
CHDRO350
CHDRO360
CHDRO370
CHDRO380
CHDRO390
CHDRO400
CHDRO410
CHDRO420
CHDRO0430
CHDRO440
CHDRO0450
CHDRO0460
CHDRO470
CHDRO480
CHDRO490
CHDRO500
CHDRO510
CHDRO0520
CHDRO530
CHDRO540
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XP IS AN ARRAY OF LENGTH N. ON OUTPUT WHEN MODE = 1,
XP IS SET TO A NEIGHBORING POINT OF X.

FVECP IS AN ARRAY OF LENGTH M. ON INPUT WHEN MODE = 2,
FVECP MUST CONTAIN THE FUNCTIONS EVALUATED AT XP.

MODE IS AN INTEGER INPUT VARIABLE SET TO 1 ON THE FIRST CALL
AND 2 ON THE SECOND. OTHER VALUES OF MODE ARE EQUIVALENT
TO MODE = 1.

ERR IS AN ARRAY OF LENGTH M. ON OUTPUT WHEN MODE = 2,
ERR CONTAINS MEASURES OF CORRECTNESS OF THE RESPECTIVE,
GRADIENTS. IF THERE IS NO SEVERE LOSS OF SIGNIFICANCE,
THEN IF ERR(I) IS 1.0 THE I-TH GRADIENT IS CORRECT,
WHILE IF ERR(I) IS 0.0 THE I-TH GRADIENT IS INCORRECT.
FOR VALUES OF ERR BRETWEEN 0.0 AND 1.0, THE CATEGORIZATION
IS LESS CERTAIN. IN GENERAL, A VALUE OF ERR(I) GREATER
THAN 0.5 INDICATES THAT THE I-TH GRADIENT IS PROBABLY
CORRECT, WHILE A VALUE OF ERR(I) LESS THAN 0.5 INDICATES
THAT THE I-TH GRADIENT IS PROBABLY INCORRECT.

SUBPROGRAMS CALLED
MINPACK SUPPLIED ... DPMPAR
FORTRAN SUPPLIED ... DABS,DLOG10,DSQRT

ARGONNE- NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

eleatantentealealentenlo ot nle
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INTEGER I,J

DOUBLE PRECISION EPS,EPSF,EPSLOG,EPSMCH,FACTOR,ONE,TEMP,ZERO
DOUBLE PRECISION DPMPAR

DATA FACTOR,ONE,ZERO /1.0D2,1.0D0,0.0D0/

EPSMCH IS THE MACHINE PRECISION.

EPSMCH = DPMPAR(1)

EPS = DSQRT (EPSMCH)

IF (MODE .EQ. 2) GO TO 20

MODE = 1.
DO 10 J =1, N
TEMP = EPS*DABS(X(J))

IF (TEMP .EQ. ZERO) TEMP = EPS
XP(J) = X(J) + TEMP

10 CONTINUE
GO TO 70
20 CONTINUE

CHDRO550-
CHDR0560
CHDRO570
CHDRO580
CHDRO590
CHDR0O600
CHDRO610
CHDR0O620
CHDRO630
CHDRO640
CHDRO650
CHDR0660
CHDRO670
CHDRO0680
CHDRO0690
CHDRO700
CHDRO710
CHDRO720
CHDRO730
CHDRO740
CHDRO750
CHDR0O760
CHDRO770
CHDRO780
CHDRO790
CHDRO80O
CHDRO810
CHDRO820
CHDRO830
CHDRO840
CHDRO850
CHDRO860
CHDRO870
CHDRO880
CHDRO890
CHDROY00

‘CHDRO910

CHDRO920
CHDRO930
CHDRO940
CHDR0950
CHDR0960
CHDRO970
CHDRO980
CHDR0O990
CHDR1000
CHDR1010
CHDR1020
CHDR1030
CHDR1040
CHDR1050
CHDR1060
CHDR1070
CHDR1080
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MODE = 2.

EPSF = FACTOR*EPSMCH
EPSLOG = DLOG10(EPS)
DO 30 I =1, M
ERR(I) = ZERO
CONTINUE
DO SO J =1, N
TEMP = DABS(X(J))
IF (TEMP .EQ. ZERO) TEMP = ONE
DO4 I =1, M
ERR(I) = ERR(I) + TEMP*FJAC(I,J)
CONTINUE
CONTINUE
DO 60 I =1, M
TEMP = ONE
IF (FVEC(I) .NE. ZERO .AND. FVECP(I) .NE. ZERO
.AND. DABS(FVECP(I)-FVEC(I)) .GE. EPSF*DABS(FVEC(I)))
TEMP = EPS*DABS ((FVECP(I)-FVEC(I))/EPS-ERR(I))
/ (DABS (FVEC(I)) + DABS(FVECP(I)))
ERR(I) = ONE
IF (TEMP .GT. EPSMCH .AND. TEMP .LT. EPS)
ERR(I) = (DLOG1O(TEMP) - EPSLOG)/EPSLOG
IF (TEMP .GE. EPS) ERR(I) = ZERO
CONTINUE

70 CONTINUE

RETURN
LAST CARD OF SUBROUTINE CHKDER.

END

CHDR1090
CHDR1100
CHDR1110
CHDR1120
CHDR1130
CHDR1140
CHDR1150
CHDR1160
CHDR1170
CHDR1180
CHDR1190
CHDR1200
CHDR1210
CHDR1220
CHDR1230
CHDR1240
CHDR1250
CHDR1260
CHDR1270
CHDR1280
CHDR1290
CHDR1300
CHDR1310
CHDR1320
CHDR1330
CHDR1340
CHDR1350
CHDR1360
CHDR1370
CHDR1380
CHDR1390
CHDR1400
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SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,WAl,WA2) DOGLOO10
INTEGER N,LR DOGL0020
DOUBLE PRECISION DELTA DOGL0030
DOUBLE PRECISION R(LR),DIAG(N),QTB(N),X(N),WA1(N),WA2(N) DOGL0040
Fdsdebddebdn DOGL0050
N DOGL0060

SUBROUTINE DOGLEG DOGLO0070
DOGL0080

GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL DOGL0090
MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA, THE DOGL0100
PROBLEM IS TO DETERMINE THE CONVEX COMBINATION X OF THE DOGLO110
GAUSS-NEWTON AND SCALED GRADIENT DIRECTIONS THAT MINIMIZES DOGL0120
(A*X - B) IN THE LEAST SQUARES SENSE, SUBJECT TO THE DOGL0130
RESTRICTION THAT THE EUCLIDEAN NORM OF D*X BE AT MOST DELTA. DOGLO140
DOGLO0150

THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM DOGL0160
IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE DOGLO0170
QR FACTORIZATION OF A. THAT IS, IF A = Q*R, WHERE Q HAS DOGL0180
ORTHOGONAL COLUMNS AND R IS AN UPPER TRIANGULAR MATRIX, DOGL0190
THEN DOGLEG EXPECTS THE FULL UPPER TRIANGLE OF R AND DOGL0200
THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. DOGL0210
DOGL0220

THE SUBROUTINE STATEMENT IS DOGL0230
DOGL0240

SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,WAl,WA2) DOGL0250

' DOGL0260

WHERE DOGL0270
DOGL0280

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R. DOGL0290
DOGL0300

R IS AN INPUT ARRAY OF LENGTH LR WHICH MUST CONTAIN THE UPPER DOGL0310
TRIANGULAR. MATRIX R STORED BY ROWS. DOGL0320

‘ , DOGL0330

LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN DOGL0340
(N*(N+1))/2. DOGL0350
DOGL0360

DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE DOGL0370
DIAGONAL ELEMENTS OF THE MATRIX D. DOGL0380
DOGL0390

QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST DOGL040O

N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B. DOGLO0410
DOGL0420

DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER DOGL0430
BOUND ON THE EUCLIDEAN NORM OF D*X. DOGLO0440
DOGL0450

X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE DESIRED DOGLO0460
CONVEX COMBINATION OF THE GAUSS-NEWTON DIRECTION AND THE DOGL0470
SCALED GRADIENT DIRECTION. DOGL0480
DOGLO0490

WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. DOGL0500
DOGL0510

SUBPROGRAMS CALLED DOGL0520
' DOGLO530

MINPACK-SUPPLIED ... DPMPAR,ENORM DOGLO540
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FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

Alacteatictecticlectecte it uts
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INTEGER I,J,JJ,JP1,K,L

DOUBLE PRECISION ALPHA,BNORM,EPSMCH,GNORM,ONE,QNORM,SGNORM,SUM,

TEMP, ZERO

DOUBLE PRECISION DPMPAR,ENORM

DATA ONE,ZERO /1.0D0,0.0D0/
EPSMCH IS THE MACHINE PRECISION.

EPSMCH = DPMPAR(1)

FIRST, CALCULATE THE GAUSS-NEWTON DIRECTION.

JT = (N*(N + 1))/2 + 1
DO 50 K = 1
P1
J=1J
L=JJ+1
SUM = ZERO
IF (N .LT. JP1) GO TO 20
DO 10 I = JP1, N
SUM = SUM + R(L)*X(I)
L=1L+1
CONTINUE
CONTINUE
TEMP = R(JJ)
IF (TEMP .NE. ZERO) GO TO 40
‘L=J
DO30I=1,J
TEMP = DMAX1(TEMP,DABS(R(L)))
L=L+N-1
CONTINUE
TEMP = EPSMCH4TEMP
IF (TEMP .EQ. ZERO) TEMP = EPSMCH
CONT INUE
X(J) = (QTB(J) - SUM)/TEMP
CONTINUE

1

n =z
(S SRy
I
R+ 2z

J
J
J

TEST WHETHER THE GAUSS-NEWTON DIRECTION IS ACCEPTABLE.

DO 60 J =1, N

WA1(J) ZERO
WA2(J) DIAG(J)*X(J)
CONTINUE

QNORM = ENORM(N,WA2)
IF (QNORM .LE. DELTA) GO TO 140

DOGLO0550
DOGL0560
DOGL0570
DOGLO0580
DOGL0590
DOGL0600
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DOGL0630
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DOGL0660
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DOGL0720
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DOGLO0750
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DOGL0780
DOGLO0790
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DOGLO850
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DOGLO0910
DOGL0920
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DOGL1060
DOGL1070
DOGL1080
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THE GAUSS-NEWTON DIRECTION IS NOT ACCEPTABLE.
NEXT, CALCULATE THE SCALED GRADIENT DIRECTION.

L=1
DO 80 J =1, N
TEMP = QTB(J)

DO 70 I =J, N
WAL(I) = WAL1(I) + R(L)*TEMP
L=1L+1
CONTINUE .
WA1(J) = WA1(J)/DIAG(J)
CONTINUE

CALCULATE THE NORM OF THE SCALED GRADIENT AND TEST FOR
THE SPECIAL CASE IN WHICH THE SCALED GRADIENT IS ZERO.

GNORM = ENORM(N,WA1l)

SGNORM = ZERO

ALPHA = DELTA/QNORM

IF (GNORM .EQ. ZERO) GO TO 120

CALCULATE THE POINT ALONG THE SCALED GRADIENT
AT WHICH THE QUADRATIC IS MINIMIZED.

DO 90 J =1, N
WA1(J) = (WA1(J)/GNORM)/DIAG(J)
CONTINUE

L=1

DO 110 J =1, N
SUM = ZERO

DO 100 I =J, N
SUM = SUM + R(L)*WA1(I)
L=L+1
CONTINUE
WA2(J) = SUM
CONTINUE
TEMP = ENORM(N,WA2)
SGNORM = (GNORM/TEMP)/TEMP

TEST WHETHER THE SCALED GRADIENT DIRECTION IS ACCEPTABLE.

ALPHA = ZERO
IF (SGNORM .GE. DELTA) GO TO 120

THE SCALED GRADIENT DIRECTION IS NOT ACCEPTABLE.
FINALLY, CALCULATE THE POINT ALONG THE DOGLEG
AT WHICH THE QUADRATIC IS MINIMIZED.

BNORM = ENORM(N,QTB)

TEMP = (BNORM/GNORM)* (BNORM/QNORM)* (SGNORM/DELTA)

TEMP = TEMP - (DELTA/QNORM)#*(SGNORM/DELTA)%#%2
* + DSQRT ( (TEMP- (DELTA/QNORM))¥+2

* +(ONE - (DELTA/QNORM)*%*2)* (ONE - (SGNORM/DELTA)**2) )

ALPHA = ((DELTA/QNORM)*(ONE - (SGNORM/DELTA)**2))/TEMP

DOGL1090
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CONTINUE

FORM APPROPRIATE CONVEX COMBINATION OF THE GAUSS-NEWTON
DIRECTION AND THE SCALED GRADIENT DIRECTION.

TEMP = (ONE - ALPHA)*DMIN1(SGNORM,DELTA)
DO 130 J = 1, N
X(J) = TEMP*WA1(J) + ALPHA*X(J)
CONTINUE
CONTINUE
RETURN

LAST CARD OF SUBROUTINE DOGLEG.

END

DOGL1630
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DOUBLE PRECISION FUNCTION ENORM(N,X)
INTEGER N

DOUBLE PRECISION X(N)
dedededeiodeddedek

FUNCTION ENORM

GIVEN AN N-VECTOR X; THIS FUNCTION CALCULATES THE
EUCLIDEAN NORM OF X.

THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF
SQUARES IN THREE DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE
SMALL AND LARGE COMPONENTS ARE SCALED SO THAT NO OVERFLOWS
OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE PERMITTED. UNDERFLOWS
AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED
SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS.

THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS
DEPEND ON TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN
RESTRICTIONS ON THESE CONSTANTS ARE THAT RDWARF#*%*2 NOT
UNDERFLOW AND RGIANT#*%2 NOT OVERFLOW. THE CONSTANTS

GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER.

THE FUNCTION STATEMENT IS
DOUBLE PRECISION FUNCTION ENORM(N, X)
WHERE
N IS A POSITIVE INTEGER INPUT VARIABLE.
X IS AN INPUT ARRAY OF LENGTH N.
SUBPROGRAMS CALLED
FORTRAN-SUPPLIED ... DABS,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
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INTEGER I
DOUBLE PRECISION AGIANT,FLOATN,ONE,RDWARF,RGIANT,S1,S2,53,XABS,

* X1MAX,X3MAX, ZERO

DATA ONE,ZERO,RDWARF ,RGIANT /1.0D0,0.0D0,3.834D-20,1.304D19/
S1 = ZERO
S2 = ZERO
83 = ZERO
X1MAX = ZERO
X3MAX = ZERO
FLOATN = N
AGIANT = RGIANT/FLOATN
D090 I =1, N

XABS = DABS(X(I))

IF (XABS .GT. RDWARF .AND. XABS .LT. AGIANT) GO TO 70
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IF (XABS .LE. RDWARF) GO TO 30
SUM FOR LARGE COMPONENTS.

IF (XABS .LE. XIMAX) GO TO 10
S1 = ONE + SI1#(X1MAX/XABS)#+2
X1MAX = XABS
GO TO 20
CONTINUE
S1 = S1 + (XABS/X1MAX)#%*2
CONTINUE
GO TO 60
CONTINUE

SUM FOR SMALL COMPONENTS.

IF (XABS .LE. X3MAX) GO TO 40
S3 = ONE + S3*(X3MAX/XABS)#**2
X3MAX = XABS
GO TO 50
CONTINUE
IF (XABS .NE. ZERO) S3 = S3 + (XABS/X3MAX)¥*%*2
CONTINUE
CONTINUE
GO TO 80
CONTINUE

SUM FOR INTERMEDIATE COMPONENTS.

52 = S2 + XABS#*¥*2
CONTINUE
CONTINUE

CALCULATION OF NORM.

IF (S1 .EQ. ZERO) GO TO 100
ENORM = X1MAX*DSQRT(S1+(S2/X1MAX)/X1MAX)
GO TO 130
CONTINUE
IF (S2 .EQ. ZERO) GO TO 110
IF (S2 .GE. X3MAX)
ENORM = DSQRT(S2* (ONE+(X3MAX/S2)* (X3MAX*S3)))
IF (S2 .LT. X3MAX)
ENORM = DSQRT (X3MAX* ( (S2/X3MAX)+(X3MAX*S3)))

GO TO 120
CONTINUE
ENORM = X3MAX*DSQRT(S3)
CONTINUE
CONTINUE
RETURN

LAST CARD OF FUNCTION ENORM.

END
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SUBROUTINE FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC, IFLAG,ML,MU,EPSFCN,
WA1,WA2)

INTEGER N,LDFJAC,IFLAG,ML,MU

DOUBLE PRECISION EPSFCN

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),WA1(N),WA2(N)
Fdededeiciodedolnk

SUBROUTINE FDJAC1

THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION
TO THE N BY N JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED
PROBLEM OF N FUNCTIONS IN N VARIABLES. IF THE JACOBIAN HAS
A BANDED FORM, THEN FUNCTION EVALUATIONS ARE SAVED BY ONLY
APPROXIMATING THE NONZERO TERMS.

THE SUBROUTINE STATEMENT IS

SUBROUTINE FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC, IFLAG,ML,MU,EPSFCN,
WA1,WA2)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG

DOUBLE PRECISION X(N),FVEC(N)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF FDJAC1.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

N IS A POSITIVE INTEGER INPUT VARIABLE4SET'TO THE NUMBER
OF FUNCTIONS AND VARIABLES.

X IS AN INPUT ARRAY OF LENGTH N.

FVEC IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE
FUNCTIONS EVALUATED AT X.

FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE
APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.
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IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE
THE EXECUTION OF FDJAC1. SEE DESCRIPTION OF FCN.

ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES
THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE
JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET
ML TO AT LEAST N - 1.

EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE
STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS
APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE
FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS
THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE
ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE
PRECISION.

MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES
THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE
JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET
MU TO AT LEAST N - 1.

WAl AND WA2 ARE WORK ARRAYS OF LENGTH N. IF ML + MU + 1 IS AT
LEAST N, THEN THE JACOBIAN IS CONSIDERED DENSE, AND WA2 IS
NOT REFERENCED.

SUBPROGRAMS CALLED
MINPACK-SUPPLIED ... DPMPAR
FORTRAN-SUPPLIED ... DABS,DMAX1,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

Felededdes btk

INTEGER I,J,K,MSUM

DOUBLE PRECISION EPS,EPSMCH,H,TEMP,ZERO
DOUBLE PRECISION DPMPAR

DATA ZERO /0.0DO0/

EPSMCH IS THE MACHINE PRECISION.
EPSMCH = DPMPAR(1)
EPS = DSQRT(DMAX1(EPSFCN,EPSMCH))
MSUM = ML + MU + 1
IF (MSUM .LT. N) GO TO 40
COMPUTATION OF DENSE APPROXIMATE. JACOBIAN.
DO 20 J =1, N

TEMP = X(J)
H = EPS*DABS (TEMP)
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IF (H .EQ. ZERO) H = EPS
X(J) = TEMP + H

CALL FCN(N,X,WA1l,IFLAG)

IF (IFLAG .LT. 0) GO TO 30
X(J) = TEMP

DO 10 I =1, N

FJAC(I,J) = (WA1(I) - FVEC(I))/H

CONTINUE
. CONTINUE
CONTINUE
GO TO 110
CONTINUE

COMPUTATION OF BANDED APPROXIMATE JACOBIAN.

DO 90 K = 1, MSUM
DO 60 J = K, N, MSUM
WA2(J) = X(J)
" H = EPS*DABS (WA2(J))
IF (H .EQ. ZERO) H = EPS
X(J) = WA2(J) + H
CONTINUE
CALL FCN(N,X,WAl,IFLAG)
IF (IFLAG .LT. 0) GO TO 100
DO 80 J = K, N, MSUM
X(J) = WA2(J)
H = EPS*DABS(WA2(J))
IF (H .EQ. ZERO) H = EPS
DO70I =1, N
FJAC(I,J) = ZERO

IF (I .GE. J - MU .AND. I .LE. J + ML)
FJAC(I,J) = (WA1(I) - FVEC(I))/H

CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
RETURN

LAST CARD OF SUBROUTINE FDJAC1.

END
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SUBROUTINE FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC,IFLAG,EPSFCN,WA)
INTEGER M,N,LDFJAC,IFLAG

DOUBLE PRECISION EPSFCN

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(M)

Fededededeicdododed
SUBROUTINE FDJAC2
THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION

TO THE M BY N JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED
PROBLEM OF M FUNCTIONS IN N VARIABLES.

" THE SUBROUTINE STATEMENT IS

SUBROUTINE FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC, IFLAG,EPSFCN,WA)
WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M)

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF FDJACZ2.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN INPUT ARRAY OF LENGTH N.

FVEC IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE
FUNCTIONS EVALUATED AT X.

FJAC IS AN OUTPUT M BY N ARRAY WHICH CONTAINS THE
APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.
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IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE
THE EXECUTION OF FDJAC2. SEE DESCRIPTION OF FCN.

EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE
STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS
APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE
FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS
THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE
ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE
PRECISION.

WA IS A WORK ARRAY OF LENGTH M.
SUBPROGRAMS CALLED
USER-SUPPLIED

MINPACK-SUPPLIED ... DPMPAR

FORTRAN-SUPPLIED ... DABS,DMAX1,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

Serkdrdededesbobdey

INTEGER I,J

. DOUBLE PRECISION EPS,EPSMCH,H,TEMP,ZERO

10
20
30

DOUBLE PRECISION DPMPAR
DATA ZERO /0.0DO/

EPSMCH IS THE MACHINE PRECISION.
EPSMCH = DPMPAR(1)

EPS = DSQRT(DMAX1(EPSFCN,EPSMCH))
DO 20 J =1, N
TEMP = X(J)
H = EPS*DABS(TEMP)
IF (H .EQ. ZERO) H = EPS
X(J) = TEMP + H
CALL FCN(M,N,X,WA,IFLAG)
IF (IFLAG .LT. 0) GO TO 30
X(J) = TEMP
DO 10 I =1, M
FJAC(I,J) = (WA(I) - FVEC(I))/H
CONTINUE
CONTINUE
CONTINUE
RETURN

LAST CARD OF SUBROUTINE FDJAC2.

END
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SUBROUTINE HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,DIAG,
MODE ,FACTOR ,NPRINT, INFO,NFEV,FJAC,LDFJAC,R,LR,
QTF,WA1,WA2 ,WA3,WA4)

INTEGER N,MAXFEV,ML,MU,MODE,NPRINT, INFO,NFEV,LDFJAC,LR

DOUBLE PRECISION XTOL,EPSFCN,FACTOR

DOUBLE PRECISION X(N),FVEC(N),DIAG(N),FJAC(LDFJAC,N),R(LR),
QTF(N) ,WA1(N),WA2(N) ,WA3(N) ,WA4(N)

EXTERNAL FCN '

Fedededeidododoiok
SUBROUTINE HYBRD

THE PURPOSE OF HYBRD IS TO FIND A ZERO OF A SYSTEM OF

N NONLINEAR FUNCTIONS IN N VARIABLES .BY A MODIFICATION

OF THE POWELL HYBRID METHOD. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS
THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION.

THE SUBROUTINE STATEMENT IS

SUBROUTINE HYBRD (FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,
DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,FJAC,
LDFJAC,R,LR,QTF,WA1,WA2 ,WA3,WA4)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N, IFLAG

DOUBLE PRECISION X(N),FVEC(N)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF HYBRD.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS AND.VARIABLES.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.
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XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
ITERATES IS AT MOST XTOL.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST MAXFEV
BY THE END OF AN ITERATION.

ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES
THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE
JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET
ML TO AT LEAST N - 1.

MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES
THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE
JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET
MU TO AT LEAST N - 1.

EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE
STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS
APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE
FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS
THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE
ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE
PRECISION.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE
BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE
VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2,
THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
VALUES OF MODE ARE EQUIVALENT TO MODE = 1.

FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE
INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF
FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE
TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE
INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.

NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED
PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE,
FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST
ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND
IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE
FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS
OF FCN WITH IFLAG = 0 ARE MADE.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
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INFO IS SET AS FOLLOWS. HYBD1090

, HYBD1100

INFO = 0 IMPROPER INPUT PARAMETERS. HYBD1110
HYBD1120

INFO = 1 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES HYBD1130
IS AT MOST XTOL. HYBD1140

‘ HYBD1150

INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED HYBD1160
MAXFEV. HYBD1170

HYBD1180

INFO = 3 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN HYBD1190
THE APPROXIMATE SOLUTION X IS POSSIBLE. HYBD1200

' HYBD1210

INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS HYBD1220
MEASURED BY THE IMPROVEMENT FROM THE LAST HYBD1230

FIVE JACOBIAN EVALUATIONS. : HYBD1240

HYBD1250

INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS HYBD1260
MEASURED BY THE IMPROVEMENT FROM THE LAST HYBD1270

TEN ITERATIONS. HYBD1280

HYBD1290

NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF HYBD1300
CALLS TO FCN. HYBD1310
HYBD1320

FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE HYBD1330
ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORIZATION ' HYBD1340
OF THE FINAL APPROXIMATE JACOBIAN. HYBD1350

‘ HYBD1360

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N HYBD1370
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. HYBD1380
HYBD1390

R IS AN OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS THE HYBD1400
UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION HYBD1410
OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE. HYBD1420

~ HYBD1430

IR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN HYBD1440
(N* (N+1)) /2. HYBD1450
HYBD1460

QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS HYBD1470
THE VECTOR (Q TRANSPOSE)*FVEC. HYBD1480
HYBD1490

WA1l, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N. HYBD1500
HYBD1510

SUBPROGRAMS CALLED HYBD1520
HYBD1530

USER-SUPPLIED ...... FCN HYBD1540
HYBD1550

MINPACK-SUPPLIED ... DOGLEG,DPMPAR,ENORM,FDJACI, HYBD1560
QFORM, QRFAC,RIMPYQ,R1UPDT HYBD1570

HYBD1580

FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,MINO,MOD HYBD1590
HYBD1600

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. HYBD1610

BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE HYBD1620
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INTEGER I,IFLAG,ITER,J,JM1,L,MSUM,NCFAIL,NCSUC,NSLOW1,NSLOW2

INTEGER IWA(1) ‘

LOGICAL JEVAL,SING

DOUBLE PRECISION ACTRED,DELTA,EPSMCH,FNORM,FNORM1,ONE ,PNORM,
PRERED, P1,P5,P001,P0001,RATIO, SUM, TEMP,XNORN,
ZERO

DOUBLE PRECISION DPMPAR,ENORM

DATA ONE,P1,P5,P001,P0001,ZERO

/1.0D0,1.0D-1,5.0D-1,1.0D-3,1.0D-4,0.0D0/

EPSMCH IS THE MACHINE PRECISION.

EPSMCIl = DPMPAR(1)

INFO = 0
IFLAG = 0
NFEV = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .IE. 0 .OR. XTOL .LT. ZERO .OR. MAXFEV .LE. O

.LT. 0 .OR. FACTOR .LE. ZERO

LR .LT. (N*(N + 1))/2) GO TO 300

IF (MODE .NE. 2) GO TO 20

DO 10 J =1, N
IF (DIAG(J)
CONTINUE

.LE. ZERO) GO TO 300

20 CONTINUE

EVALUATE THE FUNCTION AT THE STARTING POINT
AND CALCULATE ITS NORM.

IFLAG = 1
CALL FCN(N,X,FVEC,IFLAG)
NFEV = 1

IF (IFLAG .LT. 0) GO TO 300
FNORM = ENORM(N,FVEC)

DETERMINE THE NUMBER OF CALLS TO FCN NEEDED TO COMPUTE
THE JACOBIAN MATRIX.

MSUM = MINO(ML+MU+1,N)

INITIALIZE ITERATION COUNTER AND MONITORS.

ITER =1

NCSUC = 0
NCFAIL = 0
NSLOW1 = 0
NSLOW2 = 0

BEGINNING OF THE OUTER LOOP.
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30 CONTINUE

40
50

60

70

80

90

100
110

JEVAL = .TRUE.
CALCULATE THE JACOBIAN MATRIX.

IFLAG = 2

CALL FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN,WA1,
WA2)

NFEV = NFEV + MSUM

IF (IFLAG .LT. 0) GO TO 300

COMPUTE THE QR FACTORIZATION OF THE JACOBIAN..
CALL QRFAC(N,N,FJAC,LDFJAC, .FALSE.,IWA,1,WA1,WA2,WA3)

ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
TO 'THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.

IF (ITER .NE. 1) GO TO 70

IF (MODE .EQ. 2) GO TO 50

DO 40 J =1, N
DIAG(J) = WA2(J)
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
CONTINUE

CONTINUE

ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
AND INITIALIZE THE STEP BOUND DELTA.

DO 60 J =1, N
WA3(J) = DIAG(J)*X(J)
CONTINUE
XNORM = ENORM(N,WA3)
DELTA = FACTOR*XNORM
IF (DELTA .EQ. ZERO) DELTA = FACTOR
CONTINUE

FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF.

DO 80 I =1,
QTF(I) =
CONTINUE
DO 120 J =1, N
IF (FJAC(J,J) .EQ. ZERO) GO TO 110
SUM = ZERO
DO 90 I =J, N
SUM = SUM + FJAC(I,J)*QTF(I)
CONTINUE

TEMP = -SUM/FJAC(J,J)

DO 100 I =J, N
QTF(I) = QTF(I) + FJAC(I,J)*TEMP
CONTINUE

CONTINUE

N
FVEC(I)

HYBD2170
HYBD2180
HYBD2190
HYBD2200

-HYBD2210

HYBD2220
HYBD2230
HYBD2240
HYBD2250
HYBD2260
HYBD2270
HYBD2280
HYBD2290
HYBD2300
HYBD2310
HYBD2320
HYBD2330
HYBD2340
HYBD2350
HYBD2360
HYBD2370
HYBD2380
HYBD2390-
HYBD2400
HYBD2410
HYBD2420
HYBD2430
HYBD2440
HYBD2450
HYBD2460
HYBD2470
HYBD2480
HYBD2490
HYBD2500
HYBD2510
HYBD2520
HYBD2530
HYBD2540
HYBD2550
HYBD2560
HYBD2570
HYBD2580
HYBD2590
HYBD2600
HYBD2610
HYBD2620
HYBD2630
HYBD2640
HYBD2650
HYBD2660
HYBD2670
HYBD2680
HYBD2690
HYBD2700



120

aQ

a0

aon

130
140

150

160
170

180

190

200

162

CONTINUE
COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R. -

SING = .FALSE.
DO 150 J =1, N
L=J
M1 = J - 1
IF (JM1 .LT. 1) GO TO 140
DO 130 I = 1, JM1
R(L) = FJAC(I,J)
L=L+N-1
CONTINUE
CONTINUE
R(L) = WAL(J)
IF (WA1(J) .EQ. ZERO) SING = .TRUE.
CONTINUE

ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC.
CALL QFORM(N,N,FJAC,LDFJAC,WA1)
RESCALE IF NECESSARY.
IF (MODE .EQ. 2) GO TO 170
DO 160 J =1, N
DIAG(J) = DMAX1(DIAG(J),WA2(J))
CONTINUE
CONTINUE
BEGINNING OF THE INNER LOOP.
CONTINUE
IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.
IF (NPRINT .LE. 0) GO TO 190
IFLAG = 0
IF (MOD(ITER-1,NPRINT) .EQ. 0) CALL FCN(N,X,FVEC,IFLAG)
IF (IFLAG .LT. 0) GO TO 300
CONTINUE
DETERMINE THE DIRECTION P.
CALL DOGLEG(N,R,LR,DIAG,QTF,DELTA,WAl,WA2,WA3)
STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P.

DO 200 J =1, N

WAL1(J) = -WAl(J)

WA2(J) = X(J) + WAl1(J)
WA3(J) = DIAG(J)*WA1(J)
CONTINUE

PNORM = ENORM(N,WA3)
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ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND.
IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM)
EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM.

IFLAG = 1

CALL FCN(N,WA2,WA4,IFLAG)
NFEV = NFEV + 1

IF (IFLAG .LT. 0) GO TO 300
FNORM1 = ENORM(N,WA4)

COMPUTE THE SCALED ACTUAL REDUCTION.

ACTRED = -ONE
IF (FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)*%*2

COMPUTE THE SCALED PREDICTED REDUCTION.

L=1
DO 220 I =1
SUM = ZER
DO 210 J
SUM =
L=1L
CONTINUE
WA3(I) = QTF(I) + SUM
CONTINUE
TEMP = ENORM(N,WA3)
PRERED = ZERO
IF (TEMP .LT. FNORM) PRERED = ONE - (TEMP/FNORM)%**2

P4

N

0
=1, A
SUM + R(L)*WA1(J)
+1

COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED
REDUCTION.

RATIO = ZERO
IF (PRERED .GT. ZERO) RATIO = ACTRED/PRERED

UPDATE THE STEP BOUND.

IF (RATIO .GE. P1) GO TO 230

NCSUC = 0

NCFAIL = NCFAIL + 1

DELTA = P5*DELTA

GO TO 240
CONTINUE

NCFAIL = 0O

NCSUC = NCSUC + 1

IF (RATIO .GE. P5 .OR. NCSUC .GT. 1)

DELTA = DMAX1(DELTA,PNORM/P5)

IF (DABS(RATIO-ONE) .LE. P1) DELTA = PNORM/P5

CONTINUE :
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. TEST FOR SUCCESSFUL ITERATION.

IF (RATIO .LT. PdOOl) GO TO 260
SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.

DO 250 J = 1, N
X(J) = WA2(J)
WA2(J) = DIAG(J)*X(J)
FVEC(J) = WA4(J)
CONTINUE
XNORM = ENORM(N,WA2)
FNORM = FNORM1
ITER = ITER + 1
CONTINUE

DETERMINE THE PROGRESS OF THE ITERATION.

NSLOW1 = NSLOW1 + 1

IF (ACTRED .GE. P001) NSLOW1
IF (JEVAL) NSLOW2 = NSLOW2 +
IF (ACTRED .GE. P1) NSLOW2 =

o = |

TEST FOR CONVERGENCE.

IF (DELTA .LE. XTOL*XNORM .OR. FNORM .EQ. ZERO) INFO
IF (INFO .NE. 0) GO TO 300

TESTS FOR TERMINATION AND STRINGENT TOLERANCES.

IF (NFEV .GE. MAXFEV) INFO = 2

IF (P1*DMAX1(P1*DELTA,PNORM) .LE. EPSMCH*XNORM) INFO
IF (NSLOW2 .EQ. 5) INFO = 4

IF (NSLOW1 .EQ. 10) INFO = 5

IF (INFO .NE. 0) GO TO 300

CRITERION FOR RECALCULATING JACOBIAN APPROXIMATION
BY FORWARD DIFFERENCES.

IF (NCFAIL .EQ. 2) GO TO 290

CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN
AND UPDATE QTF IF NECESSARY.

DO 280 J = 1, N
SUM = ZERO
DO 270 I = 1, N :
SUM = SUM + FJAC(I,J)*WA4(I)
CONTINUE
WA2(J) = (SUM - WA3(J))/PNORM
WA1(J) = DIAG(J)*((DIAG(J)*WA1(J))/PNORM)
IF (RATIO .GE. P0001) QTF(J) = SUM
CONTINUE
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COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN.

CALL R1UPDT(N,N,R,LR,WA1,WA2,WA3,SING)
CALL RIMPYQ(N,N,FJAC,LDFJAC,WA2,WA3)
CALL RIMPYQ(1,N,QTF,1,WA2,WA3)

END OF THE INNER LOOP.
JEVAL = .FALSE.

GO TO 180
290 CONTINUE

END OF THE OUTER LOOP.
GO TO 30
300 CONTINUE

TERMINATION, EITHER NORMAL OR USER IMPOSED.
IF (IFLAG .LT. 0) INFO = IFLAG
IFLAG = 0 A
IF (NPRINT .GT. 0) CALL FCN({N,X,FVEC,IFLAG)
RETURN
LAST CARD OF SUBROUTINE HYBRD.

END
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SUBROUTINE HYBRD1(FCN,N,X,FVEC,TOL, INFO,WA,LWA)
INTEGER N, INFO,LWA

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(N),WA(LWA)

EXTERNAL FCN

slhaloatoatentonte ctuntactonts
TWIIWIWHR IR RN

SUBROUTINE HYBRD1

THE PURPOSE OF HYBRD1 IS TO FIND A ZERO OF A SYSTEM OF

N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION
OF THE POWELL HYBRID METHOD. THIS IS DONE BY USING THE
MORE GENERAL NONLINEAR EQUATION SOLVER HYBRD. THE USER
MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS.
THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE
APPROXIMATION.

THE SUBROUTINE STATEMENT IS
SUBROUTINE HYBRD1(FCN,N,X,FVEC,TOL,INFO,WA,LWA)
WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG

DOUBLE PRECISION X(N),FVEC(N)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF HYBRDI.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS AND- VARIABLES. :

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS
WHEN THE ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
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BETWEEN X AND THE SOLUTION IS AT MOST TOL.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO =0 IMPROPER INPUT PARAMETERS.

INFO =1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
BETWEEN X AND THE SOLUTION IS AT MOST TOL.

INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED
200%(N+1) .

INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS.

WA IS A WORK ARRAY OF LENGTH LWA.

LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
(N*(3*N+13))/2.

SUBPROGRAMS CALLED
USER-SUPPLIED ...... FCN
MINPACK-SUPPLIED ... HYBRD

ARGONNE. NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

P R P R R LR
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INTEGER INDEX,J,LR,MAXFEV,ML,MODE,MU,NFEV,NPRINT
DOUBLE PRECTSION EPSFCN,FACTOR,ONE,XTOL,ZERO
DATA FACTOR,ONE,ZERO /1.0D2,1.0D0,0.0D0/

INFO = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. TOL .LT. ZERO .OR. LWA .LT. (N*(3*N + 13))/2)

GO TO 20
CALL HYBRD.

MAXFE 00*(N + 1)
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WA(J) = ONE
10 CONTINUE
NPRINT = 0
LR = (N*(N + 1))/2
INDEX = 6*N + IR
CALL HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,WA (1) ,MODE,
* ' FACTOR,NPRINT, INFO,NFEV,WA (INDEX+1) ,N,WA(6*N+1),LR,
* WA(N+1) ,WA(2%N+1), WA(3*N+1) WA (4*N+1) ,WA(5*%N+1))
IF (INFO .EQ. 5) INFO = 4
20 CONTINUE
RETURN

LAST CARD OF SUBROUTINE HYBRD1.

END
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SUBROUTINE HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,MODE,

* FACTOR,NPRINT, INFO,NFEV,NJEV,R,LR,QTF,WA1,WA2,
* WA3,WASL)

INTEGER N,LDFJAC,MAXFEV,MODE,NPRINT, INFO,NFEV,NJEV,LR

DOUBLE PRECISION XTOL,FACTOR

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),DIAG(N),R(LR),

* QTF(N) ,WA1(N),WA2(N),WA3(N),WA4(N)

dleulastoclecb et ntoate atente
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SUBROUTINE HYBRJ

THE PURPOSE OF HYBRJ IS TO FIND A ZERO OF A SYSTEM OF

N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION

OF THE POWELL HYBRID METHOD. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

SUBROUTINE HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,
MODE , FACTOR ,NPRINT, INFO ,NFEV,NJEV,R, LR, QTF,
WA1,WA2,WA3,WAG)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED '‘SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER
CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N,LDFJAC, IFLAG

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)
IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
RETURN

END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF HYBRJ.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS AND VARIABLES.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.
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FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE
ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORIZATION
OF THE FINAL APPROXIMATE JACOBIAN.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
ITERATES IS AT MOST XTOL.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1
HAS REACHED MAXFEV.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE
BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE
VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2,
THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
VALUES OF MODE ARE EQUIVALENT TO MODE = 1.

FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE
INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF
FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE
TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE

INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.

NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED
PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE,
FCN IS CALLED WITH IFLAG = O AT THE BEGINNING OF THE FIRST
ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND
IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE
FOR PRINTING. FVEC AND FJAC SHOULD NOT BE ALTERED.
IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS OF FCN
WITH IFLAG = 0 ARE MADE.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.

INFO = 1  RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES
. IS AT MOST XTOL.

INFO = 2 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS

REACHED MAXFEV.
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INFO = 3  XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS
MEASURED BY THE IMPROVEMENT FROM THE LAST
FIVE JACOBIAN EVALUATIONS.

INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS

MEASURED BY THE IMPROVEMENT FROM THE LAST
TEN ITERATIONS.

NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
CALLS TO FCN WITH IFLAG = 1.

NJEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
CALLS TO FCN WITH IFLAG = 2.

R IS AN OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS THE
UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION
OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE.

LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
(N*(N+1))/2.

QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE VECTOR (Q TRANSPOSE)*FVEC.

WA1l, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N.
SUBPROGRAMS CALLED
USER-SUPPLIED ...... FCN

MINPACK-SUPPLIED ... DOGLEG,DPMPAR,ENORM,
QFORM, QRFAC,R1MPYQ,R1UPDT

FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,MOD

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

SIS STINE eSO
Fededededohfdend

INTEGER I,IFLAG,ITER,J,JM1,L,NCFAIL,NCSUC,NSLOW1,NSLOW2
INTEGER IWA(1)

LOGICAL JEVAL,SING

DOUBLE PRECISION ACTRED,DELTA,EPSMCH,¥NORM,FNORM1,0NE, PNORM,

* PRERED,P1,P5,P001,P0001,RATIO, SUM,TEMP ,XNORM,

* ZERO
DOUBLE PRECISION DPMPAR,ENORM

DATA ONE,P1,P5,P001,P0001,ZERO

* /1.0D0,1.0D-1,5.0D-1,1.0D-3,1.0D-4,0.0D0/

EPSMCH IS THE MACHINE PRECISION.
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EPSMCH = DPMPAR(1)

INFO = 0
IFLAG = 0
NFEV = 0
NJEV = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. LDFJAC .LT. N .OR. XTOL .LT. ZERO
.OR. MAXFEV .LE. O .OR. FACTOR .LE. ZERO
.OR. LR .LT. (N*(N + 1))/2) GO TO 300
IF (MODE .NE. 2) GO TO 20
DO 10 J = 1, N
IF (DIAG(J) .LE. ZERO) GO TO 300
CONTINUE
CONTINUE

EVALUATE THE FUNCTION AT THE STARTING POINT
AND CALCULATE ITS NORM.

IFLAG = 1
CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
NFEV = 1

IF (IFLAG .LT. 0) GO TO 300
FNORM = ENORM(N,FVEC)

INITIALIZE ITERATION COUNTER AND MONITORS.

ITER = 1
NCSUC = 0
NCFAIL
NSLOW1
NSLOwW2

0
0
0
BEGINNING OF THE OUTER LOOP.

CONTINUE
JEVAL = .TRUE.

CALCULATE THE JACOBIAN MATRIX.
IFLAG = 2

CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)

NJEV = NJEV + 1

IF (IFLAG .LT. 0) GO TO 300

COMPUTE THE QR FACTORIZATION OF THE JACOBIAN.

CALL QRFAC(N,N,FJAC,LDFJAC, .FALSE.,IWA,1,WAl,WA2,WA3)

ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.
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IF (ITER .NE. 1) GO TO 70

IF (MODE .EQ. 2) GO TO 50

DO 40 J =1, N
DIAG(J) = WA2(J)
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
CONTINUE

CONTINUE

ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED

AND INITIALIZE THE STEP BOUND DELTA.

DO 60 J =1, N
WA3(J) = DIAG(J)*X(J)
CONTINUE
XNORM = ENORM(N,WA3)
DELTA = FACTOR*XNORM
IF (DELTA .EQ. ZERO) DELTA = FACTOR
CONTINUE

FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF.

DO 80 I = 1,
QTF(I) =
CONTINUE
DO 120 J = 1, N
IF (FJAC(J,J) .EQ. ZERO) GO TO 110
SUM = ZERO
DO 90 I =J, N
SUM = SUM + FJAC(I,J)*QTF(I)
CONTINUE

TEMP = -SUM/FJAC(J,J)

DO 100 I = J, N
QTF(I) = QTF(I) + FJAC(I,J)*TEMP
CONTINUE

CONTINUE

CONTINUE

N
FVEC(I)

COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R.

SING = .FALSE.
DO 150 J =1, N
L=17J
JM1 =J -1

IF (JM1 .LT. 1) GO TO 140
DO 130 I =1, JM1
R(L) = FJAC(I,J)
L=L+N-1
CONTINUE
CONTINUE
R(L) = WA1(J)
IF (WA1(J) .EQ. ZERO) SING = .TRUE.
CONTINUE

ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC.
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_ HYBJ2710

CALL QFORM(N,N,FJAC,LDFJAC,WA1) HYBJ2720
HYBJ2730

RESCALE IF NECESSARY. HYBJ2740
HYBJ2750

IF (MODE .EQ. 2) GO TO 170 HYBJ2760
DO 160 J = 1, N HYBJ2770
DIAG(J) = DMAX1(DIAG(J),WA2(J)) HYBJ2780
CONTINUE HYBJ2790
CONTINUE HYBJ2800
HYBJ2810

BEGINNING OF THE INNER LOOP. HYBJ2820
HYBJ2830

CONTINUE HYBJ2840
HYBJ2850

IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. HYBJ2860
HYBJ2870

IF (NPRINT .LE. 0) GO TO 190 HYBJ2880
IFLAG = 0 , HYBJ2890

IF (MOD(ITER-1,NPRINT) .EQ. 0) HYBJ2900
CALL FCN(N,X,FVEC,FJAC,LDFJAC, IFLAG) HYBJ2910

IF (IFLAG .LT. 0) GO TO 300 HYBJ2920
CONTINUE HYBJ2930
HYBJ2940

DETERMINE THE DIRECTION P. HYBJ2950
HYBJ2960

CALL DOGLEG(N,R,LR,DIAG,QTF,DELTA,WAl,WA2,WA3) HYBJ2970

A HYBJ2980

STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. HYBJ2990
HYBJ3000

DO 200 J = 1, N HYBJ3010
WAL(J) = -WA1(J) HYBJ3020
WA2(J) = X(J) + WAL(J) HYBJ3030
WA3(J) = DIAG(J)*WA1(J) HYBJ3040
CONTINUE HYBJ3050

PNORM = ENORM(N,WA3) HYBJ3060
HYBJ3070

ON THE FIRST ITERATION, ADJUST THE INITTAL STEP BOUND. HYBJ3080
HYBJ3090

IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM) HYBJ3100
HYBJ3110

EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM. HYBJ3120
HYBJ3130

IFLAG = 1 HYBJ3140
CALL FCN(N,WA2,WA4,FJAC,LDFJAC, IFLAG) HYBJ3150
NFEV = NFEV + 1 HYBJ3160

IF (IFLAG .LT. 0) GO TO 300 HYBJ3170
FNORM1 = ENORM(N,WA&) HYBJ3180
HYBJ3190

COMPUTE THE SCALED ACTUAL REDUCTION. HYBJ3200
HYBJ3210

ACTRED = -ONE HYBJ3220

IF (FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)%*%2 HYBJ3230

HYBJ3240




oo NP NP}

oaa

aaQa

(@]

210

220

230

240

250

260

177

COMPUTE THE SCALED PREDICTED REDUCTION.

L=1
DO 220 I =1, N
SUM = ZERO

DO 210 J =1, N
SUM = SUM + R(L)*WA1(J)
L=L+1
CONTINUE
WA3(I) = QTF(I) + SUM
CONTINUE
TEMP = ENORM(N,WA3)
PRERED = ZERO
IF (TEMP .LT. FNORM) PRERED = ONE - (TEMP/FNORM)*¥*2

COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED
REDUCTION.

RATIO = ZERO
IF (PRERED .GT. ZERO) RATIO = ACTRED/PRERED

UPDATE THE STEP BOUND.

IF (RATIO .GE. P1) GO TO 230

NCSUC = 0

NCFAIL = NCFAIL + 1

DELTA = P5*DELTA

GO TO 240
CONTINUE

NCFAIL = 0

NCSUC = NCSUC + 1

IF (RATIO .GE. P5 .OR. NCSUC .GT. 1)

DELTA = DMAX1(DELTA,PNORM/P5)

IF (DABS(RATIO-ONE) .LE. P1) DELTA = PNORM/P5

CONTINUE

TEST FOR SUCCESSFUL ITERATION.

IF (RATIO .LT. P0O00O1l) GO TO 260

SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.

DO 250 J =1, N
X(J) = wAaz2(J)
WA2(J) = DIAG(J)*X(J)
FVEC(J) = WA4(J)
CONTINUE
XNORM = ENORM(N,WA2)
FNORM = FNORM1
ITER = ITER + 1
CONTINUE

DETERMINE THE PROGRESS OF THE ITERATION.
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NSLOW1 = NSLOW1 + 1

IF (ACTRED .GE. P001) NSLOW1
IF (JEVAL) NSLOW2 = NSLOW2 +
IF (ACTRED .GE. P1l) NSLOW2 =

O~ ]

TEST FOR CONVERGENCE.

IF (DELTA .LE. XTOL*XNORM .OR. FNORM .EQ. ZERO) INFO

IF- (INFO .NE. 0) GO TO 300
TESTS FOR TERMINATION AND STRINGENT TOLERANCES.

IF (NFEV .GE. MAXFEV) INFO = 2

IF (P1*DMAX1(P1*DELTA,PNORM) .LE. EPSMCH*XNORM) INFO

IF (NSLOW2 .EQ. 5) INFO = 4
IF (NSLOW1 .EQ. 10) INFO = 5
IF (INFO .NE. 0) GO TO 300

CRITERION FOR RECALCULATING JACOBIAN.
IF (NCFAIL .EQ. 2) GO TO 290

CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN
AND UPDATE QTF IF NECESSARY.

DO 280 J = 1

SUM = ZER
DO 270 I = 1, N

SUM = SUM + FJAC(I,J)*WA4(I)

CONTINUE
WA2(J) = (SUM - WA3(J))/PNORM
WA1(J) = DIAG(J)*((DIAG(J)*WA1(J))/PNORM)
IF (RATIO .GE. P0001) QTF(J) = SUM
CONTINUE

N

O~

COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN.

CALL R1UPDT(N,N,R,LR,WA1,WA2,WA3,SING)
CALL RIMPYQ(N,N,FJAC,LDFJAC,WAZ ,WA3)
CALL R1MPYQ(1,N,QTF,1,WA2,WA3)
END OF THE INNER LOOP.
JEVAL = .FALSE.
GO TO 180

CONTINUE

END OF THE OUTER LOOP.

GO TO 30
CONTINUE

TERMINATION, EITHER NORMAL OR USER IMPOSED.
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IF (IFLAG .LT. 0) INFO = IFLAG

IFLAG = 0

IF (NPRINT .GT. 0) CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
RETURN

LAST CARD OF SUBROUTINE HYBRJ.

END
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SUBROUTINE HYBRJ1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,WA,LWA)
INTEGER N,LDFJAC,INFO,LWA

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

T e e s
TEITIVIT IO

SUBROUTINE HYBRJ1

THE PURPOSE OF HYBRJ1 IS TO FIND A ZERO OF A SYSTEM OF

N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION
OF THE POWELL HYBRID METHOD. THIS IS DONE BY USING THE
MORE GENERAL NONLINEAR EQUATION SOLVER HYBRJ. THE USER
MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS
AND>THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

SUBROUTINE HYBRJ1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL, INFO,WA,LWA)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
BE' DECLARED IN AN EXTERNAL STATEMENT IN THE USER
CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N,LDFJAC, IFLAG

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)
IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
RETURN

END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS

THE USER WANTS TO TERMINATE EXECUTION OF HYBRJ1.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER

OF FUNCTIONS AND VARIABLES.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN

AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X

CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE
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ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORIZATION
OF THE FINAL APPROXIMATE JACOBIAN.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS
WHEN THE ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
BETWEEN X AND THE SOLUTION IS AT MOST TOL.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.
1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
BETWEEN X AND THE SOLUTION IS AT MOST TOL.

INFO

INFO = 2 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS
REACHED 100+ (N+1).

INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS.

WA IS A WORK ARRAY OF LENGTH LWA.

LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
(N* (N+13))/2.

SUBPROGRAMS CALLED
USER-SUPPLIED ...... FCN
MINPACK-SUPPLIED ... HYBRJ

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

slestosteatoaticbictctote ot
ORI i) i i N

INTEGER J,LR,MAXFEV,MODE ,NFEV,NJEV,NPRINT
DOUBLE PRECISION FACTOR,ONE,XTOL,ZERO
DATA FACTOR,ONE,ZERO /1.0D2,1.0D0,0.0D0/
INFO = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. LDFJAC .LT. N .OR. TOL .LT. ZERO
* .OR. IWA .LT. (N*(N + 13))/2) GO TO 20

CALL HYBRJ.
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MAXFEV = 100%(N + 1)
XTOL = TOL
MODE = 2
DO 10 J =1, N
WA(J) = ONE
10 CONTINUE
~ NPRINT = 0

LR = (N*(N + 1))/2

CALL HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,WA(1),MODE,
% FACTOR,NPRINT, INFO,NFEV,NJEV,WA(6*N+1) ,LR,WA(N+1),
¥ WA(2*N+1) ,WA(3*N+1) ,WA(4*N+1) ,WA(5*N+1))

IF (INFO .EQ. 5) INFO = &4
20 CONTINUE
RETURN
LAST CARD OF SUBROUTINE HYBRJ1.

END
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SUBROUTINE LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
* MAXFEV,DIAG,MODE , FACTOR ,NPRINT, INFO,NFEV,NJEV,
%* IPVT,QTF,WAL,WA2 ,WA3,WA4)

INTEGER M,N,LDFJAC,MAXFEV,MODE,NPRINT, INFO,NFEV,NJEV

INTEGER IPVT(N)

DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N),
* WAL(N),WA2 (N),WA3(N),WA4 (M)

stestontontaclactantantantants
TEATIVITWATICIONW

SUBROUTINE LMDER

THE PURPOSE OF LMDER IS TO MINIMIZE THE SUM OF THE SQUARES OF
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF

THB LEVENBERG-MARQUARDT ALGORITHM. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMDER (FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
MAXFEV ,DIAG,MODE ,FACTOR,NPRINT, INFO,NFEV,
NJEV, IPVT,QTF,WAl,WA2 ,WA3,WA4)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER
CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER M,N,LDFJAC,IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)
IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
RETURN

END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMDER.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
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CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX
OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH
DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE SUCH THAT

T T T
P *(JAC *JAC)*P = R *R,

WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL
CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J)

(SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL
PART OF FJAC CONTAINS INFORMATION GENERATED DURING

THE COMPUTATION OF R.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE
REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL.
THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED
IN THE SUM OF SQUARES.

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE
RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION.

GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE COSINE OF THE ANGLE BETWEEN FVEC AND
ANY COLUMN OF THE JACOBIAN IS AT MOST GTOL IN ABSOLUTE
VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY
DESIRED BETWEEN THE FUNCTION VECTOR AND THE COLUMNS
OF THE JACOBIAN.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1
HAS REACHED MAXFEV.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE
BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE
VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2,
THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
VALUES OF MODE ARE EQUIVALENT TO MODE = 1.

FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE

LMDRO550
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INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF LMDR1090

FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE  LMDR1100
TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE LMDR1110
INTERVAL (.1,100.).100. IS A GENERALLY RECOMMENDED VALUE. LMDR1120
LMDR1130

NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED LMDR1140
PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, LMDR1150
FCN IS CALLED WITH IFLAG = O AT THE BEGINNING OF THE FIRST  LMDR1160
ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND LMDR1170
IMMEDIATELY PRIOR TO RETURN, WITH X, FVEC, AND FJAC LMDR1180
AVAILABLE FOR PRINTING. FVEC AND FJAC SHOULD NOT BE LMDR1190
ALTERED. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS LMDR1200
OF FCN WITH IFLAG = O ARE MADE. LMDR1210
LMDR1220

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS LMDR1230
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMDR1240
VALUE OF. IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMDR1250
INFO IS SET AS FOLLOWS. LMDR1260
LMDR1270

INFO = 0 IMPROPER INPUT PARAMETERS. LMDR1280
_ LMDR1290

INFO = 1 BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS LMDR1300
"IN THE SUM OF SQUARES ARE AT MOST FTOL. LMDR1310

o LMDR1320

INFO = 2 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES LMDR1330
IS AT MOST XTOL. 4 LMDR1340

LMDR1350

INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. LMDR1360
LMDR1370

INFO = 4 THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY LMDR1380
COLUMN OF THE JACOBIAN IS AT MOST GTOL IN LMDR1390

ABSOLUTE VALUE. ' LMDR1400

LMDR1410

INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS LMDR1420
REACHED MAXFEV. LMDR1430

. LMDR1440

INFO = 6 FTOL IS TOO SMALL. NO FURTHER REDUCTION IN LMDR1450
THE SUM OF SQUARES IS POSSIBLE. LMDR1460

LMDR1470

INFO = 7 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMDR1480
THE APPROXIMATE SOLUTION X IS POSSIBLE. LMDR1490

LMDR1500

INFO = 8 GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE LMDR1510
COLUMNS OF THE JACOBIAN TO MACHINE PRECISION. LMDR1520

LMDR1530

NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF LMDR1540
CALLS TO FCN WITH IFLAG = 1. : LMDR1550
LMDR1560

NJEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF LMDR1570
CALLS TO FCN WITH IFLAG = 2. LMDR1580
LMDR1590

IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMDR1600
DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R, LMDR1610

WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS LMDR1620
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ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR
WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE.
COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*FVEC.

WAl, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N.
WA4 IS A WORK ARRAY OF LENGTH M.

SUBPROGRAMS CALLED

USER-SUPPLIED ...... FCN
MINPACK-SUPPLIED ... DPMPAR,ENORM,LMPAR,QRFAC
FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT,MOD

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

aleatestantaate e ateatactent,
e T N I A

INTEGER I,IFLAG,ITER,J,L
DOUBLE PRECISION ACTRED,DELTA,DIRDER,EPSMCH,FNORM,FNORM1,GNORM,

* ONE, PAR, PNORM, PRERED,P1,P5,P25,P75,P0001,RATIO,

* SUM, TEMP,TEMP1, TEMP2 ,XNORM, ZERO
DOUBLE PRECISION DPMPAR,ENORM

DATA ONE,P1,P5,P25,P75,P0001,ZERO

* /1.0D0, 1. OD 1,5. OD 1,2.5D-1,7.5D-1,1.0D-4, 0. oDo/

EPSMCH IS THE MACHINE PRECISION.

EPSMCH = DPMPAR(1)

INFO = 0
IFLAG =
NFEV = 0
NJEV = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .ILE. 0 .OR. M .LT. N .OR. LDFJAC .LT. M
% .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL .LT. ZERO
% .OR. MAXFEV .LE. O .OR. FACTOR .LE. ZERO) GO TO 300
IF (MODE .NE. 2) GO TO 20
DO 10 J =1, N
IF (DIAG(J) .LE. ZERO) GO TO 300
10 CONTINUE
20 CONTINUE

EVALUATE THE FUNCTION AT THE STARTING POINT
AND CALCULATE ITS NORM.
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IFLAG = 1
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC, IFLAG)
NFEV = 1

IF (IFLAG .LT. 0) GO TO 300
FNORM = ENORM(M,FVEC)

INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER.

PAR = ZERO
ITER = 1

BEGINNING OF THE OUTER LOOP.

30 CONTINUE

40

50
60

70

CALCULATE THE JACOBIAN MATRIX.

IFLAG = 2 ,
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
NJEV = NJEV + 1

IF (IFLAG .LT. 0) GO TO 300

IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.

IF (NPRINT .LE. 0) GO TO 40
IFLAG = 0
IF (MOD(ITER-1,NPRINT) .EQ. 0)
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC, IFLAG)
IF (IFLAG .LT. 0) GO TO 300
CONTINUE

COMPUTE THE QR FACTORIZATION OF THE JACOBIAN.
CALL QRFAC(M,N,FJAC,LDFJAC, .TRUE.,IPVT,N,WAl,WA2,WA3)

ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.

IF (ITER .NE. 1) GO TO 80

IF (MODE .EQ. 2) GO TO 60

DO 50 J =1, N
DIAG(J) = WA2(J)
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
CONTINUE

CONTINUE

ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
AND INITIALIZE THE STEP BOUND DELTA.

DO 70 J =1, N
WA3(J) = DIAG(J)*X(J)
CONTINUE
XNORM = ENORM(N,WA3)
DELTA = FACTOR*XNORM

LMDR2170
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90

100

110
120

130

140

150
160
170

180
190

190

IF (DELTA .EQ. ZERO) DELTA = FACTOR
CONTINUE

FORM (Q TRANSPOSE)*FVEC AND STORE THE FIRST N COMPONENTS IN
QTF.

DO 90 I =1, M
WA4(I) = FVEC(I)
CONTINUE
DO 130 J = 1, N
IF (FJAC(J,J) .EQ. ZERO) GO TO 120
SUM = ZERO
DO 100 I =J, M
SUM = SUM + FJAC(I,J)*WA&4(I)
CONTINUE
TEMP = -SUM/F.JAC(J,.J)
DO 110 I =J, M
WAL (1) = WA4(I) + FJAC(I,J)*TEMP
CONTINUE
CONTINUE
FJAC(J,J) = WAL(J)
QTF(J) = WA4(J)
CONTINUE

COMPUTE THE NORM OF THE SCALED GRADIENT.

GNORM = ZERO
IF (FNORM .EQ. ZERO) GO TO 170
DO 160 J = 1, N
L = IPVT(J)
IF (WA2(L) .EQ. ZERO) GO TO 150
SUM = ZERO
DO 140 I = 1, J
SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM)
CONTINUE
GNORM = DMAX1(GNORM,DABS (SUM/WA2(L)))
CONTINUE
CONTINUE
CONTINUE

TEST FOR CONVERGENCE OF THE CRADIENT NORM.

IF (GNORM .LE. GTOL) INFO = &4
IF (INFO .NE. 0) GO TO 300

RESCALE IF NECESSARY.

IF (MODE .EQ. 2) GO TO 190

DO 180 J =1, N
DIAG(J) = DMAX1(DIAG(J),WA2(J))
CONTINUE

CONTINUE

BEGINNING OF THE INNER LOOP.
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CONTINUE

DETERMINE THE LEVENBERG-MARQUARDT PARAMETER.

CALL LMPAR(N,FJAC,LDFJAC,IPVT,DIAG,QTF,DELTA,PAR,WAI,WA2;

WA3,WA4)
STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P.

DO 210 J =1, N
WAL(J) = -WA1(J)
WA2(J) = X(J) + WAL(J)
WA3(J) = DIAG(J)*WA1(J)
CONTINUE

PNORM = ENORM(N,WA3)

ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND.
IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM)

EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM.
IFLAG = 1

CALL FCN(M,N,WA2,WA4,FJAC,LDFJAC,IFLAG)

NFEV = NFEV + 1

IF (IFLAG .LT. 0) GO TO 300

FNORM1 = ENORM(M,WA4) )

COMPUTE THE SCALED ACTUAL REDUCTION.

ACTRED = -ONE

IF (P1*FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)**2

COMPUTEYTHE SCALED PREDICTED REDUCTION AND
THE SCALED DIRECTIONAL DERIVATIVE.

DO 230 J =1, N .
WA3(J) = ZERO
L = IPVT(J)
TEMP = WA1(L)
DO 220 T =1, J
WA3(I) = WA3(I) + FJAC(I,J)*TEMP
CONTINUE '
CONTINUE
TEMP1 = ENORM(N,WA3)/FNORM
TEMP2 = (DSQRT(PAR)*PNORM)/FNORM
PRERED = TEMP1#%2 + TEMP2%%2/P5
DIRDER = -(TEMP1#*%2 + TEMP2¥+2)

COMPUTE 'THE RATIO OF THE ACTUAL TO THE PREDICTED
REDUCTION.

RATIO = ZERO

LMDR3250

LMDR3260
LMDR3270
LMDR3280
LMDR3290
LMDR3300
LMDR3310
LMDR3320
LMDR3330
LMDR3340

LMDR3350

LMDR3360
LMDR3370
LMDR3380
IMDR3390
LMDR3400
LMDR3410

LMDR3420 .

LMDR3430
LMDR3440
LMDR3450
LMDR3460
LMDR3470
LMDR3480
LMDR3490
LMDR3500
LMDR3510
LMDR3520

LMDR3530

LMDR3540
LMDR3550
LMDR3560
LMDR3570
LMDR3580
LMDR3590
LMDR3600
LMDR3610
LMDR3620
LMDR3630
LMDR3640
LMDR3650
LMDR3660
LMDR3670
LMDR3680
LMDR3690
LMDR3700
LMDR3710
LMDR3720
LMDR3730
LMDR3740
LMDR3750
LMDR3760
LMDR3770
LMDR3780




a

240

250
260

270

280

290

192

IF (PRERED .NE. ZERO) RATIO = ACTRED/PRERED
UPDATE THE STEP BOUND.

IF (RATIO .GT. P25) GO TO 240
IF (ACTRED .GE. ZERO) TEMP = P5
IF (ACTRED .LT. ‘ZERO)
TEMP = P5*DIRDER/(DIRDER + P5*ACTRED)
IF (P1*FNORM1 .GE. FNORM .OR. TEMP .LT. P1) TEMP = P1
DELTA = TEMP*DMIN1(DELTA,PNORM/P1)
PAR = PAR/TEMP
GO TO 260
CONTINUE
IF (PAR .NE. ZERO .AND. RATIO .LT. P75) GO TO 250
DELTA = PNORM/P5
PAR = P5*PAR
CONTINUE
CONTINUE

TEST FOR SUCCESSFUL ITERATION.
IF (RATIO .LT. P0O001) GO TO 290
SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.

DO 270 J =1, N
X(J) = WA2(J)
WA2(J) = DIAG(I)*X(J)
CONTINUE

DO 280 I .= 1, M
FVEC(I) = WA4(I)
CONTINUE

XNORM = ENORM(N,WA2)

FNORM = FNORM1

ITER = ITER + 1

CONTINUE

TESTS FOR CONVERGENCE.

IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
.AND. P5*RATIO .LE. ONE) INFO = 1
IF (DELTA .LE. XTOL*XNORM) INFO = 2
IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
.AND. P5*RATIO .LE. ONE .AND. INFO .EQ. 2) INFO = 3
IF (INFO .NE. 0) GO TO 300

TESTS FOR TERMINATION AND STRINGENT TOLERANCES.

IF (NFEV .GE. MAXFEV) INFO = 5

IF (DABS(ACTRED) .LE. EPSMCH .AND. PRERED .LE. EPSMCH
.AND. P5*RATIO .LE. ONE) INFO = 6

IF (DELTA .LE. EPSMCH*XNORM) INFO 7

IF (GNORM .LE. EPSMCH) INFO = 8

IF (INFO .NE. 0) GO TO 300
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END OF THE INNER LOOP. REPEAT IF ITERATION UNSUCCESSFUL.
IF (RATIO .LT. P0001) GO TO 200
END OF THE OUTER LOOP.
GO TO 30
300 CONTINUE
TERMINATION, EITHER NORMAL OR USER IMPOSED.
IF (IFLAG .LT. 0) INFO = IFLAG
IFLAG = 0
IF (NPRINT .GT. 0) CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
RETURN

LAST CARD OF SUBROUTINE LMDER.

END
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SUBROUTINE LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,IPVT,WA,
IWA)

INTEGER M,N,LDFJAC,INFO,LWA

INTEGER IPVT(N)

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)

EXTERNAL FCN

PR TN ntenleaten!
e e

SUBROUTINE LMDER1

THE PURPOSE OF LMDER1 IS TO MINIMIZE THE SUM OF THE SQUARES OF-
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE
LEVENBERG-MARQUARDT ALGORITHM. THIS IS DONE BY USING THE MORE
GENERAL LEAST-SQUARES SOLVER LMDER. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,
IPVT,WA,LWA)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER
CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER M,N,LDFJAC,IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)
IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMDER1.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.
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C LMR10550
c FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS LMR10560
c THE FUNCTIONS EVALUATED AT THE OUTPUT X. LMR10570
C LMR10580
C FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX LMR10590
C OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH LMR10600
C DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE SUCH THAT LMR10610
C LMR10620
C T T T LMR10630
C P *(JAC *JAC)*P = R *R, LMR10640
c LMR10650
c WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL LMR10660
c CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J) LMR10670
c (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL LMR10680
c PART OF FJAC CONTAINS INFORMATION GENERATED DURING LMR10690
C THE COMPUTATION OF R. LMR10700
C LMR10710
c LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M LMR10720
c WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. LMR10730
C LMR10740 -
c TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS LMR10750
c WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE LMR10760
C ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT LMR10770
c THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT LMR10780
c MOST TOL. LMR10790
C LMR10800
C INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS IMR10810
C TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMR10820
C VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMR10830
c INFO IS SET AS FOLLOWS. LMR10840
C LMR10850
C INFO = 0 IMPROPER INPUT PARAMETERS. LMR10860
C LMR10870
c INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMR10880
c IN THE SUM OF SQUARES IS AT MOST TOL. LMR10890
c : LMR10900
c INFO = 2 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMR10910
C BETWEEN X AND THE SOLUTION IS AT MOST TOL. LMR10920
C LMR10930
C INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. LMR10940
C LMR10950
c INFO = 4 FVEC IS ORTHOGONAL TO THE COLUMNS OF THE LMR10960
C JACOBIAN TO MACHINE PRECISION. IMR10970
C LMR10980
C INFO =. 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS LMR10990
C REACHED 100%(N+1). LMR11000
C ILMR11010
C INFO = 6 TOL IS TOO SMALL. NO FURTHER REDUCTION IN LMR11020
c THE SUM OF SQUARES IS POSSIBLE. LMR11030
c IMR11040
C INFO = 7 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMR11050
C THE APPROXIMATE SOLUTION X IS POSSIBLE. LMR11060
C IMR11070
C IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMR11080
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DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R,
WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS
ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR
WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE.
COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

WA IS A WORK ARRAY OF LENGTH LWA.

LWA IS A POSITIVE INTEGER INPUT.VARIABLE NOT LESS THAN 5+*N+M.
SUBPROGRAMS CALLED

USER-SUPPLIED ...... FCN

MINPACK-SUPPLIED ... LMDER

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

RV SRR SRR PR DR TR L T
CR T D N I i iy

INTEGER MAXFEV,MODE,NFEV,NJEV,NPRINT

DOUBLE PRECISION FACTOR,FTOL,GTOL,XTOL,ZERO
DATA FACTOR,ZERO /1.0D2,0.0DO/

INFO = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. M .OR. TOL .LT. ZERO

* .OR. LWA .LT. 5*N + M) GO TO 10

CALL LMDER.

MAXFEV = 100%(N + 1)

FTOL = TOL

XTOL = TOL

GTOL = ZERO

MODE = 1

NPRINT = 0

CALL LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,MAXFEV,
* WA(1) ,MODE ,FACTOR,NPRINT, INFO,NFEV,NJEV, IPVT,WA(N+1),
* WA (2*N+1) ,WA(3*N+1) ,WA (4*N+1) ,WA(5%N+1))

IF (INFO .EQ. 8). INFO = 4

10 CONTINUE
RETURN

LAST CARD OF SUBROUTINE LMDERI.

END
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SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,
DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,FJAC,LDFJAC,
IPVT,QTF,WA1,WA2 ,WA3,WA4)

INTEGER M,N,MAXFEV,MODE,NPRINT, INFO,NFEV,LDFJAC

INTEGER IPVT(N)

DOUBLE PRECISION FTOL,XTOL,GTOL,EPSFCN,FACTOR

DOUBLE PRECISION X(N),FVEC(M),DIAG(N),FJAC(LDFJAC,N),QTF(N),
WAL(N),WA2(N),WA3(N),WA4(M)

Fefedldededeledek

"SUBROUTINE LMDIF

THE PURPOSE OF LMDIF IS TO MINIMIZE THE SUM OF THE SQUARES OF
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF

THE LEVENBERG-MARQUARDT ALGORITHM. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS
THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,
DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,FJAC,
LDFJAC, IPVT,QTF,WALl,WA2,WA3,WA4)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG

DOUBLE PRECISION X(N),FVEC(M)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
RETURN

END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMDIF.-
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
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™ CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE
REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL.
THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED
IN THE SUM OF SQUARES.

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE
RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION.

GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE COSINE OF THE ANGLE BETWEEN FVEC AND
ANY COLUMN OF THE JACOBIAN IS AT MOST GTOL IN ABSOLUTE
VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY
DESIRED BETWEEN THE FUNCTION VECTOR AND THE COLUMNS
OF THE JACOBIAN.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST
MAXFEV BY THE END OF AN ITERATION.

EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE
STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS
APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE
FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS
THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE
ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE
PRECISION.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE
BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE
VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2,
THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
VALUES OF MODE ARE EQUIVALENT TO MODE = 1.

FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE
INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF
FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE
TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE
INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.

NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED
PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE,
FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST
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ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND
IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE
FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS
OF FCN WITH IFLAG = 0 ARE MADE.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,

IS SET AS FOLLOWS.

INFO
INFO = 0
INFO = 1
INFO = 2
INFO = 3
INFO = &
INFO = 5
INFO = 6
INFO = 7
INFO = 8
NFEV IS AN
CALLS TO

IMPROPER INPUT PARAMETERS.

BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS
IN THE SUM OF SQUARES ARE AT MOST FTOL.

RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES
IS AT MOST XTOL.

CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD.
THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY
COLUMN OF THE JACOBIAN IS AT MOST GTOL IN
ABSOLUTE VALUE.

NUMBER OF CALLS TO FCN HAS REACHED OR
EXCEEDED MAXFEV.

FTOL IS TOO SMALL. NO FURTHER REDUCTION IN
THE SUM OF SQUARES IS POSSIBLE.

XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE
COLUMNS. OF THE JACOBIAN TO MACHINE PRECISION.

INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
FCN.

FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX
OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH
DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE SUCH THAT

T

T T

P *(JAC *JAC)*P = R.*R,

WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL
CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J)

(SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL
PART OF FJAC CONTAINS INFORMATION GENERATED DURING

THE COMPUTATION OF. R.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.
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IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT
DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R,
WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS
ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR
WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE.
COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*FVEC.

WA1l, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N.
WA4 IS A WORK ARRAY OF LENGTH M.

SUBPROGRAMS CALLED

USER-SUPPLIED ...... FCN
MINPACK-SUPPLIED ... DPMPAR,ENORM,FDJACZ,LMPAR,QRFAC
FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT,MOD

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
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INTEGER I,IFLAG,ITER,J,L

DOUBLE PRECISION ACTRED,DELTA,DIRDER,EPSMCH,FNORM,FNORM1,GNORM,
%* ONE, PAR, PNORM, PRERED, P1,P5,P25,P75,P0001,RATIO,
* SUM, TEMP, TEMP1,TEMP2 , XNORM, ZERO

DOUBLE PRECISION DPMPAR,ENORM

DATA ONE,P1,P5,P25,%75,P0001,ZERO
* /1.0D0,1.0D-1,5.0D-1,2.5D-1,7.5L-.,1.0D-4,...0D0O/

EPSMCH IS THE MACHINE PRECISION.

EPSMCH = DPMPAR(1)

INFO = 0
IFLAG = 0
NFEV = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. M
¥ .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL .LT. ZERO
% .OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO) GO TO 300
IF (MODE .NE. 2) GO TO 20
DO 10 J =1, N
IF (DIAG(J) .LE. ZERO) GO TO 300
10 CONTINUE
20 CONTINUE
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EVALUATE THE FUNCTION AT THE STARTING POINT
AND CALCULATE ITS NORM.

IFLAG = 1
CALL FCN(M,N,X,FVEC,IFLAG)
NFEV = 1

IF (IFLAG .LT. 0) GO TO 300
FNORM = ENORM(M,FVEC)

INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER.

PAR = ZERO
ITER =1

BEGINNING OF THE OUTER LOOP.

30 CONTINUE

40

50
60

70

CALCULATE THE JACOBIAN MATRIX.

IFLAG = 2 :
CALL FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC, IFLAG,EPSFCN,WA4
NFEV = NFEV + N

IF (IFLAG .LT. 0) GO TO 300

IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES .

IF (NPRINT .LE. 0) GO TO 40

IFLAG = 0

IF (MOD(ITER-1,NPRINT) .EQ. 0) CALL FCN(M,N,X,FVEC,IFLAG)
IF (IFLAG .LT. 0) GO TO 300

CONTINUE

COMPUTE THE QR FACTORIZATION OF THE JACOBIAN.
CALL QRFAC(M,N,FJAC,LDFJAC,.TRUE.,IPVT,N,WAl,WA2,WA3)

ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.

IF (ITER .NE. 1) GO TO 80

IF (MODE .EQ. 2) GO TO 60

DO 50 J =1, N
DIAG(J) = WA2(J)
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
CONTINUE

CONTINUE

ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
AND INITIALIZE THE STEP BOUND DELTA.

po 70 J =1, N
WA3(J) = DIAG(J)*X(J)
CONTINUE
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80

90

100

110

120

130

140

150
160
170

180
190

204

XNORM

ENORM(N,WA3)

DELTA = FACTOR*XNORM .

IF (DELTA .EQ. ZERO) DELTA = FACTOR
CONTINUE

FORM (Q TRANSPOSE)*FVEC AND STORE THE FIRST N COMPONENTS IN
QTF.

DO 90 I = 1,
WAL (D) =
CONTINUE
DO 130 J = 1, N
IF (FJAC(J,J) .EQ. ZERO) GO TO 120
SUM = ZERO
DO 100 I = J, M
SUM = SUM + FJAC(I,J)*WA4(I)
CONTINUE

TEMP = -SUM/FJAC(J,J)

DO 110 I = J, M
WA4(I) = WA4(I) + FJAC(I,J)*TEMP
CONTINUE

CONTINUE

FJAC(J,J) = WAL(J)

QTF(J) = WA4(J)

CONTINUE

M
FVEC(I)

COMPUTE THE NORM OF THE SCALED GRADIENT.

GNORM = ZERO
IF (FNORM .EQ. ZERO) GO TO 170
DO 160 J = 1, N
L = IPVT(J)
IF (WA2(L) .EQ. ZERO) GO TO 150
SUM = ZERO '
DO 140 I =1, J
SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM)
CONTINUE
GNORM = DMAX1 (GNORM,DABS (SUM/WA2(L)))
CONTINUE
CONTINUE
CONTINUE

TEST FOR CONVERGENCE OF THE GRADIENT NORM.

IF (GNORM .LE. GTOL) INFO = 4
IF (INFO .NE. 0) GO TO 300

RESCALE IF NECESSARY.

IF (MODE .EQ. 2) GO TO 190

DO 180 J = 1, N
DIAG(J) = DMAX1(DIAG(J),WA2(J))
CONTINUE

CONTINUE

LMDF2710
ILMDF2720
LMDF2730
LMDF2740
LMDF2750
LMDF2760
LMDF2770
LMDF2780
LMDF2790
LMDF2800
LMDF2810
LMDF2820
LMDF2830
LMDF2840
LMDF2850
LMDF2860
LMDF2870
LMDF2880
LMDF2890
LMDF2900
LMDF2910
LMDF2920
LMDF2930
LMDF2940
ILMDF2950
LMDF2960
LMDF2970
LMDF2980
LMDF2$90
LMDF3000
LMDF3010
LMDF3020
LMDF3030
LMDF3040
LMDF3050
LMDF3060
LMDF3070
LMDF3080
LMDF3090
LMDF3100
LMDF3110
LMDF3120
ILMDF3130
LMDF3140
LMDF3150
LMDF3160
LMDF3170
LMDF3180
LMDF3190
LMDF3200
ILMDF3210
LMDF3220
LMDF3230
LMDF3240




(oMo N

[P NoNe]

aQaon

200

210

220
230

BEGINNING OF THE INNER LOOP.

CONTINUE -

DETERMINE THE LEVENBERG-MARQUARDT PARAMETER.

CALL LMPAR(N,FJAC,LDFJAC,IPVT,DIAG,QTF,DELTA,PAR,WA1,WA2,
WA3,WA4)

STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P.

DO 210 J =1, N
WAL(J) = -WA1(J)
WA2(J) = X(J) + WA1(J)
WA3(J) = DIAG(J)*WA1(J)
CONTINUE :

PNORM = ENORM(N,WA3)

ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND.
IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM)
EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM.

IFLAG = 1

CALL FCN(M,N,WA2,WA4,IFLAG)
NFEV = NFEV + 1 .
IF (IFLAG .LT. 0) GO TO 300
FNORM1 = ENORM(M,WA4)

COMPUTE THE SCALED ACTUAL REDUCTION. -

ACTRED = -ONE
IF (P1*FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)%*%2

COMPUTE THE SCALED PREDICTED REDUCTION AND
THE SCALED DIRECTIONAL DERIVATIVE.

DO 230 J =1, N
WA3(J) = ZERO
L = IPVT(J)
TEMP = WA1(L)
DO 220 I =1, J
WA3(I) = WA3(I) + FJAC(I,J)*TEMP
CONTINUE
CONTINUE
TEMP1 = ENORM(N,WA3)/FNORM
TEMP2 = (DSQRT(PAR)*PNORM)/FNORM
PRERED = TEMP1#*2 + TEMP2%%2/P5
DIRDER = - (TEMP1%%2 + TEMP2#%¥2)
COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED
REDUCTION.
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RATIO = ZERO
IF (PRERED .NE. ZERO) RATIO = ACTRED/PRERED

UPDATE THE STEP BOUND.

IF (RATIO .GT. P25) GO TO 240
IF (ACTRED .GE. ZERO) TEMP = P5
IF (ACTRED .LT. ZERO)
TEMP = P5*DIRDER/(DIRDER + P5*ACTRED)
IF (P1*FNORM1 .GE. FNORM .OR. TEMP .LT. P1) TEMP = P1
DELTA = TEMP*DMIN1(DELTA,PNORM/P1)
PAR = PAR/TEMP
GO TO 260
CONTINUE
IF (PAR .NE. ZERO .AND. RATIO .LT. P73) GO TO 250
DELTA = PNORM/P5
PAR = P5*PAR
CONTINUE
CONTINUE

TEST FOR SUCCESSFUL ITERATION.
IF (RATIO .LT. P0001) GO TO 290
SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.

DO 270 J = 1, N
X(J) = WA2(J)
WA2(J) = DIAG(J)*X(J)
CONTINUE

DO 280 I = 1, M
TVEC(I) = WA4(I)
CONTINUE

XNORM = ENORM(N,WA2)

FNORM = FNORM1

ITER = ITER + 1

CONTINUE

TESTS FOR CONVERGENCE.

IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
.AND. P5*RATIO .LE. ONE) INFO = 1
IF (DELTA .LE. XTOL*XNORM) INFO = 2
IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
.AND. P5*RATIO .LE. ONE .AND. INFO .EQ. 2) INFO = 3
IF (INFO .NE. 0) GO TO 300

TESTS FOR TERMINATION AND STRINGENT TOLERANCES.

IF (NFEV .GE. MAXFEV) INFO = 5

IF (DABS(ACTRED) .LE. EPSMCH .AND. PRERED .LE. EPSMCH
.AND. P5*RATIO .LE. ONE) INFO = 6

IF (DELTA .LE. EPSMCH*XNORM) INFO 7
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IF (GNORM .LE. EPSMCH) INFO = 8
IF (INFO .NE. 0) GO TO 300

END OF THE INNER LOOP. REPEAT IF ITERATION UNSUCCESSFUL.
IF (RATIO .LT. P0O001) GO TO 200
END OF THE OUTER LOOP.

GO TO 30
300 CONTINUE

TERMINATION, EITHER NORMAL OR USER IMPOSED.
IF (IFLAG .LT. 0) INFO = IFLAG

IFLAG = 0

IF (NPRINT .GT. 0) CALL FCN(M,N,X,FVEC,IFLAG)
RETURN

LAST CARD OF SUBROUTINE LMDIF.

END
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SUBROUTINE LMDIF1(FCN,M,N,X,FVEC,TOL,INFO,IWA,WA,LWA)
INTEGER M,N,INFO,LWA

INTEGER IWA(N)

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(M),WA(LWA)

EXTERNAL FCN

B PL LT L
TWITHWITHWITHWWRN

SUBROUTINE LMDIF1

THE PURPOSE OF LMDIF1 IS TO MINIMIZE THE SUM OF THE SQUARES OF

M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE
LEVENBERG-MARQUARDT ALGORITHM. THIS IS DONE BY USING THE MORE
GENERAL LEAST-SQUARES SOLVER LMDIF. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS
THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION.

THE SUBROUTINE STATEMENT IS
SUBROUTINE LMDIF1(FCN,M,N,X,FVEC,TOL,INFO,IWA,WA,LWA)
WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N, IFLAG

DOUBLE PRECISION X(N),FVEC(M)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
RETURN

END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMDIF1. ’
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.
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TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS
WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE
ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT
THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT
MOST TOL.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.

INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
IN THE SUM OF SQUARES IS AT MOST TOL.

INFO = 2 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
BETWEEN X AND THE SOLUTION IS AT MOST TOL.

INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD.

FVEC IS ORTHOGONAL TO THE COLUMNS OF THE
JACOBIAN TO MACHINE PRECISION.

]
~

INFO
INFO = 5 NUMBER OF CALLS TO FCN HAS REACHED OR
EXCEEDED 200%(N+1).

INFO = 6 TOL IS TOO SMALL. NO FURTHER REDUCTION IN
THE SUM OF SQUARES IS POSSIBLE.

INFO = 7 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

IWA IS AN INTEGER WORK ARRAY OF LENGTH N.
WA IS A WORK ARRAY OF LENGTH LWA.

LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
M*N+5%*N+M.

SUBPROGRAMS CALLED
USER-SUPPLIED ...... FCN
MINPACK-SUPPLIED ... LMDIF

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
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INTEGER MAXFEV,MODE,MP5N,NFEV ,NPRINT
DOUBLE PRECISION EPSFCN,FACTOR,FTOL,GTOL,XTOL,ZERO
DATA FACTOR,ZERO /1.0D2,0.0D0/
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INFO =

0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. M .LT..N .OR. TOL .LT. ZERO
#  _OR. LWA .LT. M*N + 5*N + M) GO TO 10

CALL LMDIF.

MAXFEV = 200*(N + 1)
TOL
TOL
ZERO

FTOL
XTOL

MP5N =

1
M

ZERO

0
+ 5*N

CALL IMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,WA(1),

*
*

MODE , FACTOR ,NPRINT, INFO,NFEV,WA(MP5N+1) ,M, IWA,
WA(N+1) ,WA(2%N+1) ,WA(3*N+1) ,WA(4*N+1) ,WA(5*N+1))

~ IF (INFO .EQ. 8) INFO = &
10 CONTINUE

RETURN

LAST CARD OF SUBROUTINE LMDIF1.

END
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SUBROUTINE LMPAR(N,R,LDR,IPVT,DIAG,QTB,DELTA,PAR,X,SDIAG,WAl,
WA2)

INTEGER N,LDR

INTEGER IPVT(N)

DOUBLE PRECISION DELTA,PAR

DOUBLE PRECISION R(LDR,N),DIAG(N),QTB(N),X(N),SDIAG(N),WA1(N),
WA2 (N)

dectealeatoatoteclintoatents
TWITIIWIWITRWHNN

SUBROUTINE LMPAR

GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL
MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA,
THE PROBLEM IS TO DETERMINE A VALUE FOR THE PARAMETER
PAR SUCH THAT IF X SOLVES THE SYSTEM

A*X = B , SQRT(PAR)*D*X = 0 ,

IN THE LEAST SQUARES SENSE, AND DXNORM IS THE EUCLIDEAN
NORM OF D*X, THEN EITHER PAR IS ZERO AND

(DXNORM-DELTA) .LE. 0.1%*DELTA ,

OR PAR IS POSITIVE AND
ABS (DXNORM-DELTA) .LE. 0.1*DELTA .

THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM

IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE

QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF
A*P = Q*R, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL
COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL
ELEMENTS OF NONINCREASING MAGNITUDE, THEN LMPAR EXPECTS

THE FULL UPPER TRIANGLE OF R, THE PERMUTATION MATRIX P,

AND THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. ON OUTPUT
LMPAR ALSO PROVIDES AN UPPER TRIANGULAR MATRIX S SUCH THAT

T T T
P *(A *A + PAR*D*D)*P = § *§ .

S IS EMPLOYED WITHIN LMPAR AND MAY BE OF SEPARATE INTEREST.
ONLY A FEW ITERATIONS ARE GENERALLY NEEDED FOR CONVERGENCE
OF THE ALGORITHM. IF, HOWEVER, THE LIMIT OF 10 ITERATIONS
IS REACHED, THEN THE OUTPUT PAR WILL CONTAIN THE BEST
VALUE OBTAINED SO FAR.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMPAR(N,R,LDR,IPVT,DIAG,QTB,DELTA,PAR,X,SDIAG,
WA1,WA2)

WHERE
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N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.

R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE
MUST CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R.
ON OUTPUT THE FULL UPPER TRIANGLE IS UNALTERED, AND THE
STRICT LOWER TRIANGLE CONTAINS THE STRICT UPPER TRIANGLE
(TRANSPOSED) OF THE UPPER TRIANGULAR MATRIX S.

LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.

IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE
PERMUTATION MATRIX P SUCH THAT A*P = Q*R. COLUMN J OF P
IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE
DIAGONAL ELEMENTS O THE MATRIX D.

QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST
N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B.

DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER
BOUND ON THE EUCLIDEAN NORM OF D+*X.

PAR IS A NONNEGATIVE VARIABLE. ON INPUT PAR CONTAINS AN
INITIAL ESTIMATE OF THE LEVENBERG-MARQUARDT PARAMETER.
ON OUTPUT PAR CONTAINS THE FINAL ESTIMATE.

X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE LEAST
SQUARES SOLUTION OF THE SYSTEM A*X = B, SQRT(PAR)*D*X = 0,
FOR THE OUTPUT PAR.

SDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
DIAGONAL ELEMENTS OF THE UPPER TRIANGULAR MATRIX S.

WAl AND WAZ ARE WORK ARRAYS OF LENGTH N.
SUBPROGRAMS CALLED

MINPACK=-SUPPLIED ... DPMPAR,ENORM,QRSOLV

FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

RN S SR SR SR SR SO S S Y
TITIVITIWRINWWW

INTEGER I,ITER,J,JM1,JP1,K,L,NSING

DOUBLE PRECISION DXNORM,DWARF,FP,GNORM,PARC,PARL,PARU,P1,P001,
* SUM, TEMP, ZERO

DOUBLE PRECISION DPMPAR,ENORM

DATA P1,P001,ZERO /1.0D-1,1.0D-3,0.0D0/

DWARF IS THE SMALLEST POSITIVE MAGNITUDE.
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30
40
50

60

70

80

DWARF = DPMPAR(2)

COMPUTE AND STORE IN X THE GAUSS-NEWTON DIRECTION. IF THE
JACOBIAN IS RANK-DEFICIENT, OBTAIN A LEAST SQUARES SOLUTION.

NSING = N
DO 10 J =1, N
WA1(J) = QTB(J)

IF (R(J,J) .EQ. ZERO .AND. NSING .EQ. N) NSING =J - 1

IF (NSING .LT. N) WA1(J) = ZERO
CONTINUE
IF (NSING .LT. 1) GO TO 50
DO 40 K = 1, NSING
J = NSING - K + 1
WA1(J) = WAl1(J)/R(J,J)
TEMP = WA1(J)
JM1 =J -1
IF (JM1 .LT. 1) GO TO 30
DO 20 I = 1, JM1
WA1(I) = WA1(I) - R(I,J)*TEMP

CONTINUE
CONTINUE
CONTINUE

CONTINUE

DO 60 J =1, N
L = IPVT(J)
X(L) = WA1(J)
CONTINUE

INITIALIZE THE ITERATION COUNTER.
EVALUATE THE FUNCTION AT THE ORIGIN, AND TEST
FOR ACCEPTANCE OF THE GAUSS-NEWTON DIRECTION.

ITER = 0

Do 70 J =1, N
WA2(J) = DIAG(J)*X(J)
CONTINUE

DXNORM = ENORM(N,WA2)

FP = DXNORM - DELTA

IF (FP .LE. P1*DELTA) GO TO 220

IF THE JACOBIAN IS NOT RANK DEFICIENT, THE NEWTON
STEP PROVIDES A LOWER BOUND, PARL, FOR THE ZERO OF
THE FUNCTION. OTHERWISE SET THIS BOUND TO ZERO.

PARL = ZERO
IF (NSING .LT. N) GO TO 120
DO 80 J =1, N
L = IPVT(J)
WA1(J) = DIAG(L)*(WA2(L)/DXNORM)
CONTINUE
DO 110 J = 1, N
SUM = ZERO
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JM1 =J -1
IF (JM1 .LT. 1) GO TO 100
DO 90 I = 1, JM1
SUM = SUM + R(I,J)*WA1(I)
CONTINUE
CONTINUE
WAL(J) = (WAL(J) - SUM)/R(J,J)
CONTINUE :
TEMP = ENORM(N,WA1)
PARL = ((FP/DELTA)/TEMP)/TEMP
CONTINUE

CALCULATE AN UPPER BOUND, PARU, FOR THE ZERO OF THE FUNCTION.

DO 140 J = 1, N
SUM = ZERO
DO 130 I =1, J
SUM = SUM + R(I,J)*QTB(I)
CONTINUE
L = IPVT(J)
WAL(J) = SUM/DLAG(L)
CONTINUE
GNORM = ENORM(N,WA1)
PARU = GNORM/DELTA
IF (PARU .EQ. ZERO) PARU = DWARF/DMIN1(DELTA,P1)

IF THE INPUT PAR LIES OUTSIDE OF THE INTERVAL (PARL,PARU),
SET PAR TO THE CLOSER ENDPOINT.

PAR = DMAX1(PAR,PARL)
PAR = DMIN1(PAR,PARU)
IF (PAR .EQ. ZERO) PAR = GNORM/DXNORM

I

BEGINNING OF AN ITERATION.

CONTINUE
ITER = ITER + 1

EVALUATE THE FUNCTION AT THE CURRENT VALUE OF PAR.

IF (PAR .EQ. ZERO) PAR = DMAX1(DWARF,POO1*PARU)
TEMP = DSQRT(PAR)
DO 160 J = 1, N
WA1(J) = TEMP*DIAG(J)
CONTINUE
CALL QRSOLV(N,R,LDR,IPVT,WAl,QTB,X,SDIAG,WA2)
DO 170 J =1, N
WA2(J) = DIAG(J)*X(J)
CONTINUE
DXNORM = ENORM(N,WA2)
TEMP = FP
FP = DXNORM - DELTA

IF THE FUNCTION IS SMALL ENOUGH, AQCEPT,THE CURRENT VALUE
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OF PAR. ALSO TEST FOR THE EXCEPTIONAL CASES WHERE PARL
IS ZERO OR THE NUMBER OF ITERATIONS HAS REACHED 10.

IF (DABS(FP) .LE. P1*DELTA
.OR. PARL .EQ. ZERO .AND. FP .LE. TEMP
LAND. TEMP .LT. ZERO .OR. ITER .EQ. 10) GO TO 220

COMPUTE THE NEWTON CORRECTION.

DO 180 J =1, N
L = IPVT(J)
WA1(J) = DIAG(L)*(WA2(L)/DXNORM)
CONTINUE
DO 210 J =1, N
WA1(J) = WA1(J)/SDIAG(J)
TEMP = WA1(J)
JP1=J +1
IF (N .LT. JP1) GO TO 200
DO 190 I = JP1, N
WA1(I) = WA1(I) - R(I,J)*TEMP
CONTINUE
CONTINUE
CONTINUE
TEMP = ENORM(N,WA1l)
PARC = ((FP/DELTA)/TEMP)/TEMP

DEPENDING ON THE SIGN OF THE FUNCTION, UPDATE PARL OR PARU.

DMAX1(PARL,PAR)
DMIN1 (PARU,PAR)

IF (FP .GT. ZERO) PARL
IF (FP .LT. ZERO) PARU

COMPUTE AN IMPROVED ESTIMATE FOR PAR.
PAR = DMAX1(PARL,PAR+PARC)
END OF AN ITERATION.

GO TO 150
CONTINUE

TERMINATION.

IF (ITER .EQ. 0) PAR = ZERO-
RETURN

LAST CARD OF SUBROUTINE LMPAR.

END
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SUBROUTINE LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,

* MAXFEV,DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,NJEV,

* IPVT,QTF,WA1,WA2 ,WA3,WA4)

INTEGER M,N,LDFJAC,MAXFEV,MODE ,NPRINT, INFO,NFEV,NJEV
INTEGER IPVT(N)

LOGICAL SING

DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N),
* WA1(N),WA2(N),WA3(N),WA4(M)

alecboctontontantecto st ctinte
TATITITIWIW RN

SUBROUTINE LMSTR

THE PURPOSE OF LMSTR IS TO MINIMIZE THE SUM OF THE SQUARES OF
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF

THE LEVENBERG-MARQUARDT ALGORITHM WHICH USES MINIMAL STORAGE.
THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE
FUNCTIONS AND THE ROWS OF THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
MAXFEV,DIAG,MODE ,FACTOR ,NPRINT, INFO,NFEV,
NJEV, IPVT,QTF,WAl,WA2,WA3,WAL)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE ROWS OF THE JACOBIAN.
FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN THE
USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG)

INTEGER M,N,IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.
RETURN

END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMSTR.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.
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X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FJAC IS AN OUTPUT N BY N ARRAY. THE UPPER TRIANGLE OF FJAC
CONTAINS AN UPPER TRIANGULAR MATRIX R SUCH THAT

T T T
P *(JAC *JAC)*P = R *R,

WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL
CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J)
(SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRIANGULAR
PART OF FJAC CONTAINS INFORMATION GENERATED DURING

THE COMPUTATION OF R.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE
REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL.
THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED
IN THE SUM OF SQUARES.

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE
RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION.

GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE COSINE OF THE ANGLE BETWEEN FVEC AND
ANY COLUMN OF THE JACOBIAN IS AT MOST GTOL IN ABSOLUTE
VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY
DESIRED BETWEEN THE FUNCTION VECTOR AND THE COLUMNS
OF THE JACOBIAN.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1
HAS REACHED MAXFEV.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE
BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE
VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2,
THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
VALUES OF MODE ARE EQUIVALENT TO MODE = 1.
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C FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE LMSR1090
C INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF LMSR1100
C FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE LMSR1110
C TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE LMSR1120
C INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE. LMSR1130
C o , LMSR1140
C NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED LMSR1150
C PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, LMSR1160
C FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST LMSR1170
C ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND LMSR1180
C IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE LMSR1190
C FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS LMSR1200
C OF FCN WITH IFLAG = 0 ARE MADE. LMSR1210
C LMSR1220
C INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS LMSR1230
C TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMSR1240
C VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMSR1250
C INFO IS SET AS FOLLOWS. LMSR1260
C LMSR1270
C INFO = 0 IMPROPER INPUT PARAMETERS. LMSR1280
C LMSR1290
C INFO = 1 BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS LMSR1300
C IN THE SUM OF SQUARES ARE AT MOST FTOL. LMSR1310
C , ' LMSR1320
C INFO = 2 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES LMSR1330
C IS AT MOST XTOL. ' LMSR1340
C : : LMSR1350
C INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. LMSR1360
C LMSR1370
C INFO = 4 THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY LMSR1380
C COLUMN OF THE JACOBIAN IS AT MOST GTOL IN LMSR1390
C ABSOLUTE VALUE. ' - LMSR1400
G LMSR1410
C INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS LMSR1420
C REACHED MAXFEV. LMSR1430
C LMSR1440
C INFO = 6 FTOL IS TOO SMALL. NO FURTHER REDUCTION IN LMSR1450
C THE SUM OF SQUARES IS POSSIBLE. LMSR1460
C LMSR1470
C INFO = 7 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMSR1480
C THE APPROXIMATE SOLUTION X IS POSSIBLE. LMSR1490
C LMSR1500
C INFO = 8 GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE LMSR1510
C COLUMNS OF THE JACOBIAN TO MACHINE PRECISION. LMSR1520
C LMSR1530
C NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF LMSR1540
C CALLS TO FCN WITH IFLAG = 1. _ LMSR1550
C LMSR1560
C NJEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF LMSR1570
C CALLS TO FCN WITH IFLAG = 2. LMSR1580
C LMSR1590
C IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMSR1600
C DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R, LMSR1610
C

WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS LMSR1620
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ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR.
COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*FVEC.

WAl, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N.
WA4 IS A WORK ARRAY OF LENGTH M.

SUBPROGRAMS CALLED

USER-SUPPLIED ...... FCN
MINPACK~-SUPPLIED ... DPMPAR,ENORM,LMPAR,QRFAC,RWUPDT
FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT,MOD

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, DUDLEY V. GOETSCHEL, KENNETH E. HILLSTROM,
JORGE J. MORE -

TR R0 SR, L AP O AP R DO 34
WIWWWRWRWRRNR

INTEGER I,IFLAG,ITER,J,L
DOUBLE PRECISION ACTRED,DELTA,DIRDER,EPSMCH,FNORM,FNORM1,GNORM,

* ONE,PAR, PNORM,PRERED,P1,P5,P25,P75,P0001,RATIO,

* , SUM, TEMP,TEMP1,TEMP2 ,XNORM, ZERO
DOUBLE PRECISION DPMPAR , ENORM

DATA ONE,P1,P5,P25,P75 P0001 ZERO
* /1.0D0,1.0D-1,5.0D-1,2.5D-1,7.5D-1,1.0D-4,0xOD0/

EPSMCH IS THE MACHINE PRECISION.

EPSMCH = DPMPAR(1)

INFO =

IFLAG =
NFEV = 0
NJEV = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. N
% .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL .LT. ZERO
* .OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO) GO TO 340
IF (MODE .NE. 2) GO TO 20
DO 10 J =1, N
IF (DIAG(J) .LE. ZERO) GO TO 340
10 CONTINUE
20 CONTINUE

EVALUATE THE FUNCTION AT THE STARTING POINT
AND CALCULATE ITS NORM.
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IFLAG = 1
CALL FCN(M,N,X,FVEC,WA3,IFLAG)
NFEV = 1

IF (IFLAG .LT. 0) GO TO 340
FNORM = ENORM(M,FVEC)

INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER.

PAR = ZERO
ITER = 1

BEGINNING OF THE OUTER LOOP.
CONTINUE
IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.

IF (NPRINT .LE. 0) GO TO 40

IFLAG = 0

IF (MOD(ITER-1,NPRINT) .EQ. 0) CALL FCN(M,N,X,FVEC,WA3,IFLAG)
IF (IFLAG .LT. 0) GO TO 340

CONTINUE

COMPUTE THE QR FACTORIZATION OF THE JACOBIAN MATRIX
CALCULATED ONE ROW AT A TIME, WHILE SIMULTANEOUSLY
FORMING (Q TRANSPOSE)*FVEC AND STORING THE FIRST

N COMPONENTS IN QTF.

DO 60 J =
QTF (J)
DO 50 I =1,
FJAC(I,J)
CONTINUE
CONTINUE
IFLAG = 2
DO70I =1, M
CALL FCN(M,N,X,FVEC,WA3,IFLAG)
IF (IFLAG .LT. 0) GO TO 340
TEMP = FVEC(I)
CALL RWUPDT(N,FJAC,LDFJAC,WA3,QTF,TEMP,WA1,WA2)
IFLAG = IFLAG + 1
CONTINUE
NJEV = NJEV + 1

1, N
= ZERO

1, N
= ZERO

IF THE JACOBIAN IS RANK DEFICIENT, CALL QRFAC TO
REORDER ITS COLUMNS AND UPDATE THE COMPONENTS OF QTF.

SING = .FALSE.
DO 80 J =1, N
IF (FJAC(J,J) .EQ. ZERO) SING = .TRUE.
IPVT(J) = J
WA2(J) = ENORM(J,FJAC(1,J))
CONTINUE
IF (.NOT.SING) GO TO 130
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CALL QRFAC(N,N,FJAC,LDFJAC, .TRUE.,IPVT,N,WAl,WA2,WA3)
DO 120 J =1, N
IF (FJAC(J,J) .EQ. ZERO) GO TO 110
SUM = ZERO
DO 90 I =J, N
SUM = SUM + FJAC(I,J)*QTF(I)
CONTINUE
TEMP = -SUM/FJAC(J,J)
DO 100 I = J, N
QTF(I) = QTF(I) + FJAC(I,J)*TEMP
CONTINUE
CONTINUE
FJAC(J,J)
CONTINUE
CONTINUE

WA1(J)

ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.

IF (ITER .NE. 1) GO TO 170"
IF (MODE .EQ. 2) GO TO 150
DO 140 J = 1, N
DIAG(J) = WA2(J)
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
CONTINUE
CONTINUE

ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
AND INITIALIZE THE STEP BOUND DELTA.

DO 160 J = 1, N
WA3(J) = DIAG(I)*X(J) .
CONTINUE
XNORM = ENORM(N,WA3)
DELTA = FACTOR*XNORM
IF (DELTA .EQ. ZERO) DELTA = FACTOR
CONTINUE

COMPUTE THE NORM OF THE SCALED GRADIENT.

GNORM = ZERO
IF (FNORM .EQ. ZERO) GO TO 210
DO 200 J =1, N
L = IPVT(J)
IF (WA2(L) .EQ. ZERO) GO TO 190
SUM = ZERO
DO 180 I =1, J
SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM)
CONTINUE
GNORM = DMAX1(GNORM,DABS (SUM/WA2(L)))
CONTINUE
CONTINUE
CONTINUE
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C TEST FOR CONVERGENCE OF THE GRADIENT NORM. LMSR3250
c LMSR3260
IF (GNORM .LE. GTOL) INFO = 4 : LMSR3270

IF (INFO .NE. 0) GO TO 340 LMSR3280

C LMSR3290
C RESCALE IF NECESSARY. LMSR3300
C LMSR3310
IF (MODE .EQ. 2) GO TO 230 LMSR3320

DO 220 J = 1, N LMSR3330

DIAG(J) = DMAX1(DIAG(J),WA2(J)) LMSR3340

220 CONTINUE LMSR3350
230 CONTINUE LMSR3360

c LMSR3370
c BEGINNING OF THE INNER LOOP. LMSR3380
c LMSR3390
240 CONTINUE LMSR3400

C LMSR3410
c DETERMINE THE LEVENBERG-MARQUARDT PARAMETER. LMSR3420
c LMSR3430
CALL IMPAR(N,FJAC,LDFJAC,IPVT,DIAG,QTF,DELTA,PAR,WA1,WA2,  LMSR3440

* WA3,WAG) LMSR3450

c LMSR3460
C STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P.  LMSR3470
c : LMSR3480
DO 250 J = 1, N LMSR3490

WAL(T) = -WA1(J) LMSR3500

WA2(J) = X(J) + WAL(J) ~ LMSR3510

WA3(J) = DIAG(J)*WA1(J) LMSR3520

250 CONTINUE LMSR3530
PNORM = ENORM(N,WA3) LMSR3540

C LMSR3550
c ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. LMSR3560
c LMSR3570
IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM) LMSR3580

C LMSR3590
c EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM. LMSR3600
C LMSR3610
IFLAG = 1 LMSR3620

CALL FCN(M,N,WA2,WA&4,WA3,IFLAG) LMSR3630

NFEV = NFEV + 1 LMSR3640

IF (IFLAG .LT. 0) GO TO 340 LMSR3650

FNORM1 = ENORM(M,WA&) LMSR3660

c LMSR3670
C COMPUTE THE SCALED ACTUAL REDUCTION. LMSR3680
C . LMSR3690
ACTRED = -ONE LMSR3700

IF (P1*FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)**2 LMSR3710

C LMSR3720
c COMPUTE THE SCALED PREDICTED REDUCTION AND LMSR3730
C THE SCALED DIRECTIONAL DERIVATIVE. LMSR3740
c LMSR3750
DO 270 J =1, N LMSR3760

WA3(J) = ZERO LMSR3770

L = IPVT(J) LMSR3780
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TEMP = WA1(L)
DO 260 I =1, J _
WA3(I) = WA3(I) + FJAC(I,J)*TEMP
CONTINUE
CONTINUE
TEMP1 = ENORM(N,WA3)/FNORM

TEMP2 (DSQRT (PAR)*PNORM) /FNORM
PRERED = TEMP1**2 + TEMP2**2/P5
DIRDER = -(TEMP1%*2 + TEMP2%%2)

COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED
REDUCTION.

RATIO = ZERO
IF (PRERED .NE. ZERO) RATIO = ACTRED/PRERED

UPDATE THE STEP BOUND.

IF (RATIO .GT. P25) GO TO 280
IF (ACTRED .GE. ZERO) TEMP = PS5
IF (ACTRED .LT. ZERO)
TEMP = P5*DIRDER/(DIRDER + P5*ACTRED)
IF (P1*FNORM1 .GE. FNORM .OR. TEMP .LT. P1) TEMP = P1
DELTA = TEMP*DMIN1(DELTA,PNORM/P1)
PAR = PAR/TEMP
GO TO 300
CONTINUE
IF (PAR .NE. ZERO .AND. RATIO .LT. P75) GO TO 290
DELTA = PNORM/P5
PAR = P5*PAR
CONTINUE
CONTINUE

TEST FOR SUCCESSFUL ITERATION.
IF (RATIO .LT. P0O0OO1) GO TO 330
SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.

DO 310 J = 1, N
X(J) = WA2(J)
WA2(J) = DIAG(J)*X(J)
CONTINUE

DO 320I =1, M
FVEC(I) = WA4(I)
CONTINUE

XNORM = ENORM(N,WA2)

FNORM = FNORM1

ITER = ITER + 1

CONTINUE

TESTS FOR CONVERGENCE.

IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
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* .AND. P5*RATIO .LE. ONE) INFO
IF (DELTA .LE. XTOL*XNORM) INFO =
IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL

* .AND. P5*RATIO .LE. ONE .AND. INFO .EQ. 2) INFO = 3
IF (INFO .NE. 0) GO TO 340

2

TESTS FOR TERMINATION AND STRINGENT TOLERANCES.

IF (NFEV .GE. MAXFEV) INFO = 5

IF (DABS(ACTRED) .LE. EPSMCH .AND. PRERED .LE. EPSMCH
* .AND. P5*RATIO .LE. ONE) INFO = 6

IF (DELTA .LE. EPSMCH*XNORM) INFO = 7

IF (GNORM .LE. EPSMCH) INFO = 8

IF (INFO .NE. 0) GO TO 340

END OF THE INNER LOOP. REPEAT IF ITERATION UNSUCCESSFUL.

IF (RATIO .LT. P0O0OO1l) GO TO 240
END OF THE OUTER LOOP.

GO TO 30
340 CONTINUE

TERMINATION, EITHER NORMAL OR USER IMPOSED.

IF (IFLAG .LT. 0) INFO = IFLAG

IFLAG = 0

IF (NPRINT .GT. 0) CALL FCN(M,N,X,FVEC,WA3,IFLAG)
RETURN

LAST CARD OF SUBROUTINE LMSTR.

END
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SUBROUTINE LMSTR1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,IPVT,WA,

LWA)

INTEGER M,N,LDFJAC,INFO,IWA

INTEGER IPVT(N)

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

alactoctantoabiate clectoatosts
WRIWWRWWHRW

SUBROUTINE LMSTR1

THE PURPOSE OF LMSTR1 IS TO MINIMIZE THE SUM OF THE SQUARES OF
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF
THE LEVENBERG-MARQUARDT ALGORITHM WHICH USES MINIMAL STORAGE.
THIS IS DONE BY USING THE MORE GENERAL LEAST-SQUARES SOLVER
LMSTR. THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES
THE FUNCTIONS AND THE. ROWS OF THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

" SUBROUTINE LMSTR1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL, INFO,

IPVT,WA,LWA)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH

CALCULATES THE FUNCTIONS AND THE ROWS OF THE JACOBIAN.
FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN THE
USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,FJROW, IFLAG)

INTEGER M,N,IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMSTR1.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
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C CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. LMS10550
C LMS10560
C FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS LMS10570
C THE FUNCTIONS EVALUATED AT THE OUTPUT X. LMS10580
C LMS10590
C FJAC IS AN OUTPUT N BY N ARRAY. THE UPPER TRIANGLE OF FJAC LMS10600
C CONTAINS AN UPPER TRIANGULAR MATRIX R SUCH THAT LMS10610
c LMS10620
C T T T LMS10630
C P *(JAC *JAC)*P = R *R, LMS10640
c LMS10650
C WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL LMS10660
C CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J) LMS10670
C (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRIANGULAR LMS10680
C PART OF FJAC CONTAINS INFORMATION GENERATED DURING LMS10690
C THE COMPUTATION OF R. LMS10700
C ‘ LMS10710
C LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N LMS10720
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. LMS10730
C LMS10740
C TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS LMS10750
C WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE LMS10760
C ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT LMS10770
C THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT LMS10780
C MOST TOL. LMS10790
C MS10800
C INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS LMS10810
C TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMS10820
C VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMS10830
C INFO IS SET AS FOLLOWS. LMS10840
c LMS10850
C INFO = 0 IMPROPER INPUT PARAMETERS. LMS10860
C LMS10870
C INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR . LMS10880
c IN THE SUM OF SQUARES IS AT MOST 'TOL. LMS10890
c LMS10900
C INFO = 2 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMS10910
C BETWEEN X AND THE SOLUTION IS AT MOST TOL. LMS10920
C LMS10930
C INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. ILMS10940
c LMS10950
C INFO = 4 FVEC IS ORTHOGONAL TO THE COLUMNS OF THE LMS10960
C JACOBIAN TO MACHINE PRECISION. LMS10970
c LMS10980
C INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS ILMS10990
C REACHED 100%*(N+1). LMS11000
c LMS11010
C INFO = 6 TOL IS TOO SMALL. NO FURTHER REDUCTION IN LMS11020
C THE SUM OF SQUARES IS POSSIBLE. IMS11030
C LMS11040
C INFO = 7 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMS11050
C THE APPROXIMATE SOLUTION X IS POSSIBLE. LMS11060
C LMS11070
C IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMS11080
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DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R,
WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS
ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR.
COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

WA IS A WORK ARRAY OF LENGTH LWA.

LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN 5*N+M.
SUBPROGRAMS CALLED

USER-SUPPLIED ...... FCN

MINPACK-SUPPLIED ... LMSTR
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.

BURTON S. GARBOW, DUDLEY V. GOETSCHEL, KENNETH E. HILLSTROM,
JORGE J. MORE

deetontentictictintotectoats
TATIRWITIWRW W

INTEGER MAXFEV,MODE,NFEV ,NJEV,NPRINT

DOUBLE PRECISION FACTOR,FTOL,GTOL,XTOL,ZERO
DATA FACTOR,ZERO /1.0D2,0.0D0/

INFO = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. N .OR. TOL .LT. ZERO

* .OR. LWA .LT. 5*N + M) GO TO 10

CALL LMSTR.

MAXFEV = 100*(N + 1)

FTOL = TOL

XTOL = TOL

GTOL = ZERO

MODE = 1

NPRINT = 0

CALL LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,MAXFEV,
% WA(1),MODE ,FACTOR,NPRINT, INFO,NFEV,NJEV, IPVT ,WA(N+1),
* WA (2%N+1) ,WA(3*N+1) ,WA(4*N+1) ,WA(5*N+1))

IF (INFO .EQ. 8) INFO = 4

10 CONTINUE

RETURN

LAST CARD OF SUBROUTINE LMSTR1.

END
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SUBROUTINE QFORM(M,N,Q,LDQ,WA)
INTEGER M,N,LDQ
DOUBLE PRECISION Q(LDQ,M),WA(M)

teatotectantentactacl clante
PRTICEDEOTIGINW

SUBROUTINE QFORM
THIS SUBROUTINE PROCEEDS FROM THE COMPUTED QR FACTORIZATION OF
AN M BY N MATRIX A TO ACCUMULATE THE M BY M ORTHOGONAL MATRIX
Q FROM ITS FACTORED FORM. ' :
THE SUBROUTINE STATEMENT IS

SUBROUTINE QFORM(M,N,Q,LDQ,WA)
WHERE

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF ROWS' OF A AND THE ORDER OF Q.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER.
OF COLUMNS OF A. '

Q IS AN M BY M ARRAY. ON INPUT THE FULL LOWER TRAPEZOID IN

THE FIRST MIN(M,N) COLUMNS OF Q CONTAINS THE FACTORED FORM.

ON OUTPUT Q HAS BEEN ACCUMULATED INTO A SQUARE MATRIX.

LDQ IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY Q.

WA IS A WORK ARRAY OF LENGTH M.
SUBPROGRAMS CALLED
FORTRAN-SUPPLIED ... MINO

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
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INTEGER I,J,JM1,K,L,MINMN,NP1
DOUBLE PRECISION ONE,SUM,TEMP,ZERO
DATA ONE,ZERO /1.0D0,0.0D0/

.ZERO OUT UPPER TRIANGLE OF Q IN THE FIRST MIN(M,N) COLUMNS.

MINMN = MINO(M,N)
IF (MINMN .LT. 2) GO TO 30
DO 20 J = 2, MINMN
JM1 =J - 1
DO 10 I = 1, JM1
Q(I,J) = ZERO
CONTINUE
CONTINUE
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CONTINUE

- INITTALIZE REMAINING COLUMNS TO THOSE OF THE IDENTITY MATRIX.

NP1 =N + 1
IF (M .LT. NP1) GO TO 60
DO 50 J = NP1, M
DO 40 I =1, M
Q(I,J) = ZERO
CONTINUE
Q(J,J) = ONE
CONTINUE
CONTINUE

ACCUMULATE Q FROM ITS FACTORED FORM.

DO 120 L = 1, MINMN
K=MINMN - L + 1

DO 70 I =K, M
WA(I) = Q(I,K)
Q(I,K) = ZERO

CONTINUE
Q(K,K) = ONE
IF (WA(K) .EQ. ZERO) GO TO 110
DO 100 J =K, M
SUM = ZERO
DO 80 I =K, M
SUM = SUM + Q(I,J)*WA(I)
CONTINUE _
TEMP = SUM/WA(K)
DO 90 I =K, M
Q(I,J) = Q(I,J) - TEMP*WA(I)
CONTINUE
CONTINUE
CONTINUE
CONTINUE
RETURN

LAST CARD OF SUBROUTINE QFORM.

END
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SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG,ACNORM,WA)
INTEGER M,N,LDA,LIPVT

INTEGER IPVT(LIPVT)

LOGICAL PIVOT

DOUBLE PRECISION A(LDA,N),RDIAG(N),ACNORM(N),WA(N)

R PRI P P PR SR S O
O O I i A

SUBROUTINE QRFAC

THIS SUBROUTINE USES HOUSEHOLDER TRANSFORMATIONS WITH COLUMN
PIVOTING (OPTIONAL) TO COMPUTE A QR FACTORIZATION OF THE

M BY N MATRIX A. THAT IS, QRFAC DETERMINES AN ORTHOGONAL
MATRIX Q, A PERMUTATION MATRIX P, AND AN UPPER TRAPEZOIDAL
MATRIX R WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE,
SUCH THAT A*P = Q*R. THE HOUSEHOLDER TRANSFORMATION FOR
COLUMN K, K = 1,2,...,MIN(M,N), IS OF THE FORM

: T
I - (1/U(K))*U*U

WHERE U HAS ZEROS IN THE FIRST K-1 POSLTIONS. THE FORM OF
THIS TRANSFORMATION AND THE METHOD OF PIVOTING FIRST
APPEARED IN. THE CORRESPONDING LINPACK SUBROUTINE.

THE SUBROUTINE STATEMENT IS

SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT ,LIPVT,RDIAG,ACNORM,WA)

WHERE

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF ROWS OF A. : :

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF COLUMNS OF A.

A IS AN M BY N ARRAY. ON INPUT A CONTAINS THE MATRIX FOR
WHICH THE QR FACTORIZATION IS TO BE COMPUTED. ON OUTPUT

THE STRICT UPPER TRAPEZOIDAL PART OF A CONTAINS THE STRICT

UPPER TRAPEZOIDAL PART OF R, AND THE LOWER TRAPEZOIDAL
PART OF A CONTAINS A FACTORED FORM OF Q (THE NON-TRIVIAL
ELEMENTS OF THE U VECTORS DESCRIBED ABOVE).

LDA IS 4 POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A.

PIVOT IS A LOGICAL INPUT VARIABLE. IF PIVOT IS SET TRUE,.
THEN COLUMN PIVOTING IS ENFORCED. IF PIVOT IS SET FALSE,
THEN NO COLUMN PIVOTING IS DONE.

IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH LIPVT. IPVT
DEFINES THE PERMUTATION MATRIX P SUCH THAT A*P = Q*R.
COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.
IF PIVOT IS FALSE, IPVT IS NOT REFERENCED.
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LIPVT IS A POSITIVE INTEGER INPUT VARIABLE. IF PIVOT IS FALSE,
THEN LIPVT MAY BE AS SMALL AS 1. IF PIVOT IS TRUE, THEN
LIPVT MUST BE AT LEAST N.

RDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
DIAGONAL ELEMENTS OF R.

ACNORM IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
NORMS OF THE CORRESPONDING COLUMNS OF THE INPUT MATRIX A.
IF THIS INFORMATION IS NOT NEEDED, THEN ACNORM CAN COINCIDE
WITH RDIAG.

WA IS A WORK ARRAY OF LENGTH N.
CAN COINCIDE WITH RDIAG.

IF PIVOT IS FALSE, THEN WA

SUBPROGRAMS CALLED

MINPACK-SUPPLIED ... DPMPAR,ENORM

FORTRAN-SUPPLIED ... DMAX1,DSQRT,MINO
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
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INTEGER I,J,JP1,K,KMAX,MINMN

DOUBLE PRECISION AJNORM,EPSMCH,ONE,P05,SUM,TEMP, ZERO
DOUBLE PRECISION DPMPAR,ENORM

DATA ONE,P05,ZERO /1.0D0,5.0D-2,0.0D0/

EPSMCH IS THE MACHINE PRECISION.
EPSMCH = DPMPAR(1)
COMPUTE THE INITIAL COLUMN NORMS AND INITIALIZE SEVERAL ARRAYS.
DO 10 J =1, N
ACNORM(J) = ENORM(M,A(1,J))
RDIAG(J) = ACNORM(J)
WA(J) = RDIAG(J)
IF (PIVOT) IPVT(J) = J
CONTINUE
REDUCE A TO R WITH HOUSEHOLDER TRANSFORMATIONS.
MINMN = MINO(M,N)
DO 110 J = 1, MINMN
IF (.NOT.PIVOT) GO TO 40
BRING THE COLUMN OF LARGEST NORM INTO THE PIVOT POSITION.

KMAX = J
DO 20 K =J, N
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IF (RDIAG(K) .GT. RDIAG(KMAX)) KMAX = K
CONTINUE
IF (KMAX .EQ. J) GO TO 40
DO30I =1, M
TEMP = A(I,J)
A(I,J) = A(I,KMAX)
A(I,KMAX) = TEMP
CONTINUE
RDIAG(KMAX) = RDIAG(J).
WA (KMAX) = WA(J)
K = IPVT(J)
IPVT(J) = IPVT(KMAX)
IPVT(KMAX) = K
CONTINUE

COMPUTE THE HOUSEHOLDER TRANSFORMATION TO REDUCE THE
J-TH COLUMN OF A TO A MULTIPLE OF THE J-TH UNIT VECTOR.

AJNORM = ENORM(M-J+1,A(J,J))
IF (AJNORM .EQ. ZERO) GO TO 100
IF (A(J,J) .LT. ZERO) AJNORM = -AJNORM
DOSOI=J, M
A(I,J) = A(I,J)/AJNORM
CONTINUE :
A(J,J) = A(J,J) + ONE

APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS
AND UPDATE THE NORMS.

JP1 =J + 1
IF (N .LT. JP1) GO TO 100
DO 90 K = JP1, N
SUM = ZERO'
DO60 I =J, M
SUM = SUM + A(I,J)*A(I,K)
CONTINUE
TEMP = SUM/A(J,J)
pov70I=J, M
A(I,K) = A(I,K) - TEMP*A(I,J)
CONTINUE

IF (.NOT.PIVOT .OR. RDIAG(K) .EQ. ZERO) GO TO 80

TEMP = A(J,K)/RDIAG(K)

RDIAG(K) = RDIAG(K)*DSQRT(DMAX1(ZERO,ONE-TEMP*%2))
IF (PO5*(RDIAG(K)/WA(K))**2 .GT. EPSMCH) GO TO 80

RDIAG(K) = ENORM(M-J,A(JP1,K))
WA(K) = RDIAG(K)
CONTINUE
CONTINUE

CONTINUE

RDIAG(J) = -AJNORM

CONTINUE

RETURN

LAST CARD OF SUBROUTINE QRFAC.
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SUBROUTINE QRSOLV(N,R,LDR,IPVT,DIAG,QTB,X,SDIAG,WA)

INTEGER N,LDR

INTEGER IPVT(N)

DOUBLE PRECISION R(LDR,N),DIAG(N),QTB(N),X(N),SDIAG(N),WA(N)

PR PR DA S PR S D Y .
T

SUBROUTINE QRSOLV

GIVEN AN M.BY N MATRIX A, AN N BY N DIAGONAL MATRIX D,
AND AN M-VECTOR B, THE PROBLEM IS TO DETERMINE AN X WHICH
SOLVES THE SYSTEM

A*X = B s D#¥X =0 s
IN THE LEAST SQUARES SENSE.

THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM

IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE

QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF
A*P = Q*R, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL
COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL
ELEMENTS OF NONINCREASING MAGNITUDE, THEN QRSOLV EXPECTS

THE FULL UPPER TRIANGLE OF R, THE PERMUTATION MATRIX P,

AND THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. THE SYSTEM
A*X = B, D¥X = 0, IS THEN EQUIVALENT TO

T T
R*Z = Q *B s P ®*D*P*Z = 0 s

WHERE X = P*Z. IF THIS SYSTEM DOES NOT HAVE FULL RANK,
THEN A LEAST SQUARES SOLUTION IS OBTAINED. ON OUTPUT QRSOLV
ALSO PROVIDES AN UPPER TRIANGULAR MATRIX S SUCH THAT

T T T
P *(A *A + D*D)*P = S *S

S IS COMPUTED WITHIN QRSOLV AND MAY BE OF SEPARATE INTEREST.
THE SUBROUTINE STATEMENT IS
SUBROUTINE QRSOLV(N,R,LDR,IPVT,DIAG,QTB,X,SDIAG,WA)

WHERE

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.

R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE
MUST CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R.
ON OUTPUT THE FULL UPPER TRIANGLE IS UNATTERED, AND THE
STRICT LOWER TRIANGLE CONTAINS THE STRICT UPPER TRIANGLE
(TRANSPOSED) OF THE UPPER TRIANGULAR MATRIX S.

LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.
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C QRSLO550
C IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE QRSLO560
c PERMUTATION MATRIX P SUCH THAT A*P = Q*R. COLUMN J OF P QRSLO570
c IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. QRSLO580
C QRSLO590
C DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE QRSLO600
C DIAGONAL ELEMENTS OF THE MATRIX D. QRSL0610
C QRSL0620
C QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST QRSL0630
C N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B. QRSLO640
C . QRSL0650
c X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE LEAST . QRSL0660
C SQUARES SOLUTION OF THE SYSTEM A*X = B, D*X = 0. QRSL0670
C QRSL0680
C SDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE QRSL0690
c DIAGONAL ELEMENTS OF THE UPPER TRIANGULAR MATRIX S. QRSL0O700
C _ QRSLO710
C WA IS A WORK ARRAY OF LENGTH N. QRSLO720
C QRSLO730
C SUBPROGRAMS CALLED QRSLO740
C QRSLO750
C FORTRAN-SUPPLIED ... DABS,DSQRT QRSLO760
C QRSLO770
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. QRSLO780
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE QRSL0790
C A QRSLO800
C kit ek ke QRSL08 10
INTEGER I,J,JP1,K,KP1,L,NSING QRSL0820
DOUBLE PRECISION COS, COTAN, P5,P25 ,QTBPJ,SIN,SUM, TAN, TEMP, ZERO QRSLO830

DATA P5,P25,ZERO /5.0D-1,2.5D-1,0.0D0/ QRSLO840

C QRSL0850
C COPY R AND (Q TRANSPOSE)*B TO PRESERVE INPUT AND. INITIALIZE S. QRSL0860
C IN PARTICULAR, SAVE THE DIAGONAL ELEMENTS OF R IN X. QRSLO870
C QRSL0880
DO 20 T =1, N QRSL0890

DO 10 I =J, N QRSL0900

R(I,J) = R(J,I) QRSL0910

10 CONTINUE . QRSL0920
X(I) = R(J,T) QRSL0930

WA(J) = QTB(J) QRSL0940

20 CONTINUE QRSL0950

C : QRSL0960
C ELIMINATE THE DIAGONAL MATRIX D USING A GIVENS ROTATION. QRSL0O970
C QRSL0980
DO 100 J =1, N QRSL0990

C QFSL1000
C PREPARE THE ROW OF D TO BE ELIMINATED, LOCATING THE QRSL1010
C DIAGONAL ELEMENT USING P FROM THE QR FACTORIZATION. - QRSL1020
C QRSL1030
= IPVT(J) QRSL1040

IF (DIAG(L) .EQ. ZERO) GO TO 90 QRSL1050

DO 30 K=J, N QRSL1060

SDIAG(K) = ZERO QRSL1070

30 CONTINUE QRSL1080
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SDIAG(J) = DIAG(L)

THE TRANSFORMATIONS TO ELIMINATE THE ROW OF D
MODIFY ONLY A SINGLE ELEMENT OF (Q TRANSPOSE)*B
BEYOND THE FIRST N, WHICH IS INITIALLY ZERO.

QTBPJ

= ZERO
DO 80 K =J

, N

DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE

APPROPRIATE ELEMENT IN THE CURRENT ROW OF D.

IF (SDIAG(K) .EQ. ZERO) GO TO 70

IF (DABS(R(K,K)) .GE. DABS(SDIAG(K))) GO TO 40

COTAN = R(K,K)/SDIAG(K)
SIN = P5/DSQRT(P25+P25*COTAN**2)
COS = SIN*COTAN
GO TO 50
CONTINUE

TAN SDIAG(K)/R(K,K)

COS = P5/DSQRT(P25+P25*TAN**2)
SIN = COS*TAN
CONTINUE

COMPUTE THE MODIFIED DIAGONAL ELEMENT OF R AND

THE MODIFIED ELEMENT OF ((Q TRANSPOSE)*B,0).

R(K,K) = COS*R(K,K) + SIN*SDIAG(K)
TEMP = COS*WA(K) + SIN*QTBPJ
QTBPJ = -SIN*WA(K) + COS*QTBPJ
WA(K) = TEMP

ACCUMULATE THE TRANFORMATION IN THE ROW OF S.

KPlL = K + 1
IF (N .LT. KP1) GO TO 70
DO 60 I = KP1, N
TEMP = COS*R(I,K) + SIN*SDIAG(I)
SDIAG(I) = -SIN*R(I,K) + COS*SDIAG(I)
R(I,K) = TEMP
CONTINUE
CONTINUE
CONTINUE
CONTINUE

STORE THE DIAGONAL ELEMENT OF S AND RESTORE
THE CORRESPONDING DIAGONAL ELEMENT OF R.

SDIAG(J) = R(J,J)
R(J,J) = X(J)
CONTINUE

SOLVE THE TRIANGULAR SYSTEM FOR Z. IF THE SYSTEM IS
SINGULAR, THEN OBTAIN A LEAST SQUARES SOLUTION.
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NSING = N

DO 110 T =1, N A
IF (SDIAG(J) .EQ. ZERO .AND. NSING .EQ. N) NSING = J - 1
IF (NSING .LT. N) WA(J) = ZERO
CONTINUE

. IF (NSING .LT. 1) GO TO 150

120
130

140
150

160

DO 140 K = 1, NSING
J = NSING - K + 1
SUM = ZERO
JP1 =J + 1
IF (NSING .LT. JP1) GO TO 130
DO 120 I = JP1, NSING
SUM = SUM + R(I,J)*WA(I)
CONTINUE
CONTINUE
WA(J) = (WA(J) - SUM)/SDIAG(J)
CONTINUE
CONTINUE

PERMUTE THE COMPONENTS OF Z BACK TO COMPONENTS OF X.
DO 160 J = 1, N
L = IPVT(J)
X(L) = WA(QJ)
CONTINUE
RETURN
LAST CARD OF SUBROUTINE QRSOLV.

END
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SUBROUTINE RWUPDT(N,R,LDR,W,B,ALPHA,COS,SIN)
INTEGER N,LDR

DOUBLE PRECISION ALPHA

DOUBLE PRECISION R(LDR,N),W(N),B(N),COS(N),SIN(N)

JRC SRR W SR SN N S A
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SUBROUTINE RWUPDT

GIVEN AN N BY N UPPER TRIANGULAR MATRIX R, THIS SUBROUTINE
COMPUTES THE QR DECOMPOSITION OF THE MATRIX FORMED WHEN A ROW
IS ADDED TO R. IF THE ROW IS SPECIFIED BY THE VECTOR W, THEN
RWUPDT DETERMINES AN ORTHOGONAL MATRIX Q SUCH THAT WHEN THE
N+1 BY N MATRIX COMPOSED OF R AUGMENTED BY W IS PREMULTIPLIED
BY (Q TRANSPOSE), THE RESULTING MATRIX IS UPPER TRAPEZOIDAL.
THE MATRIX (Q TRANSPOSE) IS THE PRODUCT OF N TRANSFORMATIONS

G(N)*G(N-1)* ... *G(1)
WHERE G(I) IS A GIVENS ROTATION IN THE (I,N+1) PLANE WHICH
ELIMINATES ELEMENTS IN THE (N+1)-ST PLANE. RWUPDT ALSO
COMPUTES THE PRODUCT (Q TRANSPOSE)*C WHERE C IS THE
(N+1)-VECTOR (B,ALPHA). Q ITSELF IS NOT ACCUMULATED, RATHER
THE INFORMATION TO RECOVER THE G ROTATIONS IS SUPPLIED.
THE SUBROUTINE STATEMENT IS

SUBROUTINE RWUPDT(N,R,LDR,W,B,ALPHA,COS,SIN)

WHERE

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.

~ R IS AN N BY N ARRAY. ON INPUT THE UPPER TRIANGULAR PART OF
R MUST CONTAIN THE MATRIX TO BE UPDATED. ON OUTPUT R
CONTAINS THE UPDATED TRIANGULAR MATRIX.

LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.

W IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE ROW
VECTOR TO BE ADDED TO R.

B IS AN ARRAY OF LENGTH N. ON INPUT B MUST CONTAIN THE
FIRST N ELEMENTS OF THE VECTOR C. ON OUTPUT B CONTAINS
THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)+*C.

ALPHA IS A VARIABLE. ON INPUT ALPHA MUST CONTAIN THE
(N+1)-ST ELEMENT OF THE VECTOR C. ON OUTPUT ALPHA CONTAINS
THE (N+1)-ST ELEMENT OF THE VECTOR (Q TRANSPOSE)*C

COS IS AN OUTPUT ARRAY OF LENGTH N°WHICH CONTAINS THE
COSINES OF THE TRANSFORMING GIVENS ROTATIONS.

“-SIN IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE

RWUP0010
RWUP0020
RWUPOO030
RWUP0040
RWUPOO50
RWUP0060
RWUP00O70

" RWUP0080

RWUP0090
RWUP0100
RWUPO110
RWUPO120
RWUP0130
RWUP0140
RWUPO150
RWUP0160
RWUPO170
RWUPG180
RWUP0190
RWUP0200
RWUP0210
RWUPO220
RWUP0230
RWUP0240
RWUP0250
RWUP0260
RWUP0270
RWUP0280
RWUP0290
RWUP0300
RWUP0310
RWUP0320
RWUP0330
RWUP0340
RWUPO0350
RWUPO360
RWUP0370
RWUP0380
RWUP0390
RWUP0400
RWUPO410
RWUP0420
RWUP0430
RWUP0440
RWUP0450
RWUP0460
RWUP0470
RWUP0480
RWUP0490
RWUPO500
RWUPO510
RWUP0520
RWUP0530
RWUP0540
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SINES OF THE TRANSFORMING GIVENS ROTATIONS.
SUBPROGRAMS CALLED
FORTRAN-SUPPLIED ... DABS,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, DUDLEY V. GOETSCHEL, KENNETH E. HILLSTROM,
JORGE J. MORE

aeelsutealeatontantantantonts
WHWWIWIWHWRWWRWR

INTEGER I,J,JM1
DOUBLE PRECISION COTAN,ONE,P5,P25,ROWJ,TAN,TEMP,ZERO
DATA ONE,P5,P25,ZERO /1.0D0,5.0D-1,2.5D-1,0.0D0/

DO 60 J =1, N
ROWJ = W(J)
JM1 =J - 1

APPLY THE PREVIOUS TRANSFORMATIONS TO
R(I,J), I=1,2,...,J-1, AND TO W(J).

IF (JM1 .LT. 1) GO TO 20

DO 10 I = 1, JM1
TEMP = COS(I)*R(I,J) + SIN(I)*ROWJ
ROWJ = -SIN(I)*R(I,J) + COS(I)*ROWJ

R(I,J) = TEMP
CONTINUE
CONTINUE

DETERMINE A GIVENS ROTATION WHICH ELIMINATES W(J).

COS(J) = ONE

SIN(J) = ZERO

IF (ROWJ .EQ. ZERO) GO TO 50

IF (DABS(R(J,J)) .GE. DABS(ROWJ)) GO TO 30
COTAN = R(J,J)/ROWJ

SIN(J) = P5/DSQRT(P25+P25%COTAN**2)
COS(J) = SIN(J)*COTAN
GO TO 40

CONTINUE

TAN = ROWJ/R(J,J)
COS(J) = P5/DSQRT(P25+P25*TAN*%*2)
SIN(J) =. COS(J)*TAN

CONTINUE

APPLY THE CURRENT TRANSFORMATION TO R(J,J), B(J), AND ALPHA.

R(J,J) = COS(JI)*R(J,T) + SIN(J)*ROWJ
TEMP = COS(J)*B(J) + SIN(J)*ALPHA
ALPHA = -SIN(J)*B(J) + COS(J)*ALPHA
B(J) = TEMP

CONTINUE

CONTINUE

RWUPO550
RWUP0560
RWUPO570
RWUP0580
RWUP0590
RWUP0600
RWUP0610
RWUP0620
RWUP0630
RWUP0640
RWUP0650
RWUP0660
RWUP0670
RWUP0680
RWUP0690
RWUP0700
RWUPO710
RWUP0720
RWUP0O730
RWUP0740
RWUP0750
RWUP0O760
RWUP0770
RWUP0780
RWUP0790
RWUP0800
RWUP0810
RWUP0820
RWUP0830
RWUP0840
RWUPO850
RWUP0860
RWUPO870
RWUP0880
RWUP0890
RWUP0900
RWUP0910
RWUP0920
RWUP0930
RWUP(G940
RWUP0950
RWUP0960
RWUP0970
RWUP0980
RWUP0990
RWUP1000
RWUP1010
RwWUP1020
RWUP1030
RWUP1040
RWUP1050
RWUP1060
RWUP1070
RWUP1080



RETURN

LAST CARD OF SUBROUTINE RWUPDT.

END
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RWUP1090
RWUP1100
RWUP1110
RWUP1120
RWUP1130
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SUBROUTINE R1MPYQ(M,N,A,LDA,V,W)
INTEGER M,N,LDA
DOUBLE PRECISION A(LDA,N),V(N),W(N)

R PR RIS T S O S e 3
FLITITITITIIVIRNW

SUBROUTINE R1MPYQ

GIVEN AN M BY N MATRIX A, THIS SUBROUTINE COMPUTES A*Q WHERE
Q IS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS

GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1)

AND GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE WHICH
ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY.
Q ITSELF IS NOT GIVEN, RATHER THE INFORMATION TO RECOVER THE
GV, GW ROTATIONS IS SUPPLIED.
THE SUBROUTINE STATEMENT IS

SUBROUTINE R1MPYQ(M,N,A,LDA,V,W)
WHERE

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF ROWS OF A.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF COLUMNS OF A.

A IS AN M BY N ARRAY. ON INPUT A MUST CONTAIN THE MATRIX
TO BE POSTMULTIPLIED BY THE ORTHOGONAL MATRIX Q
DESCRIBED ABOVE. ON OUTPUT A*Q HAS REPLACED A.

LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A.

V IS AN INPUT ARRAY OF LENGTH N. V(I) MUST CONTAIN THE
INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION GV(I)
DESCRIBED ABOVE.

W IS AN INPUT ARRAY OF LENGTH N: W(I) MUST CONTAIN THE
INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION GW(I)
DESCRIBED ABOVE.

SUBROUTINES CALLED

FORTRAN-SUPPLIED ... DABS,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

o e et

INTEGER I,J,NMJ,NM1
DOUBLE PRECISION COS,ONE,SIN,TEMP

R1MQO010
R1MQ0020
R1MQ0030
R1MQ0040
R1MQO050
R1MQO060
R1MQO070
R1MQO080"
R1MQ0090
R1MQ0100
R1MQO110
R1MQ0120
R1MQO130
R1MQO140
R1MQ0150
R1MQO160
R1MQO170
R1MQO180
R1MQ0190

'R1MQO200

R1MQ0210
R1MQ0220
R1MQ0230
R1MQ0240
R1MQ0250
R1MQ0260
R1MQ0270
R1MQ0280
R1MQ0290
R1MQ0300
R1MQ0310
R1MQ0320
R1MQ0330
R1MQ0340
R1MQ0350
R1MQ0360
R1MQO370
R1MQO380
R1MQ0390
R1MQ0400
R1MQO410
R1MQO420
R1MQO0430
R1MQO440
R1MQO450
R1MQO460
RIMQO470
R1MQO480
R1MQO490
R1MQ0500
R1MQ0510
R1MQO520
R1MQ0530

- R1MQO540
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DATA ONE /1.0DO/ : RIMQO550
C , R1MQO0560
c APPLY THE FIRST SET OF GIVENS ROTATIONS TO A. RIMQO570
C R1MQO580
NM1 =N - 1 ’ R1MQO590
IF (NM1 .LT. 1) GO TO 50 ; R1MQ0600
DO 20 NMJ = 1, NM1 R1MQ0610
J=N - NMJ : R1MQ0620
IF (DABS(V(J)) .GT. ONE) COS = ONE/V(J) R1MQO0630
IF (DABS(V(J)) .GT. ONE) SIN = DSQRT(ONE-COS**2) R1IMQO640
IF (DABS(V(J)) .LE. ONE) SIN = V(J) R1MQO0650
IF (DABS(V(J)) .LE. ONE) COS = DSQRT(ONE-SIN#+#2) R1MQO0660
DO 10 I =1, M » R1MQO670
TEMP = COS*A(I,J) - SIN*A(I,N) R1MQ0680
A(I,N) = SIN*A(I,J) + COS*A(I,N) R1MQ0690
A(I,J) = TEMP R1MQ0O700
10 CONTINUE R1MQO710

20 CONTINUE RIMQO720
C : R1MQ0730
c APPLY THE SECOND SET OF GIVENS ROTATIONS TO A. R1MQO740
C RIMQO750
DO 40 J = 1, NM1 R1MQO760
IF (DABS(W(J)) .GT. ONE) COS = ONE/W(J) R1MQO770
IF (DABS(W(J)) .GT. ONE) SIN = DSQRT(ONE-COS*+*2) R1MQO780
IF (DABS(W(J)) .LE. ONE) SIN = W(J) R1MQ0790
IF (DABS(W(J)) .LE. ONE) COS = DSQRT(ONE-SIN¥**2) R1MQO800
DO30I=1, M R1MQO810
TEMP = COS*A(I,J) + SIN*A(I,N) R1MQO820
A(I,N) = -SIN®A(I,J) + COS*A(I,N) R1MQO0830
A(I,J) = TEMP R1MQO840
30 CONTINUE R1MQO850
40 CONTINUE R1MQO0860
50 CONTINUE R1MQO870
RETURN R1MQO0880
C R1MQO890
C LAST CARD OF SUBROUTINE R1MPYQ. R1MQO900
C RIMQ0910
END R1MQ0920
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SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING)" R1UP0010

INTEGER M,N,LS R1UP0020
LOGICAL SING R1UP0O0O30
DOUBLE PRECISION S(LS),U(M),V(N),W(M) R1UP0040
sevesevededevede ek R1UPOOS0
R} R1UP0060
SUBROUTINE R1UPDT R1UP00O70
R1UP0O0O8O

-GIVEN AN M BY N LOWER TRAPEZOIDAL MATRIX S, AN M-VECTOR U, R1UP0090
AND AN N-VECTOR V, THE PROBLEM IS TO DETERMINE AN R1UP0O100
ORTHOGONAL MATRIX Q SUCH THAT R1UPO110
R1UP0120

T R1UP0O130

(S + U*V )*Q ‘ R1UP0140
R1UP0150

IS AGAIN LOWER TRAPEZOIDAL. R1UP0160
. R1UPC170

THIS SUBROUTINE DETERMINES Q AS THE PRODUCT OF 2*(N = 1) R1UP0180
TRANSFORMATIONS R1UP0190
R1UP0200

GV(N-1)*...%*GV(1)*GW(1)*...*GW(N-1) R1UP0210

' R1UP0220

WHERE GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE R1UP0230
WHICH ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, R1UP0240
RESPECTIVELY. Q ITSELF IS NOT ACCUMULATED, RATHER THE R1UP0250
INFORMATION TO RECOVER THE GV, GW ROTATIONS IS RETURNED. R1UP0260
R1UP0270

THE SUBROUTINE STATEMENT IS R1UP0280
R1UP0290

SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING) R1UP0300
R1UPO310

WHERE R1UP0320
R1UP0330

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER R1UP0340
OF ROWS OF S. R1UP0350
R1UP0360

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER R1UP0370
OF COLUMNS OF S. N MUST NOT EXCEED M. R1UP0380
R1UP0O3S0

S IS AN ARRAY OF LENGTH LS. ON INPUT S MUST CONTAIN THE LOWER  R1UP0400
TRAPEZOIDAL MATRIX S STORED BY COLUMNS. ON OUTPUT S CONTAINS R1UP0&410

THE LOWER TRAPEZOIDAL MATRIX PRODUCED AS DESCRIBED ABOVE. R1UP0420
R1UP0430
LS IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN R1UP0440
(N*(2%M-N+1))/2. R1UP0450
o R1UP0460
U IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE R1UP0470
VECTOR U. _ R1UP0480
R1UP0490
V IS AN ARRAY OF LENGTH N. ON INPUT V MUST CONTAIN THE VECTOR  R1UP0500
V. ON OUTPUT V(I) CONTAINS THE INFORMATION NECESSARY TO R1UP0510
RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. R1UP0520

: R1UP0530 |

W IS AN OUTPUT ARRAY OF LENGTH M. W(I) CONTAINS INFORMATION R1UPO540




oRsNoNoNsNoNoNoNoNoNoNoNoNoNoNoNeNe]

QOO0

aaoOaan

10

250

NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED
ABOVE.

SING IS A LOGICAL OUTPUT VARIABLE. SING IS SET TRUE IF ANY
OF THE DIAGONAL ELEMENTS OF THE OUTPUT S ARE ZERO. OTHERWISE

SING IS SET FALSE.
SUBPROGRAMS CALLED
MINPACK-SUPPLIED ... DPMPAR
FORTRAN-SUPPLIED ... DABS,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE,
JOHN L. NAZARETH

lateulactecleatoctouteuteate
WITIWRWIWWRR

INTEGER I,J,JJ,L,NMJ,NM1

DOUBLE PRECISION COS,COTAN,GIANT,ONE,P5,P25,SIN,TAN,TAU,TEMP,

ZERO

DOUBLE PRECISION DPMPAR
DATA ONE,P5,P25,ZERO /1.0D0,5.0D-1,2.5D-1,0.0D0/
GIANT IS THE LARGEST MAGNITUDE.
GIANT = DPMPAR(3)
INITIALIZE THE DIAGONAL ELEMENT POINTER.
JJ = (N¥(2*M - N + 1))/2 - (M - N)
MOVE THE NONTRIVIAL PART OF THE LAST COLUMN OF S INTO W.
L=2JJ
DO 10 I = N, M

W(I) = S(L)

L=1L+1

CONTINUE

ROTATE THE VECTOR V INTO A MULTIPLE OF THE N-TH UNIT VECTOR
IN SUCH A WAY THAT A SPIKE IS INTRODUCED INTO W.

NMl1 =N -1
IF (NM1 .LT. 1) GO TO 70
DO 60 NMJ = 1, NM1

J=N-NMJ
JJ=JJ-M-J+1)
W(J) = ZERO

IF (V(J) .EQ. ZERO) GO TO 50

DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE
J-TH ELEMENT OF V.

R1UP0O550
R1UP0560

"R1UP0O570

R1UP0O580
R1UP0590
R1UP0600
R1UP0610
R1UP0620
R1UP0630
R1UP0640
R1UP0650
R1UP0660
R1UP0670
R1UP0680
R1UP0690
R1UP0700
R1UPG710
R1UP0720
R1UP0730
R1UP0740
R1UP0750
R1UPO760
R1UP0770
R1UP0780
R1UP0790
R1UP0800
R1UP0810
R1UP0820
R1UP0830
R1UP0840
R1UP0850
R1UP0860
R1UPO870
R1UP0880
R1UP0890
R1UP0900
R1UP0910
R1UP0920
R1UP0930
R1UP0940
R1UP0950
R1UPQ960
R1UP0970
R1UP0980
R1UP0990
R1UP1000
R1UP1010
R1UP1020
R1UP1030
R1UP1040
R1UP1050
R1UP1060
R1UP1070
R1UP1080
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IF (DABS(V(N)) .GE. DABS(V(J))) GO TO 20
COTAN = V(N)/V(J)
SIN = P5/DSQRT(P25+P25*COTAN**2)

i

Ccos
TAU

SIN*COTAN

ONE

IF (DABS(COS)*GIANT .GT. ONE) TAU = ONE/COS

GO TO
CONTINUE
TAN
Cos
SIN
TAU
CONTINUE

ool

APPLY THE
NECESSARY

V(N)
V{J)

APPLY THE

L=2JJ
DO 40 I
TEMP
W(I)
S(L)
L=1L
CONTIN
CONTINUE
CONTINUE

nmunn

70 CONTINUE

80

W(I) = W(
CONTINUE

SING = .FALS
IF (NM1 .LT.
DO 130 J = 1, NM1

IF (W(JD)

DETERMINE

30

V(J)/V(N)

P5/DSQRT (P25+P25*TAN**2)
COS*TAN
SIN

TRANSFORMATION TO V AND STORE THE INFORMATION
TO RECOVER THE GIVENS ROTATION.

SIN*V(J) + COS*V(N)
TAU

TRANSFORMATION TO S AND EXTEND THE SPIKE IN W.

J, M ,
COS*S(L) - SIN®*W(I)
SIN*S(L) + COS*W(I)
TEMP

+1

UE

ADD THE SPIKE FROM THE RANK 1 UPDATE TO W.

DO 80 I.=1, M

I) + V(N)*U(I)

ELIMINATE THE SPIKE.

E.
1) GO TO 140

-EQ. ZERO) GO TO 120

A GIVENS ROTATION WHICH ELIMINATES THE

J-TH ELEMENT OF THE SPIKE.

IF (DABS(
COTAN
SIN
cos
TAU

S(JJ)) .GE. DABS(W(J))) GO TO 90
= 8(J1)/W(J)

P5/DSQRT (P25+P25%COTAN**2)
SIN*COTAN

ONE

R1UP1090
R1UP1100
R1UP1110
R1UP1120
R1UP1130
R1UP1140
R1UP1150
R1UP1160
R1UP1170
R1UP1180
R1UP1190

R1UP1200

R1UP1210
R1UP1220
R1UP1230
R1UP1240
R1UP1250
R1UP1260
R1UP1270
R1UP1280
R1UP1290
R1UP1300
R1UP1310
R1UP1320
R1UP1330
R1UP1340
R1UP1350
R1UP1360
R1UP1370
R1UP1380
R1UP1390
R1UP1400
R1UP1410
R1UP1420
R1UP1430
R1UP1440
R1UP1450
R1UP1460
R1UP1470
R1UP1480
R1UP1490
R1UP1500
R1UP1510
R1UP1520
R1UP1530
R1UP1540
R1UP1550
R1UP1560
R1UP1570
R1UP1580
R1UP1590
R1UP1600
R1UP1610
R1UP1620
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IF (DABS(COS)*GIANT .GT. ONE) TAU = ONE/COS
GO TO 100

CONTINUE :
TAN = W(J)/S(JJ)
COS = P5/DSQRT(P25+P25*TAN**2)
SIN = COS*TAN
TAU = SIN

CONTINUE

APPLY THE TRANSFORMATION TO S AND REDUCE THE SPIKE IN W.

L=JJ
DO 110 I =J, M

TEMP = COS*S(L) + SIN*W(I)
W(I) = -SIN*S(L) + COS*W(I)
S(L) = TEMP

L=L+1

CONTINUE

STORE THE INFORMATION NECESSARY TO RECOVER THE
GIVENS ROTATION.

W(J) = TAU
CONTINUE

TEST FOR ZERO DIAGONAL ELEMENTS IN THE OUTPUT S.
IF (S(JJ) .EQ. ZERO) SING = .TRUE.

JIJ=JJ+ M-J+ 1)
CONTINUE

140 CONTINUE

150

MOV

L =
DO

IF
RET

LAS

END

E W BACK INTO THE LAST COLUMN OF THE OUTPUT S.
JJ

150 I = N, M

S(L) = W(I)

L=1L+1

CONTINUE

(S(JJ) .EQ. ZERO) SING = .TRUE.

URN

T CARD OF SUBROUTINE R1UPDT.

R1UP1630
R1UP1640
R1UP1650
R1UP1660
R1UP1670
R1UP1680
R1UP1690
R1UP1700
R1UP1710
R1UP1720
R1UP1730
R1UP1740
R1UP1750
R1UP1760
R1UP1770
R1UP1780
R1UP1790
R1UP1800
R1UP1810
R1UP1820
R1UP1830
R1UP1840
R10UP1850
R1UP1860
R1UP1870
R1UP1880
R1UP1890
R1UP1900
R1UP1910
R1UP1920
R1UP1930
R1UP1940
R1UP1950
R1UP1960
R1UP1970
R1UP1980
R1UP1990
R1UP2000
R1UP2010
R1UP2020
R1UP2030
R1UP2040
R1UP2050
R1UP2060
R1UP2070
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REAL FUNCTION SPMPAR(I)
INTEGER 1

I PRSP R PR AP R O O
PTITIVIVAWISIWIWNRNWT

FUNCTION SPMPAR

THIS FUNCTION PROVIDES SINGLE PRECISION MACHINE PARAMETERS
WHEN THE APPROPRIATE SET OF DATA STATEMENTS IS ACTIVATED (BY
REMOVING THE C FROM COLUMN 1) AND ALL OTHER DATA STATEMENTS ARE
RENDERED INACTIVE. MOST OF THE PARAMETER VALUES WERE OBTAINED
FROM THE CORRESPONDING BELL LABORATORIES PORT LIBRARY FUNCTION.

THE FUNCTION STATEMENT IS
REAL FUNCTION SPMPAR(I)
WHERE
I IS AN INTEGER INPUT VARIABLE SET TO 1, 2, OR 3 WHICH
SELECTS THE DESIRED MACHINE PARAMETER. IF THE MACHINE HAS

T BASE B DIGITS AND ITS SMALLEST AND LARGEST EXPONENTS ARE
EMIN AND EMAX, RESPECTIVELY, THEN THESE PARAMETERS ARE

SPMPAR(1) = B**(1 - T), THE MACHINE PRECISION, -
SPMPAR(2) = B**(EMIN - 1), THE SMALLEST MAGNITUDE,
SPMPAR(3) = B**EMAX*(1 - B**(-T)), THE LARGEST MAGNITUDE.

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
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INTEGER MCHEPS(2)

INTEGER MINMAG(2)

INTEGER MAXMAG(2)

REAL RMACH(3)

EQUIVALENCE (RMACH(1),MCHEPS(1))
EQUIVALENCE (RMACH(2),MINMAG(1))
EQUIVALENCE (RMACH(3),MAXMAG(1))

MACHINE CONSTANTS FOR THE IBM 360/370 SERIES,
THE AMDAHL 470/Vé6, THE ICL 2900, THE ITEL AS/6,
THE XEROX SIGMA 5/7/9 AND THE SEL SYSTEMS 85/86.

DATA RMACH(1) / Z3C100000 /
DATA RMACH(2) / 200100000 /
DATA RMACH(3) / Z7FFFFFFF /

MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 SERIES.
DATA RMACH(1) / 0716400000000 /

DATA RMACH(2) / 0402400000000 /
DATA RMACH(3) / 0376777777777 /

SPPR0O010
SPPR0O020
SPPR0O030
SPPRO04O
SPPR0O050
SPPRO060
SPPR0O0O70
SPPRO080O
SPPR00S0
SPPRO100
SPPRO110
SPPR0O120
SPPR0130
SPPR0140
SPPRO150
SPPRO160
SPPRO170
SPPR0O180
SPPR0190
SPPR0O200
SPPR0210
SPPR0220
SPPR0230
SPPR0240
SPPR0O250
SPPR0O260
SPPR0O270
SPPR0280
SPPR0O290.
SPPR0O300
SPPR0310
SPPR0320
SPPR0O330
SPPR0O340
SPPR0O350
SPPRO360
SPPR0O370
SPPR0380
SPPR0390
SPPRO400
SPPR0410
SPPR0420
SPPR0430
SPPR0440
SPPRO450
SPPR0O460
SPPRO470
SPPR0480
SPPR0490
SPPRO500
SPPR0O510
SPPR0520
SPPR0530
SPPRO540
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MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES.

DATA RMACH(1) / 16414000000000000000B /
DATA RMACH(2) / 00014000000000000000B /
DATA RMACH(3) / 37767777777777777777B /

MACHINE CONSTANTS FOR THE PDP-10 (KA OR KI PROCESSOR).

DATA RMACH(1) / "147400000000 /
DATA RMACH(2) / "000400000000 /
DATA RMACH(3) / "377777777777 /

MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING
32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

DATA MCHEPS(1) / 889192448 /
DATA MINMAG(1) / 8388608 /
DATA MAXMAG(1) / 2147483647 /

DATA RMACH(1) / 006500000000 /
DATA RMACH(2) / 000040000000 /
DATA RMACH(3) / 017777777777 /

MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING
16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

DATA MCHEPS(1),MCHEPS(2) / 13568, 0
DATA MINMAG(1),MINMAG(2) / 128, 0
DATA MAXMAG(1),MAXMAG(2) / 32767, -1

NN N

DATA MCHEPS(1),MCHEPS(2) / 0032400, 0000000 /
DATA MINMAG(1l),MINMAG(2) / 0000200, 0000000 /
DATA MAXMAG(1),MAXMAG(2) / 0077777, 0177777 /

MACHINE CONSTANTS FOR THE BURROUGHS 5700/6700/7700 SYSTEMS.

DATA RMACH(1) / 01301000000000000 /
DATA RMACH(2) / 01771000000000000 /
DATA RMACH(3) / 00777777777777777 /

MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM.
DATA RMACH(1) / Z4EA800000 /

DATA RMACH(2) / Z400800000 /

DATA RMACH(3) / ZSFFFFFFFF /

MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.
DATA RMACH(1) / 0147400000000 /

DATA RMACH(2) / 0000400000000 /

DATA RMACH(3) / 0377777777777 /

MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S/200.

SPPRO550
SPPR0O560
SPPR0O570
SPPR0O580
SPPR0590
SPPR0O600
SPPR0O610
SPPR0620
SPPR0O630
SPPR0640
SPPR0O650
SPPR0660
SPPR0670
SPPR0O680
SPPR0690
SPPR0O700
SPPR0O710
SPPR0720
SPPR0O730 .
SPPR0O740
SPPR0O750
SPPR0O760
SPPR0O770
SPPR0O780
SPPR0O790
SPPR0800
SPPR0810
SPPR0820
SPPR0830
SPPR0840
SPPR0850
SPPRO860
SPPR0870
SPPR0880
SPPRO890
SPPR0900
SPPR0910
SPPR0920
SPPR0O930
SPPR0940
SPPR0O950
SPPR0960
SPPR0O970
SPPR0980
SPPR0990
SPPR1000
SPPR1010
SPPR1020
SPPR1030
SPPR1040
SPPR1050
SPPR1060
SPPR1070
SPPR1080
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NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD -
STATIC RMACH(3)

DATA MINMAG/20K,0/,MAXMAG/77777K,177777K/
DATA MCHEPS/36020K,0/

MACHINE CONSTANTS FOR THE HARRIS 220.

DATA MCHEPS(1),MCHEPS(2) / '20000000, '00000353 /
DATA MINMAG(1),MINMAG(2) / '20000000, '00000201 /
DATA MAXMAG (1) ,MAXMAG(2) / '37777777, '00000177 /
MACHINE CONSTANTS FOR THE CRAY-1.

DATA RMACH(1) / 03772240000000000000008 /

DATA RMACH(2) / 0200034000000000000000B /

DATA RMACH(3) / 0577777777777777777776B /

MACHINE CONSTANTS FOR THE PRIME 400.

- DATA MCHEPS(1) / :10000000153 /

DATA MINMAG(1) / :10000000000 /
DATA MAXMAG(l) / :17777777777 /

SPMPAR = RMACH(I)
RETURN

LAST CARD OF FUNCTION SPMPAR.

-END

SPPR1090
SPPR1100
SPPR1110
SPPR1120
SPPR1130
SPPR1140
SPPR1150
SPPR1160
SPPR1170
SPPR1180
SPPR1190
SPPR1200
SPPR1210
SPPR1220
SPPR1230
SPPR1240
SPPR1250
SPPR1260
SPPR1270
SPPR1280
SPPR1290
SPPR1300
SPPR1310
SPPR1320
SPPR1330
SPPR1340
SPPR1350
SPPR1360
SPPR1370
SPPR1380
SPPR1390




256

WASINTENTIONALLY \\
LEFT BLANK |




oRoRo o RoRo ks RoReRoRs R R oo R Ns e e s KR R Ee e e NS NO NP N

aaoaaaan

[oNeEPEPEPEP]

257

DOUBLE PRECISION FUNCTION DPMPAR(I)
INTEGER I

Westosleetaalictectactsotocte
PWITHWRWIWITWWN

FUNCTION DPMPAR

THIS FUNCTION PROVIDES DOUBLE PRECISION MACHINE PARAMETERS
WHEN THE APPROPRIATE SET OF DATA STATEMENTS IS ACTIVATED (BY
REMOVING THE C FROM COLUMN 1) AND ALL OTHER DATA STATEMENTS ARE
RENDERED INACTIVE. MOST OF THE PARAMETER VALUES WERE OBTAINED
FROM THE CORRESPONDING BELL LABORATORIES PORT LIBRARY FUNCTION.

THE FUNCTION STATEMENT IS
DOUBLE PRECISION FUNCTION DPMPAR(I)
WHERE
I IS AN INTEGER-INPUT VARIABLE SET TO 1, 2, OR 3 WHICH
SELECTS THE DESIRED MACHINE PARAMETER. IF THE MACHINE HAS

T BASE B DIGITS AND ITS SMALLEST AND LARGEST EXPONENTS ARE
EMIN AND EMAX, RESPECTIVELY, THEN THESE PARAMETERS ARE

DPMPAR(1) = B**(1 - T), THE MACHINE PRECISION,
DPMPAR(2) = B**(EMIN - 1), THE SMALLEST MAGNITUDE,
DPMPAR(3) = B**EMAX*(1 - B**(-T)), THE LARGEST MAGNITUDE.

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

dededeTehdken

INTEGER MCHEPS (4)

INTEGER MINMAG(4)

INTEGER MAXMAG(4)

DOUBLE PRECISION DMACH(3)
EQUIVALENCE (DMACH(1),MCHEPS(1))
EQUIVALENCE (DMACH(2),MINMAG(1))
EQUIVALENCE (DMACH(3),MAXMAG(1))

MACHINE CONSTANTS FOR THE /IBM 360/370 SERIES,
THE AMDAHL 470/V6, THE IQL 2900, THE ITEL AS/6,
THE XEROX SIGMA 5/7/9 AND THE SEL SYSTEMS 85/86.

DATA MCHEPS(1),MCHEPS(2) / Z34100000, Z00000000 /
DATA MINMAG(1),MINMAG(2) / 200100000, Z00000000 /
DATA MAXMAG(1),MAXMAG(2) / Z7FFFFFFF, ZFFFFFFFF /

MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 SERIES.

DATA MCHEPS (1) ,MCHEPS(2) / 0606400000000, 0000000000000 /

DATA MINMAG(1),MINMAG(2) / 0402400000000, 0000000000000 /

DATA MAXMAG(1),MAXMAG(2) / 0376777777777, 0777777777777 /
\

DPPR0O010
DPPR0020
DPPR0030
DPPR0O040
DPPROO50
DPPR0060
DPPRO070
DPPR0O080
DPPR0O090
DPPRO100
DPPRO110
DPPR0120
DPPRO130
DPPR0140
DPPRC150
DPPRO160
DPPR0O170
DPPRO180O
DPPR0190
DPPR0O200
DPPR0210
DPPR0220
DPPR0230
DPPR0240
DPPR0250
DPPR0O260
DPPR0O270
DPPR0280
DPPR0O290
DPPR0300
DPPR0O310
DPPR0O320
DPPR0330
DPPR0340
DPPR0O350
DPPR0360
DPPR0O370
DPPR0O380
DPPR0390
DPPR0400
DPPR0410
DPPR0420
DPPRO430
DPPR0&44O
DPPR0O450
DPPR0460
DPPR0470
DPPR0O480
DPPR0490
DPPR0O500
DPPR0O510
DPPR0520
DPPR0O530
DPPR0O540
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MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES.

DATA
DATA

DATA
DATA

DATA
DATA

MACHINE CONSTANTS FOR THE PDP-10 (KA PROCESSOR).

MCHEPS(1)

258

15614000000000000000B

/ /
MCHEPS(2) / 15010000000000000000B /

MINMAG(1)
MINMAG(2)

MAXMAG(1)
MAXMAG(2)

~ ~

00604000000000000000B /
060000000000000000000B /

37767777777777777777B /
37167777777777777777B /

DATA MCHEPS(1),MCHEPS(2) / "114400000000, "000000000000 /
DATA MINMAG(1),MINMAG(2) / "033400000000, '000000000000
DATA MAXMAG(1),MAXMAG(2) / "377777777777, "344777777777

MACHINE CONSTANTS FOR THE PDP-10 (KI PROCESSOR).

/
/

DATA MCHEPS(1),MCHEPS(2) / "104400000000, "000000000000 /
DATA MINMAG(1),MINMAG(2) / "000400000000, 000000000000
DATA MAXMAG(1) ,MAXMAG(2) / "377777777777, "377777777777

MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING

32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

DATA
DATA
DATA

DATA
DATA
DATA

MCHEPS (1) ,MCHEPS (2)
MINMAG (1) ,MINMAG(2)
MAXMAG (1) ,MAXMAG(2)

MCHEPS (1) ,MCHEPS(2)
MINMAG(1) ,MINMAG(2)
MAXMAG(1) ,MAXMAG(2)

NN N

/
/
/

620756992,
8388608,
2147483647,

= O O
NN TN

004500000000, 000000000000 /
000040000000, 000000000000 /
017777777777, 037777777777 /

MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING

16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA

MCHEPS (1) ,MCHEPS(2)
MCIIEPS (3) ,MCHEDS (4)

MINMAG(1) ,MINMAG(2)
MINMAG(3) ,MINMAG(4)

MAXMAG(1) ,MAXMAG(2)
MAXMAG(3) ,MAXMAG(4)

MCHEPS (1) ,MCHEPS(2)
MCHEPS (3) ,MCHEPS (&)

MINMAG(1) ,MINMAG(2)
MINMAG(3) ,MINMAG(4)

MAXMAG (1) ,MAXMAG(2)

/
/
/
/

N~

N~ ~

~

9472,
0,

128,
0,

32767,
-1’

0022400,
0000000,

0000200,
0000000,

0077777,

0
0

N~ N

[ e]
N~

-1
-1

~

0000000 /
0000000 /

0000000 /
0000000 /

0177777 /

/
/

DPPR0O550
DPPR0560
DPPR0O570
DPPR0580
DPPRO590
DPPR0600
DPPR0610
DPPR0620
DPPR0630
DPPR0640
DPPR0650
DPPR0660
DPPR0670
DPPR0680
DPPR0690
DPPRO700
DPPRO710
DPPR0720
DPPR0730
DPPR0O740
DPPRO750
DPPR0760
DPPR0770
DPPR0780

DPPR0O790
DPPRO80O
DPPR0810
DPPR0820
DPPR0O830
DPPR0840O
DPPRO850
DPPRO860
DPPR0870
DPPR0880
DPPR0890
DPPR0900
DPPR0910
DPPR0920
DPPR0930
DPPR0940
DPPR0950
DPPR0960
DPPR0970
DPPR0980
DPPR0990
DPPR1000
DPPR1010
DPPR1020
DPPR1030
DPPR1040
DPPR1050
DPPR1060
DPPR1070
DPPR1080
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DATA MAXMAG(3),MAXMAG(4) / 0177777, 0177777 /

MACHINE CONSTANTS FOR THE BURROUGHS 6700/7700 SYSTEMS.

DATA MCHEPS(1) / 01451000000000000 /
DATA MCHEPS(2) / 00000000000000000 /
DATA MINMAG(1) / 01771000000000000 /
DATA MINMAG(2) / 07770000000000000 /
DATA MAXMAG(1l) / 00777777777777777 /
DATA MAXMAG(2) / 07777777777777777 /

MACHINE CONSTANTS FOR THE BURROUGHS 5700 SYSTEM.

DATA MCHEPS(1)
DATA MCHEPS(2)

01451000000000000
00000000000000000

DATA MINMAG(1)
DATA MINMAG(2)

01771000000000000
00000000000000000

S~ ~ N
~ S N~

007777777777777717
000077777777777717

DATA MAXMAG(1)
DATA MAXMAG(2)

~ T~
N~

MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM. -

DATA MCHEPS(1) / ZCC6800000 /
DATA MCHEPS(2) / Z000000000 /
DATA MINMAG(1l) / ZC00800000 /
DATA MINMAG(2) / Z000000000 /
DATA MAXMAG(l) / ZDFFFFFFFF /
DATA MAXMAG(2) / ZFFFFFFFFF /

MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.

DATA MCHEPS(1),MCHEPS(2) / 0170640000000, 0000000000000 /
DATA MINMAG(1),MINMAG(2) / 0000040000000, 0000000000000 /
DATA MAXMAG(1) ,MAXMAG(2) / 0377777777777, 0777777777777 /
MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S§/200.

NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD -
STATIC DMACH(3)

DATA MINMAG/20K,3*0/,MAXMAG/77777K,3*177777K/
DATA MCHEPS/32020K,3%0/

MACHINE CONSTANTS FOR THE HARRIS 220.
DATA MCHEPS(1),MCHEPS(2) / '20000000, ‘00000334 /

DATA MINMAG(1),MINMAG(2) / '20000000, '00000201 /
DATA MAXMAG(1),MAXMAG(2) / '37777777, '37777577 /

DPPR1090
DPPR1100
DPPR1110
DPPR1120
DPPR1130
DPPR1140
DPPR1150
DPPR1160
DPPR1170
DPPR1180
DPPR1190
DPPR1200
DPPR1210
DPPR1220
DPPR1230
DPPR1240
DPPR1250
DPPR1260
DPPR1270
DPPR1280
DPPR1290
DPPR1300
DPPR1310
DPPR1320
DPPR1330
DPPR1340
DPPR1350
DPPR1360
DPPR1370
DPPR1380
DPPR1390
DPPR1400
DPPR1410
DPPR1420
DPPR1430
DPPR1440
DPPR1450
DPPR1460
DPPR1470
DPPR1480
DPPR1490
DPPR1500
DPPR1510
DPPR1520
DPPR1530
DPPR1540
DPPR1550
DPPR1560
DPPR1570
DPPR1580
DPPR1590
DPPR1600
DPPR1610
DPPR1620
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MACHINE CONSTANTS FOR THE CRAY-1.

DATA MCHEPS(1)
DATA MCHEPS(2)

DATA MINMAG(1)
DATA MINMAG(2)

DATA MAXMAG(1)
DATA MAXMAG(2)

S~ N~ N

0376424000000000000000B
0000000000000000000000B

0200034000000000000000B
0000000000000000000000B

05777777717777777777777B
0000007777777777777776B

MACHINE CONSTANTS FOR THE PRIME 400.

DATA MCHEPS(1),MCHEPS(2) / :10000000000,
DATA MINMAG(1),MINMAG(2) / :10000000000,
DATA MAXMAG(1) ,MAXMAG(2) / :17777777777,

DPMPAR = DMACH(I)

RETURN

LAST CARD OF FUNCTION DPMPAR.

END

S~ N ~N N~

:00000000123 /
:00000100000 /
137777677776 /

DPPR1630
DPPR1640
DPPR1650
DPPR1660
DPPR1670
DPPR1680
DPPR1690
DPPR1700
DPPR1710
DPPR1720
DPPR1730
DPPR1740
DPPR1750
DPPR1760
DPPR1770
DPPR1780
DPPR1790
DPPR1800
DPPR1810
DPPR1820
NDPPR1830
DPPR1840
DPPR1850
DPPR1860
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