)Y O

ANL-80-74 ANL-80-74
\5a, \¥C

D b Ve
D LM ﬁ:ﬁ

USER GUIDE FOR MINPACK-1
by

Jorge J. Moré, Burton S. Garbow,
and Kenneth E. Hillstrom

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Prepared for the U. S. DEPARTMENT OF Eg{S%BGY e RO RNENE 5 URLIMITED
under Contract W-31-109-Eng-38 |

| Sy, S e e T — e e

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the
terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities
Association and The University of Chicago, the University employs the staff and operates the Laboratory in
accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona

Carnegie-Mellon Univer

Case Western Reserve University
The University of Chicago

University of Cincinnati

Illinois Institute of Technology

University of Illinois
Indiana University

The University of Iowa
Iowa State University

The University of Kansas
sity Kansas State University

Marquette University

The University of Michigan
Michigan State University
University of Minnesota
University of Missouri
Northwestern University
University of Notre Dame

Loyola University of Chicago

The Ohio State University

Ohio University

The Pennsylvania State University
Purdue University

Saint Louis University

Southern Illinois University

The University of Texas at Austin
Washington University

Wayne State University

The University of Wisconsin-Madison

NOTICE

This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United
States Government or any agency thereof, nor any of their
employees, make any warranty, express or implied, or assume
any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus,
product, or process disclosed, or represent that its use would
not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name,
mark, manufacturer, or otherwise, does not necessarily con-
stitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Govern-
ment or any agency thereof.

Printed in the United States of America
Available from

National Technical Information Service

U. S. Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

NTIS price codes
Printed copy: A12
Microfiche copy: A0l

ANL-80-74

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

USER GUIDE FOR M;NPAQKfl

by

Distribution Category:
Mathematics and Computers
(uc-32)

Jorge J. Moré, Burton S. Garbow, Kenneth E. Hillstrom

Applied Mathematics Division

August 1980

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United Siates Government,
Neither the United States Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

or of any i ion, . product, or process disclosed, or
represents that its use would not infringe privately owned rights, Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof,

DISTRIBUTION OF THIS DOCUMENT IS UNL{KITED
N

THJIS PAGE
WAS INTENTIONALLY
- LEFT BLANK

TABLE OF CONTENTS

ADSETACE +eveveesonsvacsssonossossossssccssnas Y P
Prefaceceeveeeescessacsacocnsasssasenns P |
Acknowledgmentsoeeeenes. et seeassann et eeeea et e 8
CHAPTER 1. Introduction to MINPACK-1 cesesecevenn ceseccrnne coes
1.1 Systems of Nonlinear Equationscceveucenns ereasseenasaases 9
1.2 Nonlinear Least Squares Problems Ceteceatecereaaeanns ceees 9
1.3 Derivative Checkingceeeevs e steesesaeseeaans Cheescasesaans ... 10
‘1.4 Algorithmic Paths: Core Subroutines and Easy-to-Use Drivers 10
1.5 MINPACK-1 Subroutines: Systems of Nonlinear Equations 10
1.6 MINPACK-1 Subroutines: Nonlinear Least Squares Problems 12
1.7 Machine-Dependent CONSLANES .uueeveeennseoaonossoosennsennns ceeeeas 13
1.8 MINPACK-1 Internal Subprograms cecere e ceseesaeannes 14
CHAPTER 2. Algorithmic Detailscnen. e eeeese e ceeeen 17
2.1 Mathematical Backgroundceeeeeeesnasssssnsscccccscnscanseons ceees 17
2.2 Overview of the Algorithms Gttt eetreeertet et e e aeae 19
2.3 Convergence Criteriacceeeeceeceesecenecacsonsnasoccoscncoascans 21
2.4 Approximations to the Jacobian MatriXcecueeienenrencorncnnns 26
2.5 Scaling suviveveeerrenncononsssenacaosannenaon e eeecenesaetananannn 28
2.6 Subroutine FCN: Calculation of the Function and Jacobian Matrix ... 30
2.7 ConsStraints ...eveeeeeesecsncsnonsonacnns e eaeereeeeces e 33
2.8 ETTOr BOUNAS v veeeneeuneettosonensoostnsssessssssassscssannossssass 35
2.9 PrinNbing «eeeeueeenenoeneuonensasarasosoacacssossasasnanasssacesans 43
CHAPTER 3. Notes and Referenceseeeieeeereerenaronncsoressanananns 45
CHAPTER 4. DocCUMENtAtIiON «.vevvsseeeoasssoseessssonasssasscaasssasesos .. 49

CHAPTER 5. Program Listings feeeeeenttec e eeeeas e 139

THI[S PAGE
WAS INTENTIONALLY
- LEFT BLANK

ABSTRACT

MINPACK-1 is a package of Fortran subprograms for the
numerical solution of systems of nonlinear equations and
nonlinear least squares problems. This report provides an
overview of the algorithms and software in the package and
includes the documentation and program listings.

Preface

The MINPACK Project is a research effort whose goal is the development of
a systematized collection of quality optimization software. The first step
towards this goal has been realized in MINPACK-1, a package of Fortran
programs for the numerical solution of systems of nonlinear equations and

nonlinear least squares problems.

The design of the algorithms and software in MINPACK-1 has several

objectives; the main ones are reliability, ease of use, and transportability.

At the algorithmic level, reliability derives from the underlying
algorithms having a sound theoretical basis. Entirely satisfactory global
convergence results are available for the MINPACK-1 algorithms and, in

addition, their properties allow scale invariant implementatioms.

At the software level, reliability derives from extensive testing. The
heart of the testing aids is a large collection of test problems (Moré,
Garbow, and Hillstrom [1978]). These test problems have been used to measure
the performance of the software on the following computing systems: IBM
360/370, CDC 6000-7000, Univac 1100, Cray-1l, Burroughs 6700, DEC PDP-10,
Honeywell 6000, Prime 400, Itel AS/6, and ICL 2980. At Argonne, software
performance has been further measured with the help of WATFIV and BRNANL
(Fosdick [1974]). WATFIV detects run-time errors such as undefined variables
and out-of-range subscripts, while BRNANL provides execution counts for each
block of a program and, in particular, has established that the MINPACK-1 test

problems execute every non-trivial program block.

Reliability further implies efficient and robust implementations. For
example, MINPACK-1 programs access matrices sequentially along columns (rather
than rows), since this improves efficiency, especially on paged systems.

Also, there are extensive checks on the input parameters, and computations are

formulated to avoid destructive underflows and overflows. Underflows can then
be safely ignored; overflows due to the problem should of course be

investigated.

Ease of use derives from the design of .the user interface. Each
algorithmic path in MINPACK-1 includes a core subroutine and a driver with a
simplified calling sequence made possible by assuming default settings for
certain parameters and by returning a limited amount of information; many
applications do not require full flexibility and in these cases the drivers
can be invoked. On the other hand, the core subroutines enable, for example,
scaling of the variables and printing of intermediate results at specified

iterations.

Ease of use is also facilitated by the documentation. Machine-readable
documentation is provided for those programs normally called by the user. The
documentation includes discussions of all calling sequence parameters and an
actual example illustrating the use of the corresponding algorithm. In
addition, each program includes detailed prologue comments on its purpose and
the roles of its parameters; in-line comments introduce major blocks in the

body of the program.

To further clarify the wunderlying structure of the algorithms, the
programs have been formatted by the TAMPR system of Boyle and Dritz [1974].
TAMPR produces implementations in which the loops and logical structure of the
programs are clearly delineated. In addition, TAMPR has been used to produce
the single precision version of the programs from the master (double

precision) version.

Transportability requires that a satisfactory transfer to a different
computing system be possible with only a small number of changes to the
software. In MINPACK-1, a change to a new computing system only requires
changes to one program in each precision; all other programs are written in a
portable subset of ANSI standard Fortran acceptable to the PFORT verifier
(Ryder [1974]). This one machine-dependent program provides values of the
machine precision, the smallest magnitude, and the largest magnitude. Most of
the values for these parameters were obtained from the corresponding PORT

library program (Fox, Hall, and Schryer [1978]); in particular, values are

provided for all of the computing systéms on which the programs were tested.

MINPACK-1 is fully supported. Comments, questions, and reports of poor

or incorrect performance of the MINPACK-1 programs should be directed to

Burton S. Garbow

Applied Mathematics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

Phone: (312) 972-7184

Of particular interest would be reports of performance of the MINPACK-1

package on machines not covered in the testing.

The MINPACK-1 package consists of the programs, their documentation, and
the testing aids. The package comprises approximately 28,000 card images and
is transmitted on magnetic tape. The tape is available from the following two

sources.

National Energy Software Center
Argonne National Laboratory
9700 South Cass Avenue

Argonne, IL 60439

Phone: (312) 972-7250

IMSL

Sixth Floor-NBC Building

7500 Bellaire Blvd.

Houston, TX 77036

Phone: (713) 772-1927
The package includes both single and double precision versions of the
programs, and for those programs normally called by the user machine-readable
documentation is provided in both single and double precision forms. An

implementation guide (Garbow, Hillstrom, and More [1980]). is also included

with the tape.

Acknowledgments

The MINPACK-1 testing was conducted by the fbllowing individuals; their

assistance and suggestions were invaluable to the project.

Poul Arendal, The World Bank (Burroughs)

Richard Bartels, University of Waterloo (Honeywell)

Mary Ann Berg, University of Illinois at Urbana-Champaign (CDC)
W. Robert Boland, Air Force Weapons Laboratory (CDC)

Roger Crane, RCA Laboratories (IBM)

Dona Crawford, Sandia Laboratories, Livermore (CDC)

John Dennis, Rice University (Itel)

Jeremy DuCroz, Numerical Algorithms Group Ltd. (ICL)

Jay Fleisher, The University of Wisconsin (Univac)

Fred Fritsch, Lawrence Livermore Laboratory (CDC,Cray)
Patrick Gaffney, Union Carbide Corporation (CDC,Cray,DEC,IBM)
David Gay, Massachusetts Institute of Technology (IBM)
Kathie Hiebert, Sandia Laboratories, Albuquerque (cpe)

L. W. Lucas, Naval Weapons Center (Univac)

Dan O'Reilly, Data Resources, Inc. (Burroughs)

Gerald Ruderman, Management Decision Systems, Inc. (Prime)
Nora Sabelli, University of Illinois at Chicago Circle (IBM)
Susan Sherry, Federal Reserve Board (IBM)

Danny Sorensen, University of Kentucky (IBM)

Jesse Wang, Argonne National Laboratory (IBM)

Many others have contributed to the package in various ways; in particu-
lar, we acknowledge Beverly Arnoldy, Jim Boyle, Ken Brown, Wayne Cowell,
Jim Cody, Tom Coleman, Bill Davidoh, Jack Dongarra, Dudley Goetschel, Jerry
Kreuser, James Lyness, Mike Minkoff, Larry Nazareth, Mike Powell,
Rich Raffenetti, Bob Schnabel, Greg Shubert, Brian Smith, David Thuente, and
Richard Wilk.

Special thanks go to Jim Pool, the originator of the project, and to
Paul Messina, the head of the Applied Mathematical Sciences section of the
Applied Mathematics Division at Argonne. Finally, thanks to Judy Beumer for

her usual outstanding job of typing this report.

CHAPTER 1
Introduction to MINPACK-1

The purpose of this chapter is to provide an overview of the algorithms
and software in MINPACK-1. Most users need only be acquainted with the first
six sections of this chapter; the remaining two sections describe lower-level

software called from the main programs.

1.1 Systems of Nonlinear Equations

If n functions fl,fz,...,fn of the n wvariables xj,x9,...,X, are
specified, then MINPACK-1 subroutines can be wused to find values for

X]sX9,.++,X, that solve the system of nonlinear equations

n

fi(Xl,Xz,...,Xn)=0 N 1__<_15_n .

To solve this system we have implemented a modification of Powell's hybrid
algorithm. There are two variants of this algorithm. The first variant only
requires that the user calculate the functions f;, while the second variant
requires that the user calculate both the functions f; and the n by n Jacobian

matrix

9f. (x)
1

9x . ’
]

1<i<n, 1<j<n.

1.2 Nonlinear Least Squares Problems

If m functions f;,fy,...,f are specified

m ©f the n variables x],x9,...,x

k n
with m > n, then MINPACK-1 subroutines can be used to find values for

X],X9,...,X, that solve the nonlinear least squares problem

n

by 2 n
min{) fi(X) : x €R } .

i=1

To solve this problem we have implemented a modification of the Levenberg-

Marquardt algorithm. There are three variants of this algorithm. The first

10

variant only requires that the user calculate the functions £;, while the
second variant requires that the user calculate both the functions £; and the

m by n Jacobian matrix

3fi(x)

9x .)
J

1<im, 1<j<n.

The third variant also requires that the user calculate the functions and
the Jacobian matrix, but the latter only one row at a time. This organization
only requires the storage of an n by n matrix (rather than m by n), and is
thus attractive for nonlinear least squares problems with a large number of

functions and a moderate number of variables.

1.3 Derivative Checking

The main advantage of providing the Jacobian matrix is increased
reliability; for example, the algorithm is then much less sensitive to
functions subject to errors. However, providing the Jacobian matrix is an
error-prone task. To help identify errors, MINPACK-1 also contains a
subroutine CHKDER that checks the Jacobian matrix for consistency with the

function values.

1.4 Algorithmic Paths: Core Subroutines and Easy-to-Use Drivers

There are five general algorithmic paths in MINPACK-1. Each path
includes a core subroutine and an easy-to-use driver with a simplified calling
sequence made possible by assuming default settings for certain parameters and
by returning a limited amount of information; many applications do not require
full flexibility and in these cases easy-to-use drivers can be invoked. On
the other hand, the core subroutines enable, for example, scaling of the

variables and printing of intermediate results at specified iterations.

1.5 MINPACK-]1 Subroutines: Systems of Nonlinear Equations

The MINPACK-1 subroutines for the numerical solution of systems of
nonlinear equations are HYBRD1, HYBRD, HYBRJ1l, and HYBRJ. These subroutines

provide alternative ways to solve the system of nonlinear equations

£;(X),%9,0005%,) = 0, 1<i<n

11

by a modification of Powell's hybrid algorithm. The principal requirements of

the subroutines are as follows (see also Figure 1).

HYBRD1, HYBRD

The wuser must provide a subroutine to calculate the functions
fl’fZ”"’fn‘ The Jacdbian matrix 1s then calculated by a forward-
difference approximation or by an update formula of Broyden. HYBRDI is

the easy~to-use driver for the core subroutine HYBRD.

HYBRJ1, HYBRJ

The user must provide a subroutine to calculate the functions

fl’fZ"‘°’fn and the Jacobian matrix
3fi(x)
5 -5 | 1<ifn, 1<j<n.
- ;

(Subroutine CHKDER can be used to check the Jacobian matrix for
consistency with the function values.) HYBRJl is the easy-to-use driver

for the core subroutine HYBRJ.

Is the Jacobian
Yes . . No
———— | matrix available?

Is flexibility No Yes Is flexibility

Yes . .
required? —_ required?

No

HYBRJ HYBRJ1] HYBRD HYBRDI1

Figure 1
Decision Tree for Systems of Nonlinear Equations

12

1.6 MINPACK-1 Subroutines: Nonlinear Least Squares Problems

The MINPACK-1 subroutines for the numerical solution of nonlinear least
squares problems are IMDIFl, LMDIF, IMDERl, LMDER, IMSTRl, and IMSTR. These

subroutines provide alternative ways to solve the nonlinear least squares

min{
i

by a modification of the Levenberg-Marquardt algorithm. The principal

problem

I ~8

f.(x)2: X € Rn}
1 1

requirements of the subroutines are as follows (see also Figure 2).

IMDIF1, IMDIF

The wuser must provide a subroutine to calculate the functions
El,fz,...,fm. The Jacobian matrix is then calculated by a forward-
difference approximation. IMDIFl is the easy-to-use driver for the core

subroutine IMDIF.

IMDER1, IMDER

The wuser must provide a subroutine to calculate the functions

£1,£9,...,f, and the Jacobian matrix
afi(x)
v R 1<im, 1<j<n.
J

(Subroutine CHKDER can be used to check the Jacobian matrix for
consistency with the function values.) LMDER]l is the easy-to-use driver

for the core subroutine IMDER.

IMSTR1, IMSTR
The wuser must provide a subroutine to calculate the functions

f1,£9,...,f, and the rows of the Jacobian matrix

9f. (x)
1

9x. ’
]

1<i<m, i<j<n,

one row per call. (Subroutine CHKDER can be used to check the row of the
Jacobian matrix for consistency with the corresponding function value.)

IMSTR] is the easy-to-use driver for the core subroutine IMSTR.

13

Yes Is the Jacobian No
matrix available?

g

Is storage Is flexibility
limited? Mo lEEEi required?

~ IMDIF | IMDIF1 .

Yes

el I i
Yes Is flex%blllty No Yes |18 flex%blllty No
| required? —1 required? —]

' IMSTR l IMSTRI l{IMDER | IMDER]

Figure 2
Decision Tree for Nonlinear Least Squares Problems

1.7 Machine-Dependent Constants

There are three machine-dependent constants that have to be set before
the single or double precision version of MINPACK-l can be used; for most
machines the correct values of these constants are encoded into DATA state-
ments in functions SPMPAR (single precision) and DPMPAR (double precision).
These constants are:

61-2

, the machine precision ,

e . -1
g MM " the smallest magnitude ,

_g. e
(1 -84 MaX ' the largest magnitude ,

where £ is the number of base B digits on the machine, ep;, is the smallest

machine exponent, and e ., is the largest machine exponent.

ax
The most critical of the constants is the machine precision €y, since the

MINPACK-1 subroutines treat two numbers a and b as equal if they satisfy

|b-a| _S eMlaI s

14

and the above test forms the basis for deciding that no further improvement 1is

possible with the algorithm.

1.8 MINPACK-1 Internal Subprograms

Most users of MINPACK-1 need only be acquainted with the core subroutines
and easy—-to-use drivers described in the previous sections. Some users,
however, may wish to experiment by modifying an algorithmic path to improve
the performance of the algorithm on a particular application. A modification
to an algorithmic path can often be achieved by modifying or replacing one of
the internal subprograms. Additionally, the internal subprograms may be
useful independent of the MINPACK-1 algorithmic paths in which they are
employed.

For these reasons brief descriptions of the MINPACK-1 internal
subprograms are included below; more complete descriptions can be found in the

prologue comments in the program listings of Chapter 5.

DOGLEG

Given the QR factorization of an m by n matrix A, an n by n nonsingular
diagonal matrix D, an m-vector b, and a positive number A, this
subroutine determines the convex combination of the Gauss-Newton and

scaled gradient directions that solves the problem
min{#Ax-bll : IDxl < A}

ENORM

This function computes the Euclidean norm of a vector x.

FDJAC!
This subroutine computes a forward-difference approximation to the
Jacobian matrix associated with n functions in n variables. It includes

a banded Jacobian option.

FDJAC2
This subroutine computes a forward-difference approximation to the

Jacoblan matrix assocliated with m functions in n variables.

N

IMPAR
Given the QR factorization of an m by n matrix A, an n by n nonsingular
diagonal matrix D, an m-vector b, and a positive number &, this subrou-

tine is used to solve the problem

min{lAx-bl : IDxl < A}

QFORM
Given the QR factorization of a rectangular matrix, this subroutine

accumulates the orthogonal matrix Q from its factored form.

QRFAC
This subroutine uses Householder transformations with optional column
pivoting to compute a QR factorization of an arbitrary rectangular

matrix.

QRSOLV
Given the QR factorization of an m by n matrix A, an n by n diagonal
matrix D, and an m-vector b, this subroutine solves the linear least

squares problem

RWUPDT
This subroutine is used in updating the upper triangular part of the QR

decomposition of a matrix A after a row is added to A.

RIMPYQ
This subroutine multiplies a matrix by an orthogonal matrix given as a

product of Givens rotations.

RI1UPDT
This subroutine is used in updating the lower triangular part of the LQ

decomposition of a matrix A after a rank-l matrix is added to A.

16

WAS *‘INTENTIQNALLY
LEFT BLANK

R
\ THHSP“

’
|
|
l
|

N

P C—

CHAPTER 2

Algorithmic Details

The purpose of this chapter 1is to provide information about the
algorithms and to point out some of the ways in which this information can be
used to improve their performance. The first two sections are essential for
the rest of the chapter since they provide the necessary background, but the

other sections are independent of each other.

2.1 Mathematical Background

To describe the algorithms for the solution of systems of nonlinear
equations and nonlinear least squares problems, it is necessary to introduce

some notation.

Let R® represent the n-dimensional Euclidean space of real n-vectors
*1
*2

X
n

and lxl the Euclidean norm of x,

1
2
X.

n
hxh = |)
2

J

A function F with domain in R" and range in R™ is denoted by F: R? » R™, Such
a function can be expressed as
fl(f)
) = f?(x) N
f;(x)

where the component function f;: R® » R is sometimes called the i-th residual
of F. The terminology derives from the fact that a common problem is to fit a

model g(t,x) to data y, in which case the f; are of the form

18

fi(x) =y; - 8lt;,x) ,

where y,; 1is measured at t; and x is the set of fit parameters.

In this notation a system of nonlinear equations is specified by a

function F: R™ * R, and a solution vector x* in R" is such that
F(x*) = 0

Similarly, a nonlinear least squares problem is specified by a function

F: R" > R™ with m 2 n, and a solution vector x* in R" is such that
IF(x*)Il < IF(x)l for x & N(x*) ,

where N(x*) is a neighborhood of x*. If N(x*) is the entire domain of
definition of the function, then x* is a global solution; otherwise, x¥* is a

local solution.

Some of the MINPACK-1 algorithms require the specification of the
Jacobian matrix of the mapping F: R™ » R™; that is, the m by n matrix F'(x)

whose (i,j) entry is

3fi(x)
9x, ’
J
A related concept is the gradient of a function f: R™ * R, which is the

mapping V£: R® + R® defined b
y

9f(x)

Vf(x) = T

If(x)

Ix
n

Note that the i-th row of the Jacobian matrix F'(x) is the gradient VE (%) of

the i-th residual.

19

It is well-known that if x* is a solution of the nonlinear least squares

problem, then x* solves the system of nonlinear equations

m
izlfi(x)vfi(x) =0

In terms of the Jacobian matrix this implies that .
1 T =
F'(x*) F(x*) = 0,

and shows that at the solution the vector of residuals is orthogonal to the
columns of the Jacobian matrix. This orthogonality condition 1is also
satisfied at maximizers and saddle points, but algorithms usually take

precautions to avoid these critical points.

2.2 Overview of the Algorithms

Consider a mapping F: R® » R™, where m = n for systems of nonlinear
equations and m > n for nonlinear least squares problems. The MINPACK-1

algorithms in these two problem areas seek a solution x* of the problem
() min{IF(x)l: x € R"}

In particular, if m = n it is expected that F(x¥*) = 0.

Our initial description of the algorithms will be at the macroscopic

level where the techniques used in each problem area are similar.

With each algorithm the user provides an initial approximation X = X, to
the solution of the problem. The algorithm then determines a correction p to
x that produces a sufficient decrease in the residuals of F at the new point

x+p; it then sets

X, =x t+tp

and begins a new iteration with x, replacing x.

A sufficient decrease in the residuals implies, in particular, that

AuF(x+p)u < UF(x

20

and thus the algorithms guarantee that
IF(x I < IF(x)I

The correction p depends upon a diagonal scaling matrix D, a step bound
A, and an approximation J to the Jacobian matrix of F at x. Users of the core

subroutines can specify initial values Dj and A in the easy-to-use drivers

o’

D, and Ao are set internally. If the user is providing the Jacobian matrix,

then J, = F'(x,); otherwise the algorithm sets J, to a forward difference

approximation to F'(x.).

To compute p, the algorithm solves (approximately) the problem
(2) min{W£+Jpl: WDpl < A}

where f is the m-vector of residuals of F at x. If the solution of this
problem does not provide a suitable correction, then A is decreased and, if
appropriate, J is updated. A new problem is now solved, and this process is
repeated (usually only once or twice) until a p is obtained at which there is
sufficient decrease in the residuals, and then x is replaced by x+p. Before

the start of the next iteration, D, 4, and J are also replaced.

The motivation for using (2) to obtain the correction p is that for
appropriate choices of J and 4, the solution of (2) is an approximate solution
of

min{ IF(x+p)i: UDpl < A}
It follows that if there is a solution x* such that
(3) ID(x=x*)I < A,

then x+p 1s close to x*. If this is not the case, then at least x+p 1is a
better approximation to x¥* than x. Under reasonable conditions, it can be

shown that (3) eventually holds.

The algorithms for systems of nonlinear equations and for nonlinear least

squares problems differ, for example, in the manner in which the correction p

is obtained as an approximate solution of (2). The nonlinear equations

algorithm obtains a p that minimizes If+Jpl in a two-dimensional subspace of
the ellipsoid {p: iDpl S_A}. The nonlinear least squares algorithm obtains a
p that is the exact solution of (2) with a small (10%) perturbation of 4.
Other differences in the algorithms include convergence criteria (Section 2.3)

and the manner in which J is computed (Section 2.4).

It is appropriate to close this overview of the algorithms by discussing
two of their limitations. First, the algorithms are limited by the precision
of the computations. Although the algorithms are globally convergent under
reasonable conditions, the convergence proofs are only valid in exact
arithmetic and the algorithms may fail in finite precision due to roundoff.
This implies that the algorithms tend to perform better in higher precision.
It also implies that the calculation of the function and the Jacobian matrix
should be as accurate as possible and that improved performance results when

the user can provide the Jacobian analytically.

Second, the algorithms are only designed to find local solutions. To

illustrate this point, consider
_ .3
F(x) = x~ - 3x + 18
In this case, problem (1) has the global solution x* = -3 with F(x*) = 0 and
the local solution x* = 1 with F(x*) = 16; depending on the starting point,

the algorithms may converge either to the global solution or to the local

solution.

2.3 Convergence Criteria

The convergence test in the MINPACK-1 algorithms for systems of nonlinear
equations is based on an estimate of the distance between the current approxi-
mation x and an actual solution x* of the problem. If D is the current
scaling matrix, then this convergence test (X-convergence) attempts to

guarantee that

(1) ID(x=-x*)I < XTOLeIDx*I ,

where XTOL is a user-supplied tolerance.

22

There are three convergence tests in the MfNPACK—l algorithms for
nonlinear least squares problems. One test is again for X-convergence, but
the main convergence test is based on an estimate of the distance between the
Euclidean norm WF(x)!l of the residuals at the current approximation x and the
optimal value IF(x*)ll at an actual solution x* of the problem. This conver-

gence test (F-convergence) attempts to guarantee that
(2) IF(x)! < (1 + FTOL)*IF(x*)I

where FTOL is a second user-supplied tolerance.

The third convergence test for the nonlinear least squares problem
(G-convergence) guarantees that
|a?f|
(3) maxm: liiﬁn SGTOL,

1

where a),as,...,a, are the columns of the current approximation to the
Jacobian matrix, f is the vector of residuals, and GTOL is a third user-

supplied tolerance.

Note that individual specification of the above three tolerances for the
nonlinear least squares problem requires direct user call of the appropriate
core subroutine. The easy-to-use driver only accepts the single value TOL.

It then internally sets FTOL = XTOL = TOL and GTOL = O.

The X-convergence condition (1) is a relative error test; it thus fails
when x* = 0 unless x = 0 also. Also note that if (1) is satisfied with
XTOL = IO_k, then the larger components of Dx have k significant digits, but
smaller components may not be as accurate. For example, if D is the identity

matrix, XTOL = 0.001, and

x* = (2.0, 0.003) ,
then

x = (2.001, 0.002)

satisfies (1), yet the second compoment of x has no significant digits. This

may or may not be important. However, note that if instead

23
D = diag(1,1000) ,

then (1) is not satisfied even for XTOL = 0.1. These scaiing considerations
can make it important to choose D carefully. See Section 2.5 for more

information on scaling.

Since x* 1s unknown, the actual criterion for X-convergence cannot be
based on (l); instead it depends on the step bound A. That is, the actual
convergence test is

A < XTOLe IDx!

The F-convergence condition (2) is a relative error test; it thus fails

. when F(x*) = 0 unless F(x) = 0 also. It is for this reason that F-convergence

is not tested for systems of nonlinear equations where F(x*) = 0 1is the
expected result. Also note that if (2) is satisfied with FTOL = 107K,
then IF(x)Il has k significant digits, but x may not be as accurate. For
example, if FTOL = 107 and
x -1
F(x) = ,

1
then x* =1, IF(x*)l = 1, and if x = 1.001 then (2) 1is satisfied with
FTOL = 10™%, but (1) is only satisfied with XTOL = 1073,

In many least squares problems, if FTOL = (XTOL)2 then X-convergence
implies F-convergence. This result, however, does not hold if WF(x*)I is very
small. For example, if

x -1
F(x) = ,
0.0001
then x* = 1 and IF(x*)l = 0.0001, but if x = 1.001 then (1) is satisfied with
XTOL = 1073 and yet

IF(x)I > 100F(x*)I

Since IF(x*)Il is unknown, the actual criterion for F-convergence cannot

be literally (2); instead it is based on estimates of the terms in (2). If £

24

and f, are the vectors of residuals at the current solution approximation x

and at x+p, respectively, then the (relative) actual reduction is
ACTRED = (Wfl - Ilf+IIJ/llfII ,

while the (relative) predicted reduction is
PRERED = (£l - WE+Ipl)/ £l

The F-convergence test then requires that

PRERED < FTOL
| ACTRED| < FTOL
ACTRED < 2°*PRERED

all hold.

The X-convergence and F-convergence tests are quite reliable, but it 1is
important to note that their validity. depends critically on the correctness of
the Jacobian. If the user is providing the Jacobian, he may make an error.
(CHKDER can be used to check the Jacobian.) If the algorithm is estimating
the Jacobian matrix, then the approximation may be incorrect if, for example,
the function is subject to large errors and EPSFCN is chosen poorly. (For
more details see Section 2.4,) In either case the algorithm wusually
terminates suspiciously near the starting point; recommended action if this
occurs is to rerun the problem from a different starting point. If the
algorithm also terminates ncar the new starting point, then it is very likely

that the Jacobian is being determined incorrectly.

The X-convergence and F-convergence tests may also fail if the tolerances
are too large. In general, XTOL and FTOL should be smaller than 10-5;
recommended values for these tolerances are on the order of the square root of
the machine precision. As described in Section 1.7, the single precision
value of the machine precision can be obtained from the MINPACK-l function
SPMPAR and the double prec¢ision value from DPMPAR. Note, however, that on

some machines the square root of machine precision is larger than 1072,

25

The G-convergence test (3) measures the angle between the residual vector
and the columns of the Jacobian matrix and thus can be expected to fail if
either F(x*) = 0 or any column of F'(x*) is zero. Also note that there is no
clear relationship between G-convergence and either X-convergence or
F-convergence. . Furthermore, the G-convergence test detects other critical
points, namely maximizers and saddle points; therefore, termination with

G-convergence should be examined carefully.

An important property of the tests described above is that they are scale
invariant. (See Section 2.5 for more details on scaling.) Scale invariance
is a feature not shared by many other convergence tests. For example, the

convergence test
(4) £l < AFTOL ,

where . AFTOL is a user-supplied tolerance, is not scale invariant, and this
makes it difficult to choose an appropriate AFTOL. As an illustration of the

difficulty with this test, consider the function
F(x) = (3x - 10)exp(10x) .

On a computer with 15 decimal digits
[F(x*)| > 1,

where x* is the closest machine-representable number to 10/3, and thus a

suitable AFTOL is not apparent.

If the user, however, wants to use (4) as a termination test, then he can
do this by setting NPRINT positive in the call to the respective core
subroutine. (See Section 2.9 for more information on NPRINT.) 'This provides
him periodic opportunity, through subroutine FCN with IFLAG = 0, to affect the
iteration sequence, and in this instance he might insert the following program

segment into FCN.

26

IF (IFLAG .NE. 0) GO TO 10
FNORM = ENORM(LFVEC,FVEC)
IF (FNORM .LE. AFTOL) IFLAG = -1
RETURN

10 CONTINUE

In this program segment it is assumed that LFVEC = N for systems of nonlinear
equations and LFVEC = M for nonlinear least squares problems. It is also
assumed that the MINPACK-1 function ENORM is declared to the precision of the

computation.

2.4 Approximations to the Jacobian Matrix

If the user does not provide the Jacobian matrix, then the MINPACK-1
algorithms compute an approximation J. 1In the algorithms for nonlinear least
squares problems, J is always determined by a forward difference approxima-
tion, while in the algorithms for systems of nonlinear equations, J is
sometimes determined by a forward-difference approximation but more often by
an update formula of Broyden. It is important to note that the update formula
is also used in the algorithms for 'systems of nonlinear equations where the
user is providing the Jacobian matrix, since the updating tends to improve the

efficiency of the algorithms.

The forward-difference approximation to the j-th column of the Jacobian

matrix can be written

F(x+h.e.) - F(x)
J]

J
where ey is the j-th column of the identity matrix and hj is the difference
parameter. The choice of hj depends on the precision of the function

evaluations, which is specified in the MINPACK-1 algorithms by the parameter
EPSFCN. To be specific,

1
hj = (EPSFCN)flij

unless x5 = 0, in which case

27

hj = (EPSFCN)l/z .

In the easy-to-use drivers EPSFCN is set internally to the machine
precision (see Section 1.7), since these subroutines assume that the functions
can be evaluated accurately. In the core subroutines EPSFCN is a user-
supplied parameter; if there are errors in the evaluations of the functions,
then EPSFCN may need to be much larger than the machine precision. For
example, if the specification of the function requires the numerical
evaluation of an integral, then EPSFCN should probably be on the order of the

tolerance in the integration routine.

One advantage of approximation (1) is that it is scale invariant. (See
Section 2.5 for more details on scaling.) A disadvantage of (1) is that it
assumes EPSFCN the same for each variable, for each component function of F,
and for each vector x. These assumptions may make it difficult to determine a
suitable value for EPSFCN. The user who is uncertain of an appropriate value
of EPSFCN can run the algorithm with two or three values of EPSFCN and retain
the value that gives the best results. In general, overestimates are better

than underestimates.

The update formula of Broyden depends on the current approximation x, the

correction p, and J. Since
1
F(x+p) - F(x) =| [F'(x+6p)d@|p ,
0

it is natural to ask that the approximation J, at x+p satisfy the equation
J,p = F(x+p) - F(x) ,

and among the possible choices be the one closest to J. To define an
appropriate measure of distance, let D be the current diagonal scaling matrix

and define the matrix norm

n uaju 2\
we- (1)
3=\)

where aj,ag,...,a, are the columns of A. It is now easy to verify that the

solution of the problem

28.

min{"j-J"D: Jp = F(x+p)-F(x)} ,

is given by

J =7 + (F(X+P)‘F(x)-Jp)(DTDp)T

* 1ppl 2

There are many properties of this formula that justify its use in algorithms
for systems of nonlinear equations, but a discussion of these properties 1is

beyond the scope of this work.

2.5 Scaling

Scale invariance is a desirable feature of an optimization algorithm.
Algorithms for systems of nonlinear equations and nonlinear least squares

problems are scale invariant if, given problems related by the change of scale

(x) = aF(DVx)
= D-lx
o vV "0 °?

» Qe

where @ 1is a positive scalar and Dy is a diagonal matrix with positive

entries, the approximations x and x gernerated by the algorithms satisfy
x = D, x

Scale invariance is a natural requirement that can have a significant
effect on the implementation and performance of an algorithm. To the user
scale invariance meauns, in particular, that he can work with either problem

and obtain equivalent results.

The core subroutines in MINPACK-1 are scale invariant provided that the

initial choice of the scaling matrix satisfies

(1) Do = OtDVDo s

where D, and Do are the initial scaling matrices of the respective problems

defined by F and x_ and by F and ;o' If the user of the core subroutines has

(o]

1), then the internal scaling matrix is set

requested internal scaling (MODE

to
diag(ualn,nazu,,,.,uanu) ,

where a; is the i-th column of the initial Jacobian approximation, and (1)
holds. If the user has stipulated external scaling (MODE = 2), then the
initial scaling matrix is specified by the contents of the array DIAG, and

scale invariance is only achieved if the user's choice satisfies (1).

There are certain cases in which scale invariance may be lost, as when
the Jacobian matrix at the starting point has a column of zeroes and internal
scaling is requested. In this case Dj would have a zero element and-be
singular, but this possibility is not catered to in the current
implementation. Instead, the zero element is arbitrarily set to l, preserving
nonsingularity but giving up scale invariance. In practice, however, these

cases seldom arise and scale invariance is usually maintained.

Our experience is that internal scaling is generally preferable for
nonlinear least squares problems and external scaling for systems of nonlinear
equations. This experience is reflected in the settings built into the easy-
to-use drivers; MODE = 1 is specified in the drivers for nonlinear least
squares problems and MODE = 2 for systems of nonlinear equations. In the
latter case, D, is set to the identity matrix, a choice that generally works

out well in practice; if this choice is not appropriate, recourse to the core

subroutine would be indicated.

It is important to note that scale invariance does not relieve the user
of choosing an appropriate formuiation of the problem or a reasonable starting
point. In particular, note that an appropriate formulation may involve a
scaling of the equations or a nonlinear transformation of the variables and
that the performance of the MINPACK-1 algorithms can be affected by these
transformations. For example, the algorithm for systems ‘of nonlinear
equations usually generates different approximations for problems defined by

functions F and F, where

E(x) = DF(x) ,
X

= x
o o’

30

and Dp is a diagonal matrix with positive entries. The main reason for this
is that the algorithm usually decides that x, is a better approximation than x
if

IF(x) < IFGON
and it is entirely possible that

||F~(x+)u > IF(x)I

The user should thus scale his equations (i.e., choose Dg) so that the

expected errors in the residuals are of about the same order of magnitude.

2.6 Subroutine FCN: Calculation of the Function and Jacobian Matrix

The MINPACK-1 algorithms require that the user provide a subroutine with
name of his choosing, say FCN, to calculate the residuals of the function
F: R? > R™, where m = n for systems of nonlinear equations and m > n for
nonlinear least squares problems. Some of the algorithms also require that

FCN calculate the Jacobian matrix of the mapping F.

It is important that the calculation of the function and Jacobian matrix
be as accurate as possible. It is also important that the coding of FCN be as
efficient as possible, since the ti@ing of the algorithm 1is strongly
influenced by the time spent in FCN. In particular, when the residuals £;
have common subexpressions it is usually worthwhile to organize the .computa-
tion so that these subexpressions need be evaluated only once. For example,

if the residuals are of the form
fi(X) = g(x) + hi(X) , 1 <i<m

with g(x) common to all of them, then the coding of FCN is best expressed in

the following form.

T = g(x)
For i = 1,2, ,m
fi(x) =T+ hi(X)

As another example, assume that the residuals are of the form

31

ht-3

fi(X) = (aijcos(xj) + Bijsin(xj)) s

j=1
where the aij and Bij are given constants. The following program segment

evaluates the f; efficiently.

For 1 = 1,2,...,m
fl(x) =0
For j = 1,2,...,n
Y = cos(xj)
o = sin(x.)
J
For i = 1,2,...,m

fi(x) = fi(X) + ya.. + oB..
1] 1]

If the user is providing the Jacobian matrix of the mapping F, then it is
important that 1its calculation also be as efficient as possible. In
particular, when the elements of the Jacobian matrix have common sub-
expressions, it is usually worthwhile to organize the computation so that

these subexpressions need be evaluated only once. For example, if
£,(x) = g(x) + h(x), 1<i<m,

then the rows of the Jacobian matrix are
Vfi(x) = Vg(x) + Vhi(x) . 1<i<m,

and the subexpression VYg(x) is thus common to all the rows of the Jacobian

matrix.

As another example, assume that

n
f£.(x) = a..cos(x.) + B, .sin(x,)
i jﬁlt 13°°%°%; pjsinGep) s
where the aij and Bij are given constants. In this case,
afi(x)
—-—= - a..sin(x.) + B..cos(x.) ,
xj 1] J 1] B

32

and the following program segment evaluates the Jacobian matrix efficiently.

For j = 1,2,...,n

Y = cos(xj)
0= sin(xj)
For i = 1,2,...,m
afi(x)
————— = -0a., + YB.., .
axj ij ij

The previous example illustrates further the possibility of common sub-
expressions between the function and the Jacobian matrix. For the nonlinear
least squares algorithms advantage can be taken of this, because a call to FCN
to evaluate the Jacobian matrix at x is always preceded by a call to evaluate
the function at x. This 1is not the case for the nonlinear equations

algorithms.

To specifically illustrate this possibility of sharing information

between function and Jacobian matrix, assume that

£,(x) = g(x)2 + h;(x) 1<i<m.
Then the rows of the Jacobian matrix are

Vfi(x) = 2g(x)Vg(x) + Vhi(x) R 1<i<m,
and the coding of FCN is best done as follows.

1f FUNCTION EVALUATLON then
T = g(x)
Save T in COMMON
For i = 1,2,...,m
£,(x) = w2 4 h; (x)
If JACOBIAN EVALUATION then
v = Vg(x)
For i = 1,2,...,m

Vfi(x) = 2Tv + Vhi(x) .

2.7 Constraints

Systems of nonlinear equations and nonlinear least squares problems often
impose constraints on the solution. For example, on physical grounds it is

sometimes necessary that the solution vector have positive components.

At present there are no algorithms in MINPACK that formally admit
constraints, but in some cases they can be effectively achieved with ad hoc
strategies. In this section we describe two strategies for restricting the

solution approximations to a region D of R™".

The user has control over the initial approximation x,. It may happen,
however, that x is in D but the algorithm computes a correction p such that
x+p is not in D. If this correction is permitted, the algorithm may never
recover; that is, the approximations may now converge to an unacceptable

solution outside of D.

The simplest strategy to restrict the corrections is to impose a penalty
on the function if the algorithm attempts to step outside of D. For example,

let ‘U be any number such that

£ (x)] <u 1<i<m,
and in FCN define

£.(x) =w, 1 <i<m

whenever x does not belong to D. If FCN is coded in this way, a correction p
for which x+p lies outside of D will not decrease the residuals and is
therefore not acceptable. It follows that this penalty on FCN forces all the

approximations x to lie in D.

Note that this strategy restricts all the corrections, and as a conse-
quence may lead to very slow convergence if the solution 1s near the boundary
of D. It usually suffices to only restrict the initial correction, and users

of the core subroutines can do this in several ways.

Recall from Section 2.2 that the initial correction p, satisfies a bound

of the form

34
[I A
Dopo -S o’

where D, is a diagonal scaling matrix and A, is a step bound. The contents of
D, are governed by the parameter MODE. If MODE = 1 then D, is internally set,
while if MODE = 2 then D, is specified by the user through the array DIAG.
The step bound A, is determined from the parameter FACTOR. By definition

A = FACTOR*ID x Il ,
o oo
unless x, is the zero vector, in which case
A = FACTOR
o

It is clear from this definition that smaller values of FACTOR lead to smaller
steps. For a sufficiently small value of FACTOR (usually 0.0l suffices), an

improved point X,tp, will be found that belongs to D.

Be aware that the step restriction is on D,p, and not on p, directly. A
small element of D,, which can be set by internal scaling when MODE = 1, may
lead to a large component in the correction Po- In many cases it is not

necessary to control p, directly, but if this is desired then MODE = 2 must be

used.

When MODE = 2, the contents of D, are specified by the user, and this
allows direct control of Po- Lf, for example, it is desired to restrict the
components of p, to small relative corrections of the corresponding components

of X5 (assumed nonzero), then this can be done by setting

D = diag -rrrl Trrl 1—|-1
o 4 1 3 2 s H] gn H

where Ei is the i-th component of Xy>, and by choosing FACTOR appropriately.

To justify this choice, note that P, satisfies
ID p I <A = FACTOR*ID x Il ,
“ofo = o o"o

and that the choice of D, guarantees that

35
1
ID x I =n%.
oo
Thus, if Py is the i-th component of p,, then
*

lp,| < n*FACTOR-[E;] ,

which justifies the choice of D,.

2.8 Error Bounds

A problem of general interest is the determination of error bounds on the
components of a solution vector. It is beyond the scope of this work to
discuss this topic in depth, so the discussion below is limited to the compu-

tation of bounds on the sensitivity of the parameters, and of the covariance

matrix. The discussion is in terms of the nonlinear least squares problem,

but some of the results also apply to systems of nonlinear equations.

Let F: RM *» R® define a nonlinear least squares problem (m > n), and let
x* be a solution. Given € > 0, the problem is to determine sensitivity

(upper) bounds 01,02,...,0n such that, for each i, the condition

'|xi—x§l S_oi . with x. = xg for j # i',
implies that

IF(x)l < (1 + e)IF(x*)I .

Of particular interest are values of 0y which are large relative to Ixil,
since then the residual norm IF(x)! is insensitive to changes in the i-th
parameter and may therefore indicate a possible deficiency in the formulation

of the problem.

A first order estimate of the sensitivity bounds 0 shows that

|98 NE(x*) Il
= A
(1) 0i € F'(x* ‘ei ’

where F'(x*) is the Jacobian matrix of F at x* and e; is the i-th column of
the identity matrix. Note that if "F'(x*)'ei“ is small relative to IF(x*)I,

then the,:esidual.nbrm is 'insensitive to changes in the i-th parameter.

36

If x is an approximation to the solution x* and J is an approximation to

F'(x*), then the bounds (1) can usually be replaced by

A IF(x)N
(2) o, = €% (Wj;fﬁ‘)

The MINPACK-1 nonlinear least squares programs (except IMDIFl) return enough
information to compute the sensitivity bounds (2). On a normal exit, these
programs return F(x) and part of the QR decomposition of J; namely, an upper

triangular matrix R and a permutation matrix P such that
(3 JP = QR

for some matrix Q with orthogonal columns. The vector F(x) is returned in the
array FVEC and the matrix R is returned in the upper triangular part of the
array FJAC. The permutation matrix P is defined by the contents of the

integer array IPVT; if
IPVT = (p(1),p(2),...,p(n)) ,

then the j-th column of P is the p(j)-th column of the identity matrix.

The norms of the columns of the Jacobian matrix can be computed by noting

that (3) implies that

Jep(j) = QRej s
and hence,

I . = lIRe.l ,

The following loop uses this relationship to store 1Je,ll in the £-th position
of an array FJNORM; with this information it is then easy to compute the

sensitivity bounds (2).

DO 10 J =1, N
L = IPVT(J)
FIJNORM(L) = ENORM(J,FJAC(1,J))
10 CONTINUE

37

This loop assumes that ENORM and FJNORM have been declared to the precision of

the computation.

In addition to sensitivity bounds for the individual parameters, it 1is
sometimes desirable to determine a bound for the sensitivity of the residual
norm to changes in some linear combination of the parameters. Given € > 0 and

a vector v with lvl = 1, the problem is to determine a bound 0 such that
IF(x*+ov)l _<. (1 + e)lIF(x*)I .

A first order estimate of 0 is now

o[_IEGR) .
TF (x*)evl | °

if IF'(x*)evl is small relative to IF(x*)l, then 0 is large and the residual
norm is insensitive to changes in the linear combination of the parameters

specified by v.

For example, if the level set
{x: WIF@)I < (1 + e)IF(x*)I}

is as in Figure 3, then the residual norm, although sensitive to changes in x;

and x,, is relatively insensitive to changes along v = (1,1).

I1f the residual norm is relatively insensitive to changes in some linear
combination of the parameters, then the Jacobian matrix at the solution is
nearly rank-deficient, and in these cases it may be worthwhile to attempt to
determine a set of linearly independent parameters. In some statistical

applications, the covariance matrix
(3TH-1

is used for this purpose.

Figure 3

Subroutine COVAR, which appears at the end of this section, will compute
the covariance matrix. The computation of the covariance matrix from the QR

factorization of J depends on the relationship
(4) TH™1 = prTR)71pT |

which is an easy consequence of (3). Subroutine COVAR overwrites R with the
upper triangular part of (RTR)™! and then computes the covariance matrix

from (4).

Note that for proper execution of COVAR the QR factorization of J must

have used column pivoting. This guarantees that for the.resulting R

(5) fte, | > dr..1 , k<i<j,

39

thereby allowing a reasonable determination of the numerical rank of J. Most
of the MINPACK-1 nonlinear least squares subroutines return the correct

factorization; the QR factorization in IMSTRl and IMSTR, however, satisfies
JP) = QR

but R; does not usually satisfy (5). To obtain the correct factorization,

note that the QR factorization with column pivoting of R; satisfies
R1P2 = QR;
where R, satisfies (5), and therefore

is the desired €factorization of J. The program segment below uses the

MINPACK-1 subroutine QRFAC to compute R, from R;.

DO 30 J =1, N
JPl = J + 1
IF (N .LT. JP1) GO TO 20
DO 10 I = JP1, N
FJAC(I,J) = ZERO
10 CONTINUE
20 CONTINUE
30 CONT INUE
CALL QRFAC(N,N,FJAC,LDFJAC,.TRUE.,IPVT2,N,WAl,WA2,WA3)
DO 40 J = 1, N
FJAC(J,J) = WAl1(QJ)
L = IPVTZ(J)
IPVT2(J) = IPVTI1(L)
40 CONT INUE

Note that QRFAC sets the contents of the array IPVT2 to define the permutation

matrix P9, and the final loop in the program segment overwrites IPVT2 to

define the permutation matrix PyP,.

PR NN NS NoNeNoNINoNsNoNoNoNoNsNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoRo o RoRoRoRo RoRoRo o o Ro o Ro Ro Ro K@)

SUBROUTINE COVAR(N,R,LDR,IPVT,TOL,WA)
INTEGER N,LDR

INTEGER IPVT(N)

DOUBLE PRECISION TOL

DOUBLE PRECISION R(LDR,N),WA(N)

alostuctoateitiati oty cloataots
PWIITIWITWRWIWEW

SUBROUTINE COVAR

GIVEN AN M BY N MATRIX A, THE PROBLEM IS TO DETERMINE
THE COVARIANCE MATRIX CORRESPONDING TO A, DEFINED AS

T
INVERSE (A *A)

THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM

IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE

QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF
A*P = Q*R, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL
COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL
ELEMENTS OF NONINCREASING MAGNITUDE, THEN COVAR EXPECTS

THE FULL UPPER TRIANGLE OF R AND THE PERMUTATION MATRIX P.
THE COVARIANCE MATRIX IS THEN COMPUTED AS

T T
P*INVERSE(R *R)*P

IF A IS NEARLY RANK DEFICIENT, IT MAY BE DESIRABLE TO COMPUTE
THE COVARIANCE MATRIX CORRESPONDING TO THE LINEARLY INDEPENDENT
COLUMNS OF A. TO DEFINE THE NUMERICAL RANK OF A, COVAR USES
THE TOLERANCE TOL. IF L IS THE LARGEST INTEGER SUCH THAT
ABS(R(L,L)) .GT. TOL*ABS(R(1,1)) ,
THEN COVAR COMPUTES THE COVARIANCE MATRIX CORRESPONDING TO
THE FIRST L COLUMNS OF R. FOR K GREATER THAN L, COLUMN
AND ROW IPVT(K) OF THE COVARIANCE MATRIX ARE SET TO ZERO.
THE SUBROUTINE STATEMENT IS
SUBROUTINE COVAR(N,R,LDR,IPVT,TOL,WA)
WHERE
N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.
R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE MUST
CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R. ON OUTPUT
R CONTAINS THE SQUARE SYMMETRIC COVARIANCE MATRIX.

LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.

IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE

COVROO10
COVR0020
COVRO0030
COVR0040
COVROO50
COVR0060
COVR0O070
COVR0O080
COVRO090
COVRO100
COVRO110
COVRO120
COVRO130
COVRO140
COVR0150
COVRO160
COVRO170
COVRO180
COVRO190
COVR0200
COVRO210
COVR0220
COVRO230
COVRO0240
COVRO250
COVR0260
COVRO270
COVR0280
COVRO290
COVRO300
COVRO310
COVR0320
COVRO0330
COVRO0340
COVRO350
COVRO360
COVRO0370
COVR0380
COVR0390
COVRO400
COVRO410
COVRO0420
COVR0430
COVR0440
COVRO450
COVR0460
COVRO470
COVR0480
COVRO04S0
COVRO500
COVRO510
COVRO0520
COVRO0530
COVRO540

sNoNoRo NSNS NP NSNS NP NG NG RO NGNS

@]

aon

aaoaon

10
20
30

40
50

60

PERMUTATION MATRIX P SUCH THAT A*P = Q*R. COLUMN J OF P
IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

TOL IS A NONNEGATIVE INPUT VARIABLE USED TO DEFINE THE
NUMERICAL RANK OF A IN THE MANNER DESCRIBED ABOVE.

WA IS A WORK ARRAY OF LENGTH N.
SUBPROGRAMS CALLED
- FORTRAN-SUPPLIED ... DABS

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. AUGUST 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

dlestectecthctntatestoatants
TAITIRRWRR

INTEGER I1,I1I1,J,JJ3,K,KM1,L

LOGICAL SING

DOUBLE PRECISION ONE,TEMP,TOLR,ZERO
DATA ONE,ZERO /1.0D0,0.0DO/

FORM THE INVERSE OF R IN THE FULL UPPER TRIANGLE OF R.-

TOLR = TOL*DABS(R(1,1))

L=0

DO 40 K= 1, N
IF (DABS(R(K,K)) .LE. TOLR) GO TO 50
R(K,K) = ONE/R(K,K)

KMl = K - 1
IF (KM1 .LT. 1) GO TO 30
DO 20 J = 1, KM1

TEMP = R(K,K)*R(J,K)
R(J,K) = ZERO
DO10I=1,J
R(I,K) = R(I,K) - TEMP*R(I,J)
CONTINUE
CONTINUE
CONTINUE
L =K
CONTINUE
CONTINUE

FORM THE FULL UPPER TRIANGLE OF THE INVERSE OF (R TRANSPOSE)*R
IN THE FULL UPPER TRIANGLE OF R.

IF (L .LT. 1) GO TO 110
DO 100 K =1, L
KM1 =K -1
IF (KM1 .LT. 1) GO TO 80
DO 70 J 1, KM1
TEMP = R(J,K)
DO 60 I =1, J
R(I,J) = R(1I,J) + TEMP*R(I,K)
CONTINUE

COVROS550
COVR0560
COVR0570
COVRO580
COVR0590
COVR0600
COVR0610
COVRO0620
COVRO0630
COVR0640
COVR0650
COVR0660
COVR0670
COVR0680

- COVR0690

COVRO700
COVRO710
COVR0720
COVR0730
COVR0740
COVRO750
COVRO760
COVRO770
COVR0780

COVR0790

COVR0O800
COVRO0810
COVR0820
COVRO0830
COVR0840
COVRO0850
COVR0860
COVR0870
COVR0880
COVR0890
COVR0900
COVR0910
COVR0920
COVR0930
COVR0940
COVR0950
COVR0960
COVRO0970
COVR0980
COVR0990
COVR1000
COVR1010
COVR1020
COVR1030
COVR1040
COVR1050
COVR1060
COVR1070
COVR1080

[oRoNeNe]

70
80

90
100
110

120

130

140

150

42

CONTINUE

CONTINUE

TEMP = R(K,K)

DO 90 I =1, K
R(I,K) = TEMP*R(I,K)
CONTINUE

CONTINUE

CONTINUE

FORM THE FULL LOWER TRIANGLE OF THE COVARIANCE MATRIX
IN THE STRICT LOWER TRIANGLE OF R AND IN WA.

DO 130 J =1, N
JJ = IPVT(J)
SING = J .6T. L
DO 120 I =1, J
IF (SING) R(I,J) = ZERO
II = IPVT(I)

IF (II .GT. JJ) R(I1,JJ) = R(I,J)
IF (II .LT. JJ) R(JJ,1I) = R(I,J)
CONTINUE

WA(JJ) = R(J,J)

CONTINUE

SYMMETRIZE THE COVARIANCE MATRIX IN R.

DO 150 J =1, N
DO 140 I =1, J
R(I,J) = R(J,I)
CONTINUE
R(J,J) = WA(D)
CONTINUE
RETURN

LAST CARD OF SUBROUTINE COVAR.

END

COVR1090
COVR1100
COVR1110
COVR1120
COVR1130
COVR1140
COVR1150
COVR1160
COVR1170
COVR1180
COVR1190
COVR1200
COVR1210
COVR1220
COVR1230
COVR1240
COVR1250
COVR1260
COVR1270
COVR1280
COVR1290
COVR1300
COVR1310
COVR1320
COVR1330
COVR1340
COVR1350
COVR1360
COVR1370
COVR1380"
COVR1390
COVR1400
COVR1410
COVR1420
COVR1430
COVR1440
COVR1450

43

2.9 Printing

No printing is done in any of the MINPACK-1 subroutines. However,
printing of certain parameters through FCN can be facilitated with the integer
parameter NPRINT that is available to users of the core subroutines. For
these subroutines, setting NPRINT positive results in special calls to FCN
with IFLAG = 0 at the beginning of the first iteration and every NPRINT
iterations thereafter and immediately prior to return. On these calls to FCN,
the parameters X and FVEC are available for printing; FJAC is additionally
available if using LMDER.

Often it suffices to print some simple measure of the iteration progress,
and the Euclidean norm of the residuals is usually a good choice. This norm

can be printed by inserting the following program segment into FCN.

IF (IFLAG .NE. 0) GO TO 10
FNORM = ENORM(LFVEC,FVEC)
WRITE (---,1000) FNORM
1000 FORMAT (---)
RETURN
10 CONTINUE

In this program segment it is assumed that LFVEC = N for systems of nonlinear
equations and LFVEC = M for nonlinear least squares problems. It is also
assumed that the MINPACK-1 function ENORM is declared to the précision of the

computation.

45

CHAPTER 3

Notes and References

This chapter provides notes relating the MINPACK-1 algorithms and

software to other work. The list of references appears at the end.

Powell's Hybrid Method

The MINPACK-1 version of Powell's [1970] hybrid method differs in many
respects from the original version. For example, the '"special iterations"
used in the original algorithm proved to be inefficient and have been
replaced. The updating method used is due to Broyden [1965]; the MINPACK-1
algorithm is a scaled version of the original. A comparison of an earlier
version of the MINPACK-1 algorithm with other algorithms for systems of non-

linear equations has been made by Hiebert [1980].

The Levenberg-Marquardt Algorithm

There are many versions of the algorithm proposed by Levenberg [1944] and
modified by Marquardt [1963]. An advantage of the MINPACK-1 version is that
it avoids the difficulties associated with choosing the Levenberg-Marquardt
parameter, and this allows a very strong global convergence result. The
MINPACK-1 algorithm is based on the work of Hebden [1973] and follows the
ideas of More [1977]. A comparison of an earlier version of the MINPACK-1
algorithm with other algorithms for nonlinear least squares problems has been

made by Hiebert [1979].

Derivative Checking

Subroutine CHKDER is new, but similar routines exist in the Numerical
Algorithms Group (NAG) library. An advantage of CHKDER is its generality; it
can be used to check Jacobians, gradients, and Hessians (second deriva-
tives). To enable this generality, CHKDER presumes no specific parameter
sequence for the function evaluation program, returning control instead to the

user. This in turn makes necessary a second call to CHKDER for each check.

46

MINPACK-1 Internal Subprograms

Subroutines DOGLEG and IMPAR are used to generate search directions in
the algorithms for systems of nonlinear equations and nonlinear least squares
problems, respectively. The.algorithm used in DOGLEG is a fairly straight-
forward implementation of the ideas of Powell [1970]), while LMPAR is a refined
version of the algorithm described by More [1977]. The IMPAR algorithm is the
more complicated; in particular, it requires the solution of a sequence of
linear least squares problems of special form. It is for this purpose that

subroutine QRSOLV is used.

The algorithm used in ENORM is a simplified version of Blue's [1978]
algorithm. An advantage of the MINPACK-1 version is that it does not require
machine constants; a disadvantage 1is that nondestructive underflows are

allowed.

The banded Jacobian option ‘in FDJACl is based on the work of Curtis,

Powell, and Reid [1974].

QRFAC and RWUPDT are based on the corresponding algorithms in LINPACK
(Dongarra, Bunch, Moler, and Stewart [1979]).

The algorithm used in RIUPDT is based on the work of Gill, Golub, Murray,
and Saunders [1974].

References

Blue, J. L. [1978]. A portable Fortran program to find the Euclidean norm of

a vector, ACM Transactions on Mathematical Software 4, 15-23.

Boyle, J. M. and Dritz, K. W. [1974]. An automated programming system to
facilitate the development of quality mathematical software, Proceedings

IFIP Congress, North~Holland.

Broyden, C. G. [1965]. A class of methods for solving nonlinear simultaneous

equations, Math. Comp. 19, 577-593.

Curtis, A. R., Powell, M. J. D., and Reid, J. K. [1974]. On the estimation of
sparse Jacobian matrices, J. Inst. Maths Applics 13, 117-119.

Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W. [1979].
LINPACK users' guide, SIAM Publications.

47

Fosdick, L. D. [1974]. BRNANL, A Fortran program to identify basic blocks in
Fortran programs, University of Colorado, Computer Science report

CU-CS-040-74,

Fox, P. A., Hall, A. D., and Schryer, N. L. [1978]. The PORT mathematical

subroutine library, ACM Transactions on Mathematical Software 4, 104-126.

Garbow, B. S., Hillstrom, K. E., and More, J. J. [1980]. Implementation guide
for MINPACK-1, Argonne National Laboratory report ANL-80-68.

Gill, P. E., Golub, G. H., Murray, W., and Saunders, M. A. [1974]. Methods
for modifying matrix factorizations, Math. Comp. 28, 505-535.

Hebden, M. D. {[1973]. An algorithm for minimization using exact second
derivatives, Atomic Energy Research Establishment report TP 515, Harwell,

England.

Hiebert, K. L. [1979]. A comparison of nonlinear least squares software,

Sandia Laboratories report SAND 79-0483, Albuquerque, New Mexico.

Hiebert, K. L. [1980]. A comparison of software which solves systems of
nonlinear equations, Sandia Laboratories report SAND 80-0181,

Albuquerque, New Mexico.

Levenberg, K. [1944]. A method for the solution of certain nonlinear problems

in least squares, Quart. Appl. Math. 2, 164-168.

Marquardt, D. W. [1963], An ‘algorithm for least-squares estimation of

nonlinear parameters, SIAM J. Appl. Math. 11, 431-441,

More, J. J. [1977]. The Levenberg-Marquardt algorithm: Implementation and
Theory, Numerical Analysis, G. A. Watson, ed., Lecture Notes 1in

Mathematics 630, Springer-Verlag.

Moré, J. J., Garbow, B. S., and Hillstrom, K. E. [1978]. Testing
unconstrained optimization software, Argonne National Laboratory, Applied
Mathematics Division Technical Memorandum 324 (to appear in ACM Transac-

tions on Mathematical Software).

Powell, M. J. D. [1970]. A hybrid method for nonlinear equations, 1in
Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, ed.,

Gordon and Breach.

Ryder, B. G. [1974]. The PFORT verifier, Software Practice and Experience 4,
359-377.

48

——

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

CHAPTER 4

Documentation

This chapter contains the double precision version of the MINPACK-1

documentation; both single and double precision versions of the documentation

are available in machihe-readable form with the MINPACK-1 package. The docu-

mentation appears in the following order:

Systems of nonlinear equations

HYBRD1, HYBRD, HYBRJ1, HYBRJ

Nonlinear least squares problems

IMDIF1, IMDIF, IMDER1, LMDER, LMSTRl, LMSTR

Derivative checking

CHKDER

50

.4 THISPAGE ! 1 ¥
 WASINTENTIONALLY
LEFT BLANK

L-' o e - —’m_’"'—“’? o — ﬁ___—"—'*v—,_——(—

1.

2.

3.

Documentation for MINPACK subroutine HYBRD1

Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

Purpose.

The purpose of HYBRD1 is to find a zero of a system of N non-
linear functions in N variables by a modification of the Powell
hybrid method. This is done by using the more general nonlinear
equation solver HYBRD. The user must provide a subroutine which
calculates the functions. The Jacobian is then calculated by a
forward-difference approximation.

Subroutine and type statements.

SUBROUTINE HYBRD1(FCN,N, X, FVEC, TOL, INFO, WA, LWA)
INTEGER N, INFO, LWA

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(N),WA(LWA)

EXTERNAL FCN

Parameters.

Parameters designated as input parameters must be specified on
entry to HYBRD1 and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from HYBRD1.

FCN is the name of the user-supplied subroutine which calculates
the functions. FCN must be declared in an EXTERNAL statement
in the user calling program, and should be written as follows.

SUBROUTINE FCN(N, X, FVEC, IFLAG)
INTEGER N, IFLAG

DOUBLE PRECISION X(N),FVEC(N)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FEVEC.
RETURN

END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of HYBRDI1. In this case set
IFLAG to a negative integer.

52
Page 2

N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length N which contains the functions
evaluated at the output X. '

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates that the relative error between X and
the solution is at most TOL. Section 4 contains more details
about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 2 Number of calls to FCN has reached or exceeded
200* (N+1).

INFO = 3 TOL is too small. No further improvement in the.
approximate solution X is possible.

INFO = 4 Iteration is not making good progress.

Sections 4 and 5 contain more details about INFO.
WA is a work array of length LWA.

LWA is a positive integer input variable not less than
(N*(3*N+13))/2.

4. Successful completion.

The accuracy of HYBRD1l is controlled by the convergence parame-
ter TOL. This parameter is used in a test which makes a compar-
ison between the approximation X and a solution XSOL. HYBRD1
terminates when the test is satisfied. 1If TOL is less than the
machine precision (as defined by the MINPACK function
DPMPAR(1)), then HYBRD1l only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The test assumes that the functions are reasonably well behaved.

53

Page 3

If this condition is not satisfied, then HYBRD1 may incorrectly
indicate convergence. The validity of the answer can be
checked, for example, by rerunning HYBRD1l with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a

vector Z, then this test attempts to guarantee that
ENORM(X~-XSOL) .LE. TOL*ENORM(XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of X may have large relative errors, but the fast rate
of convergence of HYBRD1 usually avoids this possibility.

5. Unsuccessful completion.

Unsuccessful termination of HYBRD1 can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, errors in the functions, or lack of good prog-
ress.

Improper input parameters. INFO is set to O if N .LE. O, or

TOL .LT. 0.DO, or LWA .LT. (N*(3*N+13))/2.

Arithmetic interrupts. If these interrupts occur in the FCN

subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by HYBRDl. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead HYBRD, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Excessive number of function evaluations. If the number of

calls to FCN reaches 200%(N+1), then this indicates that the
routine is converging very slowly as measured by the progress
of FVEC, and INFO is set to 2. This situation should be unu-
sual because, as indicated below, lack of good progress is
usually diagnosed earlier by HYBRD1l, causing termination with
INFO = 4.

Errors in the functions. The choice of step length in the for-

ward-difference approximation to the Jacobian assumes that the
relative errors in the functions are of the order of the
machine precision. If this is not the case, HYBRD1 may fail
(usually with INFO = 4). The user should then use HYBRD
instead, or one of the programs which require the analytic
Jacobian (HYBRJ1l and HYBRJ). ‘

Lack of good progress.

54
Page 4

HYBRD1 searches for a zero of the system

by minimizing the sum of the squares of the functions. In so
doing, it can become trapped in a region where the minimum
does not correspond to a zero of the system and, in this situ-
ation, the iteration eventually fails to make good progress.
In particular, this will happen if the system does not have a
zero. If the system has a zero, rerunning HYBRD1 from a dif-

ferent starting point

may be helpful.

6. Characteristics of the algorithm.

HYBRD1 is a modification of the Powell hybrid method. Two of
its main characteristics involve the choice of the correction as

a convex combination of
tions, and the updating
Broyden. The choice of
able conditions) global
the solution and a fast
approximated by forward
forward differences are

the Newton and scaled gradient direc-

of the Jacobian by the rank-1 method of
the correction guarantees (under reason-
convergence for starting points far from
rate of convergence. The Jacobian is
differences at the starting point, but
not used again until the rank-1 method

fails to produce satisfactory progress.

Timing. The time required by HYBRD1 to solve a given problem
depends on N, the behavior of the functions, the accuracy
requested, and the starting point. The number of arithmetic
operations needed by HYBRD1l is about 11.5*(N**2) to process
each call to FCN. Unless FCN can be evaluated quickly, the
timing of HYBRD1l will be strongly influenced by the time spent

in FCN.

Storage. HYBRDI1 requires (3*N**2 + 17*N)/2 double precision

“storage locations, in

addition to the storage regquired by the

program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied FCN

MINPACK-supplied ... DOGLEG,DPMPAR, ENORM, FDJAC1, HYBRD,
QFORM, QRFAC, RIMPYQ, R1UPDT

FORTRAN-supplied ... DABS,DMAX1l,DMIN1,DSQRT,MINO, MOD

8. References.

M. J. D. Powell, A Hybrid Method for Nonlinear Equations.
Numerical Methods for Nonlinear Algebraic Equations,
P. Rabinowitz, editor. Gordon and Breach, 1970.

9. Example.

55
Page 5

The problem is to determine the values of x(1), x(2), ..., X(9),
which solve the system of tridiagonal equations

-1
-1, i=2-8

(3-2%x(1))*x(1) -2%x%(2)
-x(i=1) + (3-2*%x(i))*x(i)) —2%x(i+1)
-x(8) + (3-2%*x(9))*x(9)

khkkkkhkkkhkhk

DRIVER FOR HYBRD1 EXAMPLE.
DOUBLE PRECISION VERSION

khkkkkhkhhkkkk

INTEGER J,N, INFO,LWA, NWRITE

DOUBLE PRECISION TOL, FNORM

DOUBLE PRECISION X(9),EVEC(9),WA(180)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

ONONONONONS)

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/
N =9

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.

Qo O 0

DO 10 J =1, 9
X(J) = -1.DO
10 CONTINUE

LWA = 180

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,

THIS IS THE RECOMMENDED SETTING.

TOL = DSQRT (DPMPAR(1))

Q oo O

CALL HYBRD1(FCN,N,X,FVEC, TOL, INFO,WA, LWA)
FNORM = ENORM(N, EVEC)
WRITE (NWRITE,1000) ENORM, INFO, (X(J),J=1,N)
STOP '
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,15H EXIT PARAMETER, 16X,I110 //
* 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))

LAST CARD OF DRIVER FOR HYBRD1l EXAMPLE.

Qoo

END

SUBROUTINE FCN(N, X, FVEC, IFLAG)
INTEGER N, IFLAG

DOUBLE PRECISION X(N),FVEC(N)

Q0O

10

.DO 10 K

56

SUBROUTINE FCN FOR HYBRD1 EXAMPLE.

INTEGER K :
DOUBLE PRECISION ONE, TEMP, TEMP1l, TEMP2, THREE, TWO, ZERO
DATA ZERO,ONE, TWO,THREE ,/0.D0,1.D0,2.DO,3.D0O/

1, N
TEMP = (THREE - TWO*X(K))*X(K)
TEMP1 = ZERO
IF (K .NE. 1) TEMP1 = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.
END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07
EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION

-0.5706545D+00 -0.6816283D+00 ~-0.7017325D+00

-0.7042129D+00 -0.7013690D+00 -0.6918656D+00
-0.6657920D+00 -0.5960342D+00 -0.4164121D+00

Page 6

Documentation for MINPACK subroutine HYBRD

Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

Purpose.

The purpose of HYBRD is to find a zero of a system of N non-
linear functions in N variables by a modification of the Powell
hybrid method. The user must provide a subroutine which calcu-
lates the functions. The Jacobian is then calculated by a for-
ward-difference approximation.

Subroutine and type statements.

SUBROUTINE HYBRD(FCN, N, X, FVEC, XTOL, MAXFEV, ML, MU, EPSFCN, DIAG,

* MODE , FACTOR, NPRINT, INFO, NFEV, FJAC, LDFJAC,

* R, LR, QTF, WAL, WA2,WA3,WA4)

INTEGER N,MAXFEV,ML,MU, MODE, NPRINT, INFO,NFEV, LDFJAC, LR

DOUBLE PRECISION XTOL,EPSFCN, FACTOR

DOUBLE PRECISION X(N),FVEC(N),DIAG(N), FJAC(LDFJAC,N),R(LR),QTEF(N),
* . WAL1(N),WA2(N),WA3(N),WA4(N)

EXTERNAL FCN

Parameters.

Parameters designated as input parameters must be specified on
entry to HYBRD and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from HYBRD.

FCN is the name of the user-supplied subroutine which calculates
the functions. FCN must be declared in an EXTERNAL statement
in the user calling program, and should be written as follows.

SUBROUTINE FCN(N,X,FVEC, IFLAG)
INTEGER N, IFLAG

DOUBLE PRECISION X(N),FVEC(N)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

The value of IFLAG should not be changed by FCN unless the

Page 2

user wants to terminate execution of HYRRD. In this case set
IFLAG to a negative integer.

N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. ©On output X contains the
final estimate of the solution vector.

FVEC 1is an output array of length N which contains the functions
evaluated at the output X.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN is at least MAXFEV by the end
of an iteration.

ML is a nonnegative integer input variable which specifies the
‘number of subdiagonals within the band of the Jacobian matrix.
If the Jacobian is not banded, set ML to at least N - 1.

MU is a nonnegative integer input variable which specifies the
number of superdiagonals within the band of the Jacobian
matrix. If the Jacobian is not banded, set MU to at least
N - 1.

EPSFCN is an input variable used in determining a suitable step
for the forward-difference approximation. This approximation
assumes that the relative errors in the functions are of the
order of EPSFCN. If EPSFCN is less than the machine preci-
sion, it is assumed that the relative errors in the functions
are of the order of the machine precision.

DIAG is an array of length N. If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the wvariables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. 1In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.

Page 3

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = O at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X and FVEC available for printing. If NPRINT
is not positive, no special calls of FCN with IFLAG = O are
made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Relative error between two consecutive iterates is
at most XTOL.

INFO = 2 Number of calls to FCN has reached or exceeded
MAXFEV.

INFO = 3 XTOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 4 Iteration is not making good progress, as measured
by the improvement from the last five Jacobian eval-
uations.

'INFO = 5 Iteration is not making good progress, as measured
by the improvement from the last ten iterations.

Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to
FCN.

FJAC is an output N by N array which contains the orthogonal
matrix Q produced by the QR factorization of the final approx-
imate Jacobian.

LDFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

R is an output array of length LR which contains the upper
triangular matrix produced by the QR factorization of the
final approximate Jacobian, stored rowwise.

LR is a positive integer input variable not less than
(N*(N+1))/2.

QTF is an output array of length N which contains the vector
(Q transpose)*FVEC.

WAl, WA2, WA3, and WA4 are work arrays of length N.

60
Page 4

4. Successful completion.

The accuracy of HYBRD is controlled by the convergence parameter
XTOL. This parameter is used in a test which makes a comparison
between the approximation X and a solution XSOL. HYBRD termi-
nates when the test is satisfied. If the convergence parameter
is less than the machine precision (as defined by the MINPACK
function DPMPAR(1)), then HYBRD only attempts to satisfy the
test defined by the machine precision. Further progress is not
usually possible.

The test assumes that the functions are reasonably well behaved.
If this condition is not satisfied, then HYBRD may incorrectly
indicate .convergence. The validity of the answer can be
checked, for example, by rerunning HYBRD with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a
vector 2 and D is the diagonal matrix whose entries are
defined by the array DIAG, then this test attempts to guaran-
tee that

ENORM(D* (X-XSOL)) .LE. XTOL*ENORM(D#*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of D*X may have large relative errors, but the fast rate
of convergence of HYBRD usually avoids this possibility.
Unless high precision solutions are required, the recommended
value for XTOL is the square root of the machine precision.

5. Unsuccessful completion.

~Unsuccessful termination of HYBRD can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or lack of good progress.

Improper input parameters. INFO is set to O if N .LE. O, or
XTOL .LT. 0.DO, or MAXFEV .LE. 0, or ML .LT. O, or MU .LT. O,
or FACTOR .LE. 0.DO, or LDFJAC .LT. N, or LR .LT. (N*(N+1l))/2.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by HYBRD. In this
case, it may be possible to remedy the situation by rerunning
HYBRD with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 200%(N+1). 1If the number of calls to FCN
reaches MAXFEV, then this indicates that the routine is con-
verging very slowly as measured by the progress of FVEC, and

61 .
Page 5

INFO.is set to 2. This situation should be unusual because,
as indicated below, lack of good progress is usually diagnosed
earlier by HYBRD, causing termination with INFO = 4 or

INFO = 5.

Lack of good progress. HYBRD searches for a zero of the system
by minimizing the sum of the sguares of the functions. In so
doing, it can become trapped in a region where the minimum
does not correspond to a zero of the system and, in this situ-
ation, the iteration eventually fails to make good progress.
In particular, this will happen if the system does not have a
zero. If the system has a zero, rerunning HYBRD from a dif-
ferent starting point may be helpful.

6. Characteristics of the algorithm.

HYBRD is a modification of the Powell hybrid method. Two of its
main characteristics involve the choice of the correction as a
convex combination of the Newton and scaled gradient directions,
and the updating of the Jacobian by the rank-1 method of Broy-
den. The choice of the correction guarantees (under reasonable
conditions) global convergence for starting points far from the
solution and a fast rate of convergence. The Jacobian is
approximated by forward differences at the starting point, but
forward differences are not used again until the rank-1 method
fails to produce satisfactory progress.

Timing. The time required by HYBRD to solve a given problem
depends on N, the behavior of the functions, the accuracy
requested, and the starting point. The number of arithmetic
operations needed by HYBRD is about 11.5*(N**2) to process
each call to FCN. Unless FCN can be evaluated quickly, the
timing of HYBRD will be strongly influenced by the time spent
in FCN.

Storage. HYBRD requires (3*N**2 + 17*N)/2 double precision
storage locations, in addition to the storage required by the
program. There are no internally declared storage arrays. ‘

7. Subprograms required.

USER-supplied FCN

MINPACK-supplied ... DOGLEG,DPMPAR, ENORM, FDJAC1,
QFORM, QRFAC,R1IMPYQ, R1UPDT

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MINO, MOD

8. References.

M. J. D. Powell, A Hybrid Method for Nonlinear Equations.

QQOQaa

Q00

QOO

oo NONONY!

Q

62
Page 6

Numerical Methods for Nonlinear Algebraic Equations,
P. Rabinowitz, editor. Gordon and Breach, 1970.

Example.

10

The problem is to determine the values of x(1), x(2), ..., x(9),
which solve the system of tridiagonal equations

(3-2%x(1))*x(1) -2%x(2)
-x(i-1) + (3-2%x(i))*x(i) —2%x(i+1)
: -x(8) + (3-2%x(9))*x(9)

-1, i=2-8
-1

kkkhkkkikhkhkk

DRIVER FOR HYBRD EXAMPLE.
DOUBLE PRECISION VERSION

hkhkkhkhkkhhikhk

INTEGER J,N,MAXFEV,ML, MU, MODE, NPRINT, INFO, NFEV, LDFJAC, LR, NWRITE

DOUBLE PRECISION XTOL,EPSFCN, FACTOR, FNORM

DOUBLE PRECISION X(9),FVEC(9),DIAG(9),FJAC(9,9),R(45),0QTF(9),
WAL1(9),WA2(9),WA3(9),WA4(9)

DOUBLE PRECISION ENORM,DPMPAR

EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/
N =9

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.

DO 10 J =1, 9
X(J) = -1.DO
CONTINUE

LDFJAC = 9

LR = 45

SET XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.

XTOL = DSQRT(DPMPAR(1))

MAXFEV = 2000
ML =1

MU =1

EPSFCN = 0.DO
MODE = 2

DO 20 J =1, 9
DIAG(J) = 1

20 CONTINUE

FACTOR
NPRINT

1.D2
0

CALL HYBRD(FCN,N, X, FVEC, XTOL, MAXFEV, ML, MU, EPSFCN, DIAG,
* MODE , FACTOR, NPRINT, INFO, NFEV, FJAC, LDFJAC,
* R,LR,QTF,WAl,WA2,WA3,WA4)
FNORM = ENORM(N, FVEC)
WRITE (NWRITE,1000) ENORM,NFEV, INFO, (X(J),J=1,N)
STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,31H NUMBER OF FUNCTION EVALUATIONS,I10 //
* 5X,15H EXIT PARAMETER, 16X,110 //
* 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))

LAST CARD OF DRIVER FOR HYBRD EXAMPLE.

QO

END

SUBROUTINE FCN(N,X,FVEC, IFLAG)
INTEGER N, IFLAG

DOUBLE PRECISION X(N),FVEC(N)

SUBROUTINE FCN FOR HYBRD EXAMPLE.

QaQa

INTEGER K A

DOUBLE PRECISION ONE, TEMP, TEMP1, TEMP2, THREE, TWO, 2ERO
DATA ZERO,ONE,TWO,THREE ,0.D0O,1.DO,2.DO, 3.D0O/

IF (IFLAG .NE. 0) GO TO 5

INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.

aaQaQ Q

RETURN
5 CONTINUE
DO 10 K = 1, N
TEMP = (THREE - TWO*X(K))*X(K)
TEMP1 = ZERO
IF (K .NE. 1) TEMP1 = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
10 CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.

Qa0

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07

NUMBER OF FUNCTION EVALUATIONS 14

64

EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION
-0.5706545D+00 ~0.6816283D+00 -0.7017325D+00

-0.7042129D+00 =-0.7013690D+00 -0.6918656D+00
-0.6657920D+00 -0.5960342D+00 -0.4164121D+00

Page 8

65
Page 1

Documentation for MINPACK subroutine HYBRJ1
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of HYBRJ1l is to find a zero of a system of N non-
linear functions in N variables by a modification of the Powell
hybrid method. This is done by using the more general nonlinear
equation solver HYBRJ. The user must provide a subroutine which
calculates the functions and the Jacobian.

2. Subroutine and type statements.

SUBROUTINE HYBRJl(FCN,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,WA,LWA)
INTEGER N, LDFJAC, INFO, LWA

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,6N), WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to HYBRJ1l and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from HYBRJ1.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an
EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(N, X, FVEC,FJAC,LDFJAC, IFLAG)
INTEGER N, LDFJAC, IFLAG

DOUBLE PRECISION X(N),EFVEC(N),FJAC(LDFJAC,N)
IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FEVEC.
RETURN

END

The value of IFLAG should not be changed by FCN unless the

66
Page 2

user wants to terminate execution of HYBRJl. In this case set
IFLAG to a negative integer.

N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length N which contains the functions
evaluated at the output X.

FJAC is an output N by N array which contains the orthogonal
matrix Q produced by the QR factorization of the final approx-
imate Jacobian. Section 6 contains more details about the
approximation to the Jacobian.

LDEFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates that the relative error between X and
the solution is at most TOL. Section 4 contains more details
about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = O Improper input parameters.

INFO = 1 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 2 Number of calls to FCN with IFLAG = 1 has reached
100* (N+1).

INFO

I
W

TOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 4 Iteration is not making good progress.
Sections 4 and 5 contain more details about INFO.
WA is a work array of length LWA.

LWA is a positive integer input variable not less than
(N*(N+13)) /2.

4. Successful cdppletion.

The accuracy of HYBRJ1l is controlled by the convergence

67
Page 3

parameter TOL. This parameter is used in a test which makes a
comparison between the approximation X and a solution XSOL.
HYBRJ1l terminates when the test is satisfied. 1If TOL is less
than the machine precision (as defined by the MINPACK function
DPMPAR(1)), then HYBRJ1l only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The test assumes that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then HYBRJ1l may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning HYBRJ1l with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a
vector Z, then this test attempts to guarantee that

ENORM(X-XSOL) .LE. TOL*ENORM(XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of X may have large relative errors, but the fast rate
of convergence of HYBRJ1l usually avoids this possibility.

5. Unsuccessful completion.

Unsuccessful termination of HYBRJ1l can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or lack of good progress.

Improper input parameters. INFO is set to O if N .LE. O, or
LDFJAC .LT. N, or TOL .LT. 0.DO, or LWA .LT. (N*(N+13))/2.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by HYBRJ1. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead HYBRJ, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN with IFLAG = 1 reaches 100*(N+1l), then this indi-
cates that the routine is converging very slowly as measured

68
Page 4

by the progress of FVEC, and INFO is set to 2. This situation
should be unusual because, as indicated below, lack of good
progress is usually diagnosed earlier by HYBRJ1l, causing ter-
mination with INFO = 4.

Lack of good progress. HYBRJ1l searches for a zero of the system
by minimizing the sum of the squares of the functions. In so
doing, it can become trapped in a region where the minimum
does not correspond to a zero of the system and, in this situ-
ation, the iteration eventually fails to make good progress.
In particular, this will happen if the system does not have a
zero. If the system has a zero, rerunning HYBRJ1l from a dif-
ferent starting point may be helpful.

6. Characteristics of the algorithm.

HYBRJ1l is a modification of the Powell hybrid method. Two of
its main characteristics involve the choice of the correction as
a convex combination of the Newton and scaled gradient direc-
tions, and the updating of the Jacobian by the rank-1l method of
Broyden. The choice of the correction guarantees (under reason-
able conditions) global convergence for starting points far from
the solution and a fast rate of convergence. The Jacobian is
calculated at the starting point, but it is not recalculated
until the rank-1 method fails to produce satisfactory progress.

Timing. The time required by HYBRJ1l to solve a given problem
depends on N, the behavior of the functions, the accuracy
requested, and the starting point. The number of arithmetic
operations needed by HYBRJ1l is about 11.5*(N**2) to process
each evaluation of the functions (call to FCN with IFLAG = 1)
and 1.3*(N**3) to process each evaluation of the Jacobian
(call to FCN with IFLAG = 2). Unless FCN can be evaluated
quickly, the timing of HYBRJ1l will be strongly influenced by
the time spent in FCN.

Storage. HYBRJ1l requires (3*N**2 + 17*N)/2 double precision
storage locations, in addition to the storage required by the
program. There are no internally declared storage arrays.

7. Subprograms reguired.

USER-supplied FCN

MINPACK-supplied ... DOGLEG,DPMPAR, ENORM,HYBRJ,
QFORM, QRFAC, RIMPYQ, R1UPDT

FORTRAN-supplied ... DABS,DMAX1l,DMIN1,DSQRT,MINO, MOD

8. References.

ONONONONON®!

o QO 000

Q

Q Qa0

Ex

69

Page 5
M. J. D. Powell, A Hybrid Method for Nonlinear Equations.
Numerical Methods for Nonlinear Algebraic Equations,
P. Rabinowitz, editor. Gordon and Breach, 1970.
ample.
The problem is to determine the values of x(1), x(2), ..., x(9),
which solve the system of tridiagonal equations
(3-2*%x(1))*x(1) -2*x(2) = =1
-x(i-1) + (3-2*%*x(1i))*x(1) -2*x(i+l) = -1, i=2-8

-x(8) + (3-2%x(9))*x(9)

khkkkkhkhkkk

DRIVER FOR HYBRJ1l EXAMPLE.
DOUBLE PRECISION VERSION

khkhkkkhkkk*k

INTEGER J,N,LDFJAC, INFO, LWA,NWRITE

. DOUBLE PRECISION TOL, FNORM

10

DOUBLE PRECISION X(9),FVEC(9),FJAC(9,9),WA(99)
DOUBLE PRECISION ENORM, DPMPAR
EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/
N =09
THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
DO 10 J = 1, 9
X(J) = -1.DO
CONTINUE

LDFJAC = 9
LWA = 99

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.

TOL = DSQRT(DPMPAR(1))

CALL HYBRJ1l(FCN,N,X,FVEC, FJAC, LDFJAC, TOL, INFO,WA, LWA)
FNORM = ENORM(N, FVEC) »

WRITE (NWRITE,1000) FNORM, INFO, (X(J),J=1,N)

STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //

* 5X,15H EXIT PARAMETER, 16X,I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))

C
c
c

Q0N

aO0n

10

20

30

40
50

70

LAST CARD OF DRIVER FOR HYBRJ1l EXAMPLE.

END

SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER N, LDFJAC, IFLAG

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDEJAC,N)

SUBROUTINE FCN FOR HYBRJ1l EXAMPLE.

INTEGER J,K
DOUBLE PRECISION ONE,TEMP, TEMP1l,TEMPZ, THREE, TWO, ZERO
DATA ZERO, ONE, TWO, THREE, FOUR /0.D0O,1.D0O,2.D0O,3.D0,4.D0/

IF (IFLAG .EQ. 2) GO TO 20
DO 10 K =1, N
TEMP = (TIREE - TWO*X(K))*X(K)
TEMP1 = ZERO
IF (K .NE. 1) TEMP1 = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMP1l - TWO*TEMP2 + ONE
CONTINUE
GO TO 50
CONT INUE
DO 40 K = 1, N
DO 30 J = 1, N
FJAC(K,J) = ZERO

i

CONTINUE
FJAC(K,K) = THREE - FOUR*X(K)
IF (K .NE. 1) FJAC(K,K-1) = -ONE
IF (K .NE. N) FJAC(K,K+1) = -TWO
CONTINUE
CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.
END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07
EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION

-0.5706545D+00 -0.6816283D+00 -0.7017325D+00

-0.7042129D+00 -0.7013690D+00 -0.6918656D+00
-0.6657920D+00 =-0.5960342D+00 -0.4164121D+00

Page 6

71
Page 1

Documentation for MINPACK subroutine HYBRJ
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

Purpose.

The purpose of HYBRJ is to find a zero of a system of N non-
linear functions in N variables by a modification of the Powell
hybrid method. The user must provide a subroutine which calcu-
lates the functions and the Jacobian.

Subroutine and type statements.

SUBROUTINE HYBRJ(EFCN,N, X, FVEC, FJAC, LDFJAC, XTOL, MAXFEV,DIAG,
* MODE , FACTOR, NPRINT, INFO, NFEV, NJEV, R, LR, QTF,
* WA1l,WA2,WA3,WA4)

INTEGER N, LDFJAC, MAXFEV,MODE, NPRINT, INFO, NFEV,NJEV, LR

DOUBLE PRECISION XTOL,FACTOR

DOUBLE PRECISION X(N),EVEC(N), FJAC(LDFJAC,N),DIAG(N),R(LR),QTF(N),
* WAL (N),WA2(N),WA3(N),WA4(N)

Parameters.

Parameters designated as input parameters must be specified on
entry to HYBRJ and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from HYBRJ.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an
EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(N, X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER N,LDFJAC, IFLAG

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

72
Page 2

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of HYBRJ. In this case set
IFLAG to a negative integer.

N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length N which contains the functions
evaluated at the output X.

FJAC is an output N by N array which contains the orthogonal
matrix Q produced by the QR factorization of the final approx-
imate Jacobian. Section 6 contains more details about the
approximation to the Jacobian.

LDFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

DIAG is an array of length N. 1If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. 1In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = O at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X and FVEC available for printing. FVEC and
FJAC should not be altered. If NPRINT is not positive, no

73
Page 3

special calls of FCN with IFLAG = O are made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = O Improper input parameters.

INFO = 1 Relative error between two consecutive iterates is
at most XTOL.

INFO = 2 Number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

INFO = 3 XTOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 4 Iteration is not making good progress, as measured
by the improvement from the last five Jacobian eval-
uations.

"
wn

INFO Iteration is not making good progress, as measured

by the improvement from the last ten iterations.
Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to
FCN with IFLAG = 1.

NJEV is an integer output variable set to the number of calls to
FCN with IFLAG = 2.

R is an output array of length LR which contains the upper
triangular matrix produced by the QR factorization of the
final approximate Jacobian, stored rowwise.

LR is a positive integer input variable not less than
(N*(N+1))/2.

QTF is an output array of length N which contains the vector
(Q transpose)*FVEC.

WAl, WA2, WA3, and WA4 are work arrays of length N.

4. Successful completion.

The accuracy of HYBRJ is controlled by the convergence parameter
XTOL. This parameter is used in a test which makes a comparison
between the approximation X and a solution XSOL. HYBRJ termi-
nates when the test is satisfied. 1If the convergence parameter
is less than the machine precision (as defined by the MINPACK
function DPMPAR(1)), then HYBRJ only attempts to satisfy the
test defined by the machine precision. Further progress is not

74
Page 4

usually possible.

The test assumes that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then HYBRJ may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning HYBRJ with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a
vector Z and D is the diagonal matrix whose entries are
defined by the array DIAG, then this test attempts to guaran-
tee that

ENORM(D* (X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of D*X may have large relative errors, but the fast rate
of convergence of HYBRJ usually avoids this possibility.

Unless high precision solutions are required, the recommended
value for XTOL is the square root of the machine precision.

5. Unsuccessful completion.

Unsuccessful termination of HYBRJ can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or lack of good progress.

Improper input parameters. INFO is set to O if N .LE. 0O, or
LDFJAC .LT. N, or XTOL .LT. 0.DO, or MAXFEV .LE. 0O, or
FACTOR .LE. 0.DO, or LR .LT. (N#*(N+1l))/2.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by HYBRJ. In this
case, it may be possible to remedy the situation by rerunning
HYBRJ with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 100*{N+1l). If the number of calls to FCN with
IFLAG = 1 reaches MAXFEV, then this indicates that the routine
is converging very slowly as measured by the progress of FVEC,
and INFO is set to 2. This situation should be unusual
because, as indicated below, lack of good progress is usually
diagnosed earlier by HYBRJ, causing termination with INFO = 4
or INFO = 5.

Lack of good progress. HYBRJ searches for a zero of the system
by minimizing the sum of the squares of the functions. 1In so

75
Page 5

doing, it can become trapped in a region where the minimum
does not correspond to a zero of the system and, in this situ-
ation, the iteration eventually fails to make good progress.
In particular, this will happen if the system does not have a
Zero. If the system has a zero, rerunning HYBRJ from a dif-
ferent starting point may be helpful.

6. Characteristics of the algorithm.

HYBRJ is a modification of the Powell hybrid method. Two of its
main characteristics involve the choice of the correction as a
convex combination of the Newton and scaled gradient directions,
and the updating of the Jacobian by the rank-1 method of Broy-
den. The choice of the correction guarantees (under reasonable
conditions) global convergence for starting points far from the
solution and a fast rate of convergence. The Jacobian is calcu-
lated at the starting point, but it is not recalculated until
the rank-1l method fails to produce satisfactory progress.

Timing. The time required by HYBRJ to solve a given problem

- depends on N, the behavior of the functions, the accuracy
requested, and the starting point. The number of arithmetic
operations needed by HYBRJ is about 11.5%(N**2) to process
each evaluation of the functions (call to FCN with IFLAG = 1)
and 1.3*(N**3) to process each evaluation of the Jacobian
(call to FCN with IFLAG = 2). Unless FCN can be evaluated
quickly, the timing of HYBRJ will be strongly influenced by
the time spent in FCN.

Storage. HYBRJ requires (3*N**2 + 17*N)/2 double precision

storage locations, in addition to the storage required by the
program. There are no internally declared storage arrays.

7. Subprograms required.
USER-supplied FCN

MINPACK-supplied ... DOGLEG,DPMPAR, ENORM,
QFORM, QRFAC, R1IMPYQ, R1UPDT

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MINO,MOD

8. References.
M. J. D. Powell, A Hybrid Method for Nonlinear Equations.

Numerical Methods for Nonlinear Algebraic Equations,
P. Rabinowitz, editor. Gordon and Breach, 1970.

9. Example.

QOO

Qo QO a0

Q

QO Qa0

76

Page 6
The problem is to determine the values of x(1), x(2), ..., xX(9).
which solve the system of tridiagonal equations
(3=2*%x(1))*x(1) =2*x(2) = =1
-xX(1i=-1) + (3-2*x(1i))*x(i) -2*x(i+l) = -1, i=2-8

-x(8) + (3-2*%*x(9))*x(9) = -1

khkkhkhkkhkhkikk

DRIVER FOR HYBRJ EXAMPLE.
DOUBLE PRECISION VERSION

hhkhkkhkhhhkk

INTEGER J,N, LDFJAC,MAXFEV, MODE, NPRINT, INFO,NFEV,NJEV, LR, NWNRITE

DOUBLE PRECISION XTOL,FACTOR, FNORM

DOUBLE PRECISION X(9),FVEC(9),FJAC(9,9),DIAG(9),R(45),QTF(9),
WA1(9),WA2(9),WA3(9),WA4(9)

DOUBLE PRECISION ENORM, DPMPAR

EXTERNAL FCN

- LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

10

20

DATA NWRITE /6/
N=29
THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.

DO 10 J =1, 9

X(J) = -1.DO
CONTINUE
LDFJAC = 9
LR = 45

SET XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.

XTOL = DSQRT(DPMPAR(1))

MAXFEV = 1000

MODE = 2

DO 20 J =1, 9
DIAG(J) = 1.DO

CONTINUE
FACTOR = 1.D2
NPRINT = O

CALL HYBRJ(FCN,N, X, FVEC, FJAC, LDFJAC, XTOL, MAXFEV,DIAG,
MODE, FACTOR, NPRINT, INFO,NFEV,NJEV,R, LR, QTF,
WAl,WA2,WA3,WA4L)

FNORM = ENORM(N, FVEC)

WRITE (NWRITE,1000) FNORM,NFEV,NJEV, INFO, (X(J),J=1,N)

QOO (PNON®!

Qo O

(ONO NP’

1000

10

20

30

40
50

77

STOP
FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,31H NUMBER OF FUNCTION EVALUATIONS,I10 //
* 5X,31H NUMBER OF JACOBIAN EVALUATIONS,I10 //
* 5X,15H EXIT PARAMETER,16X,110 //
* 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))
LAST CARD OF DRIVER FOR HYBRJ EXAMPLE.
END
SUBROUTINE FCN(N, X, FVEC, FJAC, LDFJAC, IFLAG)
INTEGER N,LDFJAC, IFLAG
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)
SUBROUTINE FCN FOR HYBRJ EXAMPLE.
INTEGER J,K
DOUBLE PRECISION ONE,TEMP, TEMP1,TEMP2, THREE, TWO, ZERO
DATA ZERO,ONE, TWO, THREE, FOUR ,/0.DO,1.D0,2.D0,3.D0,4.D0/
IF (IFLAG .NE. 0) GO TO 5
INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
RETURN
CONTINUE
IF (IFLAG .EQ. 2) GO TO 20
DO 10 K = 1, N
TEMP = (THREE - TWO*X(K))*X(K)
TEMP1 = ZERO
IF (K .NE. 1) TEMP1 = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
CONTINUE
GO TO 50
CONTINUE
DO 40 K = 1, N
DO 30 J = 1, N
FJAC(K,J) = ZERO
CONT INUE
FJAC(K,K) = THREE - FOUR*X(K)
IF (K .NE. 1) FJAC(K,K-1) = -ONE
IF (K .NE. N) FJAC(K,K+1) = -TWO
CONTINUE
CONTINUE
RETURN
LAST CARD OF SUBROUTINE FCN.

END

Results obtained with different compilers or machines
may be slightly different.

78

FINAL L2 NORM OF THE RESIDUALS
NUMBER OF FUNCTION EVALUATIONS
NUMBER OF JACOBIAN EVALUATIONS
EXIT PARAMETER

FINAL APPROXIMATE SOLUTION
-0.5706545D+00 -0.6816283D+00

-0.7042129D+00 -0.7013690D+00
-0.6657920D+00 -0.5960342D+00

0.1192636D-07
11
1

1

-0.7017325D+00
-0.6918656D+00
-0.4164121D+00

Page 8

79
Page 1

Documentation for MINPACK subroutine LMDERI]
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMDER1l is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm. This is done by using the more
general least-squares solver LMDER. The user must provide a
subroutine which calculates the functions and the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMDER1(FCN,M,N, X,FVEC,FJAC,LDFJAC, TOL,
* INFO, IPVT,WA,LWA)

INTEGER M, N, LDFJAC, INFO, LWA

INTEGER IPVT(N)

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),6 WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMDER1 and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDER.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an
'EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(M,N,X,FVEC,FJAC, LDFJAC, IFLAG)
INTEGER M,N,LDFJAC, IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

80
Page 2

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDER1l. 1In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector. :

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FJAC is an output M by N array. The upper N by N submatrix of
FJAC contains an upper triangular matrix R with diagonal ele-
ments of nonincreasing magnitude such that

T T T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower trapezoidal part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than M
which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates either that the relative error in the
sum of squares is at most TOL or that the relative error
between X and the solution is at most TOL. Section 4 contains
more details about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0O Improper input parameters.

INFO = 1 Algorithm estimates that the relative error in the
sum of squares is at most TOL.

INFO = 2 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 FVEC is orthogonal to the columns of the Jacobian to
machine precision.

81

Page 3

INFO = 5 Number of calls to FCN with IFLAG = 1 has reached
100* (N+1).

INFO = 6 TOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7 TOL is too small. No further improvement in the

approximate solution X is possible.
Sections 4 and 5 contain more details about INFO.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the

final calculated Jacobian, Q is orthogonal (not stored), and R

is upper triangular with diagonal elements of nonincreasing
magnitude. Column j of P is column IPVT(j) of the identity
matrix.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than 5*N+M.

4., Successful completion.

The accuracy of LMDER1 is controlled by the convergence parame-
ter TOL. This parameter is used in tests which make three types
of comparisons between the approximation X and a solution XSOL.
LMDER1 terminates when any of the tests is satisfied. 1If TOL is
less than the machine precision (as defined by the MINPACK func-
tion DPMPAR(1)), then LMDER1l only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMDER1l may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMDER1 with a tighter toler-
ance.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector 2, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with TOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also

82
Page 4

satisfied).

Second convergence test. If D is a diagonal matrix (implicitly
generated by LMDER1) whose entries contain scale factors for
the variables, then this test attempts to guarantee that

ENORM(D* (X-XSOL)) .LE. TOL*ENORM(D*XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but the choice of D is such
that the accuracy of the components of X is usually related to
their sensitivity.

Third convergence test. This test is satisfied when FVEC is
orthogonal to the columns of the Jacobian to machine preci=-
sion. There is no clear relationship between this test and
the accuracy of LMDER1, and furthermore, the test is equally
well satisfied at other critical points, namely maximizers and
saddle points. Therefore, termination caused by this test
(INFO = 4) should be examined carefully.

5. Unsuccessful completion.

Unsuccessful termination of LMDER1 can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to O if N .LE. 0O, or
M .LT. N, or LDFJAC .LT. M, or TOL .LT. 0.DO, or
LWA .LT. 5*N+M.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDER1. 1In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead LMDER, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN with IFLAG = 1 reaches 100*(N+1), then this indi-
cates that the routine is converging very slowly as measured
by the progress of FVEC, and INFO is set to 5. In this case,

it may be helpful to restart LMDER1l, thereby forcing it to

disregard old (and possibly harmful) information.

;-7_

6. Characteristics of the algorithm.

LMDER]1 is a modification of the
Two of its main characteristics
implicitly scaled variables and
rection. The use of implicitly
invariance of LMDER1l and limits

any direction where the functions are changing rapidly.

Levenberg-Marquardt algorithm.
involve the proper use of

an optimal choice for the cor-
scaled variables achieves scale

the correction in
The

the size of

optimal choice of the correction guarantees (under reasonable
conditions) global convergence from starting points far from the
solution and a fast rate of convergence for problems with small

residuals.
Timing.

racy requested,

The time required by LMDER1 to solve a given problem
depends on M and N, the behavior of the functions,
and the starting point.

the accu-
The number of arith-

metic operations needed by LMDER1l is about N**3 to process

each evaluation of the functions

(call to FCN with IFLAG

1)

and M#*(N**2) to process each evaluation of the Jacobian (call

to FCN with IFLAG 2).

Unless FCN can be evaluated quickly,

the timing of LMDER1 will be strongly influenced by the time

spent in FCN.

Storage. LMDER]1 requires M*N +

rage locations and N integer storage locations,
the storage required by the program.

declared storage arrays.

Subprograms regquired.

USER-supplied

MINPACK-supplied

FORTRAN-supplied

8. References.

9.

Jorge J. More,
and Theory. Numerical Analysis,

Lecture Notes in Mathematics 630,

Example.

The problem is to determine the values of x(1), x(2),

DABS, DMAX1,

The Levenberg-Marquardt Algorithm,

2*M + 6*N double precision sto-
in addition to
There are no internally

DPMPAR, ENORM, LMDER, LMPAR, QRFAC, QRSOLV

DMIN1,DSQRT,6 MOD

Implementation
G.. A. Watson, editor.
Springer-Verlag, 1977.

and x(3)

which provide the best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)),

to the data

i=1, 15

aoaaaona

Q QO Q Qo

QO Qa0

84

Page 6
y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),
where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The

i-th component of FVEC is thus defined by

y(i) = (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

khkkhkkkhkx

DRIVER FOR LMDER1 EXAMPLE.
DOUBLE PRECISION VERSION

kkhkkhkkkhhkhhkk

INTEGER J,M,N, LDFJAC, INFO, LWA, NWRITE

INTEGER IPVT(3)

DOUBLE PRECISION TOL, FNORM

DOUBLE PRECISION X(3),FVEC(15),FJAC(15,3),WA(30)
DOUBLE PRECISION ENORM,DPMPAR

EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/

M
N

15
3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

X(1l) = 1.DO
X(2) = 1.D0
X(3) = 1.DO

LDEJAC = 15
LWA = 30

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.

TOL = DSQRT(DPMPAR(1))

CALL LMDER1(FCN,M,N,X,FVEC, FJAC, LDFJAC, TOL,
* INFO, IPVT, WA, LWA)

FNORM = ENORM(M, FVEC)

WRITE (NWRITE,1000) FENORM, INFO, (X(J),J=1,N)

STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,15H EXIT PARAMETER, 16X,I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

LAST CARD OF DRIVER FOR LMDER1l EXAMPLE.

Qaa

Qa0

10

20

30
40

85

END

SUBROUTINE FCN(M,N, X, FVEC, FJAC,LDFJAC, IFLAG)
INTEGER M, N, LDFJAC, IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

SUBROUTINE FCN FOR LMDER1l EXAMPLE.

INTEGER I

DOUBLE PRECISION TMP1,TMP2,TMP3, TMP4

DOUBLE PRECISION Y(15)

DATA Y(1),Y(2),Y(3),Y(4).Y(5),Y(6),Y(7),Y(8),
Y(9),Y(10),Y(11),¥(12),Y(13),Y(14),Y(15)

/1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,

3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0, 4.39D0/

IF (IFLAG .EQ. 2) GO TO 20

DO 10 I =1, 15
TMP1 = 1
TMP2 = 16 - 1
TMP3 = TMP1

IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(l) + TMP1/(X(2)*TMP2 + X(3)*TMP3))

CONTINUE
GO TO 40
CONTINUE
DO 30 I = 1, 15
TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
FJAC(I,1) = -1.DO
FJAC(I,2) = TMP1*TMP2/TMP4
FJAC(I,3) = TMP1*TMP3/TMP4
CONTINUE
CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01
EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01

-

11
-

't TH IS P*’i GE
WAS INTENTIONALLY
LEFT BLANK

87
Page 1

Documentation for MINPACK subroutine LMDER
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMDER is to minimize the sum of the squares of M
nonlinear functions in N wvariables by a modification of the
Levenberg-Marquardt algorithm. The user must provide a subrou-
tine which calculates the functions and the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMDER(FCN,M,N, X, FVEC, FJAC, LDFJAC, FTOL, XTOL, GTOL,
* MAXFEV,DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, NJEV,
* IPVT, QTF, WAl, WA2,WA3, WA4)

INTEGER M,N,LDFJAC, MAXFEV, MODE, NPRINT, INFO, NFEV, NJEV

INTEGER IPVT(N)

DOUBLE PRECISION FTOL,XTOL,GTOL, FACTOR

DOUBLE PRECISION X(N),EVEC(M), FJAC(LDFJAC,N),DIAG(N),QTF(N),
* WA1(N),WA2(N),WA3(N),6 WA4L(M)

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMDER and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDER.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an
EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(M,N,X,FVEC,FJAC, LDFJAC, IFLAG)
INTEGER M,N,LDFJAC, IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC.. DO NOT ALTER FVEC.

88
Page 2

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDER. In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FJAC is an output M by N array. The upper N by N submatrix of
FJAC contains an upper triangular matrix R with diagonal ele-
ments of nonincreasing magnitude such that

T T T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower trapezoidal part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than M
which specifies the leading dimension of the array FJAC.

FTOL is a nonnegative input variable. Termination occurs when
both the actual and predicted relative reductions in the sum
of squares are at most FTOL. Therefore, FTOL measures the
relative error desired in the sum of squares. Section 4 con-
tains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

GTOL is a nonnegative input variable. Termination occurs when
the cosine of the angle between FVEC and any column of the
Jacobian is at most GTOL in absolute value. Therefore, GTOL
measures the orthogonality desired between the function vector
and the columns of the Jacobian. Section 4 contains more
details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

89
Page 3

DIAG is an array of length N. If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = 0 at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X, FVEC, and FJAC available for printing.
FVEC and FJAC should not be altered. If NPRINT is not posi-
tive, no special calls of FCN with IFLAG = O are made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Both actual and predicted relative reductions in the
sum of squares are at most FTOL.

INFO = 2 Relative error between two consecutive iterates is
at most XTOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 The cosine of the angle between FVEC and any column
of the Jacobian is at most GTOL in absolute value.

INFO = 5 Number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

INFO = 6 FTOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7 XTOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 8 GTOL is too small. FVEC is orthogonal to the
columns of the Jacobian to machine precision.

Sections 4 and 5 contain more details about INFO.

90
Page 4

NFEV is an integer output variable set to the number of calls to
FCN with IFLAG = 1.

NJEV is an integer output variable set to the number of calls to
FCN with IFLAG = 2.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular with diagonal elements of nonincreasing
magnitude. Column j of P is column IPVT(j) of the identity
matrix.

QTF is an output array of length N which contains the first N
elements of the vector (Q transpose)*FVEC.

WAl, WA2, and WA3 are work arrays of length N.

WA4 is a work array of length M.

4. Successful completion.

The accuracy of LMDER is controlled by the convergence parame-
ters FTOL, XTOL, and GTOL. These parameters are used in tests
which make three types of comparisons between the approximation
X and a solution XSOL. LMDER terminates when any of the tests
is satisfied. 1If any of the convergence parameters is less than
the machine precision (as defined by the MINPACK function
DPMPAR(1)), then LMDER only attempts to satisfy the test defined
by the machine precision. Further progress is not usually pos-
sible.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMDER may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMDER with tighter toler-
ances.

First convergence test. 1If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with FTOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied). Unless high precision solutions are required, the
recommended value for FTOL is the square root of the machine
precision.

91

Page 5

Second convergence test. If D is the diagonal matrix whose
entries are defined by the array DIAG, then this test attempts
to guarantee that

ENORM(D* (X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but if MODE = 1, then the
accuracy of the components of X is usually related to their
sensitivity. Unless high precision solutions are required,
the recommended value for XTOL is the square root of the
machine precision.

Third convergence test. This test is satisfied when the cosine
of the angle between FVEC and any column of the Jacobian at X
is at most GTOL in absolute value. There is no clear rela-
tionship between this test and the accuracy of LMDER, and
furthermore, the test is equally well satisfied at other crit-
ical points, namely maximizers and saddle points. Therefore,
termination caused by this test (INFO = 4) should be examined
carefully. The recommended value for GTOL is zero.

5. Unsuccessful completion.

Unsuccessful termination of LMDER can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to 0 if N .LE. O, or
M .LT. N, or LDFJAC .LT. M, or FTOL .LT. 0.DO, or
XTOL .LT. 0.DO, or GTOL .LT. 0.DO, or MAXFEV .LE. O, or
FACTOR .LE. 0.DO.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDER. In this
case, it may be possible to remedy the situation by rerunning
LMDER with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 100*(N+1). If the number of calls to FCN with
IFLAG = 1 reaches MAXFEV, then this indicates that the routine
is converging very slowly as measured by the progress of FVEC,
and INFO.is set to 5. In this case, it may be helpful to
restart LMDER with MODE set to 1.

6. Characteristics of the algorithm.

LMDER is a modification of the Levenberg-Marquardt algorithm.

92
Page 6

Two of its main characteristics involve the proper use of
implicitly scaled variables (if MODE = 1) and an optimal choice
for the correction. The use of implicitly scaled variables
achieves scale invariance of LMDER and limits the size of the
correction in any direction where the functions are changing
rapidly. The optimal choice of the correction guarantees (under
reasonable conditions) global convergence from starting points
far from the solution and a fast rate of convergence for prob-
lems with small residuals.

Timing. The time required by LMDER to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMDER is about N**3 to process each
evaluation of the functions (call to FCN with IFLAG = 1) and
M*(N**2) to process each evaluation of the Jacobian (call to
FCN with IFLAG = 2). Unless FCN can be evaluated quickly, the
timing of LMDER will be strongly influenced by the time spent
in FCN.

Storage. LMDER requires M*N + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms regquired.

USER~supplied FCN
MINPACK-supplied ... DPMPAR, ENORM, LMPAR, QRFAC, QRSOLV
FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT, MOD

8. References.
Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

X(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i =1, 15
to the data

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),

Qa0

Qan Q aQaQ

ORONONONO NS

93

Page 7

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The
i-th component of FVEC is thus defined by

y(i) = (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

khkkkkkkhkkhk

DRIVER FOR LMDER EXAMPLE.
DOUBLE PRECISION VERSION

kkkkkhkkkhkkkk

INTEGER J,M, N, LDFJAC, MAXFEV, MODE, NPRINT, INFO, NFEV, NJEV, NWRITE

INTEGER IPVT(3)

DOUBLE PRECISION FTOL,XTOL,GTOL, FACTOR, FNORM

DOUBLE PRECISION X(3),FVEC(15),FJAC(15,3),DIAG(3),QTF(3),
WA1(3),WA2(3),WA3(3),WA4(15)

DOUBLE PRECISION ENORM,DPMPAR

EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/

M
N

15
3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

X(1) = 1.DO
X(2) = 1.DO
X(3) = 1.DO

LDFJAC = 15

SET FTOL AND XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION
AND GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE
REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.

FTOL = DSQRT(DPMPAR(1))
XTOL = DSQRT (DPMPAR(1))
GTOL = 0.DO

MAXFEV = 400

MODE = 1

FACTOR = 1.D2

NPRINT = O

CALL LMDER(FCN,M,N, X, FVEC, FJAC,LDFJAC, FTOL, XTOL, GTOL,
MAXFEV,DIAG,MODE, FACTOR,NPRINT, INFO,NFEV,NJEV,
IPVT,QTF, WAl ,WA2,WA3,WA4)

FNORM = ENORM(M, FVEC)

WRITE (NWRITE,1000) FNORM,NFEV,NJEV, INFO, (X(J),J=1,N)

STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //

94
Page 8

5X,31H NUMBER OF FUNCTION EVALUATIONS,I10 //
5X,31H NUMBER OF JACOBIAN EVALUATIONS,I10 //
5X,15H EXIT PARAMETER, 16X,I110 //

5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

* ok ok ok

LAST CARD OF DRIVER FOR LMDER EXAMPLE.

QO

END

SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER M,N,LDFJAC, IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

SUBROUTINE FCN FOR LMDER EXAMPLE.

QQQ

INTEGER I

DOUBLE PRECISION TMP1, TMP2,TMP3, TMP4

DOUBLE PRECISION Y(15)

DATA Y(1),Y¥(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),

* ¥(9),Y(10),¥(11),¥(12),¥(13),¥(14),¥(15)

* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D~1,9.6D-1,1.34D0,2.1D0, 4.39D0/

IF (IFLAG .NE. 0) GO TO 5

INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.

Qa0 0

RETURN
5 CONTINUE
IF (IFLAG .EQ. 2) GO TO 20
1, 15
I
16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
10 CONTINUE
GO TO 40
20 CONTINUE
DO 30 I
TMP1
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
FJAC(I,1) = -1.DO
FJAC(I,2) = TMP1*TMP2/TMP4
FJAC(I,3) = TMP1*TMP3/TMP4
30 CONTINUE
40 CONTINUE
RETURN

=]
=
o
N
i nn

15

—
~

I

nn

LAST CARD OF SUBROUTINE FCN.

PRONQ!

END

95

Results obtained with different compilers or machines

may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01

NUMBER OF FUNCTION EVALUATIONS 6
NUMBER OF JACOBIAN EVALUATIONS 5
EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01

Page 9

97
Page 1

Documentatien for MINPACK subroutine LMSTR1
Double precision version |
Argonne National Laboratory -
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMSTR1 is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm which uses minimal storage. This
is done by using the more general least-squares solver LMSTR.
The user must provide a subroutine which calculates the func-
tions and the rows of the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMSTR1(FCN,M,N,X,FVEC,FJAC,LDFJAC, TOL,
* INFO, IPVT, WA, LWA)

INTEGER M, N, LDFJAC, INFO, LWA

INTEGER IPVT(N)

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),6WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMSTR1 and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMSTRI.

FCN is the name of the user-supplied subroutine which calculates
the functions and the rows of the Jacobian. FCN must be
declared in an EXTERNAL statement in the user calling program,
and should be written as follows.

SUBROUTINE FCN(M,N, X, FVEC, FJROW, IFLAG)

INTEGER M,N, IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.

98
Page 2

END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMSTR1l. 1In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an . initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FJAC is an output N by N array. The upper triangle of FJAC con-
tains an upper triangular matrix R such that

T T T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower triangular part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than N
-which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates either that the relative error in the
sum of sgquares is at most TOL or that the relative error
between X and the solution is at most TOL. Section 4 contains
more details about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO 1 Algorithm estimates that the relative error in the

sum of squares is at most TOL.

INFO = 2 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 FVEC is orthogonal to the columns of the Jacobian to

99
Page 3

machine precision.

INFO = 5 Number of calls to FCN with IFLAG = 1 has reached
100*(N+1).

INFO = 6 TOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7 TOL is too small. No further improvement in the

approximate solution X is possible.
Sections 4 and 5 contain more details about INFO.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular. Column j of P is column IPVT(j) of the
identity matrix.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than 5*N+M.

4., Successful completion.

The accuracy of LMSTR1 is controlled by the convergence parame-
ter TOL. This parameter is used in tests which make three types
of comparisons between the approximation X and a solution XSOL.
LMSTR1 terminates when any of the tests is satisfied. If TOL is
less than the machine precision (as defined by the MINPACK func-
.tion DPMPAR(1l)), then LMSTR1l only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMSTR1l may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMSTR1 with a tighter toler-
ance.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

" ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),
where FVECS denotes the functions evaluated at XSOL. If this

condition is satisfied with TOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and

100
Page 4

INFO is set to 1 (or to 3 if the second test is also satis-
fied).

Second convergence test. If D is a diagonal matrix (implicitly
generated by LMSTR1) whose entries contain scale factors for
the variables, then this test attempts to guarantee that

ENORM(D* (X-XSOL)) .LE. TOL*ENORM(D*XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but the choice of D is such
that the accuracy of the components of X is usually related to
their sensitivity..

Third convergence test. This test is satisfied when EFVEC is
orthogonal to the columns of the Jacobian to machine preci-
sion. There is no clear relationship between this test and
the accuracy of LMSTR1l, and furthermore, the test is equally
well satisfied at other critical points, namely maximizers and
saddle points. Therefore, termination caused by this test
(INFO = 4) should be examined carefully.

5. Unsuccessful completion.

Unsuccessful termination of LMSTR1 can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to O if N .LE. O, or
M .LT. N, or LDFJAC .LT. N, or TOL .LT. 0.DO, or
LWA .LT. S5*N+M.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMSTR1. 1In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead LMSTR, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN with IFLAG = 1 reaches 100*(N+1l), then this indi-
cates that the routine is converging very slowly as measured
by the progress of FVEC, and INFO is set to 5. 1In this case,
it may be helpful to restart LMSTR1, thereby forcing it to
disregard old (and possibly harmful) information.

101
Page 5

6. Characteristics of the algorithm.

LMSTR]1 is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables and an optimal choice for the cor-
rection. The use of implicitly scaled variables achieves scale
invariance of LMSTR1 and limits the size of the correction in
any direction where the functions are changing rapidly. The
optimal choice of the correction guarantees (under reasonable
conditions) global convergence from starting points far from the
solution and a fast rate of convergence for problems with small
residuals.

Timing. The time required by LMSTR1l to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMSTR1 is about N**3 to process
each evaluation of the functions (call to FCN with IFLAG = 1)
and 1.5*%(N**2) to process each row of the Jacobian (call to
FCN with IFLAG .GE. 2). Unless FCN can be evaluated quickly,
the timing of LMSTR1 will be strongly influenced by the time
spent in FCN.

Storage. LMSTR1 requires N**2 + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms reguired.

USER=-supplied FCN

MINPACK-supplied ... DPMPAR, ENORM, LMSTR, LMPAR, QRFAC, QRSOLV,
RWUPDT

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT, MOD

8. References.
Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i =1, 15

ONONONONONQ!

Q aQaQQO QO Q0

QO oo

102

Page 6
to the data
y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),
where u(i) = 1i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The

i-th component of FVEC is thus defined by

y(i) = (x(1) + u(i)/(v(1)*x(2) + w(i)*x(3))).

kkhkkhkkkkkkkk

DRIVER FOR LMSTR1 EXAMPLE.
DOUBLE PRECISION VERSION

khkkkkhkihsk

INTEGER J,M,N, LDFJAC, INFO, LWA, NWRITE

INTEGER IPVT(3)

DOUBLE PRECISION TOL, FNORM

DOUBLE PRECISION X(3),FVEC(15),FJAC(3,3),WA(30)
DOUBLE PRECISION ENORM, DPMPAR

EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/

M
N

15
3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

X(1) = 1.DO
X(2) = 1.D0
X(3) = 1.D0
LDFJAC = 3
LWA = 30

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED
THIS IS THE RECOMMENDED SETTING.

TOL = DSQRT(DPMPAR(1))

CALL LMSTR1(FCN,M,N,X,FVEC, FJAC,LDFJAC, TOL,
* INFO, IPVT, WA, LWA)

FNORM = ENORM(M, FVECY)

WRITE (NWRITE,1000) FNORM, INFO, (X(J),J=1,N)

STOP

1000 FORMAT (S5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,15H EXIT PARAMETER, 16X,I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

(ONONS]

ONONQ!

10

20

30
40

103
Page 7

LAST CARD OF DRIVER FOR LMSTR1 EXAMPLE.

END

SUBROUTINE FCN(M,N, X, FVEC, FJROW, IFLAG)
INTEGER M, N, IFLAG

DOUBLE PRECISION X(N),FVEC(M), FJROW(N)

SUBROUTINE FCN FOR LMSTR1 EXAMPLE.

INTEGER 1 - '

DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4

DOUBLE PRECISION Y(15)

DATA Y(1),Y(2),¥(3),Y(4),Y(5),Y(6),Y(7),¥Y(8),
Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
/1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,

3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0, 4.39D0/

IF (IFLAG .GE. 2) GO TO 20

DO 10 I =1, 15
TMP1 = 1
TMPZ2 = 16 - 1
TMP3 = TMP1

IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))

CONTINUE
GO TO 40
CONTINUE
I = IFLAG - 1
TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)*%*2
FJROW(1) = -1.DO
FJROW(2) = TMP1*TMP2/TMP4
FJROW(3) = TMP1*TMP3/TMP4
CONTINUE :
CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01
EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01

105
Page 1

Documentation for MINPACK subroutine LMSTR
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMSTR is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm which uses minimal storage. The
user must provide a subroutine which calculates the functions
and the rows of the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMSTR(FCN,M,N, X, FVEC, FJAC, LDFJAC, FTOL, XTOL, GTOL,
* MAXFEV,DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, NJEV,
* IPVT, QTF,WAl, WA2,WA3, WA4)

INTEGER M,N, LDFJAC,MAXFEV,MODE, NPRINT, INFO,NFEV, NJEV

INTEGER IPVT(N)

DOUBLE PRECISION FTOL,XTOL,GTOL, FACTOR

DOUBLE PRECISION X(N),EFVEC (M), FJAC(LDFJAC,N),DIAG(N),QTF(N),

* " WAL(N),WA2(N),WA3(N),WA4(M)

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMSTR and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMSTR.

FCN is the name of the user~supplied subroutine which calculates
the functions and the rows of the Jacobian. FCN must be
declared in an EXTERNAL statement in the user calling program,
and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC,FJROW, IFLAG)

INTEGER M, N, IFLAG

DOUBLE PRECISION X(N),FVEC(M), FJROW(N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.

106
Page 2

END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMSTR. In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. ©On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FJAC is an output N by N array. The upper triangle of FJAC con-
tains an upper triangular matrix R such that

T T T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower triangular part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

FTOL is a nonnegative input variable. Termination occurs when
both the actual and predicted relative reductions in the sum
of squares are at most FTOL. Therefore, FTOL measures the
relative error desired in the sum of squares. Section 4 con-
tains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

GTOL is a nonnegative input variable. Termination occurs when
the cosine of the angle between FVEC and any column of the
Jacobian is at most GTOL in absolute value. Therefore, GTOL
measures the orthogonality desired between the function vector
and the columns of the Jacobian. Section 4 contains more
details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN with IFLAG = 1 has reached

107 :
Page 3

MAXFEV.

DIAG is an array of length N. If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = 0 at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X and FVEC available for printing. If NPRINT
is not positive, no special calls of FCN with IFLAG = O are
made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Both actual and predicted relative reductions in the
sum of squares are at most FTOL.

INFO = 2 Relative error between two consecutive iterates is
at most XTOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 The cosine of the angle between FVEC and any column
of the Jacobian is at most GTOL in absolute value.

INFO = 5 Number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

INFO = 6 FTOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7 XTOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 8 GTOL is too small. FVEC is orthogonal to the
columns of the Jacobian to machine precision.

108
Page 4

Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to
FCN with IFLAG = 1.

NJEV is an integer output variable set to the number of calls to
FCN with IFLAG = 2.

IPVT is an integer output array of length N. IPVT defines a
‘ permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular. Column j of P is column IPVT(j) of the
identity matrix.

QTF is an output array of length N which contains the first N
elements -of the vector (Q transpose)*FVEC.

WAl, WAZ, and WA3 are work arrays of length N.

WA4 is a work array of length M.

. 4. Successful completion.

The accuracy of LMSTR is controlled by the convergence parame-
ters FTOL, XTOL, and GTOL. These parameters are used in tests
which make three types of comparisons between the. approximation
X and a solution XSOL. LMSTR terminates when any of the tests
is satisfied. If any of the convergence parameters is less than
the machine precision (as defined by the MINPACK function
DPMPAR(1)), then LMSTR only attempts to satisfy the test defined
by the machine precision. Further progress is not usually pos-
sible.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMSTR may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMSTR with tighter toler-
ances.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with FTOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied). Unless high precision solutions are required, the
recommended value for FTOL is the square root of the machine

109
Page 5

precision.

Second convergence test. If D is the diagonal matrix whose
entries are defined by the array DIAG, then this test attempts
to guarantee that

ENORM(D* (X~XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(~K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but if MODE = 1, then the
accuracy of the components of X is usually related to their
sensitivity. Unless high precision solutions are required,
the recommended value for XTOL is the square root of the
machine precision.

Third convergence test. This test is satisfied when the cosine
of the angle between FVEC and any column of the Jacobian at X
is at most GTOL in absolute value. There is no clear rela-
tionship between this test and the accuracy of LMSTR, and
furthermore, the test is equally well satisfied at other crit-
ical points, namely maximizers and saddle points. Therefore,
termination caused by this test (INFO = 4) should be examined
carefully. The recommended value for GTOL is zero.

5. Unsuccessful completion.

Unsuccessful termination of LMSTR can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to O if N .LE. 0, or
M .LT. N, or LDFJAC .LT. N, or FTOL .LT. 0.DO, or
XTOL .LT. 0.DO, or GTOL .LT. 0.DO, or MAXFEV .LE. O, or
FACTOR .LE. 0.DO.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMSTR. 1In this
case, it may be possible to remedy the situation by rerunning
LMSTR with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 100*(N+1). If the number of calls to FCN with
IFLAG = 1 reaches MAXFEV, then this indicates that the routine
is converging very slowly as measured by the progress of FVEC,
and INFO is set to 5. 1In this case, it may be helpful to
restart LMSTR with MODE set to 1.

b. Characteristics of the algorithm.

Page 6

LMSTR is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables (if MODE = 1) and an optimal choice
for the correction. The use of implicitly scaled variables
achieves scale invariance of LMSTR and limits the size of the
correction in any direction where the functions are changing
rapidly. The optimal choice of the correction guarantees (under
reasonable conditions) global convergence from starting points
far from the solution and a fast rate of convergence for prob-
lems with small residuals.

Timing. The time required by LMSTR to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMSTR is about N**3 to process each
evaluation of the functions (call to FCN with IFLAG = 1) and
1.5*(N**2) to process each row of the Jacobian (call to FCN
with IFLAG .GE. 2). Unless FCN can be evaluated quickly, the
timing of LMSTR will be strongly influenced by the time spent
in FCN. :

Storage. LMSTR requires N**2 + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms required.

"USER-supplied FCN
MINPACK-supplied ... DPMPAR, ENORM, LMPAR, QRFAC, QRSOLV, RWUPDT
FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,6 MOD

8. References.
Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(i), Xx(2), and x(3)
which provide the best fit (in the least squares sense) of

X(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i =1, 15
to the data

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),

Qa0

Q Q0

aan

CHONONON OIS

111 ,
Page 7

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The
i-th component of FVEC is thus defined by

y(i) = (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

khkkkhkhkkkk K

DRIVER FOR LMSTR EXAMPLE.
DOUBLE PRECISION VERSION

khkkhkkkkhkkhkkhkk

INTEGER J,M,N, LDFJAC,MAXFEV, MODE, NPRINT, INFO, NFEV; NJEV, NWRITE

INTEGER IPVT(3)

DOUBLE PRECISION FTOL,XTOL,GTOL, FACTOR, FNORM

DOUBLE PRECISION X(3),FVEC(15),FJAC(3,3),DIAG(3),QTF(3),
WAL(3),WA2(3),WA3(3),WA4(15)

DOUBLE PRECISION ENORM,DPMPAR

EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/

M
N

15
3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

X(1l) = 1.D0
X(2) = 1.DO
X(3) = 1.D0
LDEJAC = 3

SET FTOL AND XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION
AND GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE
REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.

FTOL = DSQRT(DPMPAR(1))
XTOL = DSQRT (DPMPAR(1))
GTOL = 0.DO

MAXFEV = 400

MODE = 1

FACTOR = 1.D2

NPRINT = O

CALL LMSTR(FCN,M,N,X,FVEC, FJAC, LDFJAC, FTOL, XTOL, GTOL,
MAXFEV,DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, NJEV,
IPVT, QTF,WAl,WA2,WA3, WA4)

FNORM = ENORM(M, FVEC)

WRITE (NWRITE,1000) FNORM,NFEV,NJEV, INFO, (X(J),J=1,N)

STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //

Q0

aaQO

Q

Qo

QOO

10

20

30
40

* %k % ¥

*

112
Page 8

5X,31H NUMBER OF FUNCTION EVALUATIONS,I1O //
5X,31H NUMBER OF JACOBIAN EVALUATIONS,I10 //
5X,15H EXIT PARAMETER,16X,I10 //

5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

LAST CARD OF DRIVER FOR LMSTR EXAMPLE.

END

SUBROUTINE FCN(M,N,X,FVEC,FJROW, IFLAG)
INTEGER M,N, IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

SUBROUTINE FCN FOR LMSTR EXAMPLE.

INTEGER I

DOUBLE PRECISION TMP1,TMP2,TMP3, TMP4

DOUBLE PRECISION Y(15)

DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6).Y(7),Y(8),
Y(9),Y(10),Y(11),¥Y(12),Y(13),Y(14),Y(15)
/1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,

3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0, 4.39D0/

IF (IFLAG .NE. 0) GO TO 5
INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.

RETURN
CONT INUE
IF (IFLAG .GE. 2) GO TO 20
DO 10 I = 1, 15
TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
CONTINUE

GO TO 40

CONTINUE

I = IFLAG -~ 1
TMP1 =1
T™P2 = 16 - I
TMP3 = TMP1

IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2

FJROW(1) = -1.DO
FJROW(2) = TMP1*TMP2/TMP4
FJROW(3) = TMP1*TMP3/TMP4
CONTINUE

CONTINUE

RETURN

LAST CARD OF SUBROUTINE FCN.

END

. Results obtained with different compilers or machines
- may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01

NUMBER OF FUNCTION EVALUATIONS 6
NUMBER OF JACOBIAN EVALUATIONS 5
EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01

Page 9

114

U~)
pég
%
e

LEFT BLANK

1.

2.

3.

Documentation for MINPACK subroutine LMDIF1
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

Purpose.

The purpose of LMDIFl is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm. This is done by using the more
general least-squares solver LMDIF. The user must provide a
subroutine which calculates the functions. The Jacobian is then
calculated by a forward-difference approximation.

Subroutine and type statements.

SUBROUTINE LMDIF1(FCN,M,N,X,FVEC, TOL, INFO, IWA, WA, LWA)
INTEGER M,N, INFO, LWA

INTEGER IWA(N)

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),EVEC(M),WA(LWA)

EXTERNAL FCN

Parameters.

Parameters designated as input parameters must be specified on
entry to LMDIF1l and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDIF1.

FCN is the name of the user-supplied subroutine which calculates
the functions. FCN must be declared in an EXTERNAL statement
in the user calling program, and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC, IFLAG)
INTEGER M,N, IFLAG

DOUBLE PRECISION X(N),FVEC(M)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
RETURN

END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDIF1. In this case set

Page 2

IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates either that the relative error in the
sum of squares is at most TOL or that the relative error
between X and the solution is at most TOL. Section 4 contains

"more details about TOL.

INFO is an integer output variable. If the ﬁser has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Algorithm estimates that the relative error in the
sum of squares is at most TOL.

INFO = 2 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 FVEC is orthogonal to the columns of the Jacobian to
machine precision.

INFO = 5 Number of calls to FCN has reached or exceeded
200%* (N+1).

INFO = 6 TOL is too small. No further reduction in the sunm
of squares is possible.

INFO

]
~

TOL is too small. No further improvement in the
approximate solution X is possible.

Sections 4 and 5 contain more details about INFO.
IWA is an integer work array of length N.
WA is a work array of length LWA.

LWA is a positive integer input variable not less than

4.

117
Page 3

M*N+5*N+M.

Successful completion.

The accuracy of LMDIF1l is controlled by the convergence parame-
ter TOL. This parameter is used in tests which make three types
of comparisons between the approximation X and a solution XSOL.
LMDIF1l terminates when any of the tests is satisfied. If TOL is
less than the machine precision (as defined by the MINPACK func-
tion DPMPAR(1)), then LMDIF1l only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The tests assume that the functions are reasonably well behaved.
If this condition is not satisfied, then LMDIF1l may incorrectly
indicate convergence. The validity of the answer can be
checked, for example, by rerunning LMDIFl with a tighter toler-
ance.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with TOL = 10#**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied).

Second convergence test. If D is a diagonal matrix (implicitly
generated by LMDIFl) whose entries contain scale factors for
the variables, then this test attempts to guarantee that

ENORM (D* (X-XSOL)) .LE. TOL*ENORM(D*XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but the choice of D is such
that the accuracy of the components of X is usually related to
their sensitivity.

Third convergence test. This test is satisfied when FVEC is
orthogonal to the columns of the Jacobian to machine preci-
sion. There is no clear relationship between this test and
the accuracy of LMDIFl, and furthermore, the test is equally
well satisfied at other critical points, namely maximizZers and
saddle points. Also, errors in the functions (see below) may
result in the test being satisfied at a point not close to the

Page 4

minimum. Therefore, termination caused by this test
(INFO = 4) should be examined carefully.

5. Unsuccessful completion.

Unsuccessful termination of LMDIFl can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or errors in the functions.

Improper input parameters. INFO is set to O if N .LE. O, or
M .LT. N, or TOL .LT. 0.DO, or LWA .LT. M*N+5*N+M.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDIFl. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead LMDIF, which
includes in its calling sequence the step-length-governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN reaches 200*(N+1), then this indicates that the
routine is converging very slowly as measured by the progress
of FVEC, and INFO is set to 5. In this case, it may be help-
ful to restart LMDIF1l, thereby forcing it to disregard old
(and possibly harmful) information.

Errors in the functions. The choice of step length in the for-
ward-difference approximation to the Jacobian assumes that the
relative errors in the functions are of the order of the
machine precision. If this is not the case, LMDIFl may fail
(usually with INFO = 4). The user should then use LMDIF
instead, or one of the programs which require the analytic
Jacobian (LMDER1 and LMDER).

6. Characteristics of the algorithm.

LMDIF1l is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables and an optimal choice for the cor-
rection. The use of implicitly scaled variables achieves scale
invariance of LMDIF1l and limits the size of the correction in
any direction where the functions are changing rapidly. The
optimal choice of the correction guarantees (under reasonable
conditions) global convergence from starting points far from the
solution and a fast rate of convergence for problems with small
residuals.

Timing. The time required by LMDIFl to solve a given problem

[CHONONO N

119
Page 5

depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMDIF1l is about N**3 to process
each evaluation of the functions (one call to FCN) and
M*(N**2) to process each approximation to the Jacobian (N
calls to FCN). Unless FCN can be evaluated quickly, the tim-
ing of LMDIF1l will be strongly influenced by the time spent in
FCN.

Storage. LMDIFl1l requires M*N + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

Subprograms regquired.

USER-supplied FCN
MINPACK-supplied ... DPMPAR,ENORM, FDJAC2Z,LMDIF, LMPAR,
QRFAC, QRSOLV
FORTRAN-supplied ... DABS,DMAXl,DMINl,DSQRT,MOD
References.

Jorge J. More, The Levenberg-Marguardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

X(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i=1, 15
to the data

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The
i-th component of FVEC is thus defined by

y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

khkkkkhkkkk

DRIVER FOR LMDIF1 EXAMPLE.
DOUBLE PRECISION VERSION

120
Page 6

C khrhkkkhhr*k

INTEGER J,M,N, INFO, LWA, NWRITE
INTEGER IWA(3)

DOUBLE PRECISION TOL, FNORM

DOUBLE PRECISION X(3),EVEC(15),WA(75)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

QOO

DATA NWRITE /6/

M
N

15
3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

QOO

1.D0
1.D0
1.D0

X(1)
X(2)
X(3)

Q

LWA = 75

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,

THIS IS THE RECOMMENDED SETTING.

TOL = DSQRT(DPMPAR(1))

O oo

CALL LMDIF1(FCN,M,N,X,FVEC, TCL, INFO, IWA, WA, LWA)
FNORM = ENORM(M, EVEC) ‘
WRITE (NWRITE,1000) FNORM, INFO, (X(J),J=1,N)
STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,15H EXIT PARAMETER, 16X, 110 //
* 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

LAST CARD OF DRIVER FOR LMDIF1l EXAMPLE.

aQn

END
SUBROUTINE FCN(M,N, X, FVEC, IFLAG)
INTEGER M,N, IFLAG

DOUBLE PRECISION X(N),FVEC(M)

SUBROUTINE FCN FOR LMDIFl EXAMPLE.

QQaQ

INTEGER I
DOUBLE PRECISION TMP1,TMP2, TMP3

DOUBLE PRECISION Y(15)

DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
* Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0, 4.39D0/

Qoo

10

121

DO 10 I =1, 15
TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1

IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1l/(X(2)*TMP2 + X(3)*TMP3))
CONTINUE

RETURN

LAST CARD OF SUBROUTINE FCN.

END

Results obtained with different compilers or machines
may be slightly different. '

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01
EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION

0.8241057D-01 0.1133037D+01 0.2343695D+01

Page 7

122

)

R RAET T AT
, T

WA THISIPAGE 4 ¢
WAS INTENTIONALLY
LEFT BLANK

Documentation for MINPACK subroutine LMDIF
Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1..Purpose.

The purpose of LMDIF is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm. The user must provide a subrou-
tine which calculates the functions. The Jacobian is then cal-
culated by a forward-difference approximation.

2. Subroutine and type statements.

SUBROUTINE LMDIF(FCN,M,N, X, FVEC, FTOL, XTOL, GTOL , MAXFEV, EPSFCN,
* DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, FJAC, LDFJAC,
* IPVT, QTF, WAl, WA2,WA3,WA4)

INTEGER M, N, MAXFEV, MODE,NPRINT, INFO,NFEV, LDEJAC

INTEGER IPVT(N)

DOUBLE PRECISION FTOL, XTOL,GTOL,EPSFCN, FACTOR

DOUBLE PRECISION X(N),FVEC(M),DIAG(N),FJAC(LDFJAC,N),QTF(N),
* WAL1(N),WA2(N),WA3(N),WA4(M)

EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMDIF and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDIF.

FCN is the name of the user-supplied subroutine which calculates
the functions. FCN must be declared in an EXTERNAL statement
in the user calling program, and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC, IFLAG)
INTEGER M, N, IFLAG ‘

DOUBLE PRECISION X(N),EFVEC(M)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
RETURN

END

124
Page 2

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDIF. 1In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On ocutput X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FTOL is a nonnegative input wvariable. Termination occurs when
both the actual and predicted relative reductions in the sum
of squares are at most FTOL. Therefore, FTOL measures the
relative error desired in the sum of squares. Section 4 con-
tains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

GTOL is a nonnegative input variable. Termination occurs when
the cosine of the angle between FVEC and any column of the
Jacobian is at most GTOL in absolute wvalue. Therefore, GTOL
measures the orthogonality desired between the function vector
and the columns of the Jacobian. Section 4 contains more
details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FECN is at least MAXFEV by the end
of an iteration.

EPSEFCN is an input variable used in determining a suitable step
for the forward-difference approximation. This approximation
assumes that the relative errors in the functions are of the
order of EPSFCN. If EPSFCN is less than the machine preci-
sion, it is assumed that the relative errors in the functions
are of the order of the machine precision.

DIAG is an array of length N. 1If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input wvariable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is

125
Page 3

specified by the input DIAG. Other values of MODE are equiva-
lent to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = 0 at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X and FVEC available for printing. If NPRINT
is not positive, no special calls of FCN with IFLAG = O are
made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Both actual and predicted relative reductions in the
sum of sguares are at most FTOL.

INFO = 2 Relative error between two consecutive iterates is
at most XTOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 The cosine of the angle between FVEC and any column
of the Jacobian is at most GTOL in absolute wvalue.

INFO = 5 Number of calls to FCN has reached or exceeded
MAXFEV.

INFO = 6 FTOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7 XTOL is too small. No further improvement in the
approximate solution X is possible.

INFO

n
[00]

GTOL is too small. - FVEC is orthogonal to the
columns of the Jacobian to machine precision.

Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to
FCN.

FJAC is an output M by N array. The upper N by N submatrix of
FJAC contains an upper triangular matrix R with diagonal ele-
ments of nonincreasing magnitude such that

126
Page 4

- T T T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower trapezoidal part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not lesé than M
which specifies the leading dimension of the array FJAC.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular with diagonal elements of nonincreasing
magnitude. Column j of P is column IPVT(j) of the identity
matrix.

OTF is an output array of length N which contains the first N
elements of the vector (Q transpose)*FVEC.

WAl, WA2, and WA3 are work arrays of length N.

WA4 is a work array of length M.

4. Successful completion.

The accuracy of LMDIF is controlled by the convergence parame-
ters FTOL, XTOL, and GTOL. These parameters are used in tests
which make three types of comparisons between the approximation
X and a solution XSOL. LMDIF terminates when any of the tests
is satisfied. If any of the convergence parameters is less than
the machine precision (as defined by the MINPACK function
DPMPAR(1)), then LMDIF only attempts to satisfy the test defined
by the machine precision. Further progress is not usually pos-
sible.

The tests assume that the functions are reasonably well behaved.
If this condition is not satisfied, then LMDIF may incorrectly
indicate convergence. The validity of the answer can be
checked, for example, by rerunning LMDIF with tighter toler-
ances.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector 2, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with FTOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied). Unless high precision solutions are required, the

127
Page 5

recommended value for FTOL is the square root of the machine
precision.

Second convergence test. If D is the diagonal matrix whose
entries are defined by the array DIAG, then this test attempts
to guarantee that

ENORM(D* (X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D#*X
may have large relative errors, but if MODE = 1, then the
accuracy of the components of X is usually related to their
sensitivity. Unless high precision solutions are required,
the recommended value for XTOL is the square root of the
machine precision.

Third convergence test. This test is satisfied when the cosine
of the angle between FVEC and any column of the Jacobian at X
is at most GTOL in absolute value. There is no clear rela-
tionship between this test and the accuracy of LMDIF, and
furthermore, the test is equally well satisfied at other crit-
ical points, namely maximizers and saddle points. Therefore,
termination caused by this test (INFO = 4) should be examined
carefully. The recommended value for GTOL is zero.

5. Unsuccessful completion.

Unsuccessful termination of LMDIF can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to O if N .LE. O, or
M .LT. N, or LDFJAC .LT. M, or FTOL .LT. 0.DO, or
XTOL .LT. 0.DO, or GTOL .LT. 0.DO, or MAXFEV .LE. O, or
FACTOR .LE. 0.DO.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDIF. 1In this
case, it may be possible to remedy the situation by rerunning
LMDIF with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 200*(N+1l). If the number of calls to FCN
reaches MAXFEV, then this indicates that the routine is con-
verging very slowly as measured by the progress of FVEC, and
INFO is set to 5. 1In this case, it may be helpful to restart
LMDIF with MODE set to 1.

Page 6

6. Characteristics of the algorithm.

LMDIF is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables (if MODE = 1) and an optimal choice
for the correction. The use of implicitly scaled variables
achieves scale invariance of LMDIF and limits the size of the
correction in any direction where the functions are changing
rapidly. The optimal choice of the correction guarantees (under
reasonable conditions) global convergence from starting points
far from the solution and a fast rate of convergence for prob-
lems with small residuals.

Timing. The time required by LMDIF to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMDIF is about N**3 to process each
evaluation of the functions (one call to FCN) and M*(N**2) to
process each approximation to the Jacobian (N calls to FCN) .
Unless FCN can be evaluated quickly, the timing of LMDIF will
be strongly influenced by the time spent in FCN.

Storage. LMDIF requires M*N + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms regquired.

USER-supplied FCN
MINPACK-supplied ... DPMPAR, ENORM, FDJAC2, LMPAR, QRFAC, QRSOLV
FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT, MOD

8. References.
Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

X(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i =1, 15

to the data

oo

Q oot

(ORON]

Qa0 O

129

Page 7
y = (O.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),
where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The

i-th component of EFVEC is thus defined by
y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

khkkkhkkihkk

DRIVER FOR LMDIF EXAMPLE.

- DOUBLE PRECISION VERSION

kkkkhkikkkhkkk

INTEGER J,M,N,MAXFEV, MODE, NPRINT, INFO,NFEV, LDFJAC, NWRITE

INTEGER IPVT(3)

DOUBLE PRECISION FTOL,XTOL,GTOL,EPSFCN, FACTOR, FNORM

DOUBLE PRECISION X(3),FVEC(15),DIAG(3),FJAC(15,3),QTF(3).
WAl (3),WA2(3),WA3(3),WA4(15) '

DOUBLE PRECISION ENORM,DPMPAR

EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/

M
N

15
3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

X(1l) = 1.D0
X(2) = 1.DO
X(3) = 1.DO

LDFJAC = 15

SET FTOL AND XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION
AND GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE
REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.

FTOL
XTOL
GTOL

DSQRT (DPMPAR(1))
DSORT (DPMPAR(1))
0.DO

800
0.DO0

1.D2
0

FACTOR
NPRINT

=2

O

@)

1

]
nmne=

CALL LMDIF(FCN,M,N,X,EVEC, FTOL, XTOL, GTOL, MAXFEV, EPSFCN,
DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, FJAC, LDFJAC,
IPVT, QTF,WAl,WA2,WA3,WA4)

130

Page 8
FNORM = ENORM(M, FVEC)
WRITE (NWRITE,1000) FNORM,NFEV, INFO, (X(J),J=1,N)
STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,31H NUMBER OF FUNCTION EVALUATIONS, I10 //
* 5X,15H EXIT PARAMETER, 16X,110 //
* 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)
C
C LAST CARD OF DRIVER FOR LMDIF EXAMPLE.
C
END
SUBROUTINE FCN(M,N, X, FVEC, IFLAG)
‘INTEGER M, N, IFLAG
DOUBLE PRECISION X(N),FVEC(M)
C .
C SUBROUTINE FCN FOR LMDIF EXAMPLE.
C
INTEGER 1
DOUBLE PRECISION TMP1,TMPZ2, TMP3
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
* ¥(9),Y(10),¥(11),Y(12),Y(13),Y(14),Y(15)
* /1.4D-1,1.8D-1,2.2D-1,2.5D~1,2.9D-1,3.2D-1,3.5D=-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0, 4.39D0/
c .
IF (IFLAG .NE. 0) GO TO 5
C
C INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
C
RETURN
5 CONTINUE
DO 10 I =1, 15
TMP1 =1
T™™P2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
10 CONTINUE
RETURN
C
C LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01
NUMBER OF FUNCTION EVALUATIONS 21
EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION

131
Page 9

0.8241057D-01 0.1133037D+01 0.2343695D+01

132

”‘;"-k, e ’ |, : e
. i J\ 5 5
l A ‘_‘), $ g \; ft

.QTHIS PAGE &11¥
WASINTENTIONALLY

LEFT BLANK

.

1.

2.

3.

133

Page 1
Documentétion for MINPACK subroutine CHKDER
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

Purpose.

The purpose of CHKDER is to check the gradients of M nonlinear
functions in N variables, evaluated at a point X, for consis-
tency with the functions themselves. The user must call CHKDER
twice, first with MODE = 1 and then with MODE = 2.

Subroutine and type statements.

SUBROUTINE CHKDER(M,N, X, FVEC, FJAC, LDFJAC, XP, FVECP, MODE, ERR)
INTEGER M, N, LDFJAC, MODE

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),XP(N),FVECP(M),
* ERR (M)

Parameters.

Parameters designated as input parameters must be specified on
entry to CHKDER and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from CHKDER.

M is a positive integer input variable set to the number of
functions. '

N is a positive integer input variable set to the number of
variables.

X is an input array of length N.

FVEC is an array of length M. On input when MODE = 2, FVEC must
contain the functions evaluated at X.

FJAC is an M by N array. On input when MODE = 2, the rows of
FJAC must contain the gradients of the respective functions
evaluated at X.

LDFJAC is a positive integer input variable not lessbthan M
which specifies the leading dimension of the array FJAC.

XP is an array of length N. On output when MODE = 1, XP is set
to a neighboring point of X.

Page 2

FVECP is an array of length M. On input when MODE = 2, FVECP
must contain the functions evaluated at XP.

MODE is an integer input variable set to 1 on the first call and
2 on the second. Other values of MODE are equivalent to
MODE = 1.

ERR is an array of length M. On output when MODE = 2, ERR con-
tains measures of correctness of the respective gradients. If
there is no severe loss of significance, then if ERR(I) is 1.0
the I-th gradient is correct, while if ERR(I) is 0.0 the I-th
gradient is incorrect. For values of ERR between 0.0 and 1.0,
the categorization is less certain. In general, a value of
ERR(I) greater than 0.5 indicates that the I-th gradient is
probably correct, while a value of ERR(I) less than 0.5 indi-
cates that the I-th gradient is probably incorrect.

Successful completion.

CHKDER usually guarantees that if ERR(I) is 1.0, then the I-th
gradient at X is consistent with the I-th function. This sug-
gests that the input X be such that consistency of the gradient
at X implies consistency of the gradient at all points of inter-
est. If all the components of X are distinct and the fractional
part of each one has two nonzero digits, then X is likely to be
a satisfactory choice.

If ERR(I) is not 1.0 but is greater than 0.5, then the I-th gra-
dient is probably consistent with the I-th function (the more so
the larger ERR(I) is), but the conditions for ERR(I) to be 1.0
have not been completely satisfied. 1In this case, it is recom-
mended that CHKDER be rerun with other input values of X. If
ERR(I) is always greater than 0.5, then the I-th gradient is
consistent with the I-th function.

Unsuccessful completion.

CHKDER does not perform reliably if cancellation or rounding
errors cause a severe loss of significance in the evaluation of
a function. Therefore, none of the components of X should be
unusually small (in particular, zero) or any other value which
may cause loss of significance. The relative differences
between corresponding elements of FVECP and FVEC should be at
least two orders of magnitude greater than the machine precision
(as defined by the MINPACK function DPMPAR(1l)). If there is a
severe loss of significance in the evaluation of the I-th func-
tion, then ERR(I) may be 0.0 and yet the I-th gradient could be
correct.

If ERR(I) is not 0.0 but is less than 0.5, then the I-th gra-
dient is probably not consistent with the I-th function (the
more so the smaller ERR(I) is), but the conditions for ERR(I) to

8

9.

135
Page 3

be 0.0 have not been completely satisfied. In this case, it is
recommended that CHKDER be rerun with other input values of X.
If ERR(I) is always less than 0.5 and if there is no severe loss
of significance, then the I-th gradient is not consistent with
the I-th function.

Characteristics of the algorithm.

CHKDER checks the I-th gradient for consistency with the I-th
function by computing a forward-difference approximation along a
suitably chosen direction and comparing this approximation with
the user-supplied gradient along the same direction. The prin-
cipal characteristic of CHKDER is its invariance to changes in
scale of the variables or functions.

Timing. The time required by CHKDER depends only on M and N.
The number of arithmetic operations needed by CHKDER is about
N when MODE = 1 and M*N when MODE = 2.

Storage. CHKDER requires M*N + 3*M + 2*N double precision stor-

age locations, in addition to the storage required by the pro-
gram. There are no internally declared storage arrays.

Subprograms required.

MINPACK-supplied ... DPMPAR
FORTRAN-supplied DABS,DLOG10,DSQRT
. References.
None.
Example.

This example checks the Jacobian matrix for the problem that
determines the values of x(1), x(2), and x(3) which provide the
best fit (in the least squares sense) of

k(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i =1, 15
to the data

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The
i-th component of FVEC is thus defined by

y(i) = (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

cC
c
C
Cc
C
C
C
Cc
C
c
c
cC
Cc
C
C
c
c
10
1000
© 2000
3000
C
C
C

(PO NP

khkkkkkikkkk

DRIVER FOR CHKDER EXAMPLE.
DOUBLE PRECISION VERSION

hkkhkkkhkkhkhkkhkhkk

INTEGER I,M,N,LDFJAC,MODE, NWRITE
DOUBLE PRECISION X(3),FVEC(15),FJAC(15,3),XP(3),FVECP(15),

* ERR(15)

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/

M
N

15
3

THE FOLLOWING VALUES SHOULD BE SUITABLE FOR
CHECKING THE JACOBIAN MATRIX.

X(1) = 9.2D-1
X(2) = 1.3D-1
X(3) = 5.4D-1

LDFJAC = 15

MODE = 1

CALL CHKDER(M,N, X, FVEC, FJAC,LDFJAC, XP,FVECP,MODE, ERR)
MODE = 2

CALL FCN(M,N,X,FVEC,FJAC,LDFJAC, 1)

CALL FCN(M,N,X,FVEC, FJAC,LDFJAC, 2)

CALL FCN(M,N,XP,FVECP,FJAC,LDFJAC, 1)

CALL CHKDER(M,N, X, FVEC, FJAC, LDFJAC, XP, FVECP,MODE, ERR)

DO 10 I =1, M
FVECP(I) = FVECP(I) - FVEC(I)
CONTINUE

WRITE (NWRITE,1U00) (FVEC(I),I=1,M)
WRITE (NWRITE,2000) (EVECP(I),I=1,M)
WRITE (NWRITE,3000) (ERR(I),I=1,M)

STOP

FORMAT (/5X,5H FVEC // (5X,3D15.7))

FORMAT (/SX,13H FVECP - FVEC // (5X,3D15.7))
FORMAT (/5X,4H ERR // (5X,3D15.7))

LAST CARD OF DRIVER FOR CHKDER EXAMPLE.

END

SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER M,N,LDFJAC, IFLAG ‘
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

SUBROUTINE FCN FOR CHKDER EXAMPLE.

Page 4

aaQaan

QN

10

20

- 30

40

INTEGER I

DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4

DOUBLE PRECISION Y(15)

DATA Y(1),Y(2),Y(3),Y(4).,Y(5),Y(6),¥Y(7),¥Y(8),

Y(9),Y(10),¥(11),¥(12),Y(13),Y(14),Y(15)

/1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0, 4.39D0/

IF (IFLAG .EQ. 2) GO TO 20
DO 10 I = 1, 15
TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
CONTINUE
GO TO 40
CONTINUE
DO 30 I = 1, 15
TMP1 = I
TMP2 = 16 - I
ERROR INTRODUCED INTO NEXT STATEMENT FOR ILLUSTRATION.
CORRECTED STATEMENT SHOULD READ TMP3 = TMP1
TMP3 = TMP2
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)*%2
FJAC(I,1) = -1.DO
FJAC(I,2) = TMP1*TMP2/TMP4
FJAC(I,3) = TMP1*TMP3/TMP4
CONTINUE
CONTINUE
RETURN

LAST CARD OF

SUBROUTINE FCN.

END

Results obtained with different compilers or machines

may be different.

In particular, the differences

FVECP =~ FVEC are machine dependent.

FVEC

-0.1181606D+01 -0.1429655D+01 -0.1606344D+01
-=0.1745269D+01 -0.1840654D+01 =-0.1921586D+01
~0.1984141D+01 -0.2022537D+01 -0.2468977D+01
-0.2827562D+01 -0.3473582D+01 =-0.4437612D+01
-0.6047662D+01 -0.9267761D+01 -0.1891806D+02
FVECP - FVEC

-0.7724666D-08 =-0.3432405D-08 -O.2034843D-09

0.
0.
0.
0.

ERR

eNoNoNoNe

2313685D-08
7363281D-08
2335850D-07
8266660D-07

.1141397D+00
.9980447D-01
.1526814D+00
.1000000D+01
.1000000D+01

oNoNoNeo)

loNoNoNeoXNo

138

.4331078D-08
.8531470D-08
.3522012D-07
.1419747D-06

.9943516D-01
.1073116D+00
.1000000D+01
.1000000D+01
.1000000D+01

oNoNeoNe

oNoNoReoNeo/

.5984096D-08
.1488591D-07
.5301255D-07
.3198990D-06

.9674474D-01
.1220445D+00
.1000000D+01
.1000000D+01
.1000000D+01

Page 6

CHAPTER 5

Program Listings

This chapter contains the double precision version of the MINPACK-1

program listings; both single and double precision versions of the subprograms

are available with the MINPACK-1 package. The 1listings appear

following (alphanumeric) order:

CHKDER, DOGLEG, ENORM, FDJACl, FDJAC2, HYBRD, HYBRDI,
HYBRJ, HYBRJ1, LMDER, IMDER1, LMDIF, ILMDIFl, LMPAR, LMSTR,

IMSTR1, QFORM, QRFAC, QRSOLV, RWUPDT, RIMPYQ, RIUPDT.

Functions SPMPAR (single precision) and DPMPAR (double precision),

provide the machine-dependent constants, appear at the end.

in

the

which

PEoRoNoNsNsNoNoNsNoNoNoRoNoNoNoNsNoNoNoNoNsNoRoNoNoNoNsNoNoNoNoNoNsNoNoNoNoNsNoNoNoNoNoNsNoNo Mo NN

141

SUBROUTINE CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)

INTEGER M,N,LDFJAC,MODE

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),XP(N),FVECP(M),
* ERR(M)

Sdekdehhdkhd

SUBROUTINE CHKDER

THIS SUBROUTINE CHECKS THE GRADIENTS OF M NONLINEAR FUNCTIONS
IN N VARIABLES, EVALUATED AT A POINT X, FOR CONSISTENCY WITH
THE FUNCTIONS THEMSELVES. THE USER MUST CALL CHKDER TWICE,
FIRST WITH MODE = 1 AND THEN WITH MODE = 2.

MODE = 1. ON INPUT, X MUST CONTAIN THE POINT OF EVALUATION.
’ ON OUTPUT, XP IS SET TO A NEIGHBORING POINT.
MODE = 2. ON INPUT, FVEC MUST CONTAIN THE FUNCTIONS AND THE

ROWS OF FJAC MUST CONTAIN THE GRADIENTS
OF THE RESPECTIVE FUNCTIONS EACH EVALUATED
AT X, AND FVECP MUST CONTAIN THE FUNCTIONS
EVALUATED AT XP.
ON OUTPUT, ERR CONTAINS MEASURES OF CORRECTNESS OF
THE RESPECTIVE GRADIENTS.

THE SUBROUTINE DOES NOT PERFORM RELIABLY IF CANCELLATION OR
ROUNDING ERRORS CAUSE A SEVERE LOSS OF SIGNIFICANCE IN THE
EVALUATION OF A FUNCTION. THEREFORE, NONE OF THE COMPONENTS
OF X SHOULD BE UNUSUALLY SMALL (IN PARTICULAR, ZERO) OR ANY
OTHER VALUE WHICH MAY CAUSE LOSS OF SIGNIFICANCE.
THE SUBROUTINE STATEMENT IS

SUBROUTINE CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)
WHERE

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES.

X IS AN INPUT ARRAY OF LENGTH N.

FVEC IS AN ARRAY OF LENGTH M. ON INPUT WHEN MODE = 2,
FVEC MUST CONTAIN THE FUNCTIONS EVALUATED AT X.

FJAC IS AN M BY N ARRAY. ON INPUT WHEN MODE = 2,
THE ROWS OF FJAC MUST CONTAIN THE GRADIENTS OF
THE RESPECTIVE FUNCTIONS EVALUATED AT X.

LDFJAC IS A POSITIVE INTEGER INPUT PARAMETER NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

CHDROO10
CHDR0020
CHDROO30
CHDRO040
CHDROO50
CHDROO060
CHDROO70
CHDROOS8O
CHDRO090
CHDRO100
CHDRO110
CHDRO120
CHDRO130
CHDRO140
CHDRO150
CHDRO160
CHDRO170
CHDRO180
CHDRO190
CHDRO200
CHDRO210
CHDRO220
CHDRO230
CHDR0O240
CHDRO250
CHDRO260
CHDRO270
CHDR0280
CHDR0290

"CHDRO0300

CHDRO0310
CHDR0320
CHDRO0330
CHDRO340
CHDRO350
CHDRO360
CHDRO370
CHDRO380
CHDRO390
CHDRO400
CHDRO410
CHDRO420
CHDRO0430
CHDRO440
CHDRO0450
CHDRO0460
CHDRO470
CHDRO480
CHDRO490
CHDRO500
CHDRO510
CHDRO0520
CHDRO530
CHDRO540

oNoRoNoEsEoEvE* RN E*EsE*EsEsEoRoNoNoNoNoNoNoNoNoNONG RO NGNS NP}

aOaoa

[oNoNP]

142

XP IS AN ARRAY OF LENGTH N. ON OUTPUT WHEN MODE = 1,
XP IS SET TO A NEIGHBORING POINT OF X.

FVECP IS AN ARRAY OF LENGTH M. ON INPUT WHEN MODE = 2,
FVECP MUST CONTAIN THE FUNCTIONS EVALUATED AT XP.

MODE IS AN INTEGER INPUT VARIABLE SET TO 1 ON THE FIRST CALL
AND 2 ON THE SECOND. OTHER VALUES OF MODE ARE EQUIVALENT
TO MODE = 1.

ERR IS AN ARRAY OF LENGTH M. ON OUTPUT WHEN MODE = 2,
ERR CONTAINS MEASURES OF CORRECTNESS OF THE RESPECTIVE,
GRADIENTS. IF THERE IS NO SEVERE LOSS OF SIGNIFICANCE,
THEN IF ERR(I) IS 1.0 THE I-TH GRADIENT IS CORRECT,
WHILE IF ERR(I) IS 0.0 THE I-TH GRADIENT IS INCORRECT.
FOR VALUES OF ERR BRETWEEN 0.0 AND 1.0, THE CATEGORIZATION
IS LESS CERTAIN. IN GENERAL, A VALUE OF ERR(I) GREATER
THAN 0.5 INDICATES THAT THE I-TH GRADIENT IS PROBABLY
CORRECT, WHILE A VALUE OF ERR(I) LESS THAN 0.5 INDICATES
THAT THE I-TH GRADIENT IS PROBABLY INCORRECT.

SUBPROGRAMS CALLED
MINPACK SUPPLIED ... DPMPAR
FORTRAN SUPPLIED ... DABS,DLOG10,DSQRT

ARGONNE- NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

eleatantentealealentenlo ot nle
TWITIWIRWIWWWWHN

INTEGER I,J

DOUBLE PRECISION EPS,EPSF,EPSLOG,EPSMCH,FACTOR,ONE,TEMP,ZERO
DOUBLE PRECISION DPMPAR

DATA FACTOR,ONE,ZERO /1.0D2,1.0D0,0.0D0/

EPSMCH IS THE MACHINE PRECISION.

EPSMCH = DPMPAR(1)

EPS = DSQRT (EPSMCH)

IF (MODE .EQ. 2) GO TO 20

MODE = 1.
DO 10 J =1, N
TEMP = EPS*DABS(X(J))

IF (TEMP .EQ. ZERO) TEMP = EPS
XP(J) = X(J) + TEMP

10 CONTINUE
GO TO 70
20 CONTINUE

CHDRO550-
CHDR0560
CHDRO570
CHDRO580
CHDRO590
CHDR0O600
CHDRO610
CHDR0O620
CHDRO630
CHDRO640
CHDRO650
CHDR0660
CHDRO670
CHDRO0680
CHDRO0690
CHDRO700
CHDRO710
CHDRO720
CHDRO730
CHDRO740
CHDRO750
CHDR0O760
CHDRO770
CHDRO780
CHDRO790
CHDRO80O
CHDRO810
CHDRO820
CHDRO830
CHDRO840
CHDRO850
CHDRO860
CHDRO870
CHDRO880
CHDRO890
CHDROY00

‘CHDRO910

CHDRO920
CHDRO930
CHDRO940
CHDR0950
CHDR0960
CHDRO970
CHDRO980
CHDR0O990
CHDR1000
CHDR1010
CHDR1020
CHDR1030
CHDR1040
CHDR1050
CHDR1060
CHDR1070
CHDR1080

(@]

oo

30

40
50

60

wle
[y

o
o

oL
™

MODE = 2.

EPSF = FACTOR*EPSMCH
EPSLOG = DLOG10(EPS)
DO 30 I =1, M
ERR(I) = ZERO
CONTINUE
DO SO J =1, N
TEMP = DABS(X(J))
IF (TEMP .EQ. ZERO) TEMP = ONE
DO4 I =1, M
ERR(I) = ERR(I) + TEMP*FJAC(I,J)
CONTINUE
CONTINUE
DO 60 I =1, M
TEMP = ONE
IF (FVEC(I) .NE. ZERO .AND. FVECP(I) .NE. ZERO
.AND. DABS(FVECP(I)-FVEC(I)) .GE. EPSF*DABS(FVEC(I)))
TEMP = EPS*DABS ((FVECP(I)-FVEC(I))/EPS-ERR(I))
/ (DABS (FVEC(I)) + DABS(FVECP(I)))
ERR(I) = ONE
IF (TEMP .GT. EPSMCH .AND. TEMP .LT. EPS)
ERR(I) = (DLOG1O(TEMP) - EPSLOG)/EPSLOG
IF (TEMP .GE. EPS) ERR(I) = ZERO
CONTINUE

70 CONTINUE

RETURN
LAST CARD OF SUBROUTINE CHKDER.

END

CHDR1090
CHDR1100
CHDR1110
CHDR1120
CHDR1130
CHDR1140
CHDR1150
CHDR1160
CHDR1170
CHDR1180
CHDR1190
CHDR1200
CHDR1210
CHDR1220
CHDR1230
CHDR1240
CHDR1250
CHDR1260
CHDR1270
CHDR1280
CHDR1290
CHDR1300
CHDR1310
CHDR1320
CHDR1330
CHDR1340
CHDR1350
CHDR1360
CHDR1370
CHDR1380
CHDR1390
CHDR1400

e Ro ko RoRo oo Ro oo R R R R R R o RsRo R Re o Ro e e NN Xe Ro e e s Es N s s s Es R NN N RO RO NSNS NS NS R e]

145

SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,WAl,WA2) DOGLOO10
INTEGER N,LR DOGL0020
DOUBLE PRECISION DELTA DOGL0030
DOUBLE PRECISION R(LR),DIAG(N),QTB(N),X(N),WA1(N),WA2(N) DOGL0040
Fdsdebddebdn DOGL0050
N DOGL0060

SUBROUTINE DOGLEG DOGLO0070
DOGL0080

GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL DOGL0090
MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA, THE DOGL0100
PROBLEM IS TO DETERMINE THE CONVEX COMBINATION X OF THE DOGLO110
GAUSS-NEWTON AND SCALED GRADIENT DIRECTIONS THAT MINIMIZES DOGL0120
(A*X - B) IN THE LEAST SQUARES SENSE, SUBJECT TO THE DOGL0130
RESTRICTION THAT THE EUCLIDEAN NORM OF D*X BE AT MOST DELTA. DOGLO140
DOGLO0150

THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM DOGL0160
IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE DOGLO0170
QR FACTORIZATION OF A. THAT IS, IF A = Q*R, WHERE Q HAS DOGL0180
ORTHOGONAL COLUMNS AND R IS AN UPPER TRIANGULAR MATRIX, DOGL0190
THEN DOGLEG EXPECTS THE FULL UPPER TRIANGLE OF R AND DOGL0200
THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. DOGL0210
DOGL0220

THE SUBROUTINE STATEMENT IS DOGL0230
DOGL0240

SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,WAl,WA2) DOGL0250

' DOGL0260

WHERE DOGL0270
DOGL0280

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R. DOGL0290
DOGL0300

R IS AN INPUT ARRAY OF LENGTH LR WHICH MUST CONTAIN THE UPPER DOGL0310
TRIANGULAR. MATRIX R STORED BY ROWS. DOGL0320

‘ , DOGL0330

LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN DOGL0340
(N*(N+1))/2. DOGL0350
DOGL0360

DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE DOGL0370
DIAGONAL ELEMENTS OF THE MATRIX D. DOGL0380
DOGL0390

QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST DOGL040O

N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B. DOGLO0410
DOGL0420

DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER DOGL0430
BOUND ON THE EUCLIDEAN NORM OF D*X. DOGLO0440
DOGL0450

X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE DESIRED DOGLO0460
CONVEX COMBINATION OF THE GAUSS-NEWTON DIRECTION AND THE DOGL0470
SCALED GRADIENT DIRECTION. DOGL0480
DOGLO0490

WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. DOGL0500
DOGL0510

SUBPROGRAMS CALLED DOGL0520
' DOGLO530

MINPACK-SUPPLIED ... DPMPAR,ENORM DOGLO540

C

C

c

C

C

C

C

c

C

C

C

c

c
10
20
30
40
50

c

C

C

60

146

FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

Alacteatictecticlectecte it uts
Lo I O o D A T N

INTEGER I,J,JJ,JP1,K,L

DOUBLE PRECISION ALPHA,BNORM,EPSMCH,GNORM,ONE,QNORM,SGNORM,SUM,

TEMP, ZERO

DOUBLE PRECISION DPMPAR,ENORM

DATA ONE,ZERO /1.0D0,0.0D0/
EPSMCH IS THE MACHINE PRECISION.

EPSMCH = DPMPAR(1)

FIRST, CALCULATE THE GAUSS-NEWTON DIRECTION.

JT = (N*(N + 1))/2 + 1
DO 50 K = 1
P1
J=1J
L=JJ+1
SUM = ZERO
IF (N .LT. JP1) GO TO 20
DO 10 I = JP1, N
SUM = SUM + R(L)*X(I)
L=1L+1
CONTINUE
CONTINUE
TEMP = R(JJ)
IF (TEMP .NE. ZERO) GO TO 40
‘L=J
DO30I=1,J
TEMP = DMAX1(TEMP,DABS(R(L)))
L=L+N-1
CONTINUE
TEMP = EPSMCH4TEMP
IF (TEMP .EQ. ZERO) TEMP = EPSMCH
CONT INUE
X(J) = (QTB(J) - SUM)/TEMP
CONTINUE

1

n =z
(S SRy
I
R+ 2z

J
J
J

TEST WHETHER THE GAUSS-NEWTON DIRECTION IS ACCEPTABLE.

DO 60 J =1, N

WA1(J) ZERO
WA2(J) DIAG(J)*X(J)
CONTINUE

QNORM = ENORM(N,WA2)
IF (QNORM .LE. DELTA) GO TO 140

DOGLO0550
DOGL0560
DOGL0570
DOGLO0580
DOGL0590
DOGL0600
DOGLO0610
DOGL0620
DOGL0630
DOGL0640
DOGL0650
DOGL0660
DOGL0670
DOGL0680
DOGL0690
DOGL0700
DOGL0710
DOGL0720
DOGL0730
DOGL0740
DOGLO0750
DOGL0760
DOGLO770
DOGL0780
DOGLO0790
DOGL0800
DOGL0810
DOGL0820
DOGLO0830
DOGLO0840
DOGLO850
DOGL0860
DOGL0870
NOGLO880
DOGL0890
DOGL0900
DOGLO0910
DOGL0920
DOGL0930
DOGL0940
DOGL0950
DOGL0960
DOGL0970
DOGL0980
DOGL0990
DOGL1000
DOGL1010
DOGL1020
DOGL1030
DOGL1040
DOGL1050
DOGL1060
DOGL1070
DOGL1080

(@]

aaonOa

Qa0

aoaaa

70

80

90

100

110

147

THE GAUSS-NEWTON DIRECTION IS NOT ACCEPTABLE.
NEXT, CALCULATE THE SCALED GRADIENT DIRECTION.

L=1
DO 80 J =1, N
TEMP = QTB(J)

DO 70 I =J, N
WAL(I) = WAL1(I) + R(L)*TEMP
L=1L+1
CONTINUE .
WA1(J) = WA1(J)/DIAG(J)
CONTINUE

CALCULATE THE NORM OF THE SCALED GRADIENT AND TEST FOR
THE SPECIAL CASE IN WHICH THE SCALED GRADIENT IS ZERO.

GNORM = ENORM(N,WA1l)

SGNORM = ZERO

ALPHA = DELTA/QNORM

IF (GNORM .EQ. ZERO) GO TO 120

CALCULATE THE POINT ALONG THE SCALED GRADIENT
AT WHICH THE QUADRATIC IS MINIMIZED.

DO 90 J =1, N
WA1(J) = (WA1(J)/GNORM)/DIAG(J)
CONTINUE

L=1

DO 110 J =1, N
SUM = ZERO

DO 100 I =J, N
SUM = SUM + R(L)*WA1(I)
L=L+1
CONTINUE
WA2(J) = SUM
CONTINUE
TEMP = ENORM(N,WA2)
SGNORM = (GNORM/TEMP)/TEMP

TEST WHETHER THE SCALED GRADIENT DIRECTION IS ACCEPTABLE.

ALPHA = ZERO
IF (SGNORM .GE. DELTA) GO TO 120

THE SCALED GRADIENT DIRECTION IS NOT ACCEPTABLE.
FINALLY, CALCULATE THE POINT ALONG THE DOGLEG
AT WHICH THE QUADRATIC IS MINIMIZED.

BNORM = ENORM(N,QTB)

TEMP = (BNORM/GNORM)* (BNORM/QNORM)* (SGNORM/DELTA)

TEMP = TEMP - (DELTA/QNORM)#*(SGNORM/DELTA)%#%2
* + DSQRT ((TEMP- (DELTA/QNORM))¥+2

* +(ONE - (DELTA/QNORM)*%*2)* (ONE - (SGNORM/DELTA)**2))

ALPHA = ((DELTA/QNORM)*(ONE - (SGNORM/DELTA)**2))/TEMP

DOGL1090
DOGL1100
DOGL1110
DOGL1120
DOGL1130
DOGL1140
DOGL1150
DOGL1160
DOGL1170
DOGL1180
DOGL1190
DOGL1200
DOGL1210
DOGL1220
DOGL1230
DOGL1240
DOGL1250
DOGL1260
DOGL1270
DOGL1280
DOGL1290
DOGL1300
DOGL1310
DOGL1320
DOGL1330
DOGL1340
DOGL1350
DOGL1360
DOGL1370
DOGL1380
DOGL1390
DOGL1400
DOGL1410
DOGL1420
DOGL1430
DOGL1440 "
DOGL1450
DOGL1460
DOGL1470
DOGL1480
DOGL1490
DOGL1500
DOGL1510
DOGL1520
DOGL1530
DOGL1540
DOGL1550
DOGL1560
DOGL1570
DOGL1580
DOGL1590
DOGL1600
DOGL1610
DOGL1620

oNoNoNe!]

120

130
140

148

CONTINUE

FORM APPROPRIATE CONVEX COMBINATION OF THE GAUSS-NEWTON
DIRECTION AND THE SCALED GRADIENT DIRECTION.

TEMP = (ONE - ALPHA)*DMIN1(SGNORM,DELTA)
DO 130 J = 1, N
X(J) = TEMP*WA1(J) + ALPHA*X(J)
CONTINUE
CONTINUE
RETURN

LAST CARD OF SUBROUTINE DOGLEG.

END

DOGL1630
DOGL1640
DOGL1650
DOGL1660
DOGL1670
DOGL1680
DOGL1690
DOGL1700
DOGL1710
DOGL1720
DOGL1730
DOGL1740
DOGL1750
DOGL1760
DOGL1770

oo o RoRe RN RoRoRoRe oo Ro R s ke R e o s R Es Re R NN N N N O NP NP NS R P) Qa0

DOUBLE PRECISION FUNCTION ENORM(N,X)
INTEGER N

DOUBLE PRECISION X(N)
dedededeiodeddedek

FUNCTION ENORM

GIVEN AN N-VECTOR X; THIS FUNCTION CALCULATES THE
EUCLIDEAN NORM OF X.

THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF
SQUARES IN THREE DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE
SMALL AND LARGE COMPONENTS ARE SCALED SO THAT NO OVERFLOWS
OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE PERMITTED. UNDERFLOWS
AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED
SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS.

THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS
DEPEND ON TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN
RESTRICTIONS ON THESE CONSTANTS ARE THAT RDWARF#*%*2 NOT
UNDERFLOW AND RGIANT#*%2 NOT OVERFLOW. THE CONSTANTS

GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER.

THE FUNCTION STATEMENT IS
DOUBLE PRECISION FUNCTION ENORM(N, X)
WHERE
N IS A POSITIVE INTEGER INPUT VARIABLE.
X IS AN INPUT ARRAY OF LENGTH N.
SUBPROGRAMS CALLED
FORTRAN-SUPPLIED ... DABS,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

Fkddhddedhik

INTEGER I
DOUBLE PRECISION AGIANT,FLOATN,ONE,RDWARF,RGIANT,S1,S2,53,XABS,

* X1MAX,X3MAX, ZERO

DATA ONE,ZERO,RDWARF ,RGIANT /1.0D0,0.0D0,3.834D-20,1.304D19/
S1 = ZERO
S2 = ZERO
83 = ZERO
X1MAX = ZERO
X3MAX = ZERO
FLOATN = N
AGIANT = RGIANT/FLOATN
D090 I =1, N

XABS = DABS(X(I))

IF (XABS .GT. RDWARF .AND. XABS .LT. AGIANT) GO TO 70

ENRM0010
ENRM0020
ENRM0030
ENRM0040
ENRM0050
ENRM0060
ENRM0070
ENRM0080
ENRM0090
ENRM0100
ENRM0110
ENRM0120
ENRMO130
ENRMO140
ENRM0150
ENRM0160
ENRM0170
ENRM0180
ENRM0190
ENRM0200
ENRM0210
ENRM0220
ENRMO0230
ENRM0240
ENRM0250
ENRM0260
ENRM0270
ENRM0280
ENRM0290
ENRM0300
ENRM0310
ENRM0320
ENRM0330
ENRM0340
ENRMO0350
ENRM0360
ENRM0370
ENRM0380
ENRM0390
ENRM0400
ENRMO0410
ENRM0420
ENRM0430
ENRM0440
ENRMO0450
ENRM0460
ENRMO0470
ENRM0480
ENRM0490
ENRM0500
ENRM0510
ENRM0520
ENRM0530
ENRMO0540

10

20

30

40

50
60

70

80
90

100

110

120
130

150

IF (XABS .LE. RDWARF) GO TO 30
SUM FOR LARGE COMPONENTS.

IF (XABS .LE. XIMAX) GO TO 10
S1 = ONE + SI1#(X1MAX/XABS)#+2
X1MAX = XABS
GO TO 20
CONTINUE
S1 = S1 + (XABS/X1MAX)#%*2
CONTINUE
GO TO 60
CONTINUE

SUM FOR SMALL COMPONENTS.

IF (XABS .LE. X3MAX) GO TO 40
S3 = ONE + S3*(X3MAX/XABS)#**2
X3MAX = XABS
GO TO 50
CONTINUE
IF (XABS .NE. ZERO) S3 = S3 + (XABS/X3MAX)¥*%*2
CONTINUE
CONTINUE
GO TO 80
CONTINUE

SUM FOR INTERMEDIATE COMPONENTS.

52 = S2 + XABS#*¥*2
CONTINUE
CONTINUE

CALCULATION OF NORM.

IF (S1 .EQ. ZERO) GO TO 100
ENORM = X1MAX*DSQRT(S1+(S2/X1MAX)/X1MAX)
GO TO 130
CONTINUE
IF (S2 .EQ. ZERO) GO TO 110
IF (S2 .GE. X3MAX)
ENORM = DSQRT(S2* (ONE+(X3MAX/S2)* (X3MAX*S3)))
IF (S2 .LT. X3MAX)
ENORM = DSQRT (X3MAX* ((S2/X3MAX)+(X3MAX*S3)))

GO TO 120
CONTINUE
ENORM = X3MAX*DSQRT(S3)
CONTINUE
CONTINUE
RETURN

LAST CARD OF FUNCTION ENORM.

END

ENRMOS550
ENRMO560
ENRMO570
ENRMO0580
ENRM0590
ENRM0600
ENRM0610
ENRM0620
ENRMO0630
ENRMO0640
ENRMO0650
ENRM0660
ENRMO670
ENRM0680
ENRM0690
ENRMO700
ENRMO710
ENRM0720
ENRM0O730
ENRMO740
ENRMO750
ENRM0760
ENRM0O770
ENRMO780
ENRMO790
ENRMO0O800
ENRMO0O810
ENRMO0820
ENRMO0830
ENRM0840
ENRMO0850
ENRM0860
ENRMO0870
ENRMO880
ENRMO0890
ENRMO0900
ENRM0910
ENRM0920
FNRM0930
ENRMO0940
ENRM0O950
ENRM0960
ENRMO0970
ENRM0980
ENRMO0990
ENRM1000
ENRM1010
ENRM1020
ENRM1030
ENRM1040
ENRM1050
ENRM1060
ENRM1070
ENRM1080

OOOOOOOC')OOO

%

SUBROUTINE FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC, IFLAG,ML,MU,EPSFCN,
WA1,WA2)

INTEGER N,LDFJAC,IFLAG,ML,MU

DOUBLE PRECISION EPSFCN

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),WA1(N),WA2(N)
Fdededeiciodedolnk

SUBROUTINE FDJAC1

THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION
TO THE N BY N JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED
PROBLEM OF N FUNCTIONS IN N VARIABLES. IF THE JACOBIAN HAS
A BANDED FORM, THEN FUNCTION EVALUATIONS ARE SAVED BY ONLY
APPROXIMATING THE NONZERO TERMS.

THE SUBROUTINE STATEMENT IS

SUBROUTINE FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC, IFLAG,ML,MU,EPSFCN,
WA1,WA2)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG

DOUBLE PRECISION X(N),FVEC(N)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF FDJAC1.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

N IS A POSITIVE INTEGER INPUT VARIABLE4SET'TO THE NUMBER
OF FUNCTIONS AND VARIABLES.

X IS AN INPUT ARRAY OF LENGTH N.

FVEC IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE
FUNCTIONS EVALUATED AT X.

FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE
APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

FDJ10010
FDJ10020
FDJ10030
FDJ10040
FDJ10050
FDJ10060
FDJ10070
FDJ10080
FDJ10090
FDJ10100.
FDJ10110
FDJ10120
FDJ10130
FDJ10140
FDJ10150
FDJ10160
FDJ10170
FDJ10180
FDJ10190
FDJ10200
FDJ10210
FDJ10220
FDJ10230
FDJ10240
FDJ10250
FDJ10260
FDJ10270
FDJ10280
FDJ10290
FDJ10300
FDJ10310
FDJ10320
FDJ10330
FDJ10340
FDJ10350
FDJ10360
FDJ10370
FDJ10380
FDJ10390
FDJ10400
FDJ10410
FDJ10420
FDJ10430
FDJ10440
FDJ10450
FDJ10460
FDJ10470
FDJ10480
FDJ10490
FDJ10500
FDJ10510
FDJ10520
FDJ10530
FDJ10540

oEsRoNeNsNoNoNoNoNoNoNoNoNoNsNoNoNoNoNoRoNoNoNoNoNoNe No R R R R RO R R KD

152

IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE
THE EXECUTION OF FDJAC1. SEE DESCRIPTION OF FCN.

ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES
THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE
JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET
ML TO AT LEAST N - 1.

EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE
STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS
APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE
FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS
THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE
ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE
PRECISION.

MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES
THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE
JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET
MU TO AT LEAST N - 1.

WAl AND WA2 ARE WORK ARRAYS OF LENGTH N. IF ML + MU + 1 IS AT
LEAST N, THEN THE JACOBIAN IS CONSIDERED DENSE, AND WA2 IS
NOT REFERENCED.

SUBPROGRAMS CALLED
MINPACK-SUPPLIED ... DPMPAR
FORTRAN-SUPPLIED ... DABS,DMAX1,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

Felededdes btk

INTEGER I,J,K,MSUM

DOUBLE PRECISION EPS,EPSMCH,H,TEMP,ZERO
DOUBLE PRECISION DPMPAR

DATA ZERO /0.0DO0/

EPSMCH IS THE MACHINE PRECISION.
EPSMCH = DPMPAR(1)
EPS = DSQRT(DMAX1(EPSFCN,EPSMCH))
MSUM = ML + MU + 1
IF (MSUM .LT. N) GO TO 40
COMPUTATION OF DENSE APPROXIMATE. JACOBIAN.
DO 20 J =1, N

TEMP = X(J)
H = EPS*DABS (TEMP)

FDJ10550
FDJ10560
FDJ10570
FDJ10580
FDJ10590
FDJ10600
FDJ10610
FDJ10620
FDJ10630
FDJ10640
FDJ10650
FDJ10660
FDJ10670
FDJ10680
FDJ10690
FDJ10700
FDJ10710
¥DJ10720
FDJ10730
FDJ10740
FDJ10750
FDJ10760
FDJ10770
FDJ10780

- FDJ10790

¥DJ10800
FDJ10810
FDJ10820
FDJ10830
FDJ10840
FDJ10850
FDJ10860
FDJ10870
FDJ10880
FDJ10890
FDJ10900
FDJ10910
FDJ10920
¥DJ10930
FDJ10940
FDJ10950
FDJ10960
FDJ10970
FDJ10980
FDJ10990
FDJ11000
FDJ11010
FDJ11020
FDJ11030
FDJ11040
FDJ11050
FDJ11060
FDJ11070
FDJ11080

10
20
30

40

60

70
80
90
100
110

IF (H .EQ. ZERO) H = EPS
X(J) = TEMP + H

CALL FCN(N,X,WA1l,IFLAG)

IF (IFLAG .LT. 0) GO TO 30
X(J) = TEMP

DO 10 I =1, N

FJAC(I,J) = (WA1(I) - FVEC(I))/H

CONTINUE
. CONTINUE
CONTINUE
GO TO 110
CONTINUE

COMPUTATION OF BANDED APPROXIMATE JACOBIAN.

DO 90 K = 1, MSUM
DO 60 J = K, N, MSUM
WA2(J) = X(J)
" H = EPS*DABS (WA2(J))
IF (H .EQ. ZERO) H = EPS
X(J) = WA2(J) + H
CONTINUE
CALL FCN(N,X,WAl,IFLAG)
IF (IFLAG .LT. 0) GO TO 100
DO 80 J = K, N, MSUM
X(J) = WA2(J)
H = EPS*DABS(WA2(J))
IF (H .EQ. ZERO) H = EPS
DO70I =1, N
FJAC(I,J) = ZERO

IF (I .GE. J - MU .AND. I .LE. J + ML)
FJAC(I,J) = (WA1(I) - FVEC(I))/H

CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
RETURN

LAST CARD OF SUBROUTINE FDJAC1.

END

FDJ11090
FDJ11100
FDJ11110
FDJ11120
FDJ11130
FDJ11140
FDJ11150
FDJ11160
FDJ11170
FDJ11180
FDJ11190
FDJ11200
FDJ11210
FDJ11220-
FDJ11230
FDJ11240
FDJ11250
FDJ11260
FDJ11270
FDJ11280
FDJ11290
FDJ11300
FDJ11310
FDJ11320
FDJ11330
FDJ11340
FDJ11350
FDJ11360
FDJ11370
FDJ11380
FDJ11390
FDJ11400
FDJ11410
FDJ11420
FDJ11430
FDJ11440
FDJ11450
FDJ11460
FDJ11470
FDJ11480
FDJ11490
FDJ11500

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOGOOOOOOOOOOOOOOOOOOOO

SUBROUTINE FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC,IFLAG,EPSFCN,WA)
INTEGER M,N,LDFJAC,IFLAG

DOUBLE PRECISION EPSFCN

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(M)

Fededededeicdododed
SUBROUTINE FDJAC2
THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION

TO THE M BY N JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED
PROBLEM OF M FUNCTIONS IN N VARIABLES.

" THE SUBROUTINE STATEMENT IS

SUBROUTINE FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC, IFLAG,EPSFCN,WA)
WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M)

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF FDJACZ2.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN INPUT ARRAY OF LENGTH N.

FVEC IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE
FUNCTIONS EVALUATED AT X.

FJAC IS AN OUTPUT M BY N ARRAY WHICH CONTAINS THE
APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

FDJ20010
FDJ20020
FDJ20030
FDJ20040
FDJ20050
FDJ20060
FDJ20070
FDJ20080
FDJ20090
FDJ20100
FDJ20110
FDJ20120
FDJ20130
FDJ20140
FDJ20150
FDJ20160
FDJ20170
FDJ20180
FDJ20190
FDJ20200
FDJ20210
FDJ20220
FDJ20230
FDJ20240
FDJ20250
FDJ20260
FDJ20270
FDJ20280
FDJ20290
FDJ20300
FDJ20310
FDJ20320
FDJ20330
FDJ20340
FDJ20350
FDJ20360
FDJ20370
FDJ20380
FDJ20390
FDJ20400
FDJ20410
FDJ20420
FDJ20430
FDJ20440
FDJ20450
FDJ20460
FDJ20470
FDJ20480

FDJ20490

FDJ20500
FDJ20510
FDJ20520
FDJ20530
FDJ20540

PEoNoReoNoNoNoNoNoNoNoNoNoNoNoNoNoNeNoNoRo RO R RO K]

aao

156

IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE
THE EXECUTION OF FDJAC2. SEE DESCRIPTION OF FCN.

EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE
STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS
APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE
FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS
THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE
ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE
PRECISION.

WA IS A WORK ARRAY OF LENGTH M.
SUBPROGRAMS CALLED
USER-SUPPLIED

MINPACK-SUPPLIED ... DPMPAR

FORTRAN-SUPPLIED ... DABS,DMAX1,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

Serkdrdededesbobdey

INTEGER I,J

. DOUBLE PRECISION EPS,EPSMCH,H,TEMP,ZERO

10
20
30

DOUBLE PRECISION DPMPAR
DATA ZERO /0.0DO/

EPSMCH IS THE MACHINE PRECISION.
EPSMCH = DPMPAR(1)

EPS = DSQRT(DMAX1(EPSFCN,EPSMCH))
DO 20 J =1, N
TEMP = X(J)
H = EPS*DABS(TEMP)
IF (H .EQ. ZERO) H = EPS
X(J) = TEMP + H
CALL FCN(M,N,X,WA,IFLAG)
IF (IFLAG .LT. 0) GO TO 30
X(J) = TEMP
DO 10 I =1, M
FJAC(I,J) = (WA(I) - FVEC(I))/H
CONTINUE
CONTINUE
CONTINUE
RETURN

LAST CARD OF SUBROUTINE FDJAC2.

END

FDJ20550
FDJ20560
FDJ20570
FDJ20580
FDJ20590
FDJ20600
FDJ20610
FDJ20620
FDJ20630
FDJ20640
FDJ20650
FDJ20660
FDJ20670
FDJ20680
FDJ20690
FDJ20700
FDJ20710
FDJ20720
FDJ20730
FDJ20740
FDJ20750
FDJ20760
FDJ20770
FDJ20780
FDJ20790
FDJ20800
FDJ20810
FDJ20820
FDJ20830
FDJ20840
FDJ20850
FDJ20860
FDJ20870
FDJ20880
FDJ208390
FDJ20900
FDJ20910
FDJ20920
FDJ20930
¥FDJ20940
FDJ20950
FDJ20960
FDJ20970
FDJ20980
FDJ20990
FDJ21000
FDJ21010
FDJ21020
FDJ21030
FDJ21040
FDJ21050
FDJ21060
FDJ21070

[sRsE>E>RoNPNsNsNsNoNoNoNoNoNoNoReoNoNoNeoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoRoNoNoNoNoNoNoNoNe No]

*
*

%

157

SUBROUTINE HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,DIAG,
MODE ,FACTOR ,NPRINT, INFO,NFEV,FJAC,LDFJAC,R,LR,
QTF,WA1,WA2 ,WA3,WA4)

INTEGER N,MAXFEV,ML,MU,MODE,NPRINT, INFO,NFEV,LDFJAC,LR

DOUBLE PRECISION XTOL,EPSFCN,FACTOR

DOUBLE PRECISION X(N),FVEC(N),DIAG(N),FJAC(LDFJAC,N),R(LR),
QTF(N) ,WA1(N),WA2(N) ,WA3(N) ,WA4(N)

EXTERNAL FCN '

Fedededeidododoiok
SUBROUTINE HYBRD

THE PURPOSE OF HYBRD IS TO FIND A ZERO OF A SYSTEM OF

N NONLINEAR FUNCTIONS IN N VARIABLES .BY A MODIFICATION

OF THE POWELL HYBRID METHOD. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS
THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION.

THE SUBROUTINE STATEMENT IS

SUBROUTINE HYBRD (FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,
DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,FJAC,
LDFJAC,R,LR,QTF,WA1,WA2 ,WA3,WA4)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N, IFLAG

DOUBLE PRECISION X(N),FVEC(N)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF HYBRD.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS AND.VARIABLES.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

HYBD0010
HYBD0020
HYBD0030
HYBD0040
HYBD0050
HYBD0060
HYBD0070
HYBDO0080
HYBD0090
HYBD0100
HYBD0110
HYBD0120
HYBD0130
HYBDO0140
HYBD0150
HYBD0160
HYBD0170
HYBD0180
HYBD0190
HYBD0200
HYBD0210
HYBD0220
HYBD0230
HYBD0240
HYBD0250
HYBD0260
HYBD0270
HYBD0280
HYBD0290 -
HYBD0300
HYBD0310
HYBD0320
HYBD0330
HYBD0340
HYBD0350
HYBD0360
HYBD0370
HYBD0380
HYBD0390
HYBDO0400
HYBDO0410
HYBD0420
HYBD0430
HYBDO440
HYBD0450
HYBD0460
HYBD0470
HYBD0480
HYBD0490
HYBD0500
HYBD0510

HYBD0520

HYBDO530
HYBDO0540

158

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
ITERATES IS AT MOST XTOL.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST MAXFEV
BY THE END OF AN ITERATION.

ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES
THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE
JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET
ML TO AT LEAST N - 1.

MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES
THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE
JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET
MU TO AT LEAST N - 1.

EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE
STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS
APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE
FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS
THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE
ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE
PRECISION.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE
BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE
VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2,
THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
VALUES OF MODE ARE EQUIVALENT TO MODE = 1.

FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE
INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF
FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE
TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE
INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.

NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED
PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE,
FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST
ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND
IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE
FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS
OF FCN WITH IFLAG = 0 ARE MADE.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,

HYBDO0550
HYBDO560
HYBDO570
HYBDO0580
HYBDO0590
HYBD0600
HYBD0610
HYBD0620
HYBD0630
HYBD0640
HYBDO0650
HYBD0660
HYBD0670
HYBDO0680
HYBD0690
HYBDO700
HYBDO710
HYBDO720
HYBDO0730
HYBDO740
HYBDO750
HYBDO0760
HYBDO770
HYBDO0780
HYBDO0790
HYBD080O
HYBDO0810
HYBD0820
HYBD0830
HYBDO0840
HYBDO0O850
HYBDO0860
HYBD0870
HYBDO0880
HYBD0890
HYBD0900
HYBDO0910
HYBD0920
HYBD0S30
HYBDO0940
HYBD0950
HYBD0960
HYBDO0970
HYBD0980
HYBD0990
HYBD100O
HYBD1010
HYBD1020
HYBD1030
HYBD1040
HYBD1050
HYBD1060
HYBD1070
HYBD1080

loNsEoNoRoNoNoNoRoNoNoNoNoNoNoNoNoNoNoNoNe NSRS RS NO N NSNS NS NP]

159

INFO IS SET AS FOLLOWS. HYBD1090

, HYBD1100

INFO = 0 IMPROPER INPUT PARAMETERS. HYBD1110
HYBD1120

INFO = 1 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES HYBD1130
IS AT MOST XTOL. HYBD1140

‘ HYBD1150

INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED HYBD1160
MAXFEV. HYBD1170

HYBD1180

INFO = 3 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN HYBD1190
THE APPROXIMATE SOLUTION X IS POSSIBLE. HYBD1200

' HYBD1210

INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS HYBD1220
MEASURED BY THE IMPROVEMENT FROM THE LAST HYBD1230

FIVE JACOBIAN EVALUATIONS. : HYBD1240

HYBD1250

INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS HYBD1260
MEASURED BY THE IMPROVEMENT FROM THE LAST HYBD1270

TEN ITERATIONS. HYBD1280

HYBD1290

NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF HYBD1300
CALLS TO FCN. HYBD1310
HYBD1320

FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE HYBD1330
ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORIZATION ' HYBD1340
OF THE FINAL APPROXIMATE JACOBIAN. HYBD1350

‘ HYBD1360

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N HYBD1370
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. HYBD1380
HYBD1390

R IS AN OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS THE HYBD1400
UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION HYBD1410
OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE. HYBD1420

~ HYBD1430

IR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN HYBD1440
(N* (N+1)) /2. HYBD1450
HYBD1460

QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS HYBD1470
THE VECTOR (Q TRANSPOSE)*FVEC. HYBD1480
HYBD1490

WA1l, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N. HYBD1500
HYBD1510

SUBPROGRAMS CALLED HYBD1520
HYBD1530

USER-SUPPLIED FCN HYBD1540
HYBD1550

MINPACK-SUPPLIED ... DOGLEG,DPMPAR,ENORM,FDJACI, HYBD1560
QFORM, QRFAC,RIMPYQ,R1UPDT HYBD1570

HYBD1580

FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,MINO,MOD HYBD1590
HYBD1600

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. HYBD1610

BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE HYBD1620

aaan

a0

[oNoNeN®]

[oNoNeN]

[oNoNe]

*

10

*

* .OR. ML .LT. 0 .OR. MU
* .OR. LDFJAC .LT. N .OR.

160

€ PR PR SR S PR PR, R D
O A e I D D T 1Y

INTEGER I,IFLAG,ITER,J,JM1,L,MSUM,NCFAIL,NCSUC,NSLOW1,NSLOW2

INTEGER IWA(1) ‘

LOGICAL JEVAL,SING

DOUBLE PRECISION ACTRED,DELTA,EPSMCH,FNORM,FNORM1,ONE ,PNORM,
PRERED, P1,P5,P001,P0001,RATIO, SUM, TEMP,XNORN,
ZERO

DOUBLE PRECISION DPMPAR,ENORM

DATA ONE,P1,P5,P001,P0001,ZERO

/1.0D0,1.0D-1,5.0D-1,1.0D-3,1.0D-4,0.0D0/

EPSMCH IS THE MACHINE PRECISION.

EPSMCIl = DPMPAR(1)

INFO = 0
IFLAG = 0
NFEV = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .IE. 0 .OR. XTOL .LT. ZERO .OR. MAXFEV .LE. O

.LT. 0 .OR. FACTOR .LE. ZERO

LR .LT. (N*(N + 1))/2) GO TO 300

IF (MODE .NE. 2) GO TO 20

DO 10 J =1, N
IF (DIAG(J)
CONTINUE

.LE. ZERO) GO TO 300

20 CONTINUE

EVALUATE THE FUNCTION AT THE STARTING POINT
AND CALCULATE ITS NORM.

IFLAG = 1
CALL FCN(N,X,FVEC,IFLAG)
NFEV = 1

IF (IFLAG .LT. 0) GO TO 300
FNORM = ENORM(N,FVEC)

DETERMINE THE NUMBER OF CALLS TO FCN NEEDED TO COMPUTE
THE JACOBIAN MATRIX.

MSUM = MINO(ML+MU+1,N)

INITIALIZE ITERATION COUNTER AND MONITORS.

ITER =1

NCSUC = 0
NCFAIL = 0
NSLOW1 = 0
NSLOW2 = 0

BEGINNING OF THE OUTER LOOP.

HYBD1630
HYBD1640
HYBD1650
HYBD1660
HYBD1670
HYBD1680
HYBD1690
HYBD1700
HYBD1710
HYBD1720
HYBD1730
HYBD1740
HYBD1750
HYBD1760
HYBD1770
HYBD1780
HYBD1790
HYBD1800
HYBD1810
HYBD1820
HYBD1830
HYBD1840
HYBD1850
HYBD1860
HYBD1870
HYBD1880
HYBD1890
HYBD1900
HYBD1910
HYBD1920
HYBD1930
HYBD1940
HYBD1950
HYBD1960
HYBD1970
HYBD1980
HYBD1990
HYBD2000
HYBD2010
HYBD2020
HYBD2030
HYBD2040
HYBD2050
HYBD2060
HYBD2070
HYBD2080
HYBD2090
HYBD2100
HYBD2110
HYBD2120
HYBD2130
HYBD2140
HYBD2150
HYBD2160

aa

aaoQ

aaoaan

aaoaoaa

[oNoN®]

161

30 CONTINUE

40
50

60

70

80

90

100
110

JEVAL = .TRUE.
CALCULATE THE JACOBIAN MATRIX.

IFLAG = 2

CALL FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN,WA1,
WA2)

NFEV = NFEV + MSUM

IF (IFLAG .LT. 0) GO TO 300

COMPUTE THE QR FACTORIZATION OF THE JACOBIAN..
CALL QRFAC(N,N,FJAC,LDFJAC, .FALSE.,IWA,1,WA1,WA2,WA3)

ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
TO 'THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.

IF (ITER .NE. 1) GO TO 70

IF (MODE .EQ. 2) GO TO 50

DO 40 J =1, N
DIAG(J) = WA2(J)
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
CONTINUE

CONTINUE

ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
AND INITIALIZE THE STEP BOUND DELTA.

DO 60 J =1, N
WA3(J) = DIAG(J)*X(J)
CONTINUE
XNORM = ENORM(N,WA3)
DELTA = FACTOR*XNORM
IF (DELTA .EQ. ZERO) DELTA = FACTOR
CONTINUE

FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF.

DO 80 I =1,
QTF(I) =
CONTINUE
DO 120 J =1, N
IF (FJAC(J,J) .EQ. ZERO) GO TO 110
SUM = ZERO
DO 90 I =J, N
SUM = SUM + FJAC(I,J)*QTF(I)
CONTINUE

TEMP = -SUM/FJAC(J,J)

DO 100 I =J, N
QTF(I) = QTF(I) + FJAC(I,J)*TEMP
CONTINUE

CONTINUE

N
FVEC(I)

HYBD2170
HYBD2180
HYBD2190
HYBD2200

-HYBD2210

HYBD2220
HYBD2230
HYBD2240
HYBD2250
HYBD2260
HYBD2270
HYBD2280
HYBD2290
HYBD2300
HYBD2310
HYBD2320
HYBD2330
HYBD2340
HYBD2350
HYBD2360
HYBD2370
HYBD2380
HYBD2390-
HYBD2400
HYBD2410
HYBD2420
HYBD2430
HYBD2440
HYBD2450
HYBD2460
HYBD2470
HYBD2480
HYBD2490
HYBD2500
HYBD2510
HYBD2520
HYBD2530
HYBD2540
HYBD2550
HYBD2560
HYBD2570
HYBD2580
HYBD2590
HYBD2600
HYBD2610
HYBD2620
HYBD2630
HYBD2640
HYBD2650
HYBD2660
HYBD2670
HYBD2680
HYBD2690
HYBD2700

120

aQ

a0

aon

130
140

150

160
170

180

190

200

162

CONTINUE
COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R. -

SING = .FALSE.
DO 150 J =1, N
L=J
M1 = J - 1
IF (JM1 .LT. 1) GO TO 140
DO 130 I = 1, JM1
R(L) = FJAC(I,J)
L=L+N-1
CONTINUE
CONTINUE
R(L) = WAL(J)
IF (WA1(J) .EQ. ZERO) SING = .TRUE.
CONTINUE

ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC.
CALL QFORM(N,N,FJAC,LDFJAC,WA1)
RESCALE IF NECESSARY.
IF (MODE .EQ. 2) GO TO 170
DO 160 J =1, N
DIAG(J) = DMAX1(DIAG(J),WA2(J))
CONTINUE
CONTINUE
BEGINNING OF THE INNER LOOP.
CONTINUE
IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.
IF (NPRINT .LE. 0) GO TO 190
IFLAG = 0
IF (MOD(ITER-1,NPRINT) .EQ. 0) CALL FCN(N,X,FVEC,IFLAG)
IF (IFLAG .LT. 0) GO TO 300
CONTINUE
DETERMINE THE DIRECTION P.
CALL DOGLEG(N,R,LR,DIAG,QTF,DELTA,WAl,WA2,WA3)
STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P.

DO 200 J =1, N

WAL1(J) = -WAl(J)

WA2(J) = X(J) + WAl1(J)
WA3(J) = DIAG(J)*WA1(J)
CONTINUE

PNORM = ENORM(N,WA3)

HYBD2710
HYBD2720
HYBD2730
HYBD2740
HYBD2750
HYBD2760
HYBD2770
HYBD2780
HYBD2790
HYBD280O
HYBD2810
HYBD2820
HYBD2830
HYBD2840
HYBD2850
HYBD2860
HYBD2870
HYBD2880
HYBD2890
HYBD2900
HYBD2910
HYBD2920
HYBD2930
HYBD2940
HYBD2950
HYBD2960
HYBD2970
HYBD2980
HYBD2990
HYBD3000
HYBD3010
HYBD3020
HYBD3030
HYBD3040
HYBD3050
HYBD3060
HYBD3070
HYBD3080
HYBD3090
HYBD3100
HYBD3110
HYBD3120
HYBD3130
HYBD3140
HYBD3150
HYBD3160
HYBD3170
HYBD3180
HYBD3190
HYBD3200
HYBD3210
HYBD3220
HYBD3230
HYBD3240

Al

(@]

(@]

[oNoNe]

aaana

aaaQ

210

220

230

240

163

ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND.
IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM)
EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM.

IFLAG = 1

CALL FCN(N,WA2,WA4,IFLAG)
NFEV = NFEV + 1

IF (IFLAG .LT. 0) GO TO 300
FNORM1 = ENORM(N,WA4)

COMPUTE THE SCALED ACTUAL REDUCTION.

ACTRED = -ONE
IF (FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)*%*2

COMPUTE THE SCALED PREDICTED REDUCTION.

L=1
DO 220 I =1
SUM = ZER
DO 210 J
SUM =
L=1L
CONTINUE
WA3(I) = QTF(I) + SUM
CONTINUE
TEMP = ENORM(N,WA3)
PRERED = ZERO
IF (TEMP .LT. FNORM) PRERED = ONE - (TEMP/FNORM)%**2

P4

N

0
=1, A
SUM + R(L)*WA1(J)
+1

COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED
REDUCTION.

RATIO = ZERO
IF (PRERED .GT. ZERO) RATIO = ACTRED/PRERED

UPDATE THE STEP BOUND.

IF (RATIO .GE. P1) GO TO 230

NCSUC = 0

NCFAIL = NCFAIL + 1

DELTA = P5*DELTA

GO TO 240
CONTINUE

NCFAIL = 0O

NCSUC = NCSUC + 1

IF (RATIO .GE. P5 .OR. NCSUC .GT. 1)

DELTA = DMAX1(DELTA,PNORM/P5)

IF (DABS(RATIO-ONE) .LE. P1) DELTA = PNORM/P5

CONTINUE :

HYBD3250
HYBD3260
HYBD3270
HYBD3280
HYBD3290
HYBD3300
HYBD3310
HYBD3320
HYBD3330
HYBD3340
HYBD3350
HYBD3360
HYBD3370
HYBD3380
HYBD3390
HYBD3400
HYBD3410
HYBD3420
HYBD3430
HYBD3440
HYBD3450
HYBD3460
HYBD3470
HYBD3480
HYBD3490
HYBD3500
HYBD3510
HYBD3520
HYBD3530
HYBD3540
HYBD3550
HYBD3560
HYBD3570
HYBD3580
HYBD3590
HYBD3600
HYBD3610
HYBD3620
HYBD3630
HYBD3640
HYBD3650
HYBD3660
HYBD35670
HYBD3680
HYBD3690
HYBD3700
HYBD3710
HYBD3720
HYBD3730
HYBD3740
HYBD3750
HYBD3760
HYBD3770
HYBD3780

[oNoNe]

aaa

cooao

[oNoNeoNe]

250

260

270

280

164

. TEST FOR SUCCESSFUL ITERATION.

IF (RATIO .LT. PdOOl) GO TO 260
SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.

DO 250 J = 1, N
X(J) = WA2(J)
WA2(J) = DIAG(J)*X(J)
FVEC(J) = WA4(J)
CONTINUE
XNORM = ENORM(N,WA2)
FNORM = FNORM1
ITER = ITER + 1
CONTINUE

DETERMINE THE PROGRESS OF THE ITERATION.

NSLOW1 = NSLOW1 + 1

IF (ACTRED .GE. P001) NSLOW1
IF (JEVAL) NSLOW2 = NSLOW2 +
IF (ACTRED .GE. P1) NSLOW2 =

o = |

TEST FOR CONVERGENCE.

IF (DELTA .LE. XTOL*XNORM .OR. FNORM .EQ. ZERO) INFO
IF (INFO .NE. 0) GO TO 300

TESTS FOR TERMINATION AND STRINGENT TOLERANCES.

IF (NFEV .GE. MAXFEV) INFO = 2

IF (P1*DMAX1(P1*DELTA,PNORM) .LE. EPSMCH*XNORM) INFO
IF (NSLOW2 .EQ. 5) INFO = 4

IF (NSLOW1 .EQ. 10) INFO = 5

IF (INFO .NE. 0) GO TO 300

CRITERION FOR RECALCULATING JACOBIAN APPROXIMATION
BY FORWARD DIFFERENCES.

IF (NCFAIL .EQ. 2) GO TO 290

CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN
AND UPDATE QTF IF NECESSARY.

DO 280 J = 1, N
SUM = ZERO
DO 270 I = 1, N :
SUM = SUM + FJAC(I,J)*WA4(I)
CONTINUE
WA2(J) = (SUM - WA3(J))/PNORM
WA1(J) = DIAG(J)*((DIAG(J)*WA1(J))/PNORM)
IF (RATIO .GE. P0001) QTF(J) = SUM
CONTINUE

HYBD3790
HYBD3800
HYBD3810
HYBD3820
HYBD3830
HYBD3840
HYBD3850
HYBD3860
HYBD3870
HYBD3880
HYBD3890
HYBD3900
HYBD3910
HYBD3920
HYBD3930
HYBD3940
HYBD3950
HYBD3960
HYBD3970
HYBD3980
HYBD3990
HYBD400O
HYBD4010
HYBD4020
HYBD4030
HYBD4040
HYBD4050
HYBD4060
HYBD4070
HYBD4080
HYBD4090
HYBD4100
HYBD4110
HYBD4120
HYBD4130
HYBD4140
HYBD4150
HYBD4160
HYBD4170
HYBD4180
HYBD4190
HYBD4200
HYBD4210
HYBD4220
HYBD4230
HYBD4240
HYBD4250
HYBD4260
HYBD4270
HYBD4280
HYBD4290
HYBD4300
HYBD4310
HYBD4320

aaa

165

COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN.

CALL R1UPDT(N,N,R,LR,WA1,WA2,WA3,SING)
CALL RIMPYQ(N,N,FJAC,LDFJAC,WA2,WA3)
CALL RIMPYQ(1,N,QTF,1,WA2,WA3)

END OF THE INNER LOOP.
JEVAL = .FALSE.

GO TO 180
290 CONTINUE

END OF THE OUTER LOOP.
GO TO 30
300 CONTINUE

TERMINATION, EITHER NORMAL OR USER IMPOSED.
IF (IFLAG .LT. 0) INFO = IFLAG
IFLAG = 0 A
IF (NPRINT .GT. 0) CALL FCN({N,X,FVEC,IFLAG)
RETURN
LAST CARD OF SUBROUTINE HYBRD.

END

HYBD4330
HYBD4340
HYBD4350
HYBD4360
HYBD4370
HYBD4380
HYBD4390
HYBD4400
HYBD4410
HYBD4420
HYBD4430
HYBD4440
HYBD4450
HYBD4460
HYBD4470
HYBD4480
HYBD4490
HYBD4500
HYBD4510
HYBD4520
HYBD4530
HYBD4540
HYBD4550
HYBD4560
HYBD4570
HYBD4580
HYBD4590

166

| THIS PAGE o
WAS INTENTIONALLY
L;EFT BLANK

oo Ro o ReoRoRoRoRoRoRoRoRoRoRoRsRs R e ke R Koo Ko e e e Rs K2R Ee Rz e s e s e R Eo oo No o No N o e N N e N o]

167

SUBROUTINE HYBRD1(FCN,N,X,FVEC,TOL, INFO,WA,LWA)
INTEGER N, INFO,LWA

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(N),WA(LWA)

EXTERNAL FCN

slhaloatoatentonte ctuntactonts
TWIIWIWHR IR RN

SUBROUTINE HYBRD1

THE PURPOSE OF HYBRD1 IS TO FIND A ZERO OF A SYSTEM OF

N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION
OF THE POWELL HYBRID METHOD. THIS IS DONE BY USING THE
MORE GENERAL NONLINEAR EQUATION SOLVER HYBRD. THE USER
MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS.
THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE
APPROXIMATION.

THE SUBROUTINE STATEMENT IS
SUBROUTINE HYBRD1(FCN,N,X,FVEC,TOL,INFO,WA,LWA)
WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG

DOUBLE PRECISION X(N),FVEC(N)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF HYBRDI.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS AND- VARIABLES. :

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS
WHEN THE ALGORITHM ESTIMATES THAT THE RELATIVE ERROR

HYD10010
HYD10020
HYD10030
HYD10040
HYD10050
HYD10060
HYD10070
HYD10080
HYD10090
HYD10100
HYD10110
HYD10120
HYD10130
HYD10140
HYD10150
HYD10160
HYD10170
HYD10180
HYD10190
HYD10200
HYD10210
HYD10220
HYD10230
HYD10240
HYD10250
HYD10260
HYD10270
HYD10280
HYD10290
HYD10300
HYD10310
HYD10320
HYD10330
HYD10340
HYD10350
HYD10360
HYD10370
HYD10380
HYD10390
HYD10400
HYD10410
HYD10420
HYD10430
HYD10440
HYD10450
HYD10460
HYD10470
HYD10480
HYD10490
HYD10500
HYD10510
HYD10520
HYD10530
HYD10540

oNsNoNsNoNoNoNoNsoNoNoNoNoNoNoRoNoNoNoNsNoNoNoRoNoNoNoNRoNoNoRo Ro R R N Y]

ol
w

168

BETWEEN X AND THE SOLUTION IS AT MOST TOL.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO =0 IMPROPER INPUT PARAMETERS.

INFO =1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
BETWEEN X AND THE SOLUTION IS AT MOST TOL.

INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED
200%(N+1) .

INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS.

WA IS A WORK ARRAY OF LENGTH LWA.

LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
(N*(3*N+13))/2.

SUBPROGRAMS CALLED
USER-SUPPLIED FCN
MINPACK-SUPPLIED ... HYBRD

ARGONNE. NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

P R P R R LR
WIEICITITIWITIWIW

INTEGER INDEX,J,LR,MAXFEV,ML,MODE,MU,NFEV,NPRINT
DOUBLE PRECTSION EPSFCN,FACTOR,ONE,XTOL,ZERO
DATA FACTOR,ONE,ZERO /1.0D2,1.0D0,0.0D0/

INFO = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. TOL .LT. ZERO .OR. LWA .LT. (N*(3*N + 13))/2)

GO TO 20
CALL HYBRD.

MAXFE 00*(N + 1)

HYD10550
HYD10560
HYD10570
HYD10580
HYD10590
HYD10600
HYD10610
HYD10620
HYD10630
HYD10640
HYD10650
HYD10660
HYD10670
HYD10680
HYD10690
HYD10700
HYD10710
HYD10720
HYD10730
HYD10740
HYD10750
HYD10760
HYD10770
HYD10780
HYD10790
HYD10800
HYD10810
HYD10820
HYD10830
HYD10840
HYD10850
HYD10860
HYD10870
HYD10880
HYD10890
HYD10900
HYD10910
HYD10920
HYD10930
HYD10940
HYD10950
HYD10960
HYD10970
HYD10980
HYD10990
HYD11000
HYD11010
HYD11020
HYD11030
HYD11040
HYD11050
HYD11060
HYD11070
HYD11080

oNoNe]

169

WA(J) = ONE
10 CONTINUE
NPRINT = 0
LR = (N*(N + 1))/2
INDEX = 6*N + IR
CALL HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,WA (1) ,MODE,
* ' FACTOR,NPRINT, INFO,NFEV,WA (INDEX+1) ,N,WA(6*N+1),LR,
* WA(N+1) ,WA(2%N+1), WA(3*N+1) WA (4*N+1) ,WA(5*%N+1))
IF (INFO .EQ. 5) INFO = 4
20 CONTINUE
RETURN

LAST CARD OF SUBROUTINE HYBRD1.

END

"'HYD11090

HYD11100
HYD11110
HYD11120
HYD11130
HYD11140
HYD11150
HYD11160
HYD11170
HYD11180
HYD1:190
HYD11200
HYD11210
HYD11220
HYD11230

170

T

THIS PAGE B
WAS INTENTIONALLY
LEFT BLANK

. | . y

SUBROUTINE HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,MODE,

* FACTOR,NPRINT, INFO,NFEV,NJEV,R,LR,QTF,WA1,WA2,
* WA3,WASL)

INTEGER N,LDFJAC,MAXFEV,MODE,NPRINT, INFO,NFEV,NJEV,LR

DOUBLE PRECISION XTOL,FACTOR

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),DIAG(N),R(LR),

* QTF(N) ,WA1(N),WA2(N),WA3(N),WA4(N)

dleulastoclecb et ntoate atente
ETITITIWIWWWRNW

SUBROUTINE HYBRJ

THE PURPOSE OF HYBRJ IS TO FIND A ZERO OF A SYSTEM OF

N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION

OF THE POWELL HYBRID METHOD. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

SUBROUTINE HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,
MODE , FACTOR ,NPRINT, INFO ,NFEV,NJEV,R, LR, QTF,
WA1,WA2,WA3,WAG)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED '‘SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER
CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N,LDFJAC, IFLAG

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)
IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
RETURN

END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF HYBRJ.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS AND VARIABLES.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

HYBJ0OO10
HYBJ0020
HYBJ0030
HYBJ0040
HYBJ0OO50
HYBJ0060
HYBJ0070
HYBJ0080
HYBJ0090
HYBJ0100
HYBJO110
HYBJ0120
HYBJ0130
HYBJO140
HYBJO150
HYBJ0160
HYBJO170
HYBJO0180

- HYBJ0190

HYBJ0200
HYBJ0210
HYBJ0220
HYBJ0230
HYBJ0240
HYBJ0250
HYBJ0260
HYBJO0270
HYBJ0280
HYBJ0290
HYBJ0300
HYBJ0310
HYBJ0320
HYBJO0330
HYBJ0340
HYBJ0350
HYBJ0360
HYBJ0370
HYBJ0380
HYBJ0390
HYBJ0400
HYBJ0410
HYBJ0420
HYBJ0430
HYBJ0440
HYBJ0450
HYBJ0460
HYBJO0470
HYBJ0480
HYBJ0490
HYBJ0500
HYBJ0510
HYBJ0520
HYBJO530
HYBJ0540

C
C.
C
c
c
C
c
C
C
C
C
C
c
C
c
c
C
C
C
C
c
c
c
C
c
C
C
C
c
C
C
C
c
c
c
c
c
C
c
c
c
c
C
c
c
C
c
c
C
c
c
C
c .
C

172

FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE
ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORIZATION
OF THE FINAL APPROXIMATE JACOBIAN.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
ITERATES IS AT MOST XTOL.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1
HAS REACHED MAXFEV.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE
BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE
VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2,
THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
VALUES OF MODE ARE EQUIVALENT TO MODE = 1.

FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE
INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF
FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE
TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE

INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.

NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED
PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE,
FCN IS CALLED WITH IFLAG = O AT THE BEGINNING OF THE FIRST
ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND
IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE
FOR PRINTING. FVEC AND FJAC SHOULD NOT BE ALTERED.
IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS OF FCN
WITH IFLAG = 0 ARE MADE.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.

INFO = 1 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES
. IS AT MOST XTOL.

INFO = 2 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS

REACHED MAXFEV.

HYBJO550
HYBJ0560
HYBJO0570
HYBJ0580
HYBJO0590
HYBJ0600
HYBJ0610
HYBJ0620
HYBJ0630
HYBJ0640
HYBJ0650
HYBJ0660
HYBJ0670
HYBJ0680
HYBJ0690
HYBJ0700
HYBJ0710
HYBJO720
HYBJ0730
HYBJ0740
HYBJ0750
HYBJ0760
HYBJ0770
HYBJ0780
HYBJ0790
HYBJ0800
HYBJ0810
HYBJ0820
HYBJ0830
HYBJ0840
HYBJ0850
HYBJ0860
HYBJ0870
HYBJO0880
HYBJ0890
HYBJ0900
HYBJO0910
HYBJ0920
HYBJ0930
HYBJ0940
HYBJ0950
HYBJ0960
HYBJ0970
HYBJ0980
HYBJ0990
HYBJ1000
HYBJ1010
HYBJ1020
HYBJ1030
HYBJ1040
HYBJ1050
HYBJ1060
HYBJ1070
HYBJ1080

sNoNe NN R E* R EReEsE*EsEsEoRoEoNoEoNoNoNoNoNoRoNoNoNoNoNoNoNoRoRoNoNoNO NSO NSNS NG

173

INFO = 3 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS
MEASURED BY THE IMPROVEMENT FROM THE LAST
FIVE JACOBIAN EVALUATIONS.

INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS

MEASURED BY THE IMPROVEMENT FROM THE LAST
TEN ITERATIONS.

NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
CALLS TO FCN WITH IFLAG = 1.

NJEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
CALLS TO FCN WITH IFLAG = 2.

R IS AN OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS THE
UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION
OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE.

LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
(N*(N+1))/2.

QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE VECTOR (Q TRANSPOSE)*FVEC.

WA1l, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N.
SUBPROGRAMS CALLED
USER-SUPPLIED FCN

MINPACK-SUPPLIED ... DOGLEG,DPMPAR,ENORM,
QFORM, QRFAC,R1MPYQ,R1UPDT

FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,MOD

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

SIS STINE eSO
Fededededohfdend

INTEGER I,IFLAG,ITER,J,JM1,L,NCFAIL,NCSUC,NSLOW1,NSLOW2
INTEGER IWA(1)

LOGICAL JEVAL,SING

DOUBLE PRECISION ACTRED,DELTA,EPSMCH,¥NORM,FNORM1,0NE, PNORM,

* PRERED,P1,P5,P001,P0001,RATIO, SUM,TEMP ,XNORM,

* ZERO
DOUBLE PRECISION DPMPAR,ENORM

DATA ONE,P1,P5,P001,P0001,ZERO

* /1.0D0,1.0D-1,5.0D-1,1.0D-3,1.0D-4,0.0D0/

EPSMCH IS THE MACHINE PRECISION.

HYBJ1090
HYBJ1100
HYBJ1110
HYBJ1120
HYBJ1130
HYBJ1140
HYBJ1150
HYBJ1160
HYBJ1170
HYBJ1180
HYBJ1190
HYBJ1200
HYBJ1210
HYBJ1220
HYBJ1230
HYBJ1240
HYBJ1250
HYBJ1260
HYBJ1270
HYBJ1280
HYBJ1290
HYBJ1300
HYBJ1310
HYBJ1320
HYBJ1330
HYBJ1340
HYBJ1350
HYBJ1360
HYBJ1370
HYBJ1380
HYBJ1390
HYBJ1400
HYBJ1410
HYBJ1420
HYBJ1430
HYBJ1440
HYBJ1450
HYBJ1460
HYBJ1470
HYBJ1480
HYBJ1490
HYBJ1500
HYBJ1510
HYBJ1520
HYBJ1530
HYBJ1540
HYBJ1550
HYBJ1560
HYBJ1570
HYBJ1580
HYBJ1590
HYBJ1600
HYBJ1610
HYBJ1620

aaaa

aoan

oo NN

10
20

30

174

EPSMCH = DPMPAR(1)

INFO = 0
IFLAG = 0
NFEV = 0
NJEV = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. LDFJAC .LT. N .OR. XTOL .LT. ZERO
.OR. MAXFEV .LE. O .OR. FACTOR .LE. ZERO
.OR. LR .LT. (N*(N + 1))/2) GO TO 300
IF (MODE .NE. 2) GO TO 20
DO 10 J = 1, N
IF (DIAG(J) .LE. ZERO) GO TO 300
CONTINUE
CONTINUE

EVALUATE THE FUNCTION AT THE STARTING POINT
AND CALCULATE ITS NORM.

IFLAG = 1
CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
NFEV = 1

IF (IFLAG .LT. 0) GO TO 300
FNORM = ENORM(N,FVEC)

INITIALIZE ITERATION COUNTER AND MONITORS.

ITER = 1
NCSUC = 0
NCFAIL
NSLOW1
NSLOwW2

0
0
0
BEGINNING OF THE OUTER LOOP.

CONTINUE
JEVAL = .TRUE.

CALCULATE THE JACOBIAN MATRIX.
IFLAG = 2

CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)

NJEV = NJEV + 1

IF (IFLAG .LT. 0) GO TO 300

COMPUTE THE QR FACTORIZATION OF THE JACOBIAN.

CALL QRFAC(N,N,FJAC,LDFJAC, .FALSE.,IWA,1,WAl,WA2,WA3)

ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.

HYBJ1630
HYBJ1640
HYBJ1650
HYBJ1660
HYBJ1670
HYBJ1680
HYBJ1690
HYBJ1700
HYBJ1710
HYBJ1720
HYBJ1730
HYBJ1740
HYBJ1750
HYBJ1760
HYBJ1770
HYBJ1780
HYBJ1790

"~ HYBJ1800

HYBJ1810
HYB.J1820
HYBJ1830
HYBJ1840
HYBJ1850
HYBJ1860
HYBJ1870
HYBJ1880
HYBJ1890
HYBJ1900
HYBJ1910
HYBJ1920
HYBJ1930
HYBJ1940
HYBJ1950
HYBJ1960
HYBJ1970
HYBJ1980
HYBJ1990
HYBJ2000
HYBJ2010
HYBJ2020
HYBJ2030
HYBJ2040
HYBJ2050
HYBJ2060
HYBJ2070
HYBJ2080
HYBJ2090
HYBJ2100
HYBJ2110
HYBJ2120
HYBJ2130
HYBJ2140
HYBJ2150
HYBJ2160

[oNoNoNe]

Q

40

50

60

70

80

90

100
110
120

130
140

150

IF (ITER .NE. 1) GO TO 70

IF (MODE .EQ. 2) GO TO 50

DO 40 J =1, N
DIAG(J) = WA2(J)
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
CONTINUE

CONTINUE

ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED

AND INITIALIZE THE STEP BOUND DELTA.

DO 60 J =1, N
WA3(J) = DIAG(J)*X(J)
CONTINUE
XNORM = ENORM(N,WA3)
DELTA = FACTOR*XNORM
IF (DELTA .EQ. ZERO) DELTA = FACTOR
CONTINUE

FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF.

DO 80 I = 1,
QTF(I) =
CONTINUE
DO 120 J = 1, N
IF (FJAC(J,J) .EQ. ZERO) GO TO 110
SUM = ZERO
DO 90 I =J, N
SUM = SUM + FJAC(I,J)*QTF(I)
CONTINUE

TEMP = -SUM/FJAC(J,J)

DO 100 I = J, N
QTF(I) = QTF(I) + FJAC(I,J)*TEMP
CONTINUE

CONTINUE

CONTINUE

N
FVEC(I)

COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R.

SING = .FALSE.
DO 150 J =1, N
L=17J
JM1 =J -1

IF (JM1 .LT. 1) GO TO 140
DO 130 I =1, JM1
R(L) = FJAC(I,J)
L=L+N-1
CONTINUE
CONTINUE
R(L) = WA1(J)
IF (WA1(J) .EQ. ZERO) SING = .TRUE.
CONTINUE

ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC.

HYBJ2170
HYBJ2180
HYBJ2190
HYBJ2200
HYBJ2210
HYBJ2220
HYBJ2230
HYBJ2240
HYBJ2250
HYBJ2260
HYBJ2270
HYBJ2280
HYBJ2290
HYBJ2300
HYBJ2310
HYBJ2320
HYBJ2330
HYBJ2340
HYBJ2350
HYBJ2360
HYBJ2370
HYBJ2380
HYBJ2390
HYBJ2400
HYBJ2410
HYBJ2420
HYBJ2430
HYBJ2440
HYBJ2450
HYBJ2460
HYBJ2470
HYBJ2480
HYBJ2490
HYBJ2500
HYBJ2510
HYBJ2520
HYBJ2530
HYBJ2540
HYBJ2550
HYBJ2560
HYBJ2570
HYBJ2580
HYBJ2590
HYBJ2600
HYBJ2610
HYBJ2620
HYBJ2630
HYBJ2640
HYBJ2650
HYBJ2660
HYBJ2670
HYBJ2680
HYBJ2690
HYBJ2700

176

_ HYBJ2710

CALL QFORM(N,N,FJAC,LDFJAC,WA1) HYBJ2720
HYBJ2730

RESCALE IF NECESSARY. HYBJ2740
HYBJ2750

IF (MODE .EQ. 2) GO TO 170 HYBJ2760
DO 160 J = 1, N HYBJ2770
DIAG(J) = DMAX1(DIAG(J),WA2(J)) HYBJ2780
CONTINUE HYBJ2790
CONTINUE HYBJ2800
HYBJ2810

BEGINNING OF THE INNER LOOP. HYBJ2820
HYBJ2830

CONTINUE HYBJ2840
HYBJ2850

IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. HYBJ2860
HYBJ2870

IF (NPRINT .LE. 0) GO TO 190 HYBJ2880
IFLAG = 0 , HYBJ2890

IF (MOD(ITER-1,NPRINT) .EQ. 0) HYBJ2900
CALL FCN(N,X,FVEC,FJAC,LDFJAC, IFLAG) HYBJ2910

IF (IFLAG .LT. 0) GO TO 300 HYBJ2920
CONTINUE HYBJ2930
HYBJ2940

DETERMINE THE DIRECTION P. HYBJ2950
HYBJ2960

CALL DOGLEG(N,R,LR,DIAG,QTF,DELTA,WAl,WA2,WA3) HYBJ2970

A HYBJ2980

STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. HYBJ2990
HYBJ3000

DO 200 J = 1, N HYBJ3010
WAL(J) = -WA1(J) HYBJ3020
WA2(J) = X(J) + WAL(J) HYBJ3030
WA3(J) = DIAG(J)*WA1(J) HYBJ3040
CONTINUE HYBJ3050

PNORM = ENORM(N,WA3) HYBJ3060
HYBJ3070

ON THE FIRST ITERATION, ADJUST THE INITTAL STEP BOUND. HYBJ3080
HYBJ3090

IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM) HYBJ3100
HYBJ3110

EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM. HYBJ3120
HYBJ3130

IFLAG = 1 HYBJ3140
CALL FCN(N,WA2,WA4,FJAC,LDFJAC, IFLAG) HYBJ3150
NFEV = NFEV + 1 HYBJ3160

IF (IFLAG .LT. 0) GO TO 300 HYBJ3170
FNORM1 = ENORM(N,WA&) HYBJ3180
HYBJ3190

COMPUTE THE SCALED ACTUAL REDUCTION. HYBJ3200
HYBJ3210

ACTRED = -ONE HYBJ3220

IF (FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)%*%2 HYBJ3230

HYBJ3240

oo NP NP}

oaa

aaQa

(@]

210

220

230

240

250

260

177

COMPUTE THE SCALED PREDICTED REDUCTION.

L=1
DO 220 I =1, N
SUM = ZERO

DO 210 J =1, N
SUM = SUM + R(L)*WA1(J)
L=L+1
CONTINUE
WA3(I) = QTF(I) + SUM
CONTINUE
TEMP = ENORM(N,WA3)
PRERED = ZERO
IF (TEMP .LT. FNORM) PRERED = ONE - (TEMP/FNORM)*¥*2

COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED
REDUCTION.

RATIO = ZERO
IF (PRERED .GT. ZERO) RATIO = ACTRED/PRERED

UPDATE THE STEP BOUND.

IF (RATIO .GE. P1) GO TO 230

NCSUC = 0

NCFAIL = NCFAIL + 1

DELTA = P5*DELTA

GO TO 240
CONTINUE

NCFAIL = 0

NCSUC = NCSUC + 1

IF (RATIO .GE. P5 .OR. NCSUC .GT. 1)

DELTA = DMAX1(DELTA,PNORM/P5)

IF (DABS(RATIO-ONE) .LE. P1) DELTA = PNORM/P5

CONTINUE

TEST FOR SUCCESSFUL ITERATION.

IF (RATIO .LT. P0O00O1l) GO TO 260

SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.

DO 250 J =1, N
X(J) = wAaz2(J)
WA2(J) = DIAG(J)*X(J)
FVEC(J) = WA4(J)
CONTINUE
XNORM = ENORM(N,WA2)
FNORM = FNORM1
ITER = ITER + 1
CONTINUE

DETERMINE THE PROGRESS OF THE ITERATION.

HYBJ3250
HYBJ3260
HYBJ3270
HYBJ3280
HYBJ3290
HYBJ3300
HYBJ3310
HYBJ3320
HYBJ3330
HYBJ3340
HYBJ3350
HYBJ3360
HYBJ3370
HYBJ3380
HYBJ3390
HYBJ3400
HYBJ3410
HYBJ3420
HYBJ3430
HYBJ3440
HYBJ3450
HYBJ3460
HYBJ3470
HYBJ3480
HYBJ3490
HYBJ3500
HYBJ3510
HYBJ3520
HYBJ3530
HYBJ3540
HYBJ3550
HYBJ3560
HYBJ3570
HYBJ3580
HYBJ3590
HYBJ3600
HYBJ3610
HYBJ3620
HYBJ3630
HYBJ3640
HYBJ3650
HYBJ3660
HYBJ3670
HYBJ3680
HYBJ3690
HYBJ3700
HYBJ3710
HYBJ3720
HYBJ3730
HYBJ3740
HYBJ3750
HYBJ3760
HYBJ3770
HYBJ3780

a0

aaa

aaQa

oNoNo N

[oNe]

o NoNe]

c
C
C

C
C
C

270

280

290

300

178

NSLOW1 = NSLOW1 + 1

IF (ACTRED .GE. P001) NSLOW1
IF (JEVAL) NSLOW2 = NSLOW2 +
IF (ACTRED .GE. P1l) NSLOW2 =

O~]

TEST FOR CONVERGENCE.

IF (DELTA .LE. XTOL*XNORM .OR. FNORM .EQ. ZERO) INFO

IF- (INFO .NE. 0) GO TO 300
TESTS FOR TERMINATION AND STRINGENT TOLERANCES.

IF (NFEV .GE. MAXFEV) INFO = 2

IF (P1*DMAX1(P1*DELTA,PNORM) .LE. EPSMCH*XNORM) INFO

IF (NSLOW2 .EQ. 5) INFO = 4
IF (NSLOW1 .EQ. 10) INFO = 5
IF (INFO .NE. 0) GO TO 300

CRITERION FOR RECALCULATING JACOBIAN.
IF (NCFAIL .EQ. 2) GO TO 290

CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN
AND UPDATE QTF IF NECESSARY.

DO 280 J = 1

SUM = ZER
DO 270 I = 1, N

SUM = SUM + FJAC(I,J)*WA4(I)

CONTINUE
WA2(J) = (SUM - WA3(J))/PNORM
WA1(J) = DIAG(J)*((DIAG(J)*WA1(J))/PNORM)
IF (RATIO .GE. P0001) QTF(J) = SUM
CONTINUE

N

O~

COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN.

CALL R1UPDT(N,N,R,LR,WA1,WA2,WA3,SING)
CALL RIMPYQ(N,N,FJAC,LDFJAC,WAZ ,WA3)
CALL R1MPYQ(1,N,QTF,1,WA2,WA3)
END OF THE INNER LOOP.
JEVAL = .FALSE.
GO TO 180

CONTINUE

END OF THE OUTER LOOP.

GO TO 30
CONTINUE

TERMINATION, EITHER NORMAL OR USER IMPOSED.

HYBJ3790
HYBJ3800
HYBJ3810
HYBJ3820
HYBJ3830
HYBJ3840
HYBJ3850
HYBJ3860
HYBJ3870
HYBJ3880
HYBJ3890
HYBJ3900
HYBJ3910
HYBJ3920
HYBJ3930
HYBJ3940
HYBJ3950
HYBJ3960
HYBJ3970
HYBJ3980
HYBJ3990
HYBJ4000
HYBJ4010 -
HYBJ4020
HYBJ4030
HYBJ4040
HYBJ4050
HYBJ4060
HYBJ4070
HYBJ4080
HYBJ4090
HYBJ4100
HYBJ4110 °
HYBJ4120
HYBJ4130
HYBJ4140
HYBJ4150
HYBJ4160
HYBJ4170
HYBJ4180
HYBJ4190
HYBJ4200
HYBJ4210
HYBJ4220
HYBJ4230
HYBJ4240
HYBJ4250
HYBJ4260
HYBJ4270
HYBJ4280
HYBJ4290
HYBJ4300
HYBJ4310
HYBJ4320

179

IF (IFLAG .LT. 0) INFO = IFLAG

IFLAG = 0

IF (NPRINT .GT. 0) CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
RETURN

LAST CARD OF SUBROUTINE HYBRJ.

END

HYBJ4330
HYBJ4340
HYBJ4350
HYBJ4360
HYBJ4370
HYBJ4380
HYBJ4390
HYBJ4400

180

AT RTN
[

PR g Wy
t.E v A B
L ke FT

W THISPAGE! L+
WASANTENTIONALLY
LEFT BLANK

OOO

SUBROUTINE HYBRJ1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,WA,LWA)
INTEGER N,LDFJAC,INFO,LWA

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

T e e s
TEITIVIT IO

SUBROUTINE HYBRJ1

THE PURPOSE OF HYBRJ1 IS TO FIND A ZERO OF A SYSTEM OF

N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION
OF THE POWELL HYBRID METHOD. THIS IS DONE BY USING THE
MORE GENERAL NONLINEAR EQUATION SOLVER HYBRJ. THE USER
MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS
AND>THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

SUBROUTINE HYBRJ1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL, INFO,WA,LWA)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
BE' DECLARED IN AN EXTERNAL STATEMENT IN THE USER
CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N,LDFJAC, IFLAG

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)
IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
RETURN

END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS

THE USER WANTS TO TERMINATE EXECUTION OF HYBRJ1.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER

OF FUNCTIONS AND VARIABLES.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN

AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X

CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE

HYJ10010
HYJ10020
HYJ10030
HYJ10040
HYJ10050
HYJ10060
HYJ10070
HYJ10080
HYJ10090
HYJ10100
HYJ10110
HYJ10120
HYJ10130
HYJ10140
HYJ10150
HYJ10160
HYJ10170
HYJ10180
HYJ10190
HYJ10200
HYJ10210
HYJ10220
HYJ10230
HYJ10240
HYJ10250
HYJ10260
HYJ10270
HYJ10280
HYJ10290
HYJ10300
HYJ10310
HYJ10320
HYJ10330
HYJ10340
HYJ10350
HYJ10360
HYJ10370
HYJ10380
HYJ10390
HYJ10400
HYJ10410
HYJ10420
HYJ10430
HYJ10440
HYJ10450
HYJ10460
HYJ10470
HYJ10480
HYJ10490
HYJ10500
HYJ10510
HYJ10520
HYJ10530
HYJ10540

[oNeNe]

(@]

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOGOOOOO

182

ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORIZATION
OF THE FINAL APPROXIMATE JACOBIAN.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS
WHEN THE ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
BETWEEN X AND THE SOLUTION IS AT MOST TOL.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.
1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
BETWEEN X AND THE SOLUTION IS AT MOST TOL.

INFO

INFO = 2 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS
REACHED 100+ (N+1).

INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS.

WA IS A WORK ARRAY OF LENGTH LWA.

LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
(N* (N+13))/2.

SUBPROGRAMS CALLED
USER-SUPPLIED FCN
MINPACK-SUPPLIED ... HYBRJ

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

slestosteatoaticbictctote ot
ORI i) i i N

INTEGER J,LR,MAXFEV,MODE ,NFEV,NJEV,NPRINT
DOUBLE PRECISION FACTOR,ONE,XTOL,ZERO
DATA FACTOR,ONE,ZERO /1.0D2,1.0D0,0.0D0/
INFO = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. LDFJAC .LT. N .OR. TOL .LT. ZERO
* .OR. IWA .LT. (N*(N + 13))/2) GO TO 20

CALL HYBRJ.

HYJ10550
HYJ10560
HYJ10570
HYJ10580
HYJ10590
HYJ10600
HYJ10610
HYJ10620
HYJ10630
HYJ10640
HYJ10650
HYJ10660
HYJ10670
HYJ10680
HY.J10690
HYJ10700
HYJ10710
HYJ10720
HYJ10730
HYJ10740
HYJ10750
HYJ10760
HYJ10770
HYJ10780
HYJ10790
HYJ10800
HYJ10810
HYJ10820
HYJ10830
HYJ10840
HYJ10850
HYJ10860
HY.T10870
HYJ10880
HYJ10890
HYJ10900
HYJ10910
HYJ10920
HYJ10930
HYJ10940
HYJ10950
HYJ10960
HYJ10970
HYJ10980
HYJ10990
HYJ11000
HYJ11010
HYJ11020
HYJ11030
HYJ11040
HYJ11050
HYJ11060
HYJ11070
HYJ11080

aaa

MAXFEV = 100%(N + 1)
XTOL = TOL
MODE = 2
DO 10 J =1, N
WA(J) = ONE
10 CONTINUE
~ NPRINT = 0

LR = (N*(N + 1))/2

CALL HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,WA(1),MODE,
% FACTOR,NPRINT, INFO,NFEV,NJEV,WA(6*N+1) ,LR,WA(N+1),
¥ WA(2*N+1) ,WA(3*N+1) ,WA(4*N+1) ,WA(5*N+1))

IF (INFO .EQ. 5) INFO = &4
20 CONTINUE
RETURN
LAST CARD OF SUBROUTINE HYBRJ1.

END

183

HYJ11090
HYJ11100
HYJ11110
HYJ11120
HYJ11130
HYJ11140
HYJ11150
HYJ11160
HYJ11170
HYJ11180
HYJ11190
HYJ11200
HYJ11210

HYJ11220

HYJ11230
HYJ11240
HYJ11250
HYJ11260
HYJ11270

184

—— -
- e
[

eRrsE*Re R R s s Ko R EeEoReo N R oo Ro Re s Re oo NoNo NoEoNoNoNoNoNoNoNoNoNoNoNeoNoNoNe N Neo N Ne Ne]

SUBROUTINE LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
* MAXFEV,DIAG,MODE , FACTOR ,NPRINT, INFO,NFEV,NJEV,
%* IPVT,QTF,WAL,WA2 ,WA3,WA4)

INTEGER M,N,LDFJAC,MAXFEV,MODE,NPRINT, INFO,NFEV,NJEV

INTEGER IPVT(N)

DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N),
* WAL(N),WA2 (N),WA3(N),WA4 (M)

stestontontaclactantantantants
TEATIVITWATICIONW

SUBROUTINE LMDER

THE PURPOSE OF LMDER IS TO MINIMIZE THE SUM OF THE SQUARES OF
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF

THB LEVENBERG-MARQUARDT ALGORITHM. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMDER (FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
MAXFEV ,DIAG,MODE ,FACTOR,NPRINT, INFO,NFEV,
NJEV, IPVT,QTF,WAl,WA2 ,WA3,WA4)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER
CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER M,N,LDFJAC,IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)
IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
RETURN

END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMDER.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X

LMDROO10
LMDR0O020
LMDRO030
LMDR0040
LMDROO50
LMDRO060
LMDROO70
LMDR0OO80O
LMDRO090
LMDR0O100
LMDRO110
LMDRO120
LMDRO130
LMDRO140
LMDRO150
LMDRO160
LMDRO170
LMDRO180
LMDR0O190
LMDR0200
LMDR0O210
LMDR0220
LMDR0O230
LMDR0240
LMDR0250
LMDR0260
LMDRO270
LMDR0280
LMDR0290
LMDRO300
LMDRO310
LMDR0320
LMDRO0330
LMDRO340
LMDRO350
LMDR0360
LMDRO370
LMDR0380
LMDR0390
LMDR0O400O
LMDRO410
LMDRO420
LMDRO0430
LMDRO0440
LMDR0450
LMDRO460
LMDR0470
LMDR0480
LMDRO04S0
LMDRO500
LMDRO510
LMDR0520
~LMDRO530
LMDRO540
N

sNoNoEsEoNoNoNoNoNoNsNsNsNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNRoNoNoNoNoNoNoNoNoNoNoNoRoNoNoNoRo R R o Ro o o N N Ne)

186

CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX
OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH
DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE SUCH THAT

T T T
P *(JAC *JAC)*P = R *R,

WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL
CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J)

(SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL
PART OF FJAC CONTAINS INFORMATION GENERATED DURING

THE COMPUTATION OF R.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE
REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL.
THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED
IN THE SUM OF SQUARES.

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE
RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION.

GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE COSINE OF THE ANGLE BETWEEN FVEC AND
ANY COLUMN OF THE JACOBIAN IS AT MOST GTOL IN ABSOLUTE
VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY
DESIRED BETWEEN THE FUNCTION VECTOR AND THE COLUMNS
OF THE JACOBIAN.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1
HAS REACHED MAXFEV.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE
BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE
VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2,
THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
VALUES OF MODE ARE EQUIVALENT TO MODE = 1.

FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE

LMDRO550
LMDRO560
LMDRO570
LMDRO580
LMDRO590
LMDRO600
LMDRO610
LMDRO620
LMDRO630
LMDRO640
LMDRO650
LMDRO660
LMDRO670
LMDRO680
LMDR0O690
LMDRO700
LMDR0O710
LMDR0O720
LMDRO730
LMDRO740
LMDRO750
LMDRO760
LMDRO770
LMDR0O780
LMDR0O790
LMDRO800O
LMDRO810
LMDR0O820
LMDRO830
LMDRO840
LMDRO850
LMDR0O860
LMDRO870
LMDRO880
LMDRO890
LMDRO900
LMDR0O910
LMDR0920
LMDR0930
LMDROS40
LMDROS50
LMDROS60
LMDRO970
LMDRO0980
LMDRO990
LMDR100OO
LMDR1010
LMDR1020
LMDR1030
LMDR1040
LMDR1050
LMDR1060
LMDR1070
LMDR1080

*NeoNsNoNsNsNoNoNoNsoNsRoNsoNoNsNoNoNsNoNoNoNoNoNoNoNoRoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNe N NGRS NSNS NO NS N @R R P]

187

INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF LMDR1090

FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE LMDR1100
TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE LMDR1110
INTERVAL (.1,100.).100. IS A GENERALLY RECOMMENDED VALUE. LMDR1120
LMDR1130

NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED LMDR1140
PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, LMDR1150
FCN IS CALLED WITH IFLAG = O AT THE BEGINNING OF THE FIRST LMDR1160
ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND LMDR1170
IMMEDIATELY PRIOR TO RETURN, WITH X, FVEC, AND FJAC LMDR1180
AVAILABLE FOR PRINTING. FVEC AND FJAC SHOULD NOT BE LMDR1190
ALTERED. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS LMDR1200
OF FCN WITH IFLAG = O ARE MADE. LMDR1210
LMDR1220

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS LMDR1230
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMDR1240
VALUE OF. IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMDR1250
INFO IS SET AS FOLLOWS. LMDR1260
LMDR1270

INFO = 0 IMPROPER INPUT PARAMETERS. LMDR1280
_ LMDR1290

INFO = 1 BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS LMDR1300
"IN THE SUM OF SQUARES ARE AT MOST FTOL. LMDR1310

o LMDR1320

INFO = 2 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES LMDR1330
IS AT MOST XTOL. 4 LMDR1340

LMDR1350

INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. LMDR1360
LMDR1370

INFO = 4 THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY LMDR1380
COLUMN OF THE JACOBIAN IS AT MOST GTOL IN LMDR1390

ABSOLUTE VALUE. ' LMDR1400

LMDR1410

INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS LMDR1420
REACHED MAXFEV. LMDR1430

. LMDR1440

INFO = 6 FTOL IS TOO SMALL. NO FURTHER REDUCTION IN LMDR1450
THE SUM OF SQUARES IS POSSIBLE. LMDR1460

LMDR1470

INFO = 7 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMDR1480
THE APPROXIMATE SOLUTION X IS POSSIBLE. LMDR1490

LMDR1500

INFO = 8 GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE LMDR1510
COLUMNS OF THE JACOBIAN TO MACHINE PRECISION. LMDR1520

LMDR1530

NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF LMDR1540
CALLS TO FCN WITH IFLAG = 1. : LMDR1550
LMDR1560

NJEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF LMDR1570
CALLS TO FCN WITH IFLAG = 2. LMDR1580
LMDR1590

IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMDR1600
DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R, LMDR1610

WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS LMDR1620

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

aaa

@]

NN Ne!

188

ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR
WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE.
COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*FVEC.

WAl, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N.
WA4 IS A WORK ARRAY OF LENGTH M.

SUBPROGRAMS CALLED

USER-SUPPLIED FCN
MINPACK-SUPPLIED ... DPMPAR,ENORM,LMPAR,QRFAC
FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT,MOD

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

aleatestantaate e ateatactent,
e T N I A

INTEGER I,IFLAG,ITER,J,L
DOUBLE PRECISION ACTRED,DELTA,DIRDER,EPSMCH,FNORM,FNORM1,GNORM,

* ONE, PAR, PNORM, PRERED,P1,P5,P25,P75,P0001,RATIO,

* SUM, TEMP,TEMP1, TEMP2 ,XNORM, ZERO
DOUBLE PRECISION DPMPAR,ENORM

DATA ONE,P1,P5,P25,P75,P0001,ZERO

* /1.0D0, 1. OD 1,5. OD 1,2.5D-1,7.5D-1,1.0D-4, 0. oDo/

EPSMCH IS THE MACHINE PRECISION.

EPSMCH = DPMPAR(1)

INFO = 0
IFLAG =
NFEV = 0
NJEV = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .ILE. 0 .OR. M .LT. N .OR. LDFJAC .LT. M
% .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL .LT. ZERO
% .OR. MAXFEV .LE. O .OR. FACTOR .LE. ZERO) GO TO 300
IF (MODE .NE. 2) GO TO 20
DO 10 J =1, N
IF (DIAG(J) .LE. ZERO) GO TO 300
10 CONTINUE
20 CONTINUE

EVALUATE THE FUNCTION AT THE STARTING POINT
AND CALCULATE ITS NORM.

LMDR1630
LMDR1640
LMDR1650
LMDR1660
LMDR1670
LMDR1680
LMDR1690
LMDR1700
LMDR1710
LMDR1720
LMDR1730
LMDR1740
LMDR1750
LMDR1760
LMDR1770
LMDR1780

LMDR1790

LMDR1800
LMDR1810
LMDR1820
LMDR1830
LMDR1840
LMDR1850
LMDR1860
LMDR1870
LMDR1880
LMDR1890
LMDR1900
LMDR1910
LMDR1920
LMDR1930
LMDR1940
LMDR1950
LMDR1960
LMDR1970
LMDR1980
LMDR1990
LMDR200O
LMDR2010
LMDR2020
LMDR2030
LMDR2040
LMDR2050
LMDR2060
LMDR2070
LMDR2080
LMDR2090
LMDR2100
LMDR2110
LMDR2120
LMDR2130
LMDR2140
LMDR2150
LMDR2160

aaa [N]

aaQ

QOO

aaoaa

aaaoaQ

189

IFLAG = 1
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC, IFLAG)
NFEV = 1

IF (IFLAG .LT. 0) GO TO 300
FNORM = ENORM(M,FVEC)

INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER.

PAR = ZERO
ITER = 1

BEGINNING OF THE OUTER LOOP.

30 CONTINUE

40

50
60

70

CALCULATE THE JACOBIAN MATRIX.

IFLAG = 2 ,
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
NJEV = NJEV + 1

IF (IFLAG .LT. 0) GO TO 300

IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.

IF (NPRINT .LE. 0) GO TO 40
IFLAG = 0
IF (MOD(ITER-1,NPRINT) .EQ. 0)
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC, IFLAG)
IF (IFLAG .LT. 0) GO TO 300
CONTINUE

COMPUTE THE QR FACTORIZATION OF THE JACOBIAN.
CALL QRFAC(M,N,FJAC,LDFJAC, .TRUE.,IPVT,N,WAl,WA2,WA3)

ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.

IF (ITER .NE. 1) GO TO 80

IF (MODE .EQ. 2) GO TO 60

DO 50 J =1, N
DIAG(J) = WA2(J)
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
CONTINUE

CONTINUE

ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
AND INITIALIZE THE STEP BOUND DELTA.

DO 70 J =1, N
WA3(J) = DIAG(J)*X(J)
CONTINUE
XNORM = ENORM(N,WA3)
DELTA = FACTOR*XNORM

LMDR2170
LMDR2180
LMDR2190
LMDR2200
LMDR2210
LMDR2220
LMDR2230
LMDR2240 .
LMDR2250
LMDR2260
LMDR2270
LMDR2280
LMDR2290
LMDR2300
LMDR2310
LMDR2320

-LMDR2330

LMDR2340
LMDR2350
LMDR2360
LMDR2370
LMDR2380
LMDR2390
LMDR2400
LMDR2410
LMDR2420
LMDR2430
LMDR2440
LMDR2450
LMDR2460
LMDR2470
LMDR2480
LMDR2490
LMDR2500
LMDR2510
LMDR2520
LMDR2530
LMDR2540
LMDR2550
LMDR2560
LMDR2570
LMDR2580
LMDR2590
LMDR2600
LMDR2610
LMDR2620
LMDR2630
LMDR2640
LMDR2650
LMDR2660
LMDR2670
LMDR2680
LMDR2690
LMDR2700

80

OO0

aa

@]

@]

90

100

110
120

130

140

150
160
170

180
190

190

IF (DELTA .EQ. ZERO) DELTA = FACTOR
CONTINUE

FORM (Q TRANSPOSE)*FVEC AND STORE THE FIRST N COMPONENTS IN
QTF.

DO 90 I =1, M
WA4(I) = FVEC(I)
CONTINUE
DO 130 J = 1, N
IF (FJAC(J,J) .EQ. ZERO) GO TO 120
SUM = ZERO
DO 100 I =J, M
SUM = SUM + FJAC(I,J)*WA&4(I)
CONTINUE
TEMP = -SUM/F.JAC(J,.J)
DO 110 I =J, M
WAL (1) = WA4(I) + FJAC(I,J)*TEMP
CONTINUE
CONTINUE
FJAC(J,J) = WAL(J)
QTF(J) = WA4(J)
CONTINUE

COMPUTE THE NORM OF THE SCALED GRADIENT.

GNORM = ZERO
IF (FNORM .EQ. ZERO) GO TO 170
DO 160 J = 1, N
L = IPVT(J)
IF (WA2(L) .EQ. ZERO) GO TO 150
SUM = ZERO
DO 140 I = 1, J
SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM)
CONTINUE
GNORM = DMAX1(GNORM,DABS (SUM/WA2(L)))
CONTINUE
CONTINUE
CONTINUE

TEST FOR CONVERGENCE OF THE CRADIENT NORM.

IF (GNORM .LE. GTOL) INFO = &4
IF (INFO .NE. 0) GO TO 300

RESCALE IF NECESSARY.

IF (MODE .EQ. 2) GO TO 190

DO 180 J =1, N
DIAG(J) = DMAX1(DIAG(J),WA2(J))
CONTINUE

CONTINUE

BEGINNING OF THE INNER LOOP.

LMDR2710
LMDR2720
LMDR2730
LMDR2740
LMDR2750
LMDR2760
LMDR2770
LMDR2780
LMDR2790
LMDR2800
LMDR2810
LMDR2820
LMDR2830
LMDR2840
LMDR2850
LMDR2860
LMDR2870
LMDR2880
LMDR2890
LMDR2900
LMDR2910
LMDR2920
LMDR2930
LMDR2940
LMDR2950
LMDR2960
IMDR2970
LMDR2980
LMDR2990
LMDR3000
LMDR3010
LMDR3020
LMDR3030
LMDR3040
LMDR3050
LMDR3060
LMDR3070
LMDR3080
TMDR2090
LMDR3100
LMDR3110
LMDR3120
LMDR3130
LMDR3140
LMDR3150
LMDR3160
LMDR3170
ILMDR3180
LMDR3190

" LMDR3200

LMDR3210
LMDR3220
LMDR3230
LMDR3240

oNoN]

aa

o NN

aaoa

aaOoan

200

210

220
230

[oNoNoN]

191

CONTINUE

DETERMINE THE LEVENBERG-MARQUARDT PARAMETER.

CALL LMPAR(N,FJAC,LDFJAC,IPVT,DIAG,QTF,DELTA,PAR,WAI,WA2;

WA3,WA4)
STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P.

DO 210 J =1, N
WAL(J) = -WA1(J)
WA2(J) = X(J) + WAL(J)
WA3(J) = DIAG(J)*WA1(J)
CONTINUE

PNORM = ENORM(N,WA3)

ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND.
IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM)

EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM.
IFLAG = 1

CALL FCN(M,N,WA2,WA4,FJAC,LDFJAC,IFLAG)

NFEV = NFEV + 1

IF (IFLAG .LT. 0) GO TO 300

FNORM1 = ENORM(M,WA4))

COMPUTE THE SCALED ACTUAL REDUCTION.

ACTRED = -ONE

IF (P1*FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)**2

COMPUTEYTHE SCALED PREDICTED REDUCTION AND
THE SCALED DIRECTIONAL DERIVATIVE.

DO 230 J =1, N .
WA3(J) = ZERO
L = IPVT(J)
TEMP = WA1(L)
DO 220 T =1, J
WA3(I) = WA3(I) + FJAC(I,J)*TEMP
CONTINUE '
CONTINUE
TEMP1 = ENORM(N,WA3)/FNORM
TEMP2 = (DSQRT(PAR)*PNORM)/FNORM
PRERED = TEMP1#%2 + TEMP2%%2/P5
DIRDER = -(TEMP1#*%2 + TEMP2¥+2)

COMPUTE 'THE RATIO OF THE ACTUAL TO THE PREDICTED
REDUCTION.

RATIO = ZERO

LMDR3250

LMDR3260
LMDR3270
LMDR3280
LMDR3290
LMDR3300
LMDR3310
LMDR3320
LMDR3330
LMDR3340

LMDR3350

LMDR3360
LMDR3370
LMDR3380
IMDR3390
LMDR3400
LMDR3410

LMDR3420 .

LMDR3430
LMDR3440
LMDR3450
LMDR3460
LMDR3470
LMDR3480
LMDR3490
LMDR3500
LMDR3510
LMDR3520

LMDR3530

LMDR3540
LMDR3550
LMDR3560
LMDR3570
LMDR3580
LMDR3590
LMDR3600
LMDR3610
LMDR3620
LMDR3630
LMDR3640
LMDR3650
LMDR3660
LMDR3670
LMDR3680
LMDR3690
LMDR3700
LMDR3710
LMDR3720
LMDR3730
LMDR3740
LMDR3750
LMDR3760
LMDR3770
LMDR3780

a

240

250
260

270

280

290

192

IF (PRERED .NE. ZERO) RATIO = ACTRED/PRERED
UPDATE THE STEP BOUND.

IF (RATIO .GT. P25) GO TO 240
IF (ACTRED .GE. ZERO) TEMP = P5
IF (ACTRED .LT. ‘ZERO)
TEMP = P5*DIRDER/(DIRDER + P5*ACTRED)
IF (P1*FNORM1 .GE. FNORM .OR. TEMP .LT. P1) TEMP = P1
DELTA = TEMP*DMIN1(DELTA,PNORM/P1)
PAR = PAR/TEMP
GO TO 260
CONTINUE
IF (PAR .NE. ZERO .AND. RATIO .LT. P75) GO TO 250
DELTA = PNORM/P5
PAR = P5*PAR
CONTINUE
CONTINUE

TEST FOR SUCCESSFUL ITERATION.
IF (RATIO .LT. P0O001) GO TO 290
SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.

DO 270 J =1, N
X(J) = WA2(J)
WA2(J) = DIAG(I)*X(J)
CONTINUE

DO 280 I .= 1, M
FVEC(I) = WA4(I)
CONTINUE

XNORM = ENORM(N,WA2)

FNORM = FNORM1

ITER = ITER + 1

CONTINUE

TESTS FOR CONVERGENCE.

IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
.AND. P5*RATIO .LE. ONE) INFO = 1
IF (DELTA .LE. XTOL*XNORM) INFO = 2
IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
.AND. P5*RATIO .LE. ONE .AND. INFO .EQ. 2) INFO = 3
IF (INFO .NE. 0) GO TO 300

TESTS FOR TERMINATION AND STRINGENT TOLERANCES.

IF (NFEV .GE. MAXFEV) INFO = 5

IF (DABS(ACTRED) .LE. EPSMCH .AND. PRERED .LE. EPSMCH
.AND. P5*RATIO .LE. ONE) INFO = 6

IF (DELTA .LE. EPSMCH*XNORM) INFO 7

IF (GNORM .LE. EPSMCH) INFO = 8

IF (INFO .NE. 0) GO TO 300

LMDR3790
LMDR3800
LMDR3810
LMDR3820
LMDR3830
LMDR3840
LMDR3850
LMDR3860
LMDR3870
LMDR3880
LMDR3890
LMDR3900
LMDR3910
LMDR3920
LMDR3930
LMDR3940
LMDR3950
LMDR3960
LMDR3970
LMDR3980
LMDR3990
LMDR400O
LMDR4010
LMDR4020
LMDR4030
LMDR4040
LMDR4050
LMDR4060
LMDR4070
LMDR4080
LMDR4090
LMDR4100
LMDR4110
LMDR4120
LMDR4130
LMDR4140
LMDR&150
LMDR&160
LMDR4170
LMDR4180
LMDR4190
LMDR4200
LMDR4210
LMDR4220
LMDR4230
LMDR4240
LMDR4250
IMDR4260
LMDR4270
LMDR4280
LMDR4290
LMDR4300
LMDR4310
LMDR4320

aaaa

aa

END OF THE INNER LOOP. REPEAT IF ITERATION UNSUCCESSFUL.
IF (RATIO .LT. P0001) GO TO 200
END OF THE OUTER LOOP.
GO TO 30
300 CONTINUE
TERMINATION, EITHER NORMAL OR USER IMPOSED.
IF (IFLAG .LT. 0) INFO = IFLAG
IFLAG = 0
IF (NPRINT .GT. 0) CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
RETURN

LAST CARD OF SUBROUTINE LMDER.

END

LMDR4330
LMDR4340
LMDR4350
LMDR4360
LMDR4370
LMDR4380
LMDR4390
LMDR4400
LMDR4410
LMDR4420
LMDR4430
LMDR&4440
LMDR4&4450
LMDR4460
LMDR4470
LMDR4480
LMDR4490
LMDR4500
LMDR4510
LMDR4520

194

E} WAS! INTENTIQNALLY
LEFT BLANK

o
|
|
l
|
|
|
|
|
|
N

o loReReRoRsReRoRoRoReRoRoReoRe e e Ro R Rz R Rz e s Ko Rs Ko e RN e s oo Rr N RO NP NS N NSRS P) [oRe NP NP!

ole
“

195

SUBROUTINE LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,IPVT,WA,
IWA)

INTEGER M,N,LDFJAC,INFO,LWA

INTEGER IPVT(N)

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)

EXTERNAL FCN

PR TN ntenleaten!
e e

SUBROUTINE LMDER1

THE PURPOSE OF LMDER1 IS TO MINIMIZE THE SUM OF THE SQUARES OF-
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE
LEVENBERG-MARQUARDT ALGORITHM. THIS IS DONE BY USING THE MORE
GENERAL LEAST-SQUARES SOLVER LMDER. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,
IPVT,WA,LWA)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER
CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER M,N,LDFJAC,IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)
IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMDER1.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

LMR10010
LMR10020
LMR10030
LMR10040
LMR10050
LMR10060
LMR10070
LMR10080
LMR10090
LMR10100
LMR10110
LMR10120
LMR10130
LMR10140
LMR10150
LMR10160
LMR10170
LMR10180
LMR10190
LMR10200
LMR10210
LMR10220
LMR10230
LMR10240
LMR10250
LMR10260
LMR10270
LMR10280
LMR10290
LMR10300
LMR10310
LMR10320
LMR10330
LMR10340
LMR10350
LMR10360
LMR10370
LMR10380
LMR103%0
LMR10400
LMR10410
LMR10420
LMR10430
LMR10440
LMR10450
LMR10460
LMR10470
LMR10480
LMR10490
LMR10500
LMR10510
LMR10520
LMR10530
LMR10540

C LMR10550
c FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS LMR10560
c THE FUNCTIONS EVALUATED AT THE OUTPUT X. LMR10570
C LMR10580
C FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX LMR10590
C OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH LMR10600
C DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE SUCH THAT LMR10610
C LMR10620
C T T T LMR10630
C P *(JAC *JAC)*P = R *R, LMR10640
c LMR10650
c WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL LMR10660
c CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J) LMR10670
c (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL LMR10680
c PART OF FJAC CONTAINS INFORMATION GENERATED DURING LMR10690
C THE COMPUTATION OF R. LMR10700
C LMR10710
c LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M LMR10720
c WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. LMR10730
C LMR10740 -
c TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS LMR10750
c WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE LMR10760
C ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT LMR10770
c THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT LMR10780
c MOST TOL. LMR10790
C LMR10800
C INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS IMR10810
C TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMR10820
C VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMR10830
c INFO IS SET AS FOLLOWS. LMR10840
C LMR10850
C INFO = 0 IMPROPER INPUT PARAMETERS. LMR10860
C LMR10870
c INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMR10880
c IN THE SUM OF SQUARES IS AT MOST TOL. LMR10890
c : LMR10900
c INFO = 2 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMR10910
C BETWEEN X AND THE SOLUTION IS AT MOST TOL. LMR10920
C LMR10930
C INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. LMR10940
C LMR10950
c INFO = 4 FVEC IS ORTHOGONAL TO THE COLUMNS OF THE LMR10960
C JACOBIAN TO MACHINE PRECISION. IMR10970
C LMR10980
C INFO =. 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS LMR10990
C REACHED 100%(N+1). LMR11000
C ILMR11010
C INFO = 6 TOL IS TOO SMALL. NO FURTHER REDUCTION IN LMR11020
c THE SUM OF SQUARES IS POSSIBLE. LMR11030
c IMR11040
C INFO = 7 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMR11050
C THE APPROXIMATE SOLUTION X IS POSSIBLE. LMR11060
C IMR11070
C IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMR11080

oNeNo N Eo R YR K s Es R Es N EvEo N Ne N

o NeNe]

o NoNe]

197

DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R,
WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS
ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR
WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE.
COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

WA IS A WORK ARRAY OF LENGTH LWA.

LWA IS A POSITIVE INTEGER INPUT.VARIABLE NOT LESS THAN 5+*N+M.
SUBPROGRAMS CALLED

USER-SUPPLIED FCN

MINPACK-SUPPLIED ... LMDER

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

RV SRR SRR PR DR TR L T
CR T D N I i iy

INTEGER MAXFEV,MODE,NFEV,NJEV,NPRINT

DOUBLE PRECISION FACTOR,FTOL,GTOL,XTOL,ZERO
DATA FACTOR,ZERO /1.0D2,0.0DO/

INFO = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. M .OR. TOL .LT. ZERO

* .OR. LWA .LT. 5*N + M) GO TO 10

CALL LMDER.

MAXFEV = 100%(N + 1)

FTOL = TOL

XTOL = TOL

GTOL = ZERO

MODE = 1

NPRINT = 0

CALL LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,MAXFEV,
* WA(1) ,MODE ,FACTOR,NPRINT, INFO,NFEV,NJEV, IPVT,WA(N+1),
* WA (2*N+1) ,WA(3*N+1) ,WA (4*N+1) ,WA(5%N+1))

IF (INFO .EQ. 8). INFO = 4

10 CONTINUE
RETURN

LAST CARD OF SUBROUTINE LMDERI.

END

LMR11090
IMR11100
LMR11110
LMR11120
LMR11130
LMR11140
IMR11150
IMR11160
LMR11170
LMR11180
LMR11190
LMR11200
LMR11210
LMR11220
LMR11230
IMR11240
LMR11250
LMR11260
IMR11270
LMR11280
IMR11290
LMR11300
LMR11310
LMR11320
LMR11330
LMR11340
ILMR11350
LMR11360
LMR11370
IMR11380
LMR11390
LMR11400
LMR11410
LMR11420
LMR11430
LMR11440
LMR11450
LMR11460
LMR11470
LMR11480
LMR11490
LMR11500
LMR11510
LMR11520
IMR11530
LMR11540
LMR11550
LMR11560

EXTERNAL FCN

oo EoRoRe e R R s oo Ro e NsEe e R RoRsRoEs e R Ees o oo NsREoNoNoNoNoNoNoNoNoNoNoNo RO N Ne Ne}

199

SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,
DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,FJAC,LDFJAC,
IPVT,QTF,WA1,WA2 ,WA3,WA4)

INTEGER M,N,MAXFEV,MODE,NPRINT, INFO,NFEV,LDFJAC

INTEGER IPVT(N)

DOUBLE PRECISION FTOL,XTOL,GTOL,EPSFCN,FACTOR

DOUBLE PRECISION X(N),FVEC(M),DIAG(N),FJAC(LDFJAC,N),QTF(N),
WAL(N),WA2(N),WA3(N),WA4(M)

Fefedldededeledek

"SUBROUTINE LMDIF

THE PURPOSE OF LMDIF IS TO MINIMIZE THE SUM OF THE SQUARES OF
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF

THE LEVENBERG-MARQUARDT ALGORITHM. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS
THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,
DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,FJAC,
LDFJAC, IPVT,QTF,WALl,WA2,WA3,WA4)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG

DOUBLE PRECISION X(N),FVEC(M)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
RETURN

END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMDIF.-
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X

‘LMDF0010

LMDF0020
LMDF0030
LMDF0040
LMDF0050
LMDF0060
IMDF0070
LMDF0080
LMDF0090
LMDF¥(0100
LMDFO0110
IMDF0120
LMDF0130
LMDF0140
LMDF0150
LMDF0160
IMDF0170
LMDF0180
LMDF0190
LMDF0200
LMDF0210
ILMDFO0220
LMDF0230
LMDF0240
IMDF0250
LMDF0260
ILMDF0270
LMDF0280
LMDF0290
LMDF0300
LMDF0310
LMDFO0320
LMDF0330
LMDF0340
LMDF0350
LMDF0360
LMDF0370
LMDF0380
LMDF0390
LMDF0400
LMDF0410
LMDF0420
LMDF0430
LMDF0440
LMDF0450
LMDF0460
LMDF0470
LMDF0480
LMDF0490
LMDF0500
LMDF0510
LMDF0520
LMDFO0530
LMDF0540

OOOOOOOGOOOOOOOOQOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

200

™ CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE
REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL.
THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED
IN THE SUM OF SQUARES.

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE
RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION.

GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE COSINE OF THE ANGLE BETWEEN FVEC AND
ANY COLUMN OF THE JACOBIAN IS AT MOST GTOL IN ABSOLUTE
VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY
DESIRED BETWEEN THE FUNCTION VECTOR AND THE COLUMNS
OF THE JACOBIAN.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST
MAXFEV BY THE END OF AN ITERATION.

EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE
STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS
APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE
FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS
THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE
ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE
PRECISION.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE
BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE
VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2,
THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
VALUES OF MODE ARE EQUIVALENT TO MODE = 1.

FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE
INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF
FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE
TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE
INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.

NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED
PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE,
FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST

LMDFO0550
LMDF0560
LMDF0570
LMDF0580
LMDF0590
LMDF0600
LMDF0610
LMDF0620
LMDF0630
LMDF0640
LMDF0650
LMDF0660
LMDF0670
LMDF0680
LMDF0690
IMDF0700
LMDF0710
ILMDF0720
LMDF0730
LMDF0740
LMDF0750
LMDF0760
LMDF0770
LMDFO0780
LMDF0790
LMDF0800
LMDFO0810
LMDF0820
LMDF0830
LMDF0840
LMDF0850
LMDF0860
LMDF0870
LMDF0880
LMDFO0890
LMDF0900
LMDF0910
LMDF0920
LMDF0930
LMDF0940
LMDF0950
LMDF0960
LMDF0970
LMDF0980
LMDF0990
LMDF1000
LMDF1010
LMDF1020
LMDF1030
LMDF1040
LMDF1050
LMDF1060
LMDF1070
LMDF1080

eRoRoRoRoRe*RoRoRoRe R Rs R R R R R e oo o Re Ro e R Re Es R RsEe e oo RsNoNoNo RoNoNoNoNoNs NOo NG RO NGNS RO NS NGNS N @R P)

201

ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND
IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE
FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS
OF FCN WITH IFLAG = 0 ARE MADE.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,

IS SET AS FOLLOWS.

INFO
INFO = 0
INFO = 1
INFO = 2
INFO = 3
INFO = &
INFO = 5
INFO = 6
INFO = 7
INFO = 8
NFEV IS AN
CALLS TO

IMPROPER INPUT PARAMETERS.

BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS
IN THE SUM OF SQUARES ARE AT MOST FTOL.

RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES
IS AT MOST XTOL.

CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD.
THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY
COLUMN OF THE JACOBIAN IS AT MOST GTOL IN
ABSOLUTE VALUE.

NUMBER OF CALLS TO FCN HAS REACHED OR
EXCEEDED MAXFEV.

FTOL IS TOO SMALL. NO FURTHER REDUCTION IN
THE SUM OF SQUARES IS POSSIBLE.

XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE
COLUMNS. OF THE JACOBIAN TO MACHINE PRECISION.

INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
FCN.

FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX
OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH
DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE SUCH THAT

T

T T

P *(JAC *JAC)*P = R.*R,

WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL
CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J)

(SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL
PART OF FJAC CONTAINS INFORMATION GENERATED DURING

THE COMPUTATION OF. R.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

LMDF1090
LMDF1100
LMDF1110
LMDF1120
LMDF1130
LMDF1140
LMDF1150
IMDF1160

'LMDF1170

LMDF1180
LMDF1190
LMDF1200
LMDF1210
LMDF1220
LMDF1230
LMDF1240
LMDF1250
LMDF1260
LMDF1270
LMDF1280
LMDF1290
ILMDF1300
LMDF1310
LMDF1320
LMDF1330
TMDF1340
LMDF1350
LMDF1360
ILMDF1370°
LMDF1380
LMDF1390
LMDF1400
IMDF1410
LMDF1420
LMDF1430
LMDF1440
LMDF1450
LMDF1460
LMDF1470
LMDF1480
LMDF1490
LMDF1500
LMDF1510
LMDF1520
LMDF1530
LMDF1540
IMDF1550
LMDF1560
LMDF1570
LMDF1580
LMDF1590
LMDF1600
LMDF1610
LMDF1620

C
C
C
C
C
C
C
c
C
C
c
c
C
C
C
C
-C
C
c
C
C
C
C
c
C
c
C

aaa

IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT
DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R,
WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS
ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR
WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE.
COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*FVEC.

WA1l, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N.
WA4 IS A WORK ARRAY OF LENGTH M.

SUBPROGRAMS CALLED

USER-SUPPLIED FCN
MINPACK-SUPPLIED ... DPMPAR,ENORM,FDJACZ,LMPAR,QRFAC
FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT,MOD

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

o o e

INTEGER I,IFLAG,ITER,J,L

DOUBLE PRECISION ACTRED,DELTA,DIRDER,EPSMCH,FNORM,FNORM1,GNORM,
%* ONE, PAR, PNORM, PRERED, P1,P5,P25,P75,P0001,RATIO,
* SUM, TEMP, TEMP1,TEMP2 , XNORM, ZERO

DOUBLE PRECISION DPMPAR,ENORM

DATA ONE,P1,P5,P25,%75,P0001,ZERO
* /1.0D0,1.0D-1,5.0D-1,2.5D-1,7.5L-.,1.0D-4,...0D0O/

EPSMCH IS THE MACHINE PRECISION.

EPSMCH = DPMPAR(1)

INFO = 0
IFLAG = 0
NFEV = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. M
¥ .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL .LT. ZERO
% .OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO) GO TO 300
IF (MODE .NE. 2) GO TO 20
DO 10 J =1, N
IF (DIAG(J) .LE. ZERO) GO TO 300
10 CONTINUE
20 CONTINUE

LMDF1630
LMDF1640
LMDF1650
LMDF1660
LMDF1670
LMDF1680
ILMDF1690
LMDF1700
LMDF1710
LMDF1720
LMDF1730
LMDF1740
LMDF1750
LMDF1760
LMDF1770
LMDF1780
LMDF1790
IMDF1800
IMDF1810
LMDF1820
LMDF1830
LMDF 1840
LMDF1850
LMDF1860
LMDF1870
ILMDF1880
LMDF1890"
LMDF1900
LMDF1910
ILMDF1920
LMDF1930
LMDF1940
LMDF1950
LMDF1960
LMDF1970
LMDF1980
LMDF1990
LMDF2000
TMDF2010
LMDF2020
IMDE2030
LMDF2040
LMDF2050
LMDF2060
LMDF2070
LMDF2080
LMDF2090
LMDF2100
IMDF2110
LMDF2120
LMDF2130
LMDF2140
LMDF2150
IMDF2160

aaOa

aaoaQa

[oHeNeNP!

EVALUATE THE FUNCTION AT THE STARTING POINT
AND CALCULATE ITS NORM.

IFLAG = 1
CALL FCN(M,N,X,FVEC,IFLAG)
NFEV = 1

IF (IFLAG .LT. 0) GO TO 300
FNORM = ENORM(M,FVEC)

INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER.

PAR = ZERO
ITER =1

BEGINNING OF THE OUTER LOOP.

30 CONTINUE

40

50
60

70

CALCULATE THE JACOBIAN MATRIX.

IFLAG = 2 :
CALL FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC, IFLAG,EPSFCN,WA4
NFEV = NFEV + N

IF (IFLAG .LT. 0) GO TO 300

IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES .

IF (NPRINT .LE. 0) GO TO 40

IFLAG = 0

IF (MOD(ITER-1,NPRINT) .EQ. 0) CALL FCN(M,N,X,FVEC,IFLAG)
IF (IFLAG .LT. 0) GO TO 300

CONTINUE

COMPUTE THE QR FACTORIZATION OF THE JACOBIAN.
CALL QRFAC(M,N,FJAC,LDFJAC,.TRUE.,IPVT,N,WAl,WA2,WA3)

ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.

IF (ITER .NE. 1) GO TO 80

IF (MODE .EQ. 2) GO TO 60

DO 50 J =1, N
DIAG(J) = WA2(J)
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
CONTINUE

CONTINUE

ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
AND INITIALIZE THE STEP BOUND DELTA.

po 70 J =1, N
WA3(J) = DIAG(J)*X(J)
CONTINUE

LMDF2170
LMDF2180
LMDF2190
LMDF2200
LMDF2210
LMDF2220
LMDF2230
IMDF2240
LMDF2250
LMDF2260
LMDF2270
LMDF2280
LMDF2290
LMDF2300
LMDF2310
LMDF2320
LMDF2330
LMDF2340
LMDF2350
LMDF2360
IMDF2370
IMDF2380
LMDF2390
LMDF2400
LMDF2410
LMDF2420
LMDF2430
LMDF2440
LMDF2450
LMDF2460
LMDF2470
LMDF2480
LMDF2490
LMDF2500
LMDF2510
LMDF2520
LMDF2530
LMDF2540
LMDF2550
LMDF2560
LMDF2570
LMDF2580
LMDF2590
LMDF2600
LMDF2610
LMDF2620
LMDF2630
LMDF2640
LMDF2650
LMDF2660
LMDF2670
LMDF2680
LMDF2690
LMDF2700

[oNoNoNe]

[oNeNP]

aa

o NoNe]

80

90

100

110

120

130

140

150
160
170

180
190

204

XNORM

ENORM(N,WA3)

DELTA = FACTOR*XNORM .

IF (DELTA .EQ. ZERO) DELTA = FACTOR
CONTINUE

FORM (Q TRANSPOSE)*FVEC AND STORE THE FIRST N COMPONENTS IN
QTF.

DO 90 I = 1,
WAL (D) =
CONTINUE
DO 130 J = 1, N
IF (FJAC(J,J) .EQ. ZERO) GO TO 120
SUM = ZERO
DO 100 I = J, M
SUM = SUM + FJAC(I,J)*WA4(I)
CONTINUE

TEMP = -SUM/FJAC(J,J)

DO 110 I = J, M
WA4(I) = WA4(I) + FJAC(I,J)*TEMP
CONTINUE

CONTINUE

FJAC(J,J) = WAL(J)

QTF(J) = WA4(J)

CONTINUE

M
FVEC(I)

COMPUTE THE NORM OF THE SCALED GRADIENT.

GNORM = ZERO
IF (FNORM .EQ. ZERO) GO TO 170
DO 160 J = 1, N
L = IPVT(J)
IF (WA2(L) .EQ. ZERO) GO TO 150
SUM = ZERO '
DO 140 I =1, J
SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM)
CONTINUE
GNORM = DMAX1 (GNORM,DABS (SUM/WA2(L)))
CONTINUE
CONTINUE
CONTINUE

TEST FOR CONVERGENCE OF THE GRADIENT NORM.

IF (GNORM .LE. GTOL) INFO = 4
IF (INFO .NE. 0) GO TO 300

RESCALE IF NECESSARY.

IF (MODE .EQ. 2) GO TO 190

DO 180 J = 1, N
DIAG(J) = DMAX1(DIAG(J),WA2(J))
CONTINUE

CONTINUE

LMDF2710
ILMDF2720
LMDF2730
LMDF2740
LMDF2750
LMDF2760
LMDF2770
LMDF2780
LMDF2790
LMDF2800
LMDF2810
LMDF2820
LMDF2830
LMDF2840
LMDF2850
LMDF2860
LMDF2870
LMDF2880
LMDF2890
LMDF2900
LMDF2910
LMDF2920
LMDF2930
LMDF2940
ILMDF2950
LMDF2960
LMDF2970
LMDF2980
LMDF2$90
LMDF3000
LMDF3010
LMDF3020
LMDF3030
LMDF3040
LMDF3050
LMDF3060
LMDF3070
LMDF3080
LMDF3090
LMDF3100
LMDF3110
LMDF3120
ILMDF3130
LMDF3140
LMDF3150
LMDF3160
LMDF3170
LMDF3180
LMDF3190
LMDF3200
ILMDF3210
LMDF3220
LMDF3230
LMDF3240

(oMo N

[P NoNe]

aQaon

200

210

220
230

BEGINNING OF THE INNER LOOP.

CONTINUE -

DETERMINE THE LEVENBERG-MARQUARDT PARAMETER.

CALL LMPAR(N,FJAC,LDFJAC,IPVT,DIAG,QTF,DELTA,PAR,WA1,WA2,
WA3,WA4)

STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P.

DO 210 J =1, N
WAL(J) = -WA1(J)
WA2(J) = X(J) + WA1(J)
WA3(J) = DIAG(J)*WA1(J)
CONTINUE :

PNORM = ENORM(N,WA3)

ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND.
IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM)
EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM.

IFLAG = 1

CALL FCN(M,N,WA2,WA4,IFLAG)
NFEV = NFEV + 1 .
IF (IFLAG .LT. 0) GO TO 300
FNORM1 = ENORM(M,WA4)

COMPUTE THE SCALED ACTUAL REDUCTION. -

ACTRED = -ONE
IF (P1*FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)%*%2

COMPUTE THE SCALED PREDICTED REDUCTION AND
THE SCALED DIRECTIONAL DERIVATIVE.

DO 230 J =1, N
WA3(J) = ZERO
L = IPVT(J)
TEMP = WA1(L)
DO 220 I =1, J
WA3(I) = WA3(I) + FJAC(I,J)*TEMP
CONTINUE
CONTINUE
TEMP1 = ENORM(N,WA3)/FNORM
TEMP2 = (DSQRT(PAR)*PNORM)/FNORM
PRERED = TEMP1#*2 + TEMP2%%2/P5
DIRDER = - (TEMP1%%2 + TEMP2#%¥2)
COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED
REDUCTION.

LMDF3250
LMDF3260
LMDF3270
LMDF3280
LMDF3290
LMDF3300
LMDF3310
LMDF3320
LMDF3330
LMDF3340
LMDF3350
LMDF3360
LMDF3370
LMDF3380
LMDF3390
LMDF3400
LMDF 3410
LMDF3420
LMDF 3430
LMDF3440
LMDF3450
LMDF 3460
LMDF3470
LMDF3480
LMDF3490
LMDF3500
LMDF3510
LMDF3520
LMDF3530
LMDF 3540
LMDF3550
LMDF3560
LMDF3570
LMDF3580
LMDF3590
LMDF3600
LMDF3610
LMDF3620
LMDF3630
LMDF3640
LMDF3650
LMDF3660
LMDF3670
LMDF 3680
LMDF3690
LMDF3700
LMDF3710
LMDF3720
LMDF3730
LMDF3740
LMDF3750
LMDF3760
LMDF3770
LMDF3780

[oNoNe]

atle
w

240

250
260

270

280

290

206

RATIO = ZERO
IF (PRERED .NE. ZERO) RATIO = ACTRED/PRERED

UPDATE THE STEP BOUND.

IF (RATIO .GT. P25) GO TO 240
IF (ACTRED .GE. ZERO) TEMP = P5
IF (ACTRED .LT. ZERO)
TEMP = P5*DIRDER/(DIRDER + P5*ACTRED)
IF (P1*FNORM1 .GE. FNORM .OR. TEMP .LT. P1) TEMP = P1
DELTA = TEMP*DMIN1(DELTA,PNORM/P1)
PAR = PAR/TEMP
GO TO 260
CONTINUE
IF (PAR .NE. ZERO .AND. RATIO .LT. P73) GO TO 250
DELTA = PNORM/P5
PAR = P5*PAR
CONTINUE
CONTINUE

TEST FOR SUCCESSFUL ITERATION.
IF (RATIO .LT. P0001) GO TO 290
SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.

DO 270 J = 1, N
X(J) = WA2(J)
WA2(J) = DIAG(J)*X(J)
CONTINUE

DO 280 I = 1, M
TVEC(I) = WA4(I)
CONTINUE

XNORM = ENORM(N,WA2)

FNORM = FNORM1

ITER = ITER + 1

CONTINUE

TESTS FOR CONVERGENCE.

IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
.AND. P5*RATIO .LE. ONE) INFO = 1
IF (DELTA .LE. XTOL*XNORM) INFO = 2
IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
.AND. P5*RATIO .LE. ONE .AND. INFO .EQ. 2) INFO = 3
IF (INFO .NE. 0) GO TO 300

TESTS FOR TERMINATION AND STRINGENT TOLERANCES.

IF (NFEV .GE. MAXFEV) INFO = 5

IF (DABS(ACTRED) .LE. EPSMCH .AND. PRERED .LE. EPSMCH
.AND. P5*RATIO .LE. ONE) INFO = 6

IF (DELTA .LE. EPSMCH*XNORM) INFO 7

LMDF3790
LMDF3800
LMDF3810
LMDF3820
LMDF3830
LMDF3840
LMDF3850
LMDF3860
LMDF3870
LMDF3880
LMDF3890
LMDF3900
LMDF3910
LMDF3920
LMDF3930
LMDF3940
LMDF3950
LMDF3960
LMDF3970
LMDF3980
LMDF3990
LMDF4000
LMDF4010
LMDF4020
LMDF4030
LMDF4040
LMDF4050
LMDF4060
LMDF4070
LMDF4080
LMDF4090
LMDF4100
LMDF4110
LMDT4120
LMDF4130
LMDF4140
LMDF4150
LMDF4160
LMDF4170
LMDF4180
LMDF4190
LMDF4200
LMDF4210
LMDF4220
LMDF4230
LMDF4240
LMDF4250
LMDF4260
LMDF4270
LMDF4280
LMDF4290
LMDF4300
LMDF4310
LMDF4320

207

IF (GNORM .LE. EPSMCH) INFO = 8
IF (INFO .NE. 0) GO TO 300

END OF THE INNER LOOP. REPEAT IF ITERATION UNSUCCESSFUL.
IF (RATIO .LT. P0O001) GO TO 200
END OF THE OUTER LOOP.

GO TO 30
300 CONTINUE

TERMINATION, EITHER NORMAL OR USER IMPOSED.
IF (IFLAG .LT. 0) INFO = IFLAG

IFLAG = 0

IF (NPRINT .GT. 0) CALL FCN(M,N,X,FVEC,IFLAG)
RETURN

LAST CARD OF SUBROUTINE LMDIF.

END

ILMDF4330
LMDF4340

. LMDF4350

LMDF4360
IMD¥4370
LMDF4380
LMDF4390
LMDF4400
LMDF4410
LMDF4420
LMDF4430
LMDF4440
LMDF4450
LMDF4460
LMDF4470
LMDF4480
LMDF4490
LMDF4500
LMDF4510
LMDF4520
LMDF4530
LMDF4540

208"

PRy e LR i oy
R i B R Y AN ey
A4 3 Faoea A gt
T RAT R P A S . 0 Y
¥ 4 § 5 ? I | g

k3 oo RN

W/ THISPAGE ALY,
WASINTENTIONALLY
LEFT BLANK

L

oNoNoEo RN RoEvEoEoEo R RN s oo RoNo N RN R RN R NN oo NsNo oo NoNoNoNoNo NoNO RO NN NN e N e]

209

SUBROUTINE LMDIF1(FCN,M,N,X,FVEC,TOL,INFO,IWA,WA,LWA)
INTEGER M,N,INFO,LWA

INTEGER IWA(N)

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(M),WA(LWA)

EXTERNAL FCN

B PL LT L
TWITHWITHWITHWWRN

SUBROUTINE LMDIF1

THE PURPOSE OF LMDIF1 IS TO MINIMIZE THE SUM OF THE SQUARES OF

M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE
LEVENBERG-MARQUARDT ALGORITHM. THIS IS DONE BY USING THE MORE
GENERAL LEAST-SQUARES SOLVER LMDIF. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS
THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION.

THE SUBROUTINE STATEMENT IS
SUBROUTINE LMDIF1(FCN,M,N,X,FVEC,TOL,INFO,IWA,WA,LWA)
WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N, IFLAG

DOUBLE PRECISION X(N),FVEC(M)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
RETURN

END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMDIF1. ’
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

LMF10010
LMF10020
LMF10030
LMF10040
LMF10050
LMF10060
ILMF10070
LMF10080
LMF10090
ILMF10100
LMF10110
LMF10120
LMF10130
LMT10140
LMF10150
LMF10160
LMF10170
LMF10180
ILMF10190
LMF10200
LMF10210
LMF10220
LMF10230
LMF10240
LMF10250
LMF10260
LMF10270
LMF10280
LMF10290
LMF10300
LMF10310
LMF10320
LMF10330
LMF10340
LMF10350
LMF10360
LMF10370
LMF10380
LMF10390
LMF10400
LMF10410
LMF10420
LMF10430
LMF10440
LMF10450
LMF10460
LMF10470

LMF10480

LMF10490
LMF10500
LMF10510
IMF10520
LMF10530
LMF10540

2RoNeRsNoNoNoNoNoNsNoRoRoRoRo R R RoRoRoRoRo oo o o Ro Ro Ro o Ro N e

210

TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS
WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE
ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT
THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT
MOST TOL.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.

INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
IN THE SUM OF SQUARES IS AT MOST TOL.

INFO = 2 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
BETWEEN X AND THE SOLUTION IS AT MOST TOL.

INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD.

FVEC IS ORTHOGONAL TO THE COLUMNS OF THE
JACOBIAN TO MACHINE PRECISION.

]
~

INFO
INFO = 5 NUMBER OF CALLS TO FCN HAS REACHED OR
EXCEEDED 200%(N+1).

INFO = 6 TOL IS TOO SMALL. NO FURTHER REDUCTION IN
THE SUM OF SQUARES IS POSSIBLE.

INFO = 7 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

IWA IS AN INTEGER WORK ARRAY OF LENGTH N.
WA IS A WORK ARRAY OF LENGTH LWA.

LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
M*N+5%*N+M.

SUBPROGRAMS CALLED
USER-SUPPLIED FCN
MINPACK-SUPPLIED ... LMDIF

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

aloctaatiatatosbintecbontools
PEITITATITIIWWWW

INTEGER MAXFEV,MODE,MP5N,NFEV ,NPRINT
DOUBLE PRECISION EPSFCN,FACTOR,FTOL,GTOL,XTOL,ZERO
DATA FACTOR,ZERO /1.0D2,0.0D0/

LMF10550
LMF10560
LMF10570
LMF10580
LMF10590
LMF10600
LMF10610
LMF10620
LMF10630
LMF10640
LMF10650
LMF10660
LMF10670
LMF10680
LMF10690
LMF10700
LMF10710
LMF10720
LMF10730
LMF10740
LMF10750
LMF10760
LMF10770
LMF10780
LMF10790
LMF10800
LMF10810
IMF10820
LMF10830
LMF10840
LMF10850
LMF10860
LMF10870
IMF10880
LMF10890
LMF10900
LMF10910
LMF10920
LMF10930
LMF10940
LMF10950
LMF10960
LMF10970
LMF10980
LMF10990
LMF11000
LMF11010
LMF11020
LMF11030
LMF11040
LMF11050
ILMF11060
LMF11070
LMF11080

INFO =

0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. M .LT..N .OR. TOL .LT. ZERO
_OR. LWA .LT. M*N + 5*N + M) GO TO 10

CALL LMDIF.

MAXFEV = 200*(N + 1)
TOL
TOL
ZERO

FTOL
XTOL

MP5N =

1
M

ZERO

0
+ 5*N

CALL IMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,WA(1),

*
*

MODE , FACTOR ,NPRINT, INFO,NFEV,WA(MP5N+1) ,M, IWA,
WA(N+1) ,WA(2%N+1) ,WA(3*N+1) ,WA(4*N+1) ,WA(5*N+1))

~ IF (INFO .EQ. 8) INFO = &
10 CONTINUE

RETURN

LAST CARD OF SUBROUTINE LMDIF1.

END

LMF11090
LMF11100
LMF11110
LMF11120
LMF11130
LMF11140
LMF11150
LMF11160
LMF11170
LMF11180
LMF11190
LMF11200
LMF11210
LMF11220
LMF11230
LMF11240
LMF11250
IMF11260
LMF11270
LMF11280
LMF11290
ILMF11300
LMF11310
LMF11320
LMF11330
LMF11340

‘'LMF11350

212

|

|

~THIS PAGE ‘\
WAS I‘\ITENTIONALLY |
LEFT BLANK |

.....

OOO

*

wte
W

SUBROUTINE LMPAR(N,R,LDR,IPVT,DIAG,QTB,DELTA,PAR,X,SDIAG,WAl,
WA2)

INTEGER N,LDR

INTEGER IPVT(N)

DOUBLE PRECISION DELTA,PAR

DOUBLE PRECISION R(LDR,N),DIAG(N),QTB(N),X(N),SDIAG(N),WA1(N),
WA2 (N)

dectealeatoatoteclintoatents
TWITIIWIWITRWHNN

SUBROUTINE LMPAR

GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL
MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA,
THE PROBLEM IS TO DETERMINE A VALUE FOR THE PARAMETER
PAR SUCH THAT IF X SOLVES THE SYSTEM

A*X = B , SQRT(PAR)*D*X = 0 ,

IN THE LEAST SQUARES SENSE, AND DXNORM IS THE EUCLIDEAN
NORM OF D*X, THEN EITHER PAR IS ZERO AND

(DXNORM-DELTA) .LE. 0.1%*DELTA ,

OR PAR IS POSITIVE AND
ABS (DXNORM-DELTA) .LE. 0.1*DELTA .

THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM

IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE

QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF
A*P = Q*R, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL
COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL
ELEMENTS OF NONINCREASING MAGNITUDE, THEN LMPAR EXPECTS

THE FULL UPPER TRIANGLE OF R, THE PERMUTATION MATRIX P,

AND THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. ON OUTPUT
LMPAR ALSO PROVIDES AN UPPER TRIANGULAR MATRIX S SUCH THAT

T T T
P *(A *A + PAR*D*D)*P = § *§ .

S IS EMPLOYED WITHIN LMPAR AND MAY BE OF SEPARATE INTEREST.
ONLY A FEW ITERATIONS ARE GENERALLY NEEDED FOR CONVERGENCE
OF THE ALGORITHM. IF, HOWEVER, THE LIMIT OF 10 ITERATIONS
IS REACHED, THEN THE OUTPUT PAR WILL CONTAIN THE BEST
VALUE OBTAINED SO FAR.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMPAR(N,R,LDR,IPVT,DIAG,QTB,DELTA,PAR,X,SDIAG,
WA1,WA2)

WHERE

LMPROO10
LMPRO020
LMPROO30
LMPRO040
LMPROO050
LMPRO060
LMPR0O070
LMPROO80O
LMPRO090
LMPR0O100
LMPRO110
LMPRO120
LMPRO130
LMPRO140
LMPRO150
LMPRO160
LMPRO170
LMPRO180
LMPRO190
LMPRO200
LMPR0210
IMPRO220
LMPRO230
LMPR0O240
LMPRO250
LMPRO260
LMPR0O270
LMPRO280
LMPR0290
LMPR0O300
LMPRO310
LMPRO320
LMPR0330
LMPRO340
LMPR0O350
LMPRO360
LMPRO370
LMPRO380
LMPR0O390
LMPRO400
LMPR0410
LMPR0O420
LMPRO430
LMPRO440
LMPRO450
LMPRO460
LMPRO470
LMPR0O480
LMPRO490
LMPR0O500
LMPRO510
LMPRO520
LMPR0O530
LMPRO540

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
o
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

a0

214

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.

R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE
MUST CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R.
ON OUTPUT THE FULL UPPER TRIANGLE IS UNALTERED, AND THE
STRICT LOWER TRIANGLE CONTAINS THE STRICT UPPER TRIANGLE
(TRANSPOSED) OF THE UPPER TRIANGULAR MATRIX S.

LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.

IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE
PERMUTATION MATRIX P SUCH THAT A*P = Q*R. COLUMN J OF P
IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE
DIAGONAL ELEMENTS O THE MATRIX D.

QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST
N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B.

DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER
BOUND ON THE EUCLIDEAN NORM OF D+*X.

PAR IS A NONNEGATIVE VARIABLE. ON INPUT PAR CONTAINS AN
INITIAL ESTIMATE OF THE LEVENBERG-MARQUARDT PARAMETER.
ON OUTPUT PAR CONTAINS THE FINAL ESTIMATE.

X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE LEAST
SQUARES SOLUTION OF THE SYSTEM A*X = B, SQRT(PAR)*D*X = 0,
FOR THE OUTPUT PAR.

SDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
DIAGONAL ELEMENTS OF THE UPPER TRIANGULAR MATRIX S.

WAl AND WAZ ARE WORK ARRAYS OF LENGTH N.
SUBPROGRAMS CALLED

MINPACK=-SUPPLIED ... DPMPAR,ENORM,QRSOLV

FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

RN S SR SR SR SR SO S S Y
TITIVITIWRINWWW

INTEGER I,ITER,J,JM1,JP1,K,L,NSING

DOUBLE PRECISION DXNORM,DWARF,FP,GNORM,PARC,PARL,PARU,P1,P001,
* SUM, TEMP, ZERO

DOUBLE PRECISION DPMPAR,ENORM

DATA P1,P001,ZERO /1.0D-1,1.0D-3,0.0D0/

DWARF IS THE SMALLEST POSITIVE MAGNITUDE.

LMPRO550
LMPRO560
LMPR0OS570
LMPRO580
LMPR0590
LMPRO600
LMPR0610
LMPR0620
LMPRO630
LMPR0640
LMPRO650
LMPR0660
LMPRO0O670
LMPRO680
LMPRO690
LMPRO700
LMPRO710
LMPRO720
LMPRO730
LMPR0O740
LMPRO750
LMPRO760
LMPRO770
LMPRO780
LMPRO790
LMPRO80O
LMPRO810
LMPRO820
LMPRO830
LMPR0840
LMPRO850
LMPRO860
LMPRO870
LMPRO880O
LMPR0O890
LMPROS00
LMPROS10
LMPROS20
LMPRO930
LMPRO940
LMPRO950
LMPROS60
LMPROS70
LMPRO0980
LMPR0O990
LMPR1000
LMPR1010
LMPR1020
LMPR1030
LMPR1040
LMPR1050
LMPR1060
LMPR1070
LMPR1080

e . g

o]

(o oNe N

[oNoNeNe NP

oNoNeoNeNe]

10

20 -

30
40
50

60

70

80

DWARF = DPMPAR(2)

COMPUTE AND STORE IN X THE GAUSS-NEWTON DIRECTION. IF THE
JACOBIAN IS RANK-DEFICIENT, OBTAIN A LEAST SQUARES SOLUTION.

NSING = N
DO 10 J =1, N
WA1(J) = QTB(J)

IF (R(J,J) .EQ. ZERO .AND. NSING .EQ. N) NSING =J - 1

IF (NSING .LT. N) WA1(J) = ZERO
CONTINUE
IF (NSING .LT. 1) GO TO 50
DO 40 K = 1, NSING
J = NSING - K + 1
WA1(J) = WAl1(J)/R(J,J)
TEMP = WA1(J)
JM1 =J -1
IF (JM1 .LT. 1) GO TO 30
DO 20 I = 1, JM1
WA1(I) = WA1(I) - R(I,J)*TEMP

CONTINUE
CONTINUE
CONTINUE

CONTINUE

DO 60 J =1, N
L = IPVT(J)
X(L) = WA1(J)
CONTINUE

INITIALIZE THE ITERATION COUNTER.
EVALUATE THE FUNCTION AT THE ORIGIN, AND TEST
FOR ACCEPTANCE OF THE GAUSS-NEWTON DIRECTION.

ITER = 0

Do 70 J =1, N
WA2(J) = DIAG(J)*X(J)
CONTINUE

DXNORM = ENORM(N,WA2)

FP = DXNORM - DELTA

IF (FP .LE. P1*DELTA) GO TO 220

IF THE JACOBIAN IS NOT RANK DEFICIENT, THE NEWTON
STEP PROVIDES A LOWER BOUND, PARL, FOR THE ZERO OF
THE FUNCTION. OTHERWISE SET THIS BOUND TO ZERO.

PARL = ZERO
IF (NSING .LT. N) GO TO 120
DO 80 J =1, N
L = IPVT(J)
WA1(J) = DIAG(L)*(WA2(L)/DXNORM)
CONTINUE
DO 110 J = 1, N
SUM = ZERO

LMPR1090
LMPR1100
LMPR1110
LMPR1120
ILMPR1130
LMPR1140
LMPR1150
LMPR1160
LMPR1170
LMPR1180
LMPR1190
LMPR1200
ILMPR1210
LMPR1220
LMPR1230
LMPR1240
LMPR1250
LMPR1260
LMPR1270
LMPR1280
LMPR1290
LMPR1300
LMPR1310
LMPR1320
LMPR1330
LMPR1340
LMFR1350
LMPR1360
LMPR1370
LMPR1380
LMPR1390
LMPR1400
LMPR1410
LMPR1420
LMPR1430
LMPR1440
LMPR1450
LMPR1460
LMPR1470
LMPR1480
LMPR1490
LMPR1500
LMPR1510
LMPR1520
LMPR1530
LMPR1540
LMPR1550
LMPR1560
LMPR1570
LMPR1580
LMPR1590
LMPR1600
LMPR1610
LMPR1620

(@]

aao cooa’

QO

90
100
110

120

130

140

150

160

170

216

JM1 =J -1
IF (JM1 .LT. 1) GO TO 100
DO 90 I = 1, JM1
SUM = SUM + R(I,J)*WA1(I)
CONTINUE
CONTINUE
WAL(J) = (WAL(J) - SUM)/R(J,J)
CONTINUE :
TEMP = ENORM(N,WA1)
PARL = ((FP/DELTA)/TEMP)/TEMP
CONTINUE

CALCULATE AN UPPER BOUND, PARU, FOR THE ZERO OF THE FUNCTION.

DO 140 J = 1, N
SUM = ZERO
DO 130 I =1, J
SUM = SUM + R(I,J)*QTB(I)
CONTINUE
L = IPVT(J)
WAL(J) = SUM/DLAG(L)
CONTINUE
GNORM = ENORM(N,WA1)
PARU = GNORM/DELTA
IF (PARU .EQ. ZERO) PARU = DWARF/DMIN1(DELTA,P1)

IF THE INPUT PAR LIES OUTSIDE OF THE INTERVAL (PARL,PARU),
SET PAR TO THE CLOSER ENDPOINT.

PAR = DMAX1(PAR,PARL)
PAR = DMIN1(PAR,PARU)
IF (PAR .EQ. ZERO) PAR = GNORM/DXNORM

I

BEGINNING OF AN ITERATION.

CONTINUE
ITER = ITER + 1

EVALUATE THE FUNCTION AT THE CURRENT VALUE OF PAR.

IF (PAR .EQ. ZERO) PAR = DMAX1(DWARF,POO1*PARU)
TEMP = DSQRT(PAR)
DO 160 J = 1, N
WA1(J) = TEMP*DIAG(J)
CONTINUE
CALL QRSOLV(N,R,LDR,IPVT,WAl,QTB,X,SDIAG,WA2)
DO 170 J =1, N
WA2(J) = DIAG(J)*X(J)
CONTINUE
DXNORM = ENORM(N,WA2)
TEMP = FP
FP = DXNORM - DELTA

IF THE FUNCTION IS SMALL ENOUGH, AQCEPT,THE CURRENT VALUE

LMPR1630
LMPR1640
LMPR1650
LMPR1660
LMPR1670
LMPR1680
LMPR16S0
LMPR1700
LMPR1710
LMPR1720
ILMPR1730
LMPR1740
LMPR1750
LMPR1760
LMPR1770
LMPR1780
LMPR1790
LMPR1800
LMPR1810
LMPR1820
LMPR1830
LMPR1840
LMPR1850
LMPR1860
LMPR1870
LMPR1880
LMPR1890
LMPR1900
LMPR1910
LMPR1920
LMPR1930
LMPR1940
TMPR1950
LMPR1960
LMPR1970
LMPR1980
ILMPR1990
LMPR2000
LMPR2010
LMPR2020
LMPR2030
LMPR2040
LMPR2050
LMPR2060
LMPR2070
LMPR2080
LMPR2090
LMPR2100
LMPR2110
LMPR2120
LMPR2130
LMPR2140
LMPR2150
LMPR2160

a

aan

aaon

180

190
200
210

220

217

OF PAR. ALSO TEST FOR THE EXCEPTIONAL CASES WHERE PARL
IS ZERO OR THE NUMBER OF ITERATIONS HAS REACHED 10.

IF (DABS(FP) .LE. P1*DELTA
.OR. PARL .EQ. ZERO .AND. FP .LE. TEMP
LAND. TEMP .LT. ZERO .OR. ITER .EQ. 10) GO TO 220

COMPUTE THE NEWTON CORRECTION.

DO 180 J =1, N
L = IPVT(J)
WA1(J) = DIAG(L)*(WA2(L)/DXNORM)
CONTINUE
DO 210 J =1, N
WA1(J) = WA1(J)/SDIAG(J)
TEMP = WA1(J)
JP1=J +1
IF (N .LT. JP1) GO TO 200
DO 190 I = JP1, N
WA1(I) = WA1(I) - R(I,J)*TEMP
CONTINUE
CONTINUE
CONTINUE
TEMP = ENORM(N,WA1l)
PARC = ((FP/DELTA)/TEMP)/TEMP

DEPENDING ON THE SIGN OF THE FUNCTION, UPDATE PARL OR PARU.

DMAX1(PARL,PAR)
DMIN1 (PARU,PAR)

IF (FP .GT. ZERO) PARL
IF (FP .LT. ZERO) PARU

COMPUTE AN IMPROVED ESTIMATE FOR PAR.
PAR = DMAX1(PARL,PAR+PARC)
END OF AN ITERATION.

GO TO 150
CONTINUE

TERMINATION.

IF (ITER .EQ. 0) PAR = ZERO-
RETURN

LAST CARD OF SUBROUTINE LMPAR.

END

LMPR2170
LMPR2180
LMPR2190
LMPR2200
LMPR2210
LMPR2220
LMPR2230
LMPR2240
LMPR2250
LMPR2260
LMPR2270
LMPR2280
LMPR2290
LMPR2300
1MPR2310
LMPR2320
LMPR2330
LMPR2340
LMPR2350

TLMPR2360

LMPR2370
LMPR2380
LMPR2390
IMPR2400
LMPR2410
LMPR2420
LMPR2430
LMPR2440
IMPR2450-
LMPR2460
LMPR2470
1LMPR2480Q
LMPR2490
LMPR2500
IMPR2510
LMPR2520
LMPR2530
ILMPR2540
LMPR2550
LMPR2560
LMPR2570
LMPR2580
LMPR2590
LMPR2600
LMPR2610
LMPR2620
LMPR2630
LMPR2640

218

o THIS PAGE
WAS INTEN TIONALL¥
LEFT BLANK

eRoRoRoRoRoRoRsReRo R RsRe R R R 2o Ko e Re N R EeEs R RoRsEvEsNoNoNoNoNoNo RO RO NN e RPN S e NS b

SUBROUTINE LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,

* MAXFEV,DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,NJEV,

* IPVT,QTF,WA1,WA2 ,WA3,WA4)

INTEGER M,N,LDFJAC,MAXFEV,MODE ,NPRINT, INFO,NFEV,NJEV
INTEGER IPVT(N)

LOGICAL SING

DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N),
* WA1(N),WA2(N),WA3(N),WA4(M)

alecboctontontantecto st ctinte
TATITITIWIW RN

SUBROUTINE LMSTR

THE PURPOSE OF LMSTR IS TO MINIMIZE THE SUM OF THE SQUARES OF
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF

THE LEVENBERG-MARQUARDT ALGORITHM WHICH USES MINIMAL STORAGE.
THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE
FUNCTIONS AND THE ROWS OF THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
MAXFEV,DIAG,MODE ,FACTOR ,NPRINT, INFO,NFEV,
NJEV, IPVT,QTF,WAl,WA2,WA3,WAL)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE ROWS OF THE JACOBIAN.
FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN THE
USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG)

INTEGER M,N,IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.
RETURN

END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMSTR.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

LMSR0010
LMSR0020
LMSR0030
LMSR0040
LMSRO050
LMSR0060
LMSR0070
LMSR0080
LMSR0090
LMSRO100
LMSR0110
LMSR0120
LMSR0130
LMSRO140
LMSR0150
LMSR0160
LMSRO0170
LMSR0180
LMSR0190
LMSR0200
LMSR0210
LMSR0220
LMSR0230
LMSR0240
LMSR0250
LMSR0260
LMSR0270
LMSR0280
LMSR0290
LMSR0300
LMSRO310
LMSR0320
LMSR0330
LMSR0340
LMSR0350
LMSR0360
LMSR0370
LMSR0380
LMSR0390
LMSR0400
LMSR0410
LMSR0420
LMSR0430
LMSR0440
LMSR0450
LMSR0460
LMSR0470
LMSR0480
LMSR0490
LMSR0500
LMSR0510
LMSR0520
LMSR0530
LMSR0540

OO

220

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FJAC IS AN OUTPUT N BY N ARRAY. THE UPPER TRIANGLE OF FJAC
CONTAINS AN UPPER TRIANGULAR MATRIX R SUCH THAT

T T T
P *(JAC *JAC)*P = R *R,

WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL
CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J)
(SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRIANGULAR
PART OF FJAC CONTAINS INFORMATION GENERATED DURING

THE COMPUTATION OF R.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE
REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL.
THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED
IN THE SUM OF SQUARES.

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE
RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION.

GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE COSINE OF THE ANGLE BETWEEN FVEC AND
ANY COLUMN OF THE JACOBIAN IS AT MOST GTOL IN ABSOLUTE
VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY
DESIRED BETWEEN THE FUNCTION VECTOR AND THE COLUMNS
OF THE JACOBIAN.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1
HAS REACHED MAXFEV.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE
BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE
VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2,
THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
VALUES OF MODE ARE EQUIVALENT TO MODE = 1.

LMSRO550
LMSR0560
LMSRO0570
LMSR0580
LMSR0590
LMSR0600
LMSR0610
LMSR0620
LMSR0630
LMSR0640
LMSR0650
LMSR0O660
LMSR0670
LMSR0680
LMSRO690
LMSRO700
LMSRO710
LMSRO720
LMSRO730
LMSRO740
LMSRO750
LMSRO760
LMSRO770
LMSR0780
LMSR0O790
LMSRO800
LMSR0810
LMSR0820
LMSRO830
LMSR0840
LMSRO0850
LMSR0860
LMSRO870
LMSR0O880
LMSR0890
LMSR0900
LMSR0910
LMSR0920
LMSR0O930
LMSR0940
LMSR0950
LMSR0960
LMSR0970
LMSR0980
LMSR0990
LMSR1000
LMSR1010
LMSR1020
LMSR1030
LMSR1040
LMSR1050
LMSR1060
LMSR1070
LMSR1080

221

C FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE LMSR1090
C INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF LMSR1100
C FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE LMSR1110
C TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE LMSR1120
C INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE. LMSR1130
C o , LMSR1140
C NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED LMSR1150
C PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, LMSR1160
C FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST LMSR1170
C ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND LMSR1180
C IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE LMSR1190
C FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS LMSR1200
C OF FCN WITH IFLAG = 0 ARE MADE. LMSR1210
C LMSR1220
C INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS LMSR1230
C TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMSR1240
C VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMSR1250
C INFO IS SET AS FOLLOWS. LMSR1260
C LMSR1270
C INFO = 0 IMPROPER INPUT PARAMETERS. LMSR1280
C LMSR1290
C INFO = 1 BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS LMSR1300
C IN THE SUM OF SQUARES ARE AT MOST FTOL. LMSR1310
C , ' LMSR1320
C INFO = 2 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES LMSR1330
C IS AT MOST XTOL. ' LMSR1340
C : : LMSR1350
C INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. LMSR1360
C LMSR1370
C INFO = 4 THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY LMSR1380
C COLUMN OF THE JACOBIAN IS AT MOST GTOL IN LMSR1390
C ABSOLUTE VALUE. ' - LMSR1400
G LMSR1410
C INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS LMSR1420
C REACHED MAXFEV. LMSR1430
C LMSR1440
C INFO = 6 FTOL IS TOO SMALL. NO FURTHER REDUCTION IN LMSR1450
C THE SUM OF SQUARES IS POSSIBLE. LMSR1460
C LMSR1470
C INFO = 7 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMSR1480
C THE APPROXIMATE SOLUTION X IS POSSIBLE. LMSR1490
C LMSR1500
C INFO = 8 GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE LMSR1510
C COLUMNS OF THE JACOBIAN TO MACHINE PRECISION. LMSR1520
C LMSR1530
C NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF LMSR1540
C CALLS TO FCN WITH IFLAG = 1. _ LMSR1550
C LMSR1560
C NJEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF LMSR1570
C CALLS TO FCN WITH IFLAG = 2. LMSR1580
C LMSR1590
C IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMSR1600
C DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R, LMSR1610
C

WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS LMSR1620

oNoNeoNsNoNoNoNoNoNoNoNoNoNoNoNoNoNsNoNoNoNoNe!

oo

aQ

[oNoNe N

ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR.
COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*FVEC.

WAl, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N.
WA4 IS A WORK ARRAY OF LENGTH M.

SUBPROGRAMS CALLED

USER-SUPPLIED FCN
MINPACK~-SUPPLIED ... DPMPAR,ENORM,LMPAR,QRFAC,RWUPDT
FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT,MOD

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, DUDLEY V. GOETSCHEL, KENNETH E. HILLSTROM,
JORGE J. MORE -

TR R0 SR, L AP O AP R DO 34
WIWWWRWRWRRNR

INTEGER I,IFLAG,ITER,J,L
DOUBLE PRECISION ACTRED,DELTA,DIRDER,EPSMCH,FNORM,FNORM1,GNORM,

* ONE,PAR, PNORM,PRERED,P1,P5,P25,P75,P0001,RATIO,

* , SUM, TEMP,TEMP1,TEMP2 ,XNORM, ZERO
DOUBLE PRECISION DPMPAR , ENORM

DATA ONE,P1,P5,P25,P75 P0001 ZERO
* /1.0D0,1.0D-1,5.0D-1,2.5D-1,7.5D-1,1.0D-4,0xOD0/

EPSMCH IS THE MACHINE PRECISION.

EPSMCH = DPMPAR(1)

INFO =

IFLAG =
NFEV = 0
NJEV = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. N
% .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL .LT. ZERO
* .OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO) GO TO 340
IF (MODE .NE. 2) GO TO 20
DO 10 J =1, N
IF (DIAG(J) .LE. ZERO) GO TO 340
10 CONTINUE
20 CONTINUE

EVALUATE THE FUNCTION AT THE STARTING POINT
AND CALCULATE ITS NORM.

LMSR1630
LMSR1640
LMSR1650
LMSR1660
LMSR1670
LMSR1680
LMSR1690
LMSR1700
LMSR1710
LMSR1720
LMSR1730
LMSR1740
LMSR1750
LMSR1760
LMSR1770
LMSR1780
LMSR1790
LMSR1800
LMSR1810
LMSR1820
LMSR1830
LMSR1840
LMSR1850
LMSR1860
LMSR1870
LMSR1880
LMSR1890
LMSR1900
LMSR1910
LMSR1920
LMSR1930
LMSR1940
LMSR1950
LMSR1960
LMSR1970
LMSR1980
LMSR1990
LMSR2000
LMSR2010
LMSR2020
LMSR2030
LMSR2040
LMSR2050
LMSR2060
LMSR2070
LMSR2080
LMSR2090
LMSR2100
LMSR2110
LMSR2120
LMSR2130
LMSR2140
LMSR2150
LMSR2160

a-o.

(@]

(@]

aao

oNoNoNoEPNP]

aaoaoon

30

40

50
60

70

80

223

IFLAG = 1
CALL FCN(M,N,X,FVEC,WA3,IFLAG)
NFEV = 1

IF (IFLAG .LT. 0) GO TO 340
FNORM = ENORM(M,FVEC)

INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER.

PAR = ZERO
ITER = 1

BEGINNING OF THE OUTER LOOP.
CONTINUE
IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.

IF (NPRINT .LE. 0) GO TO 40

IFLAG = 0

IF (MOD(ITER-1,NPRINT) .EQ. 0) CALL FCN(M,N,X,FVEC,WA3,IFLAG)
IF (IFLAG .LT. 0) GO TO 340

CONTINUE

COMPUTE THE QR FACTORIZATION OF THE JACOBIAN MATRIX
CALCULATED ONE ROW AT A TIME, WHILE SIMULTANEOUSLY
FORMING (Q TRANSPOSE)*FVEC AND STORING THE FIRST

N COMPONENTS IN QTF.

DO 60 J =
QTF (J)
DO 50 I =1,
FJAC(I,J)
CONTINUE
CONTINUE
IFLAG = 2
DO70I =1, M
CALL FCN(M,N,X,FVEC,WA3,IFLAG)
IF (IFLAG .LT. 0) GO TO 340
TEMP = FVEC(I)
CALL RWUPDT(N,FJAC,LDFJAC,WA3,QTF,TEMP,WA1,WA2)
IFLAG = IFLAG + 1
CONTINUE
NJEV = NJEV + 1

1, N
= ZERO

1, N
= ZERO

IF THE JACOBIAN IS RANK DEFICIENT, CALL QRFAC TO
REORDER ITS COLUMNS AND UPDATE THE COMPONENTS OF QTF.

SING = .FALSE.
DO 80 J =1, N
IF (FJAC(J,J) .EQ. ZERO) SING = .TRUE.
IPVT(J) = J
WA2(J) = ENORM(J,FJAC(1,J))
CONTINUE
IF (.NOT.SING) GO TO 130

LMSR2170
LMSR2180
LMSR2190
LMSR2200
LMSR2210
LMSR2220
LMSR2230
LMSR2240
LMSR2250
LMSR2260
IMSR2270
LMSR2280
LMSR2290
LMSR2300
LMSR2310
LMSR2320
LMSR2330
LMSR2340
LMSR2350
LMSR2360
LMSR2370
LMSR2380
LMSR2390
LMSR2400
LMSR2410
LMSR2420
LMSR2430
LMSR2440
LMSR2450°
LMSR2460
LMSR2470
LMSR2480
LMSR2490
LMSR2500
LMSR2510
LMSR2520
LMSR2530
LMSR2540
LMSR2550
LMSR2560
LMSR2570
LMSR2580
LMSR2590
LMSR2600
LMSR2610
LMSR2620
LMSR2630
LMSR2640
LMSR2650
LMSR2660
LMSR2670
LMSR2680
LMSR2690
LMSR2700

eNoNoNe! [oNoNeNe]

[oN®]

90

100
110

120
130

140
150

160

170

180

190
200
210

224

CALL QRFAC(N,N,FJAC,LDFJAC, .TRUE.,IPVT,N,WAl,WA2,WA3)
DO 120 J =1, N
IF (FJAC(J,J) .EQ. ZERO) GO TO 110
SUM = ZERO
DO 90 I =J, N
SUM = SUM + FJAC(I,J)*QTF(I)
CONTINUE
TEMP = -SUM/FJAC(J,J)
DO 100 I = J, N
QTF(I) = QTF(I) + FJAC(I,J)*TEMP
CONTINUE
CONTINUE
FJAC(J,J)
CONTINUE
CONTINUE

WA1(J)

ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.

IF (ITER .NE. 1) GO TO 170"
IF (MODE .EQ. 2) GO TO 150
DO 140 J = 1, N
DIAG(J) = WA2(J)
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
CONTINUE
CONTINUE

ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
AND INITIALIZE THE STEP BOUND DELTA.

DO 160 J = 1, N
WA3(J) = DIAG(I)*X(J) .
CONTINUE
XNORM = ENORM(N,WA3)
DELTA = FACTOR*XNORM
IF (DELTA .EQ. ZERO) DELTA = FACTOR
CONTINUE

COMPUTE THE NORM OF THE SCALED GRADIENT.

GNORM = ZERO
IF (FNORM .EQ. ZERO) GO TO 210
DO 200 J =1, N
L = IPVT(J)
IF (WA2(L) .EQ. ZERO) GO TO 190
SUM = ZERO
DO 180 I =1, J
SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM)
CONTINUE
GNORM = DMAX1(GNORM,DABS (SUM/WA2(L)))
CONTINUE
CONTINUE
CONTINUE

LMSR2710
LMSR2720
LMSR2730
LMSR2740
LMSR2750
LMSR2760
LMSR2770
LMSR2780
LMSR2790
LMSR2800
LMSR2810
LMSR2820
LMSR2830
LMSR2840
LMSR2850
LMSR2860
LMSR2870
LMSR2880
LMSR2890
LMSR2900
LMSR2910
LMSR2920
LMSR2930
LMSR2940
LMSR2950
LMSR2960
LMSR2970
LMSR2980
LMSR2990
LMSR3000
LMSR3010
LMSR3020
LMSR3030
LMSR3040 -
LMSR3050
LMSR3060
LMSR3070
LMSR3080
LMSR3090
LMSR3100
LMSR3110
LMSR3120
LMSR3130
LMSR3140
LMSR3150
LMSR3160
LMSR3170
LMSR3180
LMSR3190
LMSR3200
LMSR3210
LMSR3220
LMSR3230
LMSR3240

C TEST FOR CONVERGENCE OF THE GRADIENT NORM. LMSR3250
c LMSR3260
IF (GNORM .LE. GTOL) INFO = 4 : LMSR3270

IF (INFO .NE. 0) GO TO 340 LMSR3280

C LMSR3290
C RESCALE IF NECESSARY. LMSR3300
C LMSR3310
IF (MODE .EQ. 2) GO TO 230 LMSR3320

DO 220 J = 1, N LMSR3330

DIAG(J) = DMAX1(DIAG(J),WA2(J)) LMSR3340

220 CONTINUE LMSR3350
230 CONTINUE LMSR3360

c LMSR3370
c BEGINNING OF THE INNER LOOP. LMSR3380
c LMSR3390
240 CONTINUE LMSR3400

C LMSR3410
c DETERMINE THE LEVENBERG-MARQUARDT PARAMETER. LMSR3420
c LMSR3430
CALL IMPAR(N,FJAC,LDFJAC,IPVT,DIAG,QTF,DELTA,PAR,WA1,WA2, LMSR3440

* WA3,WAG) LMSR3450

c LMSR3460
C STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. LMSR3470
c : LMSR3480
DO 250 J = 1, N LMSR3490

WAL(T) = -WA1(J) LMSR3500

WA2(J) = X(J) + WAL(J) ~ LMSR3510

WA3(J) = DIAG(J)*WA1(J) LMSR3520

250 CONTINUE LMSR3530
PNORM = ENORM(N,WA3) LMSR3540

C LMSR3550
c ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. LMSR3560
c LMSR3570
IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM) LMSR3580

C LMSR3590
c EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM. LMSR3600
C LMSR3610
IFLAG = 1 LMSR3620

CALL FCN(M,N,WA2,WA&4,WA3,IFLAG) LMSR3630

NFEV = NFEV + 1 LMSR3640

IF (IFLAG .LT. 0) GO TO 340 LMSR3650

FNORM1 = ENORM(M,WA&) LMSR3660

c LMSR3670
C COMPUTE THE SCALED ACTUAL REDUCTION. LMSR3680
C . LMSR3690
ACTRED = -ONE LMSR3700

IF (P1*FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)**2 LMSR3710

C LMSR3720
c COMPUTE THE SCALED PREDICTED REDUCTION AND LMSR3730
C THE SCALED DIRECTIONAL DERIVATIVE. LMSR3740
c LMSR3750
DO 270 J =1, N LMSR3760

WA3(J) = ZERO LMSR3770

L = IPVT(J) LMSR3780

[oN>NeoNS]

aaa

[oNoNe!

Qoo

260
270

280

290
300

310

320

330

226

TEMP = WA1(L)
DO 260 I =1, J _
WA3(I) = WA3(I) + FJAC(I,J)*TEMP
CONTINUE
CONTINUE
TEMP1 = ENORM(N,WA3)/FNORM

TEMP2 (DSQRT (PAR)*PNORM) /FNORM
PRERED = TEMP1**2 + TEMP2**2/P5
DIRDER = -(TEMP1%*2 + TEMP2%%2)

COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED
REDUCTION.

RATIO = ZERO
IF (PRERED .NE. ZERO) RATIO = ACTRED/PRERED

UPDATE THE STEP BOUND.

IF (RATIO .GT. P25) GO TO 280
IF (ACTRED .GE. ZERO) TEMP = PS5
IF (ACTRED .LT. ZERO)
TEMP = P5*DIRDER/(DIRDER + P5*ACTRED)
IF (P1*FNORM1 .GE. FNORM .OR. TEMP .LT. P1) TEMP = P1
DELTA = TEMP*DMIN1(DELTA,PNORM/P1)
PAR = PAR/TEMP
GO TO 300
CONTINUE
IF (PAR .NE. ZERO .AND. RATIO .LT. P75) GO TO 290
DELTA = PNORM/P5
PAR = P5*PAR
CONTINUE
CONTINUE

TEST FOR SUCCESSFUL ITERATION.
IF (RATIO .LT. P0O0OO1) GO TO 330
SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.

DO 310 J = 1, N
X(J) = WA2(J)
WA2(J) = DIAG(J)*X(J)
CONTINUE

DO 320I =1, M
FVEC(I) = WA4(I)
CONTINUE

XNORM = ENORM(N,WA2)

FNORM = FNORM1

ITER = ITER + 1

CONTINUE

TESTS FOR CONVERGENCE.

IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL

LMSR3790
LMSR3800
LMSR3810
LMSR3820
LMSR3830
LMSR3840
LMSR3850
LMSR3860
LMSR3870
LMSR3880
LMSR3890
LMSR3900
LMSR3910
LMSR3920
LMSR3930
LMSR3940
LMSR3950
LMSR3960
LMSR3970
LMSR3980
LMSR3990
LMSR4000
LMSR4010
LMSR4020
LMSR4030
LMSR4040
LMSR4050
LMSR4060
LMSR4070
LMSR4080
LMSR4090
LMSR4100
LMSR4110
LMSR4120
LMSR&4130
LMSR4140
LMSR4150
LMSR4160
LMSR4170
LMSR4180
LMSR&190
LMSR4200
LMSR4210
LMSR4220
LMSR4230
LMSR4240
LMSR4250
LMSR4260
LMSR4270
LMSR4280
LMSR4290
LMSR4300
LMSR4310
LMSR4320

Qo

1

* .AND. P5*RATIO .LE. ONE) INFO
IF (DELTA .LE. XTOL*XNORM) INFO =
IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL

* .AND. P5*RATIO .LE. ONE .AND. INFO .EQ. 2) INFO = 3
IF (INFO .NE. 0) GO TO 340

2

TESTS FOR TERMINATION AND STRINGENT TOLERANCES.

IF (NFEV .GE. MAXFEV) INFO = 5

IF (DABS(ACTRED) .LE. EPSMCH .AND. PRERED .LE. EPSMCH
* .AND. P5*RATIO .LE. ONE) INFO = 6

IF (DELTA .LE. EPSMCH*XNORM) INFO = 7

IF (GNORM .LE. EPSMCH) INFO = 8

IF (INFO .NE. 0) GO TO 340

END OF THE INNER LOOP. REPEAT IF ITERATION UNSUCCESSFUL.

IF (RATIO .LT. P0O0OO1l) GO TO 240
END OF THE OUTER LOOP.

GO TO 30
340 CONTINUE

TERMINATION, EITHER NORMAL OR USER IMPOSED.

IF (IFLAG .LT. 0) INFO = IFLAG

IFLAG = 0

IF (NPRINT .GT. 0) CALL FCN(M,N,X,FVEC,WA3,IFLAG)
RETURN

LAST CARD OF SUBROUTINE LMSTR.

END

LMSR4330
LMSR4340
LMSR4&4350
LMSR4360
LMSR4370
LMSR4380
LMSR4390
LMSR4400
LMSR4410
LMSR4420
LMSR4430
LMSR4440
LMSR&4450
LMSR4460
LMSR4470
LMSR4480
LMSR4490
LMSR4500
LMSR4510

LMSR4520°

LMSR4530
LMSR4540
LMSR4550
LMSR4560
LMSR4570
LMSR4580
LMSR4590
LMSR4600
LMSR4610
LMSR4620
LMSR4630
LMSR4640
LMSR4650

LMSR4660

228

PSS E . HO 4

=)

WA?%IN?I‘EN.r fl\@N‘ALLY
. LEFT BLANK

.-

ote
w

SUBROUTINE LMSTR1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,IPVT,WA,

LWA)

INTEGER M,N,LDFJAC,INFO,IWA

INTEGER IPVT(N)

DOUBLE PRECISION TOL

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

alactoctantoabiate clectoatosts
WRIWWRWWHRW

SUBROUTINE LMSTR1

THE PURPOSE OF LMSTR1 IS TO MINIMIZE THE SUM OF THE SQUARES OF
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF
THE LEVENBERG-MARQUARDT ALGORITHM WHICH USES MINIMAL STORAGE.
THIS IS DONE BY USING THE MORE GENERAL LEAST-SQUARES SOLVER
LMSTR. THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES
THE FUNCTIONS AND THE. ROWS OF THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

" SUBROUTINE LMSTR1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL, INFO,

IPVT,WA,LWA)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH

CALCULATES THE FUNCTIONS AND THE ROWS OF THE JACOBIAN.
FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN THE
USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,FJROW, IFLAG)

INTEGER M,N,IFLAG

DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMSTR1.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X

LMS10010
LMS10020
LMS10030
LMS10040
LMS10050
LMS10060
LMS10070
LMS10080
LMS10090
1IMS10100
IMS10110
1MS10120
LMS10130
LMS10140
LMS10150
LMS10160
LMS10170
1LMS10180
LMS10190
LMS10200
ILMS10210
LMS10220
LMS10230
LMS10240
1LMS10250
LMS10260
LMS10270
LMS10280
LMS10290
LMS10300
LMS10310
1MS10320
LMS10330
LMS10340
LMS10350
LMS10360
LMS10370
1MS10380
LMS10390
LMS10400
LMS10410
LMS10420
LMS10430
LMS10440
LMS10450
IMS10460
LMS10470
LMS10480
LMS10490
LMS10500
LMS10510
LMS10520
1LMS10530
LMS10540

230

C CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. LMS10550
C LMS10560
C FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS LMS10570
C THE FUNCTIONS EVALUATED AT THE OUTPUT X. LMS10580
C LMS10590
C FJAC IS AN OUTPUT N BY N ARRAY. THE UPPER TRIANGLE OF FJAC LMS10600
C CONTAINS AN UPPER TRIANGULAR MATRIX R SUCH THAT LMS10610
c LMS10620
C T T T LMS10630
C P *(JAC *JAC)*P = R *R, LMS10640
c LMS10650
C WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL LMS10660
C CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J) LMS10670
C (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRIANGULAR LMS10680
C PART OF FJAC CONTAINS INFORMATION GENERATED DURING LMS10690
C THE COMPUTATION OF R. LMS10700
C ‘ LMS10710
C LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N LMS10720
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. LMS10730
C LMS10740
C TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS LMS10750
C WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE LMS10760
C ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT LMS10770
C THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT LMS10780
C MOST TOL. LMS10790
C MS10800
C INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS LMS10810
C TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMS10820
C VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMS10830
C INFO IS SET AS FOLLOWS. LMS10840
c LMS10850
C INFO = 0 IMPROPER INPUT PARAMETERS. LMS10860
C LMS10870
C INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR . LMS10880
c IN THE SUM OF SQUARES IS AT MOST 'TOL. LMS10890
c LMS10900
C INFO = 2 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMS10910
C BETWEEN X AND THE SOLUTION IS AT MOST TOL. LMS10920
C LMS10930
C INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. ILMS10940
c LMS10950
C INFO = 4 FVEC IS ORTHOGONAL TO THE COLUMNS OF THE LMS10960
C JACOBIAN TO MACHINE PRECISION. LMS10970
c LMS10980
C INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS ILMS10990
C REACHED 100%*(N+1). LMS11000
c LMS11010
C INFO = 6 TOL IS TOO SMALL. NO FURTHER REDUCTION IN LMS11020
C THE SUM OF SQUARES IS POSSIBLE. IMS11030
C LMS11040
C INFO = 7 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMS11050
C THE APPROXIMATE SOLUTION X IS POSSIBLE. LMS11060
C LMS11070
C IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMS11080

o NP NP]

aaan

e Eo R R R R R R P e AP AP S NP P P NP P NP NP

231

DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R,
WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS
ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR.
COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

WA IS A WORK ARRAY OF LENGTH LWA.

LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN 5*N+M.
SUBPROGRAMS CALLED

USER-SUPPLIED FCN

MINPACK-SUPPLIED ... LMSTR
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.

BURTON S. GARBOW, DUDLEY V. GOETSCHEL, KENNETH E. HILLSTROM,
JORGE J. MORE

deetontentictictintotectoats
TATIRWITIWRW W

INTEGER MAXFEV,MODE,NFEV ,NJEV,NPRINT

DOUBLE PRECISION FACTOR,FTOL,GTOL,XTOL,ZERO
DATA FACTOR,ZERO /1.0D2,0.0D0/

INFO = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. N .OR. TOL .LT. ZERO

* .OR. LWA .LT. 5*N + M) GO TO 10

CALL LMSTR.

MAXFEV = 100*(N + 1)

FTOL = TOL

XTOL = TOL

GTOL = ZERO

MODE = 1

NPRINT = 0

CALL LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,MAXFEV,
% WA(1),MODE ,FACTOR,NPRINT, INFO,NFEV,NJEV, IPVT ,WA(N+1),
* WA (2%N+1) ,WA(3*N+1) ,WA(4*N+1) ,WA(5*N+1))

IF (INFO .EQ. 8) INFO = 4

10 CONTINUE

RETURN

LAST CARD OF SUBROUTINE LMSTR1.

END

LMS11090
LMS11100
LMS11110
LMS11120
LMS11130
LMS11140
IMS11150
LMS11160
LMS11170
IMS11180
IMS11190
LMS11200
ILMS11210
LMS11220
LMS11230
LMS11240
LMS11250
LMS11260
1MS11270
IMS11280
LMS11290
LMS11300
ILMS11310
LMS11320
LMS11330
IMS11340
LMS11350
LMS11360
IMS11370
LMS11380
LMS11390
LMS11400
LMS11410
LMS11420
LMS11430
LMS11440
LMS11450
LMS11460
LMS11470
LMS11480
LMS11490
LMS11500
IMS11510
ILMS11520
LMS11530
IMS11540
LMS11550
LMS11560

. e e @™ W
‘ b "i. > b N
$

THISg PAGE
WAS INTENTIQNALLY
LEFT BLANK

oReReo YRR s e e v e Ko N e R N R o e A R NP P NP P PP R NP O RO NS NS NP RS RO NP}

[oNoNe]

10

20

SUBROUTINE QFORM(M,N,Q,LDQ,WA)
INTEGER M,N,LDQ
DOUBLE PRECISION Q(LDQ,M),WA(M)

teatotectantentactacl clante
PRTICEDEOTIGINW

SUBROUTINE QFORM
THIS SUBROUTINE PROCEEDS FROM THE COMPUTED QR FACTORIZATION OF
AN M BY N MATRIX A TO ACCUMULATE THE M BY M ORTHOGONAL MATRIX
Q FROM ITS FACTORED FORM. ' :
THE SUBROUTINE STATEMENT IS

SUBROUTINE QFORM(M,N,Q,LDQ,WA)
WHERE

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF ROWS' OF A AND THE ORDER OF Q.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER.
OF COLUMNS OF A. '

Q IS AN M BY M ARRAY. ON INPUT THE FULL LOWER TRAPEZOID IN

THE FIRST MIN(M,N) COLUMNS OF Q CONTAINS THE FACTORED FORM.

ON OUTPUT Q HAS BEEN ACCUMULATED INTO A SQUARE MATRIX.

LDQ IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY Q.

WA IS A WORK ARRAY OF LENGTH M.
SUBPROGRAMS CALLED
FORTRAN-SUPPLIED ... MINO

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

aelosleatectctuntacatasts
TWETITIWWIWWRW

INTEGER I,J,JM1,K,L,MINMN,NP1
DOUBLE PRECISION ONE,SUM,TEMP,ZERO
DATA ONE,ZERO /1.0D0,0.0D0/

.ZERO OUT UPPER TRIANGLE OF Q IN THE FIRST MIN(M,N) COLUMNS.

MINMN = MINO(M,N)
IF (MINMN .LT. 2) GO TO 30
DO 20 J = 2, MINMN
JM1 =J - 1
DO 10 I = 1, JM1
Q(I,J) = ZERO
CONTINUE
CONTINUE

QFRM0010
QFRM0020
QFRM0030
QFRM0040
QFRM0050
QFRM0060
QFRM0070
QFRM0080
QFRM0090
QFRM0100
QFRM0110
QFRM0120
QFRM0130
QFRM0140
QFRM0150
QFRM0160
QFRM0170
QFRM0180
QFRM0190
QFRM0200
QFRM0210
QFRM0220
QFRM0230
QFRM0240
QFRM0250
QFRM0260
QFRM0270
QFRM0280
QFRM0290"
QFRM0300
QFRM0310
QFRM0320
QFRM0330
QFRM0340
QFRM0350
QFRM0360
QFRM0370
QFRM0380
QFRM0390
QFRM0400
QFRM0410
QFRM0420
QFRMO0430
QFRM0440
QFRM0450
QFRM0460
QFRM0470
QFRMO0480
QFRM0490
QFRM0500
QFRM0510
QFRM0520
QFRM0530
QFRM0540

30

40

50
60

70

80

90
100
110
120

234

CONTINUE

- INITTALIZE REMAINING COLUMNS TO THOSE OF THE IDENTITY MATRIX.

NP1 =N + 1
IF (M .LT. NP1) GO TO 60
DO 50 J = NP1, M
DO 40 I =1, M
Q(I,J) = ZERO
CONTINUE
Q(J,J) = ONE
CONTINUE
CONTINUE

ACCUMULATE Q FROM ITS FACTORED FORM.

DO 120 L = 1, MINMN
K=MINMN - L + 1

DO 70 I =K, M
WA(I) = Q(I,K)
Q(I,K) = ZERO

CONTINUE
Q(K,K) = ONE
IF (WA(K) .EQ. ZERO) GO TO 110
DO 100 J =K, M
SUM = ZERO
DO 80 I =K, M
SUM = SUM + Q(I,J)*WA(I)
CONTINUE _
TEMP = SUM/WA(K)
DO 90 I =K, M
Q(I,J) = Q(I,J) - TEMP*WA(I)
CONTINUE
CONTINUE
CONTINUE
CONTINUE
RETURN

LAST CARD OF SUBROUTINE QFORM.

END

QFRM0550
QFRMO0560
QFRM0570
QFRM0580
QFRM0590
QFRM0600
QFRM0610
QFRM0620
QFRM0630
QFRM0640
QFRM0650
QFRM0660
QFRM0670
QFRM0680
QFRM0690
QFRM0700
QFRMO0710
QFRM0720
QFRM0730
QFRM0740
QFRM0750
QFRM0760
QFRM0770
QFRM0780
QFRM0790
QFRM0800
QFRM0810
QFRM0820
QFRM0830
QFRMO840
QFRMO0850
QFRM0860
QFRM0870
QFRM0880
QFRM0890
QFRM0900
QFRM0910
QFRM0920
QFRM0930
QFRM0940
QFRM0950

oo RoRoRsReoRoRoRoRoRoReoRoReRsRoReRe R R Re R R e R R R R Rs R Ns R RN Ne R Re e o o oo NoNoNo NO NO NP NS]

SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG,ACNORM,WA)
INTEGER M,N,LDA,LIPVT

INTEGER IPVT(LIPVT)

LOGICAL PIVOT

DOUBLE PRECISION A(LDA,N),RDIAG(N),ACNORM(N),WA(N)

R PRI P P PR SR S O
O O I i A

SUBROUTINE QRFAC

THIS SUBROUTINE USES HOUSEHOLDER TRANSFORMATIONS WITH COLUMN
PIVOTING (OPTIONAL) TO COMPUTE A QR FACTORIZATION OF THE

M BY N MATRIX A. THAT IS, QRFAC DETERMINES AN ORTHOGONAL
MATRIX Q, A PERMUTATION MATRIX P, AND AN UPPER TRAPEZOIDAL
MATRIX R WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE,
SUCH THAT A*P = Q*R. THE HOUSEHOLDER TRANSFORMATION FOR
COLUMN K, K = 1,2,...,MIN(M,N), IS OF THE FORM

: T
I - (1/U(K))*U*U

WHERE U HAS ZEROS IN THE FIRST K-1 POSLTIONS. THE FORM OF
THIS TRANSFORMATION AND THE METHOD OF PIVOTING FIRST
APPEARED IN. THE CORRESPONDING LINPACK SUBROUTINE.

THE SUBROUTINE STATEMENT IS

SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT ,LIPVT,RDIAG,ACNORM,WA)

WHERE

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF ROWS OF A. : :

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF COLUMNS OF A.

A IS AN M BY N ARRAY. ON INPUT A CONTAINS THE MATRIX FOR
WHICH THE QR FACTORIZATION IS TO BE COMPUTED. ON OUTPUT

THE STRICT UPPER TRAPEZOIDAL PART OF A CONTAINS THE STRICT

UPPER TRAPEZOIDAL PART OF R, AND THE LOWER TRAPEZOIDAL
PART OF A CONTAINS A FACTORED FORM OF Q (THE NON-TRIVIAL
ELEMENTS OF THE U VECTORS DESCRIBED ABOVE).

LDA IS 4 POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A.

PIVOT IS A LOGICAL INPUT VARIABLE. IF PIVOT IS SET TRUE,.
THEN COLUMN PIVOTING IS ENFORCED. IF PIVOT IS SET FALSE,
THEN NO COLUMN PIVOTING IS DONE.

IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH LIPVT. IPVT
DEFINES THE PERMUTATION MATRIX P SUCH THAT A*P = Q*R.
COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.
IF PIVOT IS FALSE, IPVT IS NOT REFERENCED.

QRFA0010
QRFA0020
QRFA0030
QRFA0040
QRFA0050
QRFA0060
QRFA0070
QRFA0080
QRFA0090
QRFA0100
QRFA0110
QRFA0120
QRFA0130
QRFA0140
QRFA0150
QRFA0160
QRFA0170
QRFA0180
QRFA0190
QRFA0200
QRFA0210
QRFA0220
QRFA0230
QRFA0240
QRFA0250
QRFA0260
QRFA0270
QRFA0280
QRFA0290
QRFA0300
QRFA0310
QRFA0320
QRFA0330
QRFA0340
QRFA0350
QRFA0360
QRFA0370
QRFA0380
QRFA0390
QRFA0400
QRFA0410
QRFA0420
QRFA0430
QRFA0440
QRFA0450 -
QRFA0460
QRFA0470
QRFA0480
QRFA0490
QRFA0500
QRFA0510
QRFA0520
QRFA0530
QRFA0540

C
c
C
c
C
C
C
C
c
C
C
C
C
C
C
C
C
c
c
C
c
c
C
c
C
C

10

236

LIPVT IS A POSITIVE INTEGER INPUT VARIABLE. IF PIVOT IS FALSE,
THEN LIPVT MAY BE AS SMALL AS 1. IF PIVOT IS TRUE, THEN
LIPVT MUST BE AT LEAST N.

RDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
DIAGONAL ELEMENTS OF R.

ACNORM IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
NORMS OF THE CORRESPONDING COLUMNS OF THE INPUT MATRIX A.
IF THIS INFORMATION IS NOT NEEDED, THEN ACNORM CAN COINCIDE
WITH RDIAG.

WA IS A WORK ARRAY OF LENGTH N.
CAN COINCIDE WITH RDIAG.

IF PIVOT IS FALSE, THEN WA

SUBPROGRAMS CALLED

MINPACK-SUPPLIED ... DPMPAR,ENORM

FORTRAN-SUPPLIED ... DMAX1,DSQRT,MINO
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

sloclsateutontetoate ute nleale
WWWRWWRWWN

INTEGER I,J,JP1,K,KMAX,MINMN

DOUBLE PRECISION AJNORM,EPSMCH,ONE,P05,SUM,TEMP, ZERO
DOUBLE PRECISION DPMPAR,ENORM

DATA ONE,P05,ZERO /1.0D0,5.0D-2,0.0D0/

EPSMCH IS THE MACHINE PRECISION.
EPSMCH = DPMPAR(1)
COMPUTE THE INITIAL COLUMN NORMS AND INITIALIZE SEVERAL ARRAYS.
DO 10 J =1, N
ACNORM(J) = ENORM(M,A(1,J))
RDIAG(J) = ACNORM(J)
WA(J) = RDIAG(J)
IF (PIVOT) IPVT(J) = J
CONTINUE
REDUCE A TO R WITH HOUSEHOLDER TRANSFORMATIONS.
MINMN = MINO(M,N)
DO 110 J = 1, MINMN
IF (.NOT.PIVOT) GO TO 40
BRING THE COLUMN OF LARGEST NORM INTO THE PIVOT POSITION.

KMAX = J
DO 20 K =J, N

QRFA0550
QRFA0560
QRFA0570
QRFA0580
QRFA0590
QRFA0600
QRFA0610
QRFA0620
QRFA0630
QRFA0640
QRFA0650
QRFA0660
QRFA0670
QRFA0680
QRFA0690
QRFA0700
QRFA0710
QRFA0720
QRFA0730
QRFA0740
QRFA0750
QRFA0760
QRFA0770
QRFA0780
QRFA0790
QRFA0800
QRFA0810
QRFA0820
QRFA0830
QRFA0840
QRFA0850
QRFA0860
QRFA0870
QRFA0880
QRFA0890
QRFA0900
QRFA0910
QRFA0920
QRFA0930
QRFA0940
QRFA0950
QRFA0960
QRFA0970
QRFA0980
QRFA0990
QRFA1000
QRFA1010
QRFA1020
QRFA1030
QRFA1040
QRFA1050
QRFA1060
QRFA1070
QRFA1080

Qoo

[oNoNONP]

C

20

30

40

50

60

70

80
90

100

110

237

IF (RDIAG(K) .GT. RDIAG(KMAX)) KMAX = K
CONTINUE
IF (KMAX .EQ. J) GO TO 40
DO30I =1, M
TEMP = A(I,J)
A(I,J) = A(I,KMAX)
A(I,KMAX) = TEMP
CONTINUE
RDIAG(KMAX) = RDIAG(J).
WA (KMAX) = WA(J)
K = IPVT(J)
IPVT(J) = IPVT(KMAX)
IPVT(KMAX) = K
CONTINUE

COMPUTE THE HOUSEHOLDER TRANSFORMATION TO REDUCE THE
J-TH COLUMN OF A TO A MULTIPLE OF THE J-TH UNIT VECTOR.

AJNORM = ENORM(M-J+1,A(J,J))
IF (AJNORM .EQ. ZERO) GO TO 100
IF (A(J,J) .LT. ZERO) AJNORM = -AJNORM
DOSOI=J, M
A(I,J) = A(I,J)/AJNORM
CONTINUE :
A(J,J) = A(J,J) + ONE

APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS
AND UPDATE THE NORMS.

JP1 =J + 1
IF (N .LT. JP1) GO TO 100
DO 90 K = JP1, N
SUM = ZERO'
DO60 I =J, M
SUM = SUM + A(I,J)*A(I,K)
CONTINUE
TEMP = SUM/A(J,J)
pov70I=J, M
A(I,K) = A(I,K) - TEMP*A(I,J)
CONTINUE

IF (.NOT.PIVOT .OR. RDIAG(K) .EQ. ZERO) GO TO 80

TEMP = A(J,K)/RDIAG(K)

RDIAG(K) = RDIAG(K)*DSQRT(DMAX1(ZERO,ONE-TEMP*%2))
IF (PO5*(RDIAG(K)/WA(K))**2 .GT. EPSMCH) GO TO 80

RDIAG(K) = ENORM(M-J,A(JP1,K))
WA(K) = RDIAG(K)
CONTINUE
CONTINUE

CONTINUE

RDIAG(J) = -AJNORM

CONTINUE

RETURN

LAST CARD OF SUBROUTINE QRFAC.

QRFA1090
QRFA1100
QRFA1110
QRFA1120
QRFA1130
QRFA1140
QRFA1150
QRFA1160
QRFA1170
QRFA1180
QRFA1190
QRFA1200
QRFA1210
QRFA1220
QRFA1230
QRFA1240
QRFA1250
QRFA1260
QRFA1270
QRFA1280
QRFA1290
QRFA1300
QRFA1310
QRFA1320
QRFA1330
QRFA1340
QRFA1350
QRFA1360
QRFA1370
QRFA1380
QRFA1390
QRFA1400
QRFA1410
QRFA1420
QRFA1430
QRFA1440
QRFA1450
QRFA1460
QRFA1470
QRFA1480
QRFA1490
QRFA1500
QRFA1510
QRFA1520
QRFA1530
QRFA1540
QRFA1550
QRFA1560
QRFA1570
QRFA1580
QRFA1590
QRFA1600
QRFA1610
QRFA1620

oNeoNeoNoNoNoNoNoNONeNO NN N Ne N

239

SUBROUTINE QRSOLV(N,R,LDR,IPVT,DIAG,QTB,X,SDIAG,WA)

INTEGER N,LDR

INTEGER IPVT(N)

DOUBLE PRECISION R(LDR,N),DIAG(N),QTB(N),X(N),SDIAG(N),WA(N)

PR PR DA S PR S D Y .
T

SUBROUTINE QRSOLV

GIVEN AN M.BY N MATRIX A, AN N BY N DIAGONAL MATRIX D,
AND AN M-VECTOR B, THE PROBLEM IS TO DETERMINE AN X WHICH
SOLVES THE SYSTEM

A*X = B s D#¥X =0 s
IN THE LEAST SQUARES SENSE.

THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM

IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE

QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF
A*P = Q*R, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL
COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL
ELEMENTS OF NONINCREASING MAGNITUDE, THEN QRSOLV EXPECTS

THE FULL UPPER TRIANGLE OF R, THE PERMUTATION MATRIX P,

AND THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. THE SYSTEM
A*X = B, D¥X = 0, IS THEN EQUIVALENT TO

T T
R*Z = Q *B s P ®*D*P*Z = 0 s

WHERE X = P*Z. IF THIS SYSTEM DOES NOT HAVE FULL RANK,
THEN A LEAST SQUARES SOLUTION IS OBTAINED. ON OUTPUT QRSOLV
ALSO PROVIDES AN UPPER TRIANGULAR MATRIX S SUCH THAT

T T T
P *(A *A + D*D)*P = S *S

S IS COMPUTED WITHIN QRSOLV AND MAY BE OF SEPARATE INTEREST.
THE SUBROUTINE STATEMENT IS
SUBROUTINE QRSOLV(N,R,LDR,IPVT,DIAG,QTB,X,SDIAG,WA)

WHERE

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.

R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE
MUST CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R.
ON OUTPUT THE FULL UPPER TRIANGLE IS UNATTERED, AND THE
STRICT LOWER TRIANGLE CONTAINS THE STRICT UPPER TRIANGLE
(TRANSPOSED) OF THE UPPER TRIANGULAR MATRIX S.

LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.

QRSL0010
QRSL0020
QRSL0030
QRSL0040
QRSLO050
QRSLO060
QRSLO070
QRSL0080
QRSLO0S0
QRSL0100
QRSLO110
QRSL0120°
QRSL0O130
QRSL0140
QRSL0150
QRSL0160
QRSLO170
QRSL0180
QRSL0190
QRSL0200
QRSL0210
QRSL0220
QRSL0230
QRSL0240
QRSL0250
QRSL0260
QRSL0270
QRSL0280
QRSL0290
QRSLO300
QRSLO0310
QRSL0320
QRSLO0330
QRSL0340
QRSLO0350
QRSLO0360
QRSL0370
QRSL0380
QRSL0390
QRSLO400
QRSL0410
QRSL0420
QRSLO0430
QRSLO440
QRSLO450
QRSL0460
QRSL0470
QRSL0480
QRSL0490
QRSL0500
QRSL0510
QRSL0520
QRSLO530
QRSLO0540

240

C QRSLO550
C IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE QRSLO560
c PERMUTATION MATRIX P SUCH THAT A*P = Q*R. COLUMN J OF P QRSLO570
c IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. QRSLO580
C QRSLO590
C DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE QRSLO600
C DIAGONAL ELEMENTS OF THE MATRIX D. QRSL0610
C QRSL0620
C QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST QRSL0630
C N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B. QRSLO640
C . QRSL0650
c X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE LEAST . QRSL0660
C SQUARES SOLUTION OF THE SYSTEM A*X = B, D*X = 0. QRSL0670
C QRSL0680
C SDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE QRSL0690
c DIAGONAL ELEMENTS OF THE UPPER TRIANGULAR MATRIX S. QRSL0O700
C _ QRSLO710
C WA IS A WORK ARRAY OF LENGTH N. QRSLO720
C QRSLO730
C SUBPROGRAMS CALLED QRSLO740
C QRSLO750
C FORTRAN-SUPPLIED ... DABS,DSQRT QRSLO760
C QRSLO770
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. QRSLO780
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE QRSL0790
C A QRSLO800
C kit ek ke QRSL08 10
INTEGER I,J,JP1,K,KP1,L,NSING QRSL0820
DOUBLE PRECISION COS, COTAN, P5,P25 ,QTBPJ,SIN,SUM, TAN, TEMP, ZERO QRSLO830

DATA P5,P25,ZERO /5.0D-1,2.5D-1,0.0D0/ QRSLO840

C QRSL0850
C COPY R AND (Q TRANSPOSE)*B TO PRESERVE INPUT AND. INITIALIZE S. QRSL0860
C IN PARTICULAR, SAVE THE DIAGONAL ELEMENTS OF R IN X. QRSLO870
C QRSL0880
DO 20 T =1, N QRSL0890

DO 10 I =J, N QRSL0900

R(I,J) = R(J,I) QRSL0910

10 CONTINUE . QRSL0920
X(I) = R(J,T) QRSL0930

WA(J) = QTB(J) QRSL0940

20 CONTINUE QRSL0950

C : QRSL0960
C ELIMINATE THE DIAGONAL MATRIX D USING A GIVENS ROTATION. QRSL0O970
C QRSL0980
DO 100 J =1, N QRSL0990

C QFSL1000
C PREPARE THE ROW OF D TO BE ELIMINATED, LOCATING THE QRSL1010
C DIAGONAL ELEMENT USING P FROM THE QR FACTORIZATION. - QRSL1020
C QRSL1030
= IPVT(J) QRSL1040

IF (DIAG(L) .EQ. ZERO) GO TO 90 QRSL1050

DO 30 K=J, N QRSL1060

SDIAG(K) = ZERO QRSL1070

30 CONTINUE QRSL1080

aaaoan

[oHe NP R

Qo

aaQ

aaoaon

aa

40

50

60
70
80
90

100

SDIAG(J) = DIAG(L)

THE TRANSFORMATIONS TO ELIMINATE THE ROW OF D
MODIFY ONLY A SINGLE ELEMENT OF (Q TRANSPOSE)*B
BEYOND THE FIRST N, WHICH IS INITIALLY ZERO.

QTBPJ

= ZERO
DO 80 K =J

, N

DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE

APPROPRIATE ELEMENT IN THE CURRENT ROW OF D.

IF (SDIAG(K) .EQ. ZERO) GO TO 70

IF (DABS(R(K,K)) .GE. DABS(SDIAG(K))) GO TO 40

COTAN = R(K,K)/SDIAG(K)
SIN = P5/DSQRT(P25+P25*COTAN**2)
COS = SIN*COTAN
GO TO 50
CONTINUE

TAN SDIAG(K)/R(K,K)

COS = P5/DSQRT(P25+P25*TAN**2)
SIN = COS*TAN
CONTINUE

COMPUTE THE MODIFIED DIAGONAL ELEMENT OF R AND

THE MODIFIED ELEMENT OF ((Q TRANSPOSE)*B,0).

R(K,K) = COS*R(K,K) + SIN*SDIAG(K)
TEMP = COS*WA(K) + SIN*QTBPJ
QTBPJ = -SIN*WA(K) + COS*QTBPJ
WA(K) = TEMP

ACCUMULATE THE TRANFORMATION IN THE ROW OF S.

KPlL = K + 1
IF (N .LT. KP1) GO TO 70
DO 60 I = KP1, N
TEMP = COS*R(I,K) + SIN*SDIAG(I)
SDIAG(I) = -SIN*R(I,K) + COS*SDIAG(I)
R(I,K) = TEMP
CONTINUE
CONTINUE
CONTINUE
CONTINUE

STORE THE DIAGONAL ELEMENT OF S AND RESTORE
THE CORRESPONDING DIAGONAL ELEMENT OF R.

SDIAG(J) = R(J,J)
R(J,J) = X(J)
CONTINUE

SOLVE THE TRIANGULAR SYSTEM FOR Z. IF THE SYSTEM IS
SINGULAR, THEN OBTAIN A LEAST SQUARES SOLUTION.

QRSL1090
QRSL1100
QRSL1110
QRSL1120
QRSL1130
QRSL1140

"QRSL1150

QRST.1160
QRSL1170
QRSL1180
QRSL1190
QRSL1200
QRSL1210
QRSL1220
QRSL1230
QRSL1240
QRSL1250
QRSL1260
QRSL1270
QRSL1280
QRSL1290
QRSL1300
QRSL1310
QRSL1320
QRSL1330
QRSL1340
QRSL1350
QRSL1360
QRSL1370
QRSL1380
QRSL1390
QRSL1400
QRSL1410
QRSL1420
QRSL1430
QRSL1440
QRSL1450
QRSL1460
QRSL1470
QRSL1420
QRSL1490
QRSL1500
QRSL1510
ARSL1520
QRSL1530
QRSL1540
QRSL1550
QRSL1560
QRSL1570
QRSL1580
QRSL1590
QRSL1600
QRSL1610
QRSL1620

aaa

110

242

NSING = N

DO 110 T =1, N A
IF (SDIAG(J) .EQ. ZERO .AND. NSING .EQ. N) NSING = J - 1
IF (NSING .LT. N) WA(J) = ZERO
CONTINUE

. IF (NSING .LT. 1) GO TO 150

120
130

140
150

160

DO 140 K = 1, NSING
J = NSING - K + 1
SUM = ZERO
JP1 =J + 1
IF (NSING .LT. JP1) GO TO 130
DO 120 I = JP1, NSING
SUM = SUM + R(I,J)*WA(I)
CONTINUE
CONTINUE
WA(J) = (WA(J) - SUM)/SDIAG(J)
CONTINUE
CONTINUE

PERMUTE THE COMPONENTS OF Z BACK TO COMPONENTS OF X.
DO 160 J = 1, N
L = IPVT(J)
X(L) = WA(QJ)
CONTINUE
RETURN
LAST CARD OF SUBROUTINE QRSOLV.

END

QRSL1630
QRSL1640
QRSL1650
QRSL1660
QRSL1670
QRSL1680
QRSL1690
QRSL1700
QRSL1710
QRSL1720
QRSL1730
QRSL1740
QRSL1750
QRSL1760
QRSL1770
QRSL1780
QRSL1790
QRSL1800
QRSL1810
QRSL1820
QRSL1830
QRSL1840
QRSL1850
QRSL1860
QRSL1870
QRSL1880
QRSL1890
QRSL1900
QRSL1910
QRSL1920
QRSL1930

243

SUBROUTINE RWUPDT(N,R,LDR,W,B,ALPHA,COS,SIN)
INTEGER N,LDR

DOUBLE PRECISION ALPHA

DOUBLE PRECISION R(LDR,N),W(N),B(N),COS(N),SIN(N)

JRC SRR W SR SN N S A
TWITIWIWWWWRWHR

SUBROUTINE RWUPDT

GIVEN AN N BY N UPPER TRIANGULAR MATRIX R, THIS SUBROUTINE
COMPUTES THE QR DECOMPOSITION OF THE MATRIX FORMED WHEN A ROW
IS ADDED TO R. IF THE ROW IS SPECIFIED BY THE VECTOR W, THEN
RWUPDT DETERMINES AN ORTHOGONAL MATRIX Q SUCH THAT WHEN THE
N+1 BY N MATRIX COMPOSED OF R AUGMENTED BY W IS PREMULTIPLIED
BY (Q TRANSPOSE), THE RESULTING MATRIX IS UPPER TRAPEZOIDAL.
THE MATRIX (Q TRANSPOSE) IS THE PRODUCT OF N TRANSFORMATIONS

G(N)*G(N-1)* ... *G(1)
WHERE G(I) IS A GIVENS ROTATION IN THE (I,N+1) PLANE WHICH
ELIMINATES ELEMENTS IN THE (N+1)-ST PLANE. RWUPDT ALSO
COMPUTES THE PRODUCT (Q TRANSPOSE)*C WHERE C IS THE
(N+1)-VECTOR (B,ALPHA). Q ITSELF IS NOT ACCUMULATED, RATHER
THE INFORMATION TO RECOVER THE G ROTATIONS IS SUPPLIED.
THE SUBROUTINE STATEMENT IS

SUBROUTINE RWUPDT(N,R,LDR,W,B,ALPHA,COS,SIN)

WHERE

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.

~ R IS AN N BY N ARRAY. ON INPUT THE UPPER TRIANGULAR PART OF
R MUST CONTAIN THE MATRIX TO BE UPDATED. ON OUTPUT R
CONTAINS THE UPDATED TRIANGULAR MATRIX.

LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.

W IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE ROW
VECTOR TO BE ADDED TO R.

B IS AN ARRAY OF LENGTH N. ON INPUT B MUST CONTAIN THE
FIRST N ELEMENTS OF THE VECTOR C. ON OUTPUT B CONTAINS
THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)+*C.

ALPHA IS A VARIABLE. ON INPUT ALPHA MUST CONTAIN THE
(N+1)-ST ELEMENT OF THE VECTOR C. ON OUTPUT ALPHA CONTAINS
THE (N+1)-ST ELEMENT OF THE VECTOR (Q TRANSPOSE)*C

COS IS AN OUTPUT ARRAY OF LENGTH N°WHICH CONTAINS THE
COSINES OF THE TRANSFORMING GIVENS ROTATIONS.

“-SIN IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE

RWUP0010
RWUP0020
RWUPOO030
RWUP0040
RWUPOO50
RWUP0060
RWUP00O70

" RWUP0080

RWUP0090
RWUP0100
RWUPO110
RWUPO120
RWUP0130
RWUP0140
RWUPO150
RWUP0160
RWUPO170
RWUPG180
RWUP0190
RWUP0200
RWUP0210
RWUPO220
RWUP0230
RWUP0240
RWUP0250
RWUP0260
RWUP0270
RWUP0280
RWUP0290
RWUP0300
RWUP0310
RWUP0320
RWUP0330
RWUP0340
RWUPO0350
RWUPO360
RWUP0370
RWUP0380
RWUP0390
RWUP0400
RWUPO410
RWUP0420
RWUP0430
RWUP0440
RWUP0450
RWUP0460
RWUP0470
RWUP0480
RWUP0490
RWUPO500
RWUPO510
RWUP0520
RWUP0530
RWUP0540

[sNrNoNoNoNoNoNoNeoNoNe]

OO

10
20

30

40

50

- 60

244

SINES OF THE TRANSFORMING GIVENS ROTATIONS.
SUBPROGRAMS CALLED
FORTRAN-SUPPLIED ... DABS,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, DUDLEY V. GOETSCHEL, KENNETH E. HILLSTROM,
JORGE J. MORE

aeelsutealeatontantantantonts
WHWWIWIWHWRWWRWR

INTEGER I,J,JM1
DOUBLE PRECISION COTAN,ONE,P5,P25,ROWJ,TAN,TEMP,ZERO
DATA ONE,P5,P25,ZERO /1.0D0,5.0D-1,2.5D-1,0.0D0/

DO 60 J =1, N
ROWJ = W(J)
JM1 =J - 1

APPLY THE PREVIOUS TRANSFORMATIONS TO
R(I,J), I=1,2,...,J-1, AND TO W(J).

IF (JM1 .LT. 1) GO TO 20

DO 10 I = 1, JM1
TEMP = COS(I)*R(I,J) + SIN(I)*ROWJ
ROWJ = -SIN(I)*R(I,J) + COS(I)*ROWJ

R(I,J) = TEMP
CONTINUE
CONTINUE

DETERMINE A GIVENS ROTATION WHICH ELIMINATES W(J).

COS(J) = ONE

SIN(J) = ZERO

IF (ROWJ .EQ. ZERO) GO TO 50

IF (DABS(R(J,J)) .GE. DABS(ROWJ)) GO TO 30
COTAN = R(J,J)/ROWJ

SIN(J) = P5/DSQRT(P25+P25%COTAN**2)
COS(J) = SIN(J)*COTAN
GO TO 40

CONTINUE

TAN = ROWJ/R(J,J)
COS(J) = P5/DSQRT(P25+P25*TAN*%*2)
SIN(J) =. COS(J)*TAN

CONTINUE

APPLY THE CURRENT TRANSFORMATION TO R(J,J), B(J), AND ALPHA.

R(J,J) = COS(JI)*R(J,T) + SIN(J)*ROWJ
TEMP = COS(J)*B(J) + SIN(J)*ALPHA
ALPHA = -SIN(J)*B(J) + COS(J)*ALPHA
B(J) = TEMP

CONTINUE

CONTINUE

RWUPO550
RWUP0560
RWUPO570
RWUP0580
RWUP0590
RWUP0600
RWUP0610
RWUP0620
RWUP0630
RWUP0640
RWUP0650
RWUP0660
RWUP0670
RWUP0680
RWUP0690
RWUP0700
RWUPO710
RWUP0720
RWUP0O730
RWUP0740
RWUP0750
RWUP0O760
RWUP0770
RWUP0780
RWUP0790
RWUP0800
RWUP0810
RWUP0820
RWUP0830
RWUP0840
RWUPO850
RWUP0860
RWUPO870
RWUP0880
RWUP0890
RWUP0900
RWUP0910
RWUP0920
RWUP0930
RWUP(G940
RWUP0950
RWUP0960
RWUP0970
RWUP0980
RWUP0990
RWUP1000
RWUP1010
RwWUP1020
RWUP1030
RWUP1040
RWUP1050
RWUP1060
RWUP1070
RWUP1080

RETURN

LAST CARD OF SUBROUTINE RWUPDT.

END

245

RWUP1090
RWUP1100
RWUP1110
RWUP1120
RWUP1130

N

246

L B NI
N ‘E. ’| Bt o
LT S A ~.!_ " x, x

THIS“PZ" GE LY

ol ReRe oo RoReRoRoRoRoRoReRo R R Re R oo ke e e Rz s 2 e K Es K e s e Es Eo NN N NoNoNO NO NSNS IS I

247

SUBROUTINE R1MPYQ(M,N,A,LDA,V,W)
INTEGER M,N,LDA
DOUBLE PRECISION A(LDA,N),V(N),W(N)

R PR RIS T S O S e 3
FLITITITITIIVIRNW

SUBROUTINE R1MPYQ

GIVEN AN M BY N MATRIX A, THIS SUBROUTINE COMPUTES A*Q WHERE
Q IS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS

GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1)

AND GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE WHICH
ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY.
Q ITSELF IS NOT GIVEN, RATHER THE INFORMATION TO RECOVER THE
GV, GW ROTATIONS IS SUPPLIED.
THE SUBROUTINE STATEMENT IS

SUBROUTINE R1MPYQ(M,N,A,LDA,V,W)
WHERE

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF ROWS OF A.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF COLUMNS OF A.

A IS AN M BY N ARRAY. ON INPUT A MUST CONTAIN THE MATRIX
TO BE POSTMULTIPLIED BY THE ORTHOGONAL MATRIX Q
DESCRIBED ABOVE. ON OUTPUT A*Q HAS REPLACED A.

LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A.

V IS AN INPUT ARRAY OF LENGTH N. V(I) MUST CONTAIN THE
INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION GV(I)
DESCRIBED ABOVE.

W IS AN INPUT ARRAY OF LENGTH N: W(I) MUST CONTAIN THE
INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION GW(I)
DESCRIBED ABOVE.

SUBROUTINES CALLED

FORTRAN-SUPPLIED ... DABS,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

o e et

INTEGER I,J,NMJ,NM1
DOUBLE PRECISION COS,ONE,SIN,TEMP

R1MQO010
R1MQ0020
R1MQ0030
R1MQ0040
R1MQO050
R1MQO060
R1MQO070
R1MQO080"
R1MQ0090
R1MQ0100
R1MQO110
R1MQ0120
R1MQO130
R1MQO140
R1MQ0150
R1MQO160
R1MQO170
R1MQO180
R1MQ0190

'R1MQO200

R1MQ0210
R1MQ0220
R1MQ0230
R1MQ0240
R1MQ0250
R1MQ0260
R1MQ0270
R1MQ0280
R1MQ0290
R1MQ0300
R1MQ0310
R1MQ0320
R1MQ0330
R1MQ0340
R1MQ0350
R1MQ0360
R1MQO370
R1MQO380
R1MQ0390
R1MQ0400
R1MQO410
R1MQO420
R1MQO0430
R1MQO440
R1MQO450
R1MQO460
RIMQO470
R1MQO480
R1MQO490
R1MQ0500
R1MQ0510
R1MQO520
R1MQ0530

- R1MQO540

248

DATA ONE /1.0DO/ : RIMQO550
C , R1MQO0560
c APPLY THE FIRST SET OF GIVENS ROTATIONS TO A. RIMQO570
C R1MQO580
NM1 =N - 1 ’ R1MQO590
IF (NM1 .LT. 1) GO TO 50 ; R1MQ0600
DO 20 NMJ = 1, NM1 R1MQ0610
J=N - NMJ : R1MQ0620
IF (DABS(V(J)) .GT. ONE) COS = ONE/V(J) R1MQO0630
IF (DABS(V(J)) .GT. ONE) SIN = DSQRT(ONE-COS**2) R1IMQO640
IF (DABS(V(J)) .LE. ONE) SIN = V(J) R1MQO0650
IF (DABS(V(J)) .LE. ONE) COS = DSQRT(ONE-SIN#+#2) R1MQO0660
DO 10 I =1, M » R1MQO670
TEMP = COS*A(I,J) - SIN*A(I,N) R1MQ0680
A(I,N) = SIN*A(I,J) + COS*A(I,N) R1MQ0690
A(I,J) = TEMP R1MQ0O700
10 CONTINUE R1MQO710

20 CONTINUE RIMQO720
C : R1MQ0730
c APPLY THE SECOND SET OF GIVENS ROTATIONS TO A. R1MQO740
C RIMQO750
DO 40 J = 1, NM1 R1MQO760
IF (DABS(W(J)) .GT. ONE) COS = ONE/W(J) R1MQO770
IF (DABS(W(J)) .GT. ONE) SIN = DSQRT(ONE-COS*+*2) R1MQO780
IF (DABS(W(J)) .LE. ONE) SIN = W(J) R1MQ0790
IF (DABS(W(J)) .LE. ONE) COS = DSQRT(ONE-SIN¥**2) R1MQO800
DO30I=1, M R1MQO810
TEMP = COS*A(I,J) + SIN*A(I,N) R1MQO820
A(I,N) = -SIN®A(I,J) + COS*A(I,N) R1MQO0830
A(I,J) = TEMP R1MQO840
30 CONTINUE R1MQO850
40 CONTINUE R1MQO0860
50 CONTINUE R1MQO870
RETURN R1MQO0880
C R1MQO890
C LAST CARD OF SUBROUTINE R1MPYQ. R1MQO900
C RIMQ0910
END R1MQ0920

oo RoRoReoRoRoRo oo RoReRo R R R R Re e R R R R oo s Es s Es o o N NeoNC RO RO NSNS NO NS NS R aooaoaoaan

SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING)" R1UP0010

INTEGER M,N,LS R1UP0020
LOGICAL SING R1UP0O0O30
DOUBLE PRECISION S(LS),U(M),V(N),W(M) R1UP0040
sevesevededevede ek R1UPOOS0
R} R1UP0060
SUBROUTINE R1UPDT R1UP00O70
R1UP0O0O8O

-GIVEN AN M BY N LOWER TRAPEZOIDAL MATRIX S, AN M-VECTOR U, R1UP0090
AND AN N-VECTOR V, THE PROBLEM IS TO DETERMINE AN R1UP0O100
ORTHOGONAL MATRIX Q SUCH THAT R1UPO110
R1UP0120

T R1UP0O130

(S + U*V)*Q ‘ R1UP0140
R1UP0150

IS AGAIN LOWER TRAPEZOIDAL. R1UP0160
. R1UPC170

THIS SUBROUTINE DETERMINES Q AS THE PRODUCT OF 2*(N = 1) R1UP0180
TRANSFORMATIONS R1UP0190
R1UP0200

GV(N-1)*...%*GV(1)*GW(1)*...*GW(N-1) R1UP0210

' R1UP0220

WHERE GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE R1UP0230
WHICH ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, R1UP0240
RESPECTIVELY. Q ITSELF IS NOT ACCUMULATED, RATHER THE R1UP0250
INFORMATION TO RECOVER THE GV, GW ROTATIONS IS RETURNED. R1UP0260
R1UP0270

THE SUBROUTINE STATEMENT IS R1UP0280
R1UP0290

SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING) R1UP0300
R1UPO310

WHERE R1UP0320
R1UP0330

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER R1UP0340
OF ROWS OF S. R1UP0350
R1UP0360

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER R1UP0370
OF COLUMNS OF S. N MUST NOT EXCEED M. R1UP0380
R1UP0O3S0

S IS AN ARRAY OF LENGTH LS. ON INPUT S MUST CONTAIN THE LOWER R1UP0400
TRAPEZOIDAL MATRIX S STORED BY COLUMNS. ON OUTPUT S CONTAINS R1UP0&410

THE LOWER TRAPEZOIDAL MATRIX PRODUCED AS DESCRIBED ABOVE. R1UP0420
R1UP0430
LS IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN R1UP0440
(N*(2%M-N+1))/2. R1UP0450
o R1UP0460
U IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE R1UP0470
VECTOR U. _ R1UP0480
R1UP0490
V IS AN ARRAY OF LENGTH N. ON INPUT V MUST CONTAIN THE VECTOR R1UP0500
V. ON OUTPUT V(I) CONTAINS THE INFORMATION NECESSARY TO R1UP0510
RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. R1UP0520

: R1UP0530 |

W IS AN OUTPUT ARRAY OF LENGTH M. W(I) CONTAINS INFORMATION R1UPO540

oRsNoNoNsNoNoNoNoNoNoNoNoNoNoNoNeNe]

QOO0

aaoOaan

10

250

NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED
ABOVE.

SING IS A LOGICAL OUTPUT VARIABLE. SING IS SET TRUE IF ANY
OF THE DIAGONAL ELEMENTS OF THE OUTPUT S ARE ZERO. OTHERWISE

SING IS SET FALSE.
SUBPROGRAMS CALLED
MINPACK-SUPPLIED ... DPMPAR
FORTRAN-SUPPLIED ... DABS,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE,
JOHN L. NAZARETH

lateulactecleatoctouteuteate
WITIWRWIWWRR

INTEGER I,J,JJ,L,NMJ,NM1

DOUBLE PRECISION COS,COTAN,GIANT,ONE,P5,P25,SIN,TAN,TAU,TEMP,

ZERO

DOUBLE PRECISION DPMPAR
DATA ONE,P5,P25,ZERO /1.0D0,5.0D-1,2.5D-1,0.0D0/
GIANT IS THE LARGEST MAGNITUDE.
GIANT = DPMPAR(3)
INITIALIZE THE DIAGONAL ELEMENT POINTER.
JJ = (N¥(2*M - N + 1))/2 - (M - N)
MOVE THE NONTRIVIAL PART OF THE LAST COLUMN OF S INTO W.
L=2JJ
DO 10 I = N, M

W(I) = S(L)

L=1L+1

CONTINUE

ROTATE THE VECTOR V INTO A MULTIPLE OF THE N-TH UNIT VECTOR
IN SUCH A WAY THAT A SPIKE IS INTRODUCED INTO W.

NMl1 =N -1
IF (NM1 .LT. 1) GO TO 70
DO 60 NMJ = 1, NM1

J=N-NMJ
JJ=JJ-M-J+1)
W(J) = ZERO

IF (V(J) .EQ. ZERO) GO TO 50

DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE
J-TH ELEMENT OF V.

R1UP0O550
R1UP0560

"R1UP0O570

R1UP0O580
R1UP0590
R1UP0600
R1UP0610
R1UP0620
R1UP0630
R1UP0640
R1UP0650
R1UP0660
R1UP0670
R1UP0680
R1UP0690
R1UP0700
R1UPG710
R1UP0720
R1UP0730
R1UP0740
R1UP0750
R1UPO760
R1UP0770
R1UP0780
R1UP0790
R1UP0800
R1UP0810
R1UP0820
R1UP0830
R1UP0840
R1UP0850
R1UP0860
R1UPO870
R1UP0880
R1UP0890
R1UP0900
R1UP0910
R1UP0920
R1UP0930
R1UP0940
R1UP0950
R1UPQ960
R1UP0970
R1UP0980
R1UP0990
R1UP1000
R1UP1010
R1UP1020
R1UP1030
R1UP1040
R1UP1050
R1UP1060
R1UP1070
R1UP1080

aa aaoaoa

Qo

aa

aaaa

20

30

40
50
60

IF (DABS(V(N)) .GE. DABS(V(J))) GO TO 20
COTAN = V(N)/V(J)
SIN = P5/DSQRT(P25+P25*COTAN**2)

i

Ccos
TAU

SIN*COTAN

ONE

IF (DABS(COS)*GIANT .GT. ONE) TAU = ONE/COS

GO TO
CONTINUE
TAN
Cos
SIN
TAU
CONTINUE

ool

APPLY THE
NECESSARY

V(N)
V{J)

APPLY THE

L=2JJ
DO 40 I
TEMP
W(I)
S(L)
L=1L
CONTIN
CONTINUE
CONTINUE

nmunn

70 CONTINUE

80

W(I) = W(
CONTINUE

SING = .FALS
IF (NM1 .LT.
DO 130 J = 1, NM1

IF (W(JD)

DETERMINE

30

V(J)/V(N)

P5/DSQRT (P25+P25*TAN**2)
COS*TAN
SIN

TRANSFORMATION TO V AND STORE THE INFORMATION
TO RECOVER THE GIVENS ROTATION.

SIN*V(J) + COS*V(N)
TAU

TRANSFORMATION TO S AND EXTEND THE SPIKE IN W.

J, M ,
COS*S(L) - SIN®*W(I)
SIN*S(L) + COS*W(I)
TEMP

+1

UE

ADD THE SPIKE FROM THE RANK 1 UPDATE TO W.

DO 80 I.=1, M

I) + V(N)*U(I)

ELIMINATE THE SPIKE.

E.
1) GO TO 140

-EQ. ZERO) GO TO 120

A GIVENS ROTATION WHICH ELIMINATES THE

J-TH ELEMENT OF THE SPIKE.

IF (DABS(
COTAN
SIN
cos
TAU

S(JJ)) .GE. DABS(W(J))) GO TO 90
= 8(J1)/W(J)

P5/DSQRT (P25+P25%COTAN**2)
SIN*COTAN

ONE

R1UP1090
R1UP1100
R1UP1110
R1UP1120
R1UP1130
R1UP1140
R1UP1150
R1UP1160
R1UP1170
R1UP1180
R1UP1190

R1UP1200

R1UP1210
R1UP1220
R1UP1230
R1UP1240
R1UP1250
R1UP1260
R1UP1270
R1UP1280
R1UP1290
R1UP1300
R1UP1310
R1UP1320
R1UP1330
R1UP1340
R1UP1350
R1UP1360
R1UP1370
R1UP1380
R1UP1390
R1UP1400
R1UP1410
R1UP1420
R1UP1430
R1UP1440
R1UP1450
R1UP1460
R1UP1470
R1UP1480
R1UP1490
R1UP1500
R1UP1510
R1UP1520
R1UP1530
R1UP1540
R1UP1550
R1UP1560
R1UP1570
R1UP1580
R1UP1590
R1UP1600
R1UP1610
R1UP1620

aaa aaoaaa

o Ne!

[oN@]

90

100

110

120

130

’

252

IF (DABS(COS)*GIANT .GT. ONE) TAU = ONE/COS
GO TO 100

CONTINUE :
TAN = W(J)/S(JJ)
COS = P5/DSQRT(P25+P25*TAN**2)
SIN = COS*TAN
TAU = SIN

CONTINUE

APPLY THE TRANSFORMATION TO S AND REDUCE THE SPIKE IN W.

L=JJ
DO 110 I =J, M

TEMP = COS*S(L) + SIN*W(I)
W(I) = -SIN*S(L) + COS*W(I)
S(L) = TEMP

L=L+1

CONTINUE

STORE THE INFORMATION NECESSARY TO RECOVER THE
GIVENS ROTATION.

W(J) = TAU
CONTINUE

TEST FOR ZERO DIAGONAL ELEMENTS IN THE OUTPUT S.
IF (S(JJ) .EQ. ZERO) SING = .TRUE.

JIJ=JJ+ M-J+ 1)
CONTINUE

140 CONTINUE

150

MOV

L =
DO

IF
RET

LAS

END

E W BACK INTO THE LAST COLUMN OF THE OUTPUT S.
JJ

150 I = N, M

S(L) = W(I)

L=1L+1

CONTINUE

(S(JJ) .EQ. ZERO) SING = .TRUE.

URN

T CARD OF SUBROUTINE R1UPDT.

R1UP1630
R1UP1640
R1UP1650
R1UP1660
R1UP1670
R1UP1680
R1UP1690
R1UP1700
R1UP1710
R1UP1720
R1UP1730
R1UP1740
R1UP1750
R1UP1760
R1UP1770
R1UP1780
R1UP1790
R1UP1800
R1UP1810
R1UP1820
R1UP1830
R1UP1840
R10UP1850
R1UP1860
R1UP1870
R1UP1880
R1UP1890
R1UP1900
R1UP1910
R1UP1920
R1UP1930
R1UP1940
R1UP1950
R1UP1960
R1UP1970
R1UP1980
R1UP1990
R1UP2000
R1UP2010
R1UP2020
R1UP2030
R1UP2040
R1UP2050
R1UP2060
R1UP2070

OOOOOOOOOO(‘)OO‘OOOOOOOOOOOOOOOOOO

[oNeNeoNP NP

a0

REAL FUNCTION SPMPAR(I)
INTEGER 1

I PRSP R PR AP R O O
PTITIVIVAWISIWIWNRNWT

FUNCTION SPMPAR

THIS FUNCTION PROVIDES SINGLE PRECISION MACHINE PARAMETERS
WHEN THE APPROPRIATE SET OF DATA STATEMENTS IS ACTIVATED (BY
REMOVING THE C FROM COLUMN 1) AND ALL OTHER DATA STATEMENTS ARE
RENDERED INACTIVE. MOST OF THE PARAMETER VALUES WERE OBTAINED
FROM THE CORRESPONDING BELL LABORATORIES PORT LIBRARY FUNCTION.

THE FUNCTION STATEMENT IS
REAL FUNCTION SPMPAR(I)
WHERE
I IS AN INTEGER INPUT VARIABLE SET TO 1, 2, OR 3 WHICH
SELECTS THE DESIRED MACHINE PARAMETER. IF THE MACHINE HAS

T BASE B DIGITS AND ITS SMALLEST AND LARGEST EXPONENTS ARE
EMIN AND EMAX, RESPECTIVELY, THEN THESE PARAMETERS ARE

SPMPAR(1) = B**(1 - T), THE MACHINE PRECISION, -
SPMPAR(2) = B**(EMIN - 1), THE SMALLEST MAGNITUDE,
SPMPAR(3) = B**EMAX*(1 - B**(-T)), THE LARGEST MAGNITUDE.

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

B S S e e e
TEITITITWICW R RN

INTEGER MCHEPS(2)

INTEGER MINMAG(2)

INTEGER MAXMAG(2)

REAL RMACH(3)

EQUIVALENCE (RMACH(1),MCHEPS(1))
EQUIVALENCE (RMACH(2),MINMAG(1))
EQUIVALENCE (RMACH(3),MAXMAG(1))

MACHINE CONSTANTS FOR THE IBM 360/370 SERIES,
THE AMDAHL 470/Vé6, THE ICL 2900, THE ITEL AS/6,
THE XEROX SIGMA 5/7/9 AND THE SEL SYSTEMS 85/86.

DATA RMACH(1) / Z3C100000 /
DATA RMACH(2) / 200100000 /
DATA RMACH(3) / Z7FFFFFFF /

MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 SERIES.
DATA RMACH(1) / 0716400000000 /

DATA RMACH(2) / 0402400000000 /
DATA RMACH(3) / 0376777777777 /

SPPR0O010
SPPR0O020
SPPR0O030
SPPRO04O
SPPR0O050
SPPRO060
SPPR0O0O70
SPPRO080O
SPPR00S0
SPPRO100
SPPRO110
SPPR0O120
SPPR0130
SPPR0140
SPPRO150
SPPRO160
SPPRO170
SPPR0O180
SPPR0190
SPPR0O200
SPPR0210
SPPR0220
SPPR0230
SPPR0240
SPPR0O250
SPPR0O260
SPPR0O270
SPPR0280
SPPR0O290.
SPPR0O300
SPPR0310
SPPR0320
SPPR0O330
SPPR0O340
SPPR0O350
SPPRO360
SPPR0O370
SPPR0380
SPPR0390
SPPRO400
SPPR0410
SPPR0420
SPPR0430
SPPR0440
SPPRO450
SPPR0O460
SPPRO470
SPPR0480
SPPR0490
SPPRO500
SPPR0O510
SPPR0520
SPPR0530
SPPRO540

2EeRsReNsNoNoRoNoNoNoNsNoNoNoNoNsNeoNoNoNoNoNoNeRoNoNoNoNoNoNoRoRo R R Ko R o Ro o R o RoRo RoRo o o R Ro o R Ro N

254

MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES.

DATA RMACH(1) / 16414000000000000000B /
DATA RMACH(2) / 00014000000000000000B /
DATA RMACH(3) / 37767777777777777777B /

MACHINE CONSTANTS FOR THE PDP-10 (KA OR KI PROCESSOR).

DATA RMACH(1) / "147400000000 /
DATA RMACH(2) / "000400000000 /
DATA RMACH(3) / "377777777777 /

MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING
32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

DATA MCHEPS(1) / 889192448 /
DATA MINMAG(1) / 8388608 /
DATA MAXMAG(1) / 2147483647 /

DATA RMACH(1) / 006500000000 /
DATA RMACH(2) / 000040000000 /
DATA RMACH(3) / 017777777777 /

MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING
16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

DATA MCHEPS(1),MCHEPS(2) / 13568, 0
DATA MINMAG(1),MINMAG(2) / 128, 0
DATA MAXMAG(1),MAXMAG(2) / 32767, -1

NN N

DATA MCHEPS(1),MCHEPS(2) / 0032400, 0000000 /
DATA MINMAG(1l),MINMAG(2) / 0000200, 0000000 /
DATA MAXMAG(1),MAXMAG(2) / 0077777, 0177777 /

MACHINE CONSTANTS FOR THE BURROUGHS 5700/6700/7700 SYSTEMS.

DATA RMACH(1) / 01301000000000000 /
DATA RMACH(2) / 01771000000000000 /
DATA RMACH(3) / 00777777777777777 /

MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM.
DATA RMACH(1) / Z4EA800000 /

DATA RMACH(2) / Z400800000 /

DATA RMACH(3) / ZSFFFFFFFF /

MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.
DATA RMACH(1) / 0147400000000 /

DATA RMACH(2) / 0000400000000 /

DATA RMACH(3) / 0377777777777 /

MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S/200.

SPPRO550
SPPR0O560
SPPR0O570
SPPR0O580
SPPR0590
SPPR0O600
SPPR0O610
SPPR0620
SPPR0O630
SPPR0640
SPPR0O650
SPPR0660
SPPR0670
SPPR0O680
SPPR0690
SPPR0O700
SPPR0O710
SPPR0720
SPPR0O730 .
SPPR0O740
SPPR0O750
SPPR0O760
SPPR0O770
SPPR0O780
SPPR0O790
SPPR0800
SPPR0810
SPPR0820
SPPR0830
SPPR0840
SPPR0850
SPPRO860
SPPR0870
SPPR0880
SPPRO890
SPPR0900
SPPR0910
SPPR0920
SPPR0O930
SPPR0940
SPPR0O950
SPPR0960
SPPR0O970
SPPR0980
SPPR0990
SPPR1000
SPPR1010
SPPR1020
SPPR1030
SPPR1040
SPPR1050
SPPR1060
SPPR1070
SPPR1080

eloRoRoRoRoRoReRoRo R R e oo R N e Ee o Ne R Ne NP R

aaoon

255

NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD -
STATIC RMACH(3)

DATA MINMAG/20K,0/,MAXMAG/77777K,177777K/
DATA MCHEPS/36020K,0/

MACHINE CONSTANTS FOR THE HARRIS 220.

DATA MCHEPS(1),MCHEPS(2) / '20000000, '00000353 /
DATA MINMAG(1),MINMAG(2) / '20000000, '00000201 /
DATA MAXMAG (1) ,MAXMAG(2) / '37777777, '00000177 /
MACHINE CONSTANTS FOR THE CRAY-1.

DATA RMACH(1) / 03772240000000000000008 /

DATA RMACH(2) / 0200034000000000000000B /

DATA RMACH(3) / 0577777777777777777776B /

MACHINE CONSTANTS FOR THE PRIME 400.

- DATA MCHEPS(1) / :10000000153 /

DATA MINMAG(1) / :10000000000 /
DATA MAXMAG(l) / :17777777777 /

SPMPAR = RMACH(I)
RETURN

LAST CARD OF FUNCTION SPMPAR.

-END

SPPR1090
SPPR1100
SPPR1110
SPPR1120
SPPR1130
SPPR1140
SPPR1150
SPPR1160
SPPR1170
SPPR1180
SPPR1190
SPPR1200
SPPR1210
SPPR1220
SPPR1230
SPPR1240
SPPR1250
SPPR1260
SPPR1270
SPPR1280
SPPR1290
SPPR1300
SPPR1310
SPPR1320
SPPR1330
SPPR1340
SPPR1350
SPPR1360
SPPR1370
SPPR1380
SPPR1390

256

WASINTENTIONALLY \\
LEFT BLANK |

oRoRo o RoRo ks RoReRoRs R R oo R Ns e e s KR R Ee e e NS NO NP N

aaoaaaan

[oNeEPEPEPEP]

257

DOUBLE PRECISION FUNCTION DPMPAR(I)
INTEGER I

Westosleetaalictectactsotocte
PWITHWRWIWITWWN

FUNCTION DPMPAR

THIS FUNCTION PROVIDES DOUBLE PRECISION MACHINE PARAMETERS
WHEN THE APPROPRIATE SET OF DATA STATEMENTS IS ACTIVATED (BY
REMOVING THE C FROM COLUMN 1) AND ALL OTHER DATA STATEMENTS ARE
RENDERED INACTIVE. MOST OF THE PARAMETER VALUES WERE OBTAINED
FROM THE CORRESPONDING BELL LABORATORIES PORT LIBRARY FUNCTION.

THE FUNCTION STATEMENT IS
DOUBLE PRECISION FUNCTION DPMPAR(I)
WHERE
I IS AN INTEGER-INPUT VARIABLE SET TO 1, 2, OR 3 WHICH
SELECTS THE DESIRED MACHINE PARAMETER. IF THE MACHINE HAS

T BASE B DIGITS AND ITS SMALLEST AND LARGEST EXPONENTS ARE
EMIN AND EMAX, RESPECTIVELY, THEN THESE PARAMETERS ARE

DPMPAR(1) = B**(1 - T), THE MACHINE PRECISION,
DPMPAR(2) = B**(EMIN - 1), THE SMALLEST MAGNITUDE,
DPMPAR(3) = B**EMAX*(1 - B**(-T)), THE LARGEST MAGNITUDE.

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

dededeTehdken

INTEGER MCHEPS (4)

INTEGER MINMAG(4)

INTEGER MAXMAG(4)

DOUBLE PRECISION DMACH(3)
EQUIVALENCE (DMACH(1),MCHEPS(1))
EQUIVALENCE (DMACH(2),MINMAG(1))
EQUIVALENCE (DMACH(3),MAXMAG(1))

MACHINE CONSTANTS FOR THE /IBM 360/370 SERIES,
THE AMDAHL 470/V6, THE IQL 2900, THE ITEL AS/6,
THE XEROX SIGMA 5/7/9 AND THE SEL SYSTEMS 85/86.

DATA MCHEPS(1),MCHEPS(2) / Z34100000, Z00000000 /
DATA MINMAG(1),MINMAG(2) / 200100000, Z00000000 /
DATA MAXMAG(1),MAXMAG(2) / Z7FFFFFFF, ZFFFFFFFF /

MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 SERIES.

DATA MCHEPS (1) ,MCHEPS(2) / 0606400000000, 0000000000000 /

DATA MINMAG(1),MINMAG(2) / 0402400000000, 0000000000000 /

DATA MAXMAG(1),MAXMAG(2) / 0376777777777, 0777777777777 /
\

DPPR0O010
DPPR0020
DPPR0030
DPPR0O040
DPPROO50
DPPR0060
DPPRO070
DPPR0O080
DPPR0O090
DPPRO100
DPPRO110
DPPR0120
DPPRO130
DPPR0140
DPPRC150
DPPRO160
DPPR0O170
DPPRO180O
DPPR0190
DPPR0O200
DPPR0210
DPPR0220
DPPR0230
DPPR0240
DPPR0250
DPPR0O260
DPPR0O270
DPPR0280
DPPR0O290
DPPR0300
DPPR0O310
DPPR0O320
DPPR0330
DPPR0340
DPPR0O350
DPPR0360
DPPR0O370
DPPR0O380
DPPR0390
DPPR0400
DPPR0410
DPPR0420
DPPRO430
DPPR0&44O
DPPR0O450
DPPR0460
DPPR0470
DPPR0O480
DPPR0490
DPPR0O500
DPPR0O510
DPPR0520
DPPR0O530
DPPR0O540

2NN sRoRoNs e RoNsNeoNoNoNsNoNoNoNoNoNoNoNoNoNoNoNoNoNoRoRoNo o RoRo R RoRoReRo o Ro s Ro R RoRoRo Ro Ro o o Re Ro N D)

MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES.

DATA
DATA

DATA
DATA

DATA
DATA

MACHINE CONSTANTS FOR THE PDP-10 (KA PROCESSOR).

MCHEPS(1)

258

15614000000000000000B

/ /
MCHEPS(2) / 15010000000000000000B /

MINMAG(1)
MINMAG(2)

MAXMAG(1)
MAXMAG(2)

~ ~

00604000000000000000B /
060000000000000000000B /

37767777777777777777B /
37167777777777777777B /

DATA MCHEPS(1),MCHEPS(2) / "114400000000, "000000000000 /
DATA MINMAG(1),MINMAG(2) / "033400000000, '000000000000
DATA MAXMAG(1),MAXMAG(2) / "377777777777, "344777777777

MACHINE CONSTANTS FOR THE PDP-10 (KI PROCESSOR).

/
/

DATA MCHEPS(1),MCHEPS(2) / "104400000000, "000000000000 /
DATA MINMAG(1),MINMAG(2) / "000400000000, 000000000000
DATA MAXMAG(1) ,MAXMAG(2) / "377777777777, "377777777777

MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING

32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

DATA
DATA
DATA

DATA
DATA
DATA

MCHEPS (1) ,MCHEPS (2)
MINMAG (1) ,MINMAG(2)
MAXMAG (1) ,MAXMAG(2)

MCHEPS (1) ,MCHEPS(2)
MINMAG(1) ,MINMAG(2)
MAXMAG(1) ,MAXMAG(2)

NN N

/
/
/

620756992,
8388608,
2147483647,

= O O
NN TN

004500000000, 000000000000 /
000040000000, 000000000000 /
017777777777, 037777777777 /

MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING

16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA

MCHEPS (1) ,MCHEPS(2)
MCIIEPS (3) ,MCHEDS (4)

MINMAG(1) ,MINMAG(2)
MINMAG(3) ,MINMAG(4)

MAXMAG(1) ,MAXMAG(2)
MAXMAG(3) ,MAXMAG(4)

MCHEPS (1) ,MCHEPS(2)
MCHEPS (3) ,MCHEPS (&)

MINMAG(1) ,MINMAG(2)
MINMAG(3) ,MINMAG(4)

MAXMAG (1) ,MAXMAG(2)

/
/
/
/

N~

N~ ~

~

9472,
0,

128,
0,

32767,
-1’

0022400,
0000000,

0000200,
0000000,

0077777,

0
0

N~ N

[e]
N~

-1
-1

~

0000000 /
0000000 /

0000000 /
0000000 /

0177777 /

/
/

DPPR0O550
DPPR0560
DPPR0O570
DPPR0580
DPPRO590
DPPR0600
DPPR0610
DPPR0620
DPPR0630
DPPR0640
DPPR0650
DPPR0660
DPPR0670
DPPR0680
DPPR0690
DPPRO700
DPPRO710
DPPR0720
DPPR0730
DPPR0O740
DPPRO750
DPPR0760
DPPR0770
DPPR0780

DPPR0O790
DPPRO80O
DPPR0810
DPPR0820
DPPR0O830
DPPR0840O
DPPRO850
DPPRO860
DPPR0870
DPPR0880
DPPR0890
DPPR0900
DPPR0910
DPPR0920
DPPR0930
DPPR0940
DPPR0950
DPPR0960
DPPR0970
DPPR0980
DPPR0990
DPPR1000
DPPR1010
DPPR1020
DPPR1030
DPPR1040
DPPR1050
DPPR1060
DPPR1070
DPPR1080

eRoRoReoRoRoRoRsRoReRoRsRe R R R R R RoRv R 2 s ReRe e Re oo R Ee EvEeRsEr s RoNoNoRoNoRoNoNo N No RS N RO RO RS NO NS N}

259

DATA MAXMAG(3),MAXMAG(4) / 0177777, 0177777 /

MACHINE CONSTANTS FOR THE BURROUGHS 6700/7700 SYSTEMS.

DATA MCHEPS(1) / 01451000000000000 /
DATA MCHEPS(2) / 00000000000000000 /
DATA MINMAG(1) / 01771000000000000 /
DATA MINMAG(2) / 07770000000000000 /
DATA MAXMAG(1l) / 00777777777777777 /
DATA MAXMAG(2) / 07777777777777777 /

MACHINE CONSTANTS FOR THE BURROUGHS 5700 SYSTEM.

DATA MCHEPS(1)
DATA MCHEPS(2)

01451000000000000
00000000000000000

DATA MINMAG(1)
DATA MINMAG(2)

01771000000000000
00000000000000000

S~ ~ N
~ S N~

007777777777777717
000077777777777717

DATA MAXMAG(1)
DATA MAXMAG(2)

~ T~
N~

MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM. -

DATA MCHEPS(1) / ZCC6800000 /
DATA MCHEPS(2) / Z000000000 /
DATA MINMAG(1l) / ZC00800000 /
DATA MINMAG(2) / Z000000000 /
DATA MAXMAG(l) / ZDFFFFFFFF /
DATA MAXMAG(2) / ZFFFFFFFFF /

MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.

DATA MCHEPS(1),MCHEPS(2) / 0170640000000, 0000000000000 /
DATA MINMAG(1),MINMAG(2) / 0000040000000, 0000000000000 /
DATA MAXMAG(1) ,MAXMAG(2) / 0377777777777, 0777777777777 /
MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S§/200.

NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD -
STATIC DMACH(3)

DATA MINMAG/20K,3*0/,MAXMAG/77777K,3*177777K/
DATA MCHEPS/32020K,3%0/

MACHINE CONSTANTS FOR THE HARRIS 220.
DATA MCHEPS(1),MCHEPS(2) / '20000000, ‘00000334 /

DATA MINMAG(1),MINMAG(2) / '20000000, '00000201 /
DATA MAXMAG(1),MAXMAG(2) / '37777777, '37777577 /

DPPR1090
DPPR1100
DPPR1110
DPPR1120
DPPR1130
DPPR1140
DPPR1150
DPPR1160
DPPR1170
DPPR1180
DPPR1190
DPPR1200
DPPR1210
DPPR1220
DPPR1230
DPPR1240
DPPR1250
DPPR1260
DPPR1270
DPPR1280
DPPR1290
DPPR1300
DPPR1310
DPPR1320
DPPR1330
DPPR1340
DPPR1350
DPPR1360
DPPR1370
DPPR1380
DPPR1390
DPPR1400
DPPR1410
DPPR1420
DPPR1430
DPPR1440
DPPR1450
DPPR1460
DPPR1470
DPPR1480
DPPR1490
DPPR1500
DPPR1510
DPPR1520
DPPR1530
DPPR1540
DPPR1550
DPPR1560
DPPR1570
DPPR1580
DPPR1590
DPPR1600
DPPR1610
DPPR1620

Q

260

MACHINE CONSTANTS FOR THE CRAY-1.

DATA MCHEPS(1)
DATA MCHEPS(2)

DATA MINMAG(1)
DATA MINMAG(2)

DATA MAXMAG(1)
DATA MAXMAG(2)

S~ N~ N

0376424000000000000000B
0000000000000000000000B

0200034000000000000000B
0000000000000000000000B

05777777717777777777777B
0000007777777777777776B

MACHINE CONSTANTS FOR THE PRIME 400.

DATA MCHEPS(1),MCHEPS(2) / :10000000000,
DATA MINMAG(1),MINMAG(2) / :10000000000,
DATA MAXMAG(1) ,MAXMAG(2) / :17777777777,

DPMPAR = DMACH(I)

RETURN

LAST CARD OF FUNCTION DPMPAR.

END

S~ N ~N N~

:00000000123 /
:00000100000 /
137777677776 /

DPPR1630
DPPR1640
DPPR1650
DPPR1660
DPPR1670
DPPR1680
DPPR1690
DPPR1700
DPPR1710
DPPR1720
DPPR1730
DPPR1740
DPPR1750
DPPR1760
DPPR1770
DPPR1780
DPPR1790
DPPR1800
DPPR1810
DPPR1820
NDPPR1830
DPPR1840
DPPR1850
DPPR1860

Distribution for ANL-80-74

Internal:

J. M. Boyle J. J. Moré

W. J. Cody National Energy Software Center (100)
T. F. Coleman D. M. Pahis

W. R. Cowell L. M. Phebus (2)
J. J. Dongarra G. W. Pieper

B. S. Garbow (100) R. C. Raffenetti
G. T. Garvey R. J. Royston

K. E. Hillstrom D. C. Sorensen

A. B. Krisciunas B. T. Smith

J. N. Lyness ANL Contract File
P. C. Messina ANL Libraries

M. Minkoff TIS Files (6)
External:

DOE-TIC, for distribution per UC-32 (183)
Manager, Chicago Operations and Regional Office, DOE-CORO
Chief, Office of Patent Counsel, DOE-CORO
President, Argonne Universities Association
Applied Mathematics Division Review Committee:
G. Estrin, U. California, Los Angeles
W. M. Gentleman, U, Waterloo
J. M, Ortega, U, Virginia
E. N. Pinson, Bell Telephone Labs.
S. Rosen, Purdue U.
M. F. Wheeler, Rice U.
D. M. Young, Jr., U, Texas at Austin
International Mathematical and Statistical Libraries (100)

w U.S. GOVERNMENT PRINTING OFFICE: 1980 — 651-118/22

