ORCHID: A MALICIOUS WEBSITE DETECTION SYSTEM

EUGENE VAHLIS AND LI YAN

ABsTrACT. With the web becoming the dominant platform for information
distribution and retrieval came a new information security threat in the form
of online exploits. These are made in attempts to gather private information
or gaining control over machines connected to the internet. ORcHID is an
open source system implemented in python for finding and classifying mali-
cious pages on the web. In this paper we describe orchid’s architecture, the
algorithms used and several examples of usage for detecting malicious pages.

1. INTRODUCTION

If we look at the WebSense security alerts page[l] we can see that new web
based exploits are found almost every day. These exploits range from simple social
engineering to complex use of bugs in the client’s browser software. One example of
this is the JS/Wonka technique (which we explore in more detail in section 5) which
allows attackers to obfuscate their malicious code on a compromised site thereby
reducing the chance of the code being detected.

Our system consists of three components: a crawler (which is described in section
3) , an analyzer (section 4) and rules (section 5). The three components work
together in a multi threaded environment to detect and classify web pages that we
think may contain malicious code.

A simplistic description of the system’s operation would be:

(1) The user feeds the controller a list of URLs which act as a “seed” for the
crawler.

(2) The crawler extracts the links from the URLs in the queue and passes them
to the analyzer.

(3) The analyzer performs analysis on the pages extracted by the crawler, cat-
alogs the results (i.e. if an exploit was discovered) and adds the links that
appeared in the page to the crawler’s queue.

As we will show in the following sections, the system is extremely easy to use and
extend and is very flexible. For our experiments we used one machine on which we
ran the crawler (using 5 threads). The fact that only one machine was used severly
limited the portion of the web that we were able to crawl. We believe that if the
enhancements described in section 6 are introduced the performance and results of
the system will improve significantly.

The work is organized as follows: in section 2 we describe the origin of our idea
and a project by Microsoft called “Honey Monkey” with a similar goal but a different
approach, in section 3 we describe the design and algorithms of our crawling engine
“Orchid”, in section 4 we describe how the system processes acquired URLs and
how to extend it, in section 5 we give some real-world examples of online exploits
and introduce the rules by which our system can identify pages containing them

1

ORCHID: A MALICIOUS WEBSITE DETECTION SYSTEM 2

and in section 6 we describe several possible improvements to our system which we
believe can improve it’s performance and results.

2. RELATED WORK

The idea for our project was inspired by the Honey Monkey project [2] by Mi-
crosoft. Honey Monkey aims to discover malicious websites by running several
virtual machines on each of which an instance of the Microsoft Internet Explorer
software was running. The virtual machines were controlled in such a way as to
simulate a “real person” browsing the web.

The way Honey Monkey discovered malicious sites was by recording every action
performed on the system and analyzing the collected data. The browsers are the
only active programs running on every virtual machine and so any modification
done to the system is done by the browser. When a “serious” modification was
detected the system signalled an exploit. This approach allows for detection of
zero-day vulnerabilities as well as existing ones without the need for creation of a
database of signatures to identify the exploits.

Our approach is different. Our system crawls the web using a lightweight robot
and analyses the contents of each page in static mode. The fact that we are doing a
static analysis of the web removes the need for a virtual machine to run the system
because no execution of remotely supplied code is performed.

While Honey Monkey’s goals were to identify exploits that compromise the sys-
tem, our goal is more extensive. While our system supports detection of known
exploits we also believe that web sites that host other, potentially non-malicious,
code such as the “pop-under” javascript which is described in section 5 are likely to
host malware as well. These sites attempt to manipulate the client and the browser
software to view content which the client did not intend to and therefore clearly do
not have good intentions.

The only requirement to run our software is a python interpreter. Therefore, it
is very easy to scale and can be used, if parallelized, to scan large portions of the
web quickly, while the Honey Monkey project would require much more resources
and probably dedicated machines because Virtual Machine software has a very high
resource consumption.

3. THE CRAWLER

3.1. Introduction And The State Of The Art. There are many “crawlers” or,
as they sometimes referred to, “robots” publicly available on the web, the most pop-
ular ones being Nutch [4] and Harvest Man [3]. However, we discovered that most
of the crawlers are specialized in some aspect of data mining, poorly documented
or both.

When writing the crawler our goal was to create a generic, well documented and
easy to use piece of software which can be used to collect any taxonomy on the
internet that can be implemented in python. The Orchid crawler is released under
the MIT License [5] and can be used in the ways described there.

There are many difficult points in writing a crawler: load balancing, being
friendly to innocent web servers, broken HTML and many other technical issues.
To overcome all these problems we followed the guides [6] and [7].

One major decision in writing a robot is whether to use a single or multiple
threads for fetching page contents. We decided to use multiple threads. Our main

ORCHID: A MALICIOUS WEBSITE DETECTION SYSTEM 3

FIGURE 3.1. Orchid Control and Data Flow

Links to

@queue

A

Controller |

C UrlHandler

Extractor

C UrlHandler

Extractor

(: UrlHandler

Extractor

Sites
to process
queus

reason for choosing multiple threads was that many web servers have high latency
and while one thread is waiting for a slow server another free fetcher can fetch
several other pages, therefore increasing the crawling speed significantly.

3.2. Architecture. The Orchid crawler consists of three programs: controller,
fetchers and analyzer, and three databanks: The linksToFetch queue, the sites
queue and the database of analyzed data (we will refer to it as the db from now
on). The following is a description of the roles of each part and data structure, the
control and data flow are visualized in figure 3.1.

Controller. The controller is a single thread which is responsible for controlling the
fetchers by selecting a URL to crawl (using the analyzers’ selectNextUrl method,
finding a free fetcher thread and assigning the selected URL to the fetcher. Here is
a pseudo-code description of the controllers’ action:

Algorithm 3.1. Controller pseudo-code

while (number of pages crawled < limit):

url = select the next url to crawl
fetcher = null
for f in fetchers:

if £ is free:

fetcher = £

assign url to fetcher
wake fetcher

ORCHID: A MALICIOUS WEBSITE DETECTION SYSTEM 4

Fetchers. The fecthers are a set of threads responsible for retrieving a URL’s con-
tents and extracting the hyperlinks from the contents. The fetcher uses two other
components for it’s operation: UrlHandler, which retrieves the contents of a URL
and OrchidEztractor which extracts the links and contents of the retrieved page.
Each fetcher processes one URL at a time. Every time a URL is assigned to it by
the controller the fetcher uses the UrlHandler class to download the contents of
the page and the uses OrchidExtractor to process these contents and create a Site
object. The Site object is inserted into the sites queue and the analyzer is awoken.
Here is a pseudo-code description of these actions:

Algorithm 3.2. Fetcher pseudo-code

url is assigned by the controller

contentsStream = urlHandler.processUrl(url)
extractor.setSite(contentsStream)

extractor.extract()

processedInfo is the information generated by the extractor
site = Site(processedInfo)

add site to the site queue

wake the analyzer

Analyzer. The analyzer is the main data mining module of the system. The Or-
chid crawler contains a naive analyzer which only adds links to the to fetch queue
without processing them at all. To use the Orchid crawler one would have to
subclass NaiveAnalyzer and implement the following three methods: analyzeSite,
addSiteToFetchQueue and selectNextUrl. All the synchronization is done in the run
method and therefore knowledge of multi-threaded programming is not necessary
to use Orchid.
The roles of the above methods are as follows:

e analyzeSite: This action is invoked on a site from the site queue. In this
method should be all the processing of the site and the separation of the
links that should be followed some time in the future from those that should
never be followed. The links that should be followed should be stored in
some datamember of the analyze instance.

The naive implementation simply marks the URL of the site as visited and
puts all the new links in the list of links to be added to the crawl list.

e addSiteToFetchQueue: This action is invoked on the links to fetch queue
and should be relatively fast!. Here should be the code that adds the links
that should be followed to the links to fetch queue.

The naive implementation classifies each link by the URL of it’s sever and
adds them all the the queue, which in this case is a map of server url —
queue of links.

e selectNextUrl: This action is invoked by the Controller (as opposed to the
other two which are invoked by the analyzer’s run method) and should
contain the code for choosing the next URL to crawl. It should always

L The reason for having two separate methods is for future extensions. If some analyzer imple-
mentation will require a long time to process a site there is no need to lock the queue and prevent
the controller from assigning URLSs to fetchers.

ORCHID: A MALICIOUS WEBSITE DETECTION SYSTEM 5

return one string URL.

The naive implementation chooses a random server and then takes a URL
from it’s associated queue. This approach is described in more detail in
section 4.

The main method of the analyzer performs the following actions: waits until a
site is inserted into the site queue, calls analyzeSite to perform the necessary data
mining logic, calls addSite ToFetchQueue to update the to fetch queue and loops.
Here is a pseudo-code description of the operation of the analyzer’s run method:

Algorithm 3.3. Analyzer pseudo-code

while (there are more sites to crawl):
fetch site from site queue
call analyzeSite
call addSiteToFetchQueue

Our extended security-based content analyzer (called malcontent) is described in
greater detail in the following section.

4. THE MALICIOUS CONTENT ANALYZER

4.1. General description. The section deals with the way our security based
content analyzer is designed and how to use and extend it. The goal of our analyzer
is to identify and classify web pages containing malicious code. The definition of
malicious code may vary and is defined completely by the set of Rules specified to
the analyzer at it’s construction.

The information available to the analyzer during runtime is, for every web
page, it’s URL, links and content (if of mime type either text/html or applica-
tion/javascript), therefore, anything that can be inferred using python code and
this information can be inferred during the analysis step of the analyzer’s main
loop.

The classification and identification of malicious content is done by applying
rules to the currently processed page. The rules are discussed in more detail in the
following item. In general, each rule identifies a certain class of vulnerabilities, for
example: a rule which matches a regular expression against the pointer of a certain
type of links.

4.2. What are rules? Rules are the core of the Orchid malicious content detec-
tion system. The rules are divided into classes that can be analyzed by a generic
piece of code. The malicious content analyzer applies all the rules to every page it
encounters. Each rule analyzes the site in it’s own way and determines whether it
contains malicious content. If the page is determined to be malicious the informa-
tion is stored and various statistics are updated. We have defined an abstract class
called Rule from which all the concrete rule classes should inherit.

The abstract rule class defines three levels of “maliciousness” of pages: GOOD,
MAYBE EviL and EviL. Each site is initially assigned the tag GooD. Every time a
rule is applied to the site and matches, the rule’s associated level is checked against
the current level of the site and if it is more severe the site’s level is updated to the
rule’s level. This is described by the following pseudo-code:

Algorithm 4.1. Malcontent application of rules to sites

ORCHID: A MALICIOUS WEBSITE DETECTION SYSTEM 6

s is the site currently being processed
for rule in rules:
if rule(s) > s.level:
update the site’s maliciousness level

The three defined levels can be roughly described as follows: GOOD refers to pages
which do not contain any malicious code that we care about. MAYBE EVIL refers
to pages which contain code which, under most circumstances, will result in an
undesired behaviour of the browser or may signify the presence of a serious exploit.
EvVIL refers to pages which most definitely are malicious and contain a specific
exploit which we can identify.

In the following items we will describe several rule classes we created for our
experiments and how one would approach writing new classes of rules.

4.3. Existing classes of rules and how to write new ones. In order to be
able to perform the experiments described in section 5 we defined three classes of
rules: Link rules, Content rules and External IFRAME rules. The rule creation
aspects of these rules is described below and the exploits they are targeted at are
described in more detail in section5.

Each rule class implements the python meta-method call (self, site) where
all the processing occurs. Implementing the ~ call meta method allows for the
rules being applied to sites (rule(site)). This is an implementation of the COMMAND
design pattern.

The type of processing done in the _ call _ method is entirely up the the
developer. For example: in the LinksRule class the constructor is supplied with a
map re — (exploit name, link types, level). The regular expression is compiled and
the modified map is stored as a data member. During the execution of the rule we
iterate over the link types supported by this instance of LinksRule, try to match
their URL to the regular expression and if a match is found we update the level of
the site to the maximum between the site’s level and the rule’s level.

In the ContentRule class the definitions of exploits are much more general and
therefore more powerful but also more difficult to define in a correct way. In this
type of rules a regular expression map is supplied in the constructor, like in the
LinksRule class. However, during execution, the regular expression is matched
against the raw text of the web page rather then against specific elements.

The ExternallframeRule class is an example of a case where the sought exploit
cannot be identified by merely matching a regular expression against a part of the
page. In this case we are trying to detect IFRAME elements in the page which load
content from another domain (the reasons for this are described in more detail in
section 5). This class of rules identifies only one exploit (as opposed to the other
two which can be used to identify a very broad set of exploits), but it demonstrates
that Orchid can be used to detect malicious content which requires a more powerful
logic than just regular expressions.

4.4. Crawling strategy. The decision to which URL to crawl next is highly im-
portant. If we simply crawled in a FIFO manner we would send many request
sequncially to the same server. The server would detect this, suspect an attempted
denial of service attack and block us. One possible way to reduce the load on indi-
vidual servers is to choose a random domain from the URL queue and crawl one of
it’s pages. This approach results in a very low frequency of requests to every server

ORCHID: A MALICIOUS WEBSITE DETECTION SYSTEM 7

and, in addition, in a very fast growth in the number of servers we have to choose
from. The Malcontent analyzer uses this approach.

Another approach that we tried was selecting a random server but giving higher
priority to servers on which we previously found a malicious page. This approach
did not perform well during our experiment. We believe that the reason for the
poor performance was that most bad pages will contain malicious code on their
“primary” page (the page that everyone links to) because this page will attract
most of the visitors.

5. ExAMPLES OF RULES AND EXPLOITS

In this section we will present three web exploits of different classes. We will
discuss with some detail the vulnerabilities targeted by each exploit. We will also
describe our way of identifying these exploits and the rules we created to do so.
Finally, we will present the experiments we performed and the results we got.

5.1. The JS/WONKA obfuscation technique.

5.1.1. The exploit. JS/Wonka is a fairly new technique which becamse very popular
during October 2005. This is not an exploit in itself but rather a way of obfuscating
malicious code so that it will be more difficult to identify.

The obfuscation is done using the javascript escape and unescape functions. The
malicious code is encoded using escape, then, the encoding along with a call to
unescape is placed on the compromised website. Here is an example:

Suppose that the code we want to place on the page without being detected is:

<iframe src="http://www.XXXXXX.com" width=0 border=0 height=0></iframe>
then, we encode it using escape:

%3C%69%66%,72,61%6D%65%20%73%72%63%3D%22%68%74%T74%T0%3A%2FL2F | 7T/ TTH4TT42E),58%
58%587%587,587%58%58%2E},636F%6D%227,20%77%69%64774%68%3D%30%20%627,6F/,72%647,65%7
27%3D%30%207%68%65%69%67%68%74%3D%30%3E%3C%2F%69%66%72/61%6D%65%3E

and place the following javascript on the compromised website:
<Script Language=’Javascript’>
<!--
document .write (unescape (’%3C69%66%72%61%6D%65%20%73%72%63%3D%22%68%74%74%70
h3AY2F W 2F T T T T4 TT%2E),58758%58%58%58%58%58%2E/63%6F /,6D%22%207%77%69%64%747.68%
3D%30%20%62%6F%72%64%65%72%3D%30%20%68%65%69%67%68%74%3D%30%3E%3Ch2F,69%66%7
2761%6D%65%3E*)) ;
//-=>
</Script>

Now, if someone opens our site an IFRAME of size 0x0 will be created in which a
malicious page is loaded. More details about JS/Wonka are available in [8].

5.1.2. The detection rule. To detect this exploit we used the ContentRule class.
We classified every page which matched the regular expression

unescape\s*\ (\s*’ [*?]*\%3C\%69\/66\%72\%61\%6D\%65 [~ 7] %’ \s*\)

ORCHID: A MALICIOUS WEBSITE DETECTION SYSTEM 8

This regular expression would match any page which tries to unescape some se-
quence containing an IFRAME element. Although it is possible that someone will
try to do that without malicious intent, we think it is highly unlikely.

5.2. Cross Site Scripting.

5.2.1. The exploit. Cross site scripting is a well known web exploit. It is based on
the fact that many web pages display parameters they receive in requests without
“sanitizing” them. For example if we have a page that receives a parameter name
and displays “hello name” then if a <script> tag is passed as the name the script
will loaded and executed by the browser. Cross site scripting (or XSS) is discussed
in much more detail in [9] and [10]. One way to use XSS is to place a link on a
malicious web site, which will direct the use to a vulnerable page with a malicious
script as one of the parameters, for example:

<a href="http://www.vulnerable.com/7name=<script>send cookies to
attacker</script>’’>A very nice site

5.2.2. The detection rule. We used the LinksRule class and the regular expressions
provided at [10] to detect the type of XSS which appears on malicious pages. In
order to find XSS attempts we scanned A, IMG and IFRAME elements for pointers
matching one of the following regular expressions:

CA\%3C) <) C(\N%2F) I\/) * [a-z0-9\ %]+ ((\%3E) |>)

or

(A\%3C) 1<) CAN%69) 111 (\%49)) ((\%6D) [m| (\%4D)) ((\%67) |g| (\%47)) [~\nl+((\%3E) [>)

The first expression matches <script> tags and the second expression matches
 tags which contain javascript in their src attribute.

5.3. External IFRAME spyware and adware.

5.3.1. The exploit. IFRAME is an HTML element which can be placed inside a
page and have external content loaded into it, these elements are usually used for
advertisement. By External IFRAME we refer to IFRAME elements which load
data from a domain different from the domain of the current page. The reason we
chose to identify external IFRAMEs is because they are very often used to collect
information on an internet user’s browsing habits (i.e. spyware) and are also used
by most exploits (like the JS/Wonka example we gave above).

When a browser sends a request to a web server the server can record the IP
address of the browser. If some server owner (like an advertiser) manages to place
IFRAME advertisements in many pages around the web he can collect information
about which IP addresses visit which pages.

Another malicious use of IFRAMEs is when an attacker manages to compromise
a web page but does not wish to insert big amounts of code to the page to avoid
detection. The attacker can instead create a single 0x0 sized IFRAME element
pointing to his own page which contains all the malicious code he needs. In this
case it is almost certain that the IFRAME pointer will point to some other domain
on which the attacker hosted his malicious page.

ORCHID: A MALICIOUS WEBSITE DETECTION SYSTEM 9

5.3.2. The detection rule. To detect external IFRAMEs we wrote a separate rule
class ExternallframeRule. When applied to a web page this rule iterates over all
the IFRAME elements and compares the domain of the pointer to the domain of
the page currently being analyzed. If the domains are different the rule matches.
This rule is quite simple but it demonstrates Orchid’s support for detection of
exploits which cannot be discovered by simply matching regular expressions.

5.4. Pop under windows.

5.4.1. The exploit. “Pop under” windows is a technique commonly used by “seedy”
websites to open pop up windows without the user noticing them. The technique
can be used to display advertisements as well as to exlpoit browser vulnerabilities.
Pop under windows are windows which appear beneath the current broswer window.
Here is an example of opening a pop under window:

window.open(’http://www.seedysite.com’) ;window.focus()

This opens seedysite.com in a new window and returns the focus to the current
window.

5.4.2. The detection rule. For detecting pop under windows we used the Con-
tentRule class. We scanned every page for the following regular expression:

window\s*\.\s*open.+window\s*\.\s*focus

This will detect sequences of opening a new browser window and returning the
focus to the original window.

5.5. Experiments. To demonstrate the abilities of our system we performed sev-
eral experiments of malicious website detection.

5.5.1. Set up. In our experiment we used all the rules described above to scan 14000
web pages for malicious code. Our “seed” (initial URL list) was several software
piracy and pornography sites which we found on Google.

Before running the experiments we tested Orchid on sites which we know to
contain each of the exploits described above. For example: www.free-daily-jigsaw-
puzzles.com is known to contain the JS/Wonka exlpoit (Warning: do not try to load
this site as your system may be compromised as a result). Orchid was succesful in
identifying everyone of the exploits during the testing phase.

During the experiments themselves we discovered that a very large portion of
the sites that we scanned contained external IFRAMES and pop under windows.
This is to be expected because these techniques do not necessarily harm the user
but simply annoy him or covertly collect data on him.

To run the experiments we used the following parameters:

Maximal number of pages: 14000

Number of fetcher threads: 5

Socket timeout: 15 seconds

Delay between URLSs being assigned to fetchers: 2 seconds

ORCHID: A MALICIOUS WEBSITE DETECTION SYSTEM 10

5.5.2. Difficulties we encountered. Our initial version of the crawler didn’t select
a random domain to crawl to but rather crawled on a first-in-first-out basis. This
approach was not succesful because the frequency of requests to each server was
too high. This problem was resolved by the approachs described in section 4.

Another problem which we encountered was that, altough we reduced the request
frequency to each server, the requests to the DNS server were still coming too fast
which caused the DNS server to block us. This was resolved by reducing the
crawling speed.

5.5.3. Results. Here are the results that we got after crawling 14000 pages (log files
are available in the package):

e Number of pages succesfully scanned: 12659

e Maliciousness level breakdown:
| Total count | Portion of scanned pages |

Good 11782 0.931
Maybe BEvil 853 0.067
Evil 24 0.002

e Specific rule match count:

| | Total count | Portion of scanned pages]

External IFRAME 2092 0.165
Pop under window 151 0.012
XSS 29 0.002
XSS with IMG 3 0.00024
JS/Wonka 2 0.00016

e Time required to perform scans: Approximately 20 hours.

5.5.4. Analysis of results. Te results we got were what we expected. As previously
mentioned, we used a number of pornography sites as our initial seed. As expected,
those sites contained many external IFRAME elements (mostly advertising other
sites of similar content).

The second most prevalent rule match was for the pop under windows. This is
also expected as this technique is very easy to use and does not require knowledge of
browser vulnerabilities. Most of the pop under windows are simply advertisements
meant to force the user to continue using a certain site, but quite a few of them
attempt to install software on the user’s machine using methods such as ActiveX
controls which are enabled in old versions of Internet Explorer.

The number of XSS matches was higher than we expected. We believe this is
partially due to some false positives.

An interesting results of the experiment was that the vast majority of the crawled
pages contained adult content. This is due to the fact that websites of such nature
tend to contain a large amounts of links to other such sites and have a very strong
lack of diversity in content.

Unfortunately, we were not able to discover any new sites containing the JS/Wonka
exploit (the two matches above are for sites that we found and inserted into the
seed list. We believe that if the number of pages to crawl was increased and if
websites of other content types were included in the seed list the results would be
better.

ORCHID: A MALICIOUS WEBSITE DETECTION SYSTEM 11

6. POSSIBLE EXTENSIONS

6.1. Parallelization. One of the factors that most limits Orchid’s crawling rate is
the number of requests it sends per minute. At it’s current state Orchid runs on a
single machine (with a single IP) and therefore the maximal crawling speed is quite
slow. If we tried to crawl faster servers would block our requests to reduce their
load.

One good way to solve this problem and siginificantly increase the crawling speed
of Orchid is to parallelize it’s operation. Writing parallel algorithms is quite difficult
and there are many resources on the web on how to do it correctly ([11] and [12] are
good examples). If parallelized, Orchid could be used for large scale web analysis.

6.2. Improved detection heuristics. The current set of rule classes in Orchid
supports only direct analysis of a web page. We believe (without justification)
that there are some web page parameters which have non-zero correlation with
the page’s “maliciousness”. For example: it is not unreasonable to assume that a
certain page’s backlinks (links that link to that page) and it’s contents can indicate
whether it contains a certain exploit.

If such a correlation indeed exists a machine learning model can be trained on
the data collected by the direct rules and then used to identify new exploits. One
model which may be suitable for this task is the Support Vector Machine[13, 14]
model.

7. THE ORCHID SOFTWARE PACKAGE

The Orchid system comes as tarred and gzipped file called “orchid.tgz”. To use
the package first go to some directory and extract it:

cd my_useless_stuff
tar xvzf orchid.tgz

Now, there are several important files: “orchid/orchid.py”, “orchid /malcontent.py”

and “orchid/documentation/index.html”. The documentation is very pleasant and
well formatted HTML which resembles Javadoc. It was generated by the excellent
epydoc|[15] package.
To run our experiment you should do:
cd orchid
python experiment.py

Please note that our initial seed list may contain URLs with offensive words due to
the nature of such sites.

8. CONCLUSION

Browsers have become one of the most important category of programs for com-
puter users and therefore it is highly important to make them secure. We hope that
our system can demonstrate one way of finding what to fix or improve in browsers
and what to be careful of.

REFERENCES

[1] WebSense security alerts http://www.websensesecuritylabs.com/alerts/

[2] Honey Monkey, Microsoft ftp://ftp.research.microsoft.com/pub/tr/TR-2005-72.pdf
[3] HarvestMan Web Spider http://harvestman.freezope.org/

[4] Nutch Web Spider http://lucene.apache.org/nutch/index.html

[5]
(6]

[7]
(8]

ORCHID: A MALICIOUS WEBSITE DETECTION SYSTEM 12

MIT License http://www.opensource.org/licenses/mit-license.php

Sriram Krishnan’s guide to writing crawlers http://dotnetjunkies.com/WebLog/sriram/
archive/2004/10/10/28253.aspx

SearchTools crawler checklist http://www.searchtools.com/robots/robot-checklist.html
WebSense security analysis of JS/Wonka http://www.websensesecuritylabs.com/resource/
pdf/wslabs_wonka_analysis_oct05.pdf

[9] Cross site scripting explained, Amit Klein http://crypto.stanford.edu/cs155/CSS.pdf
[10] Detection of SQL Injection and Cross-site Scripting Attacks http://www.securityfocus.com/

infocus/1768

[11] Parallel Algorithm Design http://www.dcs.ed.ac.uk/home/stg/pub/P/par_alg.html
[12] Designing Parallel Algorithms http://www-unix.mcs.anl.gov/dbpp/text/node14.html
[13] Support Vector Machine, Wikipedia http://en.wikipedia.org/wiki/Support_Vector_

Machine

[14] Learning to Classify Text using Support Vector Machines, Thorsten Joachims http://www.

cs.cornell.edu/People/tj/svmtcatbook/

[15] Epydoc http://epydoc.sourceforge.net

OnN

OnN

DepT. COMPUTER SCIENCE, UNIVERSITY OF TORONTO, 6 KiNG’s COLLEGE Rp., TORONTO,
TARIO, M5S 3G4, CANADA
E-mail address: evahlis@cs.toronto.edu

Dept. COMPUTER SCIENCE, UNIVERSITY OF TORONTO, 6 KiNG’s COLLEGE Rp., TORONTO,
TARIO, M5S 3G4, CANADA
E-mail address: liyan@cs.toronto.edu

