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Abstract

We show that the application of conventional stochastic volatility (SV) models may not be
feasible for the arbitrage-free valuation of derivative securities on assets with positive return-
volatility correlation under the money-market account (MMA) measure and under the inverse
price measure. The existence of the inverse martingale measure, where an asset is used as
the numeraire itself, is critical for valuation of options on cryptocurrencies, where most traded
options have inverse paysoffs.

We introduce the log-normal SV model with a quadratic drift, which allows for the arbitrage-
free valuation of options on assets with positive return-volatility correlation under both the
MMA and the inverse measures. We show that the proposed volatility process has a strong
solution. We then develop an analytic approach to compute an affine expansion for the moment
generating function of the log-price, its quadratic variance (QV) and the instantaneous volatility.

We finally demonstrate application of our model and the accuracy of our solution for valu-
ation and calibration of listed options on assets with positive return-volatility correlation and
for inverse options on Bitcoin cryptocurrency.t

Keywords: Log-normal stochastic volatility, Non-affine models, Closed-form solution, Moment
generating function, cryptocurrency derivatives, Quadratic variance

1 Introduction

Empirical studies strongly support evidence that the volatility of price returns is itself a stochastic
process (see, for an example, Shephard (2005) for a comprehensive survey). It is accepted that
the celebrated model by Black and Scholes (1973) and Merton (1973), which assumes a constant
volatility, cannot explain implied volatility surfaces observed in option markets, which are inhomo-
geneous in strike and maturity dimensions. In contrast, stochastic volatility (SV) models are able
to fit to implied volatility surfaces and their dynamics.

1.1 Evidence of Log-normality of Implied and Realized Volatilities

Applications of log-normal SV models, which are based either on the log-normal dynamics for
the instantaneous volatility or on the Gaussian dynamics for the logarithm of the volatility, are
widespread in practice. Predominantly, SABR model by Hagan et al (2002) is widely used among
practitioners for fitting implied volatility surfaces. However, for modeling the dynamics of volatility
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surfaces, we need to account for the mean-reversion of the volatility process like in conventional SV
models. The mean-reversion implies that the distribution of the volatility has a stationary long-run
distribution and simulated paths of model dynamics by Monte-Carlo do not explode.

In an excellent study Christoffersen, Jacobs and Mimouni (2010) examine the empirical perfor-
mance of Heston, log-normal and 3/2 SV models using three sources of market data: the VIX index,
the implied volatility for options of the S&P500 index, and the realized volatility of returns on the
S&P500 index. They found that, for all three sources of data, the log-normal SV model outperforms
its alternatives. Tegner and Poulsen (2018) report similar finding using realized volatilities.

We note that conventional Hull and White (1988), Heston (1993), and 3/2 (Lewis (2000),
Carr and Sun (2007)) SV volatility models specify the dynamics for the stochastic variance of
returns. Hagan et al (2002) and Karasinski and Sepp (2012) specify the log-normal dynamics for
the stochastic volatility. In another widely used specification, the so called Exp-OU specification,
the stochastic process is defined for the logarithm of the volatility?. In fact, all three specifications
for the stochastic driver of the volatility may result in the “loss of martingality” of the price process
when the return-volatility correlation is positive (see, for example, Lewis (2000, 2016, 2018) and
Lions and Musiela (2007)). Then, market has a strong bubble as the price process is a strict a local
martingale, see Herdegen and Schweizer (2016), which may lead to arbitrages.

In a related research, Lewis (2018) introduces a log-normal SV model with a quadratic drift
without a constant term and suggests to apply the model only when return-volatility correlation
is negative because of the loss of martingality when return-volatility correlation is positive. Carr
and Willems (2019) introduce the log-normal SV model with the quadratic drift, similar to our
model, and specify the condition for the mean-reversion parameter of the quadratic term so that
the price process is a true martingale. In our paper we augment the log-normal SV model with
the linear drift term introduced in Karasinski and Sepp (2012) to include the quadratic drift term.
We contribute to studies of Lewis (2018) and Carr and Willems (2019) by defining the martingale
conditions under both MMA measure and inverse measures. We also develop an analytic approach
for valuation of vanilla and inverse options.

1.2 Dynamics with Positive Return-Volatility Correlation

Carr and Wu (2017) propose three economic factors behind negative return-volatility correlation,
which is most typically observed in the dynamics of stock prices and stock indices: aggregate
financial leverage, systematic risk, positive auto-correlation of negative shocks. However, in many
markets we actually observe asset dynamics with positive return-volatility correlation either on a
permanent basis or on a temporary basis.

In Figure 1, we use the market data of four assets to illustrate their term structures of implied
volatility skews, displayed as function of corresponding option deltas. In the legend, we show the
corresponding 25-delta skews, which equal the difference between implied volatilities of +25-delta
calls and —25-delta puts. Positive skew is indicative of positive return-volatility correlation.

1. Assets providing protection against increases in equity index volatilities (such as the VIX
index which is linked to the volatilities of the S&P 500 index) have persistent and strong positive
skews. During equity market corrections, the VIX index may increase significantly because of
strong negative correlation between its returns and returns of the S&P500 index. As a result,
out-of-the-money calls on the VIX index provide protection against equity risk and, thus, demand
higher implied volatilities, as shown in Subplot (A).

2. Assets with either short or leveraged short exposure to equity indices have significant positive
skews because of their anti-correlation to underlying equity indices. In Subplot (B), we illustrate

2Exp-OU SV models are studied in Fouque, Papanicolaou and Sircar (2000), Detemple and Osakwe (2000),
Masoliver and Perell6 (2006), Perells, Sircar and Masoliver (2008), Bormetti, Cazzola, Montagna and Nicrosini
(2008), Drimus (2012), Bayer, Gatheral and Karlsmark (2013). Exp-OU SV models are widespread in industry as
a basis for local SV models (Lipton (2002)), see Jonsson and Sircar (2002), Bergomi (2015), Biihler (2006), Ren,
Madan and Qian (2007), Henry-Labordere (2009), Bergomi and Guyon (2012), Kaye (2012).
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Figure 1: Implied volatilities of assets with positive return-volatility correlation with x-axis being
corresponding Black-Scholes option delta. Subplot (A) shows skews of options on the VIX index,
(B) shows skews of 3x short Nasdaq ETF (NYSE ticker is SQQQ), (C) shows skews on Bitcoin
cryptocurrency (using Deribit options exchange data taken on 20-Oct-2022), (D) shows skews of
gold ETF (GLD). Market data for (A), (B), (D) are taken on 15-Jul-2022. 2w stands for options
with two weeks to maturity; 1m, 2m, 3m, 6m, 12m stands for 1, 2, 3, 6, 12 months to maturity,
respectively. For each maturity, the label displays 25-delta skew which is the difference between
implied volatilities for +25-delta call and —25-delta put at that maturity.

the implied skews of 3x Short Nasdaq exchange-traded fund (ETF) (with NYSE ticker SQQQ),
which is the largest short ETF in US equity market and which has very liquid listed options market.

3. Assets with demand for leveraged upside exposures and with somewhat speculative dynamics
may exhibit positive skews during regimes of persistent price increases. In Subplot (C), we show
positive skews on options on Bitcoin cryptocurrency observed during the most recent all time highs
in late October 2021 using Deribit options exchange data. For this type of dynamics, the pattern of
positive skews may change to negative skews once a “greed” regime is followed by a “fear” regime,
where the demand for defensive puts increases due to the risk-aversion?®.

4. Assets with time-inhomogeneous supply-demand imbalances may exhibit implied volatility
skews with different signs for different options maturities. In Subplot (D), we show the implied
volatility skews of gold ETF (with NYSE ticker GLD). Options with short-term maturities ex-
hibit a higher demand for puts, while longer maturities exhibit a higher demand for calls due to
hedging demand against macro instabilities. Such patterns of implied skews are most typical for
commodities, where positive or negative implied skews may be dependent on the supply-demand
and seasonality patterns.

In Table 1, we show that the parameters of our proposed log-normal model, which are calibrated
to implied volatilities of these four assets, imply positive return-volatility correlation. As a result,
the application of conventional SV models may be infeasible, which we address in Section 2.3.

3Interestingly, similar patters are also typical during greed regimes of the so-called “meme” stocks and emerging
market indices. For an example, using the dynamics observed in the Chinese stock market, Wu et al (2018) argue
that the positive return-volatility correlation during such periods could be due to, firstly, short selling constraints, in-
cluding inability to sell short and high borrowing costs; and, secondly, self-feeding price increases, especially involving
leveraged players.



1.3 Inverse Martingale Measure

For inverse options, the payoff is defined in the units of the underlying asset, so that both option
premium and final payoff are quoted in the units of the underlying asset. In fact, options with in-
verse payoffs are dominant in the cryptocurrency options market. The advantage of inverse payoffs
for crypto markets is that all option-related transactions can be handled using units of underlying
cryptocurrencies, such as Bitcoin or Ether, without using fiat currencies (see Lucic (2021) for a con-
nection between the valuation of the inverse cryptocurrency options and FX options). Importantly,
when both inverse option payoffs (on Deribit, which is the largest crypto exchange) and vanilla
payoffs (on CBOE, which is the second most liquid venue) are traded in the market, a SV model
must satisfy the martingale condition for both MMA and inverse measures to exclude arbitrage
opportunities between vanilla and inverse options.

Also, the inverse measure can be applied for the analysis of explosions in SV models, see
Sin (1998), Lewis (2000), Andersen and Piterbarg (2007). In fact, Sin (1998) relates the loss of
martingale property for the price process to explosions in finite time of the “auxiliary volatility
process”, which coincides with the dynamics of the volatility process under the inverse measure.

In Section 4, we contribute to the literature by introducing the inverse measure and examining
conditions under which the inverse measure exists as a martingale measure. This result is important
for the arbitrage-free valuation of options with inverse payoffs, such as options on cryptocurrencies.

1.4 Analytical Tractability

Log-normal SV models cannot be handled by semi-analytic Fourier methods available for affine
SV models. The analytical intractability may have resulted in a slow adaptation of log-normal SV
models in spite of their empirical support.

We note that the log-normal SV model with the quadratic drift does not belong to the family
of affine diffusions because the so-called admissible set of parameters is not satisfied, see Duffie,
Filipovi¢ and Schachermayer (2003), Filipovi¢é and Mayerhofer (2009). Further, because of the
quadratic drift, the model does not belong to a general family of polynomial diffusions, see Filipovié
and Larsson (2016), Cuchiero, Keller-Ressel and Teichmann (2012). We note that Carr and Willems
(2019) introduce measure change and relate the model to the class of polynomial diffusions, which
comes at cost of introducing an additional state variable. Authors then approximate the payoff
function using an orthogonal polynomial expansion, see Ackerer and Filipovié¢ (2020), for option
pricing applications. A related approach for computing the moments under SV models using
expansions is developed by Alos-Gatheral-Radoicic (2020).

We contribute with a closed-form approximate and very accurate solution for the log-normal
SV model to circumvent its analytical intractability. In Section 5, we develop an affine expansion to
derive a closed-form solution for the moment generating function (MGF) of the log-price process,
the its quadratic variance (QV), and the volatility. We show that our solution to the MGF produces
valid probability density functions of the state variables which are aligned with Monte Carlo (MC)
simulations. In Section 6, we derive closed-form solution for pricing vanilla and inverse options,
which are applied for fast calibration of model parameters to market data.

1.5 Organization of the Paper

In Section 2, we provide the framework and introduce the log-normal beta SV model with quadratic
drift. We introduce the MMA and the inverse measures and derive conditions for no-arbitrage
pricing within SV models. In Section 3, we establish important properties of the volatility process
and study unconditional return distribution under stationary distribution of the volatility. In
Section 4, we study conditions for price dynamics to be martingales under MMA and inverse
measures. In Section 5, we present first- and second-order affine expansion for the MGF of the
log-price process, the QV and the volatility. In Section 6, we apply affine expansion to derive



close-form solutions for option valuation problem under the MMA and the inverse measures. In
Section 7 we apply our method for model calibration to market data and demonstrate the accuracy
of both the model specification and our proposed solution methods. Technical proofs are provided
in Appendix A.

2 Framework and Key Results

2.1 Vanilla and Inverse payoffs

While a payoff of (cash-settled) vanilla options is settled in the units of cash, a payoff of an
inverse option is settled in the units of the underlying asset using asset price fixed at the option
maturity. In particular, options with inverse payoffs are prevalent in cryptocurrency option markets.
Deribit exchange, which is the most liquid crypto exchange with over 90% of total options volume,
incorporates trading in inverse options on Bitcoin and Ethereum with premiums quoted and traded
using Bitcoin and Ethereum units, respectively. The rationale for the inverse payoff is that all
transactions for premium and payoff settlements are handled using Bitcoin or Ethereum rather
than fiat, which is an attractive feature for transactions between crypto exchanges and wallets.

We denote the spot price at time T by Sp, and we assume that the price is quoted in United
State Dollar (USD). We consider vanilla call and puts payoffs settled in USD cash at maturity time
T, respectively by

u(S7) = max {Sy — K,0}, uP"(Sy) = max {K — Sr,0}. (1)

payoffs of inverse call and put options are converted to units of the underlying asset at maturity
T as follows

1 1
rcau(ST) = 5 max {S7 — K,0}, rP"(Sp) = 5 max {K — Sp,0}. (2)

2.2 Valuation under Equivalent MMA and Inverse Measures

We consider a continuous-time market with a fixed horizon date T* > 0 with uncertainty modeled
on probability space (2, F,P) equipped with filtration {F}o<;<7+. We assume that filtration satisfies
usual conditions of right-continuity and completeness.

2.2.1 Spot Markets

We make the following assumption.

Assumption 2.1. Risk-free rate r(t) is deterministic with the value of one units of the money
market account M(T) given by

M(T) =" O #(t,T) = /t Tr(s)ds. (3)

We assume that the market is complete and satisfies the so-called No Free Lunch with Vanishing
Risk (NFLVR) and No Dominance (ND) conditions. By choosing M as a numéraire, we consider
an equivalent martingale measure Q, induced by M. Accordingly, the time-t value of an option,
denoted by U(t,S), with payoff function u(S7) at time T, equals to

1

U(t,S) = M(t)E [M(T)

U(ST)| ]'-t:| 5 (4)

where expectation E is taken under the MMA martingale measure Q.



Next, by choosing S as a numéraire, we consider an inverse martingale measure Q, induced by
S. The option value function, denoted by U(t,S), with the payoff paid in units of S, equals to

0(t,5) = S, [;T u(St)| ft} , (5)

where expectation E is taken under the inverse martingale measure Q.

Theorem 2.1. We assume that a complete market satisfying NFLVR and ND conditions. We as-
sume that both the MMA measure Q and the inverse measure @ are equivalent martingale measures.
Then the values of options under the MMA measure in Eq (4) and under the inverse measure are
in Eq (5) are unique and satisfy

MR [ MET)

Proof. As shown in Theorem 3.2 of Jarrow and Larsson (2012) and Theorem 2.17 of Herdegen
and Schweizer (2018), the market satisfies NFLVR and ND conditions if and only if Q is a true
martingale measure. Hence, asset prices, discounted by numéraire M are true Q-martingales.
Consequently, due to the uniqueness of price, we can write (6). To justify the equality of both
sides, we also used the existence and uniqueness of equivalent inverse (true) martingale measure (@
for the numéraire S, see Theorem 4.4 and Corollary 3.11 in Herdegen and Schweizer (2018). O

u(ST)\]-"t} = SE [SlTu(ST)

]—"t] . (6)

2.2.2 Futures Markets

Since most option markets for commodities and cryptocurrencies are based on futures, we also
adopt our methodology for futures options. We consider a set of futures contracts settled at times

{Th } k=1, with prices {ka}k:17_,,[(.

Assumption 2.2. The convenience yield q(t) of futures prices is deterministic with the integrated
conventence yield given by

T
a(t,T) = / a(s)ds. (7)

Definition 2.1. Measure @T induced by price FtT with futures maturity at T, T € {T}}, chosen
as a numeraire is called the inverse T'-futures measure.

Corollary 2.1. We assume that the market is complete and satisfies NFLVR and ND conditions.
We assume that both the MMA measure Q and the inverse futures measure QT are equivalent
martingale measures. Then option values under the MMA and the inverse measures are unique
and satisfy

M)E [ w(Fy)| .7-",5} _ RET [FlTu(FT)

1
o ft} . (8)

For markets, where both vanilla and inverse options are tradable, such as cryptocurrency mar-
kets, any SV model applied for joint valuation of options across several exchanges and contract

specifications must satisfy the conditions (6) and (8). For this purpose, we may need to impose
certain conditions on model parameters, which we will address in Section 4.

2.3 Log-normal Model Dynamics
2.3.1 The MMA Measure

We consider the log-normal beta SV model introduced by Karasinski and Sepp (2012) and augment
it with the quadratic drift in the volatility process as introduced by Lewis (2018) and Carr and



Willems (2019). The SV model is specified for the spot price S, the instantaneous volatility oy
and the QV I; under the MMA measure Q as follows

dS; = r(t)Sydt + 1S, dW,”, Sy = 8,
doy = (k1 + Kkooy) (0 — op)dt + ﬁatth(O) + satth(l), oo = 0, 9)
dl; = o2dt, In =1,

where r(t) is the deterministic risk-free rate; Wt(o) and Wt(l) are uncorrelated Brownian motions,
B € R is the volatility beta which measures the sensitivity of the volatility to changes in the spot
price, and € > 0 is the volatility of residual volatility. We denote by 92, 92 = 5% 4 €2, the total
instantaneous variance of the volatility process.

The mean-reversion of the volatility process is specified using the mean level of the volatility
f, 8 > 0, and the mean-reversion speed which is the linear function of the volatility x1 + Kooy,
k1 > 0,k > 0. As a results, the quadratic drift of the volatility process is given by

1 (0) = (k1 + Koo) (0 — 0) = K10 — (k1 — K2b) 0 — Koo (10)

In addition to modeling advantages that we employ in our development, Bakshi et al (2006) find that
the presence of non-linear terms, including the quadratic term, in the volatility drift is significant
when using econometric estimation of the dynamics of the VIX index.

We introduce the zero-drift stochastic driver Z;, Z; = e~ Jo T(t/)dt/St and its inverse process Ry,
Ry =272 ! with the following dynamics

Az, = Z,o,dW,\", Zy = So,
dR; = 02 Rydt — RyordW,”), Ry =1/7,.
We introduce the log of the zero-drift price process X;, X; = In Z;, driven by
dX, = —%afdt + o dW”, Xo =1nS,. (12)
Using X7, we can represent the spot price Sy under the MMA measure by
Sp =0T X1, (13)

Under the assumption (2.1) and (2.2), and using Eq (13), we represent the price of the futures
settled at time 7" under the MMA measure by

fr(T) = @D =a0T X, (14)

Accordingly, for modeling purposes, we focus on the zero-drift price dynamics Z; and its log-
price process X; defined in Eq (12).

2.4 Martingale property under MMA and Inverse Measures

We will collect important results related to the martingale property of the price process and its
moments for log-normal SV model with quadratic drift and some other popular SV models. We
show that, if return-volatility correlation is positive, the MMA measure does not exist for the log-
normal SV with linear drift (and for SABR model with zero drift) and for the Exp-OU SV model.
While Heston SV model always produces martingale dynamics under the MMA measure, the model
may have non-stationary distribution of the volatility under the inverse measure.

We emphasize that the loss of martingale property directly leads to so-called strong bubble,
because discounted price process becomes a strict local martingale. As a consequence, vanilla
call option price will not be a convex function of the underlying price and Black-Scholes equation
might have multiple solutions, see Cox and Hobson (2005), Jarrow, Protter and Shimbo (2010) and
Herdegen and Schweizer (2016).



2.4.1 Log-normal SV model

Theorem 2.2. [Log-normal SV model with quadratic drift] Under model dynamics (9), the price
processes Zy and Ry in Eq (11) we have following properties.

1. The process Z; is a martingale under the MMA measure Q iff ko > .
2. The process Ry is a martingale under the inverse measure Q iff ko > 20.
3. When u > 1, E[(Z1)"] is finite if ko > Bu+ 9Vu? —u or ko = Bu+ IVu? —u, K1 > kKob;
E[(Z1)"] is infinite if ko < fu+ IVu? — u.
When u < 0, E[(Z7p)"] is finite if ko — 28 > —fu + 9Vu? —u or kg — 26 = —fu +
IVu? —u, k1 > keb; B[(Z7)"] is infinite if ko — 28 < —Bu + IVu? — u.
4. Whenh > 1, E[(Rr)"] is finite if ky > B(h+1)+9VhE — h or ky = B(h+1)+9Vh2 — h, Ky >
kol; E[(Rp)"] is infinite if ko < B(h + 1) +IVh2 — h;
When h <0, E[(Rr)"] is finite if ko—B > —Bh+9vVh2 — h or ko—B = —Bh+0Vh2 — h, k1 >
kol; B[(Rr)"] is infinite if ke — B < —Bh 4+ IVh? — h.
Here, E and E denote the expectation under Q and Q, respectively.
Proof. See Appendix A.1. O

Corollary 2.2. [Log-normal SV model with linear drift] For dynamics (9) with ko = 0 we obtain.

1. The process Z; is martingale under Q iff 5 < 0.
2. The process Ry is martingale under Q iff 8 < 0.
3. When u > 1, E[(Z7)"] is finite iff Bu < —IVu? — u;
When u < 0, E[(Z1)Y] is finite iff B(2 —u) < —9Vu? —u .
4. When h > 1, E[(Rp)"] is finite iff B(h+ 1) < —9vVhZ = h;
When h < 0, E[(Rr)"] is finite iff B(1 — h) < —9vh2 — h.
Proof. Follows by setting ko = 0 everywhere in Theorem 2.2. O

In Subplot (B) of Figure 2, we illustrate admissible regions for the log-normal SV model with
quadratic drift. We observe that Zr and Rp are martingales for broad range of parameters.
As long as parameter kg is larger than max{f3,0} and max{253,0}, the MMA and the inverse
measures, respectively, exist. For comparison, we also illustrate corresponding admissible regions
when ko = 0 in Subplot (A). We see that, in the log-normal SV model with linear drift, Zy and
Rp are martingales only if 3 < 0, so that return-volatility correlation must be negative.

2.4.2 Heston model

We consider Heston SV model model for the zero-drift price process Z; and its inverse Ry = Z; !

Az, = \/ViZedW\®, 7y = Z,

W) (15)
dVy = k(0 — V,)dt + 9\/VidW"), Vo = v.

where W) and W) are Brownian motions with the correlation parameter p.

Proposition 2.1. We have the following properties for Heston dynamics (15).

1.

The process Zy; is always Q-martingale.
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Figure 2: Subplot (A) shows the admissible region of model parameters (3,1) for the martingale
property of Zr under the MMA measure Q and of Ry under the inverse measure Q in the log-
normal SV model with linear drift with ko = 0. Subplot B shows the admissible region for the
log-normal SV model with the quadratic drift with ko = 1. Both measures Q and Q are martingale
in the area with overlapping hatches.

2. The process Ry is always @—martmgale.

8. E[(Zp)™] is finite for all T >0, if p < —/ 2= 4 S Jfp > — /0L 4 A then E[ST] if
finite for all T < T*, T* is a blow-up time of A(t), where A(t) solves Riccati ODE
m2 —m

. A(0)=o.

At) = g(A(t))z + (p9m — K)A(t) +

Furthermore, E[(Z7)™] = +oo for all T > T* if p > — /’”T_1 + A

4. IE[(RT)m] is finite for all T > 0, if p < -1+ ﬁ. If p> -1+ m, then IE[(RT)”‘] if
finite for all T < T*, T* is a blow-up time of A(t), where A(t) solves Riccati ODE

9 2
At = S(AM) + (pd(m — 1) = K)A®) + 5, A(0) =0.
Furthermore, E[(R7)™] = +oo for all T > T* if p < —1 + =T
Proof. See Appendix A.2. O

We conclude that, while Heston model produces martingale dynamics under both Q and Q, the
model has a restriction forgnean—reversion K, k > pd, to ensure that the stationary distribution of
the variance exists under Q. Under Q, Feller condition is 2k > ¥? which ensures that variance
cannot hit zero. In Subplot (A) of Figure 3, we show the admissible regions using these conditions.
2.4.3 Exponential Ornstein-Uhlenbeck (OU) model
We consider Exponential OU (Exp-OU) SV model for the zero-drift price process Z; and Ry = Z, !

Az, = Zye" aw\? | Zy = z,

) (16)
dYy = k(0 = Y)dt +9dW,; ') Yo =Ino
where W) and W) are Brownian motions with the correlation parameters p.

Proposition 2.2. For Exp-OU model (16) we have following properties.

1. The process Z; is martingale iff p < 0.
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Figure 3: Subplot (A) shows the admissible region for parameters (p,?) of Heston model where
Feller condition is satisfied and the stationary distribution exists under the inverse measure using
k=1, 0 = 1. Subplot (B) shows the admissible region parameters (p, 1) of Exp-OU SV model for
the martingale property under the MMA and inverse measures using x = 1, § = 1. Both conditions
are satisfied in the area with overlapping hatches.

2. The process Ry is martingale iff p < 0.

3. When u > 1, E[(Z1)"] is finite iff pu < —Vu? — u.
When u < 0, E[(Z7)Y] is finite iff p(2 —u) < —vVu? — u.
(

)

)
4. When h > 1, E[(Ry)"] is finite iff p(h +1) < —
When h < 0, E[(Rr)"] is finite iff p(1 —h) < —

.TT

Proof. See Appendix A.3 O

We conclude that, under Exp-OU SV model, both the MMA and the inverse measures lack the
martingale property when return-volatility correlation p is positive. In Subplot (B) of Figure 3, we
illustrate the admissible regions for Exp-OU SV model. We note that OU SV model of Stein-Stein
(1991) shares the same properties in (2.2) so that it cannot be applied for assets with positive
return-volatility correlation (Lipton-Sepp (2008) show that Stein-Stein model is a viable SV model
despite its volatility process is not sign-constraint).

3 Log-normal Volatility Process

3.1 Quadratic Drift

We establish important properties related to the regularity of the volatility process. We consider
the SDE of volatility process in model dynamics (9) represented as follows

doy = p(op)dt + v(o )dW( ), oo =0,

(17)
w(o) = (k1 + Kkao) (6 — o), v(o) = Vo,
where Wt(*) is a standard Brownian motion and ¥ is the total volatility of volatility.

We notice that the process o, is not a polynomial diffusion, see Filipovi¢ and Larsson (2016),
Lemma 2.2, because the drift coefficient is a second-order polynomial in o;. In Subplot (A) of
Figure 4, we illustrate the three specifications of the mean-reversion drift. The first case with
ko = 0 corresponds to the linear drift in the current volatility o;. The second case with ko = k1/6
corresponds to the pure quadratic drift x1(6 — 07/0) (we refer to Section 7.2 for the discussion
of why we apply this specification for practical implementation of the model). The third case
correspond to the quadratic case. In Subplot (B), we show the drift relative to the linear case. We
see that, when the volatility is high, by increasing ko, negative drift increases in the magnitude.
Thus, the volatility reverts faster to the mean level when starting with high values.

10



(A) Volatility drift per day as function of o¢ (B) Volatility drift relative to the linear drift
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Figure 4: Subplot (A) displays the drift of the volatility process in Eq (17) as function of oy
using # = 1.0. The case (k1 = 4,k2 = 0) corresponds to the linear mean-reversion; the case
(k1 = 4, k2 = 4) (and more generally the case with ko = k1/6) corresponds to the pure quadratic
drift; the case (k1 = 4,k2 = 8) corresponds to the quadratic drift. Subplot (B) shows the drifts
relative to the linear drift.

3.2 Regularity

We note that SDE (17) has super-linearly growing drift, hence standard results for the uniqueness
of strong solution are no longer applicable, see Section 5 of Karatzas and Shreve (1991) for details.
We will establish the existence of the strong solution in Theorem 3.2. We first provide a boundary
classification for the volatility process, and show that the log-normal volatility in SDE (17) cannot
reach zero or explode to infinity, which are important properties of the volatility dynamics.

Theorem 3.1. Boundary points {0, +00} are unattainable for o in SDE (17).
Proof. See Appendix A .4. O
Theorem 3.2. We assume that

K1 >0,k0>0,0>0,9>0. (18)
Then SDE (17) has unique strong solution.

Proof. See Appendix A.5. O

Proposition 3.1. Assuming that k10 > 0, we have the following for every p € R, such that |p| > 1,
and for any T, T >0

< 00.

E | sup of
t€[0,7]

Proof. See Appendix A.6. O
We consider the quadratic variance (QV) I; with dI; = do?dt.

Proposition 3.2. We assume that model parameters k1, k2, 0, ¥ satisfy Eq (18) and k10 > 0.
Then the QV is well-defined under the MMA measure and E[(I;)] < oo for any p, |p| > 1. If
Ko > (3, then the QV is well-defined under the inverse measure and E [(I;)P] < oo for any p, |p| > 1.

Proof. As E[(I;)’] = E Kf(f as)p] < ’E [SUPse[o,t] 05} < 00, the first statement follows from

Proposition 3.1. The second statement follows using dynamics of the volatility under Q, see (4

11



(A) Steady state distribution of the volatiity (B) Skeweness of volatility as function of k;

Figure 5: Subplot (A) shows the steady state PDF of the volatility computed using Eq (20) with
fixed k1 = 4 and k2 = {0,4, 8}. Subplot (B) and (C) show the skeweness of the volatility computed
using Eq (21) and the excess kurtosis of the unconditional returns distribution computed using
Eq (26), respectively, both as functions of k2, for the three choices of k1 = 1,4,8. Other model
parameters are fixed to 8 =1 and ¥ = 1.5.

3.3 Steady-state distribution of the volatility
The steady state density G(o) for the volatility process o, in SDE (17) solves the following ODE

*192 aa 5 ( 2G) — 7 ((I‘Ll + K‘QO’)(G — O’)G) =0. (19)

The solution is given by the Generalized Inverse Gaussian distribution (see Jorgensen (1982))

G(o) = co"! eXp{— <g + ba)} , o>0,

0 0
q=2"Y p=of2 ol L ) =

2 (b/q)n/Z (20)
192 9 1927 77 - 192

where b > 0, ¢ > 0, n € R and K, is a modified Bessel function of the second kind. For ko = 0 we
use ¢(0) = ¢~ ""T'(—n), where I'(x) is the gamma function, and the steady state PDF is the inverse
gamma function. The r-th moment m(r) associated to the density in Eq (20) is given by

(g)T/Z Kn.i,-r 2\/7))
Kn(2v/qb)
m(r) = qrr ) b — O7 r< —n; (21)

)
b=0, r> —n.

b>0, reRy;

8

We see that when ko = 0, the volatility moments exist only to the order 7 less than r < 1+ 2k /192

In Subplot (A) of Figure 5, we show the steady state density for the set of the three model
parameters as in Figure 4. The linear model with ko = 0 implies the heavy right tail for the
distribution of the volatility. In Subplot (B), we show the skewness of the volatility as function of
Ko. As Ko increases, the skeweness of the volatility declines.

3.3.1 Unconditional Distribution of Returns

We make an interesting connection between the skewness of the volatility process and the kurtosis
of returns distribution. Following Chapter 9 in Barndorff-Nielsen and Shiryaev (2015), we assume
that the distribution of returns over period dt is Gaussian conditional on o

q(z | o) (22)

1 . ( 22 )
=— exp|——"—.
V2rodt P 200t

12



The unconditional distribution of returns under the steady-state distribution of the volatility is

plz) = /0 " 4 |0)G(o)do (23)

The above integral cannot be computed explicitly. Instead, we compute the central moments of
returns under the unconditional distribution

m(n) = /_ Z a"p(z)dz = /0 h [ /_ Z a"q(a |a)d4 G(o)do, (24)

where we exchange the integration order. It is clear that for odd n, m(n) = 0. For the second and
the fourth moments, we have

m(2) = 575/ o?G(o)do, m(4) = 3(575)2/ oG (o) do. (25)
0 0
We compute the excess kurtosis of the distribution using k = 3m(4)/m?(2) — 3 with Eq (21)
3Kn14(2vgb)Kn(2v/gb)
-3 > 0;
(Kora(2v))” "
F=13% -3 Ky =0, k1/0? > 3/2: (26)
0 ko =0, K1 /9% < 3/2.

It follows that the kurtosis of the unconditional distribution in Eq (26) is maximal when b =0
(k2 = 0), and it is finite only if liner mean-reversion parameter 1 is higher than the total volatility
of variance. The kurtosis declines when rate b (k2) increases. In Subplot (C) of Figure 5, we show
the kurtosis for the three choices of k1 = 1,4,8. We see that for the each choice, the parameter xo
can be thought as a dampening parameter to reduce both the skewness of the steady-state PDF of
the volatility and the kurtosis of the unconditional PDF of returns.

3.4 Mean-adjusted Volatility Process
For further development, we introduce the mean-adjusted volatility process defined by
}/t = 0t — 0, (27)
with the domain of Y; being (—6, 00). The dynamics of Y; using SDE (9) become
dY; = (=kY; — koY2) dt + B (Vi + 0) dW,” + & (Vi + 6) daW ), Yy = 00 — 6, (28)
where Kk = k1 + K20. The marginal dynamics of Y; using SDE (17) are
dY; = (=kY; — koY2) dt +9 (Y + 0) dW) | Yo = 09 — 6, (29)

where Wt(*) is a standard Brownian motion.

3.5 Moments of Volatility Process

We consider the mean-adjusted process Y; = o, — 0 using the dynamics (29) and define its power

function mi”), mﬁ”) =Y/, and the m-th moment, W(Tn), n=0,1,2,.., as follows

" (r) = Bx [mi")]. (30)

By applying Itd’s lemma for mgn) under the dynamics (29), we obtain

dm{"” = (—KY; — 52Y2) nY "Lt + c(n) (Y + 0)2 Y™ 2dt + 0 (Y + 0) ny " aw Y, (31)

with m(()n) =Yy and ¢(n) = £9%n(n — 1). We notice a pattern of the powers of n which allows for
a recursive solution as follows.
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Proposition 3.3. [Moments of Volatility Process] The solution to moments in Eq (30), can be
presented as a matriz equation for an infinite-dimensional vector

9 M (029 (1) = A©2) p(000) (), (32)
where 0; is the derivative w.r.t. T and

T
M) (7) = (mm),m(l)ﬁ(z)ﬁm,mw’,_,) . M) (0) = (1%%2%3%4’”.)T

0 0 0 0 0 0
0 —K — K2 0 0 0
A0.0) _ c(2)6? 2¢(2)0 (c(2) — 2k) —2k2 0 0
N 0 c(3)6%  2¢(3)0  (c(3) - 3k) —3k2 0

0 0 c(4)6? 2¢(4)0  (c(4) —4r) —4ko

An approzimate solution to ODE system (32) is obtained using a truncation by fizing the number
of terms to k* and using a finite dimensional vector of m-th moments, m =1, ..., k*

87_M(17k*) — A(lrk*)M(lvk*) + C(lvk*),

. N . e\ T (33)
MR () = (YO,YO2,...,Y0 ) , k) = (0,0(2)92,0,0,...,—k*@YO’“ +1)
—K —K9 0 0 0
2¢(2)0 (c(2) — 2k) —2K9 0 0
A | €30 2e(3)0 (e(3) = 3r) 3k 0
N 0 c(4)6? 2c(4)0  (c(4) —4K)  —4rg
0 0 c(k9)0?  2c(k*)0 (c(k*) — k*k)

The analytic solution to ODE (33) is given by
-1
MOF) (7)) = ezpm{A(l’k*)t} - MED (0) + (A(l’k*)) . (expm {A(l’k*)t} — I(k*)> -CLR) - (34)
where expm() is the matriz exponent, - and ~' are the matriz product and inverse, respectively, and
I®) s k* x k* identity matriz.
Proof. See Appendix A.8. O

In Figure 6, we plot first four moments of the volatility process computed using Eq (34) with
truncation order k* = 4 (Subplot A) and k* = 8 (B). For comparison, we show estimates and 95%
confidence intervals obtained by MC simulations. We see that the low-order truncation with k* = 4
is consistent with MC estimates for the first and second moments. The high-order truncation with
k* = 8 is consistent with the first four moments compared to MC estimates.

Remark. We note that if ko = 0, the system (33) becomes lower tridiagonal so that it can be solved
exactly for all moments up to k* by the sequential integration fromn =1 to n = k*.

3.5.1 Expected Quadratic Variance (QV)

The expected value of the QV is an important quantity for option pricing. This expected value
equals to the model-based fair value of the continuous-time variance swap, which is can be used for
model calibration. We define the annualized expected QV as follows

~ 1 T 1 T
I, = -E; [/ afdt] = -E; [/ (Y; + 9)2 dt] , Inp=1. (35)
0 T 0

T
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(A) Volatility moments with k" = 4 (B) Volatility moments with k" =8
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Figure 6: The first four moments of mean-adjusted volatility computed using Eq (34) with the
truncation order k* = 4 (Subplot A) and k* = 8 (Subplot B) as functions of 7. The model
parameters og = 1.5, 8 = 1.0, k1 = ko = 4, ¥ = 1.5. Dots and error bars denote the estimate and
95% confidence interval, respectively, computed using MC simulations of model dynamics using
scheme in Eq (40) with number of path equal 100,000 and daily time steps.

Corollary 3.1 (Analytic solution). The expected value of the QV using k*-th order truncation is

~ 1 (7 1
I = / (m@) (') + 29m(1)(7')) dr' + 6% = =

T Jo T

(ﬁ(” (r) + 29%(”(7)) L0210k,  (36)

-~ ~(2 T *
where m(l) and m( ) are the first and second elements in vector M) (1) computed using Eq
(37), and O(k*) is the truncation error. The integrated moments of the volatility with the k*-order
truncation are computed by

]\7(1’]“*)(7') E/T MOF) (1) = (A(l’k*))_1 . <expm{A(1’k*)t} — I> - MR (0)
0

+ (A(l’k*)>_1 . ((A(l’k*)>_1 : (ea:pm {A(l’k*)t} - I) — TI) NeiSLRE

The approximation term O(k*) includes only the truncation error O(k*), because Eq (37) is
computed analytically using matrix exponentiation.

In Figure 7, we show the computation of the expected QV using Eq (36) with comparisons to
the estimate (dot) and 95% confidence interval obtained by MC simulations. The truncation-based
analytic solution is consistent with MC estimates.

3.6 Monte Carlo Discretization

We consider the SDE (17) for the volatility process o,. We introduce the log-volatility process
L; = Ino; and obtain the following dynamics for L; using It6’s formula

dLy = p(Ly)dt +9dW ™, Lo =Inoy,

1 38
w(L) = (—k1 + K20) + (%19 — 2192> el — koel. (38)

We consider a time horizon T' > 0 and an equidistant time grid ¢ = kA, A = %, 0<k<n.
Backward Euler-Maruyama (BEM) scheme for L; is defined by

Lipr = Loy + 1 (Lugs ) (s =t +9 (W5, = wi?). (39)

BEM scheme (also known as drift implicit Euler-Maruyama scheme) is based on Lamperti transform
where original SDE (17) is transformed into an SDE (38) with constant diffusion coefficient with
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Expected quadratic variance at time T

— Analytic (k1 =4,k2=0),00=1.5
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-=== Analytic (k; =4,k =8),00=0.5

Figure 7: The expected QV computed using Eq (36) with k* = 4. The top and bottom 3 lines
correspond to o9 = 1.5 and ¢ = 0.5, respectively. The dot and the error bars denote the estimate
and 95% confidence interval computed using MC simulations of model dynamics (28) with scheme
in SDE (40) with number of path equal 100,000 and daily time steps. The model cases of mean-
reversion correspond to those in Figure 5 with other model parameters set to 8§ = 1.0, ¥ = 1.5.

non-linearity in the diffusion coefficient shifted into the drift of the process. We refer to Neuenkirch
and Szpruch (2014) and Alfonsi (2013) for further details; Chassagneux-Jacquier-Mihaylov (2016)
study Euler-Maruyama explicit scheme for SDEs with non-Lipschitz coefficients.

We prove that SDE (39) has a unique solution in Ly, in order to make BEM scheme well-
defined. Although BEM scheme in Eq (39) cannot be solved analytically in ﬁtk +1» we still can solve
Eq (39) numerically due to the smoothness and monotonicity of function G, see Proposition A.2,
using a few iterations of Newton algorithm.

Theorem 3.3. Backward Euler-Maruyama scheme for log-volatility process Ly in SDE (38) has a
strong convergence rate of 1.

Proof. See Appendix A.7. O

Corollary 3.2. Monte Carlo discretization scheme of the model dynamics (9) under the MMA
measure using log-price Xy in SDE (12) is given by
1
Xty = Xt — =07 (thp1 — t) + 04, (W(O) - Wt(;?)) . Xto = In(S),

92 th+1

Ltk+1 =Ly +p (Ltk) (tky1 —te) +8 (W(O)

te+1

0 1 1
_ W( )) te (Wt(kll _ Wt(k)) , Lto = 111(0'0) (40)

ty
Ly = Iy, + Utgk (thr1 — tr), Lo = o,

Otpy1 — eXp(Ltk+1)7

where Wt(f) and Wt(kl) are independent Brownian motions. The scheme (40) has the convergence

rate of 1 in the log-volatility and of 1/2 in the log-price.

We note that the first two dynamics are defined on (—oo,+00), which does not require extra
handling of boundary conditions, in contrast to some affine models for the variance process.

4 Martingale Dynamics under MMA and Inverse Measures

We derive conditions that ensure joint arbitrage-free valuation of options with vanilla and inverse
payoffs using generic SV dynamics (41) under the MMA and inverse measures. These conditions
identify the domain for model parameters that ensure the existence of the MMA and inverse
martingale measures as defined in Corollary 2.1.
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4.1 Martingale Property

In this section we consider a generic SV model for the price Z; and volatility o; with dynamics

specified under the MMA measure Q
dZ; = Zyoy dW,", )
doy = p(o)dt + Bv(at)th(O) + 5v(at)th(1).

To derive for restrictions of model parameters of specific SV models that we consider in Section
2.4, we need to ensure the following properties:

1. the martingale property for the drift-adjusted price Zy and its inverse Ry = (Z)"L0<t<T
under the MMA measure Q and the inverse measure Q;

2. the existence of higher-order moment E[(Z7)™] under the MMA measure Q and negative
moment E[(Z7)™™] under the inverse measure Q for m > 1.

To investigate the martingale property of Z; under Q, we refer to Theorem A.2 that relates it
to the explosion of the volatility process under @ If price process Z; is not a proper martingale,
the model value of a call option fails to be a proper martingale as well. However, the put-call parity
must hold regardless of the martingale property of S; to preclude arbitrage.

Lemma 4.1. Put-call parity for vanilla call option, C(t, S, K), and put option, P(t,S, K),
C(t,S,K)— P(t,S,K) =58 — Ke ™) (42)

holds irrespective whether price dynamics are martingale under MMA measure Q.
Put-call parity for inverse call option, C(t, S, K), and inverse put option, P(t, S, K),

Ct,S,K)—P(t,S,K)=1-S1Ke ™) (43)
holds irrespective whether price dynamics are martingale under inverse measure @
Proof. See Appendix A.9. O
In Section 2.4 we provide the key results for martingale properties of specific SV models:
1. Theorem 2.2 for Log-normal SV model dynamics (9);
2. Proposition 2.1 for Heston dynamics (15);

3. Proposition 2.2 for Exp-OU SV model dynamics (16).

4.2 Log-normal SV Dynamics under MMA and Inverse Measures

We now establish necessary results for the log-normal SV model (9). First we define the model
dynamics (9) under the inverse measure Q. As a by-product, we show that in SDE (44) the

quadratic term is important to preserve the functional specification of volatility drift under Q.

Lemma 4.2. The volatility process in SDE (9) is driven under the inverse measure Q by
doy = (k10 — (k1 — K20) 00 — (ko — B) 07) dt + ﬁgtdﬁ;t((]) + EO’tth(l)- (44)

Using the zero-drift stochastic driver Zy, Zy = e~ I r(t)dt' g, in Eq (11), the MMA measure Q
and the inverse measure Q are related by the density process by

A =By [dQ/dQ| = 2/ 7). (45)
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Proof. We introduce R; = Z, 1 Applying Ité’s lemma, R; satisfies
dR; = 02 Rydt — oy RydW,”) = —oy Ry(dW”) — o,dt). (46)

Using Girsanov’s theorem, we switch to the inverse measure Q by using uncorrelated Brownian
motions Wt(o) and Wt(l) defined by Wt(o) = Wt(o) - fot osds, Wt(l) = Wt(l). As a result, the dynamics
of volatility process o; under Q become

doy = (k1 + kooy) (0 — o¢)dt + Boy (th(o) + O‘tdt) + wtth“) (47)

and Eq (44) follows. It is important to note that measures Q and Q are related by the density
A =T, [d@ / d@} specified by

t t
dAt/At = O'tth, A(O) =1 — At = exp (/ O'SdWS — ;/ O'?dS) = Zt/Z(). (48)
0 0

O

We now derive sufficient conditions for the equivalence of measures Q ~ Q which is required
for the application of Girsanov theorem in the proof of Theorem 4.1.

Theorem 4.1. Measures Q and Q are equivalent if and only if ke > 5.

Proof. By Lemma 4.2, the density [, [d@/ dQ} = Z;/Zy. Therefore, the martingale property for
Z, under Q guarantees equivalence Q ~ Q. Using Theorem 2.2 1) concludes the proof. 0
Remark. The density process (45) can be derived directly from the relationship (6) between the

measures Q and Q. Here we follow rather different approach and characterize Q as a measure
under which inverse process Ry becomes driftless.

Thus, the dynamics of the mean-adjusted volatility process Y; = o, — 6, defined in Eq (28)
under the MMA measure, are driven under the inverse measure by

Y, = (x_,gyt—@yf) dt + 0 (Y, + 0) dW\"), Yo = a9 — 6,

v (19)
)\:BQ ) %:HI_K29+2(52_6)07 '%2:%2_6)

where Wt(*) is a standard Brownian motion under the inverse measure.
We finally summarize the joint dynamics of transformed state variable using log-normal SV
model dynamics (9) under measures Q and Q as follows.

Corollary 4.1 (Dynamics under the MMA measure Q). The joint dynamics of log-price Xy, the
mean-adjusted volatility process Yy, and the QV Iy under the MMA measure Q are driven by

dX; = —5 (Y, +0)*dt + (Vi + 0) aW,”, Xo = X,

1
2
dY; = (=kY; — koY) dt+ B (Vs + 0) dW,” + & (V; + 0) aW D, Yy = 0 — 0, (50)

dI; = (Y; + 0)%dt, Inp=1.
Corollary 4.2 (Dynamics under the inverse measure @) The joint dynamics of log-price Xy, the

mean-adjusted volatility process Yy, and the QV I; under the inverse measure Q are driven by

1 —_—
dX; = 9 (Y +0)*dt + (Y, + 0) th(O)v Xo =X,

dy; = (X —RY, — ;@21@2) dt + B (Y +0)dW, 0 + e (Y + 0)aW ), Yo =09 -0, O
dl, = (Y, +0)*dt, Iy =1.
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5 Affine Expansion of Moment Generating Function

We consider the valuation problem of a derivative security with the payoff function u(X, I) settled
at maturity time 7" using the log-price process X; defined in Eq (12). We denote the current time
by ¢, and introduce the time to maturity variable 7 = T — t. We denote the undiscounted value
function of this derivative security by U(1, X,1,Y).

To solve the general valuation problem under both the MMA measure Q and the inverse measure
Q, we parametrise the value function using binary parameter p, p € {1, —1}, respectively, as follows

Elu(Xr,I7) | Fe] = Eu(Xr, I7) | Xe = X, =1, =Y], =1
E[U(XTv-[T) |‘Ft] = E[U(XT7IT) |Xt =X, =1Y;= Y]v p=—1L
where the expectation E under the MMA measure Q is computed using dynamics (50) and the
expectation E under the inverse measure Q is computed using dynamics (51). We use the fact that
the dynamics are Markovian under the both measures.

Theorem 5.1. The value function U(r, X, 1,Y;p) solves the following PDE on the domain [0, T] x
R xR —6
X Ry (=,00) U, + (ﬁ(Y;p)+£(X;p)+£(I;p)>U:0’

(53)
U,X,1,Y) =u(X,I),
where diffusive operators LY3P) £LX5P) qnd £U5P) gre defined as follows
. 1
LYY = Z9(Y +0)?Uyy + (AP = sy — &Py?) Oy,
. 1
LGPY = (Y + 6)? [2 (Uxx —pUx) + BUXY] ; (54)

Lo — (Y + 6)2Uy,

=1
kP = g1 — Kol + 2m§p)0, AP) = (ko — /{ép))92, mgp) _ " b T
R — /Ba b= -1

Proof. See Appendix A.10. We note that the classic Feynman-Kac formula (see for an example
Section A.17 in Musiela and Rutkowski (2009)) cannot be applied directly to Eq (52) because the
model dynamics (50) and (51) do not satisfy the linear growth conditions. O

5.1 Moment Generating Function

We introduce the moment generating function (MGF) of the three model variables: the log-price Xy,
the QV I, and the volatility driver Y; = o; — 6. We extend our analysis with the transform variable
in the volatility process Y; to show that our solution method works for all the three state variables
in the model. We denote the MGF by G(7,X,1,Y;®, ¥, ©;p) using respective complex-valued
transform variables ®,¥,0 € C

1
—1.

Ele~®X-—VI=6Yr | X0 = X, Iy = I,Yy = Y],

N Ylop (55)
Ele=®X—V1-OY: | Xy = X, Iy =LYy = Y], p

G(r,X,1,Y;®,V,0; p) = {
Using model dynamics (50) under the MMA measure and model dynamics (51) under the inverse
measure, respectively, the MGF solves the following PDE on the domain [0,7] x R x R} X (=6, 00)
— G, + (L(Y;p) + £&X5p) [,(I;p)) G =0,
(56)

G(0.X,1,Y;®,W,0; p) = e~ "4 7170Y,

with operators defined in (54). For further development, we establish a sufficient condition for the
existence of the MGF for the three state variables.
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Theorem 5.2. Given the transform variable ® = ®g + 1®; € C, the MGF of the log-price X,
Gr,X;o;p=1) = E[efq’XT‘Xo = X]|

exists for ®r € (—1,0), if Z; is a martingale under the MMA measure. By Theorem 2.2 1), the
necessary condition is kg > [3.
Similarly, the MGF of the log-price X

G(m, X;®;p=—1) =E[e”**| Xo = X]

exists for O € (0,1) if R is a martingale under inverse measure. By Theorem 2.2 2), the necessary
condition is kKo > 2.

Proof. See Appendix A.11. O

Theorem 5.3. Given the transform variable V= Wg + iV € C, the MGF of the QV I,
G(r,I;¥;p=1) = E[e” V"]

exists for W < 0 if ko > 9v/—2UR.

Proof. See Appendix A.12. O

Theorem 5.4. Given the transform variable © = Op + 107 € C, the MGF of the mean-adjusted
volatility variable Y,

Ele™® Y, =Y], p=1
G(T,Y;@;p) — N[e oy 0 ]a p ;
Ele ®"|Yy=Y], p=-1
exists for O < 0, if
V> 2
f2 > o |Orl, p=1 k2= B> O, p=-1 (57)
Proof. See Appendix A.13. O

5.2 Affine Expansion
5.2.1 General consideration

Given that coefficients in PDE (56) are non-affine in state variable Y, the PDE cannot be solved by
assuming an exponential affine-solution with a finite number of coefficients. Instead, we can show
that the solution to the PDE (56) can be represented by an exponential-affine ansatz E [l using
an infinite dimensional vector A(7) = {A(k) (1; 9,9, 0; p)}, k=0,1,...,00, as

EPN(r, X, 1,Y;®,7,6; p) = exp {—<I>X — Ui+ AW(r;9,1,6; pw} : (58)
k=0

where vector function A(7) solve an infinite-dimensional system of quadratic ODEs:

!
AR — ATM®IA + <L<k>) A+H® k=01, .., 00, (59)

where M®) L*) and H*) are infinite dimensional (very) sparse matrices and vector, respectively.

We note the similarity between the current ansatz (58) for problem (56) and the problem of
computing the moments of the volatility process addressed in Proposition 3.3. In Proposition 3.3,
we first represent the recursive solution to the moments as an infinite dimensional vector in Eq
(32). We then obtain an approximate solution by a truncation of infinite series and specifying a
boundary condition to reduce the problem to a finite-dimensional vector (33), which can be solved
using analytical methods. Here we follow this insight for solving PDE (56) and term our (truncated)
solution as the affine expansion with a given order.
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5.2.2 First-order Expansion
Theorem 5.5. [First-order affine expansion] The MGF in Eq (55) can be decomposed as follows
G(r, X,1,Y;®,9,0; p) = EM(r, X, 1,Y;®,9,0; p) + RY(7, X, 1,Y;®,¥,0; p),  (60)

where EY is the leading first-order term and RM is the remainder term. The leading term EW is
given by the exponential-affine form

2
EMN(r, X, 1,Y;®,0,0; p) = exp {@X —0I+Y AP (0,1, 6; p)Yk} , (61)
k=0
where vector function A(T {A (1;9,V,0; p)}, k = 0,1,2, solve the quadratic differential
system of ODEs as a functzon of T:
-
AR — AT A 1 (L(k) (p)) A+ H®(p), (62)
0 0 O 0 0 0 0 0 0
k 2,92 2
M = o T o], {0 002 29*], (0 LT 209 ,
0 0 0 0 %% 0 0 2002 20%9?
0 0 0
k _
LW@p)=q (AP —0?p8 |, | —x® —2050 |, —ﬁ@f@ :
6292 2(AP) + 092 — 925D) 9 — 2x®) — 405

H® (p) = {;92 (% + p® — 2V), 0 (D2 +p® — 20), ;((1)24-]7(1)—2\1/)}

with the initial condition A(0) = (0, —©, 0).
The remainder term R solves the following PDE (omitting arguments):

—R[Tl] + (ﬁ(Y;P) + £&X5p) 4 L‘(I;p)> R = _F[ll(y,A(1)7A(Q))E[l}(ﬂ)(’[,y; ®, U, 0; p)

(63)
RY(0,X,1,Y;9,¥; p) =0,
with operators L), £X) £U) defined in Eq (54) and residual function F1
Fll(y, A, 42)) ch) AW AR)yn
(64)

C®)(r) = 24®@ (192 (20A< )+ A<1>) T - m) :
CW(r) = 20%(A%)2,

Proof. We assume a solution using the leading term FEU (1, X,1,Y;®,¥,0;p) in decomposition
(61) and substitute it into the PDE (56). To obtain the ODEs (62) for A®*), we match terms with
Y* k =0,1,2. To obtain the PDE for the remainder term R (7, X, I,Y;®, ¥, ©;p), we substitute
the decomposition (61) into the PDE (56) and account for higher powers of Y*, k = 0,1, 2. Finally,
initial conditions for ODEs (62) and PDE (63) are set to reproduce conditions of Eq (56). O

Proposition 5.1. We take ¥ = © = 0 and R® = —p/2, p € {—1,1}. Assuming that hypotheses
5.7, 5.7, 5.7 listed in Theorem 5.7 hold, the continuous solution A(T) in Eq (62) exists on [0, +00).

Proof. See Theorem 5.7. O
In Figure 8, we show the real and imaginary parts of ODE solutions A(7) and the first-order

leading term ENl. We see that functions A and A quickly reach an equilibrium point, while

A ig the non-stationary part which contributes to the leading term E[.
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(A) RIA(T)], ®=-0.50+2.00i (B) 3[A(1)], ©=-0.50+2.00i (C) EM(1), ©=-0.50+2.00i

1.0 — REW]
J[E]

Figure 8: The solution of ODEs of the first order expansion in Eq (62) as function of 7 for ® =
—0.5 + 2¢. We use the model parameters calibrated to Bitcoin options data and reported in Table
1. Subplot (A) shows the real part of the solution, (B) shows the imaginary part of the solution,
(C) shows the the real and imaginary parts of the exponential term EM in Eq (61).

Corollary 5.1. [Estimate of the first-order remainder term/. We obtain the following estimate for

the remainder term RY in Eq (63)

4
RU(r, X, 1,Y50,9,6:p)| < 3 CW () x ME(r), (65)
n=3

where Mén) (1) is the n-th central moment of the volatility defined by:
MM () =E[(o(7) - 6)"]. (66)
Proof. See Appendix A.14. O

Corollary 5.2. [First-order affine approzimation for the MGF (55)] is obtained using the leading
term EM in Eq (60)

G(r, X, 1,Y;2,9,0; p) = EM(7, X, 1,Y; ®,9,6; p), (67)
where the approximation error arises from the truncation of the infinite dimensional affine anzats
in (58) with the error magnitude estimated using (65).

In Figure 10, we illustrate that the first-order approximation (67) for the MGF produces valid
and accurate PDFs for all three state variables.
5.2.3 Second-order Expansion
Theorem 5.6. [Second-order affine expansion] The MGF in Eq (55) can be decomposed as follows
G(r, X, 1,Y;®,¥,0; p) = EPN(7, X, 1,Y;®,9,0; p) + R(r, X, 1,Y; ®,9,6; p),  (68)

where E@ is the leading term and R?! is the remainder term.
The leading term El (r, X, 1,Y;®,¥; p) is given by the exponential-affine form

4
EC(r, X, 1,Y;®,¥,0; p) = exp {—@X —0I+) AW(r; 0,1, 6; p)Yk} , (69)
k=0

where vector function A(T) = {A(k)(r;@,\lf,@; p)}, k =0,...,4, solve the system the quadratic
differential system of ODFEs as a function of T:

.
A® = AT A 1 (L<k> (p)) A+ H®(p), (70)
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H® (p) = {;92 (92 + p® — 20) ,0 (&% + p® — 2V) % (®% + pd — 2V0) ,o,o},

with initial condition A(0) = (0,—0,0,0,0)7.
The remainder term R2 solves the following PDE (omitting arguments)

_RE 4 ( £ip) 4 p(Xip) 4 E(f;m) R = _FlR(y, AL, @) A®) 4@)pH
: (71)
RPI(0.X,1,Y;®,7,0; p) = 0,
with operators L), £X) | £U) defined in Eq (54) and residual function F? is given by:

FR(r v AW, A@) 4 ZC D, A®) AB) g@)yyk (72)

CO)(7) = 30243 (39A<3> + 2A<2>) +4A® (192 (392A(3) 404D 4 A<1>) - ,@) :
cO)(r) = %W (1692(A<4>)2 +164™ (39A<3> + A<2>) + 9(A<3>)2) ,
C(r) = 492 AW (49A<4> + 3A<3>) , O®) () = 892 (A(4)>2 .
Proof. The proof follows by analogy to the first-order expansion in Theorem 5.5. O

Remark. We emphasize that sparse matrices quadratic term matrices M%) do not depend on the
measure parameter p, while the linear L) (p) and homogenous term H®) (p) for both the first and
the second order ODEs (62) and (70).

Proposition 5.2. We take ¥ = © =0 and R® = —p/2, p € {—1,1}. Assuming that hypotheses
5.7, 5.7, 5.7 listed in Theorem 5.7 hold, the continuous solution A(T) in Eq (70) exists on [0, +00).

Proof. See Theorem 5.7. O
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Figure 9: The solution of ODEs in Eq (70) as function of 7 for & = —0.5 4 2i. We use the model
parameters calibrated to Bitcoin options data and reported in Table 1. Subplot (A) shows the
real part of the solution, (B) shows the imaginary part of the solution, (C) shows the the real and
imaginary parts of the exponential term E? in Eq(69).

In Figure 9, we show the real and imaginary parts of A(7) for the second-order expansion and
the leading term E[2/. We see that, similarly to the first order expansion illustrated in Figure 8,
functions AN, A®) AG) A® quickly reach an equilibrium point, while A is the non-stationary
part which contributes to the leading term E2/. By comparing the small order terms A©), A A2
between the first and the second expansions, we notice no visible difference, which suggest that
the expansion is rather recursive and higher order terms make insignificant contribution to the low
order terms. We also notice that terms A®) and A(®) are very small in magnitude compared to the
first three terms, which suggest that higher order term only provide a small marginal contribution.

Corollary 5.3. [Estimate of the second-order remainder term/. We obtain the following estimate
for the remainder term R which solves Eq (71)

8
R(r, X,1,Y;®,V, @;p)‘ <3 Culr*) x MO (%), (73)
n=>5

where Mén) is the n-th central moment of the volatility defined by (66).
Proof. See Appendix A.14. O

Corollary 5.4. [Second-order affine approzimation for the MGF (55)] is obtained using the leading
term E'? in Eq (69)

G(r, X,1,Y;®,9,0; p) = EX(r, X, 1,Y;®,¥,0; p), (74)

where the approximation error arises from the truncation of the infinite dimensional affine anzats
in (58) with the error magnitude estimated using (73).

In Figure 10, we illustrate that the second-order approximation (74) for the MGF produces
valid and accurate PDF's for all three state variables.

5.2.4 Solution of Quadratic System of ODEs

It is established that the global existence problem for the solution of quadratic differential systems
is non-trivial, see Coppel (1966), Dickson and Perko (1970), Jacobson (1977), Baris, Baris and
Ruchlewicz (2008) among others. Although it can help with the global existence of solutions of
the quadratic differential systems, when matrices of the quadratic terms are negative definite, the
matrices of quadratic terms in Eq (62) and (70) are indefinite as its eigenvalues are of both signs.
Hence, we can provide a result for global existence that is only conditional by nature.
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We focus on important case of option valuation on underlying assets with ®® = —p/2, p €
{-1,1}, and ¥ = © = 0. Dickson and Perko (1970) show that complex-valued solution of quadratic
ODEs such as A(7;®) of Eq (62) or (70) has maximal interval of existence [0, 7 (®;A)), where
7+(®; A) denotes its blow-up time. We make following hypotheses.

Theorem 5.7. Assume following conditions are satisfied:
1. 74 (®;RA) > 74 (RP; A), © € C, i.e. real part of A(T;®) cannot blow up before A(1; R®).
2. Ziio Ap(T;®;p)Y*R = 400 as 7 T 7.(®), ® € R, i.e. leading term of the affine expansion
does mot vanish as we approach blow-up time when transform variable ® is real.
3. limyr, (@) R (1;®) > —o0, ® € R, i.e. remainder term is uniformly bounded from below.
If MGF in Eq (56) is finite G(10; X, [,Y;RP®, ¥ = 0,0 = 0) < oo then continuous solution
A(m; @, ¥ =0,0 =0) of Eq (62) and of Eq (70) exists on [0, 7).

Proof. See A.16. O

By Theorem 5.7, we obtain that continuous solution A(7) for the first- and second-order affine
expansions in (61) and (69), respectively, exists on [0, +00) if three hypotheses 5.7, 5.7, 5.7 hold.

5.3 Properties of Affine Expansions

We now consider the key properties of the affine expansion of the MGF. For brevity, we focus on
the properties of the second-order expansion, which is our key development. For the first order
expansion, martingale conditions stated in Proposition 5.3 hold, and the consistency with the
expected values (but not with variances) of three state variables is also ascertained.

Proposition 5.3. [Martingale conditions] Assuming that hypotheses 5.7, 5.7, 5.7 in Theorem 5.7
hold, the second-order leading affine term in (68) satisfies the martingale conditions for log-return

X, EP(r, X,1,Y;® =0, = 0,0 = 0;p) = 1, (75)
E[@XT] EE[2}(T7X:XO’I:0’Y;(I): —]_,\I/:O,@:O,p: ]_) :6X07

_ 76
Ele™] =E¥(r, X =X0,I=0,Y;0=1,¥=0,0=0;p=—1) = e ¥, (76)

Proof. For ® = ¥ = © = 0, we obtain H® = 0 in (70). Given zero initial conditions, A®) (r;® =
0,V = 0,0 = 0; p) = 0 due to the uniqueness of the solution. Similarly, for ® = —1 and © = ¥ = 0,
we obtain that H) = 0, hence A% (1;9 =—-1,¥=0,0 =0; p=1) = 0. Likewise, for & =1 and
¥ = 0 we obtain that H(-1) =0, hence A (7;d =1, =0,0 =0; p=—1) = 0. O

Proposition 5.4. [Volatility moments] The second-order leading affine term in (69) is consistent
with the expected value and the variance of the volatility process for ko = 0.

Proposition 5.5. [Log-price moments] The second-order leading affine term in (69) is consistent
with the expected value and the variance of the log-price process for kg = 0.

Proposition 5.6. [QV moments] The second-order leading affine term in (69) is consistent with
the expected value and the variance of the QV process for ko = 0.

Proof. See A.15.1 and A.15.2 for 5.4 and 5.5. Proof of (5.6) is obtained by analogy to A.15.2. [

Remark. In 3.5 we note that for ko = 0 the system of volatility moments (33) is solved exactly,
otherwise the solution is approrimate. Thus, we cannot generalize above statements for ko > 0.
Howewver, it is our hypothesis that moments obtained using (69) correspond to moments computed
with (33) using truncation order k* = 4 and that truncation error as function of ko is very small.
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In Figure 10, we show PDFs computed using the inversion of first-order solution E in Eq (61)
and second-order solution E[? in Eq (69) for three state variables in model dynamics (50). The
blue histogram is computed using MC simulations of joint model dynamics. We see that both first-
and second-order expansions produce valid PDFs and match consistently histograms produced by
the MC simulations. The first-order expansion may not be very accurate for the volatility process
because it is not consistent with the variance. The second-order expansion is consistent with
variances of state variables and accurately matches PDFs computed using MC simulations.
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Figure 10: PDFs computed using the inversion of the first order expansion term E! in Eq (61) and
the second-order expansion term E? in Eq (69) for the state variables under the MMA measure:
Subplots (A), (B), (C) show PDFs of log-return X,, of QV I, of volatility o, = Y, +6, respectively.
We use the model parameters for Bitcoin options reported in Table (1) with 7 = 1.0. The blue
histogram is computed using realizations from MC simulations of joint model dynamics (9) using
scheme in Eq (40) with the number of path equal 400,000 and daily time steps.

6 Option Valuation

We apply the zero-drift log-price process X; in (12) and expressions (13) and (14) for spot and
futures prices, respectively, for option valuations on both spot and futures underlyings. We denote
by Pr the price process of either spot or futures asset as follows
PT = eﬁ(T)eXT, Xo = So, (77)

where (1) = 7(0,T") for spot price and j(7T") = 7(0,T") — q(0,T) for futures price.

As concluded in (5.2) and (5.4), we apply the affine expansion given by either the first order in
Eq (61) or the second order in Eq (69) as analytic solutions to the MGF under the dynamics (12).
Given that the MFG is available analytically, we then apply Lewis — Lipton approach for valuation
of vanilla options using Fourier transform, see Lewis (2000), Lipton (2001), Lipton (2002).

6.1 Vanilla Calls and Puts

Using Eq (77), we represent the put and call payoff functions using capped payoffs as
e(Pr,K) = max {Pr — K,0} = Pr — min {Pp, K} = Pr — min {eﬁ(THXT, K} :

_ (78)
p(Pr, K) = max{K — Pr,0} = K — min {Pp, K} = K — min {eH(THXT, K} .
Accordingly, we need to evaluate option on the capped payoff under the MMA measure
U(r, X) = ¢ [min {37, K} 7] (79)
Proposition 6.1. The valuation formula for capped payoff is given by
U(r. X) = e TK /°° ~-1/2x L gy e iy 172,02 0.0 = 0 p = 1)d
7—7 - T 0 € y2+1/4 7—7 ) _Zy ) - ) - ?p_ y’
(80)
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where X* = In(Sy/K) + @(T) is log-moneyness, EMN and E? are given in Eq (61) and Eq (69),
respectively.

Proof. See Appendix A.17. O

As a result, calls and puts on spot and futures underlyings are valued using Eqs (78) and (79)
C(r,P,K) = e T DHEMN s _ (7, X), P(r,P,K) =e T K —U(r, X). (81)

Given the futures price fo(7T') in Eq (14), the value of futures call option is
o(r, F,K) = e fo(T) — U(r, X). (82)

with log-moneyness X* = In(fo(7")/K). Thus, given a set of futures prices quoted in the market, we
can evaluate options on this set of futures without need to compute the convenience yield explicitly.

We emphasize that in valuation equations (81) we implicitly assume that the price process
Zy = exp(Xy), t € (0,T], is Q-martingale under the MMA measure, otherwise formulas (81) are
not valid, see Theorem A.3. For that we assume a restriction ko > 3, see Theorem 2.2 1.).

6.2 Inverse Calls and Puts

Using generic price process of underlying spot and futures given in Eq (77), we represent the payoffs

of inverse calls and puts by

~ 1 1 _ _

&(Pr,K) = — max{Pr — K,0} =1 — — min {Pp, K} = 1 — e XD min {MTHXT, K}
Pr Pr

~ 1 K 1 K — —

p(Pr,K) = —max{K — Pr,0} = — — —min{Pr, K} = — — e X77A() iy {e“(T)+XT, K} .
Pr Pr Pr Pr

As a result, we need to evaluate option on the inverse capped payoff under the inverse measure
U(r, X) = E [ e~ X070 iy {eﬁ(THXT, KH ]—‘t} . (83)

Proposition 6.2. The valuation formula (179) for the inverse capped payoff then becomes

X)= - —y1/2XT___— plml(r vy =iy +1/2,0 = =0,p=—1)d
O x) =~ [ e P = iy £ 1/2,9 0,0 = 0.p = —T)dy, (81
where X* = In(Sy/K) + f(T) is log-moneyness, EM and E? are given in Eq (61) and Eq (69),
respectively.

Proof. See Appendix A.18. O

As a result, calls and puts are valued using capped payoff (83)
dr,P,K)=1-U(r,X), p(r,P,K)=Ke X1 _U(r, X). (85)

Hereby, we need to compute

71 ~ B B
f(T7X) =E |:]DT‘ ]:t:| =K [Q_XT_#(T)‘ ]:t] = G_H(T)S_X7 (86)

with the last equality following from Eq (76).
Given the term structure of futures prices fo(7T') in Eq (14), the put option on the future is

p(r,F,K) = - U(r, X), (87)

fo(T)

with log-moneyness X* = In(fo(7")/K). We emphasize that Eq (85) holds only if the MMA measure
Q and inverse measure Q are equivalent, which requires restriction ko > 8 by Theorem 4.1. In
addition, we assume that the inverse process R; = exp(—Xy), t € (0,71, is a proper Q martingale,
so that Eq (86) is valid by Theorem A.3. For this we need ko > 23 by Theorem 2.2 2).
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6.3 Options on Quadratic Variance
We consider a call options on QV with the payoff function
u(I) = % max{I(T) — TK, 0}, (88)
where K is the strike in terms of annualized variance.
Proposition 6.3. The value of the call option on the QV under the MMA measure Q is given by

Ur, X, Y, 1) = e "DE [u(Ir)| F]

e—'F(T) 1 +00 . (]
== 7T/0 R [u(q/)E (1,Y;@=0,%;0 = 0;p=1)| d¥, (89)

provided R[W] < 0, with EMN and E given in Eq (61) and Eq (69), respectively.
Proof. See A.19. O

Sepp (2008) derives transforms @ (W) for typical payoff on the QV including puts and calls on
the square root of the QV.

Assuming that the inverse measure Q is a martingale measure for generic spot and futures
underlying P; defined in Eq (77), the inverse option on the QV equals

U(T,X,Y,I):E[“(PIT)
T

ft} . (90)

where the expectation on the right-hand side is taken under Q. Similarly to Eq (6), values

U(r,X,Y,I) and U(r, X, Y, I) in (90) and (89), respectively, are related by:

U(r,X,Y,I) = PU(r, X,Y, I).

Proposition 6.4. The value of the call option on the QV under the inverse measure Q is
O x, vy = ]
(Ta s Ly ) - T ;

+00
/ R [a(m)eX*H(T>E[ml (rY;:®=1,0,0=0;p= 1)] aw,  (91)
0

provided R[] < 0, with E™ and 0(¥V) defined as in Eq (89).
Proof. See Appendix A.20. O

7 Model Implementation and Calibration to Options Data

7.1 Implementation and Computational Cost

For practical applications, either for model calibration or options valuation, we need to compute call
and put option prices on a grid, also called as option chain, of several maturities and strikes. For
brevity, we assume a homogeneous grid with M maturities and J strikes. For the implementation,
we apply the affine expansion given by either the first order in Eq (61) or the second order in Eq
(69) as the analytic solution to the MGF.

1) We fix the space grid with size P (typically, P ~ 500) of the transform variable ® for the
log-price log-price. We solve the system of ODEs numerically for either the first-order expansion
Eq (61) or for the second-order expansion Eq (69) in time grid up to the last maturity time. The
time grid includes all maturities in the chain with the size of intermediate grids adopted optimally
by an ODE solver. The computational cost of this step is

C = O (P x Npax) , (92)
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Table 1: Estimated model parameters of the beta SV model (9) calibrated to options data.

Param | VIX -3x Nasdaq | Bitcoin | Gold S&P500
do 0.9767 | 0.9114 0.8327 | 0.1505 | 0.227

0 0.5641 | 0.9390 1.0139 | 0.1994 | 0.2616
K1 4.9067 | 4.9544 4.8609 | 2.2062 | 4.9325
Ka 8.6985 | 5.2762 4.7940 | 11.063 | 18.855
I6; 2.3425 | 1.3215 0.1988 | 0.1547 | -1.8123
é 1.0163 | 0.9964 2.3694 | 2.8011 | 0.9832

where Npax is the number of time steps for ODE solver (typically we have one step per one-two
weeks) and O is the number of arithmetic (or elementary) operations.

2) For each maturity we compute the MGF on the grid of ®. We then compute values of capped
payoffs for the MMA measure in Eq (80) or for the inverse measure in Eq (84) using Simpson rule
for numerical integration. We then value all options in a given chain. The computational cost of
this step is

C? =0 xMxP), (93)

The main difference with an implementation of affine models is the first step for computing
the MGF, which in affine models could be computed with cost close to O (P x M) because the
solution to the MGF is available analytically. The cost ratio between the implementation of the
log-normal SV model and an affine SV model compares favorably when the number of maturities
becomes large with M close to Nyax, and when the number of strikes J becomes larger.

7.2 Model Calibration

By model calibration we estimate six model parameters from market implied volatilities: og, 0, k1, k2, 5, €.
Parameter values are bounded to the following domains o¢,0 € [0.01,2.0], k1 € [0.5,10.0], 8 €
[—3.0,3.0], € € [0.1,5.0]. For stability, we implement the following constraints.

1) We set ko = Kk1/6 to reduce the number of calibrated parameters. In our extensive tests, we
found that keeping ko as a free parameter does not significantly improve the quality of model fit
to market data. This specification result in pure quadratic drift of the volatility Eq (17).

2a) We set the constraint ko > [ so that by Theorem 2.2 the dynamics under the MMA measure
are martingale.

2b) For cryptocurrency options, instead of 2a) we use stronger constraint ko > 23 so that by
Theorem 2.2 the dynamics under the inverse measure are martingale.

We use scipy implementation of Sequential Least Squares Programming (SLSQP) algorithm to
minimized squared differences between model implied volatilities and market implied volatilities,
constrained, which are weighted by corresponding Black-Scholes vegas.

We illustrate the model calibration to the assets with the positive implied volatility skews
shown in Figure 1, and we add the S&P 500 index with the significant negative return-volatility
correlation for the comparison?. For all assets, we use implied option skews for most liquid options
with maturity of 2 weeks, 1 month, 2 and 6 months. We use the four most liquid market slices and
the range of strike that includes puts and calls with deltas in the range (—0.05, —0.5) and [0.5, 0.05),
respectively. For options on the VIX and ETFs, we use the market data from 15-July-2022. For
Bitcoin, we use the market data observed on Deribit option exchange on 21-Oct-2021.

In Table 1 we display the calibrated model parameters of the dynamics (9). In Figure 11, we
show the quality of model fit for Bitcoin options. The quality of model fit is similar for other
assets. We see that the calibrated model for Bitcoin options is able to capture the market implied
skew very well across most liquid maturities with only 5 parameters. The average mean squared

4The data and implementation of model calibration to assets in Table 1 is provided in paper’s Github project
https://github.com/ArturSepp/StochVolModels
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Figure 11: Quality of model fit to Bitcoin options on 21-Oct-2021 reported in Table 1 using the four
most liquid slices: 2 weeks (Subplot A), 1 month (B), 2 months (C), and 3 months (D). Continuous
black line is model implied volatilities computed using the second-order affine expansion in Eq
(81) and (85). Bid and ask displays the market bid and ask quotes, the ATM is the at-the-money
mid-point volatility. Model implied volatility is displayed using the continuous black line. MSE is
the mean squared error between the model and the mid of market bid-ask volatilities.

error (MSE) is about 1% in implied volatilities, which is mostly within bid-ask spread. Calibration
to ATM region can be further improved using a term structure of the mean volatility 6. In a
practical setting, the SV model dynamics can be augmented with a local volatility (Lipton (2002))
to accurately fit the implied volatility surface.

We see that the estimated volatility g is positive for all assets with positive implied volatility
skews. For VIX options, the estimate of 3 is very large. Thus, as we discussed in Section 2.4,
the conventional SV models may not be arbitrage-free for the valuation of options on the VIX and
other assets with positive return-volatility correlation.

7.2.1 Comparison of valuation under MMA and Inverse measures for Bitcoin Options

Since Bitcoin options which are traded on the Deribit exchange have inverse payoffs, it is important
that there is no-arbitrage between the MMA and the inverse measures. In Figure (12), we compare
the model implied volatilities computed from prices of vanilla and inverse options valued under
the MMA and inverse measures, respectively, with the second-order affine expansion and model
parameters reported in Table 1. As benchmark, we use the MC simulation of the model dynamics
(9) using scheme in Eq (40) with the number of paths equal 400,000 and daily time steps. We
show the 95% confidence interval of MC estimates as dashed lines like to bid/ask lines.

We observe that option values computed using the second order affine expansion under the
MMA and inverse measures are very close to each other with the differences being within the
numerical accuracy of an ODE solver and Fourier inversion (of order le—4). The difference in
terms of implied volatilities does not exceed le—4.

In Figure 13, we show model prices of call options on the QV computed using the second-order
affine expansion under the MMA and inverse measures, and the comparison with MC estimates.
We also observe that the solution under the both measures are accurate with each other and agree
with MC simulations. Interestingly, we observe that the implied volatility skew of options on the
QV is upward sloping, which is observed in market data of options on the QV and of listed options
on the VIX, as we show in Figure 1. It is known that Heston model, even augmented when with
jumps, produces downward sloping skews on options on the QV (see for an example Drimus (2012)
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Figure 12: Implied volatilities of Bitcoin options, with model reported in Table 1, for the slices used
in model calibration for the uniform range of strikes using the valuation under the MMA measure
(MMA) and the inverse measure (Inverse). Continuous black line is model implied volatilities
computed using the second-order affine expansion in Eq (81) and (85). Dashed lines labeled by
MC —0.95¢i and MC +0.95¢i are MC 95% confidence intervals computed using scheme in Eq (40)
with number of path equal 400,000 and daily time steps. MSE is the mean squared error between
BSM volatilities inferred from model values and the MC estimates.

and Sepp (2012)). Thus, the log-normal SV model implies realistic patterns of implied volatility-
of-volatility.

8 Conclusion

We have considered the log-normal SV model with the quadratic drift which plays an important role
for the existence of martingale measures. We have applied this SV model for modeling of implied
volatility surfaces of assets with positive return-volatility correlation. We have derived admissible
bounds of model parameters for the existence of both the money market account measure and the
inverse measures.

Since the log-normal SV model is not affine, there is no analytical solution available for this
model. To circumvent this, we have developed an affine expansion approach under which the joint
moment generating function (MGF) of three state variables (log-price, the quadratic variance (QV),
and the volatility) is decomposed into a leading term, which is given by an exponential-affine form,
and a residual term, whose estimate depends on the higher order moments of the volatility process.
We have proved that the second-order leading term is consistent with the expected values and the
second moments of the state variables. We have applied Fourier inversion techniques for valuation
of vanilla and inverse options on spot and futures underlying. By comparison of model values
computed using our method with estimates obtained from Monte Carlo simulations, we have shown
that the second-order leading term is very accurate for option valuation. We have demonstrated
that our model fits implied volatilities of assets with positive return-volatility correlation.

We also show that Monte-Carlo simulation of the log-normal SV model with quadratic drift is
robust. We derive backward Euler-Maruyama scheme for discretization of the log-volatility process
and show that it has a strong convergence rate of 1.

As an extension of the framework we shall consider the applications to the rough SV models
proposed by Gatheral et al (2018) using log-normal volatility. We shall also apply the developed
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Figure 13: Implied volatilities of call options on Quadratic Variance of Bitcoin, with model reported
in Table 1, for maturities of 1 month (Subplot A) and 3 months (B) using the valuation under the
MMA measure (MMA) and the inverse measure (Inverse). BSM volatilities are implied from model
prices using expected QV I = {0.88,1.00} computed using Eq (36). Continuous black line is model
implied volatilities computed using the second-order affine expansion in Eq (89) and (91). Dashed
lines labeled by MC' — 0.95¢i and MC + 0.95¢i are MC 95% confidence intervals computed using
scheme in Eq (40) with number of path equal 400,000 and daily time steps. MSE is the mean
squared error between BSM volatilities inferred from model values and the MC estimates.

solution for valuation of interest rate and credit derivatives®.

A Proofs

A.1 Proof of Theorem 2.2

1. Although the theorem can be proved by applying results in Lions and Musiela (2007) and
Carr and Willems (2019), we provide an alternative proof using Theorem A.2 because our same
arguments are applicable for other class of SV models discussed in Section 2.3. Theorem A.2 shows
that Z; is Q-martingale if and only if the process

doy = ((ko + K10¢)(0 — o) + Baf)dt + doy th(*)

has unique strong solution under Q Using Theorem 3.2, we immediately obtain that the uniqueness
holds iff ko > £5.
2. According to Lemma 4.2, the dynamics of {0y, R;} under Q is

doy = ((k1 + Ko0¢)(0 — o) + Bof) dt + Bath[N/t(O) + satth(l),
th = (—O't)Rt d/—W/t(O)

Using Theorem 2.4 (i), (ii) of Lions and Musiela (2007) we see that R; is a martingale if

limsup (8% + (k1 + r2€) (0 — €) + BE?) €' < o0,
£1+00

which holds if ko > 25. And R; is not a martingale if for some smooth, positive, increasing function
we have .. _
4 lim inf (86" + (i1 + K26) (0 =€) + %) 9(&) ™" >0, (95)

where f:oo ©0(€)71d¢ < 00, e > 0. Choosing p(£) = €2, we see that (95) holds if x < 28.
3. Case u > 1 follows immediately from Theorem 2.5, 2.6 of Lions and Musiela (2007), see also
Carr and Willems (2019). Let u < 0. We can rewrite as follows
;u};ﬂ - ;OE [RH . h=-u+l. (96)
For an example, Pan & Singleton (2008) find that the single factor default model following a log-normal process
captures most of the variation in the term structures of CDS spreads for sovereign credits.

EZ{ =ER;" =E [
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Here we assume that ko > 8 which ensures equivalence Q ~ Q. Hence EZ} is finite if E [R’H
is finite, which according to case (2.) holds if

ko —B>Bh+9VhE—h or ky—B=ph+9VhE—h, K> ka0 (97)
Result follows immediately by setting h = —u + 1 in conditions (97).
4. Using relationship (96), the result follows from case (iii).

A.2 Proof of Proposition 2.1

First, we need a generic boundary classification for the CIR process.

Lemma A.1. Assume that variance process Vy follows CIR dynamics (15). Then boundary point
+00 s

1. attractive for k <0
2. not attractive for kK > 0
3. not attainable for all kK € R

Proof. Follows from Feller boundary classification criteria, see Karatzas and Shreve (1991), Karlin
and Taylor (1981) and Proposition 2.5 of Andersen and Piterbarg (2007). Note we are not restricting
mean reversion speed k to be positive here, i.e. kK can be negative. We omit technical details. [

Using proof of Lemma 4.2, we see that the dynamics of {V;, R;} under Q is
dV; = (k(0 — V) + poV;) dt + 9/ VidW,>,

_ (98)
dR, = Ry (=/V) aw".

1. By Theorem A.2, S; is Q-martingale iff the variance process under Q in SDE (98) does
not explode in finite time. Using Lemma A.1, we conclude that point +oc0 is unattainable for the
variance process in (98), hence it does not explode in finite time.

2. As seen in (98), V; is still a CIR process under Q, however, with different mean reversion
speed k and level kf/(k — pi#), respectively. Repeated application of Lemma A.1 concludes the
proof.

3. See Theorem 3.2 (vi), 3.3 (iv) in Lions and Musiela (2007).

4. Follows from the dynamics of {V;, R;} under Q in (98) and Theorem 3.2 (vi), 3.3 (iv) of
Lions and Musiela (2007).

A.3 Proof of Proposition 2.2
Applying 1t6’s lemma to 040 exp(Y;) in SDE (16), we have
doy = oy (0 + 9%/ (2k) — In o) dt + Bo, dW,” + eo,dW ), o0 = o, (99)

where 8 = pd, e = /1 — p?¥ and WO, WO are independent Wiener processes. Note that the
volatility has a non-linear mean reversion due to the presence of logarithmic term in the drift.

As the difference between model (16) and log-normal SV model with linear drift is in presence
of non-linear drift in o4, we proceed exactly as in the proof of Proposition 2.2. By Proposition 2.2,
the constraints on model parameters that ensure martingale property of Z; or finiteness of moments
in exp-OU model are identical to the one in SV model with linear drift.

33



A.4 Proof of Theorem 3.1

We consider the interval (I,7) and define the scale function and its density, denoted by S(z) and
s(x), respectively, as follows (see, for example, Chapter IV.15 in Borodin (2017))

s(:c):exp{— / ' i‘(‘ggda} S(z) = / " () dy, (100)

where x € (I,7) and c¢ is an arbitrary but fixed interior point of (I,7). We also define the speed
function and its density, denoted by M (z) and m(x), respectively, as follows

ot ) 0= [ 0
m(x) = exp do lr) m( 101
@ = e ooy (101)
Choosing ¢ such that the integral f ( zdo vanishes and setting 1 = 2% —120  we have
2,%10 1 2/{2 2 2 2,%1(9 1 2/-%2
S(x)::n"exp{ 52 x+192x}’ m(x) 527 - exp{— 2 . 2% } (102)
Using
2k10 1
/ s( dy</ y"exp{ 19; y}dy, x| 0+,
5 (103)
:/ dy>/ Y exp{;;y}dy, z T +o0,
we find that S(04) = lim S(x) = —o0, S(+00) = lim S(z) = +o0. (104)

z]0+ 00

Consequently, boundaries [ = 0, r = 400 are not attractive.
We define E(l) Y (r) and show that the boundary r = +o00 is unattainable

// y)dzdy, (r) // y)dzdy (105)

I<z<y<zx r<y<z<r

E(T):/ </ s(z)dz> dy—/ (/ m(z dz> y)dy =
e \Jy
" v 2 26001 25 2k101 2k
_ 2 2 101 2 1 2k2
/ ( 7" eXp{ R }d"’)y eXp{ 7yt 192‘”}‘@

We note that the right hand side of (106) is finite if and only if

S(r) = /r (/:z—"—%xp{ 2;2 }dz> y”exp{%:;y} dy (107)

is finite. We split inner integral into two integrals, over [z, +00) and [y, +00)

y 9 400 +o00
/ Z—n—2exp{ ;2 }dz—/ ...dz_/ ceedz =11 — Iy (108)
x z Y

we see that [; if finite for all k1, ko > 0. Then, using asymptotic expansion of incomplete gamma
function (see formula 6.5.32 in Abramowitz and Stegun (1972)), we have for y — 400

oo 2% 22\ 2% 1
_ —n—2 2 . 2 —n—2 2
I, = /y 27" exp{ 5 }dz <192> y " exp {—Wy} (1 +0 <y>> . (109)

Substituting asymptotic expansion (109) into (108) and (107), we have

a " 2K 26\ L [T "
X(r) = Il/ y" exp {19223/} dy — <Q922> / Yy 2dy+ O (/ y_gdy> , Yy — 4oo (110)

We conclude that i(—i—oo) +o00. Hence, boundary r = +oo is unattainable. Next, we show that
boundary [ = 0 is unattainable as well. By definition of (I

Z(l):/l$</lys(z)dz> dy—/ (/ m( dz)s y)dy =

z T2 —n—2 2%:191 2/4;2 2/401(91 2/@2
:/l <y @z n exp{ . 2 }dz)y”exp{ 52 + 52 y}dy
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We make an reciprocal transformation {z — 1/z,y — 1/y} in (111)

Vil oy 9 2610 2Ky 1 2610 2Ky 1
2() = = - 2 b dy |y == L dy. 112
(1) /l/a: </1/:c7922 exp{ 1922 52 z} z |y eXp{ 02 y+ 7 y} Y (112)

The right hand side of (112) is finite if and only if

~ 1/1 y
(1) = / / 2" exp {— 21{;92} dz |y~ 2 exp { 2}{;93/} dy (113)
1/x 1/x Y v

is finite. Splitting inner integral into two integrals, over [1/z, +00) and [y, +00), respectively

Y 2 +oo +o00
/ z”exp{ g;ez}dz:/ ---dz/ coedz=1 — Iy (114)
1/z 1/x y

we see that [ if finite for all k1,k2 > 0. As before, using asymptotic expansion of incomplete
gamma function (see formula 6.5.32 in Abramowitz and Stegun (1972)), we have

400 2510 ,192 n+1l 400
I e n — d e n —Ud e
2 /y zZ'exp { 192 Z} z (21%19) /wy u'e U

, 92 (115)
s 2&16 1
= n — 1 - .
(sa) et} (10 (5)) v

Substituting expansion (115) into (114) and (113), we have for y — 400

N 1/1 %10 92 1/1 1/1
S(1 :1/ N2 ex { ! }d —< )/ 2dy + 0 / “dy | . 116
()=nh » Y Py V(W 50g e y “dy » y dy (116)

We conclude that (400) = +o0o. Hence, boundary [ = 0 is unattainable.

A.5 Proof of Theorem 3.2

We consider general SDE with monotonic coefficients. We will refer to following theorem that
guarantees the existence and uniqueness of its solutions.

Theorem A.1. Let ai(z) : [0,T] x R = R, b(z) : [0,T] x R — R be functions, continuous in z,
satisfying following conditions:
1. fOT SUD|g|<R (|a¢(x)] + [be(2)|?) dt < oo for any T >0, R >0,

2. for every x,y,z € R such that |z| < R,|y| < R, [2| < R following conditions hold:
(a) (monotonicity condition):
2(z — y)(ar(z) — arly)) + (be(z) — bi(y))* < Ke(R)(z — y)? (117)
(b) (growth condition): 2za(z) + (bt(2))? < K¢(1)(1 + 2)%.
where function Ki(R) : [0,T] x Ry — R4 satisfies f(f Ks(R)ds < oo for anyT >0, R > 0.
Then there exists unique solution of the SDE
Ty = 20 + /t as(zs)ds + /t bs(zs)dWs, t<T. (118)
Proof. We refer to Gyongy and Kryl(())v (1980). ’ O

We now show that SDE (17), where k1, k2,0, v satisfy (18), does indeed satisfy conditions 1-3
of Theorem A.1. We emphasize that positivity of the process demonstrated in Theorem 3.1 is
extremely important. As in our case a(z) = (k1 + k2x)(0 — ), bi(z) = Jz, we get

2(z — y)(ar(x) — ar(y)) + (be(x) — be(y))* =
= (07 = 201 — #2h)) (2 — )* — 2n2(2 + y) (2 — 1)* < (07 — 21 — #20) + 22 R) (& — y)?
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when |z| < R,|y| < R. As for any R > 0 we have fg [0 — 2(k1 — K2b) + 22 R] ds < oo, we
conclude that monotonicity condition 2a is satisfied. As to the growth condition, we have

2zay(2) + by(2)? = 2z [(k1 + K22)(0 — 2)] + V2% = 2k102 + [0% — 2(k1 — K20)] 2% — 2k92°  (119)

Using that zero is unattainable boundary and simple inequalities z < 1 + 22, 23 < 0 valid for
z > 0, we can estimate the right hand side of (119) as follows

2/{19(732 +1)+ [192 —2(k1 — /{20)] 2% < 210 + [2/{19 +92 — 2(k1 — /@20)] 22

We conclude that the growth condition 2b is also satisfied. The final result follows from Theorem
Al

A.6 Proof of Proposition 3.1

To prove proposition 3.1, we need slightly weaker result.

Proposition A.1. We assume k10 > 0. Then, for every |p| > 1: sup Eo! < oo for any T > 0.
te[0,7)

Proof. We consider cases p > 1, p < —1: When p > 1, applying Itd’s lemma to o} we have

192

Eol <ol +t sup |:p0'p1(f£1 + koo)(0 — o) + ?p(p — 1)0’p] . (120)
0€(0,+00)

We consider function F(c) = poP~ (k1 + koo )(0 — o) + %zp(p— 1)oP. First, we assume o € [1, +00).

We observe that its derivative:
2

it
F'(0) = p(p — 1)m100? 2 + p? </€29 —m+ - 1)) o?~! — p(p+ 1)kgo”

is continuous and satisfies F'(c) = —p(p + 1)k20P(1 + 0(1)) as 0 — +o0. Hence F'(c) < 0 for
sufficiently large o, therefore F'(0) < K; for all o € [1,+00), where K; = K1(p).

For 0 € (0,1), as p > 1, F(o) is bounded by some constant Ky = Kj(p). Choosing K =
max (K1, K2), we conclude that sup,e (g o) F(0) < K. Thus, Eoy < of + Kt in Eq (120).

We take p < —1 and denote ¢ = —p, ¢ > 1. Similarly to 1]5?5evious case, we consider

F(0) = po? Yk + roo)(0 — o) + ?p(p —1)o?

Let o € (0,1). Applying z = L, 2z € (1, +00), we have F(0) = Fy(z), where

o)
2

)
Fy = —qr1029 + ¢ (-K,QH +r - g+ 1)) 21+ qroo? !

F; is continuous and satisfies Fj = —q(q + 1)k1029(1 + o(1)) as z — +o0. Hence, as k10 > 0, we
see that F(0) < K for all o € (0,1), where K1 = K;(p).

When o € [1,+00), we observe that F'(¢) is bounded, therefore F'(0) < Ka, Ko = Ks(p). Thus,
SUD, ¢ (0,400) F(0) < K, K = max(K1, K2), which implies Eoy < o + Kt in Eq (120). O

Now similarly to the proof of Proposition A.1, we apply It6’s formula to o
2

t 9 t
o} =ob + / ob~t <(/€1 + kooy) (0 — ou) + —p(p — 1)05) dt —|—p19/ oPdW ),
0 0

2
We obtain
t ,192 t
E sup of <o +E sup / poP ™ (ko + k10,)(0 — 04) + —p(p — 1)of | dt + pIE | sup / oPdW | .
+€[0,7] tef0,77Jo 2 tef0,1]Jo

Using Burkholder-Davis-Gundy inequality and Proposition A.1, we establish

T 1/2 T
< CE < / ag’dt) <C ( / Eafp>
0 0
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A.7 Proof of Theorem 3.3

Proposition A.2. Le us introduce G(1) := l—p(l)A. Then, for every c € R, the equation G(l) =
has a unique solution in [ € R.

Proof. As G(1) is continuous, G’'(l) > 0 and lim G(l) = +oo, result immediately follows. O

l—+o0

The proof of the Theorem is based on estimate A.3, which can be found in Alfonsi (2013).

Proposition A.3. Let p > 1 and assume that

i

Then, there exists a constant K, > 0 such that (

2

W (L)L) + L (L)

5 dur +E UOT ,u’(Lu)Qdu] " < 0. (121)

« 1/
—nf) " KA.

Instead of (121), we prove slightly stronger estimate (122). The latter follows from the combi-
nation of Hoélder inequality and Proposition 3.1. We omit straightforward details:

2 p

9
,u’(Lu),u(Lu)—F?u”(Lu) +E sup |p/(Lu)|" < 0. (122)
u€[0,T]

E sup
u€[0,T]

A.8 Proof to Proposition 3.3

We first present Eq (31) as follows
dm\" = (=nkY" — nroY ) dt + c(n) (Y + 20V + 02Y"2) dt + 9 (YV; + 0) Y Ldw)
= [e(n)0?Y™ 2 + 2¢(n)0Y "' + (c(n) — nk)Y" — nkoY," T dt + 9 (Y; + 6) mY"_lth( ),

(n)

Thus, the expected moment 7, ~ solves recursive equation (omitting subscript t)

a,m™ = ¢(n)?m ™2 + 2¢(n)om™ Y + (c(n) — nk)m™ + (20c(n) — nky)m™ Y. (123)

Using the fact that m(°) = 1 and ¢(1) = 0 we can present Eq (123) for n = 0,1, ... as a matrix
equation for infinite-dimensional column vector in Eq (32). Clearly, that under regularity conditions
(real part of eigenvectors of A0 negative), we must have limy_,, 9,m*) = 0. Thus, to make a
finite-dimensional approximation of Eq (32), we fix k* and assume

Oym* ) = 0 = Mt = Yy (124)

Thus, by substituting fixed values for m(®) and m**+1) we present (32) for finite-dimensional
vector of m-th moments, m = 1, ..., k*, in Eq (33). Solutlon in Eq (34) is obtained by integration.

A.9 Proof of Lemma 4.1

First we need the following auxiliary results for general SV model dynamics in (41) under MMA
measure Q.

Theorem A.2. Assume that the volatility process in (41) has a unique strong solution under Q.
Then Z; is Q-martingale if and only if Qexp(at, +00) = 0, where Qexp(at, 7) =0 s the probability
of explosion before T, starting at oy, T = T — t, in the wvolatility process o, under Q: doy =

(u(or) + Bo(oy))dt + Yv(oy) th(*), where Wt(*) is a Brownian motion under Q.
Proof. We refer to Theorem 9.2 in Lewis (2000) and to Sin (1998). O

Borrowing the notations introduced later in Section 6, we state the theorem that gives the
formula for vanilla option prices when price process Z; is not a proper martingale.
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Theorem A.3. We consider the zero-drift price process Z; and the volatility process oy in Eq (41)
under the MMA measure Q. We assume that oy in (41) has unique strong solution under Q. Then
the model values of vanilla call and put options and the forward on underlying Sy are given by

C(1,8,K) = e T DE [max{Sy — K,0}| S; = S] + SeHDT"DQ,,, (01, 7),
P(r,8,K) = e " E [max{K — S7,0}|S; = 5], (125)
F(1,8,K) = e TME[Sy — K|S, = ] 4+ S D TIDQq,, (0, 7).

Theorem A.4. We consider the inverse price process Ry and the volatility process oy under the

inverse measure Q. We assume that oy has unique strong solution under Q. Then the model values
of inverse call and put options and the forward on underlying S; are given by

C(r,8,K) =E [S;' max{Sr — K,0}| Sy = 5],
P(r,8,K) =E [S;' max{K — Sr,0}| S; = S] + K Sy "D "DQey, (04, 7), (126)
F(r,8,K) =E[S;'(S7 — K)| Sy = S] =1 — KSy e D DQgy,(a¢, 7).

Proof of Theorems A.3, A.J. We refer to Theorem 9.3 in Lewis (2000).

Finally, the proof of Lemma 4.1 follows from (125), (126).

A.10 Proof of Theorem 5.1

First, we provide a version of Feynman-Kac formula in general multidimensional setting, building
on results in Heath and Schweizer (2000). Let 7' > 0 be a fixed time horizon and D be a domain
in RY. We consider Cauchy problem

ou
— + LU =0 t =(0,7)x D
5 , (62) €Q,Q@=(0,T)x D, (127)
U(Ta iL‘) = gb(w)a reD,
where b; : D — R, a; : D — R%*? are continuous functions and operator £ is defined by
d d
U 1 , 0*U
LU =Y bi(x)——(t = ik t,z). 128
; t(x)axl( 7x)+2ik:1a’t (m)axzaxk( ,ZL') ( )

We assume that matrix (a;”) is non-negative definite for every ¢. Under certain restrictions on
the coefficients of operator £ and growth conditions on ¢, it is possible to represent the solution of
(127) by means of conditional expectation known as a Feynman-Kac formula. However, standard
results require uniform ellipticity of the operator £, see Friedman (1975), which does is not satisfied
in our case, as we see later. Consequently, the problem (127) becomes degenerate parabolic one.
We consider the multi-dimensional SDE

dXs = bs(Xs)ds + 05(Xs)dWs, Xi=xz€ D, (129)
where W = (W™, ... W@)T is d-dimensional Brownian motion and oy(z) = (0 (z)) denotes
square root of matrix a;(z): al¥(z) = (Ut(w)at(x)T)zk. We assume that SDE (129) admits unique
strong solution and define U* : [0,T] x D — [0, 4+o00] by U*(7,z) = E[¢(X7)| X+ = x] which is well-
defined in [0, +00] if X does not explode or leave domain D before T'. We give sufficient conditions
to ensure that U* solves the problem (127).

Theorem A.5. Suppose that following conditions hold

1. Solution X of (129) neither explodes nor leaves D before T

P( sup |Xs’ < OO) :I[D(XS S D, Vs € [t,T]) =1.
t<s<T
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2. ¢(z) is bounded in D.
Let U € C(Q)NC%(Q) be the solution of problem (127). Then U(t,z) = U*(t,x) for any (t,z) € Q.

o
Proof. Consider sequence of bounded domains {D,,}°° ; contained in D such that |J D, = D and
n=1

D, C{x c¢R%: ||z| < n}. We fix z € D and find n such that = € D,,. Let n = inf{s > t: X, & D},
N = inf{s > t: X5 € D, } denote exits time from domains D and D,,. By Itd’s formula:

AT AT )
(AT, Xy p7) = ulz) + / B[S] _ £U(s,XS)} ds + / gg o1y (X,) dWD)
t t [

As domain D,, is bounded and U € C?(Q), we have

AT oU .

E* [ / 501 (Xs) dWS(J)] =0 = u(@) =E" [u(n, AT, Xy, a1)] (130)
t 7

We will show that P4 (1, < T] < 1 (1 + ||z)|*)n 2 (131)

Using Markov inequality and estimate from Karatzas and Shreve (1991), p. 306, we have

P4 [1, < T] < P4

sup || Xs|| >n < EY | sup \XS|2 n=2
se[t,T] se[t,T]

]Et,:l:

sup |Xsr2] <e(+el?).
s€[t,T)

Inequality (131) then follows immediately. Thus, lim, 4 u(nn A T, X A7) = g(X7) as. It
implies that u(¢,z) is bounded by the maximum principle. Finally, by the dominated convergence

theorem: .
nETOOE [u<77n AT, Xnn/\T)] =K [g(XT>] . (132)
Combining (130) and (132) concluded the proof. O

Now using the diffusive operators in the valuation PDE (53), we obtain that matrix a in Eq

(128) equals Vi+0)2 BYi+0?2 0
a= [ BY;+6)? (Y +60)?2 0 (133)
0 0 0
We can find that its eigenvalues equal

A =0, Aas = (1+q92¢ 1+ 452 —2192+194) (Y; + 6)2.

As B < 1, we observe that 0 = A1 < Ay < A3, hence matrix a is non-negative definite and its
smallest eigenvalue is always zero.

We now set the domain D of sate variables {X;,Y;, I;} in PDE (53) by D = R x (-0, +00) X
Ry. As we showed in Theorem (3.1), under the MMA measure (50) and the inverse measure
(51), the boundary points {0,400} are unattainable for the volatility process o, hence solution
{X4, Yy, It} neither explodes nor leaves D before T'. Thus, condition 1 of Theorem A.5 is satisfied.
As boundedness condition 2 is satisfied by construction, the statement of Theorem (5.1) follows
from Theorem A.5.

A.11 Proof of Theorem 5.2

As Zp is Q-martingale, the result immediately follows from Jensen’s inequality, as the function
g(y) := yI®=™" is is convex for |®g| € (0,1). Result for the inverse measure follows analogously.
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A.12 Proof of Theorem 5.3

We denote K; = e’* which satisfied SDE dK; = K, dI; = Ktaf dt and set p = —Vg. Feynman-Kac
formula allows to recast the solution U(7,0,K) = E (K?H Ki=K,o = U) as the solution of the
Cauchy problem oU

—8—+L(”K>U=o U0,0,K) = K, (134)
where operator £%5) is defined by £@5) = (k1 + ka0o)(0 — )880' 11920 >+ Ko? 8K We build
a supersolution U(r,0, K) to (134) using ansatz U = KPu(r,0), u(T J) = %7 Inserting U

into (134), we obtain

oU _ 1
2 LB = _yKP | —b+ k10a + (ko — K1)ao + <2192a2 +p— m2a> 02] ) (135)
-
We show there exists a > 0 such that
1
lim —b+ k16a + (k20 — Kk1)ao + <192a2 — Koa + p) 0?2 < 4o0. (136)
o400 2

We notice that inequality (136) holds if there exist a > 0 such that %19%2 — koa +p < 0. As latter
defines a parabola in a, we can always find required positive a, if kKo > ¥94/2p = 9/ —2Vpg.

A.13 Proof of Theorem 5.4

We set ¢ = —Pp and consider
Ur,Yiep) = {EZi ;};2 _ Q T (137)
Using Feynman-Kac formula we can rewrite U(7,Y; ¢; p) as the solution of the Cauchy problem
—gU—f—E( U =0, U(@Y;cp)=e” (138)

where operator L£Y5P) is defined by (54). We ‘build a supersolution U(r,Y;c; p) to (138) using
ansatz U = Y07 a>¢, b >0. Inserting U into (138), we have

P = [b . (A@) — kMY — ,@gmy?) b— %02(1/ +0)2? (139)

where coefficients are defined in (54). We show there exists a > ¢ such that

i (@ _ oy oy2) Lo 2 2
YlTlinoob ()\ kPY 52Y>a 219(Y+9)a < 00.

We notice that last inequality is satisfied if there exist a > ¢ > 0 such that — (p Ja + 1192(12 < 0.

Dividing by a > 0 we conclude that it is satisfied if /i(2p ) > ’9—220. Rewriting the last condition in

terms of ko, B using (54), we arrive at (57).

A.14 Proof of Proposition 5.3

The formal solution for the remainder term R!? solving Problem (71) is obtained by applying the
Feynman-Kac formula and is given by

RA(r, X, 1,Y;®,0) / / / / FW —t, YNEA (7 —t, X', I'Y'; ®,0)
x P(t, X, 1,Y; X', I' Y'\dtdX'dI'dY",

(140)

where P(t,X,1,Y; X' I')Y') is the joint PDF of X' = X(¢t), I' = I(t) and Y’ = Y(t) con-
ditional on X, I, and Y. The joint PDF P solves the PDE (53), subject to initial condition
PO, X, LY; X' I''Y)=6X"—X)o(I' - 1)6(Y' =Y.
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Using Eq (140), we obtain the follovvlng estimate

Rm(TY@\IJ // // —t,X’,I’,Y’;(I),\II)‘

X ‘F[Q] Y AV A® A®) AP X 1Y X T, Y)

// / / ’F[Z Y)P(t, X, 1,Y; X', I',Y")

:// ‘F[z(T—t,Y’)P(t,-,~,Y;-,-,Y’) dtdy’.
0 —00

In the above, we used the bound on the MGF ‘EM(T —t, X, I''Y"; ®, \Il)’ < 1 and we integrated
out the log-return X and the QV 1.

Next we substitute the polynomial function F[? in Eq (72). We use the continuity of functions
AWk =1,2,3,4, and apply the first mean value theorem for definite integrals to estimate the time
integral. Finally, we approximate the expected value of the powers of the mean-adjusted volatility

dtdX'dr'dy’
(141)

dtdX'dIr'dy’

by its steady-state n-th order central moments M(Sn) specified in Eq (66).

A.15 Proofs of Consistency of Moment for second-order Affine Expansion

We first state a lemma relating central moments of the random variable to derivatives of MGF.

Lemma A.2. The MGF defined by the following equation

G(®) = E[e~*7] (142)
where Z is a random variable with finite MGF has the following properties
G0) =1
9G(P) |p—o = Ga(0) = —E[Z], (143)

03G(®) lo—o = Goa(0) = E[Z?).
Corollary A.1. Given that MGF assumes an exponential-affine form
G(®) = e/ (), (144)

with f(0) =0, we have
fe(0) = —E[Z] , fes(0) = Var[Z]. (145)

A.15.1 Proof of Proposition 5.4

We set ® = ¥ = 0 in second-order expansion in 5.4 and suppress arguments X, I, ®, U, p for brevity.
We note that it is sufficient to prove that second-order leading term E?! (1,Y;©) is consistent with
expected value and variance.

To prove consistency for the expected value, we consider RI?(7,Y;0) in (71). Differentiating

it with respect to parameter ©, we see that remainder term R[@z] solves following problem

“RE 4 L0RE Zyk[ (1 0)E2 + oW (r;0) B (146)

with R[@Q] (0,Y;0) = 0 and where C*)(7;©) are given in (72). It We note that A®)(7; ©) vanish at
0 =0,Ii.e.

A(k)(T;G)‘ =0 (147)
Calculating Cék) (T3 @)’e and taking into account conditions (147) at © = 0, we find that
—dky AY (1,0 . k=5,
¥ (r; @)‘ = e r )‘ezo (148)
©=0 0, k>6
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Now, due to condition

c®(r;0)] =0 (149)

we can simplify problem (146) at © = 0 as follows
~RE 4+ LR = 4r,45)Y5, RE(0,v;0) =0, (150)
As seen, Rg} (1,Y; @)‘@ = 0 when rp = 0. Hence, second order decomposition EP(7,Y;©)

is consistent with expected value of Y; for ko = 0.
To prove the consistency for variance, we first differentiate (70) with respect to parameter ©

and see that Ag) (1,0) solve the system of ODEs (151) at © = 0 as a function of 7
AY =0202A8) + A(p)AY),
AY) = — kAG) +2(00% + A(p)AS) + 30%92A5),
AG) = — 1 AG) + (97 — 20)AD) + 600245 + 3A(p)AS) + 6048, (151)
AG) = —2mpAY) 4 3(0° — k) AY) +1200%A5) + 4\(p) A,
AY) =~ 3raAY) +2(30% - 25)AY),

with boundary condition: (k) -1, k=1,
awe)| =
©=0 0, k#1.

We can verify that last two functions in solution of (151) are zero
AC(7;0) = AW(r;0) = 0. (152)
Now, taking the second derivative wrt parameter © in (71), we obtain for Rg]@

8
- R+ £RE, =3 (vt [him ot 20 0B L Vo]
k=5

RE,(0,Y:0) = 0.

Taking second derivative of C'¥)(7; @) in (72) with respect to parameter ©, and taking into
account boundary conditions (147) and (152) at © = 0, we find that

—4Ko Ag)(T;@)‘G , k=5,

c®) T;0 ’ = =0 154

SR k> 6. 15y
We note that following straightforward relationships are valid
EPro)| =1, Ef(me)| =-v. 1

mo),_ =1 Ewe)| (155)

Combining (154), (148), (149) and (155), we are able to simplify the problem (150) at © = 0
~Ru,, + LOREL = 4k (Y2 A5, — 2v°48)), REG(0.Y:0) = 0. (156)
As a result, when ko = 0, Rg}@ (1,Y; @)‘67 = 0, hence EZ (1;©) is consistent with variance of Y;.

A.15.2 Proof of Proposition 5.5

Similarly to the proof of Theorem 5.4 we set © = ¥ = 0 in second-order expansion and omit
remainig arguments for brevity. We note that it is sufficient to prove that second-order leading
term E[2 (1, X;®) is consistent with expected value and variance. To prove consistency for the
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expected value, we consider the remainder term R (7, X; ®) in (71). Differentiating it with respect

2]

solves following problem

to parameter @, we see that Rg

— Rg]T + LR (I) -

N (157)
=S v [cg” (r;®)EE + W (7, @)qu . RE0,x;9) =0,
k=5
where C®) (7; ®) are given by (72). It is important to note that A®*)(r; ®) vanish at ® = 0:
A® (7, @)‘ ~0. (158)

Differentiating C*) (; ®) with respect to parameter ® and taking into account conditions (158)
at ® =0, we find that

4k AW TP ‘ , k=25,
Oék)(T;(I)) = 2 Ag (T 9) =0 (159)
=0 0, k>6
Now, due to condition: k) (r; cp)’ =0, (160)
we can simplify problem (157) at ® = 0 as follows N
—RY + LR = 4rk,AQ0Y, REN (0, X;0) = 0. (161)
As seen, Rg} (1, X;®) ‘q)_ = 0 when k9 = 0. Hence, the second-order expansion term EZ(7, X; @)

=0
is consistent with the expected value of X for ko = 0.
To prove the consistency for variance, we first differentiate (70) with respect to parameter ®

and see that Ag)(r, ®) solve the system of ODEs (162) at ® = 0 as a function of 7
AY) =292A5) + A(p)AY) + %02,
A = — wAD 120007 + M) AT + 3620247 + 9,
AY) = — oAy + (02— 26) AT + 600% A5 + 3A(p)AY) + 6045 + % (162)
AP = 2k AQ) 1+ 3(0% — k)AL + 1200245 + ax(p) AL,
AY) =~ 3raAY) +2(30 — 2w) AY,

with boundary condition:

AP (ria)| = {;l ; ) ; (163)
We can verify that last two functions in solution of (162) are zero
A®(r;0) = AV (r; @) = 0. (164)
Now, taking the second derivative in (71) wrt ®, we obtain for Rg]i,
8
— R, +LMRE, - 8(1)2 kz (7: @) ERY*
(165)

_ i{yk [ @) B2 200 (7 @) B + 0W (r 0) B, |

RZ,(0,Y;9) = 0.
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Taking the second derivative of C*)(7;®) in (72) wrt®, and taking into account boundary
conditions (158) and (164) at ® = 0, we find that

—4Kg A((;‘)(T; CD)’(I) k=5,

C(k) (r;® ’ _ =0’ (166
DD ) B0 0. k> 6 )
We note that following straightforward relationships are valid:
E?(r; @ ‘ =1, E¥ro ’ =V 167
mo) =1 Efme)l (167)

Combining conditions (166), (159), (160) as well as (167), we are able to simplify the problem
(161) at ® = 0 as follows

~Righ . + LR, = 4y (Y2 A5y — 270400 REL(0,v:@) =0, (168)

Thus, when ko = 0, Rg]l,(ﬂ Y; @)’q) =0, ie EM (1,Y; ®) is consistent with variance of Xj.

A.16 Proof of Theorem 5.7

Consider following system of d nonlinear ODEs

Or Ai(m;T) = A(; D) T MA(T; D) + L A(sT) + H;,  A;(0,u) = Ay, (169)
for i = 1,...,d. We assume that I' € C3 and each matrix M; is symmetric real-valued, whereas
vectors L; and H; are allowed to be complex-valued. Hence solutions A;(7;T"), i = 1,...,d are

complex-valued functions.

It is well-known that complex-valued solution A(7;I") is defined on maximal interval of existence
[0,74+(T; A)) such that either 7, (I'; A) = 400 or 7 (I'; A) < +oo and [|A(T;T)|| — +o0 as 7 71
T+ (F, A)

We will combine d non-linear ODEs in (169) into single (non-linear) vector ODE

0-A(T;T) = M(A(m;T)) + LA(m;T) + H, A(0,u) = Ay, (170)
where M : R? — R? is a vector-valued function of argument A € R?. For convenience, we denote
the right-hand side of (170) as follows

R(A):=M(A)+ LA+ H. (171)

Lemma A.3. There exists function g which is finite and non-negative such that for all z € C?
R(z, R()) < g(R(=)) (L+ 12]2) (172)
Proof. Obtained following Keller-Ressel and Mayerhofer (2015). O

Lemma A.4. There exist function g which is finite and non-negative such that
IA(T D)I* < [l Aol* + \AOIIQ/Oth(S)efosh(T)drdsv h(s) = g(R(A(7:;T)) (173)

Proof. The proof is essentially contained in Keller-Ressel and Mayerhofer (2015) and based on the
application of Gronwall’s inequality. O
Lemma A.5. Assume that following conditions are satisfied:

1. Hy = Hi(u) = (0,...,0)" € R? when I is a real vector;

2. Ly = Li(u) is zero d x d matriz when T' is a real vector;

3. zero initial condition A(0,T) = (0,...,0)" € RY,
Then solution A(t;T) of the system (170) remain real for real T € RY.

Proof. The proof is available upon request. ]
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We now consider the problem of continuity of solutions of quadratic differential systems arising
in option valuation problem. It is important to highlight that linear L(p) and free terms H(p)
satisfy assumptions of the Lemma (A.5) when we set p = 1 and restrict R® = —%, ® =T =0 for
pricing vanilla options under MMA measure. Same for the inverse options when we set p = —1 and
restrict RO = %, ® = ¥ = (. We omit straightforward calculations.

Now, slightly abusing the notations, we use 74 (®; A) and 74 (R®; Ar) to denote blow-up times
7+(I'; A) and 74 (RT; Ag) when I' = (&, ¥ = 0,0 = 0) and RI' = (RP, ¥ = 0,0 = 0), respectively.
Proof to Theorem 5.7. We assume first that ® € R. We denote

D(r):={PeR:7 <7 (P;4)}, M(1):={PecR:G(1;X,[,Y;P) < c0}.
We will argue by contradiction. Assume that solution A(7;®) blows up before 79, i.e.
([ A) <1 (174)
We set a* := sup{a > 0: o' € D(7)}. Then assumption (174) implies that o < 1. On the one
hand,

G(r; X, [,Y;a®, ¥ =0,0 =0) <G(r; X, [,Y;a®, ¥ =0,0 =0)* < o0 (175)
for all & < a* < 1 due to Jensen inequality. On the other hand

2n
Gr; X, 1,Y;a®, ¥ =0,0 =0) =exp {—a(I)X + ZAk(T;aq),\IJ =0,0 = O)Yk}
k=0
+RP (7, X, 1,Y;0®, 0 = 0,0 = 0)

Thus we obtain on
lim G(r; X,I,Y;a®,¥ = 0,0 = 0) = lim [exp {—th)X +) Ap(r;09,0 =0,0 = o)Yk}
ata* ata* =0

YR (7 X, 1,Y;a®,¥ = 0,0 = 0)} = t00
(176)

using assumptions 2 and 3. Comparing (175) and (176) we get a contradiction, so
(23 A4) > 79 (177

~—

Now, we let ® € C be complex. Due to assumption 5.7 and Lemma A.4, we have 74 (®; A) >
7+(®; AR) > 7(R®; A). Repeating the first part of the proof for R®, leads to (177), i.e. 74 (RP; A) >
79. Hence, solution A(7;®, ¥ = 0,0 = 0) must remain continuous on [0, 7). O
A.17 Proof of Proposition 6.1
Using the affine approximation, the density of X, is computed by the Fourier inversion
1 o
Gr,X,V:; X' p=1)=—-R [/ exp {®(X' — X)} BM(7,V; 0,9 =0; p=1) d(b]
n 0
EM(rY;®, U =0;p=1)=exp {Z AR (70, W = 0; p = 1)Yk} )
k=0
We have

o0

Ulr,X) = TR [ /

—0o0

min {eWHX’,K} {1/ X=X piml (- Y. § = 0; p= 1)d<1>} dX’]
0

T
Assuming that the inner integrals are finite we exchange the integration order to obtain

U(r,X) = Ly U (@) EM(rY; ® 0 =0; p = 1)d<1>] , (179)

™ 0
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where u(®) is the transformed payoff function

QD) = e X / 2X' min{ XI4R(T) K} dx’

e—@X eﬁ(T) 6(‘I>+1)k* B ek*'f‘ﬁ(T)leq)k* _ e_q>X _eﬁ(T)e(qD—‘rl)k* # (180)
d+1 o (e+1)®

_ 1 .1
Cge-dn(s/kymy L cexe 1
Ke @rne - ¢ @rne

where X* = In(S/K) + n(T) is the log-moneyness, k* = In K’ — fi(T) with the first integral being
finite for R[®] > —1 and the second integral being finite for R[®] < 0. The integral (180) is finite
for —1 < R[®] < 0. Setting ¢ = iy — 1/2, we derive (80)

6@ =iy~ 1/2) = —Ke AT (1/2+ iy)(l—l/Q +1iy) N Ke(iyl/Q)X*?ﬁ‘i‘ll/‘l (181)
A.18 Proof of Proposition 6.2
Similarly to Eq (180), we compute the transform u(®) of the inverse capped option
u(®) = e X /Oo e®X = X'—H(T) min{ X'Hu(T) K} ax’
. (182)

o0
’ / ! 77, * 1

_ 90X X' gyt OX'—X'—(T) 73! | — _ —®X

=e et dX ' + K e MEIdX" ] = —e ,
(/_oo . ) 3@ —1)
where X* = In(S/K) + u(T) is the log-moneyness and k* = In K — [i(7T"), with the first integral
being finite for R[®] > 0 and the second integral being finite for R[®] < 1. The integral (182) is
finite for 0 < R[P] < 1. We set & =iy + 1/2, then
; . 1
UD =iy +1/2) = e W+1/2)2" =
U =iy+1/2)=e A1/ (183)

A.19 Proof of proposition 6.3

Consider an option on quadratic variance Iy with terminal payoff w(Ir). Using Sepp (2008), we
find that option value is given by Eq (89), where 4(¥) is the transformed payoff function

+oo ,
a(v) = / w(I)e*T=Nar'. (184)
0
For a call option on QV with strike K, provided R[¥] < 0, Eq (184) becomes
+o00 , 400 , 4
W(0) = e V! /0 uw(INe¥'dl’ = eV /0 max{l' — TK,0}e!"dl’ = %e‘PTK . (185)

A.20 Proof of proposition 6.4

Using affine approximation, we can compute the joint density of {X,, I} using inverse Fourier
transform, leading to

1 Foo oo ) ,
Px (1, X,Y,[; X' I') = oLl U / X=X =D plml (- y & 0)dd d¥ |
7T —0oQ

2m

EM(rY;®,¥) = exp {Z AR (1, \II)Y’“} .

k=0

As a result, we obtain

e—T(T) +oo  p+oo
U(r,X,Y,I) U / Ty (1) %

1 '
X 42/ / PN =XHVI =D plnl(1 Y & U)dd dV | dX'd.
T J—co0 J—o0
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Exchanging the integration order, we have

Gr X.¥.1) = (M) 1 [t +oo ]
nX YD) = s / E (r,Y;®,0)a(®, V)| do dv, (186)
where 4(®, W) is the transformed payoff functlon
(D, W) = e~ PX-V /+oo /+OO —A(T) ()X Y g X qr =
(187)

+00
_ Xl —u(T)/ o( @ 1)X’dX// u(Ie ' dr’ = 2me= XD 50 (8 — 1)a(D),
o 0

where 4(V) = e~/ 0+°° w(Ie¥!'dI’, provided R[¥] < 0. Note that we integrated out the complex
exponential in (187) using results of Sepp (2007). Thus, (186) becomes
-(T) 1 +00

T 2

U(r,X,Y,1) =<

- [e—X—ﬁ(T) By =1, m)a(@)] v, (188)
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