
The Addepar API

Contents

API..3
Getting Started with the API..3
API Access and Authentication..3

API User Permissions...4
API Key and Secret..4
API Authentication Requirements..5

API Features... 7
API Pagination.. 7
API Rate Limiting.. 8
API URL and Versioning... 8
API Response Codes.. 9
API Security Attributes.. 10

API Endpoints...15
Portfolio API...15
Entities API...19
Groups API... 27
Files API... 37
Users API..50
Jobs API..56

 | API | 3

API

Addepar is an open platform that facilitates the secure exchange of data with other applications or products through a
standards-based API.

• Getting Started with the API
• API Access and Authentication
• API Features
• API Endpoints
• API and Power Query

The Addepar API is completely configurable and provides access to data via HTTPS using unique API endpoints.

You can tailor an integration with any application your firm is using, including:

• Re-balancers or other order management systems
• Billing applications
• Customer relationship management (CRM) applications
• General ledgers
• Data warehouses
• Microsoft Excel via Power Query

The Addepar API provides programmatic access to data in JSON format for:

• Portfolios associated with specific saved analysis views
• Entities, including both asset owners and owned investments
• Files and the portfolios, groups, and assets associated with each
• Groups of client portfolios and their associated entities
• Users, including user credentials and the data each user has permission to access

You can also use the Portfolio API to programmatically export transactions as well as analysis views. Each data set
is based on a single portfolio and a saved view in Analysis or Transactions. In addition to JSON, you can download
portfolios as CSV, TSV, or Excel files. For automated scripts, it's recommended that you use the Jobs API to
download the results any time within 24 hours of the initial request.

If you like, you can download the API developer documentation included in this online guide.

Getting Started with the API
Begin by confirming you have access to the API. To do this, click your email address at the top right, select Firm
Settings. If "API Access Key" is available on the left, then you can proceed with setting up API access.

If it's not available, you can request access from your firm adminstrator. If your firm as a whole doesn’t have access,
you need to sign the Addepar API Addendum.

If your Addepar contract began after August 2016, then the addendum was included in the contract.

If not, your firm must use the contact Support to request a license addendum to use the Addepar API. It can take up
to 5 business days for Addepar to process your addendum and grant API access. Once access is granted, you can find
your API Key and Secret and provide access to the appropriate team members.

API Access and Authentication
All connections to the Addepar API must be authenticated, both through proper credentials and permissions, and
through properly structured requests.

http://jsonapi.org/format/
http://jsonapi.org/

 | API | 4

To establish API access, you must:

• Assign the user appropriate API permissions
• Create an API key/secret combination for the API user
• Ensure that each API request:

• Includes the required headers and follows the correct format
• Includes the correct API URL and versioning
• Adheres to Addepar's rate limiting requirements

API User Permissions
To manage API integrations, your Addepar user credentials must be permissioned for API access.

Addepar API access permission includes all API-related features, including:

• Creating API keys
• Generating API access URLs that can be used to establish integrations with applications like Microsoft Power

Query
• Accessing all data permissioned to the API key holder

To grant API access:

1. Navigate to your Users & Permissions settings (click your email address at the top right, select Firm Settings, and
then click Users & Permissions on left).

2. From the list of firm users, choose the individual whose permissions you'd like to set.
3. Click the Tool Permissions tab.
4. Scroll down to API Access and select Full Permission.

To secure your API integrations, Addepar recommends:

• Only granting API access to users who are actively building or managing the integrations.
• Taking precautions to prevent changes to the analysis and transactions views that are used in to export portfolio

data via the API. Any changes to these views could break existing integrations.

• One method for securely managing API access is to create a dedicated API user profile in Addepar. As you are
developing your integrations, you can grant the dedicated profile API access permission, as well as permission
for the analysis and transactions tools and a small set of representative data to test the integrations. When a
user logs in with the API profile, he or she can create personal views for each desired integration and then
generate API URLS to establish the connections.

• Once the integrations have been established and tested with trial data, the API user profile should be used
only to monitor API usage. Limiting the use of the API profile protects the views used in integrations from
accidental changes by other users.

API Key and Secret
API access keys are authentication credentials for an API connection. Each Addepar API key is paired with a secret
shared only with its creator. Both the key and the secret are required to authenticate API requests.

Each API key and secret combination respects the tool and data permissions granted to the API key creator Addepar.
In other words, your API key grants access to:

• All data you have permission to access, including both client portfolios and groups
• All tool permissions assigned to you in Addepar, including the ability to view, create, update, and delete clients,

investments, groups, attributes, files, and Addepar user profiles

To protect your firm’s data, Addepar recommends taking the following precautions:

• Store each API key/secret combination in a secure location and do not share it with any other user: guard the
combination with the same care you would use for any sensitive password.

• Create a different key for each integration. Doing so will protect existing integrations if a key is lost, and will also
help to track who is managing each integration and how often.

 | API | 5

• Create a separate profile with the appropriate permissions any time you would like to share a key with a third party
(for example, to support an integration).

• Appoint a firm admin to monitor the API keys in use and to delete any obsolete keys

Tip: To review API key usage, select "Display all access keys" in the API Access Key settings, and then
review the “last used on” date for each API key.

To create an access key and secret pair:

1. Navigate to your API Access Key settings (click your email address at the top right, select Firm Settings, and then
click API Access Key on left).

2. Click the plus button in the rightmost corner of the table header.
3. Enter a description of the key that explains its purpose (typically the name of the integration it supports).
4. Click Submit.
5. Record the key and secret, and store the combination in a secure location.

Important: You won't be able to access the secret for this API key again once you have clicked the done
button. The API secret is only displayed when the API key is created, and is salted and hashed before it is
stored in the Addepar database.

6. Click Done.

Store each API key/secret combination in a secure location.

Important: API keys & secrets should never be shared in publicly accessible areas such GitHub, client-side
code, and so forth. Sharing as plain text in an email is also not recommended.

API Authentication Requirements
Addepar allows only authenticated requests to the API.

All API requests must be made over HTTPS. Requests made over HTTP or without authentication will fail.

The Addepar API uses HTTP Basic Auth to authenticate API requests. You need to pass your authentication credential
as a header in each API request. The authentication credential can be constructed by:

1. Combining your username (API Key) and password (API Secret) with a single colon (:).
2. Encoding the combined string using a variant of Base64.
3. Prepending “Basic” and a space to the result.

Note: cURL requests can include only the combined string of [Key:Secret]. cURL will automatically encode
it.

To identify your firm when making API requests, you need to include your firm ID as a header. You can find your
firm ID by generating an API URL in the application. To do so, open the Analysis Tool, click Export above the table,
and select “Generate API URL.” Your firm ID is listed as the value of “addepar_firm=” in the URL string.

You will need to replace “firmdomain” to match the URL your firm uses to log into the Addepar application. For
example, if your firm is Terra Bella Capital, your API URL may be https://terrabella.addepar.com/api/v1.

Required headers

GET and DELETE requests:

• Authorization: "Basic [Base64-encoded Key:Secret]"
• Addepar-Firm: "Firm ID"

POST and PATCH requests:

• Authorization: "Basic [Base64-encoded Key:Secret]"
• Addepar-Firm: "Firm ID"
• Content-Type: "application/vnd.api+json"

Sample Request Headers

http://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Base64

 | API | 6

The following examples show examples of the headers required to create, read, update, and delete various endpoints
of the Addepar API. You can make requests using cURL or an HTTPS client to test and validate headers.

GET request:

curl -u
 36bf3dd1-d714-469b-
a9a6-3eb172dd9f73:K5JdSTip9ZcXFrG3p3jKsukskjm2NDqs6kdfAyCI -H
 "Addepar-Firm:1111" https://firmdomain.addepar.com/api/v1/users

POST request:

PATCH request:

curl -u
 36bf3dd1-d714-469b-
a9a6-3eb172dd9f73:K5JdSTip9ZcXFrG3p3jKsukskjm2NDqs6kdfAyCI -H
 "Addepar-Firm:1111" "Content-Type:application/vnd.api+json"
 https://firmdomain.addepar.com/api/v1/entities/10101

DELETE request:

 | API | 7

API Features
The Addepar API includes features to ensure the flexibility, stability, and performance of your integrations.

• Pagination ensures that multiple objects can be exported in a single response for "Get All" routes.
• Rate limiting controls the number of requests to ensure a reliable quality of service.
• Versioning guarantees that any time Addepar makes changes to the API that are not backward-compatible, we will

release a new version and provide a backward-compatible patch.
• Standardized API response codes provide insight into the status of each request.

API Pagination
The Addepar API supports pagination for "Get All" routes so that multiple objects can be exported in a single
response.

Addepar strongly recommends pagination to ensure reliable and consistent API performance because it prevents the
result set size from increasing.

The Addepar API enforces the maximum page size of 500 results per response. If the complete results can't fit in a
single response, the set will be automatically truncated and the remaining values will be linked from "next" URL
appended to the end of the set.

Parameters

Parameter Description Type

page[limit] The number of results to be returned.
The maximum result set size is 500.

Integer

Links

Name Description Type

next The URL of the "next" page of
the result set. Null if there are no
additional pages.

String

 | API | 8

Example

Request
GET /v1/entities?page[limit]=100

Response
HTTP/1.1 200
{
 "data": [
 ...
],
 "links": {
 "next": "/v1/entities?page[limit]=100&page[after]=10001"
 }
}

API Rate Limiting
To ensure a reliable quality of service for all our clients, the Addepar API enforces rate limiting on API requests.

Rate limiting is implemented at the firm level and is counted over a 24 hour window for all authenticated calls.

Type Limit

Maximum number of requests in 15 minute window 50

Maximum number of requests in 24 hour window 1000

Maximum runtime per request 60 sec

If the API request breaches a limit, the request will be rejected with “429 Too many requests” response code. The
response will also contain “Retry-After” header to indicate how long an API client should wait (in seconds) before
making another request. If the API request takes longer than 10 seconds, the request will be cancelled with “400 Bad
Request”.

API URL and Versioning

Any time Addepar makes changes to the API that are not backward-compatible, we will release a new version. This
API version number must be included in the API URL.

For backward-compatible changes to the API, Addepar will provide a new patch version via the API.

Current API Version

The current version is v1.5

API URL

You can make a GET request using the API URL to check the current API version.

https://firmdomain.addepar.com/api/v1/api_version

Note: You will need to replace [firmdomain] to match the url your firm uses to log in to the Addepar
application. For example, if your firm is Terra Bella Capital, your API URL might be https://
terrabella.addepar.com/api/v1/api_version

Synchronous Request URL

GET /api/v1/api_version

 | API | 9

cURL sample request

curl https://firmdomain.addepar.com/api/v1/api_version
{
 "data": {
 {
 "id": "1.1",
 "type": "version",
 "attributes": {}
 }
}

API Response Codes
The Addepar API returns HTTP response codes to clarify the status of each API request.

Successful Request

A successful request to the Addepar API will result in one of the following status codes.

Status Code Title Request Type

200 OK Successful GET or PATCH request

201 Created Successful POST request

202 Accepted Successful POST request to jobs
route

204 No Content Successful DELETE request

Successful POST, PATCH, or
DELETE to a relationships sub-route

303 See Other Completed asynchronous job. Follow
the link in the "Location" header to
retrieve the results.

Unsuccessful Request

A failed request to the Addepar API will result in one of the following status codes. Please review the "detail" field in
the error response for additional information about a particular failed request.

Status Code Title Reason Troubleshooting

400 Bad Request Improperly formatted query
parameters or payload

Check the fields indicated
in the error response.

401 Unauthorized Failed authentication Check the API key, secret,
and "Addepar-Firm"
header.

403 Forbidden User lacks required
permission(s)

Check that the user has
Public API permission and
Tool Permissions required
for the particular URL.

404 Not Found Incorrect URL or ID Check that the ID is correct
and the user has permission
to access it.

405 Method Not Allowed Unsupported HTTP method Generally only GET,
POST, PATCH, and
DELETE are supported.

 | API | 10

Status Code Title Reason Troubleshooting

409 Conflict Action would result in an
invalid data state

Check that the "type" field
matches that of the URL.

410 Gone The resource was available
but has expired

Try making another request
to the Portfolio Job API.

415 Unsupported Media Type Invalid Content-Type
header

Attach "Content-Type"
header "application/vnd.api
+json".

429 Too Many Requests Request rate limit has been
exceeded

Check the "X-RateLimit-
Retry-After" header for the
number of seconds until the
next request can be made.

500 Internal Server Error An unexpected error
occurred

Please contact Support if
you see this.

API Security Attributes

The following security attributes apply to the Entities API, Groups API, and Positions API. These attributes can be
applied to all entity types, groups, and positions, unless otherwise noted.

Time-Varying Attributes

All time-varying attributes have three required fields: Date, Value, and Weight. Each field must be present, regardless
of whether the value of each of the fields is null or non-null.

When the value of the Date field is null, it means the Value and Weight fields apply at all points in time. When
multiple dates are included for an attribute, it means the values of Value and Weight apply as of that date.

The value of the Weight field must be a decimal. Non-decimals will cause an error. For example, use “1.0” instead of
“1”.

Some attributes can have multiple values on the same date. To represent this, the Weight field takes on a decimal
value or value less than one. For example, if a stock is listed in two sectors on the same date, and the stock is divided
between the two sectors 50/50, the value of each sector’s Weight is “0.5”.

The example below illustrates the different ways a time-varying attribute may appear. In this example, Asset Class,
Country, and Sector are used to illustrate:

"attributes": {
 "asset_class": [
 {
 "date": null,
 "value": "Equity”,
 "weight": 1.0
 }
],
 “country”: [
 {
 "date”: “2015-01-01”,
 “value”: “USA”,
 “weight”: 1.0
 },
 {
 "date”: “2018-01-01”,
 “value”: “CAD”,
 “weight”: 1.0
 }
],
 "sector: [

 | API | 11

 {
 "date”: “2018-01-01”,
 “value”: “Technology”,
 “weight”: 0.5
 },
 {
 "date”: “2018-01-01”,
 “value”: “Large Cap”,
 “weight”: 0.5
 }
]
}

Money Value Attributes

All money value attributes have two required fields: Value and Currency. Both fields must be present.

The example below illustrates how the money value Call Price attribute appears:

"attributes": {
 "call_price": {
 "value": "100”,
 "currency": “USD”
 }
}

Attribute Description

asset_class Asset Class. Time-Varying.

Example: "Fixed Income"

bond_frequency Frequency. String.

Allowed values:

• ONE_DAY
• ONE_WEEK
• ONE_MONTH
• THREE_MONTHS
• SIX_MONTHS
• ONE_YEAR

bond_type Bond Type. String.

Allowed values:

• CORPORATE_BOND
• CONVERTIBLE_BOND
• GOVERNMENT_BOND
• TREASURY_BILL
• TREASURY_NOTE
• MUNICIPAL_BOND
• TREASURY_BOND
• TIPS

call_price Call Price. Money Value.

Example: "1020, USD"

 | API | 12

callable_date Callable Date. Date.

Example: "2007-01-21"

conversion_minimum Automatic Conversion Minimum Amount. Money Value.

Example: "1200, USD"

Note: Not applicable to positions or groups.

country Country. Time-Varying.

Example: "Canada, 1.0"

coupon_rate Coupon Rate. Percent, represented as decimal. Time-
Varying.

Example: "0.0375"

currency_factor Currency. String.

Example: "USD"

cusip CUSIP. Time-Varying.

Example: "037833100"

dated_date Dated Date. Date.

Example: "2007-01-21"

day_count_convention Day Count Convention. String.

Allowed values:

• ACTUAL_360
• ACTUAL_ACTUAL
• ACTUAL_ACTUAL_ICMA
• ACTUAL_365_NO_LEAP_YEAR
• ACTUAL_365
• ACTUAL_365_ACTUAL
• THIRTY_360_ISDA
• THIRTY_360_ALTERNATIVE_EOM_CONVENTION
• THIRTY_360_MSRB
• THIRTY_360_SIA
• THIRTY_360_US_NASD
• THIRTY_360_US
• THIRTY_E_360
• THIRTY_E_360_ISDA
• THIRTY_E_PLUS_360

delivery_price Delivery Price. Money Value, Currency.

Example: "80.02, USD"

Note: Not applicable to positions or groups.

dividend_rate Dividend Rate. Percent, represented as decimal.

Example: "0.0375"

 | API | 13

expiration_date Expiration Date. Date.

Example: "2007-01-21"

first_payment_date First Payment Date. Date.

Example: "2007-01-21"

interest_rate Interest Rate. Percent, represented as decimal.

Example: "0.0375"

investment_type Investment Type. String.

Example: "Bond"

is_callable Callable. String.

Allowed values:

• CALLABLE
• NOT_CALLABLE

is_cumulative Cumulative. String.

Allowed values:

• CUMULATIVE
• NOT_CUMULATIVE

is_prerefunded Prerefunded. Boolean.

Allowed Values:

• TRUE
• FALSE

is_rolled_up Rollup. Boolean.

Allowed Values:

• TRUE
• FALSE

Note: Not applicable to clients, managed funds,
positions, or groups.

isin ISIN. Time-Varying.

Example: "US0378331005"

issue_date Issue Date. Date.

Example: "2007-01-21"

liquidation_return Liquidation Return. Number.

Example: "3.2"

maturity_date Maturity Date. Date.

Example: "2007-01-21"

 | API | 14

multiplier Multiplier. Number.

Example: "4"

no_lookthrough Disable Lookthrough. Boolean.

Allowed Values:

• TRUE
• FALSE

Note: Can only be applied to managed and private funds.
Not applicable to positions or groups.

node_strike_price Strike Price. Number.

Example: "4.26"

node_yield Current Yield. Percent, represented as decimal.

Example: "0.0375"

note_discount Note Discount. Percent, represented as decimal. Time-
Varying.

Example: "0.0375"

option_status Option Status. Time-Varying.

Allowed values:

• GENERIC
• ISO
• NSO

Note:

option_type Option Type. String.

Allowed values:

• CALL
• PUT

original_principal_per_share Original Principal Per Unit. Number.

Example: "113.82"

projected_annual_income Projected Annual Income (Per Unit). Number.

Example: "3210"

sector Sector. Time-Varying.

Example: "Technology"

sedol SEDOL. Time-Varying.

Example: "2046251"

 | API | 15

settlement_type Settlement Type. String.

Allowed values:

• CASH
• PHYSICAL

ticker_symbol Ticker Symbol. Time-Varying.

Example: "AAPL"

valuation_cap Valuation Cap. Money Value. Time-Varying.

Example: "1000, USD"

API Endpoints
Once you've established API access, you can access Addepar data via API endpoints.

API Endpoints include:

• Portfolios
• Entities
• Groups
• Files
• Users
• Jobs

Portfolio API
You can use the Portfolio API to automate a process to export portfolio data from Addepar, including both analysis
and transactions data.

The JSON output respects nested groupings, meaning each portfolio you retrieve in JSON will include the same
grouping structure that you’ve configured in each view. JSON output is currently only available for analysis data.

Each set of data you export with the API is based on a saved view populated with data from a specific portfolio.
You can use the API to download analysis views in JSON format to integrate with other systems or analysis and
transactions views as a CSV, TSV, or Excel file to perform additional analysis.

You can also generate an API URL for portfolio views in Addepar to use in establishing an integration with an
external application like Microsoft Power Query.

Tip: To download large analysis views, you can make an asynchronous request to the Portfolio Jobs API.

Summary

Base Route /v1/portfolio/views/:view-id/results

/v1/transactions/views/:view-id/results

Methods GET

Output Format JSON, CSV, TSV, or XLSX

Pagination No

Permissions Required Analysis: View-only or Full permission

Transactions: Files View-only or Full permission

http://jsonapi.org/

 | API | 16

Arguments

Argument Description Values

view-id ID of a saved Analysis or
Transactions view

You can find the view ID by generating a Portfolio API
URL (see instructions below). The view ID is following
the “/views/” section of the URL. For example, view ID
15 will be noted as “/views/15”.

Parameters

Parameter Definition Values*

portfolio_id The ID of a portfolio configured in
Addepar. A portfolio can be either
an entity (i.e. a client, account, legal
entity, security etc.) or a group of
entities.

The ID number

Note: If “portfolio_type” is “firm”,
the “portfolio_id” must be “1.”

portfolio_type Type of the portfolio_id portfolio.
Allowed values: ‘group’, ‘entity’ or
‘firm’.

“group”, “entity”, or “firm”

start_date The start date of the reference period
to be used for the analysis view.

A date in yyyy-MM-dd format

end_date The end date of the reference period
to be used for the analysis view.

A date in yyyy-MM-dd format

output_type Output format of the exported result. “json", csv”, “tsv”, or “xlsx”

* You can find the values for the ID, type, and dates by generating a Portfolio API URL for the desired view and
portfolio.

Outputs

JSON format provides an easy way to integrate portfolio data into other systems with minimal maintenance. JSON
output is currently only available for analysis data.

CSV and TSV formats may be reformatted to enable more specific analysis, but entail view configuration restrictions.

Analysis and Transactions Views

• Entity Values. When the output includes a column that holds entity values (for example, security, top level owner,
or direct owner), the output will also include an "[Entity Name] [Entity ID]” column to record the unique Addepar
IDs for each entity.

• Positions. If the position attribute is included as an output column, an additional column will be added to include
the Addepar unique ID for each position. The header of this column will use the same value as previous column
appended with the text “[Position ID]”.

• Formatted numerical values. Formatting applied to numerical values (for example $, K, M etc.) is ignored in the
output for number and money value columns: the output will include the raw values, exported with a precision of
up to 4 decimal places.

• Percentage values. Percentages are represented as a fraction, with precision up to 4 decimal places (e.g. 5.1% will
be 0.051).

• Boolean Values. Values of Boolean (yes/no) attributes are represented as “true” or “false” in the API output.
• Byte-Order-Mark. All CSV/TSV responses have the Byte-Order-Mark prefixed to the data stream to indicate the

UTF-8 encoding of the content.

Refer to Wikipedia for more information about Byte-Order-Mark.

Portfolio API URLs

https://en.wikipedia.org/wiki/Byte_order_mark

 | API | 17

Portfolio API URLs can be used by external applications like Microsoft Excel Power Query to access portfolio data
from an Analysis or Transactions view. The API URL also includes ids for the firm, view, and portfolio that you can
use in API requests.

To generate an API URL, select the portfolio from which you’d like to export data and open an Analysis or
Transactions view configured to include the information required by your integration. Then click the Export button
above the table and choose “Generate API URL.” Copy the displayed link by clicking control+c or clicking the “Copy
Link” button.

The URL includes:

• View id ("/views/15")
• Portfolio id ("portfolio_id=1")
• Firm id ("addepar_firm=1")

You can also use the API URL to establish an integration. For example, if you're using Power Query, you can connect
the Addepar API to Excel in a few simple steps.

Analysis Views

JSON

• Grouping-Level Values. All groupings are included in the output.
• Empty Groupings. If the asset table includes no groupings, the output will include a "TOTAL" field that includes

the total portfolio value.

CSV, TSV, and XLSX

• Grouping-Level Values. Only data from the lowest-level grouping is included: higher level groupings and rollup
values are omitted. For example, if your asset table is grouped by Asset Class > Security, only security values will
appear in the output.

• Empty Groupings. If the asset table includes no groupings, the output will include a "TOTAL" column that
includes the total portfolio value.

Analysis Data

API output from the Analysis tool is based on the asset table configuration of a saved view.

Common API Analysis Views

The following are a few Analysis view configurations that provide sets of data commonly required for an integration
with Addepar:

• All clients: Group securities by Top Level Owner.
• All accounts associated with all clients: Group by Top Level Owner, then Direct Owner. Include a column for Top

Level Owner.
• All Security Holdings: Group by Direct Owner, then Security. Include columns for Position and Direct Owner to

automatically add the Direct Owner’s Position and Entity IDs of the to the API exports.
• All Securities: Group by Securities.

Example

Request
GET https://examplefirm.com/api/v1/portfolio/views/1/results?
portfolio_id=10&portfolio_type=entity&output_type=csv&start_date=2016-01-01&end_date=2016-01-02"

Response
HTTP/1.1 200

<VIEW_CONTENT>

Restrictions on JSON Output for Analysis Views

 | API | 18

• JSON format supports groupings at all levels.
• Views with “Advanced” and “Pivot” tables are not supported.
• Column values that dash or are null in the application are not included in the JSON output.
• Exported attributes must be one of the following types: Currency, Date, List, Money Value, Number, Percent,

Word, Yes/No.

Restrictions on CSV/TSV Output for Analysis Views

• Views with “Advanced” and “Pivot” tables are not supported.
• Benchmark rows are not exported.
• Graphs and charts cannot be exported.
• The holding account, ownership structure, and legal entity attributes are not allowed at the lowest grouping level:

attempting to export a view with such a configuration will return a 400 Bad Request response.
• Exported attributes must be one of the following types: Currency, Date, Money Value, Number, Percent, Word,

Yes/No.

Analysis Data Job

For longer running Analysis, it is recommended to use the Jobs API to submit an asynchronous request and fetch
the results later. To submit the same request above as a job, format the request as shown below. See the Jobs API for
information about checking the status of the job and downloading the results.

Example

Request
HTTP/1.1 200
Content-Disposition: attachment; filename="portfolio_data.csv"
Content-Type: text/csv

<VIEW_CONTENT>

Response
HTTP/1.1 200

{
 "data": {
 "id": "14",
 "type": "jobs",
 "attributes": {
 "job_type": "PORTFOLIO_VIEW_RESULTS",
 "parameters": {
 "view_id": 1,
 "portfolio_type": "entity",
 "portfolio_id": 10,
 "output_type": "csv",
 "start_date": "2016-01-01",
 "end_date": "2016-01-02"
 },
 "status": "Queued"
 },
 "links": {
 "self": "/v1/jobs/14"
 }
 }
}

Transaction Data

API output from the Transactions tool is based on a saved configuration of the transactions table.

 | API | 19

Example

Request
GET https://examplefirm.com/api/v1/transactions/views/1/results?
portfolio_id=10&portfolio_type=entity&output_type=csv&start_date=2016-01-01&end_date=2016-01-02"

Response
HTTP/1.1 200
Content-Disposition: attachment; filename="transaction_data.csv"
Content-Type: text/csv

<VIEW_CONTENT>

Restrictions on CSV/TSV Output for Transaction Views

• Transaction views for “Summary Data” are not supported.
• Exported attributes must be one of the following types: Currency, Date, Money Value, Number, Percent, Word,

Yes/No.

Entities API
The Entities API resource can be used to create, read, update, and delete financial entity data in Addepar.

Entities include all asset owners and owned investments: for example, clients who own portfolios, legal entities,
accounts, and assets. Each entity is described with a set of attributes, which specify how the client or investment is
represented in Addepar.

Summary

Base Route /v1/entities

Methods GET, POST, PATCH, DELETE

Output Format JSON

Pagination Yes

Permissions Required • View, edit, and delete: "Access to curent and future
portfolios"

• Create: N/A

Attributes

The API supports both standard attributes (those provided by Addepar) and custom attributes (those defined and
created by your firm). All attributes, whether standard or custom, are grouped in the "attributes" component of the
resource object.

Standard Attributes

Standard attributes include descriptive details about portfolio owners, like the client’s name, and investments, like a
bond’s issue date or a security’s CUSIP.

Supported standard attributes are listed below.

Name Description

original_name Name. String.

Required.

Example: "Adam Smith"

http://jsonapi.org/

 | API | 20

Name Description

display_name Name given to the entity. String.

Note: Cannot be applied to a client.

model_type String.

Required.

Allowed values:

• BOND
• CASH
• CERTIFICATE_OF_DEPOSIT
• CLOSED_END_FUND
• CMO
• CONVERTIBLE_NOTE
• ETF
• ETN
• FINANCIAL_ACCOUNT
• FORWARD_CONTRACT
• GENERIC_ASSET
• GENERIC_COMPANY_GRAPH_NODE
• HOLDING_COMPANY
• MASTER_LIMITED_PARTNERSHIP
• MONEY_MARKET_FUND
• MUTUAL_FUND
• OPTION
• PERSON_NODE
• PREFERRED_STOCK
• REIT
• STOCK
• TRUST
• UIT
• UNKNOWN_SECURITY
• WARRANT

ownership_type String.

Not editable.

Allowed values:

• PERCENT_BASED
• SHARE_BASED
• VALUE_BASED

Note: This attribute does not apply to a client.

[security attribute] All security attributes can be applied to groups, unless
otherwise noted.

Custom Attributes

 | API | 21

Custom attributes are identified in the API with the prefix "_custom_" (to easily differentiate between standard and
custom attributes), followed by the attribute's given name, and finally its Addepar attribute ID (to differentiate it from
other, similarly named custom attributes):

"_custom_<Attribute Name>_<Attribute ID>"

For example, a custom attribute named "My Asset Class" with ID "1234" will be named
"_custom_my_asset_class_1234" in the API.

Outputs

Output Types

The API supports standard and custom attributes that hold any of the following Addepar output types:

Output Type Description Example

Word A string "Equities"

Number A number 100

Percentage A percentage expressed as decimal 0.05

Date A date in YYYY-MM-DD format "2017-03-30"

Yes/No A boolean (true or false) true

Currency Currency code as a string "USD"

Money Value An object containing currency and
value

{"currency": "USD",
 "value": 167.23}

Time-Varying Attributes

Some standard attributes, and all custom attributes, support time-varying outputs to reflect changes in value over
time (for example, to record a change in a stock's geography by holding different values before and after a merger or
another event). For more information on time-varying attributes, see Security Attributes.

Restrictions

You can only create (POST) and update (PATCH) the following entity types using the Entities API:

Name Model Type

Client PERSON_NODE

Trust TRUST

Holding Company HOLDING_COMPANY

Financial Account FINANCIAL_ACCOUNT

Retrieve All Entities

GET /v1/entities

Retrieve the full list of all entities the authenticated user has permission to access, as well as all available attribute
details for each entity.

Example

Request

 | API | 22

GET https://examplefirm.com/api/v1/entities

Response
HTTP/1.1 200

{
 "data": [
 {
 "id": "1000001",
 "type": "entities",
 "attributes": {
 "currency_factor": "USD",
 "original_name": "Adam Smith",
 "model_type": "PERSON_NODE"
 },
 "links": {
 "self": "/v1/entities/1000001"
 }
 },
 {
 "id": "1000002",
 "type": "entities",
 "attributes": {
 "currency_factor": "USD",
 "ownership_type": "PERCENT_BASED",
 "original_name": "X092849032",
 "display_name": "Citco",
 "model_type": "FINANCIAL_ACCOUNT",
 "is_rolled_up": false
 },
 "links": {
 "self": "/v1/entities/1000002"
 }
 },
 {
 "id": "1000003",
 "type": "entities",
 "attributes": {
 "currency_factor": "USD",
 "ownership_type": "PERCENT_BASED",
 "original_name": "Adam Irrevocable Trust",
 "model_type": "TRUST"
 },
 "links": {
 "self": "/v1/entities/1000003"
 }
 }
],
 "links": {
 "next": null
 }
}

Retrieve an Entity

GET /v1/entities/:entity-id

Retrieve all available attribute details for the specified entity.

Example

Request

 | API | 23

GET https://examplefirm.com/api/v1/entities/1000001

Response
HTTP/1.1 200

{
 "data": {
 "id": "1000001",
 "type": "entities",
 "attributes": {
 "currency_factor": "USD",
 "original_name": "Adam Smith",
 "model_type": "PERSON_NODE"
 },
 "links": {
 "self": "/v1/entities/1000001"
 }
 }
}

Create an Entity

POST /v1/entities/

Add a new entity to your firm. Returns the full details of the new entity.

Required attributes: "original_name", "currency_factor", "model_type"

Example

Request
POST https://examplefirm.com/api/v1/entities

{
 "data": {
 "type": "entities",
 "attributes": {
 "original_name": "New entity",
 "currency_factor": "USD",
 "model_type": "PERSON_NODE"
 }
 }
}

Response
HTTP/1.1 201 Created

{
 "data": {
 "id": "1111",
 "type": "entities",
 "attributes": {
 "original_name": "New entity",
 "currency_factor": "USD",
 "model_type": "PERSON_NODE"
 },
 "links": {
 "self": "/v1/entities/1111"
 }
 }
}

 | API | 24

Create Multiple Entities

POST /v1/entities/

Add multiple new entities to your firm. Returns the full details of the new entities.

Required attributes: "original_name", "currency_factor", "model_type"

Example

Request
POST https://examplefirm.com/api/v1/entities

{
 "data": {
 "type": "entities",
 "attributes": {
 "original_name": "Adam Smith",
 "currency_factor": "USD",
 "model_type": "PERSON_NODE"
 },
 "type": "entities",
 "attributes": {
 "original_name": "Smith Family Trust",
 "currency_factor": "USD",
 "model_type": "TRUST"
 }
 }
}

Response
HTTP/1.1 201 Created

{
 "data": {
 "id": "1111",
 "type": "entities",
 "attributes": {
 "original_name": "New entity",
 "currency_factor": "USD",
 "model_type": "PERSON_NODE"
 },
 "links": {
 "self": "/v1/entities/1111"
 },
 "id": "1112",
 "type": "entities",
 "attributes": {
 "original_name": "Smith Family Trust",
 "currency_factor": "USD",
 "model_type": "TRUST"
 },
 "links": {
 "self": "/v1/entities/1112"
 }
 }
}

Update an Entity

PATCH /v1/entities/:entity-id

 | API | 25

Update standard attribute values for an existing client, holding company, or trust, or update custom attribute values for
any existing entity. Returns the full details of the entity updated.

Note: There are no restrictions on updating custom attributes via the API.

Example

Request
PATCH https://examplefirm.com/api/v1/entities/1111

{
 "data": {
 "id": "1111"
 "type": "entities",
 "attributes": {
 "original_name": "Updated entity"
 }
 }
}

Response
HTTP/1.1 200

{
 "data": {
 "id": "1111",
 "type": "entities",
 "attributes": {
 "original_name": "Updated entity",
 "currency_factor": "USD",
 "model_type": "PERSON_NODE"
 },
 "links": {
 "self": "/v1/entities/1111"
 }
 }
}

Update Multiple Entities

PATCH /v1/entities

Updates standard attribute values for multiple existing client, trust, holding company, or financial account entities, or
updates custom attribute values for any existing entity. Returns the full details of the updated entities.

Note: There are no restrictions on updating custom attributes via the API.

Example

In this example, the two entity names are being updated from “Adam Smith” and “Smith Family Trust,” as seen in the
POST example above, to “Adam T. Smith” and “The Smith Family Trust,” respectively.

Request
PATCH https://examplefirm.com/api/v1/entities

{
 "data": {
 "id": "1111"
 "type": "entities",
 "attributes": {
 "original_name": "Adam T. Smith"
 },
 "id": "1112"

 | API | 26

 "type": "entities",
 "attributes": {
 "original_name": "The Smith Family Trust"
 }
 }
}

Response
HTTP/1.1 200

{
 "data": {
 "id": "1111",
 "type": "entities",
 "attributes": {
 "original_name": "Adam T. Smith",
 "currency_factor": "USD",
 "model_type": "PERSON_NODE"
 },
 "links": {
 "self": "/v1/entities/1111"
 },
 "id": "1112",
 "type": "entities",
 "attributes": {
 "original_name": "The Smith Family Trust",
 "currency_factor": "USD",
 "model_type": "PERSON_NODE"
 },
 "links": {
 "self": "/v1/entities/1112"
 }
 }
}

Delete an Entity

DELETE /v1/entities/:entity-id

Delete an existing entity from your firm's data. Returns an empty response payload.

Restrictions: An entity cannot be deleted if it holds other entities. For example, you cannot delete a holding company
if it owns a security.

Example

Request
DELETE https://examplefirm.com/api/v1/entities/1111

Response
HTTP/1.1 204 No Content

Delete Multiple Entities

DELETE /v1/entities

Delete multiple existing entities from your firm's data. Returns an empty response payload.

Restrictions: An entity cannot be deleted if it holds other entities. For example, you cannot delete a holding company
if it owns a security.

 | API | 27

Example

Request
DELETE https://examplefirm.com/api/v1/entities

{
 "data": [{
 "id": 1111,
 "type": "entities"
 },
 {
 "id": 1112,
 "type": "entities"
 }]
}

Response
HTTP/1.1 204 No Content

Groups API
The Groups API resource can be used to create, read, update, and delete groups stored in Addepar, as well the entities
owned by those groups.

Each group is a set of client portfolios and their underlying assets. Using the API, you can review and revise details
for one or more groups, add or remove group members, or delete groups.

Summary

Base Route /v1/groups

Methods GET, POST, PATCH, DELETE

Output Format JSON

Pagination Yes

Permissions Required Create, edit, and delete groups

Attributes

The Groups resource supports the API attributes listed below.

Name Description

name Name. String.

Required

Example: "Adam Smith Clients"

[security attribute] All security attributes can be applied to groups, unless
otherwise noted.

Relationships

The Groups resource supports the API relationships listed below.

Name Description Editable

members A list of all the entities that are
associated to the group.

Yes

Restrictions

http://jsonapi.org/

 | API | 28

• The API user must have permission to "Create, edit, and delete groups".
• Group members must have one of the following model types.

Name Model Type

Client PERSON_NODE

Managed Fund MANAGED_PARTNERSHIP

Trust TRUST

Holding Company HOLDING_COMPANY

Holding Account FINANCIAL_ACCOUNT

Retrieve All Groups

GET /v1/groups

Returns a list of all groups the authenticated user has permission to access, details about when each was created, and
the clients and entities, along with the relevant security attributes, it holds.

Request
GET https://examplefirm.com/api/v1/groups

Response
HTTP/1.1 200

{
 "data": [
 {
 "id": "1234",
 "type": "groups",
 "attributes": {
 "name": "Euler Family"
 },
 "relationships": {
 "members": {
 "links": {
 "self": "/v1/groups/1234/relationships/members",
 "related": "/v1/groups/1234/members"
 },
 "data": [
 {
 "type": "entities",
 "id": "1000001"
 },
 {
 "type": "entities",
 "id": "1000002"
 },
 {
 "type": "entities",
 "id": "1000003"
 }
]
 }
 },
 "links": {
 "self": "/v1/groups/1234"
 }
 },

 | API | 29

 {
 "id": "5678",
 "type": "groups",
 "attributes": {
 "name": "Adam Smith Clients"
 },
 "relationships": {
 "members": {
 "links": {
 "self": "/v1/groups/5678/relationships/members",
 "related": "/v1/groups/5678/members"
 },
 "data": [
 {
 "type": "entities",
 "id": "2000001"
 },
 {
 "type": "entities",
 "id": "2000002"
 }
]
 }
 },
 "links": {
 "self": "/v1/groups/5678"
 }
 }
],
 "links": {
 "next": null
 }
}

Retrieve a Group

GET /v1/groups/:group-id

Returns details for a specified group, including details about when it was created and the client and entities, along
with the relevant security attributes, it holds.

Example

Request
GET https://examplefirm.com/api/v1/groups/5678

Response
HTTP/1.1 200

{
 "data": {
 "id": "5678",
 "type": "groups",
 "attributes": {
 "name": "Adam Smith Clients"
 },
 "relationships": {
 "members": {
 "links": {
 "self": "/v1/groups/5678/relationships/members",
 "related": "/v1/groups/5678/members"
 },

 | API | 30

 "data": [
 {
 "type": "entities",
 "id": "2000001"
 },
 {
 "type": "entities",
 "id": "2000002"
 }
]
 }
 },
 "links": {
 "self": "/v1/groups/5678"
 }
 }
}

Create a Group

POST /v1/groups/

Creates a new group. Returns the details of the group created.

Example

Request
POST https://examplefirm.com/api/v1/groups

{
 "data": {
 "type": "groups",
 "attributes": {
 "name": "New Group"
 },
 "relationships": {
 "members": {
 "data": [
 {
 "type": "entities",
 "id": "2000001"
 },
 {
 "type": "entities",
 "id": "2000001"
 }
]
 }
 }
 }
}

Response
HTTP/1.1 201 Created

{
 "data": {
 "id": 1111,
 "type": "groups",
 "attributes": {
 "name": "New Group"
 },

 | API | 31

 "relationships": {
 "members": {
 "links": {
 "self": "/v1/groups/1111/relationships/members",
 "related": "/v1/groups/1111/members"
 },
 "data": [
 {
 "type": "entities",
 "id": "2000001"
 },
 {
 "type": "entities",
 "id": "2000001"
 }
]
 }
 },
 "links": {
 "self": "/v1/groups/1111"
 }
 }
}

Create Multiple Groups

POST /v1/groups/

Creates new groups. You you can specify group members and attributes like a group name and all security attributes,
unless otherwise noted. Returns the details of each group created.

Example

Request
POST https://examplefirm.com/api/v1/groups

{
 "data": [
 {
 "type": "groups",
 "attributes": {
 "name": "New Group 1"
 },
 "relationships": {
 "members": {
 "data": [
 {
 "type": "entities",
 "id": "2000001"
 },
 {
 "type": "entities",
 "id": "2000002"
 }
]
 }
 },
{
 "type": "groups",
 "attributes": {
 "name": "New Group 2"
 "sector": [

https://help.addepar.com/Topics/api_security_attributes.html

 | API | 32

 {
 "date": "2017-01-01",
 "value": "Large Cap",
 "weight": 0.5
 }
]
 },
 "relationships": {
 "members": {
 "data": [
 {
 "type": "entities",
 "id": "2000003"
 },
 {
 "type": "entities",
 "id": "2000004"
 }
]
 }
 }
 }
]
}

Response
HTTP/1.1 201 Created

{
 "data": [
 {
 "id": "1113"
 "type": "groups",
 "attributes": {
 "name": "New Group 1"
 },
 "relationships": {
 "members": {
 "links": {
 "self": "/v1/groups/1113/relationships/members",
 "related": "/v1/groups/1113/members"
 },
 "data": [
 {
 "type": "entities",
 "id": "2000001"
 },
 {
 "type": "entities",
 "id": "2000002"
 }
]
 }
 },
 "links": {
 "self": "/v1/groups/1113"
 }
 },
{
 "id": "1114"
 "type": "groups",
 "attributes": {
 "name": "New Group 2"

 | API | 33

 "sector": [
 {
 "date": "2017-01-01",
 "value": "Large Cap",
 "weight": 0.5
 }
]
 },
 "relationships": {
 "members": {
 "links": {
 "self": "/v1/groups/1114/relationships/members",
 "related": "/v1/groups/1114/members"
 },
 "data": [
 {
 "type": "entities",
 "id": "2000003"
 },
 {
 "type": "entities",
 "id": "2000004"
 }
]
 }
 },
 "links": {
 "self": "/v1/groups/1114"
 }
 }
]
}

Update a Group

PATCH /v1/groups/:group-id

Updates the group name. Returns the updated details, including the name and all attributes.

Example

In this example, the group name is being updated from “Adam Smith Clients,” as seen in the POST example above, to
“Updated Group Name.”

Request
PATCH https://examplefirm.com/api/v1/groups/1111

{
 "data": {
 "id": "5678"
 "type": "groups",
 "attributes": {
 "name": "Updated Group Name"
 }
 }
}

Response
HTTP/1.1 200

{
 "data": {

 | API | 34

 "id": "5678"
 "type": "groups",
 "attributes": {
 "name": "Updated Group Name"
 },
 "relationships": {
 "members": {
 "links": {
 "self": "/v1/groups/5678/relationships/members",
 "related": "/v1/groups/5678/members"
 },
 "data": [
 {
 "type": "entities",
 "id": "2000001"
 },
 {
 "type": "entities",
 "id": "2000002"
 }
]
 }
 },
 "links": {
 "self": "/v1/groups/5678"
 }
 }
}

Delete a Group

DELETE /v1/groups/:group-id

Deletes a group from the firm.

Example

Request
DELETE https://examplefirm.com/api/v1/groups/1111

Response
HTTP/1.1 204 No Content

Delete Multiple Groups

DELETE /v1/groups

Deletes multiple existing groups from your firm’s data. Returns an empty response payload.

Example

Request
DELETE https://examplefirm.com/api/v1/groups

{
 "data": [{
 "id": "1111",
 "type": "groups"
 },
 {
 "id": "1112",

 | API | 35

 "type": "groups"
 }
]
}

Response
HTTP/1.1 204 No Content

Get all Group Member Relationships

GET /v1/groups/:group-id/relationships/members

Returns a list of all relationships for the members of the specified group.

Example

Request
GET https://examplefirm.com/api/v1/groups/5678/relationships/members

Response
HTTP/1.1 200

{
 "data": [
 {
 "type": "entities",
 "id": "2000001"
 },
 {
 "type": "entities",
 "id": "2000002"
 }
]
}

Add New Member Relationships to a Group

POST /v1/groups/:group-id/relationships/members

Adds existing entities as members to a group.

Example

Request
POST https://examplefirm.com/api/v1/groups/5678/relationships/members

{
 "data": [
 {
 "type": "entities",
 "id": "100"
 },
 {
 "type": "entities",
 "id": "101"
 }
]
}

Response

 | API | 36

HTTP/1.1 204 No Content

Replace Existing Group Members

PATCH /v1/groups/:group-id/relationships/members

Replaces all the existing group members with new ones.

Example

Request
PATCH https://examplefirm.com/api/v1/groups/5678/relationships/members

{
 "data": [
 {
 "type": "entities",
 "id": "100"
 },
 {
 "type": "entities",
 "id": "101"
 }
]
}

Request
HTTP/1.1 204 No Content

Remove Group Members

DELETE /v1/groups/:group-id/relationships/members

Remove the specified entities as members of the group.

Example

Request
DELETE https://examplefirm.com/api/v1/groups/5678/relationships/members

{
 "data": [
 {
 "type": "entities",
 "id": "2000001"
 }
]
}

Response
HTTP/1.1 204 No Content

Retrieve all Group Members

GET /v1/groups/:group-id/members

Returns details of all the entities that are members of the specified group. Refer to the entities API resource
documentation for information about the supported attributes and relationships, including sample responses.

 | API | 37

Example

Request
GET https://examplefirm.com/api/v1/groups/5678/members

Response
HTTP/1.1 200

{
 "data": [
 {
 "id": "2000001",
 "type": "entities",
 "attributes": {
 "currency_factor": "USD",
 "original_name": "Adam Smith",
 "model_type": "PERSON_NODE"
 },
 "links": {
 "self": "/v1/entities/2000001"
 }
 },
 {
 "id": "2000002",
 "type": "entities",
 "attributes": {
 "currency_factor": "USD",
 "ownership_type": "PERCENT_BASED",
 "original_name": "X092849032",
 "display_name": "Citco",
 "model_type": "FINANCIAL_ACCOUNT",
 "is_rolled_up": false
 },
 "links": {
 "self": "/v1/entities/2000002"
 }
 }
],
 "links": {
 "next": null
 }
}

Files API
The Files API resource can be used to create, read, update, and delete files stored in Addepar, as well the portfolios,
groups, and assets associated with those files.

Using the API, you can upload and download files (including both files currently available in Addepar and those that
have been deleted), access file metadata (for example, details about when a file was created or deleted), and review
and revise how files are organized and shared amongst entities and groups in Addepar.

Summary

Base Route /v1/files

Methods GET, POST, PATCH, DELETE

Output Format JSON

Pagination Yes

http://jsonapi.org/

 | API | 38

Permissions Required View: Files View-only permission

Edit: Files Full permission to edit

Attributes

The Files resource supports the API attributes listed below.

Name Output Editable Required

name Example: "Sample
File.txt"

String including the file's
name

Yes Yes

content_type Example:"application/pdf"
or "application/txt"

String including the file's
content type

No No

created_at Example:"2014-12-01T13:22:40Z"

DateTime value for the file
creation

No No

deleted_at Example:"2014-12-01T13:22:40Z"

DateTime value for the file
deletion

No No

bytes Example:"100000"

Long integer value
representing the size of the
file, in bytes

No No

Relationships

The Files resource supports the API relationships listed below.

Name Description Editable

associated_groups A list of all the groups that are
associated to the file.

Yes

associated_entities A list of all the entities that are
associated to the file.

Yes

Filter Parameters

The Get All Files (/v1/files), Get a Single File (/v1/files/:file-id), and Get All Archived Files (/v1/archive/files)
resources support the API filter parameters listed below.

Filter Description Example

filter[files][created_after] Return a filtered list of files created
after a specific time.

/v1/files/?filter[files]
[created_after]=2017-04-06T20:12:45Z

filter[files][created_before] Return a filtered list of files created
before a specific time.

/v1/files/?filter[files]
[created_before]=2017-04-06T20:12:45Z

 | API | 39

Filter Description Example

filter[files][created_after]
&filter[files][created_before]

Both filters can be used
simultaneously to return a filtered list
of files created within a specific time
range.

/v1/files/?filter[files]
[created_after]=2017-04-05T20:12:45Z&filter[files]
[created_before]=2017-04-06T20:12:45Z

filter[files][entityId] Returns a filtered list of files
associated with the specified entity.

/v1/files?[files][entityId]=100

filter[files][groupId] Returns a filtered list of files
associated with the specified group.

/v1/files?[files][groupId]=20

filter[files][entityId]&filter[files]
[groupId]

If IDs for both an entity and a group
are included in a request, the API
ignores the group and returns only
the files associated with the entity.

/v1/files?[files]
[entityId]=100&filter[files]
[groupId]=20

Note: Filters for the Files API require the ISO 8601 date format.

Restrictions

• The API user must have permission to view files in Addepar.
• The files and relationships accessible via the API will be restricted to the portfolios the user has permission to

access.

Retrieve All Files

GET /v1/files

Returns a list of all files the authenticated user has permission to access, as well as details about when each was
created, the type of content it holds, its name and size, and the groups and entities associated with it.

Example

Request
GET https://examplefirm.com/api/v1/files

Response
HTTP/1.1 200

{
 "data": [
 {
 "id": "123",
 "type": "files",
 "attributes": {
 "content_type": "application/pdf",
 "bytes": 256201,
 "name": "Sample.pdf",
 "created_at": "2014-06-20T20:55:07Z"
 },
 "relationships": {
 "associated_groups": {
 "links": {
 "self": "/v1/files/123/relationships/associated_groups",
 "related": "/v1/files/123/associated_groups"
 },
 "data": [
 {
 "type": "groups",
 "id": "1234"
 },

 | API | 40

 {
 "type": "groups",
 "id": "5678"
 }
]
 },
 "associated_entities": {
 "links": {
 "self": "/v1/files/123/relationships/associated_entities",
 "related": "/v1/files/123/associated_entities"
 },
 "data": [
 {
 "type": "entities",
 "id": "10000"
 },
 {
 "type": "entities",
 "id": "10001"
 }
]
 }
 },
 "links": {
 "self": "/v1/files/123"
 }
 },
 {
 "id": "345",
 "type": "files",
 "attributes": {
 "content_type": "application/pdf",
 "bytes": 798121,
 "name": "Report.pdf",
 "created_at": "2014-06-20T20:55:19Z"
 },
 "relationships": {
 "associated_groups": {
 "links": {
 "self": "/v1/files/345/relationships/associated_groups",
 "related": "/v1/files/345/associated_groups"
 },
 "data": []
 },
 "associated_entities": {
 "links": {
 "self": "/v1/files/345/relationships/associated_entities",
 "related": "/v1/files/345/associated_entities"
 },
 "data": [
 {
 "type": "entities",
 "id": "123400"
 }
]
 }
 },
 "links": {
 "self": "/v1/files/345"
 }
 }
],
 "links": {
 "next": null

 | API | 41

 }
}

Retrieve a File

GET /v1/files/:file-id

Returns the details of the specified file including information about when it was created, the type of content it holds,
its name and size, and the groups and entities associated with it.

Example

Request
GET https://examplefirm.com/api/v1/files/123

Response
HTTP/1.1 200

{
 "data": {
 "id": "123",
 "type": "files",
 "attributes": {
 "content_type": "application/pdf",
 "bytes": 256201,
 "name": "Sample.pdf",
 "created_at": "2014-06-20T20:55:07Z"
 },
 "relationships": {
 "associated_groups": {
 "links": {
 "self": "/v1/files/123/relationships/associated_groups",
 "related": "/v1/files/123/associated_groups"
 },
 "data": [
 {
 "type": "groups",
 "id": "1234"
 },
 {
 "type": "groups",
 "id": "5678"
 }
]
 },
 "associated_entities": {
 "links": {
 "self": "/v1/files/123/relationships/associated_entities",
 "related": "/v1/files/123/associated_entities"
 },
 "data": [
 {
 "type": "entities",
 "id": "10000"
 },
 {
 "type": "entities",
 "id": "10001"
 }
]
 }
 },
 "links": {

 | API | 42

 "self": "/v1/files/123"
 }
 }
}

Download a File

GET /v1/files/:file-id/download

Returns the raw contents of a specific file.

Example

Request
GET https://examplefirm.com/api/v1/files/123/download

Response
HTTP/1.1 200
Content-Disposition: attachment; filename="Sample.pdf"
Content-Type: application/binary

<RAW_FILE_DATA>

Create a File

POST /v1/files/

Adds a new file to your firm. Metadata is not required, but can be specified in order to change the name of the file to a
new name in Addepar, or to link the file to entities and groups.

Important: The file extension provided in the metadata must match the file extension of filename in
"Content-Disposition".

Example

Request
POST https://examplefirm.com/api/v1/files
Content-Type: multipart/form-data; boundary=<UNIQUE_BOUNDARY>
Content-Length: 2198

--<UNIQUE_BOUNDARY>
Content-Disposition: form-data; name="file"; filename="Sample.txt"
Content-Type: text/plain

<RAW_FILE_DATA>

--<UNIQUE_BOUNDARY>
Content-Disposition: form-data; name="metadata"

{
 "data": {
 "type": "files",
 "attributes": {
 "name": "Sample.txt",
 }
 }
}
--<UNIQUE_BOUNDARY>--

Response
HTTP/1.1 201 Created

{

 | API | 43

 "data": {
 "id": 1111,
 "type": "files",
 "attributes": {
 "content_type": "application/pdf",
 "bytes": 256201,
 "name": "Sample.txt",
 "created_at": "2017-01-01T20:55:07Z"
 },
 "relationships": {
 "associated_groups": {
 "links": {
 "self": "/v1/files/1111/relationships/associated_groups",
 "related": "/v1/files/111113/associated_groups"
 },
 "data": []
 },
 "associated_entities": {
 "links": {
 "self": "/v1/files/1111/relationships/associated_entities",
 "related": "/v1/files/1111/associated_entities"
 },
 "data": []
 }
 },
 "links": {
 "self": "/v1/files/1111"
 }
 }
}

Update a File

PATCH /v1/files/:file-id

Updates file attributes and relationships.

Example

Request
PATCH https://examplefirm.com/api/v1/files/1111

{
 "data": {
 "id": 1111,
 "type": "files",
 "attributes": {
 "name": "RenamedFile.txt"
 }
}

Response
HTTP/1.1 200

{
 "data": {
 "id": 1111,
 "type": "files",
 "attributes": {
 "content_type": "application/pdf",
 "bytes": 256201,
 "name": "RenamedFile.txt",
 "created_at": "2017-01-01T20:55:07Z"

 | API | 44

 },
 "relationships": {
 "associated_groups": {
 "links": {
 "self": "/v1/files/1111/relationships/associated_groups",
 "related": "/v1/files/111113/associated_groups"
 },
 "data": []
 },
 "associated_entities": {
 "links": {
 "self": "/v1/files/1111/relationships/associated_entities",
 "related": "/v1/files/1111/associated_entities"
 },
 "data": []
 }
 },
 "links": {
 "self": "/v1/files/1111"
 }
 }
}

Delete a File

DELETE /v1/files/:file-id

Archives the file within your firm instance. The archived file and its associated metadata will remain available
through separate routes (described below).

Example

Request
DELETE https://examplefirm.com/api/v1/files/1111

Response
HTTP/1.1 204 No Content

Retrieve All Groups Associated with a File

GET /v1/files/:file-id/relationships/associated_groups

Returns a list of groups with which the file is associated.

Example

Request
GET https://examplefirm.com/api/v1/files/123/relationships/associated_groups

Response
HTTP/1.1 200
{
 "links": {
 "self": "/v1/files/123/relationships/associated_groups",
 "related": "/v1/files/123/associated_groups"
 },
 "data": [
 {
 "type": "groups",
 "id": "1234"
 },
 {

 | API | 45

 "type": "groups",
 "id": "5678"
 }
]
}

Retrieve a File's Associated Entity Relationships

GET /v1/files/:file-id/relationships/associated_entities

Returns a list of all the entities with which the file is associated.

Example

Request
GET https://examplefirm.com/api/v1/files/123/relationships/
associated_entities

Response
HTTP/1.1 200
{
 "links": {
 "self": "/v1/files/123/relationships/associated_entities",
 "related": "/v1/files/123/associated_entities"
 },
 "data": [
 {
 "type": "entities",
 "id": "10000"
 },
 {
 "type": "entities",
 "id": "10001"
 }
]
}

Associate a File with One or More Groups

POST /v1/files/:file-id/relationships/associated_groups

Creates new associations between the file and existing groups.

Example

Request
POST https://examplefirm.com/api/v1/files/123/relationships/
associated_groups

{
 "data": [
 { "type": "groups", "id": "200" },
 { "type": "groups", "id": "201" }
]
}

Response
HTTP/1.1 204 No Content

Associate a File with One or More Entities

POST /v1/files/:file-id/relationships/associated_entities

 | API | 46

Creates new associations between the file and existing entities.

Example

Request
POST https://examplefirm.com/api/v1/files/123/relationships/
associated_entities

{
 "data": [
 { "type": "entities", "id": "100" },
 { "type": "entities", "id": "101" }
]
}

Response
HTTP/1.1 204 No Content

Replace Existing Group Associations

PATCH /v1/files/:file-id/relationships/associated_groups

Replaces all the currently associated groups with new group associations.

Example

Request
PATCH https://examplefirm.com/api/v1/files/123/relationships/
associated_groups

{
 "data": [
 { "type": "groups", "id": "200" },
 { "type": "groups", "id": "201" }
]
}

Response
HTTP/1.1 204 No Content

Replace Existing Entity Associations

PATCH /v1/files/:file-id/relationships/associated_entities

Replaces all the currently associated entities with new entity associations.

Example

Request
PATCH https://examplefirm.com/api/v1/files/123/relationships/
associated_entities

{
 "data": [
 { "type": "entities", "id": "100" },
 { "type": "entities", "id": "101" }
]
}

Response
HTTP/1.1 204 No Content

 | API | 47

Remove Group Associations from a File

DELETE /v1/files/:file-id/relationships/associated_groups

Removes the specified group associations from the file.

Example

Request
DELETE https://examplefirm.com/api/v1/files/123/relationships/
associated_groups

{
 "data": [
 { "type": "groups", "id": "5678" }
]
}

Response
HTTP/1.1 204 No Content

Remove Entity Associations from a File

DELETE /v1/files/:file-id/relationships/associated_entities

Removes the specified entity associations from the file.

Example

Request
DELETE https://examplefirm.com/api/v1/files/123/relationships/
associated_entities

{
 "data": [
 { "type": "entities", "id": "10000" }
]
}

Response
HTTP/1.1 204 No Content

Retrieve all Groups Associated with a File

GET /v1/files/:file-id/associated_groups

Returns the details of all the groups associated with the specified file. Refer to groups resource API documentation for
information about the supported attributes and relationships, as well as sample responses.

Retrieve all Entities Associated with a File

GET /v1/files/:file-id/associated_entities

Returns the details of all the entities associated with the specified file. Refer to entities resource API documentation
for information about the supported attributes and relationships, as well as sample responses.

Retrieve all Archived Files

GET /v1/archive/files

Returns a list of all archived (deleted) files, as well as information about when each was created, the type of content it
holds, its name and size, the groups and entities associated with it, and when it was deleted.

 | API | 48

Example

Request
GET https://examplefirm.com/api/v1/archive/files

Response
HTTP/1.1 200

{
 "data": [
 {
 "id": "319",
 "type": "files",
 "attributes": {
 "content_type": "text/plain",
 "bytes": 21607,
 "name": "archived_transactions.csv",
 "created_at": "2017-03-15T20:31:49Z",
 "deleted_at": "2017-03-15T20:32:16Z"
 },
 "relationships": {
 "associated_groups": {
 "links": {
 "self": "/v1/archive/files/319/relationships/associated_groups",
 "related": "/v1/archive/files/319/associated_groups"
 },
 "data": []
 },
 "associated_entities": {
 "links": {
 "self": "/v1/archive/files/319/relationships/
associated_entities",
 "related": "/v1/archive/files/319/associated_entities"
 },
 "data": [
 {
 "type": "entities",
 "id": "22"
 }
]
 }
 },
 "links": {
 "self": "/v1/archive/files/319"
 }
 }
],
 "links": {
 "next": null
 }
}

Retrieve an Archived File

GET /v1/archive/files/:file-id

Returns an archived (deleted) file, as well as information about when it was created, the type of content it holds, its
name and size, the groups and entities associated with it, and when it was deleted.

Example

Request
GET https://examplefirm.com/api/v1/archive/files/319

 | API | 49

Response
HTTP/1.1 200

{
 "data": {
 "id": "319",
 "type": "files",
 "attributes": {
 "content_type": "text/plain",
 "bytes": 21607,
 "name": "archived_transactions.csv",
 "created_at": "2017-03-15T20:31:49Z",
 "deleted_at": "2017-03-15T20:32:16Z"
 },
 "relationships": {
 "associated_groups": {
 "links": {
 "self": "/v1/archive/files/319/relationships/associated_groups",
 "related": "/v1/archive/files/319/associated_groups"
 },
 "data": []
 },
 "associated_entities": {
 "links": {
 "self": "/v1/archive/files/319/relationships/associated_entities",
 "related": "/v1/archive/files/319/associated_entities"
 },
 "data": [
 {
 "type": "entities",
 "id": "22"
 }
]
 }
 },
 "links": {
 "self": "/v1/archive/files/319"
 }
 }
}

Download an Archived File

GET /v1/archive/files/:file-id/download

Returns the raw contents of an archived file.

Example

Request
GET https://examplefirm.com/api/v1/archive/files/319/download

Response
HTTP/1.1 200
Content-Disposition: attachment; filename="Sample.pdf"
Content-Type: application/binary

<RAW_FILE_DATA>

 | API | 50

Users API
The Users API resource can be used to read Addepar user data, including information about the user's credentials and
the data each user has permission to access.

Users in Addepar represent access credentials and associated permissions to the Addepar's advisor portal within a
given firm.

Summary

Base Route /v1/users

Methods GET

Output Format JSON

Pagination No

Permissions Required Manage users and permissions

Attributes

The Users resource supports the API attributes listed below.

Name Description

email Example: "adam@smith.com"

String containing the email address used for
authentication

first_name Example: "Adam"

String containing the user's first name

last_name Example: "Smith"

String containing the user's last name

saml_user_id Example: "asmith"

String containing the SAML ID assigned to the user
(only applicable if SSO is enabled)

all_data_access Example: "false"

Boolean flag indicating whether the user has permission
to access all current and future portfolio data

two_factor_auth_enabled Example: "false"

Boolean flag indicating whether the user has 2-factor
authentication enabled

external_user_id Example: "A12345"

Alphanumeric string containing the firm’s unique ID
for the user (an employee ID number, a user ID from a
human resources system, etc.)

Relationships

The Users resource supports the API relationships listed below.

http://jsonapi.org/

 | API | 51

Name Description Editable

permissioned_groups A list of all the groups the user has
permission to access.

No

permissioned_entities A list of all the entities the user has
permission to access.

No

Restrictions

• The Users resource can only be used to read user details: creating, updating, and deleting users is not supported
via the API.

• User details are only provided for Addepar application users, and do not include users and credentials for the
client portal.

• Tool permissions for users are not currently included in the response.

Retrieve All Users

GET /v1/users

Returns a list containing the details of each user, including the user's name, email, and access information.

Example

Request
GET https://examplefirm.addepar.com/api/v1/users

Response
HTTP/1.1 200

{
 "data": [
 {
 "id": "1000",
 "type": "users",
 "attributes": {
 "two_factor_auth_enabled": true,
 "all_data_access": true,
 "external_user_id": "A12345",
 "email": "user1@addepar.com",
 "first_name": "Adam",
 "last_name": "Smith"
 },
 "relationships": {
 "permissioned_entities": {
 "links": {
 "self": "/v1/users/1000/relationships/permissioned_entities",
 "related": "/v1/users/1000/permissioned_entities"
 },
 "data": []
 },
 "permissioned_groups": {
 "links": {
 "self": "/v1/users/1000/relationships/permissioned_groups",
 "related": "/v1/users/1000/permissioned_groups"
 },
 "data": []
 }
 },
 "links": {
 "self": "/v1/users/1000"

 | API | 52

 }
 },
 {
 "id": "2000",
 "type": "users",
 "attributes": {
 "two_factor_auth_enabled": false,
 "all_data_access": false,
 "external_user_id": "A67890",
 "email": "user2@addepar.com",
 "first_name": "Jane",
 "last_name": "Doe"
 },
 "relationships": {
 "permissioned_entities": {
 "links": {
 "self": "/v1/users/2000/relationships/permissioned_entities",
 "related": "/v1/users/2000/permissioned_entities"
 },
 "data": [
 {
 "type": "entities",
 "id": 10000
 },
 {
 "type": "entities",
 "id": 10001
 }
]
 },
 "permissioned_groups": {
 "links": {
 "self": "/v1/users/2000/relationships/permissioned_groups",
 "related": "/v1/users/2000/permissioned_groups"
 },
 "data": [
 {
 "type": "entities",
 "id": 20000
 },
 {
 "type": "entities",
 "id": 20001
 }
]
 }
 },
 "links": {
 "self": "/v1/users/2000"
 }
 }
],
 "links": {
 "next": null
 }
}

Retrieve a User

GET /v1/users/:user-id

Returns details for a specified user, including the user's name, email, and access information.

 | API | 53

Example

Request
GET https://examplefirm.addepar.com/api/v1/users/2000

Response
HTTP/1.1 200

{
 "id": "2000",
 "type": "users",
 "attributes": {
 "two_factor_auth_enabled": false,
 "all_data_access": false,
 "external_user_id": "A67890",
 "email": "user2@addepar.com",
 "first_name": "Jane",
 "last_name": "Doe"
 },
 "relationships": {
 "permissioned_entities": {
 "links": {
 "self": "/v1/users/2000/relationships/permissioned_entities",
 "related": "/v1/users/2000/permissioned_entities"
 },
 "data": [
 {
 "type": "entities",
 "id": 10000
 },
 {
 "type": "entities",
 "id": 10001
 }
]
 },
 "permissioned_groups": {
 "links": {
 "self": "/v1/users/2000/relationships/permissioned_groups",
 "related": "/v1/users/2000/permissioned_groups"
 },
 "data": [
 {
 "type": "entities",
 "id": 20000
 },
 {
 "type": "entities",
 "id": 20001
 }
]
 }
 },
 "links": {
 "self": "/v1/users/2000"
 }
}

Retrieve Users by External User ID

POST /v1/users/external_user_id

 | API | 54

Returns a list containing the details of each user, including the user's name, email, and data access information.

Note: Currently you can only retrieve the external user ID for a user in the API. The external user ID is
included in the response for each GET request. You can add the external user ID for each user directly in the
application.

Example

Request
GET https://examplefirm.addepar.com/api/v1/external_user_id

{
 "data": {
 "type": "external_user_id",
 "attributes": {
 "external_user_ids": [
 "A12345",
 "A67890"
]
 }
 }
}

Response
HTTP/1.1 200

{
 "data": [
 {
 "id": "1000",
 "type": "users",
 "attributes": {
 "two_factor_auth_enabled": true,
 "all_data_access": true,
 "external_user_id": "A12345",
 "email": "user1@addepar.com",
 "first_name": "Adam",
 "last_name": "Smith"
 },
 "relationships": {
 "permissioned_entities": {
 "links": {
 "self": "/v1/users/1000/relationships/permissioned_entities",
 "related": "/v1/users/1000/permissioned_entities"
 },
 "data": []
 },
 "permissioned_groups": {
 "links": {
 "self": "/v1/users/1000/relationships/permissioned_groups",
 "related": "/v1/users/1000/permissioned_groups"
 },
 "data": []
 }
 },
 "links": {
 "self": "/v1/users/1000"
 }
 },
 {
 "id": "2000",
 "type": "users",
 "attributes": {

 | API | 55

 "two_factor_auth_enabled": false,
 "all_data_access": false,
 "external_user_id": "A67890",
 "email": "user2@addepar.com",
 "first_name": "Jane",
 "last_name": "Doe"
 },
 "relationships": {
 "permissioned_entities": {
 "links": {
 "self": "/v1/users/2000/relationships/permissioned_entities",
 "related": "/v1/users/2000/permissioned_entities"
 },
 "data": [
 {
 "type": "entities",
 "id": 10000
 },
 {
 "type": "entities",
 "id": 10001
 }
]
 },
 "permissioned_groups": {
 "links": {
 "self": "/v1/users/2000/relationships/permissioned_groups",
 "related": "/v1/users/2000/permissioned_groups"
 },
 "data": [
 {
 "type": "entities",
 "id": 20000
 },
 {
 "type": "entities",
 "id": 20001
 }
]
 }
 },
 "links": {
 "self": "/v1/users/2000"
 }
 }
],
 "links": {
 "next": null
 }
}

Retrieve All Groups the User Can Access

GET /v1/users/:user-id/relationships/permissioned_groups

Returns a list of all the groups the specified user has permission to access. Refer to the groups API resource
documentation for details about the supported attributes and relationships, including sample responses.

Example

Request

 | API | 56

GET https://examplefirm.addepar.com/api/v1/users/5678/relationships/
permissioned_groups

Response
HTTP/1.1 200

{
 "data": [
 {
 "type": "groups",
 "id": "200"
 },
 {
 "type": "groups",
 "id": "201"
 }
]
}

Retrieve All Entities the User Can Access

GET /v1/users/:user-id/relationships/permissioned_entities

Returns a list of all the entities the specified user can access. Refer to the entities API resource documentation for
details about the supported attributes and relationships, including sample responses.

Example

Request
GET https://examplefirm.addepar.com/api/v1/users/5678/relationships/
permissioned_entities

Response
HTTP/1.1 200

{
 "data": [
 {
 "type": "entities",
 "id": "10000"
 },
 {
 "type": "entities",
 "id": "10001"
 }
]
}

Jobs API
The asynchronous Jobs API allows you to reliably export large Analysis views and download the results any time
within 24 hours of the initial request.

You can use the Jobs API to:

• Issue API requests that cannot be completed within the current, synchronous API timeout limits
• Avoid maintaining an open HTTP connection while waiting for a response from the API
• Protect long-running API requests from the effects of unreliable networks

For information about the Analysis views you can download, refer to the Portfolio API documentation.

Summary

 | API | 57

Base Route /v1/jobs

Methods GET, POST

Output Format JSON (job status)

Multiple (download)

Pagination No

Permissions Required Multiple (job creation)

Attributes

The Jobs resource supports the API attributes listed below.

Name Description

job_type Example: "portfolio_view_results"

String containing job type

parameters JSON object containing parameters relevant to a specific
job type.

Relationships

The Jobs resource supports the API relationships listed below.

Name Description

creator The user who created the job.

Restrictions

• Currently only job_type "portfolio_view_results" is supported.
• Relevant permissions pertaining to each job type are enforced at job creation.
• A user may not access jobs created by another user.

Job Statuses

Status Meaning

Queued Job has not yet started processing by Addepar servers

In Progress Job is currently being processed by Addepar

Completed Job has finished and the results can be retrieved from the
url in the Location Header

Timed Out Job results have expired and results are deleted after 24
hours since job creation.

Error Job processing failed due to an error. Details are
provided within the error field of the response.

Create a job

Visit the Portfolio API documentation for information about creating an analysis data job.

Check the Status of All Jobs

GET /v1/jobs

http://jsonapi.org/

 | API | 58

Returns the status and parameters for all current jobs.

Example

Request
GET https://examplefirm.com/api/v1/jobs

Response
HTTP/1.1 200

{
 "data": [
 {
 "id": "13",
 "type": "jobs",
 "attributes": {
 "job_type": "PORTFOLIO_VIEW_RESULTS",
 "parameters": {
 "view_id": 2,
 "portfolio_type": "entity",
 "portfolio_id": 22,
 "output_type": "tsv",
 "start_date": "2011-12-31",
 "end_date": "2013-01-15"
 },
 "status": "Completed"
 },
 "links": {
 "self": "/v1/jobs/13"
 }
 },
 {
 "id": "14",
 "type": "jobs",
 "attributes": {
 "job_type": "PORTFOLIO_VIEW_RESULTS",
 "parameters": {
 "view_id": 1,
 "portfolio_type": "entity",
 "portfolio_id": 10,
 "output_type": "csv",
 "start_date": "2016-01-01",
 "end_date": "2016-01-02"
 },
 "errors": [
 {
 "status": "400",
 "title": "Bad Request",
 "detail": "Invalid portfolio: ENTITY 10"
 }
],
 "status": "Error"
 },
 "links": {
 "self": "/v1/jobs/14"
 }
 }
],
 "links": {
 "next": null
 }
}

 | API | 59

Check the Status of a Job

GET /v1/jobs/:job-id

Returns the status and parameters for a specific job.

Example

Request
GET https://examplefirm.com/api/v1/jobs/13

Response
HTTP/1.1 200

{
 "data": {
 "id": "13",
 "type": "jobs",
 "attributes": {
 "job_type": "PORTFOLIO_VIEW_RESULTS",
 "parameters": {
 "view_id": 2,
 "portfolio_type": "entity",
 "portfolio_id": 22,
 "output_type": "tsv",
 "start_date": "2011-12-31",
 "end_date": "2013-01-15"
 },
 "status": "Completed"
 },
 "relationships": {
 "creator": {
 "links": {
 "self": "/v1/jobs/13/relationships/creator",
 "related": "/v1/jobs/13/creator"
 },
 "data": {
 "type": "users",
 "id": "22"
 }
 }
 },
 "links": {
 "self": "/v1/jobs/13"
 }
 }
}

Download the Results of a Job

GET /v1/jobs/:job-id/download

Returns the raw contents of a specific file.

Example

Request
GET https://examplefirm.com/api/v1/jobs/13/download

Response
HTTP/1.1 200
Content-Disposition: attachment; filename="portfolio_data.tsv"

 | API | 60

Content-Type: text/tsv

<DOWNLOAD_CONTENT>

	Contents
	API
	Getting Started with the API
	API Access and Authentication
	API User Permissions
	API Key and Secret
	API Authentication Requirements

	API Features
	API Pagination
	API Rate Limiting
	API URL and Versioning
	API Response Codes
	API Security Attributes

	API Endpoints
	Portfolio API
	Entities API
	Groups API
	Files API
	Users API
	Jobs API

