
PRACTICAL-1

Introduction to Android, Introduction to Android Studio IDE, Application
Fundamentals: Creating a project, Android components, Activities, Services, Content
providers, Broadcast Receivers, Interface Overview, Creating Android Virtual device, USB
debugging mode, Android Application Overview. Simple “Hello World” program.

Introduction to Android

 Android is an open-source, Linux-based mobile operating system developed by Google. It
is designed primarily for touchscreen mobile devices such as smartphones and tablets but
also extends to other devices like smart TVs, wearables, and cars. Android offers a rich
user interface (UI) and provides access to a broad range of hardware features and APIs,
making it the most widely used mobile OS globally.

 Android applications are primarily written in Java or Kotlin and run on the Android
Runtime (ART) which uses virtual machines optimized for mobile devices.

Introduction to Android Studio IDE

Android Studio is the official Integrated Development Environment (IDE) for Android app
development. Built on top of IntelliJ IDEA, Android Studio provides a comprehensive suite
of tools to build Android applications, including:

 Code editor: Supports features like code completion, refactoring, and linting.
 Visual layout editor: Lets developers design UI with drag-and-drop functionality.
 Android Emulator: Simulate Android devices on your computer for testing

purposes.
 SDK Manager: Allows you to install or update the Android SDK and libraries.
 Gradle build system: Manages dependencies, build configurations, and app

packaging.

Application Fundamentals:

1. Creating a Project

When you create a new Android project in Android Studio, the IDE sets up a structure that
contains all the necessary files and folders. Here are the key components:

1. Project Configuration Files:
o build.gradle: Contains project-level and app-level configuration,

dependencies, and build settings.
o AndroidManifest.xml: Declares important metadata about the app, such as

permissions, components (activities, services), and features.
2. App Code and Resources:

o MainActivity.java (or MainActivity.kt): The main entry point of your
application.

o res/ folder: Contains resources such as layouts (XML files), drawables, and
values (colors, strings, dimensions).

3. Gradle: Android uses Gradle as its build automation system. This simplifies the build
process and integrates dependency management and tasks such as compiling and
packaging the app.

2. Android Components

Android applications are built using four main components:

1. Activities: An activity represents a single screen in your application. Each activity is
responsible for managing the UI and handling user interactions. For example, the
screen that shows a list of contacts or the home screen of the app.

2. Services: A service is a component that runs in the background to perform long-
running operations (such as downloading files or playing music) without a direct user
interface.

3. Content Providers: Content providers allow your app to share data with other apps
and manage access to structured data like contacts, media, or files.

4. Broadcast Receivers: Broadcast receivers listen for and respond to broadcast
messages from other apps or the system. These messages might be system events like
battery low, Wi-Fi status change, or incoming SMS.

3. Interface Overview

 Android provides various UI components like TextViews, Buttons, ImageViews,
EditTexts, and RecyclerViews to build user interfaces. These components are
typically defined in XML files in the res/layout directory.

 The XML Layouts are used to define the structure of the UI, while the Java or
Kotlin code in activities handles the interactions and updates to the UI elements.

4. Creating Android Virtual Device (AVD)

Android Virtual Devices (AVDs) are emulated devices that allow you to test your application
on different screen sizes, Android versions, and hardware configurations. To create an AVD:

1. Open Android Studio.
2. Go to Tools > AVD Manager.

3. Click Create Virtual Device.

4. Choose a device (e.g., Pixel 8).

5. Select a system image (an Android version to emulate).

6. Customize the device configuration and start the emulator.

5. USB Debugging Mode

USB Debugging allows Android Studio to communicate with an Android device over USB
for testing and debugging purposes. To enable USB debugging:

1. Open Settings on your Android device.
2. Go to About phone and tap Build number 7 times to enable Developer Options.
3. In Developer Options, toggle on USB debugging.

Once USB debugging is enabled, connect your device via USB, and Android Studio can
deploy and debug apps directly on the device.

6. Android Application Overview

An Android app is essentially a collection of resources and components that interact to
provide the user experience. Key concepts include:

 Activities: Define user interfaces.

 Services: Handle background tasks.
 Broadcast Receivers: Respond to system-wide broadcasts.
 Content Providers: Share and access data.

7. Simple "Hello World" Program

(If you installed Android Studio first time, you will get below screen.)

Step 1: Click on New Project

OR

(If you already installed Android studio, your software screen lookalikes below screen.)

Go to File Menu -> Select New Option -> Select New Project

Step 2: Select Phone and Tablet -> then Select Empty Views Activity (or Empty Activity).

Step 3: Give Name to the project and also select language (Java / Kotlin)

Step 4: Go to Device Manager and to start AVD click on “PLAY” button.

Step 5: Run your app.

Step 6: After Successful Gradle Build you will get the output.

A "Hello World" program in Android is typically the first app you create to get familiar with
Android development.

Running the Application

To run the app:

1. Connect an Android device or start an AVD (emulator).
2. In Android Studio, click the Run button (green triangle).
3. Select the device or emulator to deploy the app to.
4. The app should now run, displaying a screen with the text "Hello, World!"

PRACTICAL-2

Programming Resources

Android Resources: (Color, Them, String, Drawable, Dimension, Image)

1. Color:

Layout Folder-> activity_main.xml

Design Section -> Drag and Drop one more TextView

2. Them:

3. String:

4. Drawable

Suppose you want to add image to Drawable folder then copy that image -> then right click on

Drawable folder and click on Paste.

5. Dimension, Image

PRACTICAL-3

Programming Activities and Fragments

Activity Life Cycle, Activity methods, Multiple Activities, Life Cycle of fragments and
multiple fragments.

Activity Lifecycle:

 onCreate(): Called by the OS when the activity is first created. This is where you

initialize any UI elements or data objects. You also have the savedInstanceState of the

activity that contains its previously saved state, and you can use it to recreate that state.

 onStart(): Just before presenting the user with an activity, this method is called. It’s

always followed by onResume(). In here, you generally should start UI animations, audio

based content or anything else that requires the activity’s contents to be on screen.

 onResume(): As an activity enters the foreground, this method is called. Here you have a

good place to restart animations, update UI elements, restart camera previews, resume

audio/video playback or initialize any components that you release during onPause().

 onPause(): This method is called before sliding into the background. Here you should

stop any visuals or audio associated with the activity such as UI animations, music

playback or the camera. This method is followed by onResume() if the activity returns to

the foreground or by onStop() if it becomes hidden.

 onStop(): This method is called right after onPause(), when the activity is no longer

visible to the user, and it’s a good place to save data that you want to commit to the disk.

It’s followed by either onRestart(), if this activity is coming back to the foreground, or

onDestroy() if it’s being released from memory.

 onRestart(): Called after stopping an activity, but just before starting it again. It’s always

followed by onStart().

 onDestroy(): This is the final callback you’ll receive from the OS before the activity is

destroyed. You can trigger an activity’s desctruction by calling finish(), or it can be

triggered by the system when the system needs to recoup memory. If your activity

includes any background threads or other long-running resources, destruction could lead

to a memory leak if they’re not released, so you need to remember to stop these processes

here as well.

Go to activity_main.xml file change layout to RelativeLayout

Comment TextView

Then go to Design tab-Drag & Drop Button

 (text – AboutUs,

 layout_centerHorizontal—True,

 layout_Margin select TOP and set value=80dp)

Change button id and id=”about_us”

Create AboutUs.kt file

Go to MainActivity.kt

Now go to AboutUs.kt file and add below code.

Go to AndroidMainfest.xml file.

Now Run your Application.

Now click on “ABOUTUS” Button.

PRACTICAL-4

Programs related to different Layouts

Coordinate, Linear, Relative, Table, Absolute, Frame, List View, Grid View.

1. Linear Layout

2. Relative Layout

3. Table Layout

activity_main.xml

MainActivity.kt

OUTPUT:-

4. Frame Layout

OUTPUT:-

5. Grid View Layout

MainActivity.kt

OUTPUT:-

6. List View Layout

Click on java folderNew ActivityEmpty Activity

OUTPUT:-

7. Absolute Layout

XML Layout file (activity_main.xml):

<?xml version="1.0" encoding="utf-8"?>

<AbsoluteLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

<TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_x="50px"
 android:layout_y="100px"
 android:text="Welcome to absolute Layout"/>
<Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_x="200px"
 android:layout_y="200px"
 android:text="click me"/>

</AbsoluteLayout>

Kotlin Activity (MainActivity.kt):

package com.example.myapp

import android.os.Bundle
import androidx.appcompat.app.AppCompatActivity

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 }
}

OUTPUT:

PRACTICAL-5

Programming UI elements

AppBar, Fragments, UI Components.

activity_main.xml

Copy image and paste in drawable folder.

Go to java(com.example.ui_pro)  New  Activity  Empty Activity  give name
LoginActivity  click finish.

Repeat same process for RegisterActivity.

Come to MainActivity.kt file

Now come to activity_login.xml

Come to activity_register.xml

Now run your application.

PRACTICAL-6

Programming Menus, Dialog, Dialog fragments

1. Menu

Expand res folder --> Right click on res folder --> New --> then select Android Resource
Directory

Then Select menu  click ok  menu folder is created in res folder.

Now right click on menu folder select New select Menu Resource File.

Then drag & drop 3 Menu Item in menu.xml.

Go to MainActivity.kt file and add below code.

Now go to values folder then expand themes folder  check both the theme files.

OUTPUT:

2. Dialog:

Change Layout to Linear Layout.

Remove TextView and drag & drop plain text and button.

OUTPUT:

3. Dialog fragments:

Expand res folder select layout Folderright click on layout folder select
newselect Android Resource File  give name to the file “dialog_fragments”.

Now go to java folder & expand it  right click on com.example.fragselect new
select Kotlin file class and give name as “Myfragment” and select kind as “class” 
click Ok.

OUTPUT:

PRACTICAL-7

Programs on Intents, Events, Listeners and Adapters

The Android Intent Class, Using Events and Event Listeners

Step 1: Create another activity (i.e. SecondActivity)

Step 2: Come to activity_main.xml file and add below code.

Step 3: Now come to activity_second.xml file and add below code.

 Step 4: Now come to MainActivity.kt file and add below code.

 Step 5: Come to SecondActivity.kt file and add below code.

Step 6: Now run your project.

OUTPUT:

PRACTICAL-8

Programs on Services, notification and broadcast receivers

1. Services

Step 1: Come to activity_main.xml file and add Textview and 2 buttons.

Step 2: Now come to MainActivity.kt and add below code.

Step 3: Now right click on com.example.service_ex -> select New -> Kotline class file ->
give name as “NewService” and select class -> then click enter.

Step 4: Come to Newservice.kt file and add below code.

Step 5: Now come to AndroidManifest.xml file and add <service
android:name=.NewService” /> line to it.

OUTPUT:

2. Notification

Step 1: In activity_main.xml file, add button and add below code.

Step 2 : Come to MainActivity.kt file and add below code.

OUTPUT:

3. Broadcast Receivers

Step 1: Select “com.eample.broadcast”-> New-> select Kotlin Class File-> give name
“MyReceiver”-> then select class-> press enter.

Step 2: Now come to MyReceiver.kt file and add below code.

Step 3: Come to MainActivity.kt file and add below code.

OUTPUT:

PRACTICAL-9

a. Database Programming with SQLite

b. Programming Network Communications and Services (JSON)

a. Database Programming with SQLite

STEP 1: Add below code in activity_main.xml file.

STEP 2: Create new Kotlin class file and named that file as “UserModel.kt”. Then write
below code.

STEP 3: Create new Kotlin class file and named that file as “DBContract.kt”. Then
write below code.

STEP 4: Create new Kotlin class file and named that file as “UserDBHelper.kt”. Then
write below code.

STEP 5: After this come to “MainActivity.kt” file and below code.

STEP 6: Now come to “build.gradle (Module:app)” file and below lines.
viewBinding{
enabled=true
}

STEP 7: Run Project.

Using “SHOW ALL” button, you will get all the records inserted earlier.

Using “DELETE” button you can easily delete any record.

Insert data and click

on “ADD” button.

PRACTICAL-10

a. Programming Media API and Telephone API

b. Programming Security and Permissions

a. Programming Media API and Telephone API

MEDIA API

Step 1: Under res folder create new directory named as “raw”-> then download any audio file
and Paste that file inside the raw directory.

Step 2: Now come to your activity_main.xml file and add below code.

Step 3: After this come to your MainActivity.kt file and add below code.

Step 4: Run your project.

OUTPUT:

TELEPHONE API

Step 1: Come to activity_main.xml and add below code.

Step 2: Add required permissions to AndroidMainfest.xml file.

Step 3: Now come to MainActivity.kt file and add below code.

OUTPUT:

b. Programming Security and Permissions

Step 1: Add required permissions to AndroidMainfest.xml file.

Step 2: Now come to MainActivity.kt file and add below code.

OUTPUT:

	Introduction to Android
	Introduction to Android Studio IDE
	Application Fundamentals:
	1. Creating a Project
	2. Android Components
	3. Interface Overview
	4. Creating Android Virtual Device (AVD)
	5. USB Debugging Mode
	6. Android Application Overview
	Running the Application

