
Disclaimer
The views expressed in this document are those of the authors and do not neces-
sarily represent the views of the IMF, its Executive Board, or IMF management.

Summary
At its core, Snowdrop is a robust and versatile Python package designed for the
analysis of macroeconomic Dynamic Stochastic General Equilibrium (DSGE)
models. In its entirety, this package offers an extensive framework for the study
of various related economic models, including New Keynesian models, Real Busi-
ness Cycle models, Gap models, and Overlapping Generations models. Snowdrop
equips researchers with essential tools to address the fundamental requirements
of these models, encompassing estimation, simulation, and forecasting processes.
In particular, the package employs robust and efficient solution techniques to
solve both linear and nonlinear perfect foresight models based on the rational
expectations hypothesis, which is a critical need for many DSGE models. Beyond
its core modeling capabilities, this package also provides tools for model diagnos-
tics and reporting. Additionally, it offers users the flexibility to implement their
models using pure Python code or straightforward (YAML) configuration files.

Statement of Need
DSGE models are a mainstay class of models employed by Central Banks around
the world, informing key country monetary policy decisions (Botman et al.
2007), (Smets et al. 2010), (Del Negro et al. 2013), (Yagihashi 2020). These
models capture the dynamic evolution of economic variables influenced by agents
who respond to anticipated future outcomes in the present, necessitating the
combined use of specialized techniques that are not readily availabel even in the
extensive list of Python’s scientific modeling packages (Fernández-Villaverde and
Guerrón-Quintana 2021). Currently, the two primary DSGE modeling toolboxes,
DYNARE and IRIS, (Adjemian S. 2021), (“IRIS Toolbox Reference Manual”
2024) are comprehensive toolsets that offer an user-friendly infrastructure with
support to all stages of model development. These, and similar, applications,
however, are either commercial, or rely on commercial software to run, and hence
require expensive licensing costs. There is no integrated software package to our
knowledge that is both flexible to handle a wide class of models with all required
software to run the models available for free under the GNU General Public
Licensing agreements. This Framework, built entirely on Python, is intended to
fill that void.

Highlights
• Snowdrop is a Python package that only uses open source libraries listed

in the pypi repository.

1

https://www.dynare.org/
https://iris.igpmn.org/

• This package is platform neutral and can be run on Windows, Linux, Unix,
and Mac machines.

• Snowdrop models can be written in user-friendly YAML format, pure
Python scripts, or in a combination of both.

• Transitioning from IRIS and DYNARE models to Snowdrop modes is
easy since Snowdrop can read and run standard models written for these
packages.

• Non-linear equations are solved iteratively via Newton’s method. Snowdrop
implements the ABLR stacked matrices and LBJ (Juillard M. 1998)
forward-backward substitution method to solve such systems. Linear
models are solved with Binder Pesaran’s method, Anderson and More’s
method and two generalized Schur’s method that reproduce calculations
employed in Dynare and Iris.

• Snowdrop uses the Scientific Python Sparse package for dense and sparse
matrices algebra. For large sparse matrices algebra, it uses the Pypardiso
package, which is an interface to the Intel MKL PARallel DIrect SOlver
library.

• Several desirable computational techniques for DSGE models are imple-
mented in Snowdrop, including:
– Non-linear models can be run with time dependents parameters
– Goodness of fit of model data can be checked via the Bayesian

approach to the maximization of likelihood functions.
– Model parameters can be sampled via the Markov Chain Monte Carlo

affine invariant ensemble sampler algorithm of Jonathan Goodman
and an adaptive Metropolis-Hasting’s algorithms of Paul Miles. The
former algorithm is useful for sampling badly scaled distributions
of parameters. The later algorithm employs adaptive Metropolis
methods that incorporate delayed rejection to stimulate samples’
states mixing.

– Data sets can be filtered in several different ways, such as: (1)
the Kalman filter (linear and non-linear models), (2) the Unscented
Kalman filter, (3) the LRX filter, (4) the Hodrick-Prescott filter, (5)
the Bandpass filter, and (6) the Particle filter. Versions of Kalman fil-
ter and smoother algorithms include diffuse, non-diffuse, multivariate
and univariate filters and smoothers.

• Finally, Snowdrop streamlines the model production process by aiding
users with the plotting and model reporting and storage process.

Examples of Model Files and Python Code
The simplest way to write a Snowdrop model, is by specifing it via an YAML file
in a manner that is familiar to DYNARE and IRIS users. Overall, the quickest
way to run a model involves the following steps: 1. Create or modify existing
YAML model file in models folder. 2. Open src/tests/test_toy_models.py file
and set fname to the name of this model file. 3. Run the python script to get

2

the desired simulations.

For example, the following specify a simple growth model with lagged variables.

Monetary Policy

name: Monetary policy model example
symbols:
variables: [PDOT,RR,RS,Y]
exogenous: [ers]
shocks: [ey]
parameters: [g,p_d1,p_d2,p_d3,p_rs1,p_y1,p_y2,p_y3]
equations:
- PDOT=p_dot1*PDOT(+1)+(1-p_d1)*PDOT(-1)+p_d2*(g^2/(g-Y)-g)+p_d3*(g^2/(g-Y(-1))-g)
- RR=RS-p_d1*PDOT(+1)-(1-p_d1)*PDOT(-1)
- RS=p_rs1*PDOT+Y+ers
- Y=p_y1*Y(-1)-p_y2*RR-p_y3*RR(-1)+ey

calibration:
#Parameters
g: 0.049
#Set time varying parameters; the last value will be used for the rest of this array
p_d1: 0.414 #[0.4,0.5,0.6]
std: 0.02

options:
T : 14
periods: [1]
shock_values: [std]

Imposing Shocks

Create model object
from snowdrop.src import driver
model = driver.importModel(model_file_path)
Set shocks
model.options["periods"] = [1]
model.options["shock_values"] = [0.02]
Define list of variables for which decomposition plots are produced
decomp = ['PDOT','RR','RS','Y']
Run simulations
y, dates = driver.run(model=model, decomp_variables=decomp, Plot=True)

Kalman Filter

Create model object
from snowdrop.src import driver
model = driver.importModel(model_file_path, Solver="Klein", Filter="Durbin_Koopman",

Smoother="Durbin_Koopman", Prior="Equilibrium", measurement_file_path=meas)

3

Set simulation and filtration time ranges
simulation_range = [[1997,1,1],[2013,12,1]]
filter_range = [[1998,1,1],[2013,12,1]]
model.options["range"] = simulation_range
model.options["filter_range"] = filter_range
Set starting values of endogenous variables
model.setStartingValues(hist=meas)
Get filtered and smoothed results, date range, filtered and smoothed shocks
y,dates,epsilonhat,etahat=driver.kalman_filter(model,Output=True,fout=output_file_path)

Anticipated, Unanticipated Shocks, and Judgmental Ajustments

from snowdrop.src.driver import run
Combination of soft and hard tunes:
Set shock for gap of output to 1% at period 3
d = {"SHK_L_GDP_GAP": [(3,1)]}
model.setShocks(d)
Impose judgments
date_range = pandas.date_range(start, end, freq='QS')
m = {'L_GDP_GAP’: pandas.Series([-1.0, -1.0, -1.0], date_range)}
shocks_names = ['SHK_L_GDP_GAP']
Endogenize shock and exogenize output gap endogenous variable
model.swap(m, shocks_names)
Run simulations
y, dates = driver.run(model)

Status
This toolkit provides users with an integrated Framework to input their models,
import data, perform the desired computational tasks (solve, simulate, calibrate
or estimate) and obtain well formatted post process output in the form of tables,
graphs etc. (Goumilevski A. 2021). It has been applied for several cases including
study of macroeconomic effects of monetary policy, estimation of Peter’s Ireland
model (P. 2004), and forecast of economic effects of COVID-19 virus, to name
a few. Figure below illustrates forecast of inflation, nominal and real interest
rates, and output gap to output shock of 2% imposed at period 1 and revision
of monetary policy rate of 3% imposed at period 4.

Another example illstrates economic effects of pandemic. We used Eichenbaum-
Rebelo-Trabandt (ERT) model (Eichenbaum M. 2020) which embeds epidemio-
logical concepts into New Keynesian modelling framework. We assumed that
there two strains of pathogens and emplyed Suspected-Infected-Recovered (SIR)
epideomiological model:

dS/dt = −(β1I1 + β2I2)S − νS

4

Figure 1: Monetary Policy Example

5

dI1/dt = β1I1S − (µ+ ν1)I1

dI2/dt = β2I2S − (µ+ ν2)I2

dR/dt = µ(I1 + I2)S + νS

dD/dt = γ1I1 + γ2I2

Here I1, I2 are the individuals infected by strains 1 and 2, R is the stock of
recovered, D are deseaced, β1, β2 are the transmission rates of strains 1 and 2,
and ν is the suspected population vaccination rate.

Figure 2: Epidemic Forecast

Infection is transmitted through interaction of susceptible and infected and thru
economic activities such as work and shopping.

T = π1(SCs)(ICi) + π2(SNs)(INi) + π3(SI)

where Cs, Ci are the consumptions of suspected and infected individuals, and
Ns, Ni are the working hours, and π1, π2, π3 are constants. These constants are
calibrated assuming that 2/3 of the virus transmission come from the infected
- suspected interactions, and 1/6 from economic activities such as work and
shoping.

These epideomiological equations were plugged in into ERT model consisting
of sixty-four equations of macroeconomic variables of sticky and flexible price
economies. The macroeconomic variables of these two economies are linked
thru Taylor rule equation for policy interest rate. Model is highly non-linear

6

and is solved by using a homotopy method where parameters are adjusted step-
by-step. We assumed that the government containment measures were more
lenient during the second strain of virus compared to the first one, i.e. the second
strain contribution to the infected I = I1 + δI2 was attenuated with the factor,
δ = 0.05.

Figure 3: Forecast of Macroeconomic Variables

Acknowledgements
Authors would like to thank Doug Laxton for initiating this project, Farias Aquiles
for his guidance and support, and Kadir Tanyeri for his valuable comments.

7

References
Adjemian S., Juillard M., Bastani H. 2021. “Dynare: Reference Manual Version
4.” https://www.dynare.org/wp-repo/dynarewp001.pdf.

Botman, Dennis PJ, Philippe D Karam, Douglas Laxton, and David Rose. 2007.
“DSGE Modeling at the Fund: Applications and Further Developments.”

Del Negro, Marco, Stefano Eusepi, Marc P Giannoni, Argia M Sbordone, Andrea
Tambalotti, Matthew Cocci, Raiden Hasegawa, and M Linder. 2013. “The Frbny
Dsge Model.” FRB of New York Staff Report, no. 647.

Eichenbaum M., Trabandt M., Rebelo S. 2020. “The Macroeconomics of Epi-
demics.” ER Working Paper, No. 26882.

Fernández-Villaverde, Jesús, and Pablo A Guerrón-Quintana. 2021. “Estimating
Dsge Models: Recent Advances and Future Challenges.” Annual Review of
Economics 13 (1): 229–52.

Goumilevski A., Tanyeri K., Farias A. 2021. “A New Macroeconomic Modeling
Framework Applied to Assess Effects of Covid-19.” Proceedings of the 27th
International Conference on Computing in Economics and Finance.

“IRIS Toolbox Reference Manual.” 2024. https://iris-solutions-team.github.io/
iris-reference.

Juillard M., McAdam P., Laxton D. 1998. “An Algorithm Competition: First-
Order Iterations Versus Newton-Based Technique.” Journal of Economic Dy-
namics and Control, No. 22, Pp.1291—1318.

P., Ireland. 2004. “Technology Shocks in the New Keynesian Model.” NBER
Working Paper, No. 10309.

Smets, Frank, Kai Christoffel, Günter Coenen, Roberto Motto, and Massimo
Rostagno. 2010. “DSGE Models and Their Use at the Ecb.” SERIEs 1: 51–65.

Yagihashi, Takeshi. 2020. “DSGE Models Used by Policymakers: A Survey.”
Policy Research Institute, Ministry of Finance, Japan, PRI Discussion Paper
Series.

8

https://www.dynare.org/wp-repo/dynarewp001.pdf
https://iris-solutions-team.github.io/iris-reference
https://iris-solutions-team.github.io/iris-reference

	Disclaimer
	Summary
	Statement of Need
	Highlights

	Examples of Model Files and Python Code
	Monetary Policy
	Imposing Shocks
	Kalman Filter
	Anticipated, Unanticipated Shocks, and Judgmental Ajustments

	Status
	Acknowledgements
	References

