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Abstract 

We have developed a flexible, powerful, and user-friendly platform for macroeconomic modeling 

in Python, including tools for filtering, simulation, estimation, forecasting and model diagnostics 

for Dynamic Stochastic General Equilibrium (DSGE) models.  This platform can be applied for 

analysis of New Keynesian models, Real Business Cycle models, Gap models, and Overlapping 

Generations models, to name a few.  It applies robust and efficient solution techniques to solve 

linear and nonlinear perfect foresight models which rely on rational expectations hypothesis. The 

system of non-linear model equations is solved with the aid of Michel Juillard et al. (1998) 

forward-backward substitution method. A novel feature of this software is an application of 

dynamic parameters to analyze models with structural changes which is crucial for policy analysis.  

For demonstration purposes we apply this Platform to study macroeconomic effects of COVID-19 

pandemic on country economy.  Our analysis utilizes Eichenbaum-Rebelo-Trabandt (2020) and 

Gali-Smets-Wouters (2012) models.  ERT model is a non-linear model. It integrates the 

Neoclassical and the New Keynesian approaches with the theory of infection diseases.   GSW 

model is a linear model.  It incorporates unemployment theory developed by Gali (2011 a, b) into 

the new Keynesian model framework of Smets and Wouters (2007).  The detrimental effects of 

epidemic on economy are modeled by an adverse shock to labor supply. We propose several 

scenarios of lockdown and vaccination policies and perform forecast simulations. These scenarios 

include policies that have different intensity and timing. These simulations produce scenarios 

forecasts, which can inform policy discussions in the context of surveillance and program review 

work. 

JEL Classification Numbers: [E1,H0,I1] 
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I.   INTRODUCTION 

In this paper we aim to estimate effects of COVID -19 epidemic on country economy.  We start 

by analyzing some facts about this SARS disease rate of transmission and morbidity, then we apply 

Eichenbaum-Rebelo-Trabandt (2020 a) model to analyze possible effects of this virus on 

macroeconomic variables.  ERT model lacks references to unemployment rate.   We use Gali-

Smets-Wouters (2012) model which embeds unemployment theory of Gali (2011 a, b).  Effects of 

virus are accounted for by introducing a shock to labor supply.   

 

Numerical calculations and subsequent analysis are accomplished with the aid of in-house 

developed Python software.  This software is a quite versatile and flexible toolbox designed for 

DSGE modeling. 

 

 

II.    LITERATURE REVIEW 

The literature on macroeconomic effects of this disease is constantly growing since the start of this 

pandemics at the beginning of 2020.  

 

Mihailov (2020) studied macroeconomic effects of COVID-19 lockdown.   Author considers 

scenarios of labor force reduction due to this virus for lockdown duration of one to three quarters. 

In the most optimistic case when ¼ of labor force is unable to work and lockdown duration is of 

one quarter, per capita loss in consumption is 6-7%, and per capita annual output loss is 3-4%.  

The recovery is of V shape and lasts 1.5-2 years.  In the most pessimistic case of ¾ labor force 

reduction, loss in output could reach astonishing 12% and recovery could last for 10 years. 

 

Cristina Arellano and Yan Bai (2020) integrated epidemiology concepts into sovereign debt 

default model. Authors notice, that lockdowns could alleviate health crisis but induce costly and 

prolonged debt crisis.  Under the optimal policy output loss reaches 19%, lockdown lasts 8 months 

with intensity of 51%, and debt default crisis lasts for 43 months. 

 

Eichenbaum, Rebelo, and Trabandt (2020 a, b) extended the canonical epidemiology model to 

study mutual effects of economic decisions and epidemic.  While policy measure to reduce 

consumption and work hours alleviates health crisis counted by number of deaths, it exacerbates 

the size of the recession.  Authors also incorporated concepts of treatment, vaccination, and 

containment into the DSGE framework and found optimal policy enter and exit times and 

containment duration.  

 

Alvarez et al. (2020) studied optimal lockdown policy that controls number of infected and fatality 

cases while minimizing detrimental economic cost of lockdown.  Authors investigated different 

lockdown regimes and observed that optimal policy could reduce number of infected at a peak by 

two times and number of deaths by 1% of population.  Welfare under lockdown is lower and is 

equivalent to 2% of GDP one-time payment.   

 

Caseli et al. (2020) applied panel regression methods to analyze data on effects of government 

lockdowns on mobility, social distancing, and COVID-19 infections.  Authors conclude that 

lockdowns have significantly reduced economic activities that manifest itself thru its proxies, such 
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as mobility and job postings.  Authors also conclude that lockdowns are a powerful tool to reduce 

infections especially if applied at the early stages of epidemic and if they are sufficiently tight.  

 

 

III.   PYTHON PLATFORM 

Macroeconomic models become more and more complex nowadays and, as a rule, are not tractable 

analytically.   Several macroeconomic modeling frameworks have been developed to handle these 

models.  Among these are: IRIS Macroeconomic Modeling Toolbox, Dynare software platform, 

and Troll software, to name a few.  In this document we present a brief overview of Python 

software.  This software could help economists and alike calibrate models, run simulations, and 

perform forecasts.  

 
Some of the highlights are listed below: 

 

• Platform is written in Python language and uses only Python libraries that are available by 

installing Anaconda distribution. 

• Platform is versatile to parse model files written in a human readable YAML format, Sirius 

XML format and to parse simple IRIS and DYNARE model files. 

• Prototype model files are created for non-linear and linear perfect-foresight models. 

• Platform parses a model file and checks its syntax for errors.   It generates Python functions 

source code and computes Jacobian up to the third order in a symbolic form. 

• Non-linear equations are solved by iterations by Newton’s method.  Two algorithms are 

implemented: Armstrong et al. (1998) stacked matrices method and Juillard et al. (1998) 

forward-backward substitution method. 

• Linear models are solved with Binder and Pesaran’s method, Anderson and Moore’s 

method, and two methods that reproduce calculations employed in Dynare and Iris software 

and use generalized Schur matrix decomposition algorithms. 

• Platform can run forecasts with user’s judgmental adjustments on a path of some or all 

endogenous variables. 

• Non-linear models can be run with time dependent parameters. 

• Platform can be used to calibrate models to find model’s parameters of linear and nonlinear 

models.  Platform applies Bayesian approach to maximize likelihood function that 

incorporates prior beliefs about parameters and goodness of fit of model to the data. 

• Platform can sample model parameters by using Markov Chain Monte Carlo affine 

invariant ensemble sampler algorithm of Jonathan Goodman and adaptive Metropolis-

Hastings algorithms of Paul Miles.  The former algorithm is useful for sampling badly 

https://github.com/IRIS-Solutions-Team/IRIS-Toolbox/wiki/IRIS-Macroeconomic-Modeling-Toolbox
http://www.dynare.org/
http://www.hendyplan.com/troll-software/
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scaled distributions of parameters.  The later algorithm employs adaptive Metropolis 

methods that incorporate delayed rejection to stimulate samples’ states mixing. 

• Platform uses Scientific Python Sparse package for large matrices algebra. 

• Following filters are implemented: Kalman (linear and non-linear models), LRX, HP, 

Bandpass.  Versions of Kalman filter and smoother algorithms include diffuse and non-

diffuse, multi-variate and univariate filters. 

 

IV.   EPIDEMIC STYLIZED FACTS 

COVID-19 disease is caused by Severe Acute Respiratory Syndrome coronavirus.  It is an airborne 

virus that can spread through small droplets of saliva or indirectly via surfaces that have been 

touched by someone who was infected with this virus.  Since its outbreak in March 2020, more 

than 166 million people worldwide had been infected and about 3.4 million had died.  In the US 

33 million people were infected, and 588 thousand died.   

 

Below we present data on epidemic in the US and in four major EU economies.  We sourced these 

data from the Center for System Science and Engineering at John Hopkins University1.  Data on 

active COVID-19 cases in the United States were sourced from Worldometer’s website2. 

 

 
 

Fig.4.1. Dynamics of coronavirus epidemic in the US.  Number of infected is the  

total number of reported cases of COVID-19 infection. 

 

 

 
1 Coronavirus Source Data, https://ourworldindata.org/coronavirus-source-data 
2 COVID-19 Cases in the United States, https://www.worldometers.info/coronavirus/country/us/#graph-

cases-daily 
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Based on these data for US, Germany, France, Italy and Spain, we calculated daily rate of infection 

transmission as a ratio of daily change of the number of infected to the total number, and daily rate 

of deaths as a ratio of the number of daily deaths to the total number of infected.    At the beginning 

of epidemic number of infected is small.  Because these calculations assume division by the total 

number of infected and at the onset of epidemic it is small, we report daily rates starting from June 

2020. 

 

These data demonstrate a seasonal nature of COVID-19 virus:  infection transmission increases in 

winter and it decreases in summer.   

  
Fig.4.2. Percent of total cases of infected and deceased population in five major world 

economies.  Daily rates of infected and deceased were filtered by applying HP filter to 

smooth the scattered data.  Vertical axis displays percentage point. 

 

In figure 4.3 we present major macroeconomic indicators1 of US economy for period from January 

2006 to March 2021.  This time range includes Global Financial Crisis of 2007 and 2008 and 

economic recession of 2020.  We computed output and consumption gaps as percentage deviations  

 
1 Source: World Economic Outlook and Haver Analytics databases. 
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of time series from HP filtered values.  These data show a drop in output and consumption since 

epidemic outbreak followed by a V shape recovery.  Similarly, unemployment rate, wage rate, 

average working hours per week, and total labor force show a quick recovery from COVID-19 

disease impact. 

 
 

Fig.4.3. Macroeconomic indicators of US economy.  Output gap, consumption gap, 

unemployment and inflation rates are shown in percentage points.  Work hours are average 

hours per week. Interest rate is a six-month London interbank offered rate (LIBOR), period 

averaged. 

 

 

V.   EPIDEMIOLOGICAL MODELS 

Epidemiological models describe spread of an epidemic.  These compartmental models assume 

that an individual could transition thru several states during infection period: Susceptible, Infected, 

https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology#The_SIR_model
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Recovered and Deceased.   If incubation period of being exposed to infection, but still not infected, 

is large, then one could add Exposed state. These models also include models describing 

transmission of virus when individuals are vaccinated, and models with individuals’ age 

structuring.   

 

We consider a simple SIR model consisting of four equations, 

 

 
𝑑𝑆

𝑑𝑡
 =  − 𝛽𝐼𝑆 

 
𝑑𝐼

𝑑𝑡
 =   𝛽𝐼𝑆 − (𝜇 + 𝛾)𝐼 

            (5.1) 
𝑑𝑅

𝑑𝑡
 =  𝜇𝐼 

 
𝑑𝐷

𝑑𝑡
 =  𝛾𝐼 

 

Here 𝑆 is the stock of susceptible, 𝐼 is the flow of infected,  𝑅 is the stock of recovered and 𝐷 is 

the stock of deceased population.  

 

We assume that at time zero number of infected population is 0.05%.  Rewriting equation for 

infected individuals as, 

 
𝑑𝐼

𝑑𝑡
 =  (𝑅𝑏𝑆 − 1)(𝜇 + 𝛾)𝐼 

 

it yields that if 𝑅𝑏𝑆(0) < 1, then number of infected will decrease with time.  Here the basic 

reproduction number is,  𝑅𝑏 = 
𝛽
𝜇 + 𝛾⁄  .  If 𝑅𝑏 ≤ 1  , the disease can never cause a proper 

epidemic outbreak. 
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Fig.5.1.  Diagram of the SIR model forecast.  Initial infected population was, 0.05%. and 

the basic reproduction number 𝑅𝑏 was, 1 and, 1.3.  The Y axis shows percent of population, 

and the X axis displays time in quarters.  For  𝑅𝑏 = 1  the epidemic never occurs.  

 

 

 

VI.   ERT MODEL 

In this section we describe Eichenbaum-Rebelo-Trabandt model.  This model embeds 

epidemiological concepts into DSGE modelling framework.  We start with SIR model equations.  

In addition to the standard channel of infection transmission, the number of newly infected 

population is affected by an economic activity of agents, 

 

𝑇𝑡 = 𝜋1 (𝑆𝑡 𝑐𝑡
𝑆 )(𝐼𝑡𝑐𝑡

𝐼) + 𝜋2 (𝑆𝑡𝑛𝑡
𝑆)(𝐼𝑡𝑛𝑡

𝐼) + 𝜋3 (𝑆𝑡𝐼𝑡)      (6.1) 

 

The first two terms describe infection transmitted thru consumption and work channels.  
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Populations of susceptible, infected, recovered, and deceased evolve according to equations of the 

standard epidemiological model: 

 

𝑆𝑡+1 = 𝑆𝑡 −  𝑇𝑡 
𝐼𝑡+1 = 𝐼𝑡 +  𝑇𝑡 − (𝜋𝑅 + 𝜋𝐷)𝐼𝑡        (6.2) 

𝑅𝑡+1 = 𝑅𝑡 + 𝜋𝑅𝐼𝑡 
𝐷𝑡+1 = 𝐷𝑡 + 𝜋𝐷𝐼𝑡 
 

Model introduces macro variables of suspected, recovered, and infected individuals’ such as 

consumption and work hours.  The Cobb-Douglass type equation for output 𝑦𝑡, equations for 

aggregated consumption 𝑐𝑡, investment 𝑥𝑡, government spending 𝑔, marginal cost 𝑚𝑐𝑡, and capital 

𝑘𝑡 are standard ones: 

 

𝑦𝑡 = 𝑝𝑡 𝐴 𝑘𝑡
1−𝛼𝑛𝑡

𝛼 

𝑦𝑡 = 𝑐𝑡 + 𝑥𝑡 + 𝑔 

𝑚𝑐𝑡 = 𝐴
−1𝛼−𝛼(1 − 𝛼)𝛼−1𝑤𝑡

𝛼(𝑟𝑡
𝑘)
1−𝛼

       (6.3) 

𝑤𝑡 = 𝛼𝐴𝑚𝑐𝑡𝑛𝑡
𝛼−1𝑘𝑡

1−𝛼 

𝑘𝑡+1 = 𝑥𝑡 + (1 − 𝛿)𝑘𝑡 
 

Aggregate equations for consumption 𝑐𝑡 and working hours 𝑛𝑡 of suspected, infected, and 

recovered are, 

 

𝑐𝑡 = 𝑆𝑡𝑐𝑡
𝑆 + 𝐼𝑡𝑐𝑡

𝐼 + 𝑅𝑡𝑐𝑡
𝑅 

𝑛𝑡 = 𝑆𝑡𝑛𝑡
𝑆 + 𝐼𝑡𝑛𝑡

𝐼 + 𝑅𝑡𝑛𝑡
𝑅                           (6.4) 

  

Authors introduce utility function of households, 

 

𝑈 = ∑ 𝛽𝑡 {𝑆𝑡 [log(𝑐𝑡
𝑆)  −

𝜃

2
(𝑛𝑡
𝑆)2] + 𝐼𝑡 [log(𝑐𝑡

𝐼)  −
𝜃

2
(𝑛𝑡
𝐼)2] + 𝑅𝑡 [log(𝑐𝑡

𝑅) −
𝜃

2
(𝑛𝑡
𝑅)2]}∞

𝑡=0   (6.5) 

 

It is subject to budget constraint of household family members,  

 

𝑐𝑡 + 𝜓 = 𝑤𝑡𝑛𝑡 + 𝑟𝑡
𝑘 𝑘𝑡 + 𝜑𝑡                                                                                                  (6.6) 

 

Here 𝜓 is the lump-sum taxes, and 𝜑𝑡 is the firms’ profit. The government finances spending with 

its income from taxes, i.e., 𝑔 = 𝜓. 

 

Eichenbaum et al. (2020a) derived first order conditions by equating derivatives of a Lagrange 

function to zero.  Below we present equations for macroeconomic variables and for Lagrange 

multipliers 𝜆: 

 
1
𝑐𝑡
𝑆⁄  =    𝜆𝑡

𝑏  − 𝜋1 𝜆𝑡
𝜏 𝐼𝑡 𝑐𝑡

𝐼 

1
𝑐𝑡
𝐼⁄  =    𝜆𝑡

𝑏  
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1
𝑐𝑡
𝑅⁄  =    𝜆𝑡

𝑏  

𝜃𝑛𝑡
𝑆 = 𝜆𝑡

𝑏 𝑤𝑡 + 𝜋2 𝜆𝑡
𝜏 𝐼𝑡 𝑛𝑡

𝐼 

𝜃𝑛𝑡
𝐼 = 𝜆𝑡

𝑏 𝑤𝑡 
𝜃𝑛𝑡

𝑅 = 𝜆𝑡
𝑏 𝑤𝑡 

𝜆𝑡
𝑏 =  𝛽 (𝑟𝑡+1

𝑘 + 1 − 𝛿)𝜆𝑡+1
𝑏          (6.7) 

𝜆𝑡
𝐼 =  𝜆𝑡

𝜏  +  𝜆𝑡
𝑆  

𝑙𝑜𝑔(𝑐𝑡+1
𝑆 ) =

𝜃

2
 (𝑛𝑡+1

𝑆 )2 −  𝜆𝑡+1
𝜏 [𝜋1𝑐𝑡+1

𝑆 (𝐼𝑡𝑐𝑡
𝐼) + 𝜋2𝑛𝑡+1

𝑆 (𝐼𝑡𝑛𝑡
𝐼) + 𝜋3𝐼𝑡+1 ] 

                  −𝜆𝑡+1
𝑏 [𝑤𝑡+1𝑛𝑡+1

𝑆 − 𝑐𝑡+1
𝑆 ] +

𝜆𝑡
𝑆

𝛽
− 𝜆𝑡+1

𝑆  

𝑙𝑜𝑔(𝑐𝑡+1
𝐼 ) =

𝜃

2
 (𝑛𝑡+1

𝐼 )2 − 𝜆𝑡+1
𝑏 [𝑤𝑡+1𝑛𝑡+1

𝐼 − 𝑐𝑡+1
𝐼 ] +

𝜆𝑡
𝐼

𝛽
− 𝜆𝑡+1

𝐼 [1 − 𝜋𝑅 − 𝜋𝐷] − 𝜆𝑡+1
𝑅  𝜋𝑅 

𝑙𝑜𝑔(𝑐𝑡+1
𝑅 ) =

𝜃

2
 (𝑛𝑡+1

𝑅 )2 − 𝜆𝑡+1
𝑏 [𝑤𝑡+1𝑛𝑡+1

𝑅 − 𝑐𝑡+1
𝑅 ] +

𝜆𝑡
𝑅

𝛽
− 𝜆𝑡+1

𝑅  

𝜆𝑡
𝑏 =  𝛽 𝑟𝑡𝜆𝑡+1

𝑏  

𝑟𝑡 = 
𝑅𝑡
𝑏

𝜋𝑡+1
 

 

The optimality conditions for price settings are, 

 

𝐾𝑡
𝑓
=  𝛾 𝑚𝑐𝑡 𝜆𝑡

𝑏 𝑦𝑡 +  𝛽𝜉𝜋𝑡+1

𝛾̂
𝛾̂−1⁄
𝐾𝑡+1
𝑓
  

𝐹𝑡 =  𝜆𝑡
𝑏 𝑦𝑡 +  𝛽𝜉𝜋𝑡+1

1
𝛾̂−1⁄
𝐹𝑡+1         (6.8) 

𝐾𝑡
𝑓
= 𝐹𝑡  (

1 − 𝜉𝜋𝑡

1
𝛾̂−1⁄

1 − 𝜉
)

1−𝛾̂

 

The price dispersion term is, 

 

𝑝𝑡 = [(1 − 𝜉) (
1−𝜉𝜋𝑡

1
𝛾̂−1⁄

1−𝜉
)

𝛾̂

 +  𝜉
𝜋𝑡

𝛾̂
𝛾̂−1⁄

𝑝𝑡−1
]

−1

                                                               (6.9) 

                   

      

The Taylor rule equation reads, 

 

𝑅𝑡
𝑏 = 𝑟𝑠𝑠 +  𝜃𝜋 𝑙𝑜𝑔 (

𝜋𝑡

𝜋𝑠𝑠
) + 𝜃𝑥 𝑙𝑜𝑔 (

𝑦𝑡

𝑦𝑡
𝑓)                                                               (6.10) 

Here 𝜃𝑥 is the Taylor rule coefficient for output gap, and 𝑦𝑡
𝑓
 is the flexible price output which can 

be computed by setting 𝜉 = 0. 
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A.   Calibration 

We calibrated SIR model parameters based on US COVID-19 data.  These data display seasonal 

nature of rate of infection and deaths – these rates increase in winter and subside in spring.  The 

US average weekly transmission and weekly death rates since May 2020 are: 𝛽 = 16%, 𝛾 = 0.3%. 

 
 

Fig.6.1. Rates of infection transmission and death in the United States.  These rates are 

ratios of weekly changes of the number of current infection cases and death cases to the 

total number of infected. 

 

Model parameters  𝜋1, 𝜋2, 𝜋3 were computed by solving nonlinear equations, 

 
𝜋1𝑐𝑠𝑠

2

𝜋1𝑐𝑠𝑠
2 +𝜋2𝑛𝑠𝑠

2 +𝜋3
= 1/6  

𝜋2𝑛𝑠𝑠
2

𝜋1𝑐𝑠𝑠
2 +𝜋2𝑛𝑠𝑠

2 +𝜋3
= 1/6         (6.11) 

           

𝑅∞ + 𝐷∞ = 1 − 𝐼∞ = 0.4        
    

We assumed that at the beginning of epidemic one third of virus transmission comes from 

economic activities: one sixth - from consumption and one sixth - from work.  Additionally, we 

assumed that total number of infected people at the end of epidemic that are either recovered or 

dead is 40%. 
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Equations (6.11) were solved by a constrained optimization method: the lower bound of infection 

rate 𝜋3 was equal to the sum of recovery and death rates, 𝜇 + 𝛾. 

 

The calibrated values are: 𝜋1 = 1.5 10
−7,𝜋2  =  9.5 10

−5,𝜋3  =  0.5.  Model parameters are 

presented in Table.1.   

 

 

 

Notation Economic Interpretation Parameter Value 

𝛽 Weekly discount factor 0.98
1
52⁄ = 0.9996 

𝜃 Working hours multiplier in household utility 

function 

0.19 

𝜃𝜋 Taylor rule coefficient of inflation 1.5 

𝜃𝑥 Taylor rule coefficient of output gap 0.5/52 

𝜉 Calvo price stickiness (weekly) 0.98 

𝛾 Price dispersion parameter 1.35 

𝛿 Capital depreciation rate (weekly) 0.06/52 

𝛼 Marginal product of labor 2/3 

𝛾 Weekly probability of dying 0.25% 

𝜇 Weekly probability of recovering 7
14⁄ − 𝛾 = 49.8% 

𝜋𝑠𝑠 Steady-state inflation 1 

𝑟𝑠𝑠 Steady-state nominal interest rate 1
𝛽⁄ = 1.0004 

𝑦𝑠𝑠 Weekly average income 
58,000/52 =  1,115 

5
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𝑛𝑠𝑠 Steady-state number of work hours per week 28 

A Cobb-Douglass production function multiplier 𝛽(1−𝛼)

1−𝛽(1−𝛿)
(
𝑦𝑠𝑠

𝑛𝑠𝑠
)
2

= 2.148 

 

Table.1.  ERT model parameters.  Model time frequency is weekly. 

 

 

VII.   MODELLING ECONOMIC EFFECTS OF EPIDEMIC 

In this section we present simulations results obtained with the aid of ERT1 model. We assumed 

that at time zero there is 0.05% of infected population.  Calculations were performed with Juillard 

et al. (1998) numerical algorithm applicable to non-linear models. This algorithm solves dynamic 

macroeconomic models with perfect foresight expectations of economic agents.  Since numerical 

method can diverge when applied with final parameters, we solve this model by using homotopy 

method where we adjusted parameters incrementally step-by-step. 

 

 

 
1 Authors converted Dynare model file to “yaml” format.  The original ERT model code is  available at: 

https://sites.google.com/site/mathiastrabandt/home/research 

https://sites.google.com/site/mathiastrabandt/home/research
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Fig.7.1. Forecast of infected and deceased.  Blue line shows ERT model predictions and 

orange line shows the US data.  We assumed that epidemic started on March 1st, which 

coresponds to time zero. X axis shows time in quarters and Y axis shows percentage of 

population. 

 

 
 

Fig.7.2. Macroeconomic variables are shown as percentage deviations from their initial 

steady state.  The suspected, infected, recovered and deceased are shown in percent of 

initial population. The blue color lines mark plots of macroeconomic variables for sticky 

price economy (𝜉 = 0.98), and the dotted red lines, for flexible price economy (𝜉 = 0). 
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Fig.7.3. Macroeconomic variables are shown as percentage deviations from their initial 

steady state.  The blue color lines mark plots of macroeconomic variables for sticky price 

economy (𝜉 = 0.98), and the dotted red lines – for flexible price economy (𝜉 = 0). 

 

The basic reproduction number can be computed based on rate of infection transmission 𝜋3 , and 

on weekly probabilities of recovery 𝜋𝑅 and deaths 𝜋𝐷 ; it is 𝑅𝑏 = 
𝜋3

𝜋𝑅+𝜋𝐷
= 1.  As we have seen 

before, epidemiological model predicts no outbreak of disease in this case.   However, because of 

agent’s economic activities, this reproduction number becomes larger:    𝑅𝑏 = 
𝜋1𝑐𝑠𝑠

2 +𝜋2𝑛𝑠𝑠
2 +𝜋3

𝜋𝑅+𝜋𝐷
=

1.3.  This warrants onset of epidemic.  The computed peak number of infected is 2.8%.  The total 

number of suspected and recovered reaches 59% and 41% limit, and the total number of deaths - 

0.2%. 

 

Epidemic negatively affects economy: output drops by staggering 6.9%, aggregate consumption, 

by 8.3% and aggregate work hours, by 10.1%.  Susceptible population experiences the most 

significant drop compared to infected and recovered. 
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VIII.   MODELLING LOCKDOWN EFFECTS 

Lockdown policies such as “stay-at-home”, “shelter-in-place”, closure of restaurants and gyms, 

prohibition of public gathering, etc., are restrictive policies announced by government to save lives 

during pandemic. These policies are detrimental and costly in terms of economic activity but 

beneficial in terms of public health. 

 

The number of newly infected is decreased by a lockdown, 

 

𝑇𝑡 = {𝜋1 (𝑆𝑡 𝑐𝑡
𝑆 )(𝐼𝑡𝑐𝑡

𝐼) + 𝜋2 (𝑆𝑡𝑛𝑡
𝑆)(𝐼𝑡𝑛𝑡

𝐼) + 𝜋3 (𝑆𝑡𝐼𝑡)}  (1 − 𝜗𝐿𝑡)
2   (8.1) 

 

Here parameter  𝜗 is the lockdown intensity, and 𝐿𝑡 is the time dependent lockdown policy.  

Lockdown decreases infection transmission from infected to suspected.  We assume a quadratic 

dependence of infection transmission on lockdown, (1 − 𝜗𝐿𝑡)
2.  Similarly, work hours of 

susceptible and infected decrease by a factor of (1 − 𝜗𝐿𝑡).  
 

Caselli et al. (2020) show that full lockdown suppresses mobility by maximum of 30%, social 

distancing by 2%, and jobs posting by 10%. Considering these numbers, we estimate the average 

effectiveness of lockdown as 10%, or 𝜗 = 0.1.  Below we present simulation results of a scenario, 

where lockdown occurs at month four and lasts for three quarters.  The gray shaded area in figures 

10.2-3 shows occurrence of this lockdown.  

 

 

 
 

Fig.8.1. Forecast of infected and deceased.  Blue color line shows ERT model predictions 

and orange color line, the US data.  Time zero corresponds to the start of epidemic on 

March 1st.  X axis displayes time in quarters, and Y axis shows percentage of population.   
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Fig.8.2. Effects of lockdown on economy. Macroeconomic variables are shown as 

percentage deviations from their initial steady state. The gray shaded area displays 

occurrence of lockdown.   

 

 
 

Fig.8.3. Effects of lockdown on economy.  
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These graphs illustrate, that if a lockdown is lifted prematurely, infection could resume its course.  

Lockdown policy is beneficial in terms of reduction of virus spreading.  For example, the number 

of infected at peak drops by a factor of two, while cases of deaths decrease by 0.03%.  

Consumption drops to -4.5% for lockdown policy compared to -8.3% when there is no lockdown.  

Lockdown impact on output is twofold:  on the one hand, the number of infected decreases and 

output increases; on the other hand, the work hours of individuals reduce and the output decreases.  

These two effects offset each other, and maximum drop in output does not change significantly.  

Lockdown is lifted at the end of fourth quarter and infection transmission resumes.  This results in 

additional output drop at quarter six. We may conclude that lockdown policies are efficient in the 

short run but are not efficient in the long run.  Contrary to common belief, tighter lockdown policy 

today could lead to an increase of the number of infected in the future. 

 

We repeated calculations for lockdown intensity of 5%.  With easy policy the second wave of 

infection does not emerge.  The number of infected and decease cases are larger compared to the 

previous scenario.  However, the number of deaths at period ten is about the same.  

 

 
Fig.8.4. Forecast of lockdown scenarios with intensities of 5% and 10% marked by blue 

and orange color lines, respectively.  Vertical axis displays percentage deviation from 

initial steady state.   

 

We repeated calculations where we increased lockdown intensity from 0 to 20%.  For each scenario 

we computed total production loss and maximum drop in production.  Total loss was computed as 

an area under the output curve.  Figure 10.5 illustrates increase of total loss with growth of 
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lockdown intensity.  However, the output value at trough firstly increases with lockdown intensity 

and secondly, decreases.   This could be explained by widening of output curve.  This results in U 

shape type recovery. 

 

 
 

Fig.8.5. Total production loss as a function of lockdown intensity 𝜗. Left vertical axis 

shows values of output loss, and right axis – values of output at trough.   

 

This figure illustrates that a stringent lockdown policy negatively affects country’s production. 

 

 

IX.   VACCINATION 

The spread of COVID-19 diseases could be eradicated by establishment of a mass vaccination 

program.  The vaccine helps individuals to develop antibodies and become immune to this disease.  

We assume that vaccination rate of individuals is constant, 𝜌.  The number of vaccinated 

individuals during a period of 𝑑𝑡 is 𝜌𝑆𝑡𝑉𝑡𝑑𝑡 , where 𝑉𝑡 is the vaccination policy.  Because of 

vaccination, the number of newly infected decreases while the number of immune to this disease 

increases: 

 
𝑑𝑆

𝑑𝑡
 =  − 𝛽𝐼𝑆 −  𝜌𝑆𝑉 

𝑑𝐼

𝑑𝑡
 =  − 𝛽𝐼𝑆 − (𝜇 + 𝛾)𝐼 

           (9.1) 
𝑑𝑅

𝑑𝑡
 =  𝜇𝐼 + 𝜌𝑆𝑉 

𝑑𝐷

𝑑𝑡
 =  −𝛾𝐼 

 

Below we present results of simulations for 𝜌 = 0.02 and duration of vaccination of three quarters.  

Vaccination of 2% per week means that all population would be vaccinated in one year, assuming 

the stock of susceptible had not decreased with time. We assumed that vaccination program starts 
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at the second quarter since the epidemic outbreak.  Vaccination helps to reduce number of infected 

people and to improve economic outlook:  the number of infected population at peak drops by a 

factor of four and reaches at peak 0.6% compared to 2.7%, while the output drops to -1.9% 

compared to -6.9% in the absence of this vaccination program. 

 

 
Fig.9.1. Forecast of infected and deceased.  Blue color lines show ERT model predictions 

and orange color lines show number of current cases of infected and total number of deaths 

in the US.  We assumed that epidemic started on March 1st , which coresponds to time zero. 

X axis shows time in quarters and Y axis shows percentage of population. 
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Fig.9.2. Macroeconomic variables are shown as percentage deviations from their initial 

steady state.   

 

 

 
 

Fig.9.3. Macroeconomic variables are shown as percentage deviations from their initial 

steady state. Suspected, infected, recovered and deceased are in percent of initial 

population. The gray shaded area displays occurrence of vaccination program. 

 

Vaccination also improves economic outlook in terms of working hours of susceptible: -3.8% 

versus -13.8%, and in terms of consumption: -3.2% versus -10.8%. 

 

 

X.   MITIGATION POLICIES 

In this section we study effects of vaccination and lockdown policies on economy.  To account for 

economic cost of lives loss, we computed the discounted future income of an individual for a 

duration of 20 years.  We assume that 20 years is the average stint of individual’s employment.  

We then subtracted this value of future income from the value of utility (6.5). 
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Fig.10.1. Utility function versus intensity of lockdown and vaccination policies.  

Lockdown and vaccination start at the second quarter since epidemic outbreak and last for 

three quarters.  Maximum lockdown and vaccination intensities were 10% and 2%, 

respectively.  X and Y axis display multiplier factors, where factor of one corresponds to 

maximum policy intensity. 

 

Total utility increases with tightening of lockdown and vaccination policies.  It is worth noting, 

that this function is more sensitive to vaccination than to lockdown intensity.  

 

Figure 10.2 presents comparison of macroeconomic forecast of lockdown and vaccination policies.  

Lockdown intensity was 10%.  Vaccination program is beneficial in terms of saved lives and in 

terms of economic outlook - the number of deaths is reduced by 0.16%, which is equivalent to half 

a million lives in the US.  Lockdown policies are helping to reduce number of infected and 

deceased as well.  However, lockdown has a negative impact on country economic outlook 

including its output, investment, and individuals’ consumption. 
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Fig.10.2. Blue color lines mark baseline scenario, and orange and green color lines mark 

lockdown and vaccination scenarios, respectively. Vertical axis displays percentage 

deviations of macroeconomic variables from their initial steady state.   

 

For illustration purposes, we present results when both policies are in place.  Vaccination and 

lockdown rates were 3% and 5%, respectively.  Weekly vaccination rate of 3% means that in four 

months half of a population will be vaccinated.  This estimate is consistent with percentage of 

vaccinated individuals in the US by the end of May 2021.  Those are individuals who have received 

at least one dose of COIVID-19 vaccine.  
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Fig.10.3. Forecast of infected and deceased.  Blue color lines show ERT mode predictions 

and orange lines show current cases of infected and total number of deaths in the US.  

Lockdown intensity was 5% and vaccination rate was 3%. 
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Fig.10.4. Macroeconomic variables are shown as percentage deviations from their initial 

steady state.  Gray shaded area shows occurrence of vaccination and lockdown programs, 

which start at the second quarter since the start of epidemic and last for three quarters.  

Lockdown and vaccination rates were 5% and 3%, respectively. 

 

 

The path of economic recovery has a V shape, and impact of epidemic is much milder.   

 

In what follows, we consider a vaccination program only.  We repeated these simulations with the 

only difference that vaccination program starts at different times.  We observed that timing of 

adopting vaccination program plays a crucial role on epidemic transmission.  We simulated three 

scenarios, where vaccination program lasts for three quarters and starts at the second, the fourth 

and the sixth month since epidemic outbreak.  Starting program earlier than later improves output 

and aggregate consumption outlook: -0.7% versus -1.9% and -4.3%, and -1% versus -2.5% and -

5.3%, respectively. 

 

 
 

Fig.10.5. Macroeconomic variables are shown as percentage deviations from their initial 

steady state.  The blue, orange, and green colors mark lines where vaccination starts at the 

second, the fourth and the sixth month since the start of epidemic.  Starting program later 

reduces benefits of vaccination program. 

 

All in all, we can conclude that vaccination is the most effective mean to combat detrimental 

effects of virus. 
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XI.   GSW MODEL 

ERT model lacks a reference to unemployment - instead, it predicts working hours of individuals. 

The theory of unemployment was developed by Gali (2011 a, b).  Later it was embedded into the 

new Keynesian model framework of Gali, Smets and Wouters (2012).  The following equations 

constitute GSW model: 

 

Consumption Euler equation, 

 

𝑐𝑡 = 𝐶1𝑐𝑡−1 + (1 − 𝐶1)𝐸(𝑐𝑡+1) − 𝐶2(𝑟𝑡 − 𝐸(𝜋𝑡+1) + 𝜀𝑡
𝑏)     (11.1) 

 

Here 𝐶1 = 
ℎ/𝜏

1+ℎ 𝜏⁄
 ; 𝐶2 =

1−ℎ/𝜏

1+ℎ 𝜏⁄
 are the constants, ℎ is the external habit parameter, 𝜏 is the trend 

growth rate, 𝑟𝑡 is the nominal interest rate and 𝜀𝑡
𝑏 is the exogenous AR(1) risk premium process.  

Equation (11.1) illustrates that consumption today depends on its historical value, as well as on its 

future expectations. 

 

Investment follows Euler equation, 

 

𝑖𝑡 = 𝐼1𝑖𝑡−1 + (1 − 𝐼1)𝐸(𝑖𝑡+1) + 𝐼2𝑞𝑡 + 𝜀𝑡
𝑞
       (11.2) 

 

Where 𝐼1 = 
1

1+𝛽
 ; 𝐼2 = 

𝐼1

𝜏2Ψ
 are the constants, 𝛽 is the household’s discount factor, Ψ is the 

elasticity of capital adjustments cost, 𝑞𝑡 is the value of installed capital, and 𝜀𝑡
𝑞
 is the exogenous 

AR(1) process of investment technology shock. 

 

Investment depends on the value of capital stock, 

 

𝑞𝑡 = −(𝑟𝑡 − 𝐸(𝜋𝑡+1) + 𝜀𝑡
𝑏) + 𝑄1𝐸(𝑟𝑡+1

𝑘 ) + (1 − 𝑄1)𝐸(𝑞𝑡+1)      (11.3) 

 

Here 𝑄1 =  
𝑟𝑘

𝑟𝑘+1−𝛿
 is the constant.  Goods market clearing implies, 

 

𝑦𝑡 = 𝐶𝑦𝑐𝑡 + 𝐼𝑦𝑖𝑡 + 𝑉𝑦𝑣𝑡 = 𝑀𝑝[𝛼𝑘𝑡 + (1 − 𝛼)𝑛𝑡 + 𝜀𝑡
𝑎]     (11.4) 

 

Here 𝐶𝑦 =
𝑐𝑠𝑠

𝑦𝑠𝑠⁄  ; 𝐼𝑦 = 
𝑖𝑠𝑠
𝑦𝑠𝑠⁄  ; 𝑉𝑦 = 

𝑟𝑠𝑠
𝑘𝑘𝑠𝑠

𝑦𝑠𝑠
⁄  are the constants, 𝑣𝑡 is the capital utilization 

rate, and 𝑀𝑝 is the price markup.  

 

Price-setting under the Calvo model is, 

 

𝜋𝑡
𝑝 − 𝛾𝑝𝜋𝑡−1

𝑝 =  𝛽[𝐸(𝜋𝑡+1
𝑝 ) − 𝛾𝑝𝜋𝑡

𝑝] − 
(1−𝛽𝜃𝜋)(1−𝜃𝜋)

𝜃𝜋(1+(𝑀𝑝−1)𝜁𝑝)
(𝜇𝑝,𝑡 − 𝜇𝑝,𝑡

𝑛 )   (11.5) 

 

Here  𝜁𝑝 is the curvature of the Dixit-Stiglitz (1977) price aggregator. 
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Average and natural price markups are described as, 

 

𝜇𝑝,𝑡 = −(1 − 𝛼) 𝜔𝑡 −  𝛼𝑟𝑡
𝑘 + 𝜀𝑡

𝑎          (11.6) 

𝜇𝑝,𝑡
𝑛 = 100 𝜀𝑡

𝑝
             

 

Here 𝜔𝑡 = 𝑤𝑡 − 𝑝𝑡 is the real wage.  Wage-setting under the Calvo model is, 

 

𝜋𝑡
𝑤 − 𝛾𝑤𝜋𝑡−1

𝑝 =  𝛽[𝐸(𝜋𝑡+1
𝑤 ) − 𝛾𝑤𝜋𝑡

𝑝] − 
(1−𝛽𝜃𝑤)(1−𝜃𝑤)

𝜃𝑤(1+𝜀𝑤𝜑)
(𝜇𝑤,𝑡 − 𝜇𝑤,𝑡

𝑛 )    (11.7) 

 

Average and natural wage markups, and unemployment equations are: 

 

𝜇𝑤,𝑡 = 𝜔𝑡 − (𝑧𝑡 +  𝜑𝑛𝑡 + 𝜀𝑡
𝜒
) =  𝜑𝑢𝑡 

            (11.8) 

𝜇𝑤,𝑡
𝑛 = 100 𝜀𝑡

𝑤 =  𝜑𝑢𝑡
𝑛 

 

Where 𝜀𝑡
𝜒

 is the labor supply shock.  The trend for aggregate consumption is, 

 

𝑧𝑡 = (1 − 𝜐)𝑧𝑡−1  +  𝜐 [
1

1−ℎ/𝛾
 𝑐𝑡 − 

ℎ/𝛾

1−ℎ/𝛾
 𝑐𝑡−1 ]       (11.9) 

 

Labor force is composed of individuals work hours and involuntarily unemployed individuals’ 

hours: 

 

𝑙𝑡 = 𝑛𝑡 + 𝑢𝑡           (11.10) 

 

Inflation rate, by definition, is equal to minus involuntarily unemployed individuals’ hours, -𝑢𝑡. 
Capital accumulation is described by equation: 

 

𝑘𝑡 − 𝜐𝑡 = (1 −
𝑖𝑠𝑠

𝑘𝑠𝑠
) (𝑘𝑡−1 − 𝜐𝑡−1) + 

𝑖𝑠𝑠

𝑘𝑠𝑠
 𝑖𝑡 + 

𝑖𝑠𝑠

𝑘𝑠𝑠
 (1 + 𝛽) 𝜏2Ψ 𝜀𝑡

𝑞      (11.11) 

             

The optimal capital utilization condition reads, 

 

𝜐𝑡 = 
1−𝜓

𝜓
 𝑟𝑡
𝑘          (11.12) 

              

Here 𝜓 is the elasticity of capital utilization cost function.  The optimal input choice is given by, 

 

𝑘𝑡 = 𝜔𝑡 − 𝑟𝑡
𝑘 + 𝑛𝑡          (11.13) 

 

Lastly, monetary policy rule for short term nominal interest rate is, 

 

𝑟𝑡 = 𝜌𝑟  𝑟𝑡−1 + (1 − 𝜌𝑟)[𝑟𝜋𝜋𝑡
𝑝 + 𝑟𝑦(𝑦𝑡 − 𝑦𝑡

𝑛) + 𝑟Δ𝑦{(𝑦𝑡 − 𝑦𝑡
𝑛) − (𝑦𝑡−1 − 𝑦𝑡−1

𝑛 )}] (11.14) 
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Exogeneous disturbances for productivity 𝜀𝑡
𝑎, risk premium 𝜀𝑡

𝑏, investment specific technology 𝜀𝑡
𝑞
, 

and government expenditure 𝜀𝑡
𝑔

 follow AR(1) process with IID-Normal innovation terms 𝜂𝑡: 
 

𝜀𝑡
𝑎 = 𝜌𝑎𝜀𝑡−1

𝑎 + 𝜂𝑡
𝑎 

𝜀𝑡
𝑏 = 𝜌𝑏𝜀𝑡−1

𝑏 + 𝜂𝑡
𝑏           (11.15) 

𝜀𝑡
𝑞 = 𝜌𝑞𝜀𝑡−1

𝑞 + 𝜂𝑡
𝑞
 

𝜀𝑡
𝑔
= 𝜌𝑔𝜀𝑡−1

𝑔
+ 𝜂𝑡

𝑔
+ 𝑐𝑔𝑦 𝜀𝑡

𝑎 

 

Table 2 presents calibration parameters of GSW model.  These parameters were estimated by 

Mihailov (2020).  GSW model was calibrated based on US quarterly data for period from 1999Q1 

to 2017Q4.  These time series included data for real GDP, its deflator, real consumption, interest 

rate on lending facilities, employment, and unemployment rates.  We corrected investment 

adjustment cost to 0.2 from its original value of 3.96 to better account for year 2020 output decline. 

 

Notation Economic Interpretation Value 

Ψ Elasticity of capital adjustment cost 0.2 

ℎ External habit 0.75 

𝜑 Inverse Frisch elasticity of labor supply 4.35 

𝜐 Short-term wealth effect on labor supply 0.58 

𝜃𝑝 Calvo price stickiness 0.62 

𝜃𝑤 Calvo wage stickiness 0.55 

𝛾𝑝 Price indexation 0.49 

𝛾𝑤 Wage indexation 0.18 

𝜓 Capital utilization 0.56 

𝑀𝑝 Gross price markup 1.5 

𝜌𝑟 Interest-rate smoothing 0.86 

𝑟𝜋 Policy feedback to inflation 1.89 

𝑟𝑦 Policy feedback to output gap 0.16 

𝑟Δ𝑦 Policy feedback to change in output gap 0.25 

102(𝛽−1 − 1) Steady-state time discount factor 0.31 

𝜏 Trend growth rate 1.004 

𝛼 Elasticity of capital in production function 0.17 

𝜌𝑎 Neutral technology (TFP) 0.98 

𝜌𝑏 Risk premium 0.42 

𝜌𝑔 Aggregate net spending 0.97 

𝜌𝑞 Investment-specific technology 0.75 

𝑐𝑔𝑦 Government expenditure shock coefficient 0.51 

 

 

Table.2. GSW model calibration parameters.  Model time frequency is quarterly. 
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A.   Forecast 

GSW model1 equations are log linearized.  To solve this model equations, we applied a perfect 

foresight algorithm.  Adverse shocks to labor supply occur at the first quarter and last for one or 

two quarters.  The value of these shocks was chosen to make labor supply drop by about 20%.   

 

 
 

Fig.11.1. Forecast of effects of an adverse shock to labor supply on macroeconomic 

variables. Shocks occur at the first quarter and last for one or two quarters.  Blue and orange 

color lines show response of macroeconomic variables to these shocks.  

 

Graphs 11.2-3 present decomposition of deviations of output, work hours, investment, and 

inflation rate from its balanced path.  Python software analyzes structure of equations and 

computes contribution of each endogenous variable and exogenous shock.   Those variables and 

shocks are imposed one at a time to infer their contribution to macroeconomic variables paths. 

 

 

 

 

 

 

 

 
1 GSW model Dynare code was kindly provided by Alexander Mihailov in a zip archive via e-mail on 

December 8th, 2020.  The Dynare model file was then translated to “yaml” format by authors. 
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Fig.11.2. Forecast of an adverse labor supply shock to US economy. Shock occurs at the 

first quarter and lasts for one quarter. Vertical axis displays percentage deviation of 

macroeconomic variables from their balanced path. 

 

 

To complete this picture, we show graphs of output, work hours, investment, and inflation for an 

adverse labor supply shock that lasts two quarters. 

 



31 

 

 

 
 

Fig.11.3. Forecast of an adverse labor supply shock to US economy. Shock to labor supply 

occurs at the first quarter and lasts for two quarters. Vertical axis displays percentage 

deviation of macroeconomic variables from their balanced path. 

 

 

B.   Judgmental Adjustments 

In this section we present an example of user’s judgmental adjustments to macroeconomic 

variables.  Python platform allows one to set a specific path of one or more endogenous variables 

at different time periods.  It is achieved by “exogenizing” endogenous variables and 

“endogenizing” shock variables.  Economic agents anticipate or don’t anticipate future shocks.  

We assume that agents make perfect foresight decisions and shocks are anticipated1.  The values 

of these shocks are computed to bring the path of endogenous variables to the desired level.   

 

 

 

 
1 Assumption of anticipated shocks means that agents make rational expectation decisions on the best 

information available.  For details on numerical algorithm please see Appendix C. 
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Fig.11.4. Forecast of macro variables with user’s judgmental adjustments of output of 1% 

for the duration of three quarters.   Adverse shock to labor supply occurs at the first quarter 

and lasts for two quarters. User makes a judgmental adjustment on output path.  Vertical 

axis displays percentage deviation of macroeconomic variables from their balanced path. 

 

Figure above shows forecast of macroeconomic variables with user’s judgmental adjustments on 

output.   User makes a judgement that output is 1% for three quarters starting at quarter three.  The 

red color bars show values of output shocks which result in output path satisfying this judgmental 

adjustment. 
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XII.   CONCLUDING REMARKS 

We have developed a powerful and user-friendly platform for macroeconomic modeling in Python, 

including tools for filtering, simulation, estimation, forecasting and model diagnostics for 

Dynamic Stochastic General Equilibrium (DSGE) models.  This platform can be applied for 

analysis of New Keynesian models, Real Business Cycle models, Gap models, and Overlapping 

Generations models, to name a few.  This software is a quite versatile and a flexible toolbox.   

 

For demonstration purposes we work with a non-linear stationary DSGE model to study 

macroeconomic effects of COVID-19 pandemic lockdown and vaccination policies.  Our analysis 

utilizes Eichenbaum-Rebelo-Trabandt (2020) model which integrates the Neoclassical and the 

New Keynesian approaches with epidemiological concepts.  The numerical calculations and the 

subsequent analysis are accomplished with the aid of this Python software.  We study transmission 

of virus and its effects on country economy.  We show that standard Susceptible-Infected-

Recovered compartmental epidemiological model underpredicts rate of infection transmission and 

needs to account for virus transmission due to agents’ economic activities.  We consider several 

lockdown and vaccination policies and perform forecast simulations of ERT model with these 

policies.  While lockdown alleviates health crisis, it could induce costly and prolonged country 

economy recovery.   We study effects of these policies on cost of lost lives and cost of economic 

recession.   

 

Eichenbaum-Rebelo-Trabandt model lacks references to unemployment.   To compensate for this 

shortcoming, we use Gali-Smets-Wouters (2012) linear model which embeds unemployment 

theory of Gali (2011 a, b).  The effects of virus are accounted for by imposing a shock to labor 

supply.  We ran several simulations including user’s judgmental assumptions on country output.   

 

These two approaches give economists a multifaceted view on economic impact of this epidemic. 
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XIV.   APPENDICES 

 

A.   Non-Linear System 

We are solving a system of equations, 

 

𝑓(𝑦) = 0, where          (A.1) 

𝑓(𝑥𝑡−1, 𝑥𝑡, 𝑥𝑡+1, 𝑒𝑡) = {
𝑔1(𝑥𝑡−1, 𝑥𝑡, 𝐸(𝑥𝑡+1), 𝑒1,𝑡)

…
𝑔𝑁(𝑥𝑡−1, 𝑥𝑡, 𝐸(𝑥𝑡+1), 𝑒𝑁,𝑡)

      and         𝑦𝑡 = {

𝑥𝑡−1
𝑥𝑡
𝑥𝑡+1

 

 

Here 𝐸 is the expectation operator.  The boundary conditions are: 

 

𝑥0 = 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠; 𝑥𝑇+1 = 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 
 

Equations (A.1) are general equations for variables with a maximum lead and lag of one period. If 

variables lead and lag are larger than one, these equations can be rewritten in the form of (A.1) by 

introducing new variables.  For example, if variable 𝑥𝑡+2 is presented in (A.1) than one can 

introduce a new variable y, add a new equation 𝑦𝑡 = 𝑥𝑡+1 , and rewrite original equations in the 

form of (A.1). 

 

We apply an iterative algorithm and linearize equations (A.1).  At iteration k: 

 

𝑓(𝑥𝑡−1
𝑘 , 𝑥𝑡

𝑘 , 𝐸(𝑥𝑡+1
𝑘 )) +

𝜕𝑓𝑘

𝜕𝑥𝑡−1
(𝑥𝑡−1
𝑘+1 − 𝑥𝑡−1

𝑘 ) +
𝜕𝑓𝑘

𝜕𝑥𝑡
(𝑥𝑡
𝑘+1 − 𝑥𝑡

𝑘) + 

𝜕𝑓𝑘

𝜕𝑥𝑡+1
(𝐸(𝑥𝑡+1

𝑘+1) − 𝐸(𝑥𝑡+1
𝑘 )) = 0                (A.2) 

 

These equations are linear with respect to next iteration variables  𝑥𝑡−1
𝑘+1, 𝑥𝑡

𝑘+1, 𝑥𝑡+1
𝑘+1.  Equations 

(A.2) can be rewritten as, 

 

𝐿𝑡∆𝑥𝑡−1 + 𝐶𝑡∆𝑥𝑡 + 𝐹𝑡𝐸(∆𝑥𝑡+1) = −𝑓𝑡       (A.3) 

 

By stacking Jacobians 𝐿𝑡, 𝐶𝑡, 𝐹𝑡 , equations (A.3) can be represented in a matrix form: 

 

 

(

 
 
 
 
 
 

𝐼 0 0
𝐿1 𝐶1 𝐹1
0 𝐿2 𝐶2

0 0 0
0 0 0
𝐹2 0 0

0 0 0
0 0 0
0 0 0

0 0 0
. . .
0 0 0

𝐿3 𝐶3 𝐹3
. . .
0 𝐿𝑇−2 𝐶𝑇−2

0 0 0
. . .

𝐹𝑇−2 0 0
0 0 0
0 0 0
0 0 0

0 0 𝐿𝑇−1
0 0 0
0 0 0

𝐶𝑇−1 𝐹𝑇−1 0
𝐿𝑇 𝐶𝑇 𝐹𝑇
0 0 𝐼 )

 
 
 
 
 
 

(

 
 
 
 
 
 

∆𝑥0
∆𝑥1
∆𝑥2
∆𝑥3
.

∆𝑥𝑇−2
∆𝑥𝑇−1
∆𝑥𝑇
∆𝑥𝑇+1)

 
 
 
 
 
 

= −

(

 
 
 
 
 
 

0
𝑓1
𝑓2
𝑓3
.

𝑓𝑇−2
𝑓𝑇−1
𝑓𝑇
0 )

 
 
 
 
 
 

     (A.4) 
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The size of this matrix is 𝑁(𝑇 + 2) by 𝑁(𝑇 + 2).  Inverting this matrix could be problematic for 

large number of equations N, or large time horizon T.  This matrix is a sparse matrix. One can use 

sparse matrices linear algebra scipy package to solve these equations. 

 

Equations (A.4) are solved iteratively until solution converges. 

 

Another approach is an application of  LBJ method. It is briefly described below.  The starting 

values of endogenous variables are ∆𝑥0 = 0.  By substituting these values in (A.3) we get: 

 

 ∆𝑥1 = 𝑀1∆𝑥2 + 𝑑1, where  𝑀1 = −𝐶1
−1𝐹1  and  𝑑1 = −𝐶1

−1𝑓1. 

 

We can find the following expressions by repeating these steps: 

 

𝑀𝑡 = −(𝐶𝑡 + 𝐿𝑡𝑀𝑡−1)
−1𝐹𝑡          

            (A.5) 

𝑑𝑡 = −(𝐶𝑡 + 𝐿𝑡𝑀𝑡−1)
−1(𝑓𝑡 + 𝐿𝑡𝑑𝑡−1) 

 

Solution can be easily obtained by backward substitution: 

 

∆𝑥𝑡 = 𝑀𝑡∆𝑥𝑡+1 + 𝑑𝑡,      𝑥𝑇+1 = 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒      (A.6) 

 

While initial conditions are fixed and ∆𝑥0 = 0, terminal conditions are set to steady state values. 

This requires one to find a steady state solution of system (A.1).  A reasonable assumption would 

be to assume that the terminal conditions are floating, and that solution does not change in time, 

i.e.,  ∆𝑥𝑇+1 = ∆𝑥𝑇.  We can find formula for the terminal condition by substituting it in (A.6): 

 

∆𝑥𝑇+1 = (𝐼 − 𝑀𝑇)
−1𝑑𝑇         (A.7) 

 

The LBJ algorithm consists of two iterative steps: firstly, compute matrices 𝑀 and vector 𝑑, and 

secondly, compute solution 𝑥.  These steps are repeated until numerical solution converges. 

 

Yet another assumption is that endogenous variables at right boundary are fixed.  Then the terminal 

condition is: ∆𝑥𝑇+1 = 0.  

 

Below we describe a modified LBJ method.  By substituting this expression in (A.3) we get, 

 

 ∆𝑥𝑇 = 𝑀𝑇∆𝑥𝑇−1 + 𝑑𝑇, where  𝑀𝑇 = −𝐶𝑇
−1𝐿𝑇 and 𝑑𝑇 = −𝐶𝑇

−1𝑓𝑇              (A.8) 

 

Solution can be easily obtained by forward substitution: 

 

∆𝑥𝑡+1 = 𝑀𝑡+1∆𝑥𝑡 + 𝑑𝑡+1 ;   ∆𝑥0 = 0                  (A.9) 

 

ttp://www.sciencedirect.com/science/article/pii/S0165-1889(98)00013-X
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B. Linear System 

Equations (A.1) are linear with respect to endogenous and exogenous variables. These equations 

can be rewritten as, 

 

𝐿𝑥𝑡−1 + 𝐶𝑥𝑡 + F𝑥𝑡+1 = −f − 𝜓𝑒𝑡        (B.1) 

 

Binder and Pesaran Method 

 

According to Binder & Pesaran (1997), if the unique and stable solution exists, it is given by: 

 

𝑥𝑡 = B 𝑥𝑡−1 + 𝐻 F + ∑ 𝐻𝑖∞
𝑖=0 𝜓 𝐸(𝑒𝑡+𝑖)                (B.2)

        

Where 𝐻 = 𝐶(𝐶 + 𝐹𝐵)−1 and B satisfies quadratic matrix equation: 

F B2 + C B + L = 0                                                                                                                             (B.3) 

Authors employ iteration technique to solve this quadratic equation. In general, this matrix 

equation can have many solutions, a unique solution, or no solution at all. 

 

Anderson-Moore Method 

 

Anderson-More algorithm requires no special treatment for models with endogenous variable with 

lags and leads greater than one period.  This method distinguishes AIM method from all others, 

where one should introduce new variables and cast model in a form with at most one lead and one 

lag.  For one lead and one lag period endogenous variables, authors provide a simplified solution 

in the form: 

 

𝑥𝑡 − 𝑥0 = B (𝑥𝑡−1 − 𝑥0) + ∑ 𝐹𝑖𝛷∞
𝑖=0 𝜓 𝐸(𝑒𝑡+𝑖)              (B.4) 

 

Here B is the reduced form coefficients’ matrix, Φ is the exogenous shock scaling matrix, and 𝐹 is 

the exogenous shock transfer matrix.  According to Anderson, AIM procedure exhibits significant 

computational performance for large scale models in terms of CPU time.  

 

Jaromír Beneš Method 

 

This method uses QZ matrix factorization.  Vector of endogenous variables 𝑥𝑡 can be partitioned 

into predetermined part 𝑥𝑡
𝑃 and non-predetermined part 𝑥𝑡+1

𝑁 : 

 

𝑥𝑡 = {
𝑥𝑡
𝑃

𝑥𝑡+1
𝑁                    (B.5) 

 

And equation (B.1) can be recast in the form, 

 

𝐴𝑥𝑡+1 + 𝐵𝑥𝑡 + 𝐶 + 𝜓𝑒𝑡 = 0                 (B.6) 
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Following Klein (1997), the system matrices 𝐴, 𝐵 are decomposed by applying a Generalized 

Schur algorithm: 

 

𝐴 = 𝑄𝑇𝑍𝐻 

                    (B.7) 

𝐵 = 𝑄𝑆𝑍𝐻 

 

Here Q and Z are the unitary matrices, 𝑍𝐻 is the conjugate transpose of matrix Z, and T, S are 

upper triangular matrices.  Following Michal Andrle (2007), when shocks are not anticipated, the 

system of equations (B.6) has a solution in the state-space form: 

 

(𝑥𝑡
𝑁

𝛼𝑡
)  =  (𝑇

𝐹

𝑇𝐴
)𝛼𝑡−1 +  (

𝑅𝐹

𝑅𝐴
) 𝑒𝑡 + (

𝐾𝐹

𝐾𝐴
)         

                (B.8) 

𝑥𝑡
𝑃 = U 𝛼𝑡 

 

The transient matrix T, the shock matrix R and the constant vector K are given below: 

 

𝑇𝐹   =   𝑍21 

𝑇𝐴   =  −𝑇11
−1 𝑆11 

𝑅𝐹   =   (𝑍21𝐺 + 𝑍22) 𝑅
𝑈   

𝑅𝐴   =   −𝑇11
−1 [𝜓1  +  (𝑆11𝐺 + 𝑆12) 𝑅

𝑈 ]  
𝐺     =   −𝑍11

−1  𝑍12 

𝑅𝑈   =   −𝑆11
−1  𝜓2  

𝑈     =   𝑍11               (B.9) 

𝐾𝑢    =  (𝑇22 + 𝑆22)
−1 𝐶2 

𝑋𝑎0  =   𝑇11
−1 (𝑆11𝐺 + 𝑆12) 

𝑋𝑎1  =  𝐺 + 𝑇11
−1 𝑇12  

 𝐾𝐹  =  −(𝑍21𝐺 + 𝑍22) 𝐾𝑢 

 𝐾𝐴  =  −(𝑋𝑎0  +  𝑋𝑎1)𝐾𝑢  − 𝑇11
−1  𝐶1  

 

Indices 1 and 2 denote part of matrices T, R and vector K that correspond to predetermined and 

non-predetermined transition variables.  When shocks are anticipated, solution (B.8) is augmented 

with future shocks: 

 

(𝑥𝑡
𝑁

𝛼𝑡
)  =  𝑇 𝛼𝑡−1 +   𝑅 (

𝑒𝑡
𝑒𝑡+1
…
𝑒𝑡+𝑁

) + (𝐾
𝐹

𝐾𝐴
)        (B.10) 

 

Here R is matrix of current and future shocks: 

 

𝑅 =  [
𝑅𝐹 𝑋𝐹𝑅𝑈 𝑋𝐹𝐽 𝑅𝑈

𝑅𝐴 𝑋𝐹𝑅𝑈 𝑋𝐴𝐽 𝑅𝑈
   
𝑋𝐹𝐽2 𝑅𝑈 … 𝑋𝐹𝐽𝑁−1 𝑅𝑈

𝑋𝐴𝐽2 𝑅𝑈 … 𝑋𝐴𝐽𝑁−1 𝑅𝑈
]     (B.11) 

 

 

Auxiliary vectors and matrices are shown below: 

https://en.wikipedia.org/wiki/Schur_decomposition
https://en.wikipedia.org/wiki/Schur_decomposition
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𝑋𝐹  =  𝑍21𝐺 + 𝑍22 

𝑋𝐴  = 𝑋𝑎1 + 𝐽  𝑋𝑎0          (B.12) 

𝐽 =  −𝑆22
−1 𝑇22 

 

C. Judgmental Adjustments 

In many cases user may have her/his view on a path of endogenous variables.  We briefly describe 

the methodology that can be used to forecast variables with anticipation and without anticipation. 

 

Suppose that shocks at times 𝑡, 𝑡 + 1, … , 𝑡 + 𝑁 are anticipated.  Then, we can write equations at 

time 𝑡 + 1 as, 

 

𝑥𝑡+1 = 𝑇 𝑥𝑡 + 𝐾 + 𝑅0𝑒𝑡  +  𝑅1𝑒𝑡+1  + 𝑅2𝑒𝑡+2 +⋯+ 𝑅𝑁𝑒𝑡+𝑁    (C.1) 

 

At time 𝑡 + 2: 

 

𝑥𝑡+2 = 𝑇 𝑥𝑡+1 + 𝐾 + 𝑅0𝑒𝑡+1  +  𝑅1𝑒𝑡+2  + 𝑅2𝑒𝑡+3 +⋯+ 𝑅𝑁−1𝑒𝑡+𝑁  ,    (C.2) 

Or, 

𝑥𝑡+2 = 𝑇 (𝑇 𝑥𝑡 + 𝐾 + 𝑅0𝑒𝑡  +  𝑅1𝑒𝑡+1  +  𝑅2𝑒𝑡+2 +⋯+ 𝑅𝑁𝑒𝑡+𝑁) + 𝐾 + 𝑅0𝑒𝑡+1  +  𝑅1𝑒𝑡+2  
        + 𝑅2𝑒𝑡+3 + … + 𝑅𝑁−1𝑒𝑡+𝑁 

And, 

𝑥𝑡+2 = 𝑇
2𝑥𝑡 + (𝑇 + 𝐼)𝐾 +  𝑇𝑅0𝑒𝑡 + (𝑇𝑅1 + 𝑅0)𝑒𝑡+1 + (𝑇𝑅2 + 𝑅1)𝑒𝑡+2 

         +⋯+ (𝑇𝑅2 + 𝑅𝑁−1)𝑒𝑡+𝑁 

 

By induction, we can derive that at time 𝑡 + 𝑘 the following equation holds: 

 

𝑥𝑡+𝑘 = 𝑇
𝑘𝑥𝑡 + (𝑇

𝑘−1 + 𝑇𝑘−2 +⋯+ 𝑇0)𝐾 + 𝑆0
𝑘𝑒𝑡 + 𝑆1

𝑘𝑒𝑡+1 + 𝑆2
𝑘𝑒𝑡+2 +⋯+ 𝑆𝑁

𝑘𝑒𝑡+𝑁 

Or, 

 𝑥𝑡+𝑘      =  𝑇
𝑘𝑥𝑡 + (𝐼 − 𝑇)

−1 (𝐼 − 𝑇𝑘)𝐾 + ∑ 𝑆𝑖
𝑘𝑒𝑡+𝑖

𝑁
𝑖=0        (C.3) 

 

The aggregated shock matrix 𝑆 is: 

 

𝑆𝑖
𝑘 = {

𝑇 𝑆𝑖
𝑘−1,                  𝑖𝑓 𝑘 > 𝑖 + 1

𝑇 𝑆𝑖
𝑘−1 + 𝑅𝑖+1−𝑘, 𝑖𝑓 𝑘 ≤ 𝑖 + 1

           and       𝑆𝑖
1 = 𝑅𝑖    (C.4) 

 

One can solve equations (C.3) for values of the future shocks.   These shocks will bring path of 

endogenous variables to the desired level.  In other words, the future shocks are “endogenized”, 

and the corresponding variables are “exogenized”.  This numerical procedure can be optimized in 

terms of CPU speed and memory usage. 

 

Suppose that one has a specific view on the path of endogenous variables, which are given by, 

𝑥̂𝑡+𝑘.   Then, writing equation (C.3) for deviations of the endogenous variables from this path, one 

can find adjustments to the future shocks ∆𝑒𝑡+𝑘: 
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𝑥𝑡+𝑘 − 𝑥̂𝑡+𝑘  =  𝑆1
𝑘∆𝑒𝑡+1 + 𝑆2

𝑘∆𝑒𝑡+2 +⋯+ 𝑆𝑁
𝑘∆𝑒𝑡+𝑁       (C.5) 

 

By solving equation (C.5), one can find values of a new shock 𝑒̂𝑡+𝑘 = 𝑒𝑡+𝑘 + ∆𝑒𝑡+𝑘 .  This shock 

brings path of 𝑥𝑡+𝑘 to the desired level of 𝑥̂𝑡+𝑘  . 

 

Equation (C.5) simplifies when there is only one unexpected shock at time 𝑡 + 𝑘: 

 

𝑥𝑡+𝑘 − 𝑥̂𝑡+𝑘 = 𝑅0 ∆𝑒𝑡+𝑘             (C.6) 

 

It can be easily solved.  The new value of this shock is: 

 

𝑒̂𝑡+𝑘 = 𝑒𝑡+𝑘 + 𝑅0
−1(𝑥𝑡+𝑘 − 𝑥̂𝑡+𝑘)        (C.7) 

 

If there are several unexpected shocks, then the first shock is adjusted at the first occurrence of 

unexpected shock and the endogenous variables are computed onwards, then the second shock is 

adjusted and the forecast is re-evaluated, and so on...  This procedure is successively repeated until 

all unexpected shocks are accounted for. 

 

 

D. Metrics 

Below we show comparison of CPU time and memory footprint of running a small open economy 

model in Python Platform and in IRIS and DYNARE toolboxes. This model is a DSGE GAP 

model of Ghana country. It consists of 82 equations describing macroeconomic variables.    

 

The plot below shows data obtained by profiling tools of Anaconda Spyder and Matlab 

applications.  These graphs demonstrate performance benefits of Python Platform when running 

small and medium sizes DSGE models. 

 

 
 

Fig. D1.  Total CPU time and memory usage of running Kalman filter in Python 

Platform, IRIS and DYNARE toolboxes. 
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