
Pydna cheat sheet

1. Important modules , functions and Classes

2. Set email address and other global settings in pydna.

import pydna

pydna.open_config_folder()

edit and save the file called “pydna.ini” in the folder that opens.

3. Establish sequence(s) in pydna.

sequence is in Genbank with known acession number: seq = genbank(“L09137”)

read from local file: seq = read(“myseq.gb”)

read a list of multiple sequences from local file: seq = parse(“mysequences.gb”)

create a Dseqrecord object directly: seq = Genbank(“gatc”)

4. Cut with restriction enzymes.

From Bio.Restriction import BamHI

list_of_seqs = seq.cut(BamHI)

seq_bam = plasmid.linearize(BamHI)

The linearize method works only on circular sequences and allow only one resulting fragment. The
cut method returns a list. To cut with more enzymes, add them separated by comma.

5. Make a circular sequence from a linear.

circular_seq = linear_seq.looped()

Note that linear_seq has to have compatible sticky or blunt ends.

6. Saving the sequence to a file:

seq.write(“filename.ext”) (Default format is the Genbank flat file format)

Version: 2017-03-17

from pydna.module import function
from pydna.module import Class

pydna
 ├── amplify
 │ ├── Anneal
 │ └── pcr
 ├── assembly
 │ └── Assembly
 ├── design
 │ ├── assembly_fragments
 │ └── primer_design
 ├── download
 │ └── download_text
 ├── dseqrecord
 │ └── Dseqrecord
 ├── genbank
 │ ├── genbank
 │ └── Genbank
 ├── parsers
 │ ├── parse
 │ └── parse_primers
 └── readers
 ├── read
 └── read_primers

Useful subclasses of Dseqrecord:

Dseqrecord
 ├── Amplicon
 │ │
 │ PCR product
 │
 ├── Contig
 │ │
 │ Assembled sequence
 │
 ├── GenbankRecord
 │ │
 │ Sequence
 │ downloaded
 │ from
 │ Genbank
 │
 └── GenbankFile
 │
 Sequence read
 from a local
 Genbank file

Pydna cheat sheet

7. Design primers for a sequence

amplicon = primer_design(seq)

The amplicon object describes a PCR reaction. Access the primers like this:

forwardprimer = amplicon.forward_primer OR reverseprimer = amplicon.reverse_primer

Restriction sites can be added to primers like this:

forwardprimer_with_BamHI = “GATC” + “GGATCC” + forwardprimer

8. PCR

pcr_product = pcr(forward_primer, reverse_primer, template_sequence)

The pcr function allows only one product to be formed. If you expect more use the Amplicon class

ann = Anneal(list_of_primers, template)

PCR products can be accessed using the products property:

products = ann.products

9. Ligate DNA fragments

seq = seq1 + seq2

The right end of seq1 and the left end of seq2 has to have compatible sticky ends. The resulting
sequence can be circularized as shown under 5.

10. Primer design for assembly by Homologous recombination, Gibson assembly etc.

new_sequence_list = assembly_fragments(old_sequence_list)

The old_sequence_list is a list of Dseqrecord objects (or similar) and Amplicon objects. The
new_sequence_list is a list of the same fragments where primers have been given tails to allow
assembly. At least every second fragment has to be an amplicon.

11. Assembly by Homologous recombination, Gibson assembly etc.

asm = Assembly(sequence_list)

The assembly object can be inspected like this:

asm
Assembly:
Sequences........................: [33] [34] [35]
Sequences with shared homologies.: [33] [34] [35]
Homology limit (bp)..............: 14
Number of overlaps...............: 3
Nodes in graph(incl. 5' & 3')....: 5
Only terminal overlaps...........: No
Circular products................: [59]
Linear products..................: [74] [73] [73] [54] [54] [53] [15] [14] [14]

The report display the variables used for the assembly.

The linear and circular products can be accessed in the lists below

circular_product_list = asm.linear_products

linear_product_list = asm.circular_products

Version: 2017-03-17

