Stan Math Library  2.15.0
reverse mode automatic differentiation
normal_sufficient_log.hpp
Go to the documentation of this file.
1 #ifndef STAN_MATH_PRIM_SCAL_PROB_NORMAL_SUFFICIENT_LOG_HPP
2 #define STAN_MATH_PRIM_SCAL_PROB_NORMAL_SUFFICIENT_LOG_HPP
3 
6 
7 namespace stan {
8  namespace math {
9 
13  template <bool propto,
14  typename T_y, typename T_s, typename T_n,
15  typename T_loc, typename T_scale>
16  inline
18  normal_sufficient_log(const T_y& y_bar, const T_s& s_squared,
19  const T_n& n_obs, const T_loc& mu,
20  const T_scale& sigma) {
21  return normal_sufficient_lpdf<propto, T_y, T_s, T_n,
22  T_loc, T_scale>(y_bar, s_squared,
23  n_obs, mu, sigma);
24  }
25 
29  template <typename T_y, typename T_s, typename T_n,
30  typename T_loc, typename T_scale>
31  inline
33  normal_sufficient_log(const T_y& y_bar, const T_s& s_squared,
34  const T_n& n_obs, const T_loc& mu,
35  const T_scale& sigma) {
36  return normal_sufficient_lpdf<T_y, T_s, T_n,
37  T_loc, T_scale>(y_bar, s_squared,
38  n_obs, mu, sigma);
39  }
40 
41  }
42 }
43 #endif
boost::math::tools::promote_args< typename scalar_type< T1 >::type, typename scalar_type< T2 >::type, typename scalar_type< T3 >::type, typename scalar_type< T4 >::type, typename scalar_type< T5 >::type, typename scalar_type< T6 >::type >::type type
Definition: return_type.hpp:27
return_type< T_y, T_s, T_loc, T_scale >::type normal_sufficient_log(const T_y &y_bar, const T_s &s_squared, const T_n &n_obs, const T_loc &mu, const T_scale &sigma)
return_type< T_y, T_s, T_loc, T_scale >::type normal_sufficient_lpdf(const T_y &y_bar, const T_s &s_squared, const T_n &n_obs, const T_loc &mu, const T_scale &sigma)
The log of the normal density for the specified scalar(s) given the specified mean(s) and deviation(s...

     [ Stan Home Page ] © 2011–2016, Stan Development Team.