Stan Math Library  2.15.0
reverse mode automatic differentiation
binomial_logit_lpmf.hpp
Go to the documentation of this file.
1 #ifndef STAN_MATH_PRIM_SCAL_PROB_BINOMIAL_LOGIT_LPMF_HPP
2 #define STAN_MATH_PRIM_SCAL_PROB_BINOMIAL_LOGIT_LPMF_HPP
3 
25 #include <boost/random/binomial_distribution.hpp>
26 #include <boost/random/variate_generator.hpp>
27 
28 namespace stan {
29  namespace math {
30 
46  template <bool propto,
47  typename T_n,
48  typename T_N,
49  typename T_prob>
51  binomial_logit_lpmf(const T_n& n,
52  const T_N& N,
53  const T_prob& alpha) {
55  T_partials_return;
56 
57  static const char* function("binomial_logit_lpmf");
58 
59  if (!(stan::length(n)
60  && stan::length(N)
61  && stan::length(alpha)))
62  return 0.0;
63 
64  T_partials_return logp = 0;
65  check_bounded(function, "Successes variable", n, 0, N);
66  check_nonnegative(function, "Population size parameter", N);
67  check_finite(function, "Probability parameter", alpha);
68  check_consistent_sizes(function,
69  "Successes variable", n,
70  "Population size parameter", N,
71  "Probability parameter", alpha);
72 
74  return 0.0;
75 
78  scalar_seq_view<const T_prob> alpha_vec(alpha);
79  size_t size = max_size(n, N, alpha);
80 
81  OperandsAndPartials<T_prob> operands_and_partials(alpha);
82 
84  for (size_t i = 0; i < size; ++i)
85  logp += binomial_coefficient_log(N_vec[i], n_vec[i]);
86  }
87 
89  log_inv_logit_alpha(length(alpha));
90  for (size_t i = 0; i < length(alpha); ++i)
91  log_inv_logit_alpha[i] = log_inv_logit(value_of(alpha_vec[i]));
92 
94  log_inv_logit_neg_alpha(length(alpha));
95  for (size_t i = 0; i < length(alpha); ++i)
96  log_inv_logit_neg_alpha[i] = log_inv_logit(-value_of(alpha_vec[i]));
97 
98  for (size_t i = 0; i < size; ++i)
99  logp += n_vec[i] * log_inv_logit_alpha[i]
100  + (N_vec[i] - n_vec[i]) * log_inv_logit_neg_alpha[i];
101 
102  if (length(alpha) == 1) {
103  T_partials_return temp1 = 0;
104  T_partials_return temp2 = 0;
105  for (size_t i = 0; i < size; ++i) {
106  temp1 += n_vec[i];
107  temp2 += N_vec[i] - n_vec[i];
108  }
110  operands_and_partials.d_x1[0]
111  += temp1 * inv_logit(-value_of(alpha_vec[0]))
112  - temp2 * inv_logit(value_of(alpha_vec[0]));
113  }
114  } else {
116  for (size_t i = 0; i < size; ++i)
117  operands_and_partials.d_x1[i]
118  += n_vec[i] * inv_logit(-value_of(alpha_vec[i]))
119  - (N_vec[i] - n_vec[i]) * inv_logit(value_of(alpha_vec[i]));
120  }
121  }
122 
123  return operands_and_partials.value(logp);
124  }
125 
126  template <typename T_n,
127  typename T_N,
128  typename T_prob>
129  inline
131  binomial_logit_lpmf(const T_n& n,
132  const T_N& N,
133  const T_prob& alpha) {
134  return binomial_logit_lpmf<false>(n, N, alpha);
135  }
136 
137  }
138 }
139 #endif
void check_finite(const char *function, const char *name, const T_y &y)
Check if y is finite.
fvar< T > binomial_coefficient_log(const fvar< T > &x1, const fvar< T > &x2)
void check_bounded(const char *function, const char *name, const T_y &y, const T_low &low, const T_high &high)
Check if the value is between the low and high values, inclusively.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition: value_of.hpp:16
T_return_type value(double value)
Returns a T_return_type with the value specified with the partial derivatves.
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
fvar< T > inv_logit(const fvar< T > &x)
Returns the inverse logit function applied to the argument.
Definition: inv_logit.hpp:20
size_t length(const std::vector< T > &x)
Definition: length.hpp:10
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
boost::math::tools::promote_args< typename scalar_type< T1 >::type, typename scalar_type< T2 >::type, typename scalar_type< T3 >::type, typename scalar_type< T4 >::type, typename scalar_type< T5 >::type, typename scalar_type< T6 >::type >::type type
Definition: return_type.hpp:27
Metaprogram to determine if a type has a base scalar type that can be assigned to type double...
This class builds partial derivatives with respect to a set of operands.
return_type< T_prob >::type binomial_logit_lpmf(const T_n &n, const T_N &N, const T_prob &alpha)
Binomial log PMF in logit parametrization.
size_t max_size(const T1 &x1, const T2 &x2)
Definition: max_size.hpp:9
VectorBuilder allocates type T1 values to be used as intermediate values.
int size(const std::vector< T > &x)
Return the size of the specified standard vector.
Definition: size.hpp:17
void check_consistent_sizes(const char *function, const char *name1, const T1 &x1, const char *name2, const T2 &x2)
Check if the dimension of x1 is consistent with x2.
fvar< T > log_inv_logit(const fvar< T > &x)
boost::math::tools::promote_args< typename partials_type< typename scalar_type< T1 >::type >::type, typename partials_type< typename scalar_type< T2 >::type >::type, typename partials_type< typename scalar_type< T3 >::type >::type, typename partials_type< typename scalar_type< T4 >::type >::type, typename partials_type< typename scalar_type< T5 >::type >::type, typename partials_type< typename scalar_type< T6 >::type >::type >::type type
VectorView< T_return_type, false, true > d_x1

     [ Stan Home Page ] © 2011–2016, Stan Development Team.