Stan Math Library
2.15.0
reverse mode automatic differentiation
stan
math
prim
scal
prob
bernoulli_ccdf_log.hpp
Go to the documentation of this file.
1
#ifndef STAN_MATH_PRIM_SCAL_PROB_BERNOULLI_CCDF_LOG_HPP
2
#define STAN_MATH_PRIM_SCAL_PROB_BERNOULLI_CCDF_LOG_HPP
3
4
#include <
stan/math/prim/scal/meta/return_type.hpp
>
5
#include <
stan/math/prim/scal/prob/bernoulli_lccdf.hpp
>
6
7
namespace
stan
{
8
namespace
math {
9
13
template
<
typename
T_n,
typename
T_prob>
14
typename
return_type<T_prob>::type
15
bernoulli_ccdf_log
(
const
T_n& n,
const
T_prob& theta) {
16
return
bernoulli_lccdf<T_n, T_prob>(n, theta);
17
}
18
}
19
}
20
#endif
stan
Definition:
log_sum_exp.hpp:8
return_type.hpp
stan::return_type::type
boost::math::tools::promote_args< typename scalar_type< T1 >::type, typename scalar_type< T2 >::type, typename scalar_type< T3 >::type, typename scalar_type< T4 >::type, typename scalar_type< T5 >::type, typename scalar_type< T6 >::type >::type type
Definition:
return_type.hpp:27
stan::math::bernoulli_ccdf_log
return_type< T_prob >::type bernoulli_ccdf_log(const T_n &n, const T_prob &theta)
Definition:
bernoulli_ccdf_log.hpp:15
bernoulli_lccdf.hpp
[
Stan Home Page
]
© 2011–2016, Stan Development Team.