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by Mihee Lee, Haipeng Shen, Jianhua Z. Huang and J. S. Marron

This document contains the following supplementary materials for Lee et al. (2009):

• Additional simulation studies

• Analysis results for the food nutritional data

• Additional analysis of the lung cancer data using RoBiC and Plaid

Web Appendix A: Additional Simulation Studies

Case 1: Uniform Nonzero Entries

In this section, we report one additional simulation study where the nonzero entries of

the true signal matrix are all the same. In addition to comparing SSVD with SVD, Plaid

(Lazzeroni and Owen, 2002) and RoBiC (Asgarian and Greiner, 2008), we also investigate

how the adaptive lasso weight parameters γ1 and γ2 affect the performance of SSVD.

For this simulation, we consider as the truth a 100×50 matrix X∗ whose nonzero entries

are the same. This is the simplest example because every nonzero element of X∗ is the same,

and hence is equally likely to be chosen by a sparse procedure.

Let u be a unit vector of length 100 with ui = 1/
√

50 for i = 1, . . . , 50, and ui = 0

otherwise. In addition, let v be a unit vector of length 50 with vj = 1/5 for j = 1, . . . , 25,

and vj = 0 otherwise. Then X∗ = suvT is a rank-1 matrix with uniform nonzero entries,

i.e.

X∗ = s

(
1√
50

)(
1√
25

)
 J O

O O


 ,

where J is the 50 × 25 matrix with entries 1, and O is the 50 × 25 zero matrix. For this

simulation study, we set s = 30; hence the nonzero entries of X∗ are 0.8485.
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We generate the data matrix X as the sum of the true signal X∗ and the noise ε = [εi,j ],

where {εi,j : i = 1, . . . , 100, j = 1, . . . , 50} is a random sample from the standard normal

distribution. The nonzero entries of X∗ (0.8485) are rather small compared to the noise.

More specifically, the signal-to-noise ratio is only 0.135. The simulation is repeated 100

times.

As discussed in Section 3, we use BIC to choose the degree of sparsity in each updating

step of the SSVD algorithm. For simplicity purposes, we set γ1 = γ2 (denoted by γ) in

deciding the adaptive weight vectors w1 and w2. As for Plaid, we use the most flexible

model described in Lazzeroni and Owen (2002), which performs the best among all plaid

models.

Note that the goal of the analysis is to detect the sparse structure of the true signal

matrix X∗. We compare the performance among the following methods: SVD, Plaid, Ro-

BiC, and SSVD with γ = 0, 0.5, 2. For notational convenience, we use the notation Adt(γ)

for the SSVD procedure based on the adaptive lasso penalty with the weight parameter γ.

Here, we want to comment that the entries of X can be understood either as a multiplica-

tive model, which is assumed by SVD, SSVD and RoBiC, or as an additive model, which

is assumed by Plaid.

Table 1 reports the analysis results, in terms of the average number of zero elements in

the estimated 100 singular vectors in both directions (Column 1), the average number (and

proportion) of correctly identified zeros (Column 2), the average number (and proportion)

of correctly identified nonzeros (Column 3), and the misclassification rate (Column 4). For

example, considering the u vector, û obtained by Adt(2) contains 50.47 zero elements on

average while the truth contains 50 zeros; in addition, on average, 49 (98%) of the zero

entries are correctly estimated as zero, and 48.53 (97.06%) of the nonzero elements are

correctly classified as nonzeros; as a result, 2.47% of the 100 entries are misclassified.

The first three rows of Table 1 compare the results of the SSVD with different adaptive

weight parameter γ. Generally speaking, as γ increases, SSVD performs better in detecting

zero elements, but slightly worse in finding nonzero entries. Adt(2) performs the best in

terms of the misclassification rate. Base on this, we only report the results from Adt(2)
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Table 1: Comparison of the performance among SVD, Plaid, RoBiC and SSVD

Avg. # of Avg. # of correctly Avg. # of correctly Misclassifi-

zeros (True) identified zeros identified nonzeros cation rate

LASSO u 41.12 (50) 40.95 (81.90%) 49.83 (99.66%) 9.22%

(Adt(0)) v 20.69 (25) 20.69 (82.76%) 25.00 (100.0%) 8.62%

Adt(0.5) u 44.61 (50) 44.33 (88.66%) 49.72 (99.44%) 5.95%

v 23.21 (25) 23.21 (92.84%) 25.00 (100.0%) 3.58%

Adt(2) u 50.47 (50) 49.00 (98.00%) 48.53 (97.06%) 2.47%

v 24.69 (25) 24.68 (98.72%) 24.99 (99.96%) 0.66%

RoBiC u 48.37 (50) 47.06 (94.12%) 48.69 (97.38%) 4.25%

v 24.87 (25) 24.84 (99.36%) 24.97 (99.88%) 0.38%

Plaid u 45.00 (50) 44.70 (89.40%) 49.70 (99.40%) 5.60%

v 23.20 (25) 23.20 (92.80%) 25.00 (100.0%) 3.60%

SVD u 0.00 (50) 0.00 ( 0.00%) 50.00 (100.0%) 50.0%

v 0.00 (25) 0.00 ( 0.00%) 25.00 (100.0%) 50.0%

for SSVD in the numerical studies below in this online supplement, as well as those in the

main paper.

We now compare Adt(2) with the three other methods: the standard SVD, Plaid and

RoBiC. As expected, SVD completely fails at detecting the sparse structure of the true

signal. This confirms the necessity of incorporating sparsity in the model estimation. The

improvement of Adt(2) over the standard SVD is clear in all categories. RoBiC performs

slightly worse than Adt(2). The performance of Plaid is similar to that of Adt(0.5), which

is worse than Adt(2) and RoBiC. We note that RoBiC yields an outlying estimate in one

simulation.
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Case 2: Rank-2 Approximation

For this simulation study, we consider a case where the rank of the true signal X∗ is 2.

Suppose X∗ has the following form

X∗ = s1u1v
T
1 + s1u2v

T
2 ,

where s1 = 1000 and s2 = 100, and

ũ1 = [r(20, 2), r(10, 4), r(3, 8), r(1, 16), r(0, 70)]T ,

ṽ1 = [r(1, 20), r(0, 30)]T ,

ũ2 = [r(0, 6), 5,−5, r(0, 6), r(10, 4), r(−10, 4), r(0, 8), r(30, 6), r(0, 14)]T ,

ṽ2 = [r(0, 10), r(1, 5), r(−1, 5), r(0, 30)],

u1 = ũ1/‖ũ1‖, v1 = ṽ1/‖ṽ1‖, u2 = ũ2/‖ũ2‖ and v2 = ṽ2/‖ṽ2‖.

One can easily check that u1 and u2 are orthogonal, so are v1 and v2. Thus X∗ is a 100×50

matrix of rank 2. As in the earlier simulation, the noise matrix ε is generated from the

standard normal distribution, and we then simulate the observation matrix X as the sum

of X∗ and ε. The simulation is again repeated 100 times.

Our SSVD procedure extracts the first sparse singular triplet {ŝ1, û1, v̂1} from the raw

data X. Then, it is applied to the residual matrix X− ŝ1û1v̂
T
1 to extract the second triplet

{ŝ2, û2, v̂2}. The SSVD estimate of X∗ then has the form of ŝ1û1v̂
T
1 + ŝ2û2v̂

T
2 .

Table 2 compares the estimation results among the standard SVD, RoBiC and Adt(2).

Plaid is not considered here for two reasons: first, the result of Plaid tends to be similar

with (or worse than) that of RoBiC; second, the existing packages for Plaid either lack an

automatic procedure to output the estimation results or only output the locations of the

detected biclusters without estimating the Plaid model.

Again, the strawman SVD fails completely. One can easily see that Adt(2) performs

well in both layers: it detects almost perfectly the zero/nonzero entries. On the other hand,

RoBiC has trouble detecting the nonzero elements of u1 in particular, which is caused by

the large variation in the entries of u1.
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Table 2: Case 2: Comparison of performance among SVD, RoBiC and Adt(2)

Avg. # of Avg. # of correctly Avg. # of correctly Misclassifi-

zeros (True) identified zeros identified nonzeros cation rate

Adt(2) u1 69.99 (70) 69.99 (99.99%) 30.00 (100.0%) 0.01%

v1 30.00 (30) 30.00 (100.0%) 20.00 (100.0%) 0.00%

u2 83.82 (84) 83.82 (99.79%) 16.00 (100.0%) 0.18%

v2 39.93 (40) 39.93 (99.83%) 10.00 (100.0%) 0.14%

RoBiC u1 92.00 (70) 70.00 (100.0%) 8.00 (26.67%) 22.00%

v1 30.00 (30) 30.00 (100.0%) 20.00 (100.0%) 0.32%

u2 84.84 (84) 83.99 (99.99%) 15.15 (94.69%) 0.86%

v2 40.00 (40) 40.00 (100.0%) 10.00 (100.0%) 0.00%

SVD u1 0.00 (70) 0.00 (0.00%) 30.00 (100.0%) 70.00%

v1 0.00 (30) 0.00 (0.00%) 20.00 (100.0%) 60.00%

u2 0.00 (84) 0.00 (0.00%) 16.00 (100.0%) 84.00%

v2 0.00 (40) 0.00 (0.00%) 10.00 (100.0%) 80.00%

Finally, we compare the estimated underlying signal X∗ obtained by RoBiC and Adt(2).

Figure 1 plots the heatmaps of the true signal matrix X∗ and the average estimated signal

given by RoBiC and Adt(2). For better visualization, only the first 50 rows and 25 columns

are plotted. The same color scale is used for the three panels. Once again, it is clear that

Adt(2) recovers the true sparse signal much better than RoBiC.
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Figure 1: Case 2: Comparison of the heatmaps between RoBiC and Adt(2). Panel (a):

the true X∗, Panel (b): the average Adt(2) estimator of X∗, Panel (c): the average RoBiC

estimator of X∗.

Web Appendix B: Food Nutritional Data

In this section we apply SSVD to the food nutritional data analyzed in Lazzeroni and Owen

(2002) using Plaid. This data set is available at http://www.ntwrks.com/∼mikev/chart1.html.

The data contain 6 nutritional measures for 961 foods: grams of fat, calories of food

energy, grams of carbohydrate, grams of protein, milligrams of cholesterol, and grams of

saturated fat. Since the foods are measured in different serving sizes, all the nutrition values

are first standardized by dividing by the food weight. Similar to Lazzeroni and Owen (2002),

the six variables are then centered and scaled. The final data matrix X is then a 961 × 6

matrix, where its entry Xi,j is the standardized amount of the jth nutritional fact in the

ith food. Note that each column of X is centered and scaled.

When applying the SSVD, we use the adaptive lasso penalty on both u and v with a

common weight parameter γ = 2. We extract pairs of sparse singular vectors sequentially;

since the (sparse) singular value sk is almost zero after k = 3, as shown in Panel (a) of Figure

2, we decide to use only the first three layers. The BIC is used to select the sparsities for

each pair of sparse vectors. We compare the SSVD results with those reported in Lazzeroni

and Owen (2002).

One thing we want to mention here is that our iterative algorithm converges quite fast.
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Figure 2: Food Data: Convergence Plots. Panel (a) displays the (sparse) eigenvalues ac-

cording to the number of layers. It is clearly seen that the eigenvalue is almost zero after

the third layer, which suggests to use the first three layers. Panel (b) shows how many

iterations are required to extract each layer. For the first layer, Panel (c) displays the dis-

tance between unew and uold (similarly between vnew and vold) as a function of number of

iterations; Panel (d) plots the chosen sparsities at each iteration.

Panel (b) of Figure 2 shows that the algorithm always converges within 10 steps when

extracting the first five layers. The two lower panels show more details of the convergence

when extracting the first layer: Panel (c) displays the distance between the singular vector

(u or v) and its update as a function of number of iterations, which becomes very small

after about 4 iterations; Panel (d) shows that the resulting non-sparsity becomes stable

after only 3 iterations.

Figure 3 plots the ordered leading entries of û1 and û2 as well as the entries of v̂1
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and v̂2. The first SSVD layer consists of 126 foods and 5 nutritional facts: Fat (0.6284),

Saturated fat (0.5649), Food energy (0.5052), Carbohydrate (−0.1406) and Cholesterol

(0.1052), where the numbers in the parentheses are the entries of v̂1. This implies that most

of the variation in the first layer can be explained by Fat, Saturated Fat and Food energy.

In addition, the fact that these variables are clustered together reveals a strong relationship

between these nutritional facts. The second SSVD layer involves only eight foods and two

nutritional variables: Cholesterol (0.9964) and Protein (0.0843). The third layer consists

of 3 nutritional facts, Protein (0.9459), Cholesterol (0.2280) and Carbohydrate (−0.2308),

with 111 foods; compared to the second layer which is mainly explained by cholesterol, most

of variation in this layer can be explained by protein level.
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Figure 3: Food Data: The leading entries of ûk and the entries of v̂k, k = 1, 2, 3. The

entries of ûk are ordered decreasingly. The variables for v̂k are, from left to right, “Fat”,

“Food Energy”, “Carbohydrate”, “Protein”, “Cholesterol” and “Saturated Fat”.

Below we want to further understand the types of foods contained in each layer. The

first layer contains many foods, and is harder to interpret. We thus further divide the

foods into several groups according to the ordered entries in û1, as indicated by the dashed

horizontal lines in the upper left panel of Figure 3 and tabulated below in Table 3. The four
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groups are, in order, for solid oils, fats, liquid oils, and margarine and nuts. These foods

contain more fat, saturated fat, and food energy per weight unit. For example, solid fats

are well known to contain lots of saturated fat. The last part of the first layer (not shown

here) contains the cheese-cream group and the meat-sausage group.

The interpretation of the second layer is much simpler than the first layer. As shown in

the right-lower panel of Figure 3, Cholesterol explains most of the variation in this layer.

This is reflected in the foods within this layer (Table 3): eggs and livers, which are well

known to be high in cholesterol (and in protein). Similarly, the foods in the third layer can

be interpreted as high-protein, high-cholesterol but low-carbohydrate foods.

For the same data set, as reported in Lazzeroni and Owen (2002), Plaid extracts ten

layers, and the last five layers are dropped since they are small. The nutritional facts in the

first SSVD layer are also detected by Plaid as the significant variables in its first layer. The

top 20 foods (Table 3) are the same as those detected by Plaid, see Table 2 in Lazzeroni

and Owen (2002). The second layer of SSVD is related to the fifth layer of Plaid which

selects Cholesterol as the only significant variable and contains 59 foods with the leading

eight the same as those detected by SSVD (Table 3). In addition, the third layer of SSVD

corresponds to the second layer of Plaid.
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Table 3: Food Data: Leading food groups in the first three layers

Foods û1,i Foods û1,i

Layer 1, Group 1

BUTTER, SALTED 1/2 CUP 0.2029 BUTTER, UNSALTED 1/2 CUP 0.2029

BUTTER, SALTED 1 TBSP 0.2010 BUTTER, UNSALTED 1 TBSP 0.2010

LARD 1 CUP 0.2002 BUTTER, SALTED 1 PAT 0.1995

BUTTER, UNSALTED 1 PAT 0.1995 LARD 1 TBSP 0.1989

Layer 1, Group 2

FATS, CKING/VEGETBL SHORT. 1 TBSP 0.1635 FATS, CKING/VEGETBL SHORT. 1 CUP 0.1625

Layer 1, Group 3

SOYBEAN-COT.SEED OIL, HYDRGN 1 TBSP 0.1467 SOYBEAN-COT.SEED OIL, HYDRGN 1 CUP 0.1462

PEANUT OIL 1 TBSP 0.1450 PEANUT OIL 1 CUP 0.1438

SOYBEAN OIL, HYDRGN 1 TBSP 0.1400 SOYBEAN OIL, HYDRGN 1 CUP 0.1391

OLIVE OIL 1 TBSP 0.1367 OLIVE OIL 1 CUP 0.1359

CORN OIL 1 TBSP 0.1350 CORN OIL 1 CUP 0.1339

SUNFLOWER OIL 1 CUP 0.1283 SUNFLOWER OIL 1 TBSP 0.1282

SAFFLOWER OIL 1 TBSP 0.1265 SAFFLOWER OIL 1 CUP 0.1253

Layer 1, Group 4 (Top 14)

IMITATION CREAMERS, POWDERED 1 TSP 0.1099 MARGARINE, REG.,HARD,80% FAT 1/2 CUP 0.1124

MARGARINE, REG.,HARD,80% FAT 1 PAT 0.1112 MARGARINE, REG.,HARD,80% FAT 1 TBSP 0.1104

IMITATION CREAMERS, POWDERED 1 TSP 0.1083 MARGARINE, REG.,SOFT,80% FAT 8 OZ 0.1075

CHOCOLATE, BITTER 1 OZ 0.1073 MARGARINE, REG.,SOFT,80% FAT 1 TBSP 0.1051

MAYONNAISE, REG. 1 TBSP 0.1042 MACADAMIA, OILRSTD,SALTED 1 OZ 0.0969

MACADAMIA, OILRSTD,UNSALT 1 OZ 0.0969 MACADAMIA, OILRSTD,SALTED 1 CUP 0.0965

MACADAMIA, OILRSTD,UNSALT 1 CUP 0.0965 BRAZIL NUTS 1 OZ 0.0943

Layer 2

EGGS, RAW, YOLK 1 YOLK 0.7464 CHICKEN LIVER, COOKED 1 LIVER 0.3692

BEEF LIVER, FRIED 3 OZ 0.2699 EGGS, COOKED, FRIED 1 EGG 0.2465

EGGS, COOKED, HARD-COOKED 2 EGG 0.2217 EGGS, RAW, WHOLE 1 EGG 0.2217

EGGS, COOKED, POACHED 1 EGG 0.2202 EGGS, COOKED, SCRAMBLED/OMELET 1 EGG 0.1619

Layer 3 (Top 16)

GELATIN, DRY 1 ENVELP 0.3893 SEAWEED, SPIRULINA, DRIED 1 OZ 0.2313

PARMESAN CHEESE, GRATED 1 OZ 0.1731 PARMESAN CHEESE, GRATED 1 CUP 0.1716

PARMESAN CHEESE, GRATED 1 TBSP 0.1604 LAMB,CHOPS,ARM,BRAISED,LEAN 1.7 OZ 0.1514

YEAST, BAKERS, DRY, ACTIVE 1 PKG 0.1499 TUNA, CANND, DRND,WATR, WHITE 3 OZ 0.1384

PORK SHOULDER, BRAISD, LEAN 2.4 OZ 0.1347 LAMB,CHOPS,ARM,BRAISED,LEAN+FT 2.2 OZ 0.1299

BEEF, DRIED, CHIPPED 2.5 OZ 0.1282 BEEF, CKD,BTTM ROUND,LEAN ONLY 2.8 OZ 0.1267

PORK CHOP, LOIN, BROIL, LEAN 2.5 OZ 0.1265 BEEF HEART, BRAISED 3 OZ 0.1223

CHICKEN, FRIED, FLOUR, BREAST 3.5 OZ 0.1216 YEAST, BREWERS, DRY 1 TBSP 0.1210
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Web Appendix C: Lung Cancer Data

In this section, we apply RoBiC and Plaid to analyze the lung cancer gene expression data,

and compare the analysis results with those obtained by SSVD, reported in Section 2 of Lee

et al. (2009). To make the comparison meaningful, all three methods are applied to extract

the first three bicluster layers.

The three RoBiC layers consist of 872, 898 and 1,509 genes respectively, and 2,518

unique genes in total. As for Plaid, the three layers include 7,754, 7,862 and 6,433 genes

and 12,125 unique genes in total, much more than those detected by either RoBiC or SSVD

which selected 4,545 unique genes.

The analysis results are presented in Figures 4 to 9 below. The corresponding plots based

on the SSVD analysis can be found in Figures 1 to 3 of Lee et al. (2009). In particular,

• Figures 4 and 5 sequentially show the image plots of the three RoBiC and Plaid layers,

respectively. The plot of SSVD is Figure 1 in the paper.

For better visualization of the gene grouping, the columns of each layer are rearranged

based on an ascending ordering of the gene effects. For RoBiC, such effects are

reflected by the entries of the right sparse singular vectors v̂k; for Plaid, they are

measured by the estimated column effects β̂k, see the Plaid model equation on Page

13 of the paper.

For RoBiC (Figure 4), 10,000 zeroed-out genes are excluded when plotting, and the

boundaries of the white areas are indicated. Similarly for Plaid (Figure 5), 2,500

zeroed-out genes are not plotted.

• Figures 6 and 7 show the scatter plots among the subject effects in the first three

biclusters, for RoBiC and Plaid respectively. The plot of SSVD is Figure 2 in the

paper. Different cancer types are indicated with different symbols and colors.

The subject effects are measured by the entries of the sparse left singular vectors ûk

for RoBiC, or the estimated row effects α̂k for Plaid, as defined in the Plaid model

equation on Page 13 of the paper.
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• Similar to Figure 3 in the paper for SSVD, Figure 8 and 9 plot the raw data matrix

and its RoBiC or Plaid low-rank matrix approximations obtained by adding up the

first k bicluster layers, for k = 1, 2, 3.

The dashed vertical lines separate out the various gene groups obtained by the first

three biclusters. To reveal the details better, only the first 5,000 genes are plotted in

Figure 8 for RoBiC. In Figure 9 for Plaid, all the 12,625 genes are plotted, because

the three layers contain 12,125 genes in total.

Several observations can be made when comparing these figures with Figures 1 to 3 in

the paper, which are summarized below. The comparison suggests that SSVD gives better

biclustering results than either RoBiC or Plaid, especially in terms of subject grouping and

low-rank approximation of the original matrix.

• Based on Figures 4 and 5,

– RoBiC tends to only pick up the stronger contrasts identified by SSVD. For

example, the first RoBiC bicluster picks up the contrast between Carcinoid and

Normal patients, but not the contrast between Colon and SmallCell subjects;

the second bicluster only includes part of the Colon group. This is consistent

with what is observed through the simulation studies: RoBiC tends to miss the

smaller effects when the signal has many levels, which is caused by the hinge

model. In addition, the third layer only includes one Normal subject and one

SmallCell patient.

– as for Plaid, the first layer includes all the 56 subjects, the second layer contains

Normal and SmallCell subjects, and the third one covers the Carcinoid group

and part of the Colon group.

• Based on Figures 6 and 7,

– RoBiC leads to a different clustering of the subjects based on the first three left

singular vectors. Note that each panel has a cluster at the origin that contains

some subjects from the Colon, Normal and SmallCell groups.
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Figure 4: Lung Cancer Data: Image plots of the first three RoBiC layers ŝkûkv̂
T
k (k =

1, 2, 3). In each panel, the genes are rearranged according to an increasing order of the

entries of v̂k, and subjects are also rearranged according to the values of ûk within each

subject group. (In each panel, 10,000 genes in the middle white area are excluded when

plotting.)

– the clustering result from Plaid is much worse than either SSVD or RoBiC: the

four cancer groups are never clearly separated.

• Based on Figures 8 and 9,

– the low-rank approximation performance of RoBiC is worse than SSVD, while

Plaid gives the worst approximation. The appearance of the rank-3 Plaid ap-

proximation is mainly due to the dominant first layer.
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vectors ûk (k = 1, 2, 3), obtained by RoBiC.
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Figure 7: Lung Cancer Data: Scatter plots of the entries of the first three row-effect vectors

α̂k (k = 1, 2, 3), obtained by Plaid.
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Figure 8: Lung Cancer Data: Comparison of the raw data matrix and the best RoBiC

rank-k approximations (k = 1, 2, 3). (Only the first 5,000 genes are plotted to better reveal

the details.)
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Figure 9: Lung Cancer Data: Comparison of the raw data matrix and the best Plaid rank-k

approximations (k = 1, 2, 3).
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