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Abstract

In this paper, we implement and optimize the sparse singular value decomposition (SSVD)
algorithm proposed by Lee et al. (2010)1, which is applied as a biclustering method. The SSVD
algorithm obtains the singular vectors through regular singular value decomosition, and im-
poses sparsity-inducing regularization penalities on the least squares regression of the singular
vectors in order to identify row-column associations within high-dimensional data. We convert
Lee et al.’s publicly available Matlab code to Python and succesfully speed up the run time by
a factor of 24. The optimized code successfully recreates the authors’ output on the lung cancer
gene expressions data set used in the original paper. We also compare the SSVD’s performance
to that of the Spectral Biclustering algorithm in Python’s sklearn package on the genes data
set and two simulated data sets.
KEY WORDS: Biclustering; Singular value decomposition; Sparcity; Optimization.

Background

In the paper titled Biclustering via Sparse Singular Value Decomposition, Lee et al. (2010) propose
an exploratory data analysis tool for biclustering by way of a sparse singular value decomposition
algorithm. Biclustering methods are one of many ways to identify structures in data, which they
do by identifying sets of rows and columns in a matrix that are highly associated. Unsupervised
learning methods like biclustering are able to explore high-dimensional low sample size (HDLSS)
data where more classical statistical methods fail. HDLSS data are common in medical fields, par-
ticularly medical imaging and microarray gene expression data. In their paper, Lee et al. explore a
data set of gene expressions relating to identifying groups of genes that have a significant associa-
tion with different types of lung cancer. This is just one example of how biclustering has practical
applications that have the potential to substantially influence medical care in a positive way.

Algorithm

Sparse singular value decomposition takes the singular value decomposition (SVD) of a matrix,
X, which decomposes X in the following way:

X = UDVT =

r∑
k=1

skukv
T
k
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where U = (u1, . . . ,ur) and V = (v1, . . . ,vr) are vectors of left and right orthonormal singular
vectors, respectively, r is the rank of X, and D = diag(s1, . . . , sr) is a diagonal matrix of positive
singular values.

Lee et al. propose to use SSVD to find a low-rank approximation of X with the restriction that
(uk) and (vk) have many zeros. The presence of lots of zeros in a vector or matrix is called sparcity.
It is the same concept as applying a penalty to a sum-of-squares in order to shrink the variables.
Lasso is a penalization technique that has the ability to perform variable selection, or shrink the
regression coefficients to zero. If we think of the singular vectors as regression coefficients, we can
apply a Lasso penalty to the sum-of-squares to shrink entries in the vectors to zero. The penalized
sum-of-squares, where λu and λv are nonnegative penalty parameters and P1(su) and P2(sv) are
penalty terms that induce sparcity looks like this:

(s1,u1,v1) = argmins,u,v||X = suvT ||2F .

Lee et al. provide an in-depth explanation of the adaptive method in which the values for λ
are chosen, which uses the Bayesian Information Criterion (BIC), but I will not go into depth here.

SSVD Algorithm

1. Apply standard SVD to X, where sold, uold, vold are the first SVD triplet.

2. Update v and u with ṽj = sign{(XTuold)j}(|(XTuold)j | − λvw2,j/2)+, j = 1, . . . , d, and λv
minimizes the BIC(λv). Then ṽ = (ṽ1, . . . , ṽd)

T , s = ||ṽ||, and vnew = ṽ/s.

3. Update u in an eqivalent manner.

4. Set uold = unew.

5. Iteratively update u and v until the algorithm converges.

6. Set u = unew,v = vnew, s = uT
newXvnew.

Performance and Optimization

Unoptimized Algorithm

Initial implementation of the SSVD algorithm is fairly straightforward, as all it requires is convert-
ing the Matlab code provided by the authors to Python. The source code for this function (called
ssvd_works) is in the file ssvd_original.py, and the source code for the authors’ Matlab function
is in the file ssvd.m.

To test the Python equivalent of the SSVD algorithm for speed and bottlenecks, we ran it on
the genes data set. The data are available in the file data.txt, and an explanation of its structure is
included in the section titled Comparison to Other Biclustering Algorithms. The following code
imports the data and saves it as X .
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In [5]: #Import packages
import numpy as np
#Import slow algorithm, ssvd_work,s from ssvd_original.py source code
from ssvd_original import ssvd_works
#Load in genes data
X = np.loadtxt('data.txt')

In [5]: %timeit -r1 -n1 [u,v,iters] = ssvd_works(X)

1 loop, best of 1: 24min 41s per loop

The unoptimized code takes almost 25 minutes to run on the docker. The line profiler shows
that the slowest sections of the code are the parts that update u and v.

In [1]: %lprun -s -f ssvd -T ssvd_results.txt ssvd(X)
%cat ssvd_results.txt

cat: ssvd_results.txt: No such file or directory

ERROR: Line magic function `%lprun` not found.

Optimized Algorithm

To speed up the algorithm, we used the jit function from the Numba package and vectorization
in Numpy. The parts of the algorithm that update u and v were rewritten. The original updates
to u and v were done with vectorization, so we rewrote the matrix parts of those functions with
double for loops so that jit could be applied to them. In order to use jit, they were made into
separate functions, updateU and updateV. We also created the gt function to compare floats;
this was optimized with jit. The ssvd function then calls the optimized helper functions. The
ssvd function was optimized via vectorization in Numpy, replacing code such as sum and abs
with np.sum and np.abs. The source code for these functions can be seen in the ssvd_fast.py file.

As shown in the code below, the optimized ssvd function takes 57 seconds to run on the
docker, which is over 24 times faster than the original function.

In [6]: #Import optimized algorithm, ssvd, from ssvd_fast.py source code file
from ssvd_fast import ssvd

In [7]: %timeit -r1 -n1 [u,v,iters] = ssvd(X)

1 loop, best of 1: 56.9 s per loop

Comparison to Other Biclustering Algorithms

In this section, we explore and compare the SSVD algorithm with the Spectral Biclustering algo-
rithm from the sklearn package. We asses both algorithms’ performance as biclustering methods
on three data sets: the real gene expressions data set used by Lee et al., which is somewhat sparse
by nature, a simulated non-sparse data set, and a simulated sparse data set.
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Genes Data Set

This data set, which the authors used to demonstrate the SSVD algorithm’s success, contains
12,625 genes for 56 subjects with lung cancer. The input matrix is comprised of the 12,625 mi-
croarray gene expressions. The goal of research of this nature is to identify if there are associations
between particular genes and certain cancer types.

A recreation of a plot included in Lee et al., which displays the rank-one SSVD results on the
genes matrix, is below.

In [12]: %matplotlib inline
import matplotlib.pyplot as plt
from sklearn.datasets import make_checkerboard
from sklearn.datasets import samples_generator as sg
from sklearn.cluster.bicluster import SpectralBiclustering
from sklearn.metrics import consensus_score

In [ ]: #Rank-one biclustering of genes data with SSVD
[u1,v1,iters] = ssvd(X)

In [13]: Xstar1 = np.outer(u1, v1.T)
X = X-Xstar1
v1sort = np.sort(v1)[::-1] #sort descending
u1sort = np.sort(u1)[::-1] #sort descending
x = np.outer(u1sort, v1sort.T)
x = x/np.max(np.abs(X))
plt.matshow(x.T, cmap=plt.cm.coolwarm_r, aspect='auto');
plt.colorbar()
plt.title('SSVD Algorithm on Genes Data Set', y=1.15)
pass

The visible concentration of red and blue in the corners of the plot indicates that the optimized
SSVD algorithm has successfully biclustered the genes matrix.

We continue by running sklearn’s Spectral Biclustering algorithm on the genes data and
creating an analogous rank-one plot.

In [14]: #Rank-one biclustering of genes data with Spectral Biclustering
model = SpectralBiclustering(n_clusters=4, method='log',

random_state=0)
model.fit(X)
fit_data = X[np.argsort(model.row_labels_)]
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fit_data = fit_data[:, np.argsort(model.column_labels_)]
fit_data = np.sort(fit_data)
plt.matshow(fit_data.T, cmap=plt.cm.coolwarm_r, aspect='auto');
plt.colorbar()
plt.title('SKLearn Algorithm on Genes Data Set', y=1.15)
pass

The plot above has slight concentrations of red and blue on the right side but is much more
uniform in color than the SSVD plot. This reveals that the Spectral Biclustering algorithm is only
somewhat successful. Comparing the two algorithms on the somewhat sparse genes data set, we
can see that the SSVD algorithm reveals more structure on a rank-one pass than does the Spectral
Biclustering algorithm. This is due to the sparse nature of the data set.

Simulated Non-Sparse Data Set

We employ the make_checkerboard function from sklearn to generate a non-sparse data set.
The sklearn documentation2 provides a brief explanation on how to generate a checkerboard
data set and bicluster it using the Spectral Biclustering algorithm: “The data is generated with the
make_checkerboard function, then shuffled and passed to the Spectral Biclustering algorithm.
The rows and columns of the shuffled matrix are rearranged to show the biclusters found by the
algorithm. The outer product of the row and column label vectors shows a representation of the
checkerboard structure.” The code to generate the data, bilcuster it, and produce the checkerboard
plots comes from the same sklearn documentation2.

The following code generates a non-sparse data set. If the algorithm is successful, the first and
third plots will both have a 4× 4 checkerboard structure.

In [23]: #Make simulated data with a checkerboard structure
n_clusters = (2, 2)
data, rows, columns = make_checkerboard(

shape=(12000, 60), n_clusters=n_clusters, noise=4,
shuffle=False, random_state=0)

We implement the SSVD algorithm on the non-sparse matrix to asses its ability to bicluster
when there is a lack of sparcity.

In [24]: #Implement SSVD algorithm on non-sparse synthesized data
[u1,v1,iters] = ssvd(data)

In [27]: Xstar1 = np.outer(u1, v1.T)
X = data-Xstar1
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xmax = np.max(np.abs(X))
v1sort = np.sort(v1)[::-1] #sort descending
u1sort = np.sort(u1)[::-1] #sort descending
x = np.outer(u1sort, v1sort.T)
xfake = x/xmax
#Plots
plt.matshow(data.T, cmap=plt.cm.coolwarm_r, aspect='auto')
plt.title("Original Synthesized Data Set", y=1.15)

#Shuffled data
datashuff, row_idx, col_idx = sg._shuffle(data, random_state=0)
plt.matshow(datashuff.T, cmap=plt.cm.coolwarm_r, aspect='auto')
plt.title("Shuffled Synthesized Data Set", y=1.15)

plt.matshow(xfake.T, cmap=plt.cm.coolwarm_r, aspect='auto')
plt.title("After SSVD Biclustering", y=1.15)
pass

The “After SSVD Biclustering” plot has the desired checkerboard pattern. Therefore, the SSVD
algorithm is able to recover the number of biclusters that were originally used to create the syn-
thesized data set.

Now we test the Spectral Biclustering algorithm on the same non-sparse synthesized data.
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In [28]: plt.matshow(data.T, cmap=plt.cm.coolwarm_r, aspect='auto')
plt.title("Original Synthesized Data Set", y=1.15)

#Shuffled data
datashuff, row_idx, col_idx = sg._shuffle(data, random_state=0)
plt.matshow(datashuff.T, cmap=plt.cm.coolwarm_r, aspect='auto')
plt.title("Shuffled Synthesized Data Set", y=1.15)

#Spectral Biclustering on synthesized data
model = SpectralBiclustering(n_clusters=n_clusters, method='log',

random_state=0)
model.fit(datashuff)

fit_data = datashuff[np.argsort(model.row_labels_)]
fit_data = fit_data[:, np.argsort(model.column_labels_)]

plt.matshow(fit_data.T, cmap=plt.cm.coolwarm_r, aspect='auto')
plt.title("After Sklearn Biclustering", y=1.15)
pass

The checkerboard returned by the Spectral Biclustering algorithm demonstrates that it is also
able to recover the bilcusters after the data are shuffled. Based on these results, the SSVD algorithm
and sklearn’s Spectral Biclustering algorithm are comparable when the input matrix is non-
sparse.
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Simulated Sparse Data Set

We want to compare biclustering performance on sparse data, so, because the genes data are not
specifically sparse, we are making a second synthetic data set with sparcity. This synthetic data set
is described in Lee et al.’s supplemental3 material, which is the LeeShenHuangMarron09-sup.pdf file
on Github. The simplest example to generate a sparse matrix is to create a 100 × 50 ground truth
matrix, X∗, where every non-zero element is the same, and therefore is equally likely to be chosen
by a sparse procedure. The following code generates the sparse matrix and runs both algorithms
on it as we did with the previous two data sets.

In [37]: #u is a unit vector of length 100
#with ui = 1/

√
50 for i = 1,...,50, and ui = 0 otherwise

ufirst = (1/np.sqrt(50))*np.ones((50,1))
ulast = np.zeros((50,1))
u = np.hstack((ufirst.flatten(), ulast.flatten()))

#v is a unit vector of length 50
#with vj = 1/5 for j = 1,...,25, and vj = 0 otherwise.
vfirst = (1/5)*np.ones((25,1))
vlast = np.zeros((25,1))
v = np.hstack((vfirst.flatten(), vlast.flatten()))

#X* = suvT is a rank one matrix with uniform nonzero entries
#s is set to 30
s = 30
Xstar = s*np.outer(u, v.T)
noise = np.random.standard_normal(size=Xstar.shape)

#The input matrix X is the summation of the true signal, Xstar
#and noise from the standard normal distribution
X = Xstar + noise

#Plots
plt.matshow(Xstar.T, cmap=plt.cm.coolwarm_r, aspect='auto')
plt.title("Ground Truth Sparse Synthesized Data Set", y=1.15)

plt.matshow(X.T, cmap=plt.cm.coolwarm_r, aspect='auto')
plt.title("Ground Truth Sparse Synthesized Data Set Plus Noise",

y=1.15)
pass
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Notice how the blue rectangle in the upper left corner is still identifiable after adding noise.
Now we shuffle the data and attempt to bicluster it with the SSVD.

In [33]: #Shuffled data
datashuff, row_idx, col_idx = sg._shuffle(X, random_state=0)
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plt.matshow(datashuff.T, cmap=plt.cm.coolwarm_r, aspect='auto')
plt.title("Shuffled Sparse Synthesized Data Set", y=1.15)

#Implement SSVD algorithm on synthesized sparse data
[u1,v1,iters] = ssvd(datashuff)
Xstar1 = np.outer(u1, v1.T)
Xbi = X-Xstar1
xmax = np.max(np.abs(Xbi))
v1sort = np.sort(v1)[::-1] #sort descending
u1sort = np.sort(u1)[::-1] #sort descending
x = np.outer(u1sort, v1sort.T)
Xbi = x/xmax

plt.matshow(Xbi.T, cmap=plt.cm.coolwarm_r, aspect='auto')
plt.title("After SSVD Biclustering", y=1.15)
plt.colorbar()
pass
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The plot directly above displays the recovered biclustering. Thus, our SSVD algorithm can
recover the biclustering of a sparse, synthesized data set when we know the ground truth.

The last step is to try to recover the biclusters via Spectral Biclustering.

In [38]: #Plots
plt.matshow(Xstar.T, cmap=plt.cm.coolwarm_r, aspect='auto')
plt.title("Ground Truth Sparse Synthesized Data Set", y=1.15)

plt.matshow(X.T, cmap=plt.cm.coolwarm_r, aspect='auto')
plt.title("Ground Truth Sparse Synthesized Dataset Plus Noise",

y=1.15)

datashuff, row_idx, col_idx = sg._shuffle(X, random_state=0)
plt.matshow(datashuff.T, cmap=plt.cm.coolwarm_r, aspect='auto')
plt.title("Shuffled Sparse Synthesized Dataset", y=1.15)

#Run Spectral Biclustering
model = SpectralBiclustering(n_clusters=2, method='log',

random_state=0)
model.fit(datashuff)

fit_data = datashuff[np.argsort(model.row_labels_)]
fit_data = fit_data[:, np.argsort(model.column_labels_)]

plt.matshow(fit_data.T, cmap=plt.cm.coolwarm_r, aspect='auto')
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plt.title("After Sklearn Biclustering", y=1.15)
pass
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The fuzzy yet identifiable blue rectangle in the bottom left corner conveys that the Spectral
Biclustering algorithm is mildly successful in recovering the biclustering, but it underperforms
visually compared to the SSVD algorithm when the data are sparse.
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Conclusion

Lee et al. present an alternative method for biclustering that we have optimized to improve its
practicality. The results of the performance testing demonstrate that the SSVD algorithm is com-
parable to the Spectral Biclustering algorithm when the input matrix is non-sparse, but it out-
performs the Spectral algorithm at an increasing rate as the sparcity of the matrix increases. The
SSVD has the potential to enhance research and contribute to new sample/variable associations
in sparse data, particularly in the medical imaging and gene expression analysis.
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