
EMMC

emmc.info Brussels, June 7th, 2019

Working with EMMO
extensions, applications etc

European Materials Modelling Council

1

Python API
Example 1: EMMO-based user ontology
Example 2: realisation of interoperability

By J. Friis, E. Ghedini, G. Goldbeck, A. Hashibon , G. Schmitz , F.L. Bleken, B.J. Løvfall, A. Saai

EMMC

https://emmc.info/ Brussels, June 7th, 2019

EMMO Python API
• Hosted at https://github.com/emmo-repo/
• Open source BSD license

Requires:
• Python 3.5 or higher
• Owlready2 v0.10 (currently issues with v0.13)
• pydot (generation of graphs)
• pandoc (for generation of EMMO documentation)
• java (for reasoning, use pre-reasoned version of

EMMO instead)

https://github.com/emmo-repo/
https://www.python.org/
https://pypi.org/project/Owlready2/
https://pypi.org/project/pydot/
http://pandoc.org/

EMMC

https://emmc.info/ Brussels, June 7th, 2019

EMMO Python API
Based on Owlready2
• Python package for ontology-oriented programming
• Selected features

– transparent access OWL ontologies
– natural Python representation

• OWL classes -> Python classes
• OWL individuals -> Python instances

– load, modify, save, search (simple + SPARQL), reasoning (via
HermiT or Pellet)

– includes an optimized triplestore/quadstore (via SQLite3)
• handles large ontologies (>109 classes)

• Documentation: https://pythonhosted.org/Owlready2/index.html
• Author: Jean-Baptiste Lamy, LIMICS reseach lab, Sorbonne Paris Cité
• GNU LGPL v3 license

https://pythonhosted.org/Owlready2/index.html

EMMC

https://emmc.info/ Brussels, June 7th, 2019

EMMO Python API

EMMO Python package

• A thin EMMO-specific layer on top of Owlready2

– Makes it easier and more convenient to work with
EMMO

– Generation of graphs
– Generation of documentation

EMMC

https://emmc.info/ Brussels, June 7th, 2019

Working with EMMO via Python

Importing and loading EMMO
(by default pre-reasoned)

Accessing class relations

Accessing class IRI

Search for IRI

Search for all properties

EMMC

https://emmc.info/ Brussels, June 7th, 2019

Extending EMMO via Python
Example 1

Produces a new owl file: onto.owl

Loading the extended ontology is simple

EMMC

https://emmc.info/ Brussels, June 7th, 2019

Interoperability user case

7

• Mechanical response

Real world Model

2 μm

η-Fe2Al5
 θ-Fe4Al13

Al

Steel 1 μm

α-AlFeSi

Scale

Component
Welded
structure

Microstructure
Intermetallic
phases and
interfaces

Atomistic/
electronic
Atomistic
crystal and
interface
structures

Continuum

1 mm

Applied
force

1 nm

• Cohesive behaviour
(cohesive elements)

Interface

• Work of separation
• Work of sharing
Bulk

• Elastic constants

• Atomistic structures

Transferred
properties

Shear force
Tensile force

Continuum

η-Fe2Al5
 θ-Fe4Al13

Al

Fe

Bulk element Interface element

α-AlFeSi

Density
functional
theory
(DFT)

Steel

EMMC

https://emmc.info/ Brussels, June 7th, 2019 8

User case ontology
Materials entities

Additional materials classes needed for the user case

EMMC

https://emmc.info/ Brussels, June 7th, 2019 9

Describing a crystal structure
Materials entities

EMMC

https://emmc.info/ Brussels, June 7th, 2019

Describing a crystal structure
Material entities

10

add generated
graph…

Material entities needed for describing a crystal structure

EMMC

https://emmc.info/ Brussels, June 7th, 2019 11

User case ontology
Properties

Properties and related material entities

EMMC

https://emmc.info/ Brussels, June 7th, 2019 12

Density functional theory
Properties

Note:
elastic_tensor is a property of both crystal_unit
(atomic) and rve (continuum)

⇒ vertical interoperability

DFT input
DFT output

EMMC

https://emmc.info/ Brussels, June 7th, 2019 13

Describing a crystal structure
Properties

EMMC

https://emmc.info/ Brussels, June 7th, 2019 14

Describing a crystal structure
Properties

EMMC

https://emmc.info/ Brussels, June 7th, 2019 15

Describing a crystal structure
Properties

EMMC

https://emmc.info/ Brussels, June 7th, 2019

Density functional theory
elastic properties

crystal C11 C22 C33 C44 C55 C66 C12 C13 C15 C23 C25 C35 C46

Fe2Al5 213.49 237.49 269.17 88.25 78.25 99.66 77.13 89.43 45.71

Fe4Al13 216.3 195.8 219.03 77.09 63.93 76.07 59.70 41.52 -2.75 19.28 -3.61 -3.36 -0.067
Alpha 33.21 38.42 27.32 53.17 53.17 53.17 116.58 116.58 108.03

16

Calculated anisotropic elastic constants

Fe2Al5 Fe4Al13 alphaFe

Al

𝑐𝑐 =

𝐶𝐶11 𝐶𝐶12 𝐶𝐶13
𝐶𝐶12 𝐶𝐶22 𝐶𝐶23
𝐶𝐶13 𝐶𝐶23 𝐶𝐶33

𝐶𝐶14 𝐶𝐶15 𝐶𝐶16
𝐶𝐶24 𝐶𝐶25 𝐶𝐶26
𝐶𝐶34 𝐶𝐶35 𝐶𝐶36

𝐶𝐶14 𝐶𝐶24 𝐶𝐶34
𝐶𝐶15 𝐶𝐶25 𝐶𝐶35
𝐶𝐶16 𝐶𝐶26 𝐶𝐶36

𝐶𝐶44 𝐶𝐶45 𝐶𝐶46
𝐶𝐶45 𝐶𝐶55 𝐶𝐶56
𝐶𝐶46 𝐶𝐶56 𝐶𝐶66

=

𝑐𝑐1111 𝑐𝑐1122 𝑐𝑐1133
𝑐𝑐2211 𝑐𝑐2222 𝑐𝑐2233
𝑐𝑐3311 𝑐𝑐3322 𝑐𝑐3333

𝑐𝑐1123 𝑐𝑐1131 𝑐𝑐1112
𝑐𝑐2223 𝑐𝑐2231 𝑐𝑐2212
𝑐𝑐3323 𝑐𝑐3331 𝑐𝑐3312

𝑐𝑐2311 𝑐𝑐2322 𝑐𝑐2333
𝑐𝑐3111 𝑐𝑐3122 𝑐𝑐3133
𝑐𝑐1211 𝑐𝑐1222 𝑐𝑐1233

𝑐𝑐2323 𝑐𝑐2331 𝑐𝑐2312
𝑐𝑐3123 𝑐𝑐3131 𝑐𝑐3112
𝑐𝑐1223 𝑐𝑐1231 𝑐𝑐1212

Stiffness tensor 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 expressed as a 6x6 matrix (from Hooks law 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑘𝑘𝑘𝑘)

EMMC

https://emmc.info/ Brussels, June 7th, 2019 17

Realising interoperability
Example 2

EMMC

https://emmc.info/ Brussels, June 7th, 2019

• Aim: use common ontology to realise
interoperability between applications

• How: map between common and
application ontology

• Approach: use metadata framework (for
practicality)
1. generate metadata from common

ontology
2. define application metadata (from

implicit ontology)
3. instantiate application data
4. map application data to instance of

the common metadata

18

Realising interoperability
Example 2

Domain
ontology

Interface
B

Application B

OpenAPI

MarketPlace API

EMMO

COMMON REPRESENTATIONAL SYSTEM

EMMC

https://emmc.info/ Brussels, June 7th, 2019 19

Ontology 1 Ontology 2

Metadata 1a Metadata 2Metadata 1b

data instance

data instance data instance

mapping

generation generation

EMMO-based common representation (Implicit) application ontology

Realising interoperability
Generic example

EMMC

https://emmc.info/ Brussels, June 7th, 2019 20

Ontology 1 Ontology 2

ASE Atoms class

structureunit cell

mapping

generation
generation

EMMO-based common representation (Implicit) application ontology

Realising interoperability
Generic example

e-bonded_atom

crystal_unit_cell crystal

crystal_unit_cell crystale-bonded_atom

ASE Atoms instance

atom 1

atom 211

…

Collection
CIF file

read

Step 1: generate metadata
Step 2: app. metadata

Step 4: map
Step 3: instantiate app. data

EMMC

https://emmc.info/ Brussels, June 7th, 2019

1. Generate metadata

21

Entity: "Something that exists
by itself, something that is
separate from other things"

Source: Merriam-Webster

About the metadata framework used here
• C-implementation of SOFT (dlite)
• data-driven (property graph)

entity example

Name e-bonded_atom

Version 0.1

Namespace http://emmc.info/emmc-csa/demo

Description
An electronic bonded atom that shares at least one
electron to the atom_based entity of which is part of.

Dimensions
Name Description

ncoords Number of coordinates (always 3)

Properties
Name Type Dims Unit Description

atomic_number int - - Number of protons.

mass float - u Mass of this atom.

position float ncoords Å Position of this atom.

e-bonded_atom

atomic_number massposition

physical_quantity

atom

has_property

http://emmc.info/emmc-csa/demo

EMMC

https://emmc.info/ Brussels, June 7th, 2019

1. Generate metadata

22

Mapping of concepts
1. OWL classes → metadata entities
2. EMMO properties → entity properties
3. all other relations → relations

(+ restriction, class construct instances)
Collection

mass is_a p.q.
position is_a p.q.

…

e-bonded_atom

atomic_number massposition

physical_quantity

atom

has_property

is_a

e-bonded_atom
atomic_number
position
mass

EMMC

https://emmc.info/ Brussels, June 7th, 2019

2. Define application metadata

23

atoms.json

EMMC

https://emmc.info/ Brussels, June 7th, 2019

3. Load atoms

24

EMMC

https://emmc.info/ Brussels, June 7th, 2019

4. map Atoms instance to
common representation

25

EMMC

https://emmc.info/ Brussels, June 7th, 2019

Using CUDS…

Mappings (EMMO → CUDS)
• class elucidation → description
• classification (is_a) → parent
• parthood (has_part) → containment
• slicing (has_subdimension) →

containment
• representations (has_sign) → attribute

CUDS YAML

emmocuds.py

EMMC

27

EMMC-CSA project has received funding from the European Union's Horizon 2020
research and innovation programme, under Grant Agreement No. 723867.

European Materials Modelling Council

The scientific part of the user case was performed in SFI Manufacturing, a national
Norwegian project funded by the Research Council of Norway.

EMMC

https://emmc.info/ Brussels, June 7th, 2019

Boundary vs interface

28

boundary (matter)
(3D + 1D)

interface (world_volume)
(2D + 1D)

matter a
(3D + 1D)

matter b
(3D + 1D)

EMMC

https://emmc.info/ Brussels, June 7th, 2019 29

Density functional theory
Interfacial properties

Fe

Al

Fe2Al5

Fe4Al13

alpha

Fe2Al5

Fe4Al13

Al

Properties
class area(emmo.physical_quantity):

"""Area of a surface."""
is_a = [has_unit.exactly(1, square_meter),

has_type.exactly(1, real)]

class work_of_separation(energy_per_area):
"""The work required to separate two materials per boundary area."""
is_a = [has_unit.exactly(1, joule_per_square_meter),

has_type.exactly(1, real)]

class traction_separation(pressure):
"""The work required to separate two materials per boundary area."""
is_a = [has_unit.exactly(1, pascal),

has_type.exactly(1, real)]

Sub-dimensional classes
class interface(emmo.surface):

"""A 2D surface associated with a boundary."""
label = ['interface']
is_a = [emmo.has_property.exactly(1, area),

emmo.has_property.exactly(1, work_of_separation),
emmo.has_property.exactly(1, traction_separation)]

Material entities
class boundary(emmo.state):

"""A boundary is a 4D region of spacetime shared by two material
entities."""
equivalent_to = [emmo.has_spatial_direct_part.exactly(2, emmo.state)]
is_a = [emmo.has_space_slice.exactly(1, interface)]

	Working with EMMO�extensions, applications etc
	EMMO Python API
	EMMO Python API
	EMMO Python API
	Working with EMMO via Python
	Extending EMMO via Python�Example 1
	Interoperability user case
	User case ontology�Materials entities
	Describing a crystal structure�Materials entities
	Describing a crystal structure�Material entities
	User case ontology�Properties
	Density functional theory�Properties
	Describing a crystal structure�Properties
	Describing a crystal structure�Properties
	Describing a crystal structure�Properties
	Density functional theory�elastic properties
	Realising interoperability�Example 2
	Realising interoperability�Example 2
	Realising interoperability�Generic example
	Realising interoperability�Generic example
	1. Generate metadata
	1. Generate metadata
	2. Define application metadata
	3. Load atoms
	4. map Atoms instance to common representation
	Using CUDS…
	Slide Number 27
	Boundary vs interface
	Density functional theory�Interfacial properties

