skinoptics.refractive_index¶
This program is free software: you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation, either version 3 of the License, or(at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program. If not, see <https://www.gnu.org/licenses/>.
- skinoptics.refractive_index.beta_oxy_Friebel(lambda0)¶
- The specific refractive increment of OXYHEMOGLOBIN solutions as a function of wavelength.Linear interpolation of experimental data from Friebel & Meinke 2006 [FM06].wavelength range: [250 nm, 1100 nm]
- Parameters:
lambda0 (float or np.ndarray) – wavelength [nm] (must be in the range [250., 1100.])
- Returns:
beta (float or np.ndarray) – specific refractive increment [dL/g]
- skinoptics.refractive_index.n_AT_Matiatou(lambda0)¶
- The refractive index of human ADIPOSE TISSUE as a function of wavelength.Matiatou et al. 2021 [M*21]’s fit to their own experimental data.
\(n(\lambda) = 1.44933 + \frac{4908.37}{\lambda^2}\)
wavelength range: [450 nm, 1551 nm]temperature: 25 ºCbody location: abdomen- Parameters:
lambda0 (float or np.ndarray) – wavelength [nm]
- Returns:
n (float or np.ndarray) – refractive index [-]
- skinoptics.refractive_index.n_AT_Yanina(lambda0)¶
- The refractive index of human ADIPOSE TISSUE as a function of wavelength.Yanina, Lazareva & Tuchin 2018 [YLT18]’s fit to their own experimental data.
\(n(\lambda) = \sqrt{1 + \frac{1.1236 \mbox{ } \lambda^2}{\lambda^2-10556.6963} + \frac{0.2725 \mbox{ } \lambda^2}{\lambda^2-1.8867\times 10^7}}\)
wavelength range: [480 nm, 1550 nm]temperature: 23 ºCbody location: abdomenvolunteers info: 10 biopsies, 5 men, 40 – 50 years old, 70 – 80 kg- Parameters:
lambda0 (float or np.ndarray) – wavelength [nm]
- Returns:
n (float or np.ndarray) – refractive index [-]
- skinoptics.refractive_index.n_Cauchy(lambda0, A, B, C, D)¶
The Cauchy’s equation.
\(n(\lambda) = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4} + \frac{D}{\lambda^6}\)
- Parameters:
lambda0 (float or np.ndarray) – wavelength [nm]
A (float) – coefficient \(A\) [-]
B (float) – coefficient \(B\) [nm^2]
C (float) – coefficient \(C\) [nm^4]
D (float) – coefficient \(D\) [nm^6]
- Returns:
n (float or np.ndarray) – refractive index [-]
- skinoptics.refractive_index.n_Conrady(lambda0, A, B, C)¶
The Conrady’s equation.
\(n(\lambda) = A + \frac{B}{\lambda} + \frac{C}{\lambda^{3.5}}\)
- Parameters:
lambda0 (float or np.ndarray) – wavelength [nm]
A (float) – coefficient \(A\) [-]
B (float) – coefficient \(B\) [nm]
C (float) – coefficient \(C\) [nm^3.5]
- Returns:
n (float or np.ndarray) – refractive index [-]
- skinoptics.refractive_index.n_Cornu(lambda0, A, B, C)¶
The Cornu’s equation.
\(n(\lambda) = A + \frac{B}{(\lambda - C)}\)
- Parameters:
lambda0 (float or np.ndarray) – wavelength [nm]
A (float) – coefficient \(A\) [-]
B (float) – coefficient \(B\) [nm]
C (float) – coefficient \(C\) [nm]
- Returns:
n (float or np.ndarray) – refractive index [-]
- skinoptics.refractive_index.n_DE_Ding(lambda0, model='Cauchy')¶
- The refractive index of human DERMIS as a function of wavelength.Ding et al. 2006 [D*06]’s fits to their own experimental data.Complementary data publicly available at <bmlaser.physics.ecu.edu/literature/lit.htm>.wavelength range: [325 nm, 1557 nm]temperature: 22 ºCbody location: abdomen and armvolunteers info: 12 female patients (10 caucasians and 2 african americans),phototypes I-III and V, 27-63 years old
- Parameters:
lambda0 (float or np.ndarray) – wavelength [nm]
model – the user can choose one of the following… ‘Cauchy’, ‘Cornu’ or ‘Conrady’ (default to ‘Cauchy’)
- Returns:
n (float or np.ndarray) – refractive index [-]
- skinoptics.refractive_index.n_EP_Ding(lambda0, model='Cauchy')¶
- The refractive index of human EPIDERMIS as a function of wavelength.Ding et al. 2006 [D*06]’s fits to their own experimental data.Complementary data publicly available at <bmlaser.physics.ecu.edu/literature/lit.htm>.wavelength range: [325 nm, 1557 nm]temperature: 22 ºCbody location: abdomen and armvolunteers info: 12 female patients (10 caucasians and 2 african americans),phototypes I-III and V, 27-63 years old
- Parameters:
lambda0 (float or np.ndarray) – wavelength [nm]
model – the user can choose one of the following… ‘Cauchy’, ‘Cornu’ or ‘Conrady’ (default to ‘Cauchy’)
- Returns:
n (float or np.ndarray) – refractive index [-]
- skinoptics.refractive_index.n_HY_Matiatou(lambda0)¶
- The refractive index of human HYPODERMIS as a function of wavelength.Matiatou et al. 2021 [M*21]’s fit to their own experimental data.
\(n(\lambda) = 1.44909 + \frac{5099.42}{\lambda^2}\)
wavelength range: [450 nm, 1551 nm]temperature: 25 ºC- Parameters:
lambda0 (float or np.ndarray) – wavelength [nm]
- Returns:
n (float or np.ndarray) – refractive index [-]
- skinoptics.refractive_index.n_Sellmeier(lambda0, A1, B1, A2, B2)¶
The Sellmeier’s equation.
\(n(\lambda) = \sqrt{1 + \frac{A_1 \mbox{ } \lambda^2}{\lambda^2 - B_1} + \frac{A_2\mbox{ } \lambda^2}{\lambda^2 - B_2}}\)
- Parameters:
lambda0 (float or np.ndarray) – wavelength [nm]
A1 (float) – coefficient \(A_1\) [-]
B1 (float) – coefficient \(B_1\) [nm^2]
A2 (float) – coefficient \(A_2\) [-]
B2 (float) – coefficient \(B_2\) [nm^2]
- Returns:
n (float or np.ndarray) – refractive index [-]
- skinoptics.refractive_index.n_blo_Li(lambda0)¶
- The refractive index of human BLOOD as a function of wavelength.Li, Lin & Xie 2000 [LLX00]’s fit to their own experimental data.
\(n(\lambda) = 1.357 + \frac{6.9 \times 10^3}{\lambda^2} + \frac{7.6 \times 10^8}{\lambda^4}\)
wavelength range: [370 nm, 850 nm]temperature: 27 - 28 ºCblood types: A, B and Ovolunteers info: 9 healthy volunteers, chinese, male and female- Parameters:
lambda0 (float or np.ndarray) – wavelength [nm]
- Returns:
n (float or np.ndarray) – refractive index [-]
- skinoptics.refractive_index.n_oxy_Friebel(lambda0, Cmass_oxy, n_wat_model='Segelstein')¶
- The refractive index of OXYHEMOGLOBIN solutions as a function of wavelength andoxyhemoglobin concentration.Calculated from the specific refractive increment
skinoptics.refractive_index.beta_oxy_Friebel()
and the refractive index of water.\(n_{oxy}(\lambda, C_{oxy}) = n_{wat}(\lambda) \mbox{ } [\beta (\lambda) \mbox{ } C_{oxy} + 1]\)
wavelength range: [250 nm, 1100 nm]concentration range: [0 g/dL, 28.7 g/dL]- Parameters:
lambda0 (float or np.ndarray) – wavelength [nm] (must be in the range [250., 1100.])
Cmass_oxy (float) – oxyhemoglobin mass concentration [g/dL]
n_wat_model (str) – the user can choose one of the following… ‘Hale’ or ‘Segelstein’ (default to ‘Segelstein’)
‘Hale’ refers toskinoptics.refractive_index.n_wat_Hale()
‘Segelstein’ refers toskinoptics.refractive_index.n_wat_Segelstein()
- Returns:
n (float or array-like) – refractive index [-]
- skinoptics.refractive_index.n_wat_Hale(lambda0)¶
- The refractive index of WATER as a function of wavelength.Linear interpolation of data from Hale & Querry 1973 [HQ73].wavelength range: [200 nm, 200 μm]temperature: 25 ºC
- Parameters:
lambda0 (float or np.ndarray) – wavelength [nm]
- Returns:
n (float or np.ndarray) – refractive index [-]
- skinoptics.refractive_index.n_wat_Segelstein(lambda0)¶
- The refractive index of WATER as a function of wavelength.Linear interpolation of data from D. J. Segelstein’s M.S. Thesis 1981 [S81] collectedby S. Prahl and publicly available at <https://omlc.org/spectra/water/abs/index.html>.wavelength range: [10 nm, 10 m]
- Parameters:
lambda0 (float or np.ndarray) – wavelength [nm]
- Returns:
n (float or np.ndarray) – refractive index [-]