
MFLib
Release 1.0.1

Fabric UKY Team

Jul 13, 2023

CONTENTS

1 Documentation Resources 2
1.1 Example Jupyter Notebooks . 2
1.2 FABRIC Learn Site . 2
1.3 MFLib Python Package Documentation . 2

2 MFLib Installation 3
2.1 Instaling via PIP . 3
2.2 Installing via Source Code . 3

3 Building & Deploying 4
3.1 Spinx Documentation . 4
3.2 Distribution Package . 5

4 MFLib Overview 6
4.1 MFLib Methods . 6

5 MFLib 10

6 MFLib Core 12

7 MFLib mf_timestamp 17

8 OWL 19

9 OWL Data 22

Python Module Index 23

Index 24

i

MFLib, Release 1.0.1

docsdocs passingpassing

Welcome to the FABRIC Measurement Framework Library. MFLib makes it easy to install monitoring systems to a
FABRIC experimenter’s slice. The monitoring system makes extensive use of industry standards such as Prometheus,
Grafana, Elastic Search and Kibana while adding customized monitoring tools and dashboards for quick setup and
visualization.

CONTENTS 1

https://fabrictestbed-mflib.readthedocs.io/en/latest/?badge=latest

CHAPTER

ONE

DOCUMENTATION RESOURCES

For more information about FABRIC vist fabric-testbed.net

1.1 Example Jupyter Notebooks

FABRIC Jupyter Examples GitHub repository contains many examples for using FABRIC from simple slice setup to
advanced networking setups. Look for the MFLib section. These notebooks are designed to be easily used on the
FABRIC JupyterHub

1.2 FABRIC Learn Site

FABRIC Knowledge Base

1.3 MFLib Python Package Documentation

Documentation for the package is presented in serveral different forms (and maybe include later in this document):

• ReadTheDocs

• MFLib.pdf in the source code/GitHub.

• Or you may build the documentation from the source code. See Sphinx Documentation later in this document.

2

https://fabric-testbed.net/
https://github.com/fabric-testbed/jupyter-examples
https://jupyter.fabric-testbed.net/
https://learn.fabric-testbed.net/
https://fabrictestbed-mflib.readthedocs.io/en/latest/
https://github.com/fabric-testbed/mflib/blob/main/MFLib.pdf

CHAPTER

TWO

MFLIB INSTALLATION

2.1 Instaling via PIP

MFLib may be installed using PIP and PyPI fabrictestbed-mflib

pip install --user fabrictestbed-mflib

2.2 Installing via Source Code

If you need a development version, clone the git repo, then use pip to install.

git clone https://github.com/fabric-testbed/mflib.git
cd mflib
pip install --user .

3

https://pypi.org/project/fabrictestbed-mflib/

CHAPTER

THREE

BUILDING & DEPLOYING

3.1 Spinx Documentation

This package is documented using sphinx. The source directories are already created and populated with reStruc-
turedText (.rst) files. The build directories are deleted and/or are not included in the repository,

API documentation can also be found at https://fabrictestbed-mflib.readthedocs.io/.

3.1.1 Build HTML Documents

Install the extra packages required to build API docs: (sphinx, furo theme, and myst-parser for parsing markdown files):

pip install -r docs/requirements.txt

Build the documentation by running the following command from the root directory of the repo.

./create_html_doc.sh

The completed documentation may be accessed by clicking on /docs/build/html/index.html. Note that the
HTML docs are not saved to the repository.

3.1.2 Build PDF Document

Latex must be installed. For Debian use:

sudo apt install texlive-latex-extra
sudo apt install latexmk

Run the bash script to create the MFLIB.pdf documentation. MFLIB.pdf will be placed in the root directory of the
repository.

./create_pdf_doc.sh

4

MFLib, Release 1.0.1

3.2 Distribution Package

MFLib package is created using Flit Be sure to create and commit the PDF documentation to GitHub before building
and publishing to PyPi. The MFLib.pdf is included in the distributition.

To build python package for PyPi run

./create_release.sh

3.2.1 Uploading to PyPI

First test the package by uploading to test.pypi.org then test the install.

flit publish --repository testpypi

Once install is good, upload to PiPy

flit publish

Note that Flit places a .pypirc file in your home directory if you do not already have one. Flit may also store your
password in the keyring which may break if the password is changed. see Flit Controlling package uploads. The
password can also be added to the .pypirc file. If password contains % signs it will break the .pypirc file.

3.2. Distribution Package 5

https://flit.pypa.io/en/stable/
https://flit.pypa.io/en/stable/upload.html

CHAPTER

FOUR

MFLIB OVERVIEW

MFLib consists of several classes.

Core – Core makes up the base class that defines methods needed to interact with the nodes in a slice, most notably
with the special Measurement Node. This class is used by higer-level classes so the average user will not need to use
this class directly. MFLib – MFLib is the main class that a user will use to instrumentize a slice and interact with the
monitoring systems. MFVis – MFVis makes it easy to show and download Grafana graphs directly from python code.
MFVis requires that the slice has been previously instumentized by MFLib

4.1 MFLib Methods

MFLib is a python library that enables automatic monitoring of a FABRIC experiment using Prometheus, Grafana
and ELK. It can be installed using pip install fabrictestbed-mflib . You can also install the latest code by cloning the
fabrictestbed/mflib source code and following the install instructions. Here are the most common methods you will
need for interacting with MFLib. For more details see the class documentation.

4.1.1 Creating a Slice

Slice creation is done as you would normally create a slice, but requires an extra step before you submit the slice.

MFLib().addMeasNode(slice) where slice is a fabric slice that has been specified but not yet submitted. This example
has 3 ndoes and an experimental network.

The MFLib().addMeasNode(slice) adds an extra node called the Measurement Node (meas_node) and an measure-

6

MFLib, Release 1.0.1

ment network.

4.1.2 Init & Instrumentize

MFlib works on an existing slice to which MFLib must first add some software and services.

MFLib(slice_name) mf = MFLib(slice_name, local_storage_directory="/tmp/mflib") First you must
create the MFLib object by passing the slice name to MFLib() . You can optionally pass a string for where you would
like the local working files for the slice to be stored. These files include keys, Ansible hosts file, progress and log files
and any downloaded files. The default location is in the tmp directory. If you plan on revisiting the slice or the log files
later, you should change the directory to a persistent directory of your choosing.
This is called initializing the slice. This process:

• Add mfuser to all the nodes

• Clones MeasurementFramework repository to mfuser account on the Measurement Node

• Creates ansible.ini file for the slice and uploads it to the Measurement Node

• Runs a BASH script on the Measurement Node

• Runs an Ansible script on the Measurement Node

• Sets up Measurement Services that can later be installed

• Ensures Docker & PTP services are running on the experiment’s nodes

MFLib.instrumentize() mf.instrumentize() MFLib needs to be “instrumentized” to start the monitoring collec-
tion. This process will add the systems needed to collect Prometheus metrics and Elastic logs along with Grafana and
Kibana for visualizing the collect data. If you only need one of these, or if you want to add other services, include
a list of strings naming the services you would like to install. mv.instrumentize([“prometheus”]) This is called the
instrumentizing the slice. This process:

• By default, installs and starts monitoring with:

– Prometheus & Grafana

– ELK with Kibana

4.1. MFLib Methods 7

MFLib, Release 1.0.1

4.1.3 Service Methods

Measurement Framework has “services” which are installed on the measurement node. The MFLib.instrumentize()
method installs Prometheus, Grafana, and ELK.. MFLib is built on top of MFLib.Core(). MFLib uses Core methods to
interact with services using several basic methods: create, info, update, start, stop and remove. Each of these methods
require the service name. Most can also take an optional dictionary and an optional list of files to be uploaded. All will
return a json object with at least a “success” and “msg” values.

MFLib.create mf.create(service, data=None, files=[]) is used to add a service to the slice. By default,
Prometheus, ELK, Grafana and Overview services are added during instrumentation.

MFLib.info mf.info(service, data=None) is used to get information about the service. This will be the most
commonly used method. For example Prometheus adds Grafana to the experiment to easily access and visualize the
data collected by Prometheus. In order to access Grafana as an admin user, you will need a password. The password
can be retrieved using

data = {}
data["get"] = ["grafana_admin_password"]
info_results = mf.info("prometheus", data)
print(info_results["grafana_admin_password"])
Info calls should not alter the service in anyway.

MFLib.update mf.info(service, data=None, files=[]) is used to update the service configurations or make
other changes to the service’s behavior. For example you can add custom dashboards to Grafana using the
grafana_manager.

data = {"dashboard":"add"}
files = ["path_to_dashboard_config.json"]
mf.update("grafana_manager", data, files)

MFLib.stop mf.stop(service) is used to stop a service from using resources. The service is not removed and can
be restarted.

MFLib.start mf.start(service) is used to restart a stopped service.

mflib.remove mf.remove(service) is used to remove a service. This will stop and remove any artifacts that were
installed on the experiment’s nodes.

mflib.download_common_hosts mf.download_common_hosts() retrieves an ansible hosts.ini file for the slice. The
hosts file will contain 2 groups: Experiment_nodes and Measurement_node

4.1. MFLib Methods 8

MFLib, Release 1.0.1

mflib.download_log_file mf.download_log_file(service, method) retrieves the log files for runs of the given
service’s method: create, info, update. . . etc. This can be useful for debugging.

4.1.4 Accessing Experiment Nodes via Bastion Host

Many of the services set up by MFLib run web accessible user interfaces on the Measurement Node. Since experimental
resources are secured by the FABRIC Bastion host, a tunnel must be created to access the web pages.

MFLib has properties, MFLIB.grafana_tunnel & MFLib.kibana_tunnel that will return the needed commands to
create tunnels to access the relative service.

4.1. MFLib Methods 9

CHAPTER

FIVE

MFLIB

MFLib is the main class that is used to interact with the Measurement Framework set up in a user’s FABRIC Experiment.

class mflib.mflib.MFLib(slice_name='', local_storage_directory='/tmp/mflib', mf_repo_branch='main',
optimize_repos=False)

Bases: Core

MFLib allows for adding and controlling the MeasurementFramework in a Fabric experiementers slice.

static addMeasNode(slice, cores=4, ram=16, disk=500, network_type='FABNetv4', site='EDC',
image='default_ubuntu_20')

Adds Measurement node and measurement network to an unsubmitted slice object.

Parameters

• slice (fablib.slice) – Slice object already set with experiment topology.

• cores (int, optional) – Cores for measurement node. Defaults to 4 cores.

• ram (int, optional) – _description_. Defaults to 16 GB ram.

• disk (int, optional) – _description_. Defaults to 500 GB disk.

• network_type (string, optional) – _description_. Defaults to FABNetv4.

• site (string, optional) – _description_. Defaults to NCSA.

add_mflib_log_handler(log_handler)
Adds the given log handler to the mflib_logger. Note log handler needs to be created with set_mflib_logger
first.

Parameters
log_handler (logging handler) – Log handler to add to the mflib_logger.

download_common_hosts()

Downloads hosts.ini file and returns file text. Downloaded hosts.ini file will be stored locally for future
reference.

init(slice_name, optimize_repos)
Sets up the slice to ensure it can be monitored. Sets up basic software on Measurement Node and experiment
nodes. Slice must already have a Measurement Node. See log file for details of init output.

Parameters
slice_name (str) – The name of the slice to be monitored.

Returns
False if no Measure Node found or a init process fails. True otherwise.

10

MFLib, Release 1.0.1

Return type
Bool

instrumentize(services=['prometheus', 'elk'])
Instrumentize the slice. This is a convenience method that sets up & starts the monitoring of the slice. Sets
up Prometheus, ELK & Grafana.

Parameters
services (List of Strings) – Just add the listed components. Options are elk or
prometheus.

Returns
The output from each phase of instrumetizing.

Return type
dict

mflib_class_version = '1.0.37'

remove_mflib_log_handler(log_handler)
Removes the given log handler from the mflib_logger.

Parameters
log_handler (logging handler) – Log handler to remove from mflib_logger

restore_DNS(node)

restore_DNS_all_nodes()

Restores the DNS to default if previously set. See set_DNS_all_nodes.

Returns
“restored” if restored, “not needed” if not needed

Return type
string

set_DNS(node)
Sets the DNS on IPv6 only nodes to enable access to IPv4 sites.

set_DNS_all_nodes()

Sets DNS for nodes to allow them to access ipv4 networks.

Returns
“set” if DNS set, “not needed” otherwise.

Return type
string

set_mflib_logger()

Sets up the mflib logging file. The filename is created from the self.logging_filename. Note that the
self.logging_filename will be set with the slice when the slice name is set.

This method uses the logging filename inherited from Core.

11

CHAPTER

SIX

MFLIB CORE

MFLib’s Core functions are defined in this class. This class is the base class for all MFLib classes and is not meant to
be used directly.

class mflib.core.Core(local_storage_directory='/tmp/mflib', mf_repo_branch='main', logging_level=10)
MFLib core contains the core methods needed to create and interact with the Measurement Framework installed
in a slice. It is not intended to be used by itself, but rather, it is the base object for creating Measurement
Framework Library objects.

property bootstrap_status_file

The full path to the local copy of the bootstrap status file.

Returns
The full path tp the local copy of the bootsrap status file.

Return type
String

property common_hosts_file

The full path to a local copy of the hosts.ini file.

Returns
The full path to a local copy of the hosts.ini file.

Return type
String

core_class_version = '1.0.38'

An updatable version for debugging purposes to make sure the correct version of this file is being used.
Anyone can update this value as they see fit. Should always be increasing.

Returns
Version.sub-version.build

Return type
String

create(service, data=None, files=[])
Creates a new service for the slice.

Parameters

• service (String) – The name of the service.

• data (JSON serializable object) –

• files (List of Strings) – List of filepaths to be uploaded.

12

MFLib, Release 1.0.1

Returns
Dictionary of creation results.

Return type
dict

download_log_file(service, method)
Download the log file for the given service and method. Downloaded file will be stored locally for future
reference. :param service: The name of the service. :type service: String :param method: The method
name such as create, update, info, start, stop, remove. :type method: String :return: Writes file to local
storage and returns text of the log file. :rtype: String

download_service_file(service, filename, local_file_path='')
Downloads service files from the meas node and places them in the local storage directory. Denies the user
from downloading files anywhere outside the service directory :param service: Service name :type service:
String :param filename: The filename to download from the meas node. :param local_file_path: Optional
filename for local saved file. :type local_file_path: String

get_bootstrap_status(force=True)
Returns the bootstrap status for the slice. Default setting of force will always download the most
recent file from the meas node. The downloaded file will be stored locally for future reference at
self.bootstrap_status_file.

Parameters
force (Boolean) – If downloaded file already exists locally, it will not be downloaded unless
force is True. .

Returns
Bootstrap dict if any type of bootstraping has occured, Empty dict otherwise.

Return type
Dictionary

get_mfuser_private_key(force=True)
Downloads the mfuser private key. Default setting of force will always download the most re-
cent file from the meas node. The downloaded file will be stored locally for future reference at
self.local_mfuser_private_key_filename.

Parameters
force (Boolean) – If downloaded file already exists locally, it will not be downloaded unless
force is True.

Returns
True if file is found, false otherwise.

Return type
Boolean

property grafana_tunnel

Returns the command for createing an SSH tunnel for accesing Grafana.

Returns
ssh command

Return type
String

property grafana_tunnel_local_port

If a tunnel is used for grafana, this value must be set for the port. :returns: port number :rtype: String

13

MFLib, Release 1.0.1

info(service, data=None)
Gets inormation from an existing service. Strictly gets information, does not change how the service is
running.

Parameters

• service (String) – The name of the service.

• data (JSON Serializable Object) – Data to be passed to a JSON file place in the
service’s meas node directory.

Returns
Dictionary of info results.

Return type
dict

property kibana_tunnel

Returns the command for createing an SSH tunnel for accesing Kibana.

Returns
ssh command

Return type
String

property kibana_tunnel_local_port

If a tunnel is used for Kibana, this value must be set for the port

property local_mfuser_private_key_filename

The local copy of the private ssh key for the mfuser account.

Returns
The local copy of the private ssh key for the mfuser account.

Return type
String

property local_mfuser_public_key_filename

The local copy of the public ssh key for the mfuser account.

Returns
The local copy of the public ssh key for the mfuser account.

Return type
String

property local_slice_directory

The directory where local files associated with the slice are stored.

Returns
The directory where local files associated files are stored.

Return type
str

property log_directory

The full path for the log directory.

Returns
The full path to the log directory.

14

MFLib, Release 1.0.1

Return type
String

property meas_node

The fablib node object for the Measurement Node in the slice.

Returns
The fablib node object for the Measurement Node in the slice.

Return type
fablib.node

property meas_node_ip

The management ip address for the Measurement Node

Returns
ip address

Return type
String

remove(services=[])
Stops a service running and removes anything setup on the experiment’s nodes. Service will then need to
be re-created using the create command before service can be started again.

Parameters
services (List of Strings) – The names of the services to be removed.

Returns
List of remove result dictionaries.

Return type
List

set_core_logger()

Sets up the core logging file. Note that the self.logging_filename will be set with the slice name when the
slice is set. Args: filename (_type_, optional): _description_. Defaults to None.

property slice_name

Returns the name of the slice associated with this object.

Returns
The name of the slice.

Return type
String

property slice_username

The default username for the Measurement Node for the slice.

Returns
username

Return type
String

start(services=[])
Restarts a stopped service using existing configs on meas node.

Parameters
services (List of Strings) – The name of the services to be restarted.

15

MFLib, Release 1.0.1

Returns
List of start result dictionaries.

Return type
List

stop(services=[])
Stops a service, does not remove the service, just stops it from using resources.

Parameters
services (List of Strings) – The names of the services to be stopped.

Returns
List of stop result dictionaries.

Return type
List

property tunnel_host

If a tunnel is used, this value must be set for the localhost, Otherwise it is set to empty string.

Returns
tunnel hostname

Return type
String

update(service, data=None, files=[])
Updates an existing service for the slice.

Parameters

• service (String) – The name of the service.

• data (JSON Serializable Object) – Data to be passed to a JSON file place in the
service’s meas node directory.

• files (List of Strings) – List of filepaths to be uploaded.

Returns
Dictionary of update results.

Return type
dict

upload_service_directory(service, local_directory_path, force=False)
Uploads the given local directory to the given service’s directory on the meas node. :param service:
Service name for which the files are being upload to the meas node. :type service: String :param lo-
cal_directory_path: Directory path on local machine. :type local_directory_path: String :param force:
Whether to overwrite existing directory, if it exists. :type force: Bool :raises: Exception: for misc fail-
ures. . . . :return: ? :rtype: ?

upload_service_files(service, files)
Uploads the given local files to the given service’s directory on the meas node. Denies the user from
uploading files anywhere outside the service directory :param service: Service name for which the files are
being upload to the meas node. :type service: String :param files: List of file paths on local machine. :type
files: List :raises: Exception: for misc failures. . . . :return: ? :rtype: ?

16

CHAPTER

SEVEN

MFLIB MF_TIMESTAMP

MFLib’s Timestamp functions are defined in this class.

class mflib.mf_timestamp.mf_timestamp(slice_name, container_name)
Creates precision timestamps.

deploy_influxdb_dashboard(dashboard_file, influxdb_node_name, bind_mount_volume)
Uploads a dashboard template file from Jupyterhub to influxdb and apply the template :param dash-
board_file: path of the dashboard file on Jupyterhub :type dashboard_file: str :param influxdb_node_name:
which fabric node is influxdb running on :type influxdb_node_name: str :param bind_mount_volume: bind
mount volume of the influxdb docker container :type bind_mount_volume: str

download_file_from_influxdb(data_node, data_type, influxdb_node_name, local_file)
Downlaods the .csv data file from the influxdb container to juputerhub :param data_node: where the data
comes from :type data_node: str :param data_type: packet_timestamp or event timestamp :type data_type:
str :param influxdb_node_name: which fabric node is influxdb running on :type influxdb_node_name: str
:param local_file: path on Jupyterhub for the downlaod .csv file :type local_file: str

download_timestamp_file(node, data_type, local_file, bind_mount_volume)
Downloads the collected timestamp file to Jupyterhub Use fablib node.download_file() to download the
timestamp data file that can be accessed from the bind mount volume :param node: fabric node on which
the timestamp docker container is running :type node: fablib.node :param data_type: packet_timestamp
or event timestamp :type data_type: str :param local_file: path on Jupyterhub for the download file :type
local_file: str :param bind_mount_volume: bind mount volume of the running timestamp docker container
:type bind_mount_volume: str

download_timestamp_from_influxdb(node, data_type, bucket, org, token, name, influxdb_ip=None)
Downloads the timestamp data from influxdb :param node: fabric node on which the timestamp docker
container is running :type node: fablib.node :param data_type: packet_timestamp or event timestamp :type
data_type: str :param bucket: name of the influxdb bucket to dump data to :type bucket: str :param org:
org of the bucket :type org: str :param token: token of the bucket :type token: str :param name: name of the
timestamp experiment :type name: str :param influxdb_ip: the IP address of the node where the influxdb
container is running :type influxdb_ip: str, optional

generate_csv_on_influxdb_node(data_node, name, data_type, bucket, org, token, influxdb_node_name)
Generates a .csv file in the influxdb container for the query data :param data_node: where the data comes
from :type data_node: str :param name: name of the timestamp experiment :type name: str :param
data_type: packet_timestamp or event timestamp :type data_type: str :param bucket: name of the influxdb
bucket to dump data to :type bucket: str :param org: org of the bucket :type org: str :param token: token
of the bucket :type token: str :param influxdb_node_name: which fabric node is influxdb running on :type
influxdb_node_name: str

17

MFLib, Release 1.0.1

get_event_timestamp(node, name, verbose=False)
Prints the collected event timestamp by calling timestamptool.py in the timestamp docker container running
on node It reads the local event timestamp file and prints the result :param node: fabric node on which the
timestamp docker container is running :type node: fablib.node :param name: name of the event timestamp
experiment :type name: str

get_packet_timestamp(node, name, verbose=False)
Prints the collected packet timestamp by calling timestamptool.py in the timestamp docker container run-
ning on the node It reads the local packet timestamp file and prints the result :param node: fabric node on
which the timestamp docker container is running :type node: fablib.node :param name: name of the packet
timestamp experiment :type name: str

plot_event_timestamp(json_obj)
Plots the count of events :param json_obj: list of json objects with timestamp info :type json_obj: list

plot_packet_timestamp(json_obj)
Plots the count of packets captured :param json_obj: list of json objects with timestamp info :type json_obj:
list

read_from_local_file(file)
Reads and processes the downloaded timestamp data file :param file: file path on Jupyterhub for the final
timestamp result :type file: str

record_event_timestamp(node, name, event, description=None, verbose=False)
Records event timestamp by calling timestamptool.py in the timestamp docker container running on the
node :param node: fabric node on which the timestamp docker container is running :type node: fablib.node
:param name: name of the event timestamp experiment :type name: str :param event: name of the event
:type event: str :param description: description of the event :type description: str, optional

record_packet_timestamp(node, name, interface, ipversion, protocol, duration, host=None, port=None,
verbose=False)

Records packet timestamp by calling timestamptool.py in the timestamp docker container running on the
node :param node: fabric node on which the timestamp docker container is running :type node: fablib.node
:param name: name of the packet timestamp experiment :type name: str :param interface: which interface
tcpdump captures the packets :type interface: str :param ipversion: IPv4 or IPv6 :type ipversion: str :param
protocol: tcp or udp :type protocol: str :param duration: seconds to run tcpdump :type duration: str :param
host: host for tcpdump command :type host: str, optional :param port: port for tcpdump command :type
port: str, optional

upload_timestamp_to_influxdb(node, data_type, bucket, org, token, influxdb_ip=None)
Uploads the timestamp data to influxdb :param node: fabric node on which the timestamp docker container
is running :type node: fablib.node :param data_type: packet_timestamp or event timestamp :type data_type:
str :param bucket: name of the influxdb bucket to dump data to :type bucket: str :param org: org of the
bucket :type org: str :param token: token of the bucket :type token: str :param influxdb_ip: IP of the node
where influxdb container is running :type influxdb_ip: str, optional

18

CHAPTER

EIGHT

OWL

class mflib.owl.Owl(local_owl_dir, remote_out_dir, remote_conf_dir=None)
Parent class

create_local_service_dirs()

Create local directories where OWL config and output files will be kept

create_remote_conf_dir(node)
Creates owl conf directory on a remote node.

Parameters
node (fablib.Node) – remote node

create_remote_out_dir(node)
Creates owl output directory on a remote node.

Parameters
node (fablib.Node) – remote node

delete_remote_output(node)
Deletes the contents of owl output directory on a remote node.

Parameters
node (fablib.Node) – remote node

download_output(node)
Download the contents of owl output directory on a remote node to the local owl output directory.

Parameters
node (fablib.Node) – remote node

generate_local_config(send_int=0.5, port=5005, cap_mode='save', pcap_int=120)
Generate local copy of owl.conf file (to serve as a master copy)

Parameters

• send_int (float) – interval at which probe packets will be sent (in seconds)

• port (int) – port to be used by OWL

• cap_mode (str) – capture mode for OWL. Currently only “save” is supported.

• pcap_int (int) – time interval (sec) at which tcpdump will start a new pcap file.

generate_local_links_file(links)
Create a local copy of links.json file.

Parameters
links ([(str, str)]) – list of endpoint pairs [(‘src_ip’, ‘dst_ip’)]

19

MFLib, Release 1.0.1

get_local_service_file_paths()

Get paths for owl.conf and links.json files.

Returns
owl.conf path, links.json path

Return type
[str, str]

static list_experiment_ip_addrs(node)
Get a list of IPs for a given remote node, excluding the interfaces used for management and MF networks

Parameters
node (fablib.Node) – remote node

Returns
list of IP addresses

Return type
List[str]

list_remote_output(node)
List the contents of owl output directory on a remote node.

Parameters
node (fablib.Node) – remote node

print_local_service_files()

Prints local copies of owl.conf and links.json.

class mflib.owl.OwlDocker(local_owl_dir, remote_out_dir, image_name='fabrictestbed/owl:0.1.3',
remote_conf_dir=None)

To be used when running OWL (on a non-MF slice) through directly interacting with Docker OWL im-
age/containers.

static check_node_environment(node)
Checks whether remote node has PTP and Docker required for running OWL.

Parameters
node (fablib.Node) – remote node

get_owl_log(node, name='fabric-owl')
Print the contents of container log while the container is running.

Parameters

• node (fablib.Node) – remote node

• name (str) – container name

pull_owl_docker_image(node)
Pull Docker OWL image to remote node.

Parameters
node (fablib.Node) – remote node

remove_owl_docker_image(node, name='fabric-owl')
Remove container with the name given and OWL Docker image saved on the node.

Parameters

• node (fablib.Node) – remote node

20

MFLib, Release 1.0.1

• name (str) – container name

start_owl_receiver(dst_node, receiving_ip, name='fabric-owl', pcap_time_limit=360, duration=180)
Start Docker container to run OWL receiver.

Parameters

• dst_node (fablib.Node) – OWL destination node

• receiving_ip (str) – IPv4 address of dst node where OWL packets are expected.

• name (str) – container name

• pcap_time_limit (int) – time interval (sec) at which tcpdump starts a new pcap file.

• duration (int) – duration (sec) OWL should run

start_owl_sender(src_node, dst_ip, name='fabric-owl', frequency=0.5, seq_n=1234, duration=180,
python_time=False)

Start Docker container to run OWL sender.

Parameters

• src_node (fablib.Node) – OWL source node

• dst_ip (str) – destination IPv4 address

• name (str) – container name

• frequency (float) – interval (sec) at which probe packets should be sent

• duration (int) – duration (sec) OWL should run

• python_time (bool) – True = timestamp obtained through Python time.time_ns(); False
= timestamp obtained through OWL ptp timestamp script

stop_owl_docker(node, name='fabric-owl')
Stop container.

Parameters

• node (fablib.Node) – remote node

• name (str) – container name

class mflib.owl.OwlMf(local_owl_dir)
To be used when interacting with OWL on an MF slice with a measurement node. Initializes with the default
MF paths for remote conf and out directories.

21

CHAPTER

NINE

OWL DATA

mflib.owl_data.convert_pcap_to_csv(pcap_files, outfile='out.csv', append_csv=False, verbose=False)
Extract data from the list of pcap files and write to one csv file.

Parameters

• pcap_files ([posix.Path]) – list of pcap file paths

• outfile (str) – name of csv file

• append_csv (bool) – whether to append data to an existing csv file of that name

• verbose (bool) – if True, prints each line as it is appended to csv

mflib.owl_data.list_pcap_files(root_dir)
Search recursively for pcap files under root_dir

Parameters
root_dir (str) – Directory that will be treated as root for this search

Return files_list
absolute paths for all the *.pcap files under the root_dir

Return type
[posix.Path]

22

PYTHON MODULE INDEX

m
mflib.core, 12
mflib.mf_timestamp, 17
mflib.mflib, 10
mflib.owl, 19
mflib.owl_data, 22

23

INDEX

A
add_mflib_log_handler() (mflib.mflib.MFLib

method), 10
addMeasNode() (mflib.mflib.MFLib static method), 10

B
bootstrap_status_file (mflib.core.Core property),

12

C
check_node_environment() (mflib.owl.OwlDocker

static method), 20
common_hosts_file (mflib.core.Core property), 12
convert_pcap_to_csv() (in module mflib.owl_data),

22
Core (class in mflib.core), 12
core_class_version (mflib.core.Core attribute), 12
create() (mflib.core.Core method), 12
create_local_service_dirs() (mflib.owl.Owl

method), 19
create_remote_conf_dir() (mflib.owl.Owl method),

19
create_remote_out_dir() (mflib.owl.Owl method),

19

D
delete_remote_output() (mflib.owl.Owl method), 19
deploy_influxdb_dashboard()

(mflib.mf_timestamp.mf_timestamp method),
17

download_common_hosts() (mflib.mflib.MFLib
method), 10

download_file_from_influxdb()
(mflib.mf_timestamp.mf_timestamp method),
17

download_log_file() (mflib.core.Core method), 13
download_output() (mflib.owl.Owl method), 19
download_service_file() (mflib.core.Core method),

13
download_timestamp_file()

(mflib.mf_timestamp.mf_timestamp method),
17

download_timestamp_from_influxdb()
(mflib.mf_timestamp.mf_timestamp method),
17

G
generate_csv_on_influxdb_node()

(mflib.mf_timestamp.mf_timestamp method),
17

generate_local_config() (mflib.owl.Owl method),
19

generate_local_links_file() (mflib.owl.Owl
method), 19

get_bootstrap_status() (mflib.core.Core method),
13

get_event_timestamp()
(mflib.mf_timestamp.mf_timestamp method),
17

get_local_service_file_paths() (mflib.owl.Owl
method), 20

get_mfuser_private_key() (mflib.core.Core
method), 13

get_owl_log() (mflib.owl.OwlDocker method), 20
get_packet_timestamp()

(mflib.mf_timestamp.mf_timestamp method),
18

grafana_tunnel (mflib.core.Core property), 13
grafana_tunnel_local_port (mflib.core.Core prop-

erty), 13

I
info() (mflib.core.Core method), 13
init() (mflib.mflib.MFLib method), 10
instrumentize() (mflib.mflib.MFLib method), 11

K
kibana_tunnel (mflib.core.Core property), 14
kibana_tunnel_local_port (mflib.core.Core prop-

erty), 14

L
list_experiment_ip_addrs() (mflib.owl.Owl static

method), 20

24

MFLib, Release 1.0.1

list_pcap_files() (in module mflib.owl_data), 22
list_remote_output() (mflib.owl.Owl method), 20
local_mfuser_private_key_filename

(mflib.core.Core property), 14
local_mfuser_public_key_filename

(mflib.core.Core property), 14
local_slice_directory (mflib.core.Core property),

14
log_directory (mflib.core.Core property), 14

M
meas_node (mflib.core.Core property), 15
meas_node_ip (mflib.core.Core property), 15
mf_timestamp (class in mflib.mf_timestamp), 17
MFLib (class in mflib.mflib), 10
mflib.core

module, 12
mflib.mf_timestamp

module, 17
mflib.mflib

module, 10
mflib.owl

module, 19
mflib.owl_data

module, 22
mflib_class_version (mflib.mflib.MFLib attribute),

11
module

mflib.core, 12
mflib.mf_timestamp, 17
mflib.mflib, 10
mflib.owl, 19
mflib.owl_data, 22

O
Owl (class in mflib.owl), 19
OwlDocker (class in mflib.owl), 20
OwlMf (class in mflib.owl), 21

P
plot_event_timestamp()

(mflib.mf_timestamp.mf_timestamp method),
18

plot_packet_timestamp()
(mflib.mf_timestamp.mf_timestamp method),
18

print_local_service_files() (mflib.owl.Owl
method), 20

pull_owl_docker_image() (mflib.owl.OwlDocker
method), 20

R
read_from_local_file()

(mflib.mf_timestamp.mf_timestamp method),
18

record_event_timestamp()
(mflib.mf_timestamp.mf_timestamp method),
18

record_packet_timestamp()
(mflib.mf_timestamp.mf_timestamp method),
18

remove() (mflib.core.Core method), 15
remove_mflib_log_handler() (mflib.mflib.MFLib

method), 11
remove_owl_docker_image() (mflib.owl.OwlDocker

method), 20
restore_DNS() (mflib.mflib.MFLib method), 11
restore_DNS_all_nodes() (mflib.mflib.MFLib

method), 11

S
set_core_logger() (mflib.core.Core method), 15
set_DNS() (mflib.mflib.MFLib method), 11
set_DNS_all_nodes() (mflib.mflib.MFLib method), 11
set_mflib_logger() (mflib.mflib.MFLib method), 11
slice_name (mflib.core.Core property), 15
slice_username (mflib.core.Core property), 15
start() (mflib.core.Core method), 15
start_owl_receiver() (mflib.owl.OwlDocker

method), 21
start_owl_sender() (mflib.owl.OwlDocker method),

21
stop() (mflib.core.Core method), 16
stop_owl_docker() (mflib.owl.OwlDocker method), 21

T
tunnel_host (mflib.core.Core property), 16

U
update() (mflib.core.Core method), 16
upload_service_directory() (mflib.core.Core

method), 16
upload_service_files() (mflib.core.Core method),

16
upload_timestamp_to_influxdb()

(mflib.mf_timestamp.mf_timestamp method),
18

Index 25

	Documentation Resources
	Example Jupyter Notebooks
	FABRIC Learn Site
	MFLib Python Package Documentation

	MFLib Installation
	Instaling via PIP
	Installing via Source Code

	Building & Deploying
	Spinx Documentation
	Build HTML Documents
	Build PDF Document

	Distribution Package
	Uploading to PyPI

	MFLib Overview
	MFLib Methods
	Creating a Slice
	Init & Instrumentize
	Service Methods
	Accessing Experiment Nodes via Bastion Host

	MFLib
	MFLib Core
	MFLib mf_timestamp
	OWL
	OWL Data
	Python Module Index
	Index

