
Macroscopic Maxwell Solver
Introduction
This Python 3 module enables solving the macroscopic Maxwell equations in
complex dielectric materials.

The material properties are defined on a rectangular grid (1D, 2D, or 3D) for
which each voxel defines an isotropic or anistropic permittivity. Optionally,
a heterogeneous (anisotropic) permeability as well as bi-anisotropic coupling
factors may be specified (e.g. for chiral media). The source, such as an incident
laser field, is specified as an oscillating current-density distribution.

The method iteratively corrects an estimated solution for the electric field (default:
all zero). Its memory requirements are on the order of the storage requirements
for the material properties and the electric field within the calculation volume.
Full details can be found in the manuscript "Calculating coherent light-wave
propagation in large heterogeneous media."

License: LGPL-3.0

Installation
Prerequisites

This library requires Python 3 with the modules numpy and scipy for the main cal-
culations. From the main library, the modules sys, io, os, and multiprocessing
are imported; as well as the modules logging and time for diagnostics. The
pyfftw module can help speed up the calculations.

The examples require matplotlib for displaying the results. The pypandoc
module is required for translating this document to other formats.

The code has been tested on Python 3.6.

Installing

Installing the macromax module and its dependencies can be done by running
the following command in a terminal:

pip install macromax

The module comes with a submodule containing example code.

The pypandoc module requires the separate installation of pandoc. Please refer
to: https://pypi.org/project/pypandoc/ for instructions on its installation for
your operating system of choice.

Usage
The basic calculation procedure consists of the following steps:

1

https://opensource.org/licenses/lgpl-3.0.html
https://pypi.org/project/pypandoc/

1. define the material

2. define the coherent light source

3. call solution = macromax.solve(...)

4. display the solution

The macromax module must be imported to be able to use the solve function.
The module also contains several utility functions that may help in defining the
property and source distributions.

Loading the Python 3 module

The macromax module can be imported using:

import macromax

Optional: If the module is installed without a package manager, it may not be
on Python’s search path. If necessary, add the library to Python’s search path,
e.g. using:

import sys
import os
sys.path.append(os.path.dirname(os.getcwd()))

Reminder: this library module requires Python 3, numpy, and scipy. Optionally,
pyfftw can be used to speed up the calculations. The examples also require
matplotlib.

Specifying the material

Defining the sampling grid

The material properties are sampled on a plaid uniform rectangular grid of voxels.
The sample points are defined by one or more linearly increasing coordinate
ranges, one range per dimensions. The coordinates must be specified in meters,
e.g.:

x_range = 50e-9 * np.arange(1000)

Ranges for multiple dimensions can be passed to solve(...) as a tuple
of ranges: ranges = (x_range, y_range), or the convenience function
utils.calc_ranges can be used as follows:

from macromax import utils
data_shape = (200, 400)
sample_pitch = 50e-9 # or (50e-9, 50e-9)
ranges = utils.calc_ranges(data_shape, sample_pitch)

2

Defining the material property distributions

The material properties are defined by ndarrays of 2+N dimensions, where N
can be up to 3 for three-dimensional samples. In each sample point, or voxel, a
complex 3x3 matrix defines the anisotropy at that point in the sample volume.
The first two dimensions of the ndarray are used to store the 3x3 matrix, the
following dimensions are the spatial indices x, y, and z. Four complex ndarrays
can be specified: epsilon, mu, xi, and zeta. These ndarrays represent the
permittivity, permeability, and the two coupling factors, respectively.

When the first two dimensions of a property are found to be both a singleton, i.e.
1x1, that property is assumed to be isotropic. Similarly, singleton spatial dimen-
sions are interpreted as homogeneity in that property. The default permeability
mu is 1, and the coupling contants are zero by default.

Defining the source

The coherent source is defined by an oscillating current density, to model e.g.
an incident laser beam. It is sufficient to define its phase, amplitude, and the
direction as a function the spatial coordinates; alongside the angular frequency,
omega, of the coherent source. To avoid issues with numerical precision, the
current density is multiplied by the angular frequency, omega, and the vacuum
permeability, mu_0. The source values is proportional to the current density, J,
and related as follows: S = i omega mu_0 J with units of rad sˆ-1 H mˆ-1 A
mˆ-2 = rad V mˆ-3.

The source distribution is stored as a complex ndarray with 1+N dimensions.
The first dimension contains the current 3D direction and amplitude for each
voxel. The complex argument indicates the relative phase at each voxel.

Calculating the electromagnetic light field

Once the macromax module is imported, the solution satisfying the macroscopic
Maxwell’s equations is calculated by calling:

solution = macromax.solve(...)

The function arguments to macromax.solve(...) can be the following:

• x_range|ranges: A vector (1D) or tuple of vectors (2D, or 3D) indicating
the spatial coordinates of the sample points. Each vector must be a
uniformly increasing array of coordinates, sufficiently dense to avoid aliasing
artefacts.

• vacuum_wavelength|wave_number|anguler_frequency: The wavelength
in vacuum of the coherent illumination in units of meters.

• source_distribution: An ndarray of complex values indicating the source
value and direction at each sample point. The source values define the

3

current density in the sample. The first dimension contains the vector
index, the following dimensions contain the spatial dimensions.

• epsilon: A complex ndarray that defines the 3x3 permittivity matrix at
all sample points. The first two dimensions contain the matrix indices, the
following dimensions contain the spatial dimensions.

Anisotropic material properties such as permittivity can be defined as a square
3x3 matrix at each sample point. Isotropic materials may be represented by 1x1
scalars instead (the first two dimensions are singletons). Homogeneous materials
may be specified with spatial singleton dimensions.

Optionally one can also specify magnetic and coupling factors:

• mu: A complex ndarray that defines the 3x3 permeability matrix at all
sample points. The first two dimensions contain the matrix indices, the
following dimensions contain the spatial dimensions.

• xi and zeta: Complex ndarray that define the 3x3 coupling matrices at all
sample points. This may be useful to model chiral materials. The first two
dimensions contain the matrix indices, the following dimensions contain
the spatial dimensions.

It is often useful to also specify a callback function that tracks progress. This
can be done by defining the callback-argument as a function that takes an
intermediate solution as argument. This user-defined callback function can
display the intermediate solution and check if the convergence is adequate. The
callback function should return True if more iterations are required, and False
otherwise. E.g.:

callback=lambda s: s.iteration < 1e4 and s.residue > 1e-4

The solution object (of the Solution class) fully defines the state of the iteration
and the current solution as described below.

The macromax.solve(...) function returns a solution object. This object
contains the electric field vector distribution as well as diagnostic information
such as the number of iterations used and the magnitude of the correction applied
in the last iteration. It can also calculate the displacement, magnetizing, and
magnetic fields on demand. These fields can be queried as follows:

• solution.E: Returns the electric field distribution.
• solution.H: Returns the magnetizing field distribution.
• solution.D: Returns the electric displacement field distribution.
• solution.B: Returns the magnetic flux density distribution.
• solution.S: The Poynting vector distribution in the sample.

The field distributions are returned as complex numpy ndarrays in which the first
dimensions is the polarization or direction index. The following dimensions are
the spatial dimensions of the problem, e.g. x, y, and z, for three-dimensional
problems.

4

The solution object also keeps track of the iteration itself. It has the following
diagnostic properties:

• solution.iteration: The number of iterations performed.
• solution.residue: The relative magnitude of the correction during the

previous iteration. and it can be used as a Python iterator.

Further information can be found in the examples and the function and class
signature documentation. The examples can be imported using:

from macromax import examples

Complete Example

The following code loads the library, defines the material and light source,
calculates the result, and displays it. To keep this example as simple as possible,
the calculation is limited to one dimension. Higher dimensional calculations
simply require the definition of the material and light source in 2D or 3D.

The first section of the code loads the macromax library module as well as its
utils submodule. More

import macromax

import numpy as np
import scipy.constants as const
import matplotlib.pyplot as plt
%matplotlib notebook

#
Define the material properties
#
wavelength = 500e-9
angular_frequency = 2 * const.pi * const.c / wavelength
source_amplitude = 1j * angular_frequency * const.mu_0
p_source = np.array([0, 1, 0]) # y-polarized

Set the sampling grid
nb_samples = 1024
sample_pitch = wavelength / 16
x_range = sample_pitch * np.arange(nb_samples) - 4e-6

define the medium
permittivity = np.ones((1, 1, len(x_range)), dtype=np.complex64)
Don't forget absorbing boundary:
dist_in_boundary = np.maximum(-(x_range - -1e-6), x_range - 26e-6) / 4e-6
permittivity[:, :, (x_range < -1e-6) | (x_range > 26e-6)] = \

1.0 + (0.8j * dist_in_boundary[(x_range < -1e-6) | (x_range > 26e-6)])

5

glass has a refractive index of about 1.5
permittivity[:, :, (x_range >= 10e-6) & (x_range < 20e-6)] = 1.5 ** 2

#
Define the illumination source
#
point source at x = 0
source = -source_amplitude * sample_pitch * (np.abs(x_range) < sample_pitch/4)
source = p_source[:, np.newaxis] * source[np.newaxis, :]

#
Solve Maxwell's equations
#
(the actual work is done in this line)
solution = macromax.solve(x_range, vacuum_wavelength=wavelength,

source_distribution=source, epsilon=permittivity)

#
Display the results
#
fig, ax = plt.subplots(2, 1, frameon=False, figsize=(8, 6))

x_range = solution.ranges[0] # coordinates
E = solution.E[1, :] # Electric field
H = solution.H[2, :] # Magnetizing field
S = solution.S[0, :] # Poynting vector
f = solution.f[0, :] # Optical force
Display the field for the polarization dimension
field_to_display = angular_frequency * E
max_val_to_display = np.maximum(np.max(np.abs(field_to_display)),

np.finfo(field_to_display.dtype).eps)
poynting_normalization = np.max(np.abs(S)) / max_val_to_display
ax[0].plot(x_range * 1e6,

np.abs(field_to_display) ** 2 / max_val_to_display,
color=[0, 0, 0])[0]

ax[0].plot(x_range * 1e6, np.real(S) / poynting_normalization,
color=[1, 0, 1])[0]

ax[0].plot(x_range * 1e6, np.real(field_to_display),
color=[0, 0.7, 0])[0]

ax[0].plot(x_range * 1e6, np.imag(field_to_display),
color=[1, 0, 0])[0]

figure_title = "Iteration %d, " % solution.iteration
ax[0].set_title(figure_title)
ax[0].set_xlabel("x [μm]")
ax[0].set_ylabel("I, E [a.u.]")
ax[0].set_xlim(x_range[[0, -1]] * 1e6)

6

ax[1].plot(x_range[-1] * 2e6, 0,
color=[0, 0, 0], label='I')

ax[1].plot(x_range[-1] * 2e6, 0,
color=[1, 0, 1], label='S_{real}')

ax[1].plot(x_range[-1] * 2e6, 0,
color=[0, 0.7, 0], label='E_{real}')

ax[1].plot(x_range[-1] * 2e6, 0,
color=[1, 0, 0], label='E_{imag}')

ax[1].plot(x_range * 1e6, permittivity[0, 0].real,
color=[0, 0, 1], label='ϵ_{real}')

ax[1].plot(x_range * 1e6, permittivity[0, 0].imag,
color=[0, 0.5, 0.5], label='ϵ_{imag}')

ax[1].set_xlabel('x [μm]')
ax[1].set_ylabel('ϵ, μ')
ax[1].set_xlim(x_range[[0, -1]] * 1e6)
ax[1].legend(loc='upper right')

Development
Source code organization

The source code is organized as follows:

• / (root): Module description and distribution files.

• /macromax: The iterative solver.

• /macromax/examples: Examples of how the solver can be used.

• /macromax/tests: Automated unit tests of the solver’s functionality. Use
this after making modifications to the solver and extend it if new function-
ality is added.

The library functions are contained in /macromax:

• solver: Defines the solve(...) function and the Solution class.

• parallel_ops_column: Defines linear algebra functions to work efficiently
with large arrays of 3x3 matrices and 3-vectors.

• utils: Defines utility functions that can be used to prepare and interpret
function arguments.

The included examples in the /macromax/examples folder are:

• notebook_example.ipynb: An iPython notebook demonstrating basic
usage of the library.

• air_glass_air_1D.py: Calculation of the back reflection from an air-glass
interface (one-dimensional calculation)

7

• air_glass_air_2D.py: Calculation of the refraction and reflection of light
hitting a glass window at an angle (two-dimensional calculation)

• birefringent_crystal.py: Demonstration of how an anisotropic permit-
tivity can split a diagonally polarized Gaussian beam into ordinary and
extraordinary beams.

• polarizer.py: Calculation of light wave traversing a set of two and a
set of three polarizers as a demonstration of anisotropic absorption (non-
Hermitian permittivity)

• rutile.py: Scattering from disordered collection of birefringent rutile
(TiO2) particles.

Testing

Unit tests are contained in macromax/tests. The ParallelOperations class
in parallel_ops_column.pi is pretty well covered and some specific tests have
been written for the Solution class in solver.py. However, the utils module
does not have any tests at present.

To run the tests:

pip install nose
python setup.py test

Building and Distributing

The code consists of pure Python 3, hence only packaging is required for distri-
bution. To prepare a package for distribution, run:

python setup.py sdist bdist_wheel
pip install . --upgrade

The package can then be uploaded to a test repository as follows:

twine upload --repository-url https://test.pypi.org/legacy/ dist/*

Installing from the test repository is done as follows:

pip install -i https://test.pypi.org/simple/ macromax

8

	Macroscopic Maxwell Solver
	Introduction
	Installation
	Prerequisites
	Installing

	Usage
	Loading the Python 3 module
	Specifying the material
	Defining the source
	Calculating the electromagnetic light field
	Complete Example

	Development
	Source code organization
	Testing
	Building and Distributing

