"""Class to perform under-sampling based on one-sided selection method."""
# Authors: Guillaume Lemaitre <g.lemaitre58@gmail.com>
# Christos Aridas
# License: MIT
from __future__ import division
from collections import Counter
import numpy as np
from sklearn.neighbors import KNeighborsClassifier, NearestNeighbors
from sklearn.utils import check_random_state, safe_indexing
from ..base import BaseCleaningSampler
from .tomek_links import TomekLinks
from ...utils.deprecation import deprecate_parameter
[docs]class OneSidedSelection(BaseCleaningSampler):
"""Class to perform under-sampling based on one-sided selection method.
Read more in the :ref:`User Guide <condensed_nearest_neighbors>`.
Parameters
----------
ratio : str, dict, or callable, optional (default='auto')
Ratio to use for resampling the data set.
- If ``str``, has to be one of: (i) ``'minority'``: resample the
minority class; (ii) ``'majority'``: resample the majority class,
(iii) ``'not minority'``: resample all classes apart of the minority
class, (iv) ``'all'``: resample all classes, and (v) ``'auto'``:
correspond to ``'all'`` with for over-sampling methods and ``'not
minority'`` for under-sampling methods. The classes targeted will be
over-sampled or under-sampled to achieve an equal number of sample
with the majority or minority class.
- If ``dict``, the keys correspond to the targeted classes. The values
correspond to the desired number of samples.
- If callable, function taking ``y`` and returns a ``dict``. The keys
correspond to the targeted classes. The values correspond to the
desired number of samples.
.. warning::
This algorithm is a cleaning under-sampling method. When providing a
``dict``, only the targeted classes will be used; the number of
samples will be discarded.
return_indices : bool, optional (default=False)
Whether or not to return the indices of the samples randomly
selected from the majority class.
random_state : int, RandomState instance or None, optional (default=None)
If int, ``random_state`` is the seed used by the random number
generator; If ``RandomState`` instance, random_state is the random
number generator; If ``None``, the random number generator is the
``RandomState`` instance used by ``np.random``.
size_ngh : int, optional (default=None)
Size of the neighbourhood to consider to compute the nearest-neighbors.
.. deprecated:: 0.2
``size_ngh`` is deprecated from 0.2 and will be replaced in 0.4
Use ``n_neighbors`` instead.
n_neighbors : int or object, optional (default=\
KNeighborsClassifier(n_neighbors=1))
If ``int``, size of the neighbourhood to consider to compute the
nearest neighbors. If object, an estimator that inherits from
:class:`sklearn.neighbors.base.KNeighborsMixin` that will be used to
find the nearest-neighbors.
n_seeds_S : int, optional (default=1)
Number of samples to extract in order to build the set S.
n_jobs : int, optional (default=1)
The number of threads to open if possible.
Notes
-----
The method is based on [1]_.
Supports mutli-class resampling. A one-vs.-one scheme is used when sampling
a class as proposed in [1]_. For each class to be sampled, all samples of
this class and the minority class are used during the sampling procedure.
See
:ref:`sphx_glr_auto_examples_under-sampling_plot_one_sided_selection.py`
References
----------
.. [1] M. Kubat, S. Matwin, "Addressing the curse of imbalanced training
sets: one-sided selection," In ICML, vol. 97, pp. 179-186, 1997.
Examples
--------
>>> from collections import Counter
>>> from sklearn.datasets import make_classification
>>> from imblearn.under_sampling import \
OneSidedSelection # doctest: +NORMALIZE_WHITESPACE
>>> X, y = make_classification(n_classes=2, class_sep=2,
... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0,
... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
>>> print('Original dataset shape {}'.format(Counter(y)))
Original dataset shape Counter({1: 900, 0: 100})
>>> oss = OneSidedSelection(random_state=42)
>>> X_res, y_res = oss.fit_sample(X, y)
>>> print('Resampled dataset shape {}'.format(Counter(y_res)))
Resampled dataset shape Counter({1: 495, 0: 100})
"""
[docs] def __init__(self,
ratio='auto',
return_indices=False,
random_state=None,
size_ngh=None,
n_neighbors=None,
n_seeds_S=1,
n_jobs=1):
super(OneSidedSelection, self).__init__(ratio=ratio,
random_state=random_state)
self.return_indices = return_indices
self.size_ngh = size_ngh
self.n_neighbors = n_neighbors
self.n_seeds_S = n_seeds_S
self.n_jobs = n_jobs
def _validate_estimator(self):
"""Private function to create the NN estimator"""
# FIXME: Deprecated in 0.2. To be removed in 0.4.
deprecate_parameter(self, '0.2', 'size_ngh', 'n_neighbors')
if self.n_neighbors is None:
self.estimator_ = KNeighborsClassifier(
n_neighbors=1, n_jobs=self.n_jobs)
elif isinstance(self.n_neighbors, int):
self.estimator_ = KNeighborsClassifier(
n_neighbors=self.n_neighbors, n_jobs=self.n_jobs)
elif isinstance(self.n_neighbors, KNeighborsClassifier):
self.estimator_ = self.n_neighbors
else:
raise ValueError('`n_neighbors` has to be a int or an object'
' inhereited from KNeighborsClassifier.'
' Got {} instead.'.format(type(self.n_neighbors)))
def _sample(self, X, y):
"""Resample the dataset.
Parameters
----------
X : ndarray, shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
y : ndarray, shape (n_samples, )
Corresponding label for each sample in X.
Returns
-------
X_resampled : ndarray, shape (n_samples_new, n_features)
The array containing the resampled data.
y_resampled : ndarray, shape (n_samples_new)
The corresponding label of `X_resampled`
idx_under : ndarray, shape (n_samples, )
If `return_indices` is `True`, a boolean array will be returned
containing the which samples have been selected.
"""
self._validate_estimator()
random_state = check_random_state(self.random_state)
target_stats = Counter(y)
class_minority = min(target_stats, key=target_stats.get)
idx_under = np.empty((0, ), dtype=int)
for target_class in np.unique(y):
if target_class in self.ratio_.keys():
# select a sample from the current class
idx_maj = np.flatnonzero(y == target_class)
idx_maj_sample = idx_maj[random_state.randint(
low=0, high=target_stats[target_class],
size=self.n_seeds_S)]
minority_class_indices = np.flatnonzero(y == class_minority)
C_indices = np.append(minority_class_indices, idx_maj_sample)
# create the set composed of all minority samples and one
# sample from the current class.
C_x = safe_indexing(X, C_indices)
C_y = safe_indexing(y, C_indices)
# create the set S with removing the seed from S
# since that it will be added anyway
idx_maj_extracted = np.delete(idx_maj, idx_maj_sample, axis=0)
S_x = safe_indexing(X, idx_maj_extracted)
S_y = safe_indexing(y, idx_maj_extracted)
self.estimator_.fit(C_x, C_y)
pred_S_y = self.estimator_.predict(S_x)
S_misclassified_indices = np.flatnonzero(pred_S_y != S_y)
idx_tmp = idx_maj_extracted[S_misclassified_indices]
idx_under = np.concatenate(
(idx_under, idx_maj_sample, idx_tmp), axis=0)
else:
idx_under = np.concatenate(
(idx_under, np.flatnonzero(y == target_class)), axis=0)
X_resampled = safe_indexing(X, idx_under)
y_resampled = safe_indexing(y, idx_under)
# apply Tomek cleaning
tl = TomekLinks(ratio=self.ratio_, return_indices=True,
random_state=self.random_state)
X_cleaned, y_cleaned, idx_cleaned = tl.fit_sample(X_resampled,
y_resampled)
idx_under = safe_indexing(idx_under, idx_cleaned)
if self.return_indices:
return (X_cleaned, y_cleaned, idx_under)
else:
return X_cleaned, y_cleaned