"""Class performing under-sampling based on the neighbourhood cleaning rule."""
# Authors: Guillaume Lemaitre <g.lemaitre58@gmail.com>
# Christos Aridas
# License: MIT
from __future__ import division, print_function
from collections import Counter
import numpy as np
from scipy.stats import mode
from sklearn.utils import safe_indexing
from ..base import BaseCleaningSampler
from .edited_nearest_neighbours import EditedNearestNeighbours
from ...utils import check_neighbors_object, check_ratio
SEL_KIND = ('all', 'mode')
[docs]class NeighbourhoodCleaningRule(BaseCleaningSampler):
"""Class performing under-sampling based on the neighbourhood cleaning
rule.
Read more in the :ref:`User Guide <condensed_nearest_neighbors>`.
Parameters
----------
ratio : str, dict, or callable, optional (default='auto')
Ratio to use for resampling the data set.
- If ``str``, has to be one of: (i) ``'minority'``: resample the
minority class; (ii) ``'majority'``: resample the majority class,
(iii) ``'not minority'``: resample all classes apart of the minority
class, (iv) ``'all'``: resample all classes, and (v) ``'auto'``:
correspond to ``'all'`` with for over-sampling methods and ``'not
minority'`` for under-sampling methods. The classes targeted will be
over-sampled or under-sampled to achieve an equal number of sample
with the majority or minority class.
- If ``dict``, the keys correspond to the targeted classes. The values
correspond to the desired number of samples.
- If callable, function taking ``y`` and returns a ``dict``. The keys
correspond to the targeted classes. The values correspond to the
desired number of samples.
.. warning::
This algorithm is a cleaning under-sampling method. When providing a
``dict``, only the targeted classes will be used; the number of
samples will be discarded.
return_indices : bool, optional (default=False)
Whether or not to return the indices of the samples randomly
selected from the majority class.
random_state : int, RandomState instance or None, optional (default=None)
If int, ``random_state`` is the seed used by the random number
generator; If ``RandomState`` instance, random_state is the random
number generator; If ``None``, the random number generator is the
``RandomState`` instance used by ``np.random``.
size_ngh : int, optional (default=None)
Size of the neighbourhood to consider to compute the nearest-neighbors.
.. deprecated:: 0.2
``size_ngh`` is deprecated from 0.2 and will be replaced in 0.4
Use ``n_neighbors`` instead.
n_neighbors : int or object, optional (default=3)
If ``int``, size of the neighbourhood to consider to compute the
nearest neighbors. If object, an estimator that inherits from
:class:`sklearn.neighbors.base.KNeighborsMixin` that will be used to
find the nearest-neighbors.
threshold_cleaning : float, optional (default=0.5)
Threshold used to whether consider a class or not during the cleaning
after applying ENN. A class will be considered during cleaning when:
Ci > C x T ,
where Ci and C is the number of samples in the class and the data set,
respectively and theta is the threshold.
n_jobs : int, optional (default=1)
The number of threads to open if possible.
Notes
-----
See the original paper: [1]_.
Supports mutli-class resampling. A one-vs.-rest scheme is used when
sampling a class as proposed in [1]_.
See
:ref:`sphx_glr_auto_examples_under-sampling_plot_neighbourhood_cleaning_rule.py`.
References
----------
.. [1] J. Laurikkala, "Improving identification of difficult small classes
by balancing class distribution," Springer Berlin Heidelberg, 2001.
Examples
--------
>>> from collections import Counter
>>> from sklearn.datasets import make_classification
>>> from imblearn.under_sampling import \
NeighbourhoodCleaningRule # doctest: +NORMALIZE_WHITESPACE
>>> X, y = make_classification(n_classes=2, class_sep=2,
... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0,
... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
>>> print('Original dataset shape {}'.format(Counter(y)))
Original dataset shape Counter({1: 900, 0: 100})
>>> ncr = NeighbourhoodCleaningRule(random_state=42)
>>> X_res, y_res = ncr.fit_sample(X, y)
>>> print('Resampled dataset shape {}'.format(Counter(y_res)))
Resampled dataset shape Counter({1: 877, 0: 100})
"""
[docs] def __init__(self,
ratio='auto',
return_indices=False,
random_state=None,
size_ngh=None,
n_neighbors=3,
kind_sel='all',
threshold_cleaning=0.5,
n_jobs=1):
super(NeighbourhoodCleaningRule, self).__init__(
ratio=ratio, random_state=random_state)
self.return_indices = return_indices
self.size_ngh = size_ngh
self.n_neighbors = n_neighbors
self.kind_sel = kind_sel
self.threshold_cleaning = threshold_cleaning
self.n_jobs = n_jobs
def _validate_estimator(self):
"""Create the objects required by NCR."""
# FIXME: Deprecated from 0.2. To be removed in 0.4.
self.nn_ = check_neighbors_object('n_neighbors', self.n_neighbors,
additional_neighbor=1)
self.nn_.set_params(**{'n_jobs': self.n_jobs})
if self.kind_sel not in SEL_KIND:
raise NotImplementedError
if self.threshold_cleaning > 1 or self.threshold_cleaning < 0:
raise ValueError("'threshold_cleaning' is a value between 0 and 1."
" Got {} instead.".format(
self.threshold_cleaning))
def _sample(self, X, y):
"""Resample the dataset.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
y : array-like, shape (n_samples,)
Corresponding label for each sample in X.
Returns
-------
X_resampled : {ndarray, sparse matrix}, shape \
(n_samples_new, n_features)
The array containing the resampled data.
y_resampled : ndarray, shape (n_samples_new,)
The corresponding label of `X_resampled`
idx_under : ndarray, shape (n_samples, )
If `return_indices` is `True`, a boolean array will be returned
containing the which samples have been selected.
"""
self._validate_estimator()
enn = EditedNearestNeighbours(ratio=self.ratio, return_indices=True,
random_state=self.random_state,
size_ngh=self.size_ngh,
n_neighbors=self.n_neighbors,
kind_sel='mode',
n_jobs=self.n_jobs)
_, _, index_not_a1 = enn.fit_sample(X, y)
index_a1 = np.ones(y.shape, dtype=bool)
index_a1[index_not_a1] = False
index_a1 = np.flatnonzero(index_a1)
# clean the neighborhood
target_stats = Counter(y)
class_minority = min(target_stats, key=target_stats.get)
# compute which classes to consider for cleaning for the A2 group
classes_under_sample = [c for c, n_samples in target_stats.items()
if (c in self.ratio_.keys() and
(n_samples > X.shape[0] *
self.threshold_cleaning))]
self.nn_.fit(X)
class_minority_indices = np.flatnonzero(y == class_minority)
X_class = safe_indexing(X, class_minority_indices)
y_class = safe_indexing(y, class_minority_indices)
nnhood_idx = self.nn_.kneighbors(
X_class, return_distance=False)[:, 1:]
nnhood_label = y[nnhood_idx]
if self.kind_sel == 'mode':
nnhood_label_majority, _ = mode(nnhood_label, axis=1)
nnhood_bool = np.ravel(nnhood_label_majority) == y_class
elif self.kind_sel == 'all':
nnhood_label_majority = nnhood_label == class_minority
nnhood_bool = np.all(nnhood_label, axis=1)
else:
raise NotImplementedError
# compute a2 group
index_a2 = np.ravel(nnhood_idx[~nnhood_bool])
index_a2 = np.unique([index for index in index_a2
if y[index] in classes_under_sample])
union_a1_a2 = np.union1d(index_a1, index_a2).astype(int)
selected_samples = np.ones(y.shape, dtype=bool)
selected_samples[union_a1_a2] = False
index_target_class = np.flatnonzero(selected_samples)
if self.return_indices:
return (safe_indexing(X, index_target_class),
safe_indexing(y, index_target_class),
index_target_class)
else:
return (safe_indexing(X, index_target_class),
safe_indexing(y, index_target_class))