Analyzing Complex Survey Data
Using Python
Introduction to the samplics Package

PYDATA, CAMBRIDGE MEETUP
28 APRIL 2021

N

About me

Statistician at UNICEF
Previously worked at Westat and Statistics Canada

Hold Ph.D. in Statistics

<B10°s21|dWDS> O|IPIgSNOPPOWDW®)

Social media handle

» Twitter / GitHub / LinkedIn: @MamadouSDiallo

Plan of the Presentation

» Introduction
» A short tour of samplics
» Sample size calculation
» Sample selection
» Sample weighting
» Population parameter estimation

» T-test

W

<B10°s21|dWDS> O|IPIgSNOPPOWDW®)

Introduction

Why samplics?
» Python is missing a comprehensive survey sampling package
» Allow Python users to stay in the Python ecosystem when analysing survey data

» Help reduce the gap between official statistics and machine learning / data science

Disclaimer: current version of samplics is a beta stage and the APIs are not stable yet.

While the code base has extensive testing, users should expect bugs and improvements
that may break their code. Many features are being developed and may influence the
design of existing APIs.

Samplics documentation: https://samplics.readthedocs.io /en/latest/index.html

N

<B10°s21|dWDS> O|IPIgSNOPPOWDW®)

https://samplics.readthedocs.io/en/latest/index.html

On

Introduction

What 1s Survey Sampling?
» Random selection of a subset from a finite population

» Known probabilities of selection

» The sampling strategy or sampling design is often complex for operational, cost, or efficiency
reasons

p» Stratification

<B10°s21|dWDS> O|IPIgSNOPPOWDW®)

» Clustering, Stage selection
» Phase selection

» Calibration

» Etc.

Survey sampling techniques are the set of statistical methods for estimating population
parameters (e.g;, mean, total, regression coefficients, etc.) under the sampling design.

O~

Introduction

Research questions
» what is the household poverty rate in the USA?

» is poverty rate the same between households headed by women vs men?

To answer the research questions, let’s consider a subset of the ACS 2019 as our target
population.

<B10°s21|dWDS> O|IPIgSNOPPOWDW®)

Note
» American Community Survey (ACS) 2019 from IPUMS (https://usa.ipums.org/usa).

» Only a subset of the ACS 2019 data was used. Hence, the numbers do not represent the full ACS2019.

» All the analysis in this presentation are just for illustration purpose, not a proper statistical analysis of the 2019 ACS.

https://usa.ipums.org/usa

Introduction

As mentioned befote, we use a subset of
the ACS 2019 as our universe / frame /
census

We cluster the households in the frame
into 2,351 primary sampling units
(PSUs)

Each cluster is a geographic area

composed of a few hundred of
households

hhid
612101
1022602
715033
1207701
912305
356101
1193372
1090718
1014851
378475
294309
326362
788672
245608

645861

region
Midwest
South
Northeast
South
Midwest
South
South
South
South
West
South
South
Northeast
South

South

psu

1116

1877

1304

2229

1683

656

2204

1999

1865

701

543

603

1452

463

1181

sex
Female
Female
Male
Female
Male
Male
Female
Male
Female
Male
Female
Female
Female
Female

Female

race
White
White
White
White
White
White
White
White
White
White
Black
Black
Black
White

Black

education family_income poverty

College
No college
College
No college
College
College
No college
College
College
No college
College
No college
College
No college

College

42000
61400
108000
22300
20110
42000
43300
227000
171100
47300
27000
87500
47200
14300

59800

0

0

0

N

<B10°s21IdwiIps> O]IPIgSNOPPWOW®

from samplics.sampling import SampleSize

Expected poverty poverty rate
expected_pov_rate = {
"Midwest": 0.11,
"Northeast": 0.09,
"South*: 8.15,
"West": 0.13,

pov_rate_sample

calculate the

show the calculated sample size
pov_rate_sample.

{'Midwest': 105

= SampleSize(

sample size

samp_size

'Northeast': 88

Declare the sample size calculation parameters

parameter="proportion", method="wald", stratification=True

pov_rate_sample.calculate(target=expected_pov_rate, half_ci=0.06)

'South': 137, 'West': 121}

Convert sample sizes to a pandas dataframe
pov_rate_sample.to_dataframe()

_stratum _target _half_ci _samp_size

0 Midwest 0.1 0.06 105.0
0.09
0.15
0.3

1 Northeast

0.06 88.0

2 0.06 137.0

South

West 0.06 121.0

psu_sample_size = {}

for key in pov_rate_sample.samp_size:

psu_sample_size[key] = np.ceil(pov_rate_sample.samp_size[key] / 15).astype(
int

)

psu_sample_size

{'Midwest': 7, 'Northeast': 6, 'South': 10, 'West': 9}

<610°521|dWIDS> O}|PIJSNOPPOWOW D)

Selection

The selection module in samplics provides
» Simple random selection (SRS)

» Systematic selection

» Probability proportional to size (PPS)

» Systematic (method="“pps-sys”) — with and without replacement
» Brewer (method= “pps-brewer”)

» Hanurav-Vijayan (method= “pps-hv”)

» Murphy (method= “pps-murphy”)

» Rao-Sampford (method= “pps-sampford”)

O

<B10°s21|dWDS> O|IPIgSNOPPOWDW®)

Selection

Two step selection

Step 1: select the PSUs (clusters of households)
Step 2: Select the households from the selected PSUs

Note

» For this presentation, we artificially constructed the PSUs.

» Often, data collection is needed after step 1 to create the sampling frame for the stage 2 selection.

O

<B10°s21|dWDS> O|IPIgSNOPPOWDW®)

Selection

from samplics.sampling import SampleSelection

stagel_design = SampleSelection(
method="pps-sys", stratification=True, with_replacement=False

np.random.seed(12345)

psu_frame["psu_sample"],
psu_frame["psu_hits"],
psu_frame["psu_probs"],

) = stagel_design.select(
samp_unit=psu_frame["psu"],
samp_size=psu_sample_size,
stratum=psu_frame["region"],
mos=psu_frame["number_households"],
to_dataframe=False,
sample_only=False,

psu_frame.sample(10)

select() returns a tuple of three numpy arrays
Sample indicator

Number of hits

Selection probabilities

to_dataframe flag will return a pandas data frame
when set to True

1377
1612
1430
a14
838
2238
131
302
1585
1815

region
South
South
South
Midwest
Northeast
West
Midwest
Midwest
South

West

state

North Carolina
Texas
Oklahoma
Ohio
Pennsylvania
Oregon
Indiana
Missouri
Texas

Arizona

psu number_households

1564
2033
17156
1663
1784
1730
836
1202
2006
46

519
197
485
448
615
710
562
927
453
500

psu_sample psu_hits

O EEE © ol © B O BN O

=

0
0
0
0
0
0
0
0
0

1

psu_probs
0.010641
0.004039
0.009944
0.011145
0.016539
0.022461
0.013981
0.023062
0.009288
0.015818

11

<B10°s21IdwiIps> O]IPIgSNOPPWOW®

Selection

19,303 households listed in the
32 selected PSUs

In each PSU, we will select 15
households using SRS

600 800 1000
Number of Households

1200

N

<B10°s21|dWDS> O|IPIgSNOPPOWDW®)

Selection

np.random.seed(12345)

t 2_desi =S leSelecti
Select 15 households from each PSU Sadea-duPLan F oep et pataney : : -
method="srs", stratification=True, with_replacement=False
in the sample)

household_sample = stage2_design.select(

We use simple random selection (sts) S L G L B LR
samp_size=15,

stratum=household_frame["psu"],

All households have the same L M,
i \ ; g sample_only=True,
probability of selection within a)
stratum household_sample.sample(5)
Th X f d _samp_unit _stratum _mos _sample _hits _probs
c Output 150 t}l: ¢ a pandas az2a 1119553 2057 1.0 1 1 0.030928
dataframe because 383 985675 1811 1.0 1 1 0.014822
to_dataframe=True. 301 784390 1444 1.0 1 1 0.036058
341 843148 1557 1.0 1 1 0.039164

277 702266 1279 1.0 1 1 0.029126

W

<B10°s21IdwiIps> O]IPIgSNOPPWOW®

N

Weighting

Overall inclusion probabilities are the product of the probabilities of selection

of each stage

Design weights are the inverse of the inclusion probabilities

<B10°s21IdwiIps> O]IPIgSNOPPWOW®

household_sample["inclusion_probs"] = (
household_sample["psu_probs"] * household_sample["hh_probs"]

MOCH
DdotC 5

household_sample["design_weight"] = 1 / household_sample["inclusion_probs"]

Weighting 15
The weighing module in samplics provides ;
» Non-response adjustment f
» Calibration including post-stratification é
» Normalization .
» Replicate weights
» Balanced Repeated Replication (BRR)
» Bootstrap

» Jackknife

Weighting

Non-response weight adjustment consists of distributing the weight of non-respondents
to respondents

Samplics uses a pre-codified scheme to distinguish the response status
» “in” for ineligible
» “rr” for respondent
» “nr” for non-respondent

» “uk” for unknown

€C; .00 ««¢ 2> << b

If the response variable 1s not codified in the default scheme. (i.e., “in”, “rt”, “nr”,
“uk”), then the user must provide a mapping between the default codes and the user-

defined codes.

O~

<B10°s21|dWDS> O|IPIgSNOPPOWDW®)

Weighting

from samplics.weighting import SampleWeight

406
response_status_mapping = { i
"in": "ineligible", 87
"rr": "respondent", | 456
"nr": "non-respondent", | 338
"uk": "unknown", 201

} 122
354

household_sample["nr_weight"] = SampleWeight().adjust(372
samp_weight=household_sample["design_weight"], 251
adjust_class=household_sample[["region", "race"]], 325
resp_status=household_sample["response_status"], aa7
resp_dict=response_status_mapping, 292
unknown_to_inelig=False, 439

) | 164

hhid
1068887
703166
165715
1219025
841053
457655
260577
905582
939112
631203
822536
1179796
740282
1179552
358293

region
South
Northeast
West
West
South
Midwest
South
Midwest
West
Midwest
Northeast
South
Northeast
South
South

race response_status

White
Black
White
White
White
Asian
White
White
White
White
Other
White
White
White
White

respondent
respondent
respondent
respondent
respondent
respondent
respondent
non-respondent
respondent
respondent
respondent
respondent
respondent
respondent

non-respondent

design_weight
3251.640000
2478.966667
2107.318519
2107.318519
3251.640000
2679.761905
3251.640000
2679.761905
2107.318519
2679.761905
2478.966667
3251.640000
2478.966667
3251.640000
3251.640000

nr_weight
3895.832830
2478.966667
2622.440823
2622.440823
3895.832830
3573.015873
3895.832830
0.000000
2622.440823
3366.880342
3305.288889
3895.832830
2784.070256
3895.832830
0.000000

N

<B10°s21|dWIDS> O|IPIgSNOPPOWDN®

Weighting

Samplics implements the generalized
regression (GREG) class for

calibration

It requires known auxiliary variables
control values at the population level

After the calibration adjustment, the
weighted estimates of the auxiliary
variables sum to the control values

oo

totals_by_domain = {
"Midwest": {"poverty": 31414, "nb_children": 138952},
"Northeast": {"poverty": 23280, "nb_children": 102614},
"South": {"poverty": 64056, "nb_children": 239165},
"West": {"poverty": 32131, "nb_children": 154986},

+

household_sample["calib_weight"] = SampleWeight().calibrate(
samp_weight=household_sample["nr_weight"],
aux_vars=household_sample[["poverty", "nb_children"]],
control=totals_by_domain,
domain=household_sample["region"],

test_calib = household_sample[["region"]]

test_calib["poverty_weighted"] = (
household_sample["poverty"] * household_sample["calib_weight"]

<B10°s21IdwiIps> O]IPIgSNOPPWOW®

)
test_calib["nb_children_weighted"] = (
household_sample["nb_children"] * household_sample["calib_weight"]

~

test_calib[["region", "poverty_weighted", "nb_children_weighted"]].groupby(
"region"
).sum() .reset_index()

region poverty_weighted nb_children_weighted

0 Midwest 31414.0 138952.0
1 Northeast 23280.0 102614.0
2 South 64056.0 239165.0

3 West 32131.0 154986.0

Estimation

The estimation module in samplics provides
» Taylor-based estimates (class TaylorEstimator)

» Replicate-based estimates (class ReplicateEstimator)

~O

<B10°s21|dWDS> O|IPIgSNOPPOWDW®)

Estimation

TaylorEstimator can estimate
* Proportions

e Means
e Totals
e Ratios

* Quantiles (under development)

For domain estimation, use function arguments
domain.

Finite population correction (fpc) also possible

The APIs for ReplicateEstimator 1s similar with
the use of rep_weight instead of samp_weight

from samplics.estimation import TaylorEstimator
poverty_rate = TaylorEstimator(parameter="proportion")

poverty_rate.estimate(
y=resp_sample["poverty"],
samp_weight=resp_sample["calib_weight"],
stratum=resp_sample["region"],
psu=resp_sample["psu"],

print(poverty_rate)

SAMPLICS - Estimation of Proportion

Number of strata: 4
Number of psus: 32
Degree of freedom: 28

LEVELS PROPORTION SE LCI UCI Cv
0 0.881327 0.02047 0.832597 0.917281 0.023227
1 0.118673 0.02047 0.082719 0.167403 0.172492

)
O

<B10°s21IdwiIps> O]IPIgSNOPPWOW®

Tabulation and T-test

samplics provide APIs to produce survey-based
tabulations and t-tests.

Tabulation() and CrossTabulation() classes
are the main interfaces for producing one-way
and two-way tables.

Rao-Scott adjustment implemented for both
Pearson and Likelihood ration tests

Ttest() class is the main interface for
comparison of group means.

A

from samplics.categorical import Ttest

poverty_by sex = Ttest(samp_type="one-sample")

poverty_by_sex.compare(
y=resp_sample["poverty"],
group=resp_sample["sex"],
samp_weight=resp_sample["calib_weight"],
stratum=resp_sample["region"],
psu=resp_sample["psu"],

)

print(poverty_by_sex)

Design-based One-Sample T-test
Null hypothesis (Ho): mean(Female) = mean(Male)
Equal variance assumption:

t statictics: 0.6148
Degrees of freedom: 391.00
Alternative hypothesis (Ha):
Prob(T < t) = 0.7305
Prob(|T| > |t]) = 0.5390
Prob(T > t) = 0.2695
Unequal variance assumption:
t statictics: 0.6076
Degrees of freedom: 332.94
Alternative hypothesis (Ha):
Prob(T < t) = 0.7281
Prob(|T| > |t]) = 0.5438
Prob(T > t) = 0.2719

<B10°s21IdwiIps> O]IPIgSNOPPWOW®

Group Nb. Obs Mean Std. Error Std. Dev. Lower CI Upper CI
Female 203 0.128885 0.019332 0.275437 0.089285 0.168484
Male 190 0.107717 0.028981 0.399481 0.048351 0.167082

N
N

Next steps

Develop more examples and training material

Add more features

<B10°s21|dWDS> O|IPIgSNOPPOWDW®)

» Expansion of the sample size module
» Addition of estimation for quantiles

» Next modules to be added

» Survey-based regression modelling

» Imputation methods

Thank you

(@MamadouSDiallo
msdiallo@sampling.org

)
W

O[I°IdSNOPPWBW®

2ldwps>

