Navigation

  • index
  • modules |
  • next |
  • lsqfit 11.5 documentation »

lsqfit Documentation¶

https://zenodo.org/badge/4593457.svg

Contents:

  • Overview and Tutorial
    • Introduction
    • Gaussian Random Variables and Error Propagation
    • Basic Fits
    • Chained Fits; Large Data Sets
    • x has Errors
    • Correlated Parameters; Gaussian Bayes Factor
    • y has No Error; Marginalization
    • SVD Cuts and Roundoff Error
    • SVD Cuts and Inadequate Statistics
    • y has Unknown Errors
    • Tuning Priors with the Empirical Bayes Criterion
    • Positive Parameters; Non-Gaussian Priors
    • Faster Fitters
    • Debugging and Troubleshooting
  • Non-Gaussian Behavior; Testing Fits
    • Introduction
    • Bootstrap Error Analysis; Non-Gaussian Output
    • Bayesian Integrals
    • Testing Fits with Simulated Data
    • Goodness of Fit
    • Fit Residuals and Q-Q Plots
  • Case Study: Simple Extrapolation
    • The Problem
    • A Bad Solution
    • A Better Solution — Priors
    • Bayes Factors
    • Another Solution — Marginalization
  • Case Study: Numerical Analysis inside a Fit
    • The Problem
    • Pendulum Dynamics
    • Two Types of Input Data
  • Case Study: Fitting a Spline
    • The Problem
    • Spline Fit
  • Case Study: Outliers and Bayesian Integrals
    • The Problem
    • A Solution
    • A Variation
  • lsqfit - Nonlinear Least Squares Fitting
    • Introduction
    • nonlinear_fit Objects
    • Functions
    • Classes for Bayesian Integrals
    • lsqfit.MultiFitter Classes
    • Requirements
  • GSL Routines
    • Fitters
    • Minimizer
  • scipy Routines
    • Fitter
    • Minimizer

Indices and tables¶

  • Index

  • Module Index

  • Search Page

Table of Contents

  • lsqfit Documentation
  • Indices and tables

Next topic

Overview and Tutorial

This Page

  • Show Source

Quick search

Navigation

  • index
  • modules |
  • next |
  • lsqfit 11.5 documentation »
© Copyright 2009-2019, G. P. Lepage. Created using Sphinx 2.2.0.