"""This module defines an ASE interface to FHI-aims.
Felix Hanke hanke@liverpool.ac.uk
Jonas Bjork j.bjork@liverpool.ac.uk
"""
import os
import numpy as np
from ase.units import Hartree
from ase.io.aims import write_aims, read_aims
from ase.data import atomic_numbers
from ase.calculators.calculator import FileIOCalculator, Parameters, kpts2mp, \
ReadError
float_keys = [
'charge',
'charge_mix_param',
'default_initial_moment',
'fixed_spin_moment',
'hartree_convergence_parameter',
'harmonic_length_scale',
'ini_linear_mix_param',
'ini_spin_mix_parma',
'initial_moment',
'MD_MB_init',
'MD_time_step',
'prec_mix_param',
'set_vacuum_level',
'spin_mix_param',
]
exp_keys = [
'basis_threshold',
'occupation_thr',
'sc_accuracy_eev',
'sc_accuracy_etot',
'sc_accuracy_forces',
'sc_accuracy_rho',
'sc_accuracy_stress',
]
string_keys = [
'communication_type',
'density_update_method',
'KS_method',
'mixer',
'output_level',
'packed_matrix_format',
'relax_unit_cell',
'restart',
'restart_read_only',
'restart_write_only',
'spin',
'total_energy_method',
'qpe_calc',
'xc',
'species_dir',
'run_command',
]
int_keys = [
'empty_states',
'ini_linear_mixing',
'max_relaxation_steps',
'max_zeroin',
'multiplicity',
'n_max_pulay',
'sc_iter_limit',
'walltime',
]
bool_keys = [
'collect_eigenvectors',
'compute_forces',
'compute_kinetic',
'compute_numerical_stress',
'compute_analytical_stress',
'distributed_spline_storage',
'evaluate_work_function',
'final_forces_cleaned',
'hessian_to_restart_geometry',
'load_balancing',
'MD_clean_rotations',
'MD_restart',
'override_illconditioning',
'override_relativity',
'restart_relaxations',
'squeeze_memory',
'symmetry_reduced_k_grid',
'use_density_matrix',
'use_dipole_correction',
'use_local_index',
'use_logsbt',
'vdw_correction_hirshfeld',
]
list_keys = [
'init_hess',
'k_grid',
'k_offset',
'MD_run',
'MD_schedule',
'MD_segment',
'mixer_threshold',
'occupation_type',
'output',
'cube',
'preconditioner',
'relativistic',
'relax_geometry',
]
[docs]class Aims(FileIOCalculator):
command = 'aims.version.serial.x > aims.out'
implemented_properties = ['energy', 'forces', 'stress', 'dipole', 'magmom']
def __init__(self, restart=None, ignore_bad_restart_file=False,
label=os.curdir, atoms=None, cubes=None, radmul=None,
tier=None, **kwargs):
"""Construct FHI-aims calculator.
The keyword arguments (kwargs) can be one of the ASE standard
keywords: 'xc', 'kpts' and 'smearing' or any of FHI-aims'
native keywords.
Additional arguments:
cubes: AimsCube object
Cube file specification.
radmul: int
Set radial multiplier for the basis set of all atomic species.
tier: int or array of ints
Set basis set tier for all atomic species.
"""
try:
self.outfilename = kwargs.get('run_command').split()[-1]
except:
self.outfilename = 'aims.out'
FileIOCalculator.__init__(self, restart, ignore_bad_restart_file,
label, atoms,
command=kwargs.get('run_command'),
**kwargs)
self.cubes = cubes
self.radmul = radmul
self.tier = tier
def set_label(self, label):
self.label = label
self.directory = label
self.prefix = ''
self.out = os.path.join(label, self.outfilename)
def check_state(self, atoms):
system_changes = FileIOCalculator.check_state(self, atoms)
# Ignore unit cell for molecules:
if not atoms.pbc.any() and 'cell' in system_changes:
system_changes.remove('cell')
return system_changes
def set(self, **kwargs):
xc = kwargs.get('xc')
if xc:
kwargs['xc'] = {'LDA': 'pw-lda', 'PBE': 'pbe'}.get(xc, xc)
changed_parameters = FileIOCalculator.set(self, **kwargs)
if changed_parameters:
self.reset()
return changed_parameters
def write_input(self, atoms, properties=None, system_changes=None,
ghosts=None):
FileIOCalculator.write_input(self, atoms, properties, system_changes)
have_lattice_vectors = atoms.pbc.any()
have_k_grid = ('k_grid' in self.parameters or
'kpts' in self.parameters)
if have_lattice_vectors and not have_k_grid:
raise RuntimeError('Found lattice vectors but no k-grid!')
if not have_lattice_vectors and have_k_grid:
raise RuntimeError('Found k-grid but no lattice vectors!')
write_aims(os.path.join(self.directory, 'geometry.in'), atoms, ghosts)
self.write_control(atoms, os.path.join(self.directory, 'control.in'))
self.write_species(atoms, os.path.join(self.directory, 'control.in'))
self.parameters.write(os.path.join(self.directory, 'parameters.ase'))
def write_control(self, atoms, filename):
output = open(filename, 'w')
for line in ['=====================================================',
'FHI-aims file: ' + filename,
'Created using the Atomic Simulation Environment (ASE)',
'',
'List of parameters used to initialize the calculator:',
'=====================================================']:
output.write('#' + line + '\n')
assert not ('kpts' in self.parameters and 'k_grid' in self.parameters)
assert not ('smearing' in self.parameters and
'occupation_type' in self.parameters)
for key, value in self.parameters.items():
if key == 'kpts':
mp = kpts2mp(atoms, self.parameters.kpts)
output.write('%-35s%d %d %d\n' % (('k_grid',) + tuple(mp)))
dk = 0.5 - 0.5 / np.array(mp)
output.write('%-35s%f %f %f\n' % (('k_offset',) + tuple(dk)))
elif key == 'species_dir' or key == 'run_command':
continue
elif key == 'smearing':
name = self.parameters.smearing[0].lower()
if name == 'fermi-dirac':
name = 'fermi'
width = self.parameters.smearing[1]
output.write('%-35s%s %f' % ('occupation_type', name, width))
if name == 'methfessel-paxton':
order = self.parameters.smearing[2]
output.write(' %d' % order)
output.write('\n' % order)
elif key == 'output':
for output_type in value:
output.write('%-35s%s\n' % (key, output_type))
elif key == 'vdw_correction_hirshfeld' and value:
output.write('%-35s\n' % key)
elif key in bool_keys:
output.write('%-35s.%s.\n' % (key, repr(bool(value)).lower()))
elif isinstance(value, (tuple, list)):
output.write('%-35s%s\n' %
(key, ' '.join(str(x) for x in value)))
elif isinstance(value, str):
output.write('%-35s%s\n' % (key, value))
else:
output.write('%-35s%r\n' % (key, value))
if self.cubes:
self.cubes.write(output)
output.write(
'#=======================================================\n\n')
output.close()
def read(self, label):
FileIOCalculator.read(self, label)
geometry = os.path.join(self.directory, 'geometry.in')
control = os.path.join(self.directory, 'control.in')
for filename in [geometry, control, self.out]:
if not os.path.isfile(filename):
raise ReadError
self.atoms = read_aims(geometry)
self.parameters = Parameters.read(os.path.join(self.directory,
'parameters.ase'))
self.read_results()
def read_results(self):
converged = self.read_convergence()
if not converged:
os.system('tail -20 ' + self.out)
raise RuntimeError('FHI-aims did not converge!\n' +
'The last lines of output are printed above ' +
'and should give an indication why.')
self.read_energy()
if ('compute_forces' in self.parameters or
'sc_accuracy_forces' in self.parameters):
self.read_forces()
if ('compute_numerical_stress' in self.parameters or
'compute_analytical_stress' in self.parameters):
self.read_stress()
if ('dipole' in self.parameters.get('output', []) and
not self.atoms.pbc.any()):
self.read_dipole()
def write_species(self, atoms, filename='control.in'):
self.ctrlname = filename
species_path = self.parameters.get('species_dir')
if species_path is None:
species_path = os.environ.get('AIMS_SPECIES_DIR')
if species_path is None:
raise RuntimeError(
'Missing species directory! Use species_dir ' +
'parameter or set $AIMS_SPECIES_DIR environment variable.')
control = open(filename, 'a')
symbols = atoms.get_chemical_symbols()
symbols2 = []
for n, symbol in enumerate(symbols):
if symbol not in symbols2:
symbols2.append(symbol)
if self.tier is not None:
if isinstance(self.tier, int):
self.tierlist = np.ones(len(symbols2), 'int') * self.tier
elif isinstance(self.tier, list):
assert len(self.tier) == len(symbols2)
self.tierlist = self.tier
for i, symbol in enumerate(symbols2):
fd = os.path.join(species_path, '%02i_%s_default' %
(atomic_numbers[symbol], symbol))
reached_tiers = False
for line in open(fd, 'r'):
if self.tier is not None:
if 'First tier' in line:
reached_tiers = True
self.targettier = self.tierlist[i]
self.foundtarget = False
self.do_uncomment = True
if reached_tiers:
line = self.format_tiers(line)
control.write(line)
if self.tier is not None and not self.foundtarget:
raise RuntimeError(
"Basis tier %i not found for element %s" %
(self.targettier, symbol))
control.close()
if self.radmul is not None:
self.set_radial_multiplier()
def format_tiers(self, line):
if 'meV' in line:
assert line[0] == '#'
if 'tier' in line and 'Further' not in line:
tier = line.split(" tier")[0]
tier = tier.split('"')[-1]
current_tier = self.translate_tier(tier)
if current_tier == self.targettier:
self.foundtarget = True
elif current_tier > self.targettier:
self.do_uncomment = False
else:
self.do_uncomment = False
return line
elif self.do_uncomment and line[0] == '#':
return line[1:]
elif not self.do_uncomment and line[0] != '#':
return '#' + line
else:
return line
def translate_tier(self, tier):
if tier.lower() == 'first':
return 1
elif tier.lower() == 'second':
return 2
elif tier.lower() == 'third':
return 3
elif tier.lower() == 'fourth':
return 4
else:
return -1
def set_radial_multiplier(self):
assert isinstance(self.radmul, int)
newctrl = self.ctrlname +'.new'
fin = open(self.ctrlname, 'r')
fout = open(newctrl, 'w')
newline = " radial_multiplier %i\n" % self.radmul
for line in fin:
if ' radial_multiplier' in line:
fout.write(newline)
else:
fout.write(line)
fin.close()
fout.close()
os.rename(newctrl, self.ctrlname)
def get_dipole_moment(self, atoms):
if ('dipole' not in self.parameters.get('output', []) or
atoms.pbc.any()):
raise NotImplementedError
return FileIOCalculator.get_dipole_moment(self, atoms)
def get_stress(self, atoms):
if ('compute_numerical_stress' not in self.parameters and
'compute_analytical_stress' not in self.parameters):
raise NotImplementedError
return FileIOCalculator.get_stress(self, atoms)
def get_forces(self, atoms):
if ('compute_forces' not in self.parameters and
'sc_accuracy_forces' not in self.parameters):
raise NotImplementedError
return FileIOCalculator.get_forces(self, atoms)
def read_dipole(self):
"Method that reads the electric dipole moment from the output file."
for line in open(self.out, 'r'):
if line.rfind('Total dipole moment [eAng]') > -1:
dipolemoment = np.array([float(f)
for f in line.split()[6:9]])
self.results['dipole'] = dipolemoment
def read_energy(self):
for line in open(self.out, 'r'):
if line.rfind('Total energy corrected') > -1:
E0 = float(line.split()[5])
elif line.rfind('Total energy uncorrected') > -1:
F = float(line.split()[5])
self.results['free_energy'] = F
self.results['energy'] = E0
def read_forces(self):
"""Method that reads forces from the output file.
If 'all' is switched on, the forces for all ionic steps
in the output file will be returned, in other case only the
forces for the last ionic configuration are returned."""
lines = open(self.out, 'r').readlines()
forces = np.zeros([len(self.atoms), 3])
for n, line in enumerate(lines):
if line.rfind('Total atomic forces') > -1:
for iatom in range(len(self.atoms)):
data = lines[n + iatom + 1].split()
for iforce in range(3):
forces[iatom, iforce] = float(data[2 + iforce])
self.results['forces'] = forces
def read_stress(self):
lines = open(self.out, 'r').readlines()
stress = None
for n, line in enumerate(lines):
if (line.rfind('| Analytical stress tensor') > -1 or
line.rfind('Numerical stress tensor') > -1):
stress = []
for i in [n + 5, n + 6, n + 7]:
data = lines[i].split()
stress += [float(data[2]), float(data[3]), float(data[4])]
# rearrange in 6-component form and return
self.results['stress'] = np.array([stress[0], stress[4], stress[8],
stress[5], stress[2], stress[1]])
def read_convergence(self):
converged = False
lines = open(self.out, 'r').readlines()
for n, line in enumerate(lines):
if line.rfind('Have a nice day') > -1:
converged = True
return converged
def get_number_of_iterations(self):
return self.read_number_of_iterations()
def read_number_of_iterations(self):
niter = None
lines = open(self.out, 'r').readlines()
for n, line in enumerate(lines):
if line.rfind('| Number of self-consistency cycles') > -1:
niter = int(line.split(':')[-1].strip())
return niter
def get_electronic_temperature(self):
return self.read_electronic_temperature()
def read_electronic_temperature(self):
width = None
lines = open(self.out, 'r').readlines()
for n, line in enumerate(lines):
if line.rfind('Occupation type:') > -1:
width = float(line.split('=')[-1].strip().split()[0])
return width
def get_number_of_electrons(self):
return self.read_number_of_electrons()
def read_number_of_electrons(self):
nelect = None
lines = open(self.out, 'r').readlines()
for n, line in enumerate(lines):
if line.rfind('The structure contains') > -1:
nelect = float(line.split()[-2].strip())
return nelect
def get_number_of_bands(self):
return self.read_number_of_bands()
def read_number_of_bands(self):
nband = None
lines = open(self.out, 'r').readlines()
for n, line in enumerate(lines):
if line.rfind('Number of Kohn-Sham states') > -1:
nband = int(line.split(':')[-1].strip())
return nband
def get_k_point_weights(self):
return self.read_kpts(mode='k_point_weights')
def get_bz_k_points(self):
raise NotImplementedError
def get_ibz_k_points(self):
return self.read_kpts(mode='ibz_k_points')
def get_spin_polarized(self):
return self.read_number_of_spins()
def get_number_of_spins(self):
return 1 + self.get_spin_polarized()
def get_magnetic_moment(self, atoms=None):
return self.read_magnetic_moment()
def read_number_of_spins(self):
spinpol = None
lines = open(self.out, 'r').readlines()
for n, line in enumerate(lines):
if line.rfind('| Number of spin channels') > -1:
spinpol = int(line.split(':')[-1].strip()) - 1
return spinpol
def read_magnetic_moment(self):
magmom = None
if not self.get_spin_polarized():
magmom = 0.0
else: # only for spinpolarized system Magnetisation is printed
for line in open(self.out, 'r').readlines():
if line.find('N_up - N_down') != -1: # last one
magmom = float(line.split(':')[-1].strip())
return magmom
def get_fermi_level(self):
return self.read_fermi()
def get_eigenvalues(self, kpt=0, spin=0):
return self.read_eigenvalues(kpt, spin, 'eigenvalues')
def get_occupations(self, kpt=0, spin=0):
return self.read_eigenvalues(kpt, spin, 'occupations')
def read_fermi(self):
E_f = None
lines = open(self.out, 'r').readlines()
for n, line in enumerate(lines):
if line.rfind('| Chemical potential (Fermi level) in eV') > -1:
E_f = float(line.split(':')[-1].strip())
return E_f
def read_kpts(self, mode='ibz_k_points'):
""" Returns list of kpts weights or kpts coordinates. """
values = []
assert mode in ['ibz_k_points', 'k_point_weights']
lines = open(self.out, 'r').readlines()
kpts = None
kptsstart = None
for n, line in enumerate(lines):
if line.rfind('| Number of k-points') > -1:
kpts = int(line.split(':')[-1].strip())
for n, line in enumerate(lines):
if line.rfind('K-points in task') > -1:
kptsstart = n # last occurence of (
assert not kpts is None
assert not kptsstart is None
text = lines[kptsstart + 1:]
values = []
for line in text[:kpts]:
if mode == 'ibz_k_points':
b = [float(c.strip()) for c in line.split()[4:7]]
else:
b = float(line.split()[-1])
values.append(b)
if len(values) == 0:
values = None
return np.array(values)
def read_eigenvalues(self, kpt=0, spin=0, mode='eigenvalues'):
""" Returns list of last eigenvalues, occupations
for given kpt and spin. """
values = []
assert mode in ['eigenvalues', 'occupations']
lines = open(self.out, 'r').readlines()
# number of kpts
kpts = None
for n, line in enumerate(lines):
if line.rfind('| Number of k-points') > -1:
kpts = int(line.split(':')[-1].strip())
break
assert not kpts is None
assert kpt + 1 <= kpts
# find last (eigenvalues)
eigvalstart = None
for n, line in enumerate(lines):
# eigenvalues come after Preliminary charge convergence reached
if line.rfind('Preliminary charge convergence reached') > -1:
eigvalstart = n
break
assert not eigvalstart is None
lines = lines[eigvalstart:]
for n, line in enumerate(lines):
if line.rfind('Writing Kohn-Sham eigenvalues') > -1:
eigvalstart = n
break
assert not eigvalstart is None
text = lines[eigvalstart + 1:] # remove first 1 line
# find the requested k-point
nbands = self.read_number_of_bands()
sppol = self.get_spin_polarized()
beg = ((nbands + 4 + int(sppol) * 1) * kpt * (sppol + 1) +
3 + sppol * 2 + kpt * sppol)
if self.get_spin_polarized():
if spin == 0:
beg = beg
end = beg + nbands
else:
beg = beg + nbands + 5
end = beg + nbands
else:
end = beg + nbands
values = []
for line in text[beg:end]:
# aims prints stars for large values ...
line = line.replace('**************', ' 10000')
line = line.replace('***************', ' 10000')
line = line.replace('****************', ' 10000')
b = [float(c.strip()) for c in line.split()[1:]]
values.append(b)
if mode == 'eigenvalues':
values = [Hartree * v[1] for v in values]
else:
values = [v[0] for v in values]
if len(values) == 0:
values = None
return np.array(values)
[docs]class AimsCube:
"Object to ensure the output of cube files, can be attached to Aims object"
def __init__(self, origin=(0, 0, 0),
edges=[(0.1, 0.0, 0.0), (0.0, 0.1, 0.0), (0.0, 0.0, 0.1)],
points=(50, 50, 50), plots=None):
"""parameters:
origin, edges, points:
Same as in the FHI-aims output
plots:
what to print, same names as in FHI-aims """
self.name = 'AimsCube'
self.origin = origin
self.edges = edges
self.points = points
self.plots = plots
def ncubes(self):
"""returns the number of cube files to output """
if self.plots:
number = len(self.plots)
else:
number = 0
return number
def set(self, **kwargs):
""" set any of the parameters ... """
# NOT IMPLEMENTED AT THE MOMENT!
def move_to_base_name(self, basename):
""" when output tracking is on or the base namem is not standard,
this routine will rename add the base to the cube file output for
easier tracking """
for plot in self.plots:
found = False
cube = plot.split()
if (cube[0] == 'total_density' or
cube[0] == 'spin_density' or
cube[0] == 'delta_density'):
found = True
old_name = cube[0] + '.cube'
new_name = basename + '.' + old_name
if cube[0] == 'eigenstate' or cube[0] == 'eigenstate_density':
found = True
state = int(cube[1])
s_state = cube[1]
for i in [10, 100, 1000, 10000]:
if state < i:
s_state = '0' + s_state
old_name = cube[0] + '_' + s_state + '_spin_1.cube'
new_name = basename + '.' + old_name
if found:
os.system('mv ' + old_name + ' ' + new_name)
def add_plot(self, name):
""" in case you forgot one ... """
self.plots += [name]
def write(self, file):
""" write the necessary output to the already opened control.in """
file.write('output cube ' + self.plots[0] + '\n')
file.write(' cube origin ')
for ival in self.origin:
file.write(str(ival) + ' ')
file.write('\n')
for i in range(3):
file.write(' cube edge ' + str(self.points[i]) + ' ')
for ival in self.edges[i]:
file.write(str(ival) + ' ')
file.write('\n')
if self.ncubes() > 1:
for i in range(self.ncubes() - 1):
file.write('output cube ' + self.plots[i + 1] + '\n')