
MemoryPkg User Guide

User Guide for Release 2016.11

By

Jim Lewis

SynthWorks VHDL Training

Jim@SynthWorks.com

http://www.SynthWorks.com

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 1
Verbatim copies of this document may be used and distributed without restriction.

Table of Contents

1 MemoryPkg Overview...3
2 Data Structure...3
3 Basic Usage...3

3.1 Package References 3
3.2 Declaring the Memory Object 3
3.3 MemInit: Sizing the Memory Model 4
3.4 MemWrite: Writing to the Memory Model 4
3.5 MemRead: Reading from the Memory Model 4
3.6 Putting the basic pieces together 4

4 Method Reference..5
4.1 MemInit 5
4.2 MemWrite 5
4.3 MemRead Procedure 5
4.4 MemErase 5
4.5 Deallocate 6
4.6 SetAlertLogID 6
4.7 GetAlertLogID 6
4.8 FileReadH and FileReadB 6
4.9 FileWriteH and FileWriteB 7

5 Compiling MemoryPkg and Friends..7
6 About MemoryPkg..8
7 Future Work...8
8 About the Author - Jim Lewis..8

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 2
Verbatim copies of this document may be used and distributed without restriction.

1 MemoryPkg Overview

The MemoryPkg provides a protected type and methods to that both simplify the
creation of memory models and make them efficient with respect to memory usage.

2 Data Structure

MemoryPkg stores values in a sparse memory data structure. The data structure
consists of an array of pointers to a block of storage elements. A block of storage
elements is nominally an array 1024 values. This is shown below.

The Array of Pointers is created when the memory is initialized and the size is set. A
block of storage is allocated when a write operation writes to a location within the
block. This data structure minimizes workstation memory usage when only a portion of
the RAM model is used.

Currently storage elements are type integer. Storing a std_logic_vector into an integer
requires a policy. The current storage policy is that if there is an 'X' in any bit of the
std_logic_vector, then the value is stored as -1. An uninitialized value is integer'left. As
a result, that allows up to 31 bits of std_logic_vector to be stored into a storage
element. The future plan is for the storage element type and storage policy to be
determined by package generics.

3 Basic Usage

3.1 Package References

Using MemoryPkg requires the following package references:

use osvvm.MemoryPkg.all ;
architecture Test1 of tb is

3.2 Declaring the Memory Object

Memory is modeled using a data structure stored inside of a memory object. The
memory object is created by declaring a shared variable of type MemoryPType, such as
ptRam shown below.

architecture Model of Sram is
 shared variable ptRam : MemoryPType ;
 . . .

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 3
Verbatim copies of this document may be used and distributed without restriction.

... ...

...
Block of Storage ElementsBlock of Storage ElementsArray of PointersArray of Pointers

...

3.3 MemInit: Sizing the Memory Model

Memory models are not sized by the package itself. Instead, the memory model is
sized dynamically using the method MemInit.

ptRam.MemInit(AddrWidth => Address'length, DataWidth => Data'length) ;

3.4 MemWrite: Writing to the Memory Model

The procedure MemWrite writes a value to a storage location in the memory data
structure. If this is the first write to a block of storage elements, the block of storage
elements will be allocated before the write starts.

ptRam.MemWrite(Address, Data) ;

3.5 MemRead: Reading from the Memory Model

The function MemRead reads a value from a storage location.

Data <= ptRam.MemRead(Address) ;

3.6 Putting the basic pieces together

The following puts together the above pieces into a basic SRAM model. Note timing in
the form of output propagation delays and input timing checks have not been added to
the model. While these are necessary to complete memory model they are a separate
issue.

Note that both RamWriteProc and RamReadProc both use wait statements at the
beginning of the process. This allows MemInit, which runs during initialization to
complete before either MemWrite or MemRead can run. This is essential since the
memory is not initially sized.

library ieee ;
 use ieee.std_logic_1164.all ;
 use ieee.numeric_std.all ;

Entity SRAM is
port (
 Address : in std_logic_vector (19 downto 0) ;
 Data : inout std_logic_vector (15 downto 0) ;
 nCE : in std_logic ;
 nOE : in std_logic ;
 nWE : in std_logic
) ;
end SRAM ;
Architecture model of SRAM is
 shared variable ptRam : MemoryPType ;
 signal WriteEnable, ReadEnable : std_logic ;
begin
 ptRam.MemInit(AddrWidth => Address'length, DataWidth => Data'length) ;

 WriteEnable <= not nWE and not nCE ;

 RamWriteProc : process
 begin

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 4
Verbatim copies of this document may be used and distributed without restriction.

 wait until falling_edge(WriteEnable) ;
 ptRam.MemWrite(Address, Data) ;
 end process RamWriteProc ;

 ReadEnable <= not nCE and not nOE ;

 ReadProc : process
 begin
 wait on Address, ReadEnable ;
 case ReadEnable is
 when '1' => Data <= ptRam.MemRead(Address) ;
 when '0' => Data <= (Data'range => 'Z') ;
 when others => Data <= (Data'range => 'X') ;
 end case ;
 end process ReadProc ;
end model ;

4 Method Reference

4.1 MemInit

The size and width of the memory is set by MemInit.

procedure MemInit (AddrWidth, DataWidth : in integer) ;

4.2 MemWrite

MemWrite writes to a memory location. If the corresponding block of storage is not yet
allocated, then it will be allocated before the write.

procedure MemWrite (Addr, Data : in std_logic_vector) ;

If any address bit is an 'X', an alert will be signaled and the write is ignored. If any data
bit is an 'X', the current policy makes the entire data word all 'X's.

4.3 MemRead Procedure

MemRead reads from a memory location. It is available as either a function or
procedure.

impure function MemRead (Addr : std_logic_vector) return std_logic_vector ;
procedure MemRead (
 Addr : in std_logic_vector ;
 Data : out std_logic_vector
) ;

If the address has an 'X' in it, an alert will be signaled and the value returned will be all
'X's. If corresponding block of storage is not allocated, the value returned will be all
'U's. If the block of storage is allocated, but the value has not been written to yet, the
current policy returns all 'X's.

4.4 MemErase

MemErase deallocates all block of storage blocks. However, it does not deallocate the
base structure of the memory. MemErase is useful for erasing the memory between
tests.

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 5
Verbatim copies of this document may be used and distributed without restriction.

procedure MemErase ;

4.5 Deallocate

Deallocates deallocates all memory allocated by a memory model. After calling
Deallocate, MemInit must be called before the memory is usable again.

procedure deallocate ;

4.6 SetAlertLogID

MemoryPkg uses the AlertLogPkg to generate errors. By default, it will report errors to
OSVVM_ALERTLOG_ID. SetAlertLogID allows your memory models to have any errors
reported to be associated with a particular memory model.

procedure SetAlertLogID (A : AlertLogIDType) ;
procedure SetAlertLogID (
 Name : string ;
 ParentID : AlertLogIDType := ALERTLOG_BASE_ID ;
 CreateHierarchy : Boolean := TRUE
) ;

4.7 GetAlertLogID

GetAlertLogID returns the AlertLogID associated with a memory model.

impure function GetAlertLogID return AlertLogIDType ;

4.8 FileReadH and FileReadB

FileReadH and FileReadB are designed to mimic Verilog system functions $readmemh
and $readmemb.

procedure FileReadH (-- Hexadecimal File Read
 FileName : string ;
 StartAddr : std_logic_vector ;
 EndAddr : std_logic_vector
) ;
procedure FileReadH (FileName : string ; StartAddr : std_logic_vector) ;
procedure FileReadH (FileName : string) ;
procedure FileReadB (-- Hexadecimal File Read
 FileName : string ;
 StartAddr : std_logic_vector ;
 EndAddr : std_logic_vector
) ;
procedure FileReadB (FileName : string ; StartAddr : std_logic_vector) ;
procedure FileReadB (FileName : string) ;

The file shall contain only of the following:

 White space (spaces, new lines, tabs, and form-feeds)
 Comments (either //, #, or --)
 @ character (designating the adjacent number is an address)
 Binary or hexadecimal numbers

Addresses specified in the call to FileReadH or FileReadB provide both an initial starting
address and a range of valid addresses for memory operations. Addressing advances

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 6
Verbatim copies of this document may be used and distributed without restriction.

from StartAddr to FinishAddr. If FinishAddr is greater than StartAddr, then the next
address is one larger than the current one, otherwise, the next address is one less than
the current address.

Addresses may also be specified in the file in the format '@' followed by a hexadecimal
number as shown below. There shall not be any space between the '@' and the
number. The address read must be between StartAddr and FinishAddr or a FAILURE is
generated.

@hhhhh

Values not preceded by an '@' character are data values. Data values must be
separated by white space or comments from other values. ReadMemH requires
hexadecimal values compatible with hread for std_ulogic_vector. ReadMemB requires
values compatible with read for std_ulogic.

In the current implementation, if more digits are read than are required by the memory,
left hand characters will be dropped provided they are 0. If fewer digits are read than
are required by the memory, 0 characters are added to the left hand side. Note that
this behavior may change in the future to support stricter conformance between data in
the file and the data width of the memory.

4.9 FileWriteH and FileWriteB

FileWriteH and FileWriteB are designed to mimic Verilog system functions $writememh
and $writememb.

procedure FileWriteH (-- Hexadecimal File Read
 FileName : string ;
 StartAddr : std_logic_vector ;
 EndAddr : std_logic_vector
) ;
procedure FileWriteH (FileName : string ; StartAddr : std_logic_vector) ;
procedure FileWriteH (FileName : string) ;
procedure FileWriteB (-- Hexadecimal File Read
 FileName : string ;
 StartAddr : std_logic_vector ;
 EndAddr : std_logic_vector
) ;
procedure FileWriteB (FileName : string ; StartAddr : std_logic_vector) ;
procedure FileWriteB (FileName : string) ;

Address and data values are written one per line. Address values are preceded by an @
character. Values that are X or values that correspond to a block of storage elements
that have not been allocated will not be written out.

5 Compiling MemoryPkg and Friends

See OSVVM_release_notes.pdf for the current compilation directions. Rather than
referencing individual packages, we recommend using the context declaration:

library OSVVM ;
 context osvvm.OsvvmContext ;

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 7
Verbatim copies of this document may be used and distributed without restriction.

6 About MemoryPkg

MemoryPkg was developed and is maintained by Jim Lewis of SynthWorks VHDL
Training. While it is new to OSVVM, it has been part of SynthWorks' VHDL training
classes since 2006.

Please support our effort in supporting MemoryPkg and OSVVM by purchasing your
VHDL training from SynthWorks.

MemoryPkg is free (both to download and use - there are no license fees). It is
released under the Perl Artistic open source license. You can download it from either
osvvm.org or http://www.synthworks.com/downloads. It will be updated from time to
time.

If you add features to the package, please donate them back under the same license as
candidates to be added to the standard version of the package. If you need features,
be sure to contact us. I blog about the packages at http://www.synthworks.com/blog.
We also support the OSVVM user community and blogs through http://www.osvvm.org.

Find any innovative usage for the package? Let us know, you can blog about it at
osvvm.org.

7 Future Work

MemoryPkg.vhd is a work in progress and will be updated from time to time. Caution,
undocumented items are experimental and may be removed in a future version.

8 About the Author - Jim Lewis

Jim Lewis, the founder of SynthWorks, has thirty plus years of design, teaching, and
problem solving experience. In addition to working as a Principal Trainer for
SynthWorks, Mr Lewis has done ASIC and FPGA design, custom model development,
and consulting.

Mr. Lewis is chair of the IEEE 1076 VHDL Working Group (VASG) and is the primary
developer of the Open Source VHDL Verification Methodology (OSVVM.org) packages.
Neither of these activities generate revenue. Please support our volunteer efforts by
buying your VHDL training from SynthWorks.

If you find bugs these packages or would like to request enhancements, you can reach
me at jim@synthworks.com.

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 8
Verbatim copies of this document may be used and distributed without restriction.

