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0.2 1. Homogeneous Phases of Two Component SO Coupled BECs

0.2.1 1.1 Hamiltonian

To study homogeneous phases, it is conevient to rotate the phase of the two components to
transfer the spin-orbit coupling to the kinetic energy. The bare Hamiltonian has the form

H =

(
~2k2
2m + Va

Ω
2 e

2ikrx

Ω
2 e
−2ikrx ~2k2

2m + Vb

)
, (0.1)

Va = −µ− δ

2
+ gaana + gabnb, Vb = −µ+

δ

2
+ gabna + gbbnb, (0.2)

V+ = −µ+
(gaa + gab)na + (gbb + gab)nb

2
, V− = −δ +

(gaa − gab)na − (gbb − gab)nb
2

. (0.3)

One defines a transformed state:

Ψ = eikRxσzΨ̃ (0.4)

so that Ψ̃ has the effective Hamiltonian

H̃ =

(
~2(k+kR)2

2m + Va
Ω
2

Ω
2

~2(k−kR)2

2m + Vb

)
. (0.5)

In homogeneous matter, this has eigenstates with energy:
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0.2 1. Homogeneous Phases of Two Component SO Coupled BECs

Ψ̃ = eikx

(
uk
vk

)
, Ψ =

(
ei(k+kR)xuk
ei(k−kR)xvk

)
, Ek = ~2k

2 + k2
R

2m
+ V+ −

√(
~2kkr
m

+ V−

)2

+
Ω2

4

(0.6)

.
Noting that V+ is just an overall shift in energy, we set V+ = 0 (by choosing µ appropriately),

use units where ~ = m = kR = 1 and define w = Ω/2 and d = V− ≈ −δ/2 (see below). (In
the following anaylsis we assume d > 0 since this minimizes signs, but in the experiments one
typically has d < 0). The dispersion relationship for the lower band is thus characterized by the
two parameters w and d which characterize the mixing and detuning respectively:

Ek =
k2 + 1

2
−
√

(k + d)2 + w2,
uk
vk

=
k + d−

√
(k + d)2 + w2

w
=

−w
k + d+

√
(k + d)2 + w2

,

(0.7)

na
nb

=

√
(k + d)2 + w2 − (k + d)√
(k + d)2 + w2 + (k + d)

=
1−K
1 +K

, K =
k + d√

(k + d)2 + w2
(0.8)

Note that the densities are related to the square of the eigenvectors: na = n0u
2
k and nb = n0v

2
k.

This relates the polarization of the system to the quasi-momentum k:

K =
nb − na
nb + na

=
k + d√

(k + d)2 + w2
. (0.9)

The total momentum density of the system is thus:

p = (k + 1)na + (k − 1)nb = (na + nb)
(1 + k)(1−K)− (1− k)(1 +K)

2
. (0.10)

0.2.2 1.2 Galilean Covariance

Consider a single component system with external potential V (~x). Galilean covariance is ex-
pressed as the invariance under the following transformation (boost) when V (~x) = V0 does not
depend on ~x:

ψ~v(~x, t) = e−iφψ(~x+ ~vt, t), ~φ = m~v · ~x+
1

2
mv2t. (0.11)

If you have not seen this before, check explicitly that ψ~v satisfies:

i~ψ̇~v =

(
−~2∇2

2m
+ V (~x+ ~vt)

)
ψ~v. (0.12)

The phase is chosen to exactly cancel the extra terms generated by differentiating with the
new ~vt dependence in the argument of ψ~v.

In our system, the corresponding transformation gives:

H =

(
~2k2
2m + Va

Ω
2 e

2ikr(x+vt)

Ω
2 e
−2ikr(x+vt) ~2k2

2m + Vb

)
(0.13)
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Thus, one can again define a transformed state:

Ψ = eikR(x+vt)σzΨ̃. (0.14)

The time dependence here will add a term to the Schrödinger equation which will adjust the
detuning:

i~∂tΨ = eikR(x+vt)σz(i~∂t − ~kRvσz)Ψ̃. (0.15)

so that Ψ̃ has the effective Hamiltonian

H̃ =

(
~2(k+kR)2

2m + Va + ~kRv Ω
2

Ω
2

~2(k−kR)2

2m + Vb − ~kRv

)
. (0.16)

In other words, the detuning depends on the velocity of the local frame:

δ~v = δ − 2~kRv, dv = d+ 2v (0.17)

where v is measured in units of ~kR/m = 1.
Note: I always find the signs of v confusing. I think this is correct: if v is positive, it

corresponds to a portion of the system moving right so that locally any external potential is seen
moving to the left.

0.2.3 1.3 Ground State

The ground state is characterized by the minimum momentum k0:

∂Ek
∂k

= 0 = k0 −
k0 + d√

(k0 + d)2 + w2
= k0 −K(k0), (0.18)

uk0
vk0

=

√
na
nb

=
(k0 + d)(k0 − 1)

wk0
=

−wk0

(k0 + d)(k0 + 1)
,

na
nb

=
1− k0

1 + k0
. (0.19)

Since K = k0 at the minimum, the total momentum density of the ground state is zero as
expected.

We can also invert these relationships and express:

k0 =
nb − na
nb + na

, w2 = (k−2
0 − 1)(k0 + v)2, (0.20)

w =
mΩ

~2k2
R

, v = m
−δ + (gaa − gab)na − (gbb − gab)nb

~2k2
R

≈ −mδ
~2k2

R

. (0.21)

This tells us what the minimum quasi-momentum k0 and mixing w are for a given density ratio
and detuning v. Note that for Rubidium, gab ≈ gaa ≈ gbb, so it is a very good approximation
to drop the non-linear terms in the previous equations:

d ≈ −mδ
~2k2

R

. (0.22)

4



0.3 2. Single Branch Physics

This means that the density fraction and minimum quasi-momentum k0 are approximately
constant throughout the entire system, even if the density is changing because of a slowly
varying external potential.

The overall density scale is then determined by setting Ek = 0 by adjusting µ as usual. (Note:
that in the equation below, µ also includes an offset from v+:

nb
na

=
1 + k0

1− k0
, na =

2(µ− Vext)

gaa + gab + (gbb + gab)
nb
na

(0.23)

0.3 2. Single Branch Physics

We now assume that only the lowest branch is occupied. This is true for the ground state of
the system, but also for physical systems where one does not introduce too much energy.

0.3.1 2.1 Probability Current

Consider the density matrix R = |ψ〉 〈ψ| such that the local density is n(x) = 〈x|R|x〉. The
time derivatives are given by the usual commutation relations following from the GPE:

Ṙ =
i

~
[R,H], ṅ(x) = 〈x|Ṙ|x〉 = −∇ · j, (0.24)

where j = n(x)v is the probability current:

j(x) = 〈x|j|x〉. (0.25)

One must be careful about defining j. With the usual quadratic dispersion, one has j =
1

2m{p,R} = 1
2{ω

′(p),R} where p is the momentum operator and ω(p) = p2/2m is the kinetic
energy (single-particle dispersion relation), but this is not valid with general dispersion. Instead,
one must generalize the anticommutator into an averaging over orders so that:

S(pnR) =
pnR + pn−1Rp + · · ·pRpn−1 + Rpn

n+ 1
, j = S(ω′(p)R). (0.26)

I do not yet know of a good/efficient way of computing the symmetric-ordered product, so
in the code I compute the velocity by integrating numerically the time-derivative of the density
which can easily be computed by applying the Hamiltonian:

j(x) = −
∫

dxṅ(x). (0.27)

This becomes more complicated in higher dimensions but works very well in 1D.
(I could not find much in the literature about the required symmetric ordering, but am sure

this must be discussed many places. There is an example in Drouhin:2009 but it does not make
much sense.)

For homogeneous systems, the density operator will commute with the momentum operator,
we do not need to consider the complications with symmetric ordering and can simply write
the physical momentum:

p =
dEk
dk

= k − k + d√
(k + d)2 + w2

= k −K(k) = k − nb − na
nb + na

. (0.28)
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In addition to the two-component system, we simulate a single-component system with mod-
ified dispersion relationship

ω(k) = Ek(k − k0). (0.29)

One can directly compare this to the two-component simulation using na,b = n(1∓K)/2 to
compute the population fractions where K = K(k − k0) = (nb − na)/(nb + na).

0.3.2 2.2 Hydrodynamics

For the hydrodynamic formulation of the problem we start by effecting a Madelung transfor-
mation: ψ =

√
neiφ. Collecting real and imaginary parts of the NLSEQ we obtain:

ṅ =
2

~
=ψ†ω(p)ψ = −∇ · j, (0.30)

~φ̇n = −<ψ†ω(p)ψ − V (n)n (0.31)

from the probability current discussed above:

ṅ = −∇j, j(x) = 〈x|j|x〉 = 〈x|S
(
ω′(p)R

)
|x〉 (0.32)

For now we simplfy to one dimension so ∇φ = φ′. Then we have the following explicit
expressions with k = ~φ′ as the quasi-momentum and quasi-velocity u = k/m where m is the
mass of the particles (not the effective mass):

v =
j

n
= ω′(k)−A[k, n] (group velocity)

~φ̇ = −ω(k)−B[k, n]− V (n). (0.33)

where A and B depend on k and n and various derivatives. Importantly, both A = B = 0 for
homogeneous states. (Expressions for the quartic dispersion are given below). We thus have a
hydrodynamic description in the following from:

ρ̇ = mṅ = −∇(nk), (0.34)

v +A = ω′(k) (0.35)

∂(v +A)

∂t
+ (v +A) · ∇(v +A) = ω′′(k)∇[−V (n)−B]. (0.36)

Here we see the role of the inverse effective mass m∗ = 1/ω′′(k). This kind of looks like
a standard hydrodynamic description with effective velocity of the fluid is v + A. In the last
equation we see that B acts as an additional potential, and it includes the usual quantum
pressure term along with higher order corrections. Note, however, that we can’t use this as an
actual velocity because then the conservation equation will be violated.

Here are the forms of A and B for a quadratic dispersion ω(p) = ap+ bp2 + cp3 + dp4. Note
that A has dimensions of velocity and B dimensions of energy. Note also that both A and B are
proportional to ~2 indicating that they are purely quantum effects. (This should be apparent
since they arise from the required symmetric ordering.) Note also that the expressions do not
depend on the scaling of n: I think they should probably be expressed in terms of the mass
density ρ = mn so that the hydrodynamic equations do not explicitly involve m, relying instead
on the effective mass m∗.
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0.3 2. Single Branch Physics

<ψ†ω(p)ψ = n
(
ω(k)−B

)
(0.37)

A[k, n]

~2
=

(
n′′

n
− 3n′2

4n2

)
w′′′(k)

6
+ 2d

(nk′)′

n
(0.38)

=
1

n1/4

(√
n
′

n1/4

)′
w′′′(k)

3
+ 2d

(nk′)′

n
(0.39)

B[k, n]

~2
=

√
n
′′

√
n

ω′′(k)

2
+

(
k′′ +

3
√
n
′
k′√
n

)
ω′′′(k)

6
− d

(
3k′2 −

√
n
′′′′
√
n

)
(0.40)

= b

(√
n
′′

√
n

)
+ c

(
k′′ +

3(
√
n
′
k)′√
n

)
+ d

(
4kk′′ + 3k′2 +

6(
√
n
′
k2)′√
n

−
√
n
′′′′
√
n

)
(0.41)

The first term in B is the usual “Quantum Pressure” term. Note that it also has a factor of
the inverse effective mass.

2.2.1 Additional Equations

I tried to massage these a bit into the form (1.3) of El and Hoefer, but the dependencies are
not correct. (In the following two lines, factors of ~ = m = 1 are missing.)

ṽ = v +A (0.42)

n,t + (nṽ),x = (−nA),x, (0.43)

(nṽ),t + (nṽ2),x = nω′′(u)∇[−V (n)−B]− ṽ(nA),x (0.44)

v +A = ω′(u) (0.45)

ṽ,t +
1

2
(ṽ2),x = ω′′(u)∇[−V (n)−B], (0.46)

(nṽ),t + (nṽ2),x = ω′′(u)∇[−V (n)−B], (0.47)

(0.48)

∇(v +A) = ω′′(u)∇u (0.49)

∂v +A

∂t
= ω′′(u)u̇ (0.50)

A =
1

n1/4

(√
n
′

n1/4

)′
w′′′(u)

3
+ 2d

(nu′)′

n
+ · · · , (0.51)

B =

√
n
′′

√
n

ω′′(u)

2
+

(
u′′ +

3
√
n
′
u′√
n

)
ω′′′(u)

6
+ d

(
3u′2 −

√
n
′′′′
√
n

)
+ · · · (0.52)

and the chain

u̇ = ∇φ̇ = ∇
[
−n−1<ψ†ω(p)ψ − V (n)

]
= ∇ [−ω(u)−B − V (n)] = ∇ [−V (n)−B]− ω′(u)∇u

(0.53)

= ∇ [−V (n)−B]− (v +A)∇(v +A)

ω′′(u)
(0.54)
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0.3.3 2.3 Numerics

Here are the polynomials describing the extrema and inflection points of the dispersion rela-
tionships. By squaring these to get rid of the radicals, we end up finding properties for both
branches (hence there are 4 extrema, not 3).

∂Ek
∂k

= 0 = k0 −
k0 + d√

(k0 + d)2 + w2
= k0 −K(k0), k2

0((k0 + d)2 + w2)− (k0 + d)2 = 0,

(0.55)

∂2Ek
∂k2

= 0 = 1 +
(k0 + d)2 − (k0 + d)2 − w2√

(k0 + d)2 + w23 = 1− w2√
(k0 + d)2 + w23 , kinflect = ±

√
w4/3 − w2 − d

(0.56)

Here we present some simple code to find the optimal k0 by using Newton’s method to solve
the following equation:

f(k) = k
√

(k + d)2 + w2 − (k + d). (0.57)

This has a nice form that is amenable to solution by Newton’s method in a few steps. We
start with ansatz k0 = ±1.

Populating the interactive namespace from numpy and matplotlib

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

<matplotlib.text.Text at 0x10d1659d0>

-0.890331418502

Here is the form of the dispersion relationship:

/data/apps/anaconda/envs/work/lib/python2.7/site-packages/numpy/core/numeric.py:474: ComplexWarning: Casting complex values to real discards the imaginary part

return array(a, dtype, copy=False, order=order)

<matplotlib.legend.Legend at 0x10f8a83d0>

0.4 References

The phase diragram for homogeneous states is discussed in the following papers:

• Ho:2011: For δ = 0, they discuss the emergence of striped phases for different values
of the coupling constants. They use parameters α = gab/g, β = (gbb − gaa)/g where
g = (gaa + gbb)/2.

•

• Martone:2012 and Li:2013: At δ = 0: This is a fairly complete discussion of the response
of the system (BdG).

•
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