
 

1 
 

A Data Warehouse for Storing and Analysing Study Data 
Version 2.0. Mar 2023 

Paul Watson, Newcastle University , paul.watson@ncl.ac.uk  

1 Introduction 

This document describes the design of a data warehouse for storing and analysing data collected in 

healthcare and other studies. The primary aim was to create a general system that enables users to 

explore and analyse data collected from, or related to, participants in studies. This might include 

data collected through clinical evaluation forms, data collected from sensors, and features extracted 

from the analysis of sensor data (e.g., step counts derived from raw accelerometery).  

Researchers might wish to slice, dice, visualise, analyse and explore this data in different ways, e.g. 

all results for one patient, all results for one type of measure in a study, or changes in one 

participant’s measurements over time. Others may wish to build models that can then be used in 

healthcare applications that make predictions about the participant’s future health. 

Traditionally, data collected in studies has been stored in a collection of files, often with metadata 

encoded in the filenames. This makes it difficult, and time consuming, for researchers to explore, 

interpret and analyse the data. We therefore wished to explore an alternative - exploiting modern 

database technology to vastly simplify this effort. We have therefore designed and implemented a 

data warehouse for the storage and analysis of study data. In doing this we have drawn heavily on 

the best practice for data warehouse design. However, there is more variety in the types of 

healthcare data to be stored than there is in a typical warehouse, and so we have been forced to 

deviate from a conventional data warehouse in some aspect of the design.   

There are three guiding principles behind the design: 

1. The data warehouse must be able to store any type of data collected in a study without 

modifying the schema. This means that when new types of data are collected in studies (e.g., 

from a new clinical evaluation form, a new data analysis program, or a new sensor) they can 

be stored in the warehouse without any changes to its design. This has 3 main advantages: 

firstly, it enables us to fix and optimise the schema for the tables in which the data is stored; 

secondly it means that applications and tools (e.g. for analysis and visualisation) built on the 

warehouse do not have to be updated when new types of data are added; thirdly, a single, 

multi-tenant database server can support many studies. This reduces the overall costs, the 

start-up time for a new study, and the overheads of managing the warehouse. 

2. Descriptive information about the types of measurement is stored in the warehouse so that 

tools or humans can interpret the data stored there. 

3. The design is optimised for query performance. In several cases, this has led to 

denormalization (duplication of data) to reduce the need for expensive joins. 

4. We must be able to implement a security regime to restrict each user’s access to the data 

collected in studies. 

In the rest of this document we describe the warehouse design and how it can be used, using 

examples drawn from real digital healthcare projects. These examples have all been implemented in 

a prototype of the warehouse that has been built using an instance of PostgreSQL running in the 

Microsoft Azure cloud (please contact the author if you want to access this). A Python Client library 

that simplifies common operations is also available. 



 

2 
 

2 Types of Data 

As was stated in the introduction, a major goal of the design was to be able to store and query any 

type of data that a user may wish to hold in a Healthcare data warehouse. We have therefore 

designed the warehouse to be able to store measurements whose values are of the following types: 

Table 1. The Types of Values stored in the Data Warehouse 

Id Value Type Description 

0 Integer  

1 Real  

2 Text  

3 Date Time  

4 Boolean False or True 

5 Nominal The value can be one of a set of categories, e.g., Male, Female, Prefer not 
to say 

6 Ordinal As nominal, except there is an ordering between the categories, e.g. Every 
Night, More than once per week, Once per week, Less than once per week 

7 BoundedInt An integer bounded by minimum and maximum values 

8 BoundedReal A real bounded by minimum and maximum values 

9 BoundedDateTime A datetime bounded by minimum and maximum values 

10 External The URI of an external object (e.g., image, file) 

 

Measurements are captured in related groups. For example, the results from a clinical evaluation 

form would form a group, while accelerometery analytics code may generate a group containing 

both the average walking speed and a stride length. The warehouse is therefore designed so that 

measurements can be stored and accessed in groups where that is appropriate. 

Through this document we use examples based on 3 different groups of measurements. 

2.1 Clinical evaluation form data 

This clinical evaluation form (named “Q321”) has the following measurements grouped within it: 

Measure Description Value Type Categories (if nominal or ordinal) 

G1 Participant has 
read PIS 

Nominal Y N    

G3 Year of Birth  DateTime      

G5 Gender Nominal M F Prefer not 
to say 

  

GC1 Comorbidity: 
PTT 

Nominal Y N    

C14.5 KCCQ clinical 
evaluation 
form, Item 5 

Ordinal Every 
Night 

3-4 Times 
per week 

1-2 Times 
per week 

Less than 
once a 
week 

Never 
over the 
past 2 
weeks 

C5 Name of drug Text      

C5.1 Dosage (mg) Real      

X1 Biopsy Date DateTime      



 

3 
 

2.2 Measurement Data 

We use the following example of the output of an algorithm “GFIT”: 

 

Param Id Description Value Type 

WB1 AWS Real 

WB2 Distance  Real 

WB3 Stride Length Real 

WB4 Cadence Real 

3 Database Schema 

The schema of the Data Warehouse is shown in Figure 1. In the following sections we describe how 

each of the tables are used by describing the tasks needed to: i) add new measurement types into 

the warehouse, ii) add new measurements into the warehouse, iii) query the warehouse. 

4 Adding a new Study 

Each measurement is associated with a study. The study table holds information on the study: 

• id: an identifier for the study that is unique within the data warehouse 

• studyid: this text field holds the identifier of the study allocated by those running the study. 

It does not therefore have to be unique in the data warehouse (two different clinical teams, 

working for different organisations, may have allocated the same studyid to different 

studies, e.g. “Study 1”) 

For the running examples, we have chosen to create one study: 

Table 2. Example study table entries 

id studyid 

1 Test Data 

5 Adding a new Trial 

A Study can consist of 0 or more trials. A trial consists of a set of measurements taken under the 

same conditions. For example, within a study we could use trial = 0 for baseline measurements, trial 

= 1 for a 6-month follow-up, trial = 2 for the 12-month follow-up etc.  The columns in the trial table 

are: 

• study: the id of the study of which the trial is a part 

• trialid: a unique id for the trial within the study 

• description: a textual description of the trial 

Table 3 Example trial table entries 

study trialid description 

5 0 Baseline 

5 1 6-month follow-up 

5 2 12-month follow-up 

 



 

4 
 

 

Figure 1. Data Warehouse Schema 



 

5 
 

6 Adding new Types of Measurements 

All measurements are captured in groups of 1 or more measurements. When a new measurement 

group is to be added to the warehouse, a new entry is first made in the measurementgroup table. 

This has three columns: 

• id:  a unique identifier for that group 

• description: a textual description of the measurement group  

• study: the id of the relevant entry in the study table 

For example, the entries in the warehouse for the three groups of measurements described in 

Section 2 could be: 

Table 4. Example measurementgroup table entries 

id description study 

1 Q321 1 

2 GFIT 1 

3 Unilever Temperature Sensor 1 

 

The next step is to add a new entry in the measurementtype Table for each of the types of 

measurements found within the new measurement group. This table has the following columns: 

• id: a unique id for the measurement type 

• study: the id of the relevant entry in the study table 

• description: a textual description of the measurement type 

• units: (optional) the identifier of the units of measurement (this is a foreign key into the unit 

table described below) 

• valtype: the type of the value that will be stored for this type of measurement; this is the id 

shown in Table 1 

For the three groups described in Section 2, the measurementtype Table entries are: 

Table 5 Example measurementtype table entries 

id study description units valtype 

1 1 participant has read PIS 
 

4 

2 1 Date of Birth 
 

3 

3 1 Gender 
 

5 

4 1 Comorbidity: PTT 
 

4 

5 1 Name of Drug 
 

2 

6 1 Dosage 1 1 

7 1 Biopsy Date 
 

3 

8 1 KCCQ clinical evaluation form, Item 5 
 

6 

9 1 AWS 2 1 

10 1 Distance 2 1 

11 1 Stride Length 2 1 

12 1 Cadence 3 1 

13 1 Temperature 4 1 



 

6 
 

 

The units table has the columns: 

• id: a unique identifier for the unit 

• name: the name of the unit 

• study: the id of the relevant entry in the study table 

For the running examples, the entries in the units table are: 

Table 6 Example units table entries 

id name study 

1 mg 1 

2 metres 1 

3 steps per minute 1 

4 Centigrade 1 

 

For categorical (ordinal and nominal) types, entries are made in the category table for each specific 

category. This table has the fields: 

• measurementtype: this is the relevant id field from the measurementtype table 

• categoryid: each different category has a unique id. As will be seen, this is the value that is 

stored in the warehouse when a measurement is taken. For ordinal types (e.g., C14.5 in the 

running example), the order of the categoryid values is significant, whereas it is not for 

nominal types (whose values can only be compared for equality). 

• categoryname: a textual description of the category. 

• study: the id of the relevant entry in the study table 

For the running example, the category table holds: 

Table 7 Example category table entries 

measurementtype categoryid categoryname study 

1 0 Y 1 

1 1 N 1 

3 0 Male 1 

3 1 Female 1 

3 2 Prefer not to say 1 

4 0 Y 1 

4 1 N 1 

8 0 Every Night 1 

8 1 3-4 times per week 1 

8 2 1-2 times per week 1 

8 3 Less than once per week 1 

8 4 Never over the past 2 weeks 1 

 



 

7 
 

For integers with bounds (e.g. a clinical evaluation form asking “How hard is it to walk without an aid 

– give a number from 1 (easy) to 6 (impossible)”) then the valtype is set to 7 (see Table 1), and the 

minimum and maximum bounds are stored in the boundsint table, which has the following columns: 

• measurementtype is a foreign key to the id field of the measurementtype table 

• minval: the minimum value 

• maxval: the maximum value 

• study: the id of the relevant entry in the study table 

There is an equivalent boundsreal table for real numbers: e.g., to set the minimum and maximum 

values for a percentage as 0.0 and 100.0 respectively. For bounded reals, the valtype is set to 8 (see 

Table 1). 

There is also an equivalent boundsdatetime table for datetime value: e.g., to set the minimum and 

maximum values for attendance at a medical clinic. For bounded datetimes, the valtype is set to 9 

(see Table 1). 

The measurementtypetogroup table combines the measurement types into groups. This table has 

the fields: 

• measurementtype is a foreign key to the id field of the measurementtype table, 

measurementgroup is a foreign key to the id field of the measurementgroup table 

• name: an optional name for the measurement type when it is contained within that 

measurement group (for example “date of birth” may be collected in many different clinical 

evaluation forms, but it may have a different question identifier in each – these can be held 

in the name field). 

• optional should be set to true if the measurementtype is optional in this 

measurementgroup. Otherwise, it can be set to false or Null. 

For the running example, it has the following entries: 

Table 8 Example measurementtypetogroup table entries 

measurementtype measurementgroup name study optional 

1  1 G1 1 false 

2 1 G3 1 false 

3 1 G5 1 false 

4 1 GC1 1 false 

5 1 C5 1 false 

6 1 C5.1 1 false 

7 1 X1 1 false 

8 1 C14.5 1 false 

9 2 WB1 1 false 

10 2 WB2 1 false 

11 2 WB3 1 false 

12 2 WB4 1 false 

13 3 TS1 1 false 

 

Relating the measurement types and measurement groups in this way (through a many-to-many 

relationship) enables the same measurement type to be a part of multiple measurement groups. For 



 

8 
 

example, a participant’s temperature may have been collected, at different times, in a set of 

different measurement groups (including measurements taken when they attended clinics, and 

measurements taken at home using a smart sensor). This design allows all the measurements in a 

measurement groups to be extracted together, or individual measurements can be retrieved – for 

example all temperature measurements, irrespective of the measurement group. 

7 Adding new Data Sources into the Warehouse 

All data added to the warehouse is collected from a source, e.g., a clinical evaluation form, an 

algorithm, or a sensor. The warehouse holds information on the source in two tables. 

The sourcetype Table holds generic information about a type of source. There are the following 

columns:  

• id: an id for the type of source that is unique within the warehouse 

• description: a textual description of the source 

• version: many types of sources evolve through different versions (especially for software 

and hardware); the version can be held in this table (as text) 

• study: the id of the relevant entry in the study table 

The entry for the 3 running examples is: 

Table 9 Example sourcetype table entries 

id description version study 

1 q321 1 1 

2 GFIT 27 1 

3 Unilever Temperature Sensor 12 1 

 

In some cases, we might also want to identify a specific source (e.g., the unique identifier of a 

sensor). For example, this can be useful if there are concerns that a sensor has become inaccurate. 

This information is held in the source table which has the columns: 

• id: this is an id that is unique within the data warehouse 

• sourceid: a text identifier for the source. It may, for example be the serial number of a 

sensor, or another form of id. However, it does not have to be globally unique within the 

data warehouse: two different types of sensors may number instances of that sensor in the 

same way (e.g., from 1 upwards). 

• sourcetype: the id of an entry in the sourcetype table 

• study: the id of the relevant entry in the study table 

For the running example, the entries in the source table might be: 

Table 10 Example source table entries 

id sourceid sourcetype study 

1 1 1 1 

2 1 2 1 

3 3267 3 1 

 



 

9 
 

8 Adding a new Participant 

Measurements made in a study can be associated with a participant. The participant table holds the 

following information: 

• id: a unique id for the participant 

• participantid: this text field holds the identifier of the participant as allocated by those 

running the study. It does not therefore have to be unique in the data warehouse (two 

different clinical teams, working for different organisations, may have allocated the same 

participantid to different patients, e.g., “Patient 27”) 

• study: the id of the relevant entry in the study table 

For the running examples, we might have one participant: 

Table 11 Example participant table entry 

id participantid study 

1 P123456 1 

9 Adding new Measurements 

Measurements are added one instance of a measurement group at a time. Each measurement 

within the measurement group instance is stored in a separate row in the measurement table.  

The measurement table has the following columns: 

• id: an identifier that is unique within the data warehouse 

• time: the date and time when the measurement was taken 

• measurementgroup: the id of the measurement group within which this measurement was 

taken 

• groupinstance: a unique identifier for a set of measurements captured within a group. Each 

measurement within a group will be stored in a separate row of the measurement table, 

and so this field is used to link together all those related measurements. By convention, we 

use the id of the first row in the measurement table as the value of the groupinstance. Not 

all measurement types registered as being within a measurement group (in 

measurementtypetogroup) need to be represented within each measurement group 

instance – for example, some types may be optional and so will not appear in each instance. 

• measurementtype: the id of the entry for this type of measurement in the 

measurementtype table  

• participant: the id of the relevant entry in the participant table. This is set to null for 

measurements that are not related to a specific participant 

• study: the id of the relevant entry in the study table 

• trial: the id of the relevant entry in the trial table. This is set to null for measurements made 

outside of a trial. 

• valtype: the id of the type of value, taken from Table 1 

• valinteger: this field holds the value for integer measurements, as well as Booleans (as 0 and 

1), nominals and ordinals (stored as the categoryid from the category table) - see Table 16 

for more information on how values are represented 

• valreal: holds the value for real number measurements 



 

10 
 

To balance space efficiency with query performance, the measurement table only holds integers and 

real values: other types of values – datetimes and text - are stored in other tables with a link to the 

measurement table. This enables the selection and aggregation of numeric values without the need 

to perform expensive join operations. Booleans, nominals, and ordinals are stored as integers in the 

measurement table, enabling them to be selected without the need for joins (see Table 16). 

For the running examples, some example measurements are: 

Table 12 Example measurement table entries 

 

For those measurements that hold datetime or text values, an entry is made in the datetimevalue or 

textvalue tables respectively: 

textvalue Table: 

Table 13 Example textvalue table entry 

measurement textval study 

5 The patient was confused 1 

datetimevalue Table: 

id time measure 
ment 

group 

group 
instance 

measurement 
type 

participant study trial source valtype val 
integer 

val 
real 

1 08/03/2020 
14:05 

1 1 1 1 1  1 4 1 
 

2 08/03/2020 
14:05 

1 1 2 1 1  1 3 
  

3 08/03/2020 
14:05 

1 1 3 1 1  1 5 2 
 

4 08/03/2020 
14:05 

1 1 4 1 1  1 4 0 
 

5 08/03/2020 
14:05 

1 1 5 1 1  1 2 
  

6 08/03/2020 
14:05 

1 1 6 1 1  1 1 
 

2.50 

7 08/03/2020 
14:05 

1 1 7 1 1  1 3 
  

8 08/03/2020 
14:05 

1 1 8 1 1  1 6 3 
 

9 11/05/2020 
11:03 

2 9 9 1 1  2 1 
 

4.30 

10 11/05/2020 
11:03 

2 9 10 1 1  2 1 
 

1.03 

11 11/05/2020 
11:03 

2 9 11 1 1  2 1 
 

22.00 

12 11/05/2020 
11:03 

2 9 12 1 1  2 1 
 

5.30 

13 16/06/2020 
01:02 

3 13 13 1 1  3 1 
 

37.50 

14 11/05/2020 
13:03 

3 13 13 1 1  3 1 
 

36.40 

15 11/05/2020 
17:05 

3 13 13 1 1  3 1 
 

35.80 



 

11 
 

Table 14 Example datetimevalue table entries 

measurement datetimeval study 

2 1962-07-24 00:00:00 1 

7 2012-09-07 06:10:00 1 

In both cases, the measurement field holds the id of the relevant row in the measurement table. 

In this example, we omit to show the trial column as it would be set to Null for this example. 

However, the trial and participant columns can be used to add measurements in four different 

scopes: 

• if trial is Null and participant is Null then the measurement is relevant to the whole of the 

study. This might, for example be the medical condition affecting all participants in the 

study. 

• If trial is Null but the participant is not Null then the measurement is relevant to that 

participant for all trials in the Study. For example, this might be the participant’s height. 

• If trial is not Null but participant is Null then the measurement is relevant to all participants 

in the trial. For example, this might be the condition of the ground, if it was the same for all 

participants. 

• If trial is not Null, and participant is not Null then the measurement is relevant to that 

specific participant in that specific trial. For example, this might be the average walking 

speed of the participant during a trial. 

Table 15. Summary of the use of trial and participant fields in a measurement 

trial participant scope of the measurement 

Null Null the whole of the study 

Null not Null the specified participant in all trials within the study 

Not Null Null all participants in the trial 

Not Null Not Null the specified participant in the specified trial 

 

Table 16. How values are stored, by valtype 

valtype Description Where values are stored Encoding 

0 Integer measurement.valinteger -2147483648 to 
+2147483647 

1 Real measurement.valreal Double Precision (8 bytes): 
15 decimal digits 

2 Text textvalue.textval  Up to 500 characters 

3 DateTime datetimevalue.datetimeval  date and time (no time 
zone) from 4713 BC to 
294276 AD, with 1 
microsecond resolution 

4 Boolean measurement.valinteger False = 0; True =1 

5 Nominal measurement.valinteger  The category table maps 
the integer stored in 
valinteger into a name 
for the category 

6 Ordinal measurement.valinteger The category table maps 
the integer stored in 



 

12 
 

valinteger into a name 

for the category 

7 BoundedInt measurement.valinteger The boundsint table holds 
the maximum and 
minimum values 

8 BoundedReal measurement.valreal The boundsreal table holds 
the maximum and 
minimum values 

9 BoundedDateTime datetimevalue.datetimeval The boundsdatetime table 
holds the maximum and 
minimum values 

10 External textvalue.textval A URI, up to the length of a 
Text value. 

 

10 Security 

We may wish to restrict the data that users can access. To ensure that a user can only see data from 

a study that they have been given permission to access, all tables have a study field as part of the 

primary key. Client functions all include a study id so that the client can limit the data returned to a 

study that the client is allowed to access.  

11 Python Client Library 

A Python client library is provided to allow users who can program to retrieve, filter, and analyse 

data from the warehouse without them needing to understand the structure of the data warehouse 

and be fluent in SQL. Later, we will build graphical user interfaces to provide this level of access for 

those who cannot program. The main functions are now described (the SQL behind them is covered 

in the next Section (12). 

The code is made available as a python package data-warehouse-client that can be installed 

from PyPi. 

Before using any of the functions in the client library, an instance of the client must be created using 

the DataWarehouse constructor: 

dw = data_warehouse.DataWarehouse("db-credentials.json","datawarehouse") 

The credentials file is not held in the repo for security reasons: it is available from the platform 

system administrator on request. 

11.1 Accessing and Filtering Measurements 

 

dw.get_measurements(study, [optional keyword arguments]) 

 

This function returns all measurements in the data warehouse that meet the optional criteria 

specified in the keyword arguments. These criteria are:  

participant,measurement_type,measurement_group, 

group_instance, trial,start_time,endTime.  

The result is a list of measurements. Each measurement is held in a list with the following fields:  



 

13 
 

id, time, study, participant, measurement_type, type_name, 

measurement_group, group_instance,trial, val_type, value 

For example: 

dw.get_measurements(1, measurement_group=5) 

returns all the measurements in measurement group 5, in study 1. 

Sometimes it is useful to find all measurement of a particular type whose value meets some criteria. 

This is done with the function: 

dw.get_measurements_with_value_test( study, 

measurement_type, 

criteria 

                               [optional keyword arguments]) 

The optional keyword arguments are:  

participant,measurement_group,group_instance, 

trial,start_time,end_time. 

The criteria parameter is a string holding the condition against which the value in each 

measurement is compared. For example: 

    dw.get_measurements_with_value_test(3, 155, "> 9") 
 

returns all measurements of type 155 in study 3 that are greater than 9. 

N.B. for nominals and ordinals, the integer category_id is used, rather than the category name. 

Similarly, for Booleans, 0 and 1 are used rather than “F” and “T” respectively. 

Any condition that is allowable in an SQL WHERE clause can be used (e.g., <,>,<>,=). The result is 

in the same format as for get_measurements. 

11.2 Aggregation over Measurements 

dw.aggregate_measurements(study, measurement_type, aggregation_type 

                         [optional keyword arguments]) 

 

This function applies an aggregation operator (from Table 17Table 1) to all of the measurements in 

the data warehouse that are of the specified type, and that meet the optional criteria specified in 

the keyword arguments. These are: 

participant, measurement_group,group_instance, 

trial,start_time,end_time. 

For example: 

dw.aggregate_measurements(3, 155, "avg") 

returns the average of all measurements of type 155, in study 3. 

Table 17. Aggregation Functions 

Aggregation Result 
avg the mean of the measurements 
count the number of measurements 
max the maximum measurement 



 

14 
 

min the minimum measurement 
sum the sum of all measurements 
stddev_samp sample standard deviation 
stddev_pop population standard deviation 
var_samp sample variance (square of the sample standard deviation) 
var_pop population variance of the input values (square of the population 

standard deviation) 

11.3 Filtering Measurement Groups 

We can use get_measurements to retrieve all measurements in a specific measurement group, 

e.g.: 

dw.get_measurements(2, measurement_group=15) 

returns all the measurements in measurement group 15, in study 2. 

However, we sometimes want to retrieve all instances of a measurement group in which one or 

more of the measurements within an instance meet some specified criteria, e.g. all instances of a 

clinical evaluation form from study 5 that collects data about participants (measurement group 15) 

where the participant's age is greater than 22 and their body mass is less than 55kgs. For this we 

use: 

(headers, insts) = dw.get_measurement_group_instances(study, 

measurement_group, value_test_conditions 

                                  [optional keyword arguments])) 

 

This function returns all instances of the measurement group in the data warehouse that are of the 

specified type, and that meet the optional criteria specified in the keyword arguments. These are:  

participant,trial,start_time,end_time. 

The value_test_conditions is a list where each element is takes the following form: 

  (measurement_type,condition) 

 

where condition is in the same format as in 
get_measurements_with_value_test 

The result is a pair: (header, instances) where header is a list of the column names, and instances is a 

list of instances that meet the criteria. The format of each instance is: 

group_instance, time of first measurement in the instance, 

study, participant, measurement_group, trial,value1, 

value2.... 

   

where value n is the value for the nth measurement in the instance (ordered by measurement type) 

e.g. the following call returns the header and instances of measurement group 15 in study 2 where 

the participant's age (measurement type 151) is greater than 22 and their body mass (measurement 

type 154) is less than 55kgs: 

 

dw.get_measurement_group_instances(2, 15, 



 

15 
 

  [(151,">22"),(154,"<55.0")]) 

 

11.4 Generating CSV Files 

Sometimes users need the data retrieved from the data warehouse using the above functions to be 

stored in a CSV file that then can be loaded into another application for further analysis. 

This is done using the function: 

csv_io.export_measurements_as_csv(results,file_name) 

 

The results must be in the format produced by get_measurements or 
get_measurements_with_value_test 

After a header row, each row contains one measurement consisting of the following fields: 

id,time,study,participant,measurement_type,type_name, 

measurement_group, group_instance,trial,val_type,value 

 

For example, storing all measurements from study 5 into a CSV file study5.csv would be done by: 

results = dw.get_measurements(5) 

csv_io.export_measurements_as_csv(results,'study5.csv') 

 

Similarly, we can export measurement group instances as follows: 

(header, instances) = dw.get_measurement_group_instances(2, 15, 

                                        [(151,">22"),(154,"<55.0")]) 

csv_io.export_measurement_groups_as_csv(header, instances, 

 'results3.csv') 

 

11.5 Exporting all, or a subset of, measurements in a study to CSV Files 

Creating a CSV file holding the measurements in each measurement group in a study can be 

achieved by: 

from data_warehouse_client import study_summary 

study_summary.print_instances_in_a_study_to_csv_files( 

dw, study, report_dir, 

select_participants=False, participants=[], 

filename_prefix='') 

where: 

report_dir is the directory to hold the csv files 

select_participants is an optional boolean. When True all instances are included. When 

False, only those instances containing participants whose ids are in the participants list are 

included. This enables the measurements for a subset of patients (perhaps those with a specific 

condition in a healthcare study) to be exported. 

filename_prefix is an optional string that will be the prefix of the names of all the csv 

files generated. 



 

16 
 

11.6 Exploratory Data Analysis 

The python pandas-profiling library has been integrated into the data warehouse client and can be 

used for exploratory data analysis of a whole study, or a part of it. This includes missing values, 

analysis of each field in the measurements, as well as interaction and correlation results and graphs. 

One html profile is written for each measurement group: 

from data_warehouse_client import study_profile 

study_profile.profile_all_measurement_groups( 

dw, study, report_dir,  

select_participants=False, participants=[], 

           select_trials=False, trials=[], 

hide_trial_column=False, 

filename_prefix='') 

where: 

report_dir is the directory to hold the profile html files 

select_participants is an optional boolean. When True all instances are included. 

When False, only those instances containing participants whose ids are in the 

participants list are included. This enables the measurements for a subset of patients 

(perhaps those with a specific condition in a healthcare study) to be profiled. 

select_trials and trials are optional parameters used to restrict the profiles to those 

measurements that are from the subset of trials specified in the trials list.  

hide_trial_column is an optional parameter used to prevent the trial field of each 

measurement being included in the profile. It is useful when the trial field is not used in a 

study. 

filename_prefix is an optional string that will be the prefix of the names of all the csv 

files generated. 

 

11.7 Printing 

Measurements can be printed with print_measurements(measurements) 

e.g. 

measurements = dw.get_measurements(2, measurement_group=15) 

print_io = print_measurements(measurements) 

Instances can be printed with 
print_measurement_group_instances(header,instances) 

 

e.g. 
(header, instances) = dw.get_measurement_group_instances(5, 20, []) 

print_io.print_measurement_group_instances(header, instances) 

 
 

11.8 Generating Plots 

The data in the warehouse is largely self-describing: for each measurement we know the type, the 

name, the units, the range (for integers), and the category names (for nominal and ordinal data). 

This will enable general tools to be written to analyse and visualise the measurements. One basic 



 

17 
 

example is plotting the value of a measurement over time. This can be done, for any type of 

measurement using the function: 

plot.plot_measurements(dw, results, study, 

        measage_group_id, file_name) 

e.g. 

mts = dw.get_measurements(3, measurement_type=155)  

plot.plot_measurements(mts, 155, 3, 'example155.png') 

 

This automatically titles the plot and labels the y axis. 

11.9 Inserting Measurements into the Data Warehouse 

To insert all the measurements in a measurement group: 

dw.insert_measurement_group( 

study, measurement_group,[(measurement_type, val_type, 

value)], 

[optional keyword arguments]) 

 

the optional keyword arguments are: time, trial, participant, source 

If time is not specified, then the current time is used. 

The function returns the id of the new measurement group instance. 

For example, the following stores all 9 measurements in an instance of measurement group 22 (in 

study 6): 

dw.insert_measurement_group(6,22, 

[(182,0,58),(183,1,99.94),(184,2,"The quick brown fox"), 

      (185,3,'2020-03-08 14:05:06'),(186,4,1),(187,5,1),(188,6,2), 

      (189,7,4),(190,8,3.142)],participant=36) 

11.10 Cohort-based Querying 

Sometimes we want to specify a cohort of patients to analyse. This can be done in two stages. 

Firstly, create a list of the ids of all participants in the cohort.  

In the mobilise project, this can be done by specifying the conditions and sites of the patients: 

e.g. Create a cohort of all participants in UNEW and USFD with HA or CHF in study 26: 

cohort = mobilise_cohort_selection.get_mobilise_cohort( 

dw, # warehouse handle 

26,    # study id 

["UNEW","USFD"], # sites 

["HA","CHF"]) # conditions 

 

The cohort can then be used in a variant of the function 

get_measurement_group_instances that takes a cohort instead of a single participant: 

dw.get_measurement_group_instances_for_cohort( 

26,  # study id 



 

18 
 

14,   # measurement group 

cohort,  # participants 

[])   # valueTestConditions 

 

12 Example Query 

Users with a knowledge of SQL can write arbitrary queries to extract data from the warehouse. This 

is done using the following functions: 

 dw.return_query_result(queryText) 

 

This executes the SQL in queryText and returns the result as a list of rows (each row is 

represented as a list holding the value for each column). It is used for SELECT queries. 

As an example, the query that underpins the get_measurements and 

getMeasurements_with_value_test functions in the Python client library is based on the 

following SQL: 

SELECT 

  measurement.id, 

  measurement.time, 

  measurement.study, 

  measurement.participant, 

  measurement.measurementtype, 

  measurementtypetogroup.name, 

  measurement.measurementgroup, 

  measurement.groupinstance, 

  measurement.trial, 

  measurement.valtype, 

  measurement.valinteger, 

  measurement.valreal, 

  textvalue.textval, 

  datetimevalue.datetimeval, 

  category.categoryname 

FROM measurement 

INNER JOIN measurementtype 

  ON measurement.measurementtype = measurementtype.id 

  AND measurement.study = measurementtype.study 

INNER JOIN measurementtypetogroup 

  ON measurement.measurementgroup = measurementtypetogroup.measurementgroup 

  AND measurement.measurementtype = measurementtypetogroup.measurementtype 

  AND measurement.study = measurementtypetogroup.study 

LEFT OUTER JOIN textvalue 

  ON textvalue.measurement = measurement.id 

  AND textvalue.study = measurement.study 

LEFT OUTER JOIN datetimevalue 

  ON datetimevalue.measurement = measurement.id 

  AND datetimevalue.study = measurement.study 

LEFT OUTER JOIN category 

  ON measurement.valinteger = category.categoryid 

  AND measurement.measurementtype = category.measurementtype 

  AND measurement.study = category.study 

 



 

19 
 

The conditions in the WHERE clause are automatically generated in the client library depending on 

the parameters to the query. For example, for: 

 getMeasurements(measurementType=155,study=3) 

the WHERE clause conditions are: 

 measurement.measurementType=155 AND measurement.study=3 

 

 

 

 

 

 


