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1 Exponential families
The exponential families are an important class of probability distributions that include the normal, gamma,
beta, exponential, Poisson, binomial, and Bernoulli distributions. In this section, based on presentations
by Nielsen and Garcia (2011) and Shao (2003, p. 66), we describe some of the exponential families’ many
exciting properties.

1.1 Definition

For simplicity, we will restrict ourselves to discrete and continuous distributions; the general, measure-
theoretic definition (Shao 2003, p. 66) is analogous. A natural exponential family is a family of probability
distributions parametrized by 𝜼 and whose probability mass function or density function can be decomposed
as:

𝑓(𝒙 ∣ 𝜼) = exp(𝑇 (𝒙)T𝜼 − 𝑔(𝜼) + ℎ(𝒙)), 𝒙 ∈ 𝛺 (1)

where

• 𝛺 is the support,

• 𝜼 are the natural parameters,

• 𝑇 (𝒙) is the sufficient statistic,

• 𝑔(𝜼) is the log-normalizer, and

• ℎ(𝒙) is the carrier measure.

(See Appendix 2 for examples.)

1.1.1 Natural parameters

The decomposition of an exponential family in equation 1 is not unique. Any transformation

𝜼′ = 𝐷𝜼 𝑇 ′ = [𝐷T]−1𝑇 (2)

where 𝐷 is a nonsingular matrix (a bijective linear map) gives another representation of the same natural
exponential family.

If 𝜼 were replaced by an arbitrary function 𝜼(𝜽) of parameters 𝜽, then the family of probability dis-
tributions is called an exponential family. We avoid this general form, preferring the so-called canonical
form.
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1.1.2 Sufficient statistic

The sufficient statistic is a vector-valued function of only the outcome 𝒙. Its name is justified by its connection
to the maximum entropy formulation (§1.1.5) and to maximum likelihood estimation (§1.3.2).

1.1.3 Log-normalizer

The log-normalizer is a scalar-valued function of only the natural parameters 𝜼. It is so-named because

1 = ∫
𝒙

𝑓(𝒙 ∣ 𝜼) d𝒙 = ∫
𝒙

exp(𝑇 (𝒙)T𝜼 − 𝑔(𝜼) + ℎ(𝒙)) d𝒙 (3)

⇓

𝑔(𝜼) = log ∫
𝒙

exp(𝑇 (𝒙)T𝜼 + ℎ(𝒙)) d𝒙. (4)

The log-normalizer is strictly convex and smooth (infinitely differentiable) (Nielsen and Nock 2011).

1.1.4 Carrier measure

The carrier measure is a scalar-valued function of only the outcome 𝒙. In the measure-theoretic presentation
of exponential families (Shao 2003, p. 66), the carrier measure truly is a measure on the support. The
measure-theoretic intuition is analogous to Shannon’s description of continuous entropy: the carrier measure
is an assumed standard that weights each small volume of the domain by exp (ℎ(𝒙)). It represents prior
knowledge about the parametrization of the support.

Many formulae are simplified when the carrier measure is zero, in which case it is called a standard
carrier measure. For continuous distributions, this can always be achieved by a change of variables; for
discrete distributions, the carrier measure is rarely a standard carrier measure, and nothing can be done to
make it so.

1.1.5 Maximum entropy formulation

The exponential families are motivated in such situations: Suppose that we make independent realizations of
a random variable {𝒙1, … , 𝒙𝑛}, but we only know (1) the expected sufficient statistic 𝔼(𝑇 (𝒙)) for some known
function 𝑇, (2) the support of the realizations 𝛺, and (3) optionally some prior carrier measure ℎ on the space.
Then, Jaynes (1957) avers the principle of maximum entropy: “the maximum-entropy distribution may be
asserted for the positive reason that it is uniquely determined as the one which is maximally noncommittal
with regard to missing information, instead of the negative one that there was no reason to think otherwise.
Thus the concept of entropy supplies the missing criterion of choice…” Gokhale (1975) showed that these
constraints uniquely lead to a maximum-entropy exponential family with the given sufficient statistic and
support.

For example, given a mean 𝜇, and a variance 𝜎2, the support of the reals, and assuming standard carrier
measure, one is spared the maximum-entropy calculation and can arrive directly at the exponential family
distribution function:

𝑓(𝑥) ∝ exp⎛⎜
⎝

[
𝑥

(𝑥 − 𝜇)2]
T

𝜼⎞⎟
⎠

(5)

Normalizing this function leads to the normal distribution’s density function (§2.1.1). The parameters 𝜼 are
uniquely determined by the given mean and variance.
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1.2 The natural parametrization

The natural parametrization of an exponential family is the vector space for combining and scaling evidence
from independent sources. The natural parametrization is the one that specifies elements of the exponential
family using natural parameters (§1.1.1).

1.2.1 Bayesian evidence combination

For example, consider that a friend flips a coin four times and secretly records the result. His belief over the
coin’s bias is distributed 𝑋1 with natural parameters 𝜼𝑋1

. Then, you flip the coin once and record the result
yielding a belief distributed 𝑋2 with natural parameters 𝜼𝑋2

. Given the coin, your beliefs are independent.
The “Bayesian evidence combination” operation (Figure 1) aggregates such independent information by
summing the natural parameters. This is because the combined belief

𝑓(𝒙 ∣ 𝜼𝑋1
, 𝜼𝑋2

) ∝ exp(𝑇 (𝒙)T𝜼𝑋1
− 𝑔(𝜼) + ℎ(𝒙)) exp(𝑇 (𝒙)T𝜼𝑋2

− 𝑔(𝜼)) (by equation 1). (6)

(The decomposition into a product is by independence, and we take care not to double-count the carrier
measure ℎ.)

= exp(𝑇 (𝒙)T(𝜼𝑋1
+ 𝜼𝑋2

) − 𝑔(𝜼) + ℎ(𝒙)). (7)

1/4

(a) The belief on the bias of a coin
that has been flipped four times and
landed heads once.

(b) The belief on the bias of a coin
that has been flipped once and landed
heads.

2/5

(c) The combined belief on the bias of
a coin that has been flipped five times
and landed heads twice.

Figure 1: Bayesian evidence combination with beta-distributed (§2.5.2) beliefs over the bias of a coin.

1.2.2 Bayesian evidence scaling

If you value the opinion from a friend more than your own, it is as if 𝑛 friends provided identical, but
independent information. Reasoning from §1.2.1, “Bayesian evidence scaling” (Figure 2) corresponds to
scaling in the space of natural parameters.

1.2.3 Bayesian evidence combination is better than product of experts

Hinton (2002) calls a similar operation—the pointwise product of probability measures—a product of experts.
For an exponential family, this operation is equivalent to “Bayesian evidence combination” except when the
carrier measure (§1.1.4) is nonzero. In that case, the carrier measure, which represents prior knowledge
about the parametrization of the support, is double-counted. In other words, Bayesian evidence combination
is invariant under reparametrization unlike product of experts.
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1/4

(a) The belief on the bias of a coin that has been flipped
four times and landed heads once.

1/4

(b) The belief on the bias after half of the information due
to the coin flips in Figure 2a has been invalidated.

Figure 2: Bayesian evidence scaling with beta-distributed (§2.5.2) beliefs over the bias of a coin.

1.3 The expectation parametrization

Suppose we have a random variable 𝑋 distributed according to a distribution in family ℱ (which is a natural
exponential family). Then, 𝑋 has an expectation parametrization, which is the one whose parameters are the
expected sufficient statistic

𝝌 ≜ 𝔼(𝑇 (𝑋)). (8)

This parametrization is convenient for parametric density estimation: the problem of estimating a distribu-
tion’s parameters given its realizations.

Like the natural parametrization (equation 2), the expectation parametrization is unique up to a bijective
linear map. Unlike the natural parametrization, the expectation parametrization does not have meaningful
vector space operations (constant scaling and summation); instead, only weighted averages are meaningful.

1.3.1 Conjugate prior distribution

If the random variable 𝑋 is distributed according to an exponential family distribution with unknown natural
parameters 𝜼, then independent realizations {𝒙1, … , 𝒙𝑛} of 𝑋 induce a likelihood over 𝜼: 𝕃(𝜼 ∣ 𝒙1, … , 𝒙𝑛).
This distribution must belong to a family ℱ′ (called the conjugate prior of ℱ) that is also an exponential
family since

𝕃(𝜼 ∣ 𝒙1, … , 𝒙𝑛) = 𝑓(𝒙1, … , 𝒙𝑛 ∣ 𝜼) (9)

∝ ∏
𝑖

𝑓(𝒙𝑖 ∣ 𝜼) (by independence) (10)

= ∏𝑖 exp(𝑇(𝒙𝑖)
T𝜼 − 𝑔(𝜼) + ℎ(𝒙𝑖)) (11)

(Since 𝒙𝑖 are fixed, ∏𝑖 exp (ℎ(𝒙𝑖)) is constant)

∝ ∏𝑖 exp(𝑇(𝒙𝑖)
T𝜼 − 𝑔(𝜼)) (12)

= exp((∑𝑖 𝑇(𝒙𝑖))
T𝜼 − 𝑛𝑔(𝜼)) (13)

= exp(𝑇 ′(𝜼)T𝜼′) (14)

where

𝑇 ′(𝜼) = [
𝜼

𝑔(𝜼)
] 𝜼′ = [

∑𝑖 𝑇 (𝒙𝑖)
−𝑛

] . (15)

In equation 14, we can see that the vector of hyperparameters 𝜼′ are natural parameters of the distribution.
Thus, “Bayesian evidence combination” and “Bayesian evidence scaling” correspond to vector addition and
scaling of these induced parameters, one of which 𝑛 is a real-valued pseudo-observation count.
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1.3.2 Maximum likelihood distribution

Continuing the parametric density estimation problem from §1.3.1, suppose we have an induced likelihood
over 𝜼:

𝕃(𝜼 ∣ 𝒙1, … , 𝒙𝑛) ∝ exp(𝑇 ′(𝜼)T𝜼′). (14 revisited)

Then, the maximum likelihood distribution of 𝑋 given the realizations {𝒙1, … , 𝒙𝑛} is the mode of equation 14.
So,

0 =
𝜕 exp(𝑇 ′(𝜼)T𝜼′)

𝜕𝜼
(16)

= exp(𝑇 ′(𝜼)T𝜼′)

𝜕

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

⎡
⎢
⎢
⎢
⎣

𝜂1

⋮
𝜂𝑘

−𝑔(𝜼)

⎤
⎥
⎥
⎥
⎦

T

⎡
⎢
⎢
⎢
⎣

∑𝑖 𝑇 (𝒙𝑖)1

⋮
∑𝑖 𝑇 (𝒙𝑖)𝑘

𝑛

⎤
⎥
⎥
⎥
⎦

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

𝜕𝜼
(17)

⇓

𝜕𝑔(𝜼)
𝜕𝜼

=
∑𝑖 𝑇 (𝒙𝑖)

𝑛
(18)

⇓

𝝌 =
∑𝑖 𝑇 (𝒙𝑖)

𝑛
(by equation 29). (19)

Thus, the maximum likelihood distribution has expectation parameters equal to the expected sufficient
statistics of the samples. This motivates the expectation parametrization, and the term sufficient statistic.

1.3.3 Aggregating maximum likelihood distributions

Suppose that instead of 𝑛 independent realizations {𝒙1, … , 𝒙𝑛} of our exponential family distribution 𝑋 (as
in §1.3.1), we collect realizations 𝑚 times. The 𝑖th collection yields 𝑛𝑖 realizations from which we calculate a
maximum likelihood distribution 𝑋𝑖 having expectation parameters 𝝌𝑖 (as per §1.3.2). After the collection,
we discard the realization, so that all we have are the 𝑛𝑖s and 𝑋𝑖s. How can we combine these into one
maximum likelihood distribution over all ∑𝑚

𝑖=1 𝑛𝑖 realizations had been collected.
From equations 15 and 19, we can conclude that the natural parameters of the conjugate prior distribution

for each 𝑖 is

𝜼′
𝑖 = [

𝑛𝑖𝝌𝑖

𝑛𝑖
] . (20)

From §1.2.1, we know that we can combine these into one conjugate prior distribution with parameters:

𝜼𝑖 = [
∑𝑚

𝑖=1 𝑛𝑖𝝌𝑖

∑𝑚
𝑖=1 𝑛𝑖

] . (21)

From equation 19, we can conclude the maximum likelihood distribution given all of the realizations has
expectation parameters:

∑𝑚
𝑖=1 𝑛𝑖𝝌𝑖

∑𝑚
𝑖=1 𝑛𝑖

. (22)

Therefore, weighted average in the space of expectation parameters represents combining maximum like-
lihood distributions as if the realizations they were based on had been aggregated.
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1.3.4 Duality of parametrizations

If the random variable 𝑋 has known natural parameters 𝜼, then Nielsen and Nock (2011) show that the
function that converts natural parameters to expectation parameters is the gradient of the log-normalizer:

𝜕𝑔(𝜼)
𝜕𝜼

=
𝜕 log ∫

𝒙
exp(𝑇 (𝒙)T𝜼 + ℎ(𝒙)) d𝒙

𝜕𝜼
(by equation 4) (23)

=
∫
𝒙

𝑇 (𝒙) exp(𝑇 (𝒙)T𝜼 + ℎ(𝒙)) d𝒙
∫
𝒙

exp(𝑇 (𝒙)T𝜼 + ℎ(𝒙)) d𝒙
(24)

=
∫
𝒙

𝑇 (𝒙) exp(𝑇 (𝒙)T𝜼 + ℎ(𝒙)) d𝒙
exp(𝑔(𝜼))

(by equation 4) (25)

= ∫
𝒙

𝑇 (𝒙) exp(𝑇 (𝒙)T𝜼 − 𝑔(𝜼) + ℎ(𝒙)) d𝒙 (26)

= ∫
𝒙

𝑇 (𝒙)𝑓(𝒙 ∣ 𝜼) d𝒙 (by equation 1) (27)

= 𝔼(𝑇 (𝑋)) (28)

= 𝝌 (by equation 8). (29)

1.3.5 Higher moments of the sufficient statistic

The higher moments of the sufficient statistic are the higher-order gradients of the log-normalizer:

∇𝑛
𝜼𝑔(𝜼) = ∇𝑛−1

𝜼 ∫
𝒙

𝑇 (𝒙) exp(𝑇 (𝒙)T𝜼 − 𝑔(𝜼) + ℎ(𝒙)) d𝒙 (by equation 26) (30)

= ∫
𝒙

𝑇 (𝒙) ⊗ [⊗𝑛−1
𝑖=1 (𝑇 (𝒙) − 𝜕𝑔(𝜼)

𝜕𝜼
)] exp(𝑇 (𝒙)T𝜼 − 𝑔(𝜼) + ℎ(𝒙)) d𝒙 (31)

= ∫
𝒙

𝑇 (𝒙) ⊗ [⊗𝑛−1
𝑖=1 (𝑇 (𝒙) − 𝜕𝑔(𝜼)

𝜕𝜼
)]𝑓(𝒙 ∣ 𝜼) d𝒙 (by equation 1) (32)

= 𝔼(𝑇 (𝑋) ⊗ [⊗𝑛−1
𝑖=1 (𝑇 (𝑋) − 𝜕𝑔(𝜼)

𝜕𝜼
)]) (33)

= 𝔼(𝑇 (𝑋) ⊗ [⊗𝑛−1
𝑖=1 (𝑇 (𝑋) − 𝔼(𝑇 (𝑋)))]) (by equation 28). (34)

So, for example, the covariance matrix of the sufficient statistic is the Hessian of the log-normalizer:

𝜕2𝑔(𝜼)
𝜕𝜼 𝜕𝜼

= 𝔼(𝑇 (𝑋) ⊗ (𝑇 (𝑋) − 𝔼(𝑇 (𝑋)))) (35)

= Var(𝑇 (𝑋)). (36)

In particular, as described by Efron (1978),

𝜕𝝌
𝜕𝜼

= 𝜕2𝑔(𝜼)
𝜕𝜼 𝜕𝜼

(by equation 29) (37)

= Var(𝑇 (𝑋)) (by equation 36). (38)

1.4 Statistics of exponential families

1.4.1 Information theoretic statistics

Consider a data-generating distribution 𝑋, and an approximating distribution 𝑌 in the same exponential
family, having natural parameters 𝜼𝑋 and 𝜼𝑌, and expectation parameters 𝝌𝑋 and 𝝌𝑌. Their cross entropy
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is

ℋ×(𝑋; 𝑌 ) = − ∫
𝒙

𝑓𝑋(𝒙) log 𝑓𝑌(𝒙) d𝒙 (by the definition of differential cross entropy)

(39)

= − ∫
𝒙

𝑓𝑋(𝒙)(𝑇 (𝒙)T𝜼𝑌 − 𝑔(𝜼𝑌) + ℎ(𝒙)) d𝒙 (by equation 1)

(40)

= −𝝌T
𝑋𝜼𝑌 + 𝑔(𝜼𝑌) − 𝔼

𝒙∼𝑋
ℎ(𝒙) (by equation 29).

(41)

The entropy of 𝑋 is

ℋ(𝑋) = ℋ×(𝑋; 𝑋) (by the definition of cross entropy)
(42)

= −𝝌T
𝑋𝜼𝑋 + 𝑔(𝜼𝑋) − 𝔼

𝒙∼𝑋
(ℎ(𝒙)) (43)

and their relative entropy is

ℋKL(𝑋; 𝑌 ) = ℋ×(𝑋; 𝑌 ) − ℋ(𝑋) (by the definition of relative entropy)
(44)

= 𝑔(𝜼𝑌) − 𝑔(𝜼𝑋) − (𝜼𝑌 − 𝜼𝑋)T 𝝌𝑋. (45)

So, for exponential families, the information theoretic statistics are easily calculated from the natural and
expectation parameters (Figure 3).

1.4.2 Parameter estimation statistics

The statistical score of 𝜼𝑌 given data {𝒙1, … , 𝒙𝑛} is

𝒱(𝜼𝑌 ∣ 𝒙1, … , 𝒙𝑛) = 𝜕 log 𝕃(𝜼𝑌 ∣ 𝒙1, … , 𝒙𝑛)
𝜕𝜼𝑌

(46)

=
𝜕 ∑𝑛

𝑖=1 log 𝕃(𝜼𝑌 ∣ 𝒙𝑖)
𝜕𝜼𝑌

(47)

=
𝑛

∑
𝑖=1

𝜕(𝑇 (𝒙𝑖)T𝜼𝑌 − 𝑔(𝜼𝑌) + ℎ(𝒙𝑖))
𝜕𝜼𝑌

(by equation 1) (48)

=
𝑛

∑
𝑖=1

(𝑇 (𝒙𝑖) − 𝜕𝑔(𝜼𝑌)
𝜕𝜼𝑌

) (49)

=
𝑛

∑
𝑖=1

(𝑇 (𝒙𝑖) − 𝝌𝑌) (by equation 29). (50)

Therefore, the expected value of the score is

𝔼
𝒙∼𝑋

(𝒱(𝜼𝑌 ∣ 𝒙)) = 𝝌𝑋 − 𝝌𝑌 (by equation 8) (51)

= −𝜕 ℋ×(𝑋; 𝑌 )
𝜕𝜼𝑌

(by a property of the score). (52)
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𝑔

𝜂𝑋

𝑔(𝜂𝑋)

ℋ(𝑋)

𝜂𝑌

𝑔(𝜂𝑌)

ℋ×(𝑋; 𝑌 )

Figure 3: Graphical illustration of the entropy, cross entropy, and relative entropy of exponential families
with standard carrier measure adapted from Nielsen and Nock (2011).

The Fisher information is

ℐ(𝜼𝑌) = − 𝔼
𝒙∼𝑌

(𝜕2 log 𝑓(𝒙 ∣ 𝜼𝑌)
𝜕𝜼𝑌 𝜕𝜼𝑌

) (53)

= − 𝔼
𝒙∼𝑌

(
𝜕2(𝑇 (𝒙)T𝜼𝑌 − 𝑔(𝜼𝑌) + ℎ(𝒙))

𝜕𝜼𝑌 𝜕𝜼𝑌
) (by equation 1) (54)

= 𝔼
𝒙∼𝑌

( 𝜕2𝑔(𝜼𝑌)
𝜕𝜼𝑌 𝜕𝜼𝑌

) (55)

= 𝜕2𝑔(𝜼𝑌)
𝜕𝜼𝑌 𝜕𝜼𝑌

. (56)

The Jeffreys prior for a natural exponential family is thus

𝑓(𝜼) ∝ √det ℐ(𝜼) = √det 𝜕2𝑔(𝜼)
𝜕𝜼 𝜕𝜼

. (57)

1.5 Altering exponential families

generalized linear models are a kind of regression that makes an exponential family distributional assumption
about the targets and uses cross entropy loss. This section explores what happens in the case of three
alterations of the assumed exponential family.
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Learning in generalized linear models depends only on the gradient of the cross entropy, which is the
difference of the expectation parameters of the target values and those of predictions (by equation 51). If
we find that the expectation parameters are affected by an alteration, then learning is affected, which means
that the model is different. Otherwise, the alteration has no effect on the model.

1.5.1 Transformation of an exponential family

The beta distribution (§2.5.2) is the conjugate prior (§1.3.1) of a Bernoulli distribution (§2.2.2) parametrized
by a probability 𝑝 ∈ [0, 1]. If instead we had parametrized the Bernoulli using odds 𝑜 = 𝑝

𝑝+1 , the conjugate
prior is beta-prime. Therefore, for any beta-distributed 𝑋, there is a beta-prime-distributed 𝑋

𝑋+1 . Is regression
with a beta distributional assumption the same as regression with a beta-prime assumption?

In general, suppose that we have an exponential family ℱ with sufficient statistics 𝑇ℱ and carrier measure
ℎℱ over support 𝒮. For any distribution 𝐷 ∈ ℱ, let 𝑋 ∼ 𝐷 be a random variable with density 𝑓𝑋 and
distribution function 𝐹𝑋.

Let 𝑎 ∶ 𝒮 → 𝒯 be a smooth, invertible function that is independent of the parameters of 𝑋 and let
𝑌 = 𝑎(𝑋) be a random variable with density 𝑓𝑌 and distribution function 𝐹𝑌. The distribution function of
𝑌 is

𝐹𝑌(𝑦) = 𝐹𝑋(𝑎−1(𝑦)) (58)

⇓

𝑓𝑌(𝑦) ≜ d𝐹𝑌(𝑦)
d𝑦

= d𝐹𝑋(𝑎−1(𝑦))
d𝑦

(59)

= 𝑓𝑋(𝑎−1(𝑦))d𝑎−1(𝑦)
d𝑦

. (60)

Therefore, 𝑌’s distribution belongs to an exponential family 𝒢 with sufficient statistics

𝑇𝒢(𝑦) = 𝑇ℱ(𝑎−1(𝑦)), (61)

carrier measure

ℎ𝒢(𝑦) = ℎℱ(𝑦) + log (d𝑎−1(𝑦)
d𝑦

), (62)

support 𝒯, and the same log-normalizer as ℱ.
The expectation parameters are unchanged since

𝔼(𝑇𝒢(𝑌 )) = 𝔼(𝑇ℱ(𝑎−1(𝑌 ))) (by equation 61) (63)

= 𝔼(𝑇ℱ(𝑋)). (64)

This shows that changing the distributional assumption of a generalized linear model from ℱ to 𝒢 by smoothly
transforming its values has no effect on the model.

1.5.2 Truncation of an exponential family

Linear regression is equivalent to an assumption of normality. However, if the target values are known to
be from a subset of the reals, then is the corresponding truncated normality assumption equivalent to the
original model?

9



As in the previous section, suppose that we have an exponential family ℱ with log-normalizer 𝑔ℱ over a
support 𝒮. For any distribution 𝐷 ∈ ℱ, let 𝑋 ∼ 𝐷 be a random variable with density 𝑓𝑋 and distribution
function 𝐹𝑋.

Define another exponential family 𝒢 with the same sufficient statistics 𝑇 and carrier measure ℎ as ℱ, but
over support 𝒯 ⊆ 𝒮. Let 𝑌 be a random variable corresponding to 𝑋 such that they have the same natural
parameters 𝜼. Let its density be 𝑓𝑌 and its distribution function be 𝐹𝑌. We have:

𝑓𝑌(𝑦) = 𝑓𝑋(𝑦)
ℙ(𝑋 ∈ 𝒯)

. (65)

The divisor ℙ(𝑋 ∈ 𝒯) depends on the parameters 𝜼, which means that 𝒢 has a different log-normalizer
than ℱ:

𝑔𝒢(𝜼) = 𝑔ℱ(𝜼) + log (ℙ(𝑋 ∈ 𝒯)). (66)

𝑋 and 𝑌 having different log-normalizers means that their expectation parameters 𝝌𝑋 and 𝝌𝑌 are different
even though their natural parameters are the same:

𝝌𝑌 ≜ 𝔼(𝑇 (𝑌 )) (by equation 8) (67)

= ∫
𝒯

𝑓𝑌(𝑦)𝑇 (𝑦) d𝑦. (68)

This shows that clipping the distributional assumption of a generalized linear model changes the model.

1.5.3 Altering the carrier measure

Truncation (§1.5.2) of the sample space of an exponential family is equivalent to setting the carrier measure
ℎ to −∞ over the truncated region. In the previous section, this would mean that we could have left 𝒢’s
support as 𝒮, but set its carrier measure to

ℎ𝒢(𝑥) =
⎧{
⎨{⎩

ℎℱ(𝑥) if 𝑥 ∈ 𝒯

−∞ otherwise.
(69)

If one desires a softer version of truncation, then one can softly decrease the carrier measure. This affects
the expectation parameters—which are the expected value of the sufficient statistics—because it focuses that
expectation where the carrier measure is larger. Therefore, altering the carrier measure changes the model.

2 Probability distributions
Listed below are many useful exponential families decomposed according to §1. See Nielsen and Garcia (2011)
and Shao (2003, p. 66) for details.

A few liberties were taken with notation.
When the sufficient statistic is a matrix 𝑀, and the natural parameter is a matrix 𝑁, then the contribution

to the log-probability is tr(𝑀𝑁). When 𝑀 = 𝒙𝒚T, tr(𝑀𝑁) = 𝒙T𝑁𝒚.
When the sufficient statistic is complex 𝒙 ∈ ℂ and/or the natural parameter is complex 𝜼 ∈ ℂ, then the

contribution to the log-probability is ℜ(𝒙T𝜼). This essentially means that there are

• two sufficient statistics ℜ(𝒙) and ℑ(𝒙), and

• two corresponding natural parameters ℜ(𝜼) and −ℑ(𝜼).
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2.1 Normal distributions

The normal distribution arises as a result of the central limit theorem, which states that under mild conditions,
the sum of many random variables will be approximately normally distributed. Kallenberg (2010) also
characterizes this distribution using spherical symmetry in the context of Gaussian processes.

2.1.1 Univariate real

The univariate real normal distribution is the simplest normal distribution.

Table 1: The normal distribution.

density function 𝑓(𝑥 ∣ 𝜇, 𝜎2) = 1√
2𝜋𝜎2

exp(−(𝑥 − 𝜇)2

2𝜎2 )

sufficient statistic 𝑇 (𝑥) = (𝑥, 𝑥2)
log-normalizer 𝑔(𝜼) = − 𝜂2

1
4𝜂2

+ 1
2 log(− 𝜋

𝜂2
)

carrier measure ℎ(𝑥) = 0
support 𝑥 ∈ ℝ
Parameters
source parameters (𝜇, 𝜎2) ∈ ℝ × ℝ≥0

natural parameters 𝜼 ∈ ℝ × ℝ≤0

expectation parameters 𝝌 ∈ ℝ × ℝ≥0

Parameter transformations
source to natural parameters 𝜼 = ( 𝜇

𝜎2 , − 1
2𝜎2 )

source to expectation parameters 𝝌 = (𝜇, 𝜇2 + 𝜎2)
natural to expectation parameters 𝝌 = (− 𝜂1

2𝜂2
, 𝜂2

1
4𝜂2

2
− 1

2𝜂2
)

2.1.2 Real multivariate

The multivariate normal distribution is the generalization of the normal distribution (§2.1.1) to 𝑘 dimensions.
We say that a vector distributed this way is jointly normal.

A few special cases are important exponential families:

• 𝐒 is fixed to ℓ𝐈𝑘 for some fixed ℓ (fixed variance, or unit variance when ℓ = 1),

• 𝐒 equals ℓ𝐈𝑘 for a parameter ℓ (isotropic variance), and

• 𝐒 equals diag (ℓ) for a parameter ℓ (diagonal variance).

11



Otherwise, we say that the distribution has general variance.

Table 2: The multivariate normal distribution.

density function 𝑓(𝒙 ∣ 𝝁, 𝐒) = 1
√(2𝜋)𝑘 det (𝐒)

exp(−(𝒙 − 𝝁)T 𝐒−1(𝒙 − 𝝁)
2

)

sufficient statistic 𝑇 (𝒙) = (𝒙, 𝒙𝒙T)
log-normalizer 𝑔(𝜼, 𝐇) = − 𝜼T𝐇−1𝜼

4 − log det(−𝐇)
2 + 𝑘log 𝜋

2
carrier measure ℎ(𝒙) = 0
support 𝒙 ∈ ℝ𝑘

Parameters
source parameters1 (𝝁, 𝐒) ∈ ℝ𝑘 × ℝ𝑘×𝑘

ps,s

natural parameters2 (𝜼, 𝐇) ∈ ℝ𝑘 × ℝ𝑘×𝑘
ns,s

expectation parameters1 (𝝌, 𝑋) ∈ ℝ𝑘 × ℝ𝑘×𝑘
ps,s

Parameter transformations
source to natural parameters (𝜼, 𝐇) = (𝐒−1𝝁, − 1

2 𝐒−1)
source to expectation parameters (𝝌, 𝑋) = (𝝁, 𝝁𝝁T + 𝐒)
natural to expectation parameters (𝝌, 𝑋) = (− 1

2 𝐇−1𝜼, 1
4 (𝐇−1𝜼) (𝐇−1𝜼)T − 1

2 𝐇−1)

1 ℝ𝑘×𝑘
ps,s is the set of positive semidefinite, symmetric 𝑘 × 𝑘 matrices of reals.

2 ℝ𝑘×𝑘
ns,s is the set of negative semidefinite, symmetric 𝑘 × 𝑘 matrices of reals.

2.1.3 Complex multivariate

The complex multivariate normal distribution (Figure 4) is the generalization of the multivariate normal
distribution (§2.1.2) to complex numbers (Picinbono 1996). This means that a vector of its real and imaginary
components is jointly normal as per §2.1.2.

2.1.3.1 General

The general form of the complex multivariate normal distribution is given below.

12



One important special case has unit variance 𝐒 = 𝐈𝑘 and zero pseudo-variance 𝐔 = 𝟎.

Table 3: The complex multivariate normal distribution.

density function4 𝑓(𝒙 ∣ 𝝁, 𝐒, 𝐔) =
exp

⎛⎜⎜⎜
⎝

− 1
2

⎡
⎢
⎣

𝒙 − 𝝁
𝒙 − 𝝁

⎤
⎥
⎦

H

⎡
⎢
⎣

𝐒 𝐔
𝐔 𝐒

⎤
⎥
⎦

−1

⎡
⎢
⎣

𝒙 − 𝝁
𝒙 − 𝝁

⎤
⎥
⎦

⎞⎟⎟⎟
⎠

𝜋𝑘√det(𝐒) det(𝐏)

sufficient statistic 𝑇 (𝒙) = (𝒙, 𝒙𝒙H, 𝒙𝒙T)
log-normalizer6,7 𝑔(𝜼, 𝐇, 𝐉) = −𝝁H𝐇𝝁 − 𝝁T𝐉𝝁 + log det(𝐒)

2 − log det(−𝐇)
2 + 𝑘 log 𝜋

carrier measure ℎ(𝒙) = 0
support 𝒙 ∈ ℂ𝑘

Parameters
source parameters1,3 (𝝁, 𝐒, 𝐔) ∈ ℂ𝑘 × ℂ𝑘×𝑘

ps,h × ℂ𝑘×𝑘
s

natural parameters2,3 (𝜼, 𝐇, 𝐉) ∈ ℂ𝑘 × ℂ𝑘×𝑘
ns,h × ℂ𝑘×𝑘

s

expectation parameters1,3 (𝝌, 𝐗, 𝐘) ∈ ℂ𝑘 × ℂ𝑘×𝑘
ps,h × ℂ𝑘×𝑘

s

Parameter transformations
source to natural parameters4,5 (𝜼, 𝐇, 𝐉) = (2(𝐏−1𝝁 − 𝐑T𝐏−1𝝁), −𝐏−1, 𝐑T𝐏−1)
source to expectation parameters (𝝌, 𝐗, 𝐘) = (𝝁, 𝝁𝝁H + 𝐒, 𝝁𝝁T + 𝐔)
natural to expectation parameters6,7 (𝝌, 𝐗, 𝐘) = (𝝁, 𝝁𝝁H + 𝐒, 𝝁𝝁T + 𝐔)

1 ℂ𝑘×𝑘
ps,h is the set of positive semidefinite, Hermitian 𝑘 × 𝑘 matrices of real numbers.

2 ℂ𝑘×𝑘
ns,h is the set of negative semidefinite, Hermitian 𝑘 × 𝑘 matrices of real numbers.

3 ℂ𝑘×𝑘
s is the set of symmetric 𝑘 × 𝑘 matrices of complex numbers.

4 𝐏 = 𝐒 − 𝐑𝐔 ∈ ℂ𝑘×𝑘
ps,h

5 𝐑 = 𝐔H𝐒−1

6 𝐒 = (𝐑𝐑 − 𝐈𝑘)−1𝐇−1 and 𝐔 = 𝐑𝐒 where 𝐑 = − (𝐉𝐇−1)T

7 𝝁 = 𝐋𝜼 − (𝐇−1)T 𝐉𝐋𝜼 where 𝐋 = − (𝐈𝑘−𝐊𝐊)−1(𝐇−1)T

2 and 𝐊 = (𝐇−1)T 𝐉

2.1.3.2 Circularly-symmetric normal

The circularly-symmetric normal distribution is the special case of the complex multivariate normal distribu-
tion (§2.1.3) with an assumption of circular symmetry. Gallager (2008) proves that 𝑋 is circularly-symmetric
normally distributed if and only if it is jointly normally distributed, and

𝑋 = 𝑒𝜃𝑖𝑋 ∀𝜃 ∈ ℝ. (70)
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Figure 4: The density of a complex univariate normal distribution with a strong pseudo-curvature term that
gives the distribution a definite phase.

Table 4: The circularly-symmetric normal distribution.

density function 𝑓(𝒙 ∣ 𝐒) = 1
𝜋𝑘 det (𝐒)

exp(−𝒙H𝐒−1𝒙)

sufficient statistic 𝑇 (𝒙) = 𝒙𝒙H

log-normalizer 𝑔(𝐇) = − log det (−𝐇) + 𝑘 log 𝜋
carrier measure ℎ(𝒙) = 0
support 𝒙 ∈ ℂ𝑘

Parameters
source parameters1 𝐒 ∈ ℂ𝑘×𝑘

ps,h

natural parameters2 𝐇 ∈ ℂ𝑘×𝑘
ns,h

expectation parameters1 𝐗 ∈ ℂ𝑘×𝑘
ps,h

Parameter transformations
source to natural parameters 𝐇 = −𝐒−1

source to expectation parameters 𝐗 = 𝐒
natural to expectation parameters 𝐗 = −𝐇−1

1 ℂ𝑘×𝑘
ps,h is the set of positive semidefinite, Hermitian 𝑘×𝑘 matrices of complex

numbers.
2 ℂ𝑘×𝑘

ns,h is the set of negative semidefinite, Hermitian 𝑘 × 𝑘 matrices of com-
plex numbers.
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2.2 Distributions on a finite set

2.2.1 Uniform (discrete)

The discrete uniform distribution arises when all points in its finite, discrete support 𝛺 are equiprobable.

Table 5: The Uniform (discrete) dis-
tribution. (It has no parameters.)

density function 𝑓(𝒙) = |𝛺|−1

sufficient statistic 𝑇 (𝒙) = ()
log-normalizer 𝑔(𝜼) = log|𝛺|
carrier measure ℎ(𝒙) = 0
support 𝒙 ∈ 𝛺

2.2.2 Multinomial, categorical, and Bernoulli

Suppose one draws 𝑛 coloured balls from an urn (in which there are 𝑘 different colours) replacing them
between draws. The multinomial distribution is a probability distribution over the drawn colours.

The categorical distribution is the special case for 𝑛 = 1; the Binomial distribution is the special case for
𝑘 = 2; and the Bernoulli distribution is the special case for 𝑛 = 1 and 𝑘 = 2.

When 𝑛 and 𝑘 are fixed, the multinomial distribution is an exponential family.

Table 6: The multinomial distribution.

mass function 𝑓(𝒙 ∣ 𝒑) = 𝑛!
∏𝑖 𝑥𝑖!

∏
𝑖

𝑝𝑥𝑖
𝑖

sufficient statistic 𝑇 (𝒙) = (𝑥1, … , 𝑥𝑘−1)
log-normalizer 𝑔(𝜼) = log(1 + ∑𝑘−1

𝑖=1 𝑒𝜂𝑖) − log 𝑛!
carrier measure ℎ(𝑥) = − ∑𝑘

𝑖=1 log 𝑥𝑖!
support 𝒙 ∈ {0, … , 𝑛}𝑘 with ∑𝑖 𝑥𝑖 = 𝑛
Parameters
source parameters 𝒑 ∈ [0, 1]𝑘 where ∑𝑖 𝑝𝑖 = 1
natural parameters 𝜼 ∈ ℝ𝑘−1

expectation parameters 𝝌 ∈ [0, 𝑛]𝑘−1

Parameter transformations
source to natural parameters 𝜼 = (log(𝑝𝑖/𝑝𝑘))𝑘−1

𝑖=1
source to expectation parameters 𝝌 = (𝑛𝑝𝑖)𝑘−1

𝑖=1

natural to expectation parameters1 𝝌 = ( 𝑛𝑒𝜂𝑖
𝐴 )𝑘−1

𝑖=1

1 where

𝐴 ≜ 1 +
𝑘−1
∑
𝑖=1

𝑒𝜂𝑖 =
𝑘

∑
𝑖=1

𝑝𝑖
𝑝𝑘
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2.3 Distributions on the nonnegative integers

2.3.1 Negative binomial and geometric

The negative binomial distribution models the number of failures before 𝑟 successes of a Bernoulli distribution
having probability 𝑝 (§2.2.2). The geometric distribution is the special case when 𝑟 = 1. As long as 𝑟 is fixed,
the negative binomial distribution is an exponential family.

Table 7: The negative binomial distribution.

mass function 𝑓(𝑥 ∣ 𝑝) = (𝑥 + 𝑟 − 1
𝑥

)(1 − 𝑝)𝑥𝑝𝑟

sufficient statistic 𝑇 (𝑥) = 𝑥
log-normalizer 𝑔(𝜂) = −𝑟 log(1 − 𝑒𝜂)
carrier measure ℎ(𝑥) = log (𝑥+𝑟−1

𝑥 )
support 𝒙 ∈ ℤ≥0

Parameters
source parameters 𝑝 ∈ [0, 1]
natural parameters 𝜂 ∈ ℝ≤0

expectation parameters 𝜒 ∈ ℝ≥0

Parameter transformations
source to natural parameters 𝜂 = log(1 − 𝑝)
source to expectation parameters 𝜒 = ( 1−𝑝

𝑝 )𝑟
natural to expectation parameters 𝜒 = 𝑟

𝑒−𝜂−1

2.3.2 Logarithmic

A Poisson distribution compounded with a logarithmic distribution yields a negative binomial distribution.

Table 8: The logarithmic distribution.

mass function 𝑓(𝑥 ∣ 𝑝) = −𝑝𝑥

𝑥 log(1 − 𝑝)
sufficient statistic 𝑇 (𝑥) = 𝑥
log-normalizer 𝑔(𝜂) = log(− log(1 − 𝑒𝜂))
carrier measure ℎ(𝑥) = − log 𝑥
support 𝒙 ∈ ℤ≥1

Parameters
source parameters 𝑝 ∈ [0, 1]
natural parameters 𝜂 ∈ ℝ≤0

expectation parameters 𝜒 ∈ ℝ≥1

Parameter transformations
source to natural parameters 𝜂 = log 𝑝
source to expectation parameters 𝜒 = −𝑝

(1 − 𝑝) log(1 − 𝑝)
natural to expectation parameters 𝜒 = −𝑒𝜂

(1 − 𝑒𝜂) log(1 − 𝑒𝜂)
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2.3.3 Poisson

The Poisson distribution arises in Poisson processes.

Table 9: The Poisson distribution.

mass function 𝑓(𝑥 ∣ 𝜆) = 𝜆𝑥𝑒−𝜆

𝑥!
sufficient statistic 𝑇 (𝑥) = 𝑥
log-normalizer 𝑔(𝜂) = exp 𝜂
carrier measure ℎ(𝑥) = − log(𝑥!)
support 𝒙 ∈ ℤ≥0

Parameters
source parameters 𝜆 ∈ ℝ≥0

natural parameters 𝜂 ∈ ℝ
expectation parameters 𝜒 ∈ ℝ≥0

Parameter transformations
source to natural parameters 𝜂 = log 𝜆
source to expectation parameters 𝜒 = 𝜆
natural to expectation parameters 𝜒 = exp 𝜂

2.4 Distributions on the positive reals

2.4.1 Chi, chi-Square, exponential, gamma, Rayleigh, and Weibull

The exponential distribution with rate 𝜆 arises as the waiting time until the next occurrence of a linear
Poisson process with intensity 𝜆. The gamma distribution is the waiting time for 𝑘 occurrences, i.e., it is the
sum of 𝑘 exponentially-distributed random variables each having rate 𝜆.

The inverse-gamma, chi-square, inverse-chi-square, chi, Weibull and Rayleigh distributions are all trans-
formations or special cases of the gamma distribution:

If 𝑋 is gamma-distributed with parameters 𝑘, 𝜆, then:

• 𝑋−1 is inverse-gamma distributed with the same parameters.

If 𝑋 is gamma-distributed with parameters 𝑘, 𝜆 = 1/2, then:

• 𝑋 is chi-square distributed with parameter 2𝑘, and

• 𝑋−1 is inverse-chi-square distributed with parameter 2𝑘, and

•
√

𝑋 is chi distributed with parameter 2𝑘.

If 𝑋 is exponentially-distributed with rate 𝜆, then:

•
√

𝑋 is Rayleigh-distributed with parameter √ 𝜆
2 , and

If 𝑋 is exponentially-distributed with rate 1, then:

• 𝑘√𝑋 is Weibull-distributed with shape 𝑘.
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Table 10: The gamma distribution.

density function 𝑓(𝑥 ∣ 𝑘, 𝜆) = 𝜆𝑘

𝛤(𝑘)
𝑥𝑘−1𝑒−𝜆𝑥

sufficient statistic 𝑇 (𝑥) = (𝑥, log 𝑥)
log-normalizer 𝑔(𝜼) = log 𝛤(𝜂2 + 1) − (𝜂2 + 1) log(−𝜂1)
carrier measure ℎ(𝑥) = 0
support 𝒙 ∈ ℝ≥0

Parameters
source parameters (𝑘, 𝜆) ∈ ℝ≥0 × ℝ≥0

natural parameters 𝜼 ∈ ℝ≤0 × ℝ≥−1

expectation parameters 𝝌 ∈ ℝ≥0 × ℝ
Parameter transformations
source to natural parameters 𝜼 = (−𝜆, 𝑘 − 1)
source to expectation parameters 𝝌 = (𝑘/𝜆, 𝜓(𝑘) − log(𝜆))
natural to expectation parameters 𝝌 = (− 𝜂2+1

𝜂1
, 𝜓(𝜂2 + 1) − log(−𝜂1))

1 𝜓 is the digamma function: d log 𝛤(𝑥)
d𝑥

2.5 Distributions on the simplex

2.5.1 Uniform (continuous)

The continuous uniform distribution arises when all points in its finite, continuous support 𝛺 are equiprobable.

Table 11: The continuous Uniform
distribution.

density function 𝑓(𝒙) = |𝛺|−1

sufficient statistic 𝑇 (𝒙) = ()
log-normalizer 𝑔(𝜼) = log|𝛺|
carrier measure ℎ(𝒙) = 0
support 𝒙 ∈ 𝛺

2.5.2 Dirichlet and beta

Suppose one draws 𝑛 coloured balls from an urn (in which there are 𝑘 different colours) replacing them between
draws. The Dirichlet distribution is often used to model the belief about the proportions of the coloured balls
in the urn because it is the conjugate prior distribution (§1.3.1) of the multinomial distribution (§2.2.2).
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The beta distribution is the special case of the Dirichlet distribution for 𝑘 = 2.

Table 12: The Dirichlet distribution.

density function1 𝑓(𝒙 ∣ 𝜶) = 1
B(𝜶)

∏
𝑖

𝑥𝛼𝑖−1
𝑖

sufficient statistic 𝑇 (𝒙) = (log 𝑥𝑖)𝑖

log-normalizer 𝑔(𝜼) = ∑𝑖 log 𝛤(𝜂𝑖 + 1) − log 𝛤(∑𝑗 𝜂𝑗 + 𝑘)
carrier measure ℎ(𝑥) = 0
support 𝒙 ∈ [0, 1]𝑘 with ∑𝑖 𝑥𝑖 = 1
Parameters
source parameters 𝜶 ∈ ℝ𝑘

≥0

natural parameters 𝜼 ∈ ℝ𝑘
≥−1

expectation parameters 𝝌 ∈ ℝ𝑘
≤0

Parameter transformations
source to natural parameters 𝜼 = (𝛼𝑖 − 1)𝑖

source to expectation parameters2 𝝌 = (𝜓(𝛼𝑖) − 𝜓(∑𝑗 𝛼𝑗))𝑖

natural to expectation parameters2 𝝌 = (𝜓(𝜂𝑖 + 1) − 𝜓(∑𝑗 𝜂𝑗 − 𝑛))𝑖

1 B is the multinomial beta function: B(𝜶) =
∏𝑖 𝛤(𝛼𝑖)

𝛤(∑𝑗 𝛼𝑗)
2 𝜓 is the digamma function: d log 𝛤(𝑥)

d𝑥
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2.5.3 Generalized Dirichlet

The generalized Dirichlet distribution (Wong 1998) has a more general covariance structure than the Dirichlet
distribution.

Table 13: The generalized Dirichlet distribution.

density function1 𝑓(𝜶, 𝜷) =
𝑘

∏
𝑖=1

𝑥𝛼𝑖−1
𝑖 (1 − ∑𝑗≤𝑖 𝑥𝑗)

𝛾𝑖

𝐵(𝛼𝑖, 𝛽𝑖)
sufficient statistic 𝑇 (𝒙) = (log 𝑥𝑖)𝑖, (1 − ∑𝑗≤𝑖 𝑥𝑗)𝑖

log-normalizer 𝑔(𝜶, 𝜷) = ∑𝑖 log B(𝛼𝑖, 𝛽𝑖)
carrier measure ℎ(𝑥) = 0
support 𝒙 ∈ [0, 1]𝑘 with ∑𝑖 𝑥𝑖 = 1
Parameters
source parameters (𝜶, 𝜷) ∈ ℝ𝑘

≥0 × ℝ𝑘
≥0

natural parameters (𝜶′, 𝜸) ∈ ℝ𝑘
≥−1 × ℝ𝑘

expectation parameters (𝝌, 𝝍) ∈ ℝ𝑘
≤0 × ℝ𝑘

≤0

Parameter transformations

source to natural parameters

𝛼′
𝑖 = 𝛼𝑖 − 1

𝛾𝑖 =
⎧{
⎨{⎩

𝛽𝑖 − 𝛼𝑖+1 − 𝛽𝑖+1 if 𝑖 < 𝑘

𝛽𝑘 − 1 otherwise.

source to expectation parameters2

𝜒𝑖 = 𝑎𝑖 + ∑
𝑗<𝑖

𝑏𝑗

𝜓𝑖 = ∑
𝑗≤𝑖

𝑏𝑗

natural to source parameters
𝛼𝑖 = 𝛼′

𝑖 + 1

𝛽𝑖 = ∑
𝑗≥𝑖

𝛾𝑗 + ∑
𝑗>𝑖

𝛼𝑗 + 1

1 B is the multinomial beta function: B(𝜶) =
∏𝑖 𝛤(𝛼𝑖)

𝛤(∑𝑗 𝛼𝑗)
2 Where 𝜓 is the digamma function: d log 𝛤(𝑥)

d𝑥 and

𝑠𝑖 = 𝜓(𝛼𝑖 + 𝛽𝑖)

𝑎𝑖 = 𝜓(𝛼𝑖) − 𝑠𝑖

𝑏𝑖 = 𝜓(𝛽𝑖) − 𝑠𝑖
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2.6 Distributions on the n-sphere

2.6.1 Von Mises-Fisher and von Mises

The von Mises-Fisher distribution is a probability distribution on the 𝑘-dimensional unit sphere (Dhillon
and Sra (2003)). When 𝑘 = 2, the distribution collapses to the von Mises distribution on the unit circle.

Table 14: The von Mises-Fisher distribution.

density function2 𝑓(𝒙 ∣ 𝜅, 𝝁) = 𝑐𝑘(𝜅)𝑒𝜅𝝁T𝒙

sufficient statistic 𝑇 (𝒙) = 𝒙
log-normalizer 𝑔(𝜼) = − log 𝑐𝑘(‖𝜼‖2)
carrier measure ℎ(𝑥) = 0
support 𝒙 ∈ ℝ𝑘 with ‖𝒙𝑖‖2 = 1
Parameters
source parameters 𝜅, 𝝁 ∈ ℝ≥0 × ℝ𝑘 with ‖𝝁‖2 = 1
natural parameters 𝜼 ∈ ℝ𝑘

expectation parameters 𝝌 ∈ ℝ𝑘 with ‖𝝌‖2 ≤ 1
Parameter transformations
source to natural parameters 𝜼 = 𝜅𝝁
source to expectation parameters3 𝝌 = 𝐴𝑘(𝜅)𝝁
natural to expectation parameters 𝝌 = 𝐴𝑘(‖𝜼‖2) 𝜼

‖𝜼‖2

1 𝐼𝑘 is a modified Bessel function of the first kind at order 𝑘:

𝐼𝑘(𝜅) = ∑
𝑖≥0

( 𝜅
2 )2𝑖+𝑘

𝛤(𝑖 + 𝑘 + 1)𝑖!
.

2 The reciprocal normalizer is

𝑐𝑘(𝜅) = 𝜅𝑘/2−1

(2𝜋)𝑘/2𝐼𝑘/2−1(𝜅)
.

3 𝐴 is defined

𝐴𝑘(𝜅) =
𝐼𝑘/2(𝜅)

𝐼𝑘/2−1(𝜅)

and

𝐴−1
𝑘 (𝜇) ≈ 𝜇𝑘 − 𝜇3

1 − 𝜇2 .
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