
Random Fourier Features for Gaussian Process Model

Tetsuya Ishikawa
tiskw111@gmail.com

Abstract r
This article describes the procedure for applying random

Fourier features [1] to Gaussian process model [2]. This makes
it possible to speed up the training and inference of Gaussian
process model, and to apply the model to large-scale data.

Gaussian process model [2] is one of the supervised machine
learning frameworks designed on a probability space, and is
widely used for regression and classification tasks, as well as sup-
port vector machine and random forest. The major difference
between Gaussian process model and other machine learning
models is that Gaussian process model is a stochastic model. In
other words, since Gaussian process model is formulated as a
stochastic model, it can provide not only the predicted value but
also a measure of uncertainty for the prediction. This is a very
useful property that can improve the explainability of machine
learning model.

On the other hand, Gaussian process model is also known for
its high computational cost of training and inference. If the total
number of training data is N ∈ Z+, the computational cost re-
quired for training is O(N 3), and the computational cost required
for inference is O(N 2), where O is Bachmann–Landau notation.
The problem is that the computational cost is given by a power
of the total number of training data N , which can be an obstacle
when applying the model to large-scale data. This comes from
the fact that Gaussian process model has the same mathematical
structure as kernel methods, in other words, the kernel support
vector machine also has the same problem.

One of the methods to speed up kernel methods is random
Fourier features [1] (hereinafter abbreviated as RFF). This method
can significantly reduce the computational cost while keeping the
flexibility of kernel methods by approximating a kernel function
as an inner product of finite dimensional vectors. Specifically,
the computational cost required for training can be reduced to
O(N D2), and the amount of calculation required for inference
can be reduced to O(D2), where D ∈ Z+ is a hyperparameter of
RFF and can be specified independently of the total number of
training data N . Since Gaussian process model has the same
mathematical structure as kernel methods, RFF can be applied to
Gaussian process model as well. This evolves Gaussian process
model into a more powerful, easy-to-use, and highly reliable ML
tool.

However, when applying RFF to Gaussian process model, some
mathematical techniques are required that are not straightfor-
ward. Unfortunately, there seems to be no article in the world that
mentions its difficulties and solutions, so I decided to leave this
document. If you prefer the Japanese version of this document,
see the repository [3].

1 Gaussian Process Model Revisited r
This section gives an overview of Gaussian process model. Un-

fortunately, this section can not cover details such as the for-

mulation and derivation of Gaussian process models due to the
limitation of pulp, so if you are interested in the details, please
refer [2].

Let D = {(xn , yn)}N
n=1 be training data, andσ ∈R+ be a standard

deviation of the label observation error, where xn ∈ RM , yn ∈ R.
Gaussian process model describes the prediction as a probability
variable that follows the normal distribution. If the test date is
ξ ∈RM , the expectation of the prediction is given by:

m(ξ) = m̂(ξ)+ (
y −m̂

)T (
K +σ2I

)−1
k(ξ), (1)

and the covariance of the test data ξ1,ξ2 ∈RM is given by:

v(ξ1,ξ2) = k(ξ1,ξ2)−k(ξ1)T
(
K +σ2I

)−1
k(ξ2), (2)

where the function k : RM ×RM → R is a kernel function, the
matrix K ∈RN×N is a kernel matrix defined as

K =

 k(x1, x1) · · · k(x1, x N )
...

. . .
...

k(x N , x1) · · · k(x N , x N )

 , (3)

and the vector function k(ξ) :RM →RN and the vector y ∈RN is
defined as

k(ξ) =

 k(ξ, x1)
...

k(ξ, x N )

 , y =

 y1
...

yN

 , (4)

respectively. Also, m̂(ξ) is the prior distribution of the prediction,
and m̂ = (m̂(x1), . . . ,m̂(x N ))T is the prior distribution of the pre-
dicted values of the training data. If you don’t need to set prior
distribution, it’s common to set m̂(·) = 0 and m̂ = 0.

You can compute the variance of the prediction of the test data
ξ by substituting ξ1 = ξ2 = ξ into the equation (2),

v(ξ,ξ) = k(ξ,ξ)−k(ξ)T
(
K +σ2I

)−1
k(ξ). (5)

2 RFF Revisited r
In this section, we revisit random Fourier features. Unfortu-

nately, this article don’t have enough space to explain the details
as the same as the previous section, therefore if you would like to
know more details, please refer to the original paper [1].

Let the function k :RM ×RM →R be a kernel function. In RFF,
the kernel function can be approximated as

k(x1, x2) ≃φ(x1)Tφ(x2), (6)

whereφ(x) ∈RD is a feature vector extracted from the data x and
D ∈Z+ is the dimension ofφ(x). Note that the approximation (6)
is equivalent with

K ≃ΦTΦ, (7)

where K is defined as the equation (3), andΦ is defined asΦ=
(φ(x1), . . . ,φ(x N )). The larger the dimension D, the higher the

– 1 – T. Ishikawa



approximation accuracy of the equation (6), while the larger the
dimension D , the greater compurational cost.

The actual function form of the feature vectorφ(x) depends on
the kernel function. For example, in the case of the RBF kernel

k(x1, x2) = exp
(−γ∥x1 −x2∥2) , (8)

which is the most famous kernel function, the vectorφ(x) is given
by

φ(x) = cos(W x +u) , (9)

where, the matrix W ∈ RD×M is a random matrix in which each
element is sampled from the normal distribution N (0, 1

4γ ):

W ∼N

(
0,

1

4γ
I
)

, (10)

and the vector u ∈RM is a random vector sampled from the uni-
form distribution over the range [0,2π):

u ∼U [0,2π). (11)

This approximation method is called random Fourier features
because the feature extraction vector φ(x) is derived from the
Fourier transform of the kernel matrix F [k](ω). Please refer to
the original paper [1] for more details.

3 Gaussian Process Model and RFF r
In this section, we apply RFF to Gaussian process model and

theoretically confirm the effect of speeding up.

3.1 Computational complexity of Gaussian process
model before applying RFF

First, let’s check the computational cost required for training and
inferring a normal Gaussian process model. As a premise, it is
assumed that the number of training data N ∈Z+ is sufficiently
larger than the dimension D ∈Z+ which is a hyperparameter of
RFF. Here, the bottleneck of training computational cost is the cal-

culation of the inverse matrix
(
K +σ2I

)−1
in the formulas (1) and

(2). Since the size of this matrix is N ×N , the computational cost
for the training is O(N 3). Next, the bottleneck of the inference

is the matrix multiplication
(

y −m̂
)T (

K +σ2I
)−1

for the expecta-

tion prediction and k(ξ1)T
(
K −σ2I

)−1
k(ξ2), for the covariance

prediction whose computational costs is O(N ) and O(N 2) respec-
tively.

3.2 Applying RFF to expectation of prediction

Now, let’s apply RFF to Gaussian process model. First of all, if you
substitute the RFF approximation formula (7) into the formula of
expectation of the prediction in Gaussian process (1), you’ll get

m(ξ) = m̂(ξ)+ (
y −m̂

)T (
ΦTΦ+σ2I

)−1
ΦTφ(ξ), (12)

where the matrix Φ ∈ RD×N is defined as Φ= (φ(x1), . . . ,φ(x N )).
However, this has not yet speeded up. The complexity bottleneck
of the above expression (12) is still the inverse of the N ×N matrix(
ΦTΦ+σ2I

)−1
.

Now we will add a bit of contrivance to the equation (12).

Lemma 1 (inversion of the matrixΦTΦ+ηI )

LetΦ ∈ RD×N be a real matrix and σ ∈ R+ be a positive real
number. Then the matricesΦTΦ+σ2I N andΦΦT +σ2I D are
regular matrices and the equation(

ΦTΦ+σ2I N

)−1
ΦT =ΦT

(
ΦΦT +σ2I D

)−1
, (13)

holds, where the matrices I D ∈RD×D and I N ∈RN×N are D and
N dimensional identity matrices, respectively.

The proof of the above lemma is given at the end of this article,
and let us move on to the utilization of the lemma to the equation
(12). By the lemma 1, the equation (12) can be transformed as
below:

m(ξ) = m̂(ξ)+ (
y −m̂

)T (
ΦTΦ+σ2I

)−1
ΦTφ(ξ)

= m̂(ξ)+ (
y −m̂

)T
ΦT

(
ΦΦT +σ2I

)−1
φ(ξ), (14)

provided that the two I ’s appearing in the above equation are of
different sizes.

Clever readers would have already noticed that the bottleneck

has been resolved. The inverse matrix
(
ΦTΦ+σ2I

)−1, which

was the bottleneck of the expression (12), became
(
ΦΦT +σ2I

)−1

in the expressions (14) where the size of the inverse matrix is
D × D. Normally, the dimension D is set sufficiently smaller
than the number of training data N , therefore the inverse ma-

trix
(
ΦΦT +σ2I

)−1 is no longer a bottleneck of computational
cost. The new bottleneck of the expression (14) is the matrix prod-
uctΦΦT , whose computational cost is O(N D2). Therefore we’ve
achieved a considerable speedup of the training of Gaussian pro-
cess model by applying RFF because the calculational cost before
RFF is O(N 3).

3.3 Applying RFF to covariance of prediction

Next, we apply RFF to the covariance of the prediction (2). By
substituting RFF approximation (7) into the formula of covariance
prediction (2), we obtain

v(ξ1,ξ2) = k(ξ1,ξ2)−k(ξ1)T
(
K −σ2I

)−1
k(ξ2)

=φ(ξ1)T
{

I −Φ
(
ΦTΦ+σ2I

)−1
ΦT

}
φ(ξ2), (15)

and by applying the lemma 1, we’ll get

v(ξ1,ξ2) =φ(ξ1)T
{

I −ΦΦT
(
ΦΦT +σ2I

)−1
}
φ(ξ2). (16)

The bottleneck of the expression (16) is, as well as the expectation

prediction, the matrix inverse
(
ΦΦT +σ2I

)−1
is no longer a bot-

tleneck of the computational cost, and the new bottleneck is the
matrix productΦΦT whose calculation cost is O(N D2).

3.4 Training and inference process

The theoretical essence of the application of RFF to Gaussian
process was mentioned in the previous subsections. In this sec-
tion, let me review the procedure of training and inference of
Gaussian process model after applying RFF. Each procedure is
described in the algorithms 1 as pseudo-code, where D is defined

– 2 – T. Ishikawa



as D = {(xn , yn)}N
n=1, σ ∈ R+ is a standard deviation of the mea-

surement error, andφ is a feature extraction function used in the
RFF approximation.

In the algorithm 1, the function TRAINING_GP_WITH_RFF is de-
signed to take the training data D and the standard deviation σ
as arguments, and return a vector a and a matrix C that will be
used in the inference of expectation and covariance, respectively.
Also, the function INFERENCE_GP_WITH_RFF is designed to take
the inference target data ξ and the training result a and C , and
return predicted expectation µ and predicted variance ν. In the
algorithm 1, we computed only the variance of prediction, how-
ever, if you want to compute the covariance of two input data ξ1
and ξ2, then please compute φ(ξ1)TCφ(ξ2). Also, note that the
prior distribution of Gaussian process model is set to 0 for the
sake of simplicity in the algorithm 1.

Algorithm 1 Training of the GP model after RFF

1: function TRAINING_GP_WITH_RFF(D, σ)
2: y ← (

y1, y2, . . . , yN
)T

3: Φ← (
φ(x1),φ(x1), . . . ,φ(x N )

)
4: P ←ΦΦT

5: Q ← (P +σ2I )−1

6: a ← yTΦTQ
7: C ← I −PQ
8: return (a, C )
9: end function

10:

11: function INFERENCE_GP_WITH_RFF(ξ, a, C )
12: z ←φ(ξ)
13: µ← aT z
14: v ← zTC z
15: return (µ, v)
16: end function

3.5 Computational cost of training and inderence

Finally, let me summarize the computational cost of the training
and inference of Gaussian process model with random Fourier
features. In this section, we assume that the number of training
data N is sufficiently larger than the RFF dimension D. Also the
computational cost of the feature extraction functionφ is ignored
because it depends on the kernel function itself.

As you can see the algorithm 1, the bottleneck of the training
process is the matrix multiplicationΦΦT whoes computational
cost is O(N D2). Note that the matrix inversion (P +σ2I )−1 where
P = ΦΦT is not a bottleneck of the training process under the
assumption N ≫ D , because its computatinal cost is O(D3).

As for the inference cost, the bottleneck is aT z for the expec-
tation prediction, and zTC z for the covariance prediction that
have the computational cost O(D) and O(D2) respectively. The
computational cost before and after applying RFF is summarized
in the table 1.

Table 1: Computational cost of the GP model before/after RFF

Training Inference
Before RFF O(N 3) O(N 2)
After RFF O(N D2) O(D2)

A Appendix 1: Another Approach r
This section provides another approach to reduce the compu-

tational cost of the equation (12). This approach has almost the
same computational cost as the previous approach, however, the
previous approach is a bit more simple and beautiful †1 than this
approach. Therefore the readers don’t have to pay much attention
to this section.

A.1 Applying RFF to expectation of prediction

First, let us introduce the matrix inversion lemma (it’s also re-
ferred to as the binominal inverse lemma) which is a useful for-
mula for the expansion of a matrix inverse.

Lemma 2 (Matrix Inversion Lemma)

Let A ∈RN×N , B ∈RN×M , C ∈RM×N , and D ∈RM×M be real
matrices. Then the equation

(A +B DC )−1 = A−1 − A−1B
(
D−1 +C A−1B

)−1
C A−1 (17)

holds, where the matrices A and D are regular matrices.

The proof of the matrix inversion lemma is given at the end of
this article, and let us move on to the utilization of the lemma to
the equation (12).

By replacing A =σ2I , B =ΦT , C =Φ, and D = I on the equa-
tion (17), we obtain the following equation:(

ΦTΦ+σ2I
)−1 = 1

σ2

(
I −ΦT

(
ΦΦT +σ2I

)−1
Φ

)
, (18)

where P =ΦΦT ∈ RD×D . Then multiply Φ from the right to the
above equation (18), and we get(

ΦTΦ+σ2I
)−1
ΦT = 1

σ2Φ
T

(
I − (

P +σ2I
)−1

P
)

. (19)

Therefore, the expression (12) can be written as

m(ξ) = m̂(ξ)+ 1

σ2

(
y −m̂

)T
ΦTSφ(ξ), (20)

where
S = I − (

P +σ2I
)−1

P . (21)

The same as the previous approach, the bottleneck has been
resolved now. The inverse matrix

(
ΦTΦ+σ2I

)−1, which was the
bottleneck of the expression (12), became (P +σ2I )−1 in the ex-
pressions (20) and (21) where the size of the inverse matrix is
D ×D . Normally, the RFF dimension D is set sufficiently smaller
than the number of training data N , therefore the inverse matrix
(P +σ2I )−1 is no longer a bottleneck of computational cost. The
bottleneck of the expressions (20) and (21) is the matrix product
P =ΦΦT , whose computational cost is O(N D2). Therefore we’ve
achieved a considerable speedup of the training of Gaussian pro-
cess model by applying RFF because the calculational cost before
RFF is O(N 3).

A.2 Applying RFF to covariance of prediction

Next, we apply RFF to the covariance of the prediction (2). By
substituting RFF approximation (19) to the expression (2), we

†1The previous approach has high similarity with the linear regression, however,
the approach mentioned in this section doesn’t have.

– 3 – T. Ishikawa



obtain

v(ξ1,ξ2) =φ(ξ1)Tφ(ξ2)− 1

σ2φ(ξ1)TP Sφ(ξ2)

=φ(ξ1)T
(

I − 1

σ2 P S
)
φ(ξ2), (22)

The bottleneck of the expression (16) is, as well as the expectation
of the prediction, the matrix product P =ΦΦT whose calculation
cost is O(N D2).

The procedure of training and inference of Gaussian process
model after applying RFF is described in the algorithms 2 as
pseudo-code. Note that the prior distribution of Gaussian process
model is set to 0 for the sake of simplicity in the algorithms 2.

Algorithm 2 Training of the GP model after RFF (2)

1: function TRAINING_GP_WITH_RFF(D, σ)
2: y ← (y1, . . . , yN )T

3: Φ← (φ(x1), . . . ,φ(x N ))
4: P ←ΦΦT

5: S ← I − (
P +σ2I

)−1
P

6: a ← 1
σ2 yTΦTS

7: C ← I − 1
σ2 P S

8: return (a, C )
9: end function

10:

11: function INFERENCE_GP_WITH_RFF(D, σ)
12: z ←φ(ξ)
13: µ← aT z
14: v ← zTC z
15: return (µ, v)
16: end function

B Appendix 2: Proofs r
B.1 Proof of the lemma 1

The lemma 1 is reprinted and proved.

Lemma 1 (inversion of the matrixΦTΦ+ηI )

LetΦ ∈RD×N be a real matrix and η be a positive real num-
ber. Then the matricesΦTΦ+ηI N andΦΦT +ηI D are regular
matrices and the equation(

ΦTΦ+ηI N

)−1
ΦT =ΦT

(
ΦΦT +ηI D

)−1
(23)

holds, where the matrices I D and I N are D dimensional and N
dimensional identity matrices, respectively.

Proof : First, the matricesΦTΦ+ηI N andΦΦT +ηI D are positive
definite, because

xT
(
ΦTΦ+ηI N

)
x = ∥Φx∥2 +η∥x∥2 > 0,

x̂T
(
ΦΦT +ηI D

)
x̂ = ∥∥ΦT x̂

∥∥2 +η∥x̂∥2 > 0,

holds for any non-zero real vectors x ∈RN and x̂ ∈RD . In general,
the determinant of a matrix is equal to the product of its eigenval-
ues. Also, the eigenvalues of a positive definite matrix are always
greater than zero. Therefore, the determinant of a positive defi-
nite matrix is greater than zero. Hence the matricesΦTΦ+ηI N

andΦΦT +ηI D are regular matrices, that is, these matrices are
invertible.

Next, it is obvious that the equation

ΦT
(
ΦΦT +ηI D

)
=

(
ΦTΦ+ηI N

)
ΦT ,

holds, because both are equivalent to ΦTΦΦT + ηΦT . You’ll
get the following equation by multiplying the inverse matrix(
ΦTΦ+ηI N

)−1
to the above equation from the left:(

ΦTΦ+ηI N

)−1
ΦT

(
ΦΦT +ηI D

)
=ΦT .

Similarly, by multiplying the inverse matrix
(
ΦΦT +ηI D

)−1
to the

above equation from the right, you’ll get(
ΦTΦ+ηI N

)−1
ΦT =ΦT

(
ΦΦT +ηI D

)−1
.

■

B.2 Proof of the matrix inversion lemma

The matrix inversion lemma is reprinted and proved.

Lemma 2 (Matrix Inversion Lemma)

Let A ∈RN×N , B ∈RN×M , C ∈RM×N , and D ∈RM×M be real
matrices. Then the equation

(A +B DC )−1 = A−1 − A−1B
(
D−1 +C A−1B

)−1
C A−1 (24)

holds, where the matrices A and D are regular matrices.

Proof : The following equation holds:(
A B
C D

)−1

=
(

A−1 + A−1B SC A−1 −A−1B S
−SC A−1 S

)
=

(
T −T B D−1

−D−1C T D−1 +D−1C T B D−1

)
,

where

T = (
D −C A−1B

)−1
, (25)

S = (
A −B D−1C

)−1
. (26)

It is easy to verify the above equation from a direct calculation.
By comparing the corresponding parts of the above block matrix,
we get

T = A−1 + A−1B SC A−1, (27)

S = D−1 +D−1C T B D−1, (28)

−A−1B S =−T B D−1, (29)

−SC A−1 =−D−1C T , (30)

By replacing with

A → D−1, B →−C , C → B , D → A,

in the equation (27), we get the formula to be proved. ■

– 4 – T. Ishikawa



References

[1] A. Rahimi and B. Recht, “Random Features for Large-Scale
Kernel Machines”, Neural Information Processing Systems,
2007.

[2] C. Rasmussen and C. Williams, “Gaussian Processes for Ma-
chine Learning”, MIT Press, 2006.

[3] https://github.com/tiskw/mathematical-articles

– 5 – T. Ishikawa


