
Sphinx Documentation
Release 1.6.3

Georg Brandl

Table of Contents

 List of Figures vii

1 Introduction 1
1.1 Conversion from other systems . 1
1.2 Use with other systems . 1
1.3 Prerequisites . 2
1.4 Usage . 2

2 First Steps with Sphinx 3
2.1 Install Sphinx . 3
2.2 Setting up the documentation sources . 3
2.3 Defining document structure . 3
2.4 Adding content . 4
2.5 Running the build . 5
2.6 Documenting objects . 5
2.7 Basic configuration . 6
2.8 Autodoc . 6
2.9 Intersphinx . 7
2.10 More topics to be covered . 7

3 Invocation of sphinx-quickstart 9
3.1 Structure options . 9
3.2 Project basic options . 9
3.3 Extension options . 10
3.4 Makefile and Batchfile creation options . 11
3.5 Project templating . 11

4 Invocation of sphinx-build 13
4.1 Environment variables . 15
4.2 Makefile options . 16
4.3 Deprecation Warnings . 16

5 Invocation of sphinx-apidoc 17

6 reStructuredText Primer 19
6.1 Paragraphs . 19

 i

6.2 Inline markup . 19
6.3 Lists and Quote-like blocks . 20
6.4 Source Code . 21
6.5 Tables . 21
6.6 Hyperlinks . 22
6.7 Sections . 22
6.8 Explicit Markup . 23
6.9 Directives . 23
6.10 Images . 24
6.11 Footnotes . 25
6.12 Citations . 25
6.13 Substitutions . 25
6.14 Comments . 26
6.15 Source encoding . 26
6.16 Gotchas . 26

7 Sphinx Markup Constructs 27
7.1 The TOC tree . 27
7.2 Paragraph-level markup . 30
7.3 Table-of-contents markup . 32
7.4 Glossary . 32
7.5 Grammar production displays . 33
7.6 Showing code examples . 34
7.7 Inline markup . 37
7.8 Miscellaneous markup . 43

8 Sphinx Domains 49
8.1 What is a Domain? . 49
8.2 Basic Markup . 49
8.3 The Python Domain . 50
8.4 The C Domain . 55
8.5 The C++ Domain . 56
8.6 The Standard Domain . 64
8.7 The JavaScript Domain . 65
8.8 The reStructuredText domain . 66
8.9 More domains . 67

9 Available builders 69
9.1 Serialization builder details . 75

10 The build configuration file 77
10.1 General configuration . 77
10.2 Project information . 81
10.3 Options for internationalization . 83
10.4 Options for HTML output . 86
10.5 Options for Apple Help output . 92
10.6 Options for epub output . 94
10.7 Options for LaTeX output . 97
10.8 Options for text output . 103
10.9 Options for manual page output . 103
10.10 Options for Texinfo output . 104
10.11 Options for the linkcheck builder . 105
10.12 Options for the XML builder . 106

ii

10.13 Options for the C++ domain . 106

11 Example of configuration file 109

12 Internationalization 117
12.1 Sphinx internationalization details . 118
12.2 Translating with sphinx-intl . 118
12.3 Using Transifex service for team translation . 120
12.4 Contributing to Sphinx reference translation . 121

13 HTML theming support 123
13.1 Using a theme . 123
13.2 Builtin themes . 124
13.3 Creating themes . 128
13.4 Distribute your theme as a python package . 129
13.5 Third Party Themes . 130

14 Setuptools integration 133
14.1 Using setuptools integration . 133
14.2 Options for setuptools integration . 134

15 Templating 137
15.1 Do I need to use Sphinx’s templates to produce HTML? . 137
15.2 Jinja/Sphinx Templating Primer . 137
15.3 Working with the builtin templates . 138

16 LaTeX customization 143
16.1 Basic customization . 143
16.2 The LaTeX style file options . 144
16.3 LaTeX macros and environments . 147

17 Markdown support 151
17.1 Configuration . 151

18 Sphinx Extensions 153
18.1 Builtin Sphinx extensions . 153
18.2 Third-party extensions . 186

19 Developing extensions for Sphinx 187
19.1 Discovery of builders by entry point . 187
19.2 Extension metadata . 188
19.3 APIs used for writing extensions . 188

20 Sphinx Web Support 217
20.1 Web Support Quick Start . 217
20.2 The WebSupport Class . 221
20.3 Search Adapters . 224
20.4 Storage Backends . 226

21 Sphinx FAQ 229
21.1 How do I… . 229
21.2 Using Sphinx with… . 229

 iii

21.3 Epub info . 230
21.4 Texinfo info . 232

22 Glossary 235

23 Sphinx Developer’s Guide 237
23.1 Bug Reports and Feature Requests . 237
23.2 Contributing to Sphinx . 238
23.3 Coding Guide . 240
23.4 Deprecating a feature . 241
23.5 Deprecation policy . 241
23.6 Unit Testing . 242

24 Changes in Sphinx 243
24.1 Release 1.6.3 (released Jul 02, 2017) . 243
24.2 Release 1.6.2 (released May 28, 2017) . 244
24.3 Release 1.6.1 (released May 16, 2017) . 244
24.4 Release 1.6 (unreleased) . 250
24.5 Release 1.5.6 (released May 15, 2017) . 250
24.6 Release 1.5.5 (released Apr 03, 2017) . 250
24.7 Release 1.5.4 (released Apr 02, 2017) . 250
24.8 Release 1.5.3 (released Feb 26, 2017) . 251
24.9 Release 1.5.2 (released Jan 22, 2017) . 252
24.10 Release 1.5.1 (released Dec 13, 2016) . 253
24.11 Release 1.5 (released Dec 5, 2016) . 254
24.12 Release 1.4.9 (released Nov 23, 2016) . 260
24.13 Release 1.4.8 (released Oct 1, 2016) . 260
24.14 Release 1.4.7 (released Oct 1, 2016) . 260
24.15 Release 1.4.6 (released Aug 20, 2016) . 261
24.16 Release 1.4.5 (released Jul 13, 2016) . 262
24.17 Release 1.4.4 (released Jun 12, 2016) . 263
24.18 Release 1.4.3 (released Jun 5, 2016) . 263
24.19 Release 1.4.2 (released May 29, 2016) . 264
24.20 Release 1.4.1 (released Apr 12, 2016) . 265
24.21 Release 1.4 (released Mar 28, 2016) . 266
24.22 Release 1.3.6 (released Feb 29, 2016) . 270
24.23 Release 1.3.5 (released Jan 24, 2016) . 270
24.24 Release 1.3.4 (released Jan 12, 2016) . 271
24.25 Release 1.3.3 (released Dec 2, 2015) . 272
24.26 Release 1.3.2 (released Nov 29, 2015) . 272
24.27 Release 1.3.1 (released Mar 17, 2015) . 274
24.28 Release 1.3 (released Mar 10, 2015) . 274
24.29 Release 1.3b3 (released Feb 24, 2015) . 275
24.30 Release 1.3b2 (released Dec 5, 2014) . 277
24.31 Release 1.3b1 (released Oct 10, 2014) . 277
24.32 Release 1.2.3 (released Sep 1, 2014) . 281
24.33 Release 1.2.2 (released Mar 2, 2014) . 282
24.34 Release 1.2.1 (released Jan 19, 2014) . 282
24.35 Release 1.2 (released Dec 10, 2013) . 284
24.36 Release 1.2 beta3 (released Oct 3, 2013) . 285
24.37 Release 1.2 beta2 (released Sep 17, 2013) . 285
24.38 Release 1.2 beta1 (released Mar 31, 2013) . 287
24.39 Release 1.1.3 (Mar 10, 2012) . 291

iv

24.40 Release 1.1.2 (Nov 1, 2011) – 1.1.1 is a silly version number anyway! 292
24.41 Release 1.1.1 (Nov 1, 2011) . 292
24.42 Release 1.1 (Oct 9, 2011) . 292
24.43 Release 1.0.8 (Sep 23, 2011) . 294
24.44 Release 1.0.7 (Jan 15, 2011) . 295
24.45 Release 1.0.6 (Jan 04, 2011) . 296
24.46 Release 1.0.5 (Nov 12, 2010) . 297
24.47 Release 1.0.4 (Sep 17, 2010) . 297
24.48 Release 1.0.3 (Aug 23, 2010) . 297
24.49 Release 1.0.2 (Aug 14, 2010) . 297
24.50 Release 1.0.1 (Jul 27, 2010) . 298
24.51 Release 1.0 (Jul 23, 2010) . 298
24.52 Previous versions . 301

25 Projects using Sphinx 303
25.1 Documentation using the alabaster theme . 303
25.2 Documentation using the classic theme . 303
25.3 Documentation using a customized version of the classic theme 304
25.4 Documentation using the sphinxdoc theme . 305
25.5 Documentation using another builtin theme . 305
25.6 Documentation using a custom theme/integrated in a site . 306
25.7 Homepages and other non-documentation sites . 307
25.8 Books produced using Sphinx . 308
25.9 Thesis using Sphinx . 308

26 Sphinx authors 309

 Python Module Index 313

 Index 315

 v

vi

List of Figures

Figure 12.1: Workflow visualization of translations in Sphinx. (The stick-figure is taken from an XKCD
comic.) . 117

 vii

CHAPTER 1

Introduction

This is the documentation for the Sphinx documentation builder. Sphinx is a tool that translates a set of
reStructuredText source files into various output formats, automatically producing cross-references,
indices etc. That is, if you have a directory containing a bunch of reST-formatted documents (and
possibly subdirectories of docs in there as well), Sphinx can generate a nicely-organized arrangement of
HTML files (in some other directory) for easy browsing and navigation. But from the same source, it can
also generate a PDF file using LaTeX, rinohtype or rst2pdf (see Available builders).
The focus is on hand-written documentation, rather than auto-generated API docs. Though there is
support for that kind of documentation as well (which is intended to be freely mixed with hand-written
content), if you need pure API docs have a look at Epydoc, which also understands reST.
For a great “introduction” to writing docs in general – the whys and hows, see also Write the docs,
written by Eric Holscher.

1.1 Conversion from other systems

This section is intended to collect helpful hints for those wanting to migrate to reStructuredText/Sphinx
from other documentation systems.

• Gerard Flanagan has written a script to convert pure HTML to reST; it can be found at the Python
Package Index.

• For converting the old Python docs to Sphinx, a converter was written which can be found at the
Python SVN repository. It contains generic code to convert Python-doc-style LaTeX markup to
Sphinx reST.

• Marcin Wojdyr has written a script to convert Docbook to reST with Sphinx markup; it is at Google
Code.

• Christophe de Vienne wrote a tool to convert from Open/LibreOffice documents to Sphinx:
odt2sphinx.

• To convert different markups, Pandoc is a very helpful tool.

1.2 Use with other systems

See the pertinent section in the FAQ list.

 1

http://docutils.sourceforge.net/rst.html
https://github.com/brechtm/rinohtype
https://github.com/rst2pdf/rst2pdf
http://epydoc.sourceforge.net/
http://write-the-docs.readthedocs.org/
https://pypi.python.org/pypi/html2rest
https://pypi.python.org/pypi/html2rest
http://svn.python.org/projects/doctools/converter
http://svn.python.org/projects/doctools/converter
https://github.com/wojdyr/db2rst
https://github.com/wojdyr/db2rst
https://pypi.python.org/pypi/odt2sphinx/
http://pandoc.org/

1.3 Prerequisites

Sphinx needs at least Python 2.7 or Python 3.4 to run, as well as the docutils and Jinja2 libraries. Sphinx
should work with docutils version 0.10 or some (not broken) SVN trunk snapshot. If you like to have
source code highlighting support, you must also install the Pygments library.

1.4 Usage

See First Steps with Sphinx for an introduction. It also contains links to more advanced sections in this
manual for the topics it discusses.

Sphinx Documentation, Release 1.6.3

2 Chapter 1. Introduction

http://docutils.sourceforge.net/
http://jinja.pocoo.org/
http://pygments.org/

1 This is the usual layout. However, conf.py can also live in another directory, the configuration directory. See Invocation of
sphinx-quickstart.

CHAPTER 2

First Steps with Sphinx

This document is meant to give a tutorial-like overview of all common tasks while using Sphinx.
The green arrows designate “more info” links leading to advanced sections about the described task.

2.1 Install Sphinx

Install Sphinx, either from a distribution package or from PyPI with

$ pip install Sphinx

2.2 Setting up the documentation sources

The root directory of a Sphinx collection of reStructuredText document sources is called the source
directory. This directory also contains the Sphinx configuration file conf.py, where you can configure all
aspects of how Sphinx reads your sources and builds your documentation. 1

Sphinx comes with a script called sphinx-quickstart that sets up a source directory and creates a
default conf.py with the most useful configuration values from a few questions it asks you. Just run

$ sphinx-quickstart

and answer its questions. (Be sure to say yes to the “autodoc” extension.)
There is also an automatic “API documentation” generator called sphinx-apidoc; see Invocation of
sphinx-apidoc for details.

2.3 Defining document structure

Let’s assume you’ve run sphinx-quickstart. It created a source directory with conf.py and a
master document, index.rst (if you accepted the defaults). The main function of the master document is
to serve as a welcome page, and to contain the root of the “table of contents tree” (or toctree). This is one
of the main things that Sphinx adds to reStructuredText, a way to connect multiple files to a single hier-
archy of documents.

 3

https://pypi.python.org/pypi/Sphinx

reStructuredText directives

toctree is a reStructuredText directive, a very versatile piece of markup. Directives can have argu-
ments, options and content.
Arguments are given directly after the double colon following the directive’s name. Each directive
decides whether it can have arguments, and how many.
Options are given after the arguments, in form of a “field list”. The maxdepth is such an option for
the toctree directive.
Content follows the options or arguments after a blank line. Each directive decides whether to allow
content, and what to do with it.
A common gotcha with directives is that the first line of the content must be indented to the same
level as the options are.

The toctree directive initially is empty, and looks like this:

.. toctree::
 :maxdepth: 2

You add documents listing them in the content of the directive:

.. toctree::
 :maxdepth: 2

 intro
 tutorial
 ...

This is exactly how the toctree for this documentation looks. The documents to include are given as docu-
ment names, which in short means that you leave off the file name extension and use slashes as directory
separators.

 Read more about the toctree directive.

You can now create the files you listed in the toctree and add content, and their section titles will be
inserted (up to the “maxdepth” level) at the place where the toctree directive is placed. Also, Sphinx now
knows about the order and hierarchy of your documents. (They may contain toctree directives them-
selves, which means you can create deeply nested hierarchies if necessary.)

2.4 Adding content

In Sphinx source files, you can use most features of standard reStructuredText. There are also several
features added by Sphinx. For example, you can add cross-file references in a portable way (which works
for all output types) using the ref role.
For an example, if you are viewing the HTML version you can look at the source for this document – use
the “Show Source” link in the sidebar.

 See reStructuredText Primer for a more in-depth introduction to reStructuredText and Sphinx

Markup Constructs for a full list of markup added by Sphinx.

Sphinx Documentation, Release 1.6.3

4 Chapter 2. First Steps with Sphinx

2.5 Running the build

Now that you have added some files and content, let’s make a first build of the docs. A build is started
with the sphinx-build program, called like this:

$ sphinx-build -b html sourcedir builddir

where sourcedir is the source directory, and builddir is the directory in which you want to place the built
documentation. The -b option selects a builder; in this example Sphinx will build HTML files.

 See Invocation of sphinx-quickstart for all options that sphinx-build supports.

However, sphinx-quickstart script creates a Makefile and a make.bat which make life even easier
for you: with them you only need to run

$ make html

to build HTML docs in the build directory you chose. Execute make without an argument to see which
targets are available.

How do I generate PDF documents?

make latexpdf runs the LaTeX builder and readily invokes the pdfTeX toolchain for you.

2.6 Documenting objects

One of Sphinx’s main objectives is easy documentation of objects (in a very general sense) in any domain.
A domain is a collection of object types that belong together, complete with markup to create and refer-
ence descriptions of these objects.
The most prominent domain is the Python domain. To e.g. document the Python built-in function
enumerate(), you would add this to one of your source files:

.. py:function:: enumerate(sequence[, start=0])

 Return an iterator that yields tuples of an index and an item of the
 sequence. (And so on.)

This is rendered like this:

enumerate (sequence [, start=0])
Return an iterator that yields tuples of an index and an item of the sequence. (And so on.)

The argument of the directive is the signature of the object you describe, the content is the documentation
for it. Multiple signatures can be given, each in its own line.
The Python domain also happens to be the default domain, so you don’t need to prefix the markup with
the domain name:

.. function:: enumerate(sequence[, start=0])

 ...

 Sphinx Documentation, Release 1.6.3

2.5. Running the build 5

does the same job if you keep the default setting for the default domain.
There are several more directives for documenting other types of Python objects, for example py:class
or py:method. There is also a cross-referencing role for each of these object types. This markup will
create a link to the documentation of enumerate():

The :py:func:`enumerate` function can be used for ...

And here is the proof: A link to enumerate().
Again, the py: can be left out if the Python domain is the default one. It doesn’t matter which file
contains the actual documentation for enumerate(); Sphinx will find it and create a link to it.
Each domain will have special rules for how the signatures can look like, and make the formatted output
look pretty, or add specific features like links to parameter types, e.g. in the C/C++ domains.

 See Sphinx Domains for all the available domains and their directives/roles.

2.7 Basic configuration

Earlier we mentioned that the conf.py file controls how Sphinx processes your documents. In that file,
which is executed as a Python source file, you assign configuration values. For advanced users: since it is
executed by Sphinx, you can do non-trivial tasks in it, like extending sys.path or importing a module to
find out the version you are documenting.
The config values that you probably want to change are already put into the conf.py by
sphinx-quickstart and initially commented out (with standard Python syntax: a # comments the rest
of the line). To change the default value, remove the hash sign and modify the value. To customize a
config value that is not automatically added by sphinx-quickstart, just add an additional assign-
ment.
Keep in mind that the file uses Python syntax for strings, numbers, lists and so on. The file is saved in
UTF-8 by default, as indicated by the encoding declaration in the first line. If you use non-ASCII charac-
ters in any string value, you need to use Python Unicode strings (like project = u'Exposé').

 See The build configuration file for documentation of all available config values.

2.8 Autodoc

When documenting Python code, it is common to put a lot of documentation in the source files, in docu-
mentation strings. Sphinx supports the inclusion of docstrings from your modules with an extension (an
extension is a Python module that provides additional features for Sphinx projects) called “autodoc”.
In order to use autodoc, you need to activate it in conf.py by putting the string
'sphinx.ext.autodoc' into the list assigned to the extensions config value. Then, you have a few
additional directives at your disposal.
For example, to document the function io.open(), reading its signature and docstring from the source
file, you’d write this:

.. autofunction:: io.open

You can also document whole classes or even modules automatically, using member options for the auto
directives, like

Sphinx Documentation, Release 1.6.3

6 Chapter 2. First Steps with Sphinx

.. automodule:: io
 :members:

autodoc needs to import your modules in order to extract the docstrings. Therefore, you must add the
appropriate path to sys.path in your conf.py.

Warning: autodoc imports the modules to be documented. If any modules have side effects on
import, these will be executed by autodoc when sphinx-build is run.
If you document scripts (as opposed to library modules), make sure their main routine is protected by
a if __name__ == '__main__' condition.

 See sphinx.ext.autodoc for the complete description of the features of autodoc.

2.9 Intersphinx

Many Sphinx documents including the Python documentation are published on the internet. When you
want to make links to such documents from your documentation, you can do it with
sphinx.ext.intersphinx.
In order to use intersphinx, you need to activate it in conf.py by putting the string
'sphinx.ext.intersphinx' into the extensions list and set up the intersphinx_mapping
config value.
For example, to link to io.open() in the Python library manual, you need to setup your
intersphinx_mapping like:

intersphinx_mapping = {'python': ('https://docs.python.org/3', None)}

And now, you can write a cross-reference like :py:func:`io.open`. Any cross-reference that has no
matching target in the current documentation set, will be looked up in the documentation sets configured
in intersphinx_mapping (this needs access to the URL in order to download the list of valid targets).
Intersphinx also works for some other domains’ roles including :ref:, however it doesn’t work for :doc:
as that is non-domain role.

 See sphinx.ext.intersphinx for the complete description of the features of intersphinx.

2.10 More topics to be covered

• Other extensions:
• Math support in Sphinx,
• sphinx.ext.viewcode – Add links to highlighted source code,
• sphinx.ext.doctest – Test snippets in the documentation,
• …

• Static files
• Selecting a theme
• Setuptools integration

 Sphinx Documentation, Release 1.6.3

2.9. Intersphinx 7

https://docs.python.org/3

• Templating
• Using extensions
• Writing extensions

Sphinx Documentation, Release 1.6.3

8 Chapter 2. First Steps with Sphinx

CHAPTER 3

Invocation of sphinx-quickstart

The sphinx-quickstart script generates a Sphinx documentation set. It is called like this:

$ sphinx-quickstart [options] [projectdir]

where projectdir is the Sphinx documentation set directory in which you want to place. If you omit
projectdir, files are generated into current directory by default.
The sphinx-quickstart script has several options:

-q, --quiet
Quiet mode that will skips interactive wizard to specify options. This option requires -p, -a and -v
options.

-h, --help, --version
Display usage summary or Sphinx version.

3.1 Structure options

--sep
If specified, separate source and build directories.

--dot=DOT
Inside the root directory, two more directories will be created; “_templates” for custom HTML
templates and “_static” for custom stylesheets and other static files. You can enter another prefix
(such as “.”) to replace the underscore.

3.2 Project basic options

-p PROJECT, --project=PROJECT
Project name will be set. (see project).

-a AUTHOR, --author=AUTHOR
Author names. (see copyright).

-v VERSION
Version of project. (see version).

 9

-r RELEASE, --release=RELEASE
Release of project. (see release).

-l LANGUAGE, --language=LANGUAGE
Document language. (see language).

--suffix=SUFFIX
Source file suffix. (see source_suffix).

--master=MASTER
Master document name. (see master_doc).

--epub
Use epub.

3.3 Extension options

--ext-autodoc
Enable sphinx.ext.autodoc extension.

--ext-doctest
Enable sphinx.ext.doctest extension.

--ext-intersphinx
Enable sphinx.ext.intersphinx extension.

--ext-todo
Enable sphinx.ext.todo extension.

--ext-coverage
Enable sphinx.ext.coverage extension.

--ext-imgmath
Enable sphinx.ext.imgmath extension.

--ext-mathjax
Enable sphinx.ext.mathjax extension.

--ext-ifconfig
Enable sphinx.ext.ifconfig extension.

--ext-viewcode
Enable sphinx.ext.viewcode extension.

--extensions=EXTENSIONS
Enable arbitary extensions.

Sphinx Documentation, Release 1.6.3

10 Chapter 3. Invocation of sphinx-quickstart

3.4 Makefile and Batchfile creation options

--use-make-mode, --no-use-make-mode
Makefile/make.bat uses (or not use) make-mode. Default is use.
Changed in version 1.5: make-mode is default.

--makefile, --no-makefile
Create (or not create) makefile.

--batchfile, --no-batchfile
Create (or not create) batchfile

New in version 1.3: Add various options for sphinx-quickstart invocation.

3.5 Project templating

-t, --templatedir=TEMPLATEDIR
Template directory for template files. You can modify the templates of sphinx project files generated
by quickstart. Following Jinja2 template files are allowed:

• master_doc.rst_t
• conf.py_t
• Makefile_t
• Makefile.new_t
• make.bat_t
• make.bat.new_t

In detail, please refer the system template files Sphinx provides. (sphinx/templates/quickstart)

-d NAME=VALUE
Define a template variable

New in version 1.5: Project templating options for sphinx-quickstart

 Sphinx Documentation, Release 1.6.3

3.4. Makefile and Batchfile creation options 11

Sphinx Documentation, Release 1.6.3

12 Chapter 3. Invocation of sphinx-quickstart

CHAPTER 4

Invocation of sphinx-build

The sphinx-build script builds a Sphinx documentation set. It is called like this:

$ sphinx-build [options] sourcedir builddir [filenames]

where sourcedir is the source directory, and builddir is the directory in which you want to place the built
documentation. Most of the time, you don’t need to specify any filenames.
The sphinx-build script has several options:

-b buildername
The most important option: it selects a builder. The most common builders are:
html

Build HTML pages. This is the default builder.
dirhtml

Build HTML pages, but with a single directory per document. Makes for prettier URLs (no
.html) if served from a webserver.

singlehtml
Build a single HTML with the whole content.

htmlhelp, qthelp, devhelp, epub
Build HTML files with additional information for building a documentation collection in one of
these formats.

applehelp
Build an Apple Help Book. Requires hiutil and codesign, which are not Open Source and
presently only available on Mac OS X 10.6 and higher.

latex
Build LaTeX sources that can be compiled to a PDF document using pdflatex.

man
Build manual pages in groff format for UNIX systems.

texinfo
Build Texinfo files that can be processed into Info files using makeinfo.

text
Build plain text files.

gettext
Build gettext-style message catalogs (.pot files).

doctest
Run all doctests in the documentation, if the doctest extension is enabled.

 13

linkcheck
Check the integrity of all external links.

xml
Build Docutils-native XML files.

pseudoxml
Build compact pretty-printed “pseudo-XML” files displaying the internal structure of the inter-
mediate document trees.

See Available builders for a list of all builders shipped with Sphinx. Extensions can add their own
builders.

-a
If given, always write all output files. The default is to only write output files for new and changed
source files. (This may not apply to all builders.)

-E
Don’t use a saved environment (the structure caching all cross-references), but rebuild it completely.
The default is to only read and parse source files that are new or have changed since the last run.

-t tag
Define the tag tag. This is relevant for only directives that only include their content if this tag is set.
New in version 0.6.

-d path
Since Sphinx has to read and parse all source files before it can write an output file, the parsed source
files are cached as “doctree pickles”. Normally, these files are put in a directory called .doctrees
under the build directory; with this option you can select a different cache directory (the doctrees can
be shared between all builders).

-j N
Distribute the build over N processes in parallel, to make building on multiprocessor machines more
effective. Note that not all parts and not all builders of Sphinx can be parallelized.
New in version 1.2: This option should be considered experimental.

-c path
Don’t look for the conf.py in the source directory, but use the given configuration directory instead.
Note that various other files and paths given by configuration values are expected to be relative to the
configuration directory, so they will have to be present at this location too.
New in version 0.3.

-C
Don’t look for a configuration file; only take options via the -D option.
New in version 0.5.

-D setting=value
Override a configuration value set in the conf.py file. The value must be a number, string, list or
dictionary value.
For lists, you can separate elements with a comma like this: -D html_theme_path=path1,path2.
For dictionary values, supply the setting name and key like this: -D
latex_elements.docclass=scrartcl.
For boolean values, use 0 or 1 as the value.
Changed in version 0.6: The value can now be a dictionary value.

Sphinx Documentation, Release 1.6.3

14 Chapter 4. Invocation of sphinx-build

Changed in version 1.3: The value can now also be a list value.

-A name=value
Make the name assigned to value in the HTML templates.
New in version 0.5.

-n
Run in nit-picky mode. Currently, this generates warnings for all missing references. See the config
value nitpick_ignore for a way to exclude some references as “known missing”.

-N
Do not emit colored output.

-v
Increase verbosity (loglevel). This option can be given up to three times to get more debug logging
output. It implies -T.
New in version 1.2.

-q
Do not output anything on standard output, only write warnings and errors to standard error.

-Q
Do not output anything on standard output, also suppress warnings. Only errors are written to stan-
dard error.

-w file
Write warnings (and errors) to the given file, in addition to standard error.

-W
Turn warnings into errors. This means that the build stops at the first warning and sphinx-build
exits with exit status 1.

-T
Display the full traceback when an unhandled exception occurs. Otherwise, only a summary is
displayed and the traceback information is saved to a file for further analysis.
New in version 1.2.

-P
(Useful for debugging only.) Run the Python debugger, pdb, if an unhandled exception occurs while
building.

-h, --help, --version
Display usage summary or Sphinx version.
New in version 1.2.

You can also give one or more filenames on the command line after the source and build directories.
Sphinx will then try to build only these output files (and their dependencies).

4.1 Environment variables

The sphinx-build refers following environment variables:

 Sphinx Documentation, Release 1.6.3

4.1. Environment variables 15

MAKE
A path to make command. A command name is also allowed. sphinx-build uses it to invoke
sub-build process on make-mode.

4.2 Makefile options

The Makefile and make.bat files created by sphinx-quickstart usually run sphinx-build only
with the -b and -d options. However, they support the following variables to customize behavior:

PAPER
The value for ‘“papersize”` key of latex_elements.

SPHINXBUILD
The command to use instead of sphinx-build.

BUILDDIR
The build directory to use instead of the one chosen in sphinx-quickstart.

SPHINXOPTS
Additional options for sphinx-build.

4.3 Deprecation Warnings

If any deprecation warning like RemovedInSphinxXXXWarning are displayed when building a user’s
document, some Sphinx extension is using deprecated features. In that case, please report it to author of
the extension.
To disable the deprecation warnings, please set PYTHONWARNINGS= environment variable to your envi-
ronment. For example:

• PYTHONWARNINGS= make html (Linux/Mac)
• export PYTHONWARNINGS= and do make html (Linux/Mac)
• set PYTHONWARNINGS= and do make html (Windows)
• modify your Makefile/make.bat and set the environment variable

Sphinx Documentation, Release 1.6.3

16 Chapter 4. Invocation of sphinx-build

CHAPTER 5

Invocation of sphinx-apidoc

The sphinx-apidoc generates completely automatic API documentation for a Python package. It is
called like this:

$ sphinx-apidoc [options] -o outputdir packagedir [pathnames]

where packagedir is the path to the package to document, and outputdir is the directory where the gener-
ated sources are placed. Any pathnames given are paths to be excluded ignored during generation.

Warning: sphinx-apidoc generates reST files that use sphinx.ext.autodoc to document all
found modules. If any modules have side effects on import, these will be executed by autodoc when
sphinx-build is run.
If you document scripts (as opposed to library modules), make sure their main routine is protected by
a if __name__ == '__main__' condition.

The sphinx-apidoc script has several options:

-o outputdir
Gives the directory in which to place the generated output.

-f, --force
Normally, sphinx-apidoc does not overwrite any files. Use this option to force the overwrite of all
files that it generates.

-n, --dry-run
With this option given, no files will be written at all.

-s suffix
This option selects the file name suffix of output files. By default, this is rst.

-d maxdepth
This sets the maximum depth of the table of contents, if one is generated.

-l, --follow-links
This option makes sphinx-apidoc follow symbolic links when recursing the filesystem to discover
packages and modules. You may need it if you want to generate documentation from a source direc-
tory managed by collective.recipe.omelette. By default, symbolic links are skipped.
New in version 1.2.

 17

https://pypi.python.org/pypi/collective.recipe.omelette/

-T, --no-toc
This prevents the generation of a table-of-contents file modules.rst. This has no effect when
--full is given.

-F, --full
This option makes sphinx-apidoc create a full Sphinx project, using the same mechanism as
sphinx-quickstart. Most configuration values are set to default values, but you can influence the
most important ones using the following options.

--implicit-namespaces
By default sphinx-apidoc processes sys.path searching for modules only. Python 3.3 introduced PEP
420 implicit namespaces that allow module path structures such as foo/bar/module.py or
foo/bar/baz/__init__.py (notice that bar and foo are namespaces, not modules).
Specifying this option interprets paths recursively according to PEP-0420.

-M
This option makes sphinx-apidoc put module documentation before submodule documentation.

-a
Append module_path to sys.path.

-H project
Sets the project name to put in generated files (see project).

-A author
Sets the author name(s) to put in generated files (see copyright).

-V version
Sets the project version to put in generated files (see version).

-R release
Sets the project release to put in generated files (see release).

Sphinx Documentation, Release 1.6.3

18 Chapter 5. Invocation of sphinx-apidoc

https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0420

CHAPTER 6

reStructuredText Primer

This section is a brief introduction to reStructuredText (reST) concepts and syntax, intended to provide
authors with enough information to author documents productively. Since reST was designed to be a
simple, unobtrusive markup language, this will not take too long.

See also:

The authoritative reStructuredText User Documentation. The “ref” links in this document link to the
description of the individual constructs in the reST reference.

6.1 Paragraphs

The paragraph (ref) is the most basic block in a reST document. Paragraphs are simply chunks of text
separated by one or more blank lines. As in Python, indentation is significant in reST, so all lines of the
same paragraph must be left-aligned to the same level of indentation.

6.2 Inline markup

The standard reST inline markup is quite simple: use
• one asterisk: *text* for emphasis (italics),
• two asterisks: **text** for strong emphasis (boldface), and
• backquotes: ``text`` for code samples.

If asterisks or backquotes appear in running text and could be confused with inline markup delimiters,
they have to be escaped with a backslash.
Be aware of some restrictions of this markup:

• it may not be nested,
• content may not start or end with whitespace: * text* is wrong,
• it must be separated from surrounding text by non-word characters. Use a backslash escaped space

to work around that: thisis\ *one*\ word.

These restrictions may be lifted in future versions of the docutils.

 19

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#paragraphs

reST also allows for custom “interpreted text roles”, which signify that the enclosed text should be inter-
preted in a specific way. Sphinx uses this to provide semantic markup and cross-referencing of identi-
fiers, as described in the appropriate section. The general syntax is :rolename:`content`.
Standard reST provides the following roles:

• emphasis – alternate spelling for *emphasis*
• strong – alternate spelling for **strong**
• literal – alternate spelling for ``literal``
• subscript – subscript text
• superscript – superscript text
• title-reference – for titles of books, periodicals, and other materials

See Inline markup for roles added by Sphinx.

6.3 Lists and Quote-like blocks

List markup (ref) is natural: just place an asterisk at the start of a paragraph and indent properly. The
same goes for numbered lists; they can also be autonumbered using a # sign:

* This is a bulleted list.
* It has two items, the second
 item uses two lines.

1. This is a numbered list.
2. It has two items too.

#. This is a numbered list.
#. It has two items too.

Nested lists are possible, but be aware that they must be separated from the parent list items by blank
lines:

* this is
* a list

 * with a nested list
 * and some subitems

* and here the parent list continues

Definition lists (ref) are created as follows:

term (up to a line of text)
 Definition of the term, which must be indented

 and can even consist of multiple paragraphs

next term
 Description.

Note that the term cannot have more than one line of text.
Quoted paragraphs (ref) are created by just indenting them more than the surrounding paragraphs.

Sphinx Documentation, Release 1.6.3

20 Chapter 6. reStructuredText Primer

http://docutils.sourceforge.net/docs/ref/rst/roles.html#emphasis
http://docutils.sourceforge.net/docs/ref/rst/roles.html#strong
http://docutils.sourceforge.net/docs/ref/rst/roles.html#literal
http://docutils.sourceforge.net/docs/ref/rst/roles.html#subscript
http://docutils.sourceforge.net/docs/ref/rst/roles.html#superscript
http://docutils.sourceforge.net/docs/ref/rst/roles.html#title-reference
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#bullet-lists
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#definition-lists
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#block-quotes

Line blocks (ref) are a way of preserving line breaks:

| These lines are
| broken exactly like in
| the source file.

There are also several more special blocks available:
• field lists (ref)
• option lists (ref)
• quoted literal blocks (ref)
• doctest blocks (ref)

6.4 Source Code

Literal code blocks (ref) are introduced by ending a paragraph with the special marker ::. The literal
block must be indented (and, like all paragraphs, separated from the surrounding ones by blank lines):

This is a normal text paragraph. The next paragraph is a code sample::

 It is not processed in any way, except
 that the indentation is removed.

 It can span multiple lines.

This is a normal text paragraph again.

The handling of the :: marker is smart:
• If it occurs as a paragraph of its own, that paragraph is completely left out of the document.
• If it is preceded by whitespace, the marker is removed.
• If it is preceded by non-whitespace, the marker is replaced by a single colon.

That way, the second sentence in the above example’s first paragraph would be rendered as “The next
paragraph is a code sample:”.

6.5 Tables

For grid tables (ref), you have to “paint” the cell grid yourself. They look like this:

+------------------------+------------+----------+----------+
| Header row, column 1 | Header 2 | Header 3 | Header 4 |
| (header rows optional) | | | |
+========================+============+==========+==========+
| body row 1, column 1 | column 2 | column 3 | column 4 |
+------------------------+------------+----------+----------+
| body row 2 | ... | ... | |
+------------------------+------------+----------+----------+

Simple tables (ref) are easier to write, but limited: they must contain more than one row, and the first
column cells cannot contain multiple lines. They look like this:

 Sphinx Documentation, Release 1.6.3

6.4. Source Code 21

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#line-blocks
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#field-lists
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#option-lists
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#quoted-literal-blocks
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#doctest-blocks
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#literal-blocks
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#grid-tables
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#simple-tables

===== ===== =======
A B A and B
===== ===== =======
False False False
True False False
False True False
True True True
===== ===== =======

Two more syntaxes are supported: CSV tables and List tables. They use an explicit markup block, see Direc-
tives section.

6.6 Hyperlinks

6.6.1 External links

Use `Link text <http://example.com/>`_ for inline web links. If the link text should be the web
address, you don’t need special markup at all, the parser finds links and mail addresses in ordinary text.

Important There must be a space between the link text and the opening < for the URL.

You can also separate the link and the target definition (ref), like this:

This is a paragraph that contains `a link`_.

.. _a link: http://example.com/

6.6.2 Internal links

Internal linking is done via a special reST role provided by Sphinx, see the section on specific markup,
Cross-referencing arbitrary locations.

6.7 Sections

Section headers (ref) are created by underlining (and optionally overlining) the section title with a punctu-
ation character, at least as long as the text:

=================
This is a heading
=================

Normally, there are no heading levels assigned to certain characters as the structure is determined from
the succession of headings. However, this convention is used in Python’s Style Guide for documenting
which you may follow:

• # with overline, for parts
• * with overline, for chapters
• =, for sections
• -, for subsections
• ^, for subsubsections

Sphinx Documentation, Release 1.6.3

22 Chapter 6. reStructuredText Primer

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#hyperlink-targets
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#sections
https://docs.python.org/devguide/documenting.html#style-guide

• ", for paragraphs

Of course, you are free to use your own marker characters (see the reST documentation), and use a deeper
nesting level, but keep in mind that most target formats (HTML, LaTeX) have a limited supported nesting
depth.

6.8 Explicit Markup

“Explicit markup” (ref) is used in reST for most constructs that need special handling, such as footnotes,
specially-highlighted paragraphs, comments, and generic directives.
An explicit markup block begins with a line starting with .. followed by whitespace and is terminated by
the next paragraph at the same level of indentation. (There needs to be a blank line between explicit
markup and normal paragraphs. This may all sound a bit complicated, but it is intuitive enough when
you write it.)

6.9 Directives

A directive (ref) is a generic block of explicit markup. Besides roles, it is one of the extension mechanisms
of reST, and Sphinx makes heavy use of it.
Docutils supports the following directives:

• Admonitions: attention, caution, danger, error, hint, important, note, tip, warning and the generic
admonition. (Most themes style only “note” and “warning” specially.)

• Images:
• image (see also Images below)
• figure (an image with caption and optional legend)

• Additional body elements:
• contents (a local, i.e. for the current file only, table of contents)
• container (a container with a custom class, useful to generate an outer <div> in HTML)
• rubric (a heading without relation to the document sectioning)
• topic, sidebar (special highlighted body elements)
• parsed-literal (literal block that supports inline markup)
• epigraph (a block quote with optional attribution line)
• highlights, pull-quote (block quotes with their own class attribute)
• compound (a compound paragraph)

• Special tables:
• table (a table with title)
• csv-table (a table generated from comma-separated values)
• list-table (a table generated from a list of lists)

• Special directives:

 Sphinx Documentation, Release 1.6.3

6.8. Explicit Markup 23

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#explicit-markup-blocks
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#directives
http://docutils.sourceforge.net/docs/ref/rst/directives.html#attention
http://docutils.sourceforge.net/docs/ref/rst/directives.html#caution
http://docutils.sourceforge.net/docs/ref/rst/directives.html#danger
http://docutils.sourceforge.net/docs/ref/rst/directives.html#error
http://docutils.sourceforge.net/docs/ref/rst/directives.html#hint
http://docutils.sourceforge.net/docs/ref/rst/directives.html#important
http://docutils.sourceforge.net/docs/ref/rst/directives.html#note
http://docutils.sourceforge.net/docs/ref/rst/directives.html#tip
http://docutils.sourceforge.net/docs/ref/rst/directives.html#warning
http://docutils.sourceforge.net/docs/ref/rst/directives.html#admonitions
http://docutils.sourceforge.net/docs/ref/rst/directives.html#image
http://docutils.sourceforge.net/docs/ref/rst/directives.html#figure
http://docutils.sourceforge.net/docs/ref/rst/directives.html#table-of-contents
http://docutils.sourceforge.net/docs/ref/rst/directives.html#container
http://docutils.sourceforge.net/docs/ref/rst/directives.html#rubric
http://docutils.sourceforge.net/docs/ref/rst/directives.html#topic
http://docutils.sourceforge.net/docs/ref/rst/directives.html#sidebar
http://docutils.sourceforge.net/docs/ref/rst/directives.html#parsed-literal
http://docutils.sourceforge.net/docs/ref/rst/directives.html#epigraph
http://docutils.sourceforge.net/docs/ref/rst/directives.html#highlights
http://docutils.sourceforge.net/docs/ref/rst/directives.html#pull-quote
http://docutils.sourceforge.net/docs/ref/rst/directives.html#compound-paragraph
http://docutils.sourceforge.net/docs/ref/rst/directives.html#table
http://docutils.sourceforge.net/docs/ref/rst/directives.html#csv-table
http://docutils.sourceforge.net/docs/ref/rst/directives.html#list-table

2 When the default domain contains a class directive, this directive will be shadowed. Therefore, Sphinx re-exports it as
rst-class.

• raw (include raw target-format markup)
• include (include reStructuredText from another file) – in Sphinx, when given an absolute

include file path, this directive takes it as relative to the source directory
• class (assign a class attribute to the next element) 2

• HTML specifics:
• meta (generation of HTML <meta> tags)
• title (override document title)

• Influencing markup:
• default-role (set a new default role)
• role (create a new role)

Since these are only per-file, better use Sphinx’s facilities for setting the default_role.

Do not use the directives sectnum, header and footer.
Directives added by Sphinx are described in Sphinx Markup Constructs.
Basically, a directive consists of a name, arguments, options and content. (Keep this terminology in mind,
it is used in the next chapter describing custom directives.) Looking at this example,

.. function:: foo(x)
 foo(y, z)
 :module: some.module.name

 Return a line of text input from the user.

function is the directive name. It is given two arguments here, the remainder of the first line and the
second line, as well as one option module (as you can see, options are given in the lines immediately
following the arguments and indicated by the colons). Options must be indented to the same level as the
directive content.
The directive content follows after a blank line and is indented relative to the directive start.

6.10 Images

reST supports an image directive (ref), used like so:

.. image:: gnu.png
 (options)

When used within Sphinx, the file name given (here gnu.png) must either be relative to the source file,
or absolute which means that they are relative to the top source directory. For example, the file
sketch/spam.rst could refer to the image images/spam.png as ../images/spam.png or
/images/spam.png.
Sphinx will automatically copy image files over to a subdirectory of the output directory on building (e.g.
the _static directory for HTML output.)
Interpretation of image size options (width and height) is as follows: if the size has no unit or the unit

Sphinx Documentation, Release 1.6.3

24 Chapter 6. reStructuredText Primer

http://docutils.sourceforge.net/docs/ref/rst/directives.html#raw-data-pass-through
http://docutils.sourceforge.net/docs/ref/rst/directives.html#include
http://docutils.sourceforge.net/docs/ref/rst/directives.html#class
http://docutils.sourceforge.net/docs/ref/rst/directives.html#meta
http://docutils.sourceforge.net/docs/ref/rst/directives.html#metadata-document-title
http://docutils.sourceforge.net/docs/ref/rst/directives.html#default-role
http://docutils.sourceforge.net/docs/ref/rst/directives.html#role
http://docutils.sourceforge.net/docs/ref/rst/directives.html#sectnum
http://docutils.sourceforge.net/docs/ref/rst/directives.html#header
http://docutils.sourceforge.net/docs/ref/rst/directives.html#footer
http://docutils.sourceforge.net/docs/ref/rst/directives.html#image

is pixels, the given size will only be respected for output channels that support pixels. Other units (like pt
for points) will be used for HTML and LaTeX output (the latter replaces pt by bp as this is the TeX unit
such that 72bp=1in).
Sphinx extends the standard docutils behavior by allowing an asterisk for the extension:

.. image:: gnu.*

Sphinx then searches for all images matching the provided pattern and determines their type. Each
builder then chooses the best image out of these candidates. For instance, if the file name gnu.* was
given and two files gnu.pdf and gnu.png existed in the source tree, the LaTeX builder would choose
the former, while the HTML builder would prefer the latter. Supported image types and choosing priority
are defined at Available builders.
Note that image file names should not contain spaces.
Changed in version 0.4: Added the support for file names ending in an asterisk.
Changed in version 0.6: Image paths can now be absolute.
Changed in version 1.5: latex target supports pixels (default is 96px=1in).

6.11 Footnotes

For footnotes (ref), use [#name]_ to mark the footnote location, and add the footnote body at the bottom
of the document after a “Footnotes” rubric heading, like so:

Lorem ipsum [#f1]_ dolor sit amet ... [#f2]_

.. rubric:: Footnotes

.. [#f1] Text of the first footnote.

.. [#f2] Text of the second footnote.

You can also explicitly number the footnotes ([1]_) or use auto-numbered footnotes without names
([#]_).

6.12 Citations

Standard reST citations (ref) are supported, with the additional feature that they are “global”, i.e. all cita-
tions can be referenced from all files. Use them like so:

Lorem ipsum [Ref]_ dolor sit amet.

.. [Ref] Book or article reference, URL or whatever.

Citation usage is similar to footnote usage, but with a label that is not numeric or begins with #.

6.13 Substitutions

reST supports “substitutions” (ref), which are pieces of text and/or markup referred to in the text by
|name|. They are defined like footnotes with explicit markup blocks, like this:

.. |name| replace:: replacement *text*

 Sphinx Documentation, Release 1.6.3

6.11. Footnotes 25

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#footnotes
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#citations
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions

or this:

.. |caution| image:: warning.png
 :alt: Warning!

See the reST reference for substitutions for details.
If you want to use some substitutions for all documents, put them into rst_prolog or put them into a
separate file and include it into all documents you want to use them in, using the include directive. (Be
sure to give the include file a file name extension differing from that of other source files, to avoid Sphinx
finding it as a standalone document.)
Sphinx defines some default substitutions, see Substitutions.

6.14 Comments

Every explicit markup block which isn’t a valid markup construct (like the footnotes above) is regarded as
a comment (ref). For example:

.. This is a comment.

You can indent text after a comment start to form multiline comments:

..
 This whole indented block
 is a comment.

 Still in the comment.

6.15 Source encoding

Since the easiest way to include special characters like em dashes or copyright signs in reST is to directly
write them as Unicode characters, one has to specify an encoding. Sphinx assumes source files to be
encoded in UTF-8 by default; you can change this with the source_encoding config value.

6.16 Gotchas

There are some problems one commonly runs into while authoring reST documents:
• Separation of inline markup: As said above, inline markup spans must be separated from the

surrounding text by non-word characters, you have to use a backslash-escaped space to get around
that. See the reference for the details.

• No nested inline markup: Something like *see :func:`foo`* is not possible.

Sphinx Documentation, Release 1.6.3

26 Chapter 6. reStructuredText Primer

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#comments
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions

3 The LaTeX writer only refers the maxdepth option of first toctree directive in the document.

CHAPTER 7

Sphinx Markup Constructs

Sphinx adds a lot of new directives and interpreted text roles to standard reST markup. This section
contains the reference material for these facilities.

7.1 The TOC tree

Since reST does not have facilities to interconnect several documents, or split documents into multiple
output files, Sphinx uses a custom directive to add relations between the single files the documentation is
made of, as well as tables of contents. The toctree directive is the central element.

Note: Simple “inclusion” of one file in another can be done with the include directive.

.. toctree::
This directive inserts a “TOC tree” at the current location, using the individual TOCs (including
“sub-TOC trees”) of the documents given in the directive body. Relative document names (not begin-
ning with a slash) are relative to the document the directive occurs in, absolute names are relative to
the source directory. A numeric maxdepth option may be given to indicate the depth of the tree; by
default, all levels are included. 3

Consider this example (taken from the Python docs’ library reference index):

.. toctree::
 :maxdepth: 2

 intro
 strings
 datatypes
 numeric
 (many more documents listed here)

This accomplishes two things:
• Tables of contents from all those documents are inserted, with a maximum depth of two, that

means one nested heading. toctree directives in those documents are also taken into account.
• Sphinx knows the relative order of the documents intro, strings and so forth, and it knows

that they are children of the shown document, the library index. From this information it gener-
ates “next chapter”, “previous chapter” and “parent chapter” links.

Entries

 27

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://docutils.sourceforge.net/docs/ref/rst/directives.html#include

4 A note on available globbing syntax: you can use the standard shell constructs *, ?, [...] and [!...] with the feature that
these all don’t match slashes. A double star ** can be used to match any sequence of characters including slashes.

Document titles in the toctree will be automatically read from the title of the referenced document.
If that isn’t what you want, you can specify an explicit title and target using a similar syntax to reST
hyperlinks (and Sphinx’s cross-referencing syntax). This looks like:

.. toctree::

 intro
 All about strings <strings>
 datatypes

The second line above will link to the strings document, but will use the title “All about strings”
instead of the title of the strings document.
You can also add external links, by giving an HTTP URL instead of a document name.
Section numbering
If you want to have section numbers even in HTML output, give the toplevel toctree a numbered
option. For example:

.. toctree::
 :numbered:

 foo
 bar

Numbering then starts at the heading of foo. Sub-toctrees are automatically numbered (don’t give
the numbered flag to those).
Numbering up to a specific depth is also possible, by giving the depth as a numeric argument to
numbered.
Additional options
You can use caption option to provide a toctree caption and you can use name option to provide
implicit target name that can be referenced by using ref:

.. toctree::
 :caption: Table of Contents
 :name: mastertoc

 foo

If you want only the titles of documents in the tree to show up, not other headings of the same level,
you can use the titlesonly option:

.. toctree::
 :titlesonly:

 foo
 bar

You can use “globbing” in toctree directives, by giving the glob flag option. All entries are then
matched against the list of available documents, and matches are inserted into the list alphabetically.
Example:

.. toctree::
 :glob:

 intro*
 recipe/*
 *

This includes first all documents whose names start with intro, then all documents in the recipe

Sphinx Documentation, Release 1.6.3

28 Chapter 7. Sphinx Markup Constructs

folder, then all remaining documents (except the one containing the directive, of course.) 4

The special entry name self stands for the document containing the toctree directive. This is useful
if you want to generate a “sitemap” from the toctree.
You can use the reversed flag option to reverse the order of the entries in the list. This can be useful
when using the glob flag option to reverse the ordering of the files. Example:

.. toctree::
 :glob:
 :reversed:

 recipe/*

You can also give a “hidden” option to the directive, like this:

.. toctree::
 :hidden:

 doc_1
 doc_2

This will still notify Sphinx of the document hierarchy, but not insert links into the document at the
location of the directive – this makes sense if you intend to insert these links yourself, in a different
style, or in the HTML sidebar.
In cases where you want to have only one top-level toctree and hide all other lower level toctrees you
can add the “includehidden” option to the top-level toctree entry:

.. toctree::
 :includehidden:

 doc_1
 doc_2

All other toctree entries can then be eliminated by the “hidden” option.
In the end, all documents in the source directory (or subdirectories) must occur in some toctree
directive; Sphinx will emit a warning if it finds a file that is not included, because that means that this
file will not be reachable through standard navigation.
Use exclude_patterns to explicitly exclude documents or directories from building completely.
Use the “orphan” metadata to let a document be built, but notify Sphinx that it is not reachable via a
toctree.
The “master document” (selected by master_doc) is the “root” of the TOC tree hierarchy. It can be
used as the documentation’s main page, or as a “full table of contents” if you don’t give a maxdepth
option.
Changed in version 0.3: Added “globbing” option.
Changed in version 0.6: Added “numbered” and “hidden” options as well as external links and
support for “self” references.
Changed in version 1.0: Added “titlesonly” option.
Changed in version 1.1: Added numeric argument to “numbered”.
Changed in version 1.2: Added “includehidden” option.
Changed in version 1.3: Added “caption” and “name” option.

7.1.1 Special names

Sphinx reserves some document names for its own use; you should not try to create documents with
these names – it will cause problems.

 Sphinx Documentation, Release 1.6.3

7.1. The TOC tree 29

The special document names (and pages generated for them) are:
• genindex, modindex, search

These are used for the general index, the Python module index, and the search page, respectively.
The general index is populated with entries from modules, all index-generating object descriptions,
and from index directives.
The Python module index contains one entry per py:module directive.
The search page contains a form that uses the generated JSON search index and JavaScript to
full-text search the generated documents for search words; it should work on every major browser
that supports modern JavaScript.

• every name beginning with _
Though only few such names are currently used by Sphinx, you should not create documents or
document-containing directories with such names. (Using _ as a prefix for a custom template direc-
tory is fine.)

Warning: Be careful with unusual characters in filenames. Some formats may interpret these charac-
ters in unexpected ways:

• Do not use the colon : for HTML based formats. Links to other parts may not work.
• Do not use the plus + for the ePub format. Some resources may not be found.

7.2 Paragraph-level markup

These directives create short paragraphs and can be used inside information units as well as normal text:

.. note::
An especially important bit of information about an API that a user should be aware of when using
whatever bit of API the note pertains to. The content of the directive should be written in complete
sentences and include all appropriate punctuation.
Example:

.. note::

 This function is not suitable for sending spam e-mails.

.. warning::
An important bit of information about an API that a user should be very aware of when using what-
ever bit of API the warning pertains to. The content of the directive should be written in complete
sentences and include all appropriate punctuation. This differs from note in that it is recommended
over note for information regarding security.

.. versionadded:: version
This directive documents the version of the project which added the described feature to the library
or C API. When this applies to an entire module, it should be placed at the top of the module section
before any prose.
The first argument must be given and is the version in question; you can add a second argument
consisting of a brief explanation of the change.
Example:

.. versionadded:: 2.5

Sphinx Documentation, Release 1.6.3

30 Chapter 7. Sphinx Markup Constructs

 The *spam* parameter.

Note that there must be no blank line between the directive head and the explanation; this is to make
these blocks visually continuous in the markup.

.. versionchanged:: version
Similar to versionadded, but describes when and what changed in the named feature in some way
(new parameters, changed side effects, etc.).

.. deprecated:: version
Similar to versionchanged, but describes when the feature was deprecated. An explanation can
also be given, for example to inform the reader what should be used instead. Example:

.. deprecated:: 3.1
 Use :func:`spam` instead.

.. seealso::
Many sections include a list of references to module documentation or external documents. These
lists are created using the seealso directive.
The seealso directive is typically placed in a section just before any subsections. For the HTML
output, it is shown boxed off from the main flow of the text.
The content of the seealso directive should be a reST definition list. Example:

.. seealso::

 Module :py:mod:`zipfile`
 Documentation of the :py:mod:`zipfile` standard module.

 `GNU tar manual, Basic Tar Format <http://link>`_
 Documentation for tar archive files, including GNU tar extensions.

There’s also a “short form” allowed that looks like this:

.. seealso:: modules :py:mod:`zipfile`, :py:mod:`tarfile`

New in version 0.5: The short form.

.. rubric:: title
This directive creates a paragraph heading that is not used to create a table of contents node.

Note: If the title of the rubric is “Footnotes” (or the selected language’s equivalent), this rubric is
ignored by the LaTeX writer, since it is assumed to only contain footnote definitions and therefore
would create an empty heading.

.. centered::
This directive creates a centered boldfaced line of text. Use it as follows:

.. centered:: LICENSE AGREEMENT

Deprecated since version 1.1: This presentation-only directive is a legacy from older versions. Use a
rst-class directive instead and add an appropriate style.

 Sphinx Documentation, Release 1.6.3

7.2. Paragraph-level markup 31

.. hlist::
This directive must contain a bullet list. It will transform it into a more compact list by either
distributing more than one item horizontally, or reducing spacing between items, depending on the
builder.
For builders that support the horizontal distribution, there is a columns option that specifies the
number of columns; it defaults to 2. Example:

.. hlist::
 :columns: 3

 * A list of
 * short items
 * that should be
 * displayed
 * horizontally

New in version 0.6.

7.3 Table-of-contents markup

The toctree directive, which generates tables of contents of subdocuments, is described in The TOC tree.
For local tables of contents, use the standard reST contents directive.

7.4 Glossary

.. glossary::
This directive must contain a reST definition-list-like markup with terms and definitions. The defini-
tions will then be referencable with the term role. Example:

.. glossary::

 environment
 A structure where information about all documents under the root is
 saved, and used for cross-referencing. The environment is pickled
 after the parsing stage, so that successive runs only need to read
 and parse new and changed documents.

 source directory
 The directory which, including its subdirectories, contains all
 source files for one Sphinx project.

In contrast to regular definition lists, multiple terms per entry are allowed, and inline markup is
allowed in terms. You can link to all of the terms. For example:

.. glossary::

 term 1
 term 2
 Definition of both terms.

(When the glossary is sorted, the first term determines the sort order.)
If you want to specify “grouping key” for general index entries, you can put a “key” as “term : key”.
For example:

Sphinx Documentation, Release 1.6.3

32 Chapter 7. Sphinx Markup Constructs

http://docutils.sourceforge.net/docs/ref/rst/directives.html#table-of-contents

.. glossary::

 term 1 : A
 term 2 : B
 Definition of both terms.

Note that “key” is used for grouping key as is. The “key” isn’t normalized; key “A” and “a” become
different groups. The whole characters in “key” is used instead of a first character; it is used for
“Combining Character Sequence” and “Surrogate Pairs” grouping key.
In i18n situation, you can specify “localized term : key” even if original text only have “term” part. In
this case, translated “localized term” will be categorized in “key” group.
New in version 0.6: You can now give the glossary directive a :sorted: flag that will automatically
sort the entries alphabetically.
Changed in version 1.1: Now supports multiple terms and inline markup in terms.
Changed in version 1.4: Index key for glossary term should be considered experimental.

7.5 Grammar production displays

Special markup is available for displaying the productions of a formal grammar. The markup is simple
and does not attempt to model all aspects of BNF (or any derived forms), but provides enough to allow
context-free grammars to be displayed in a way that causes uses of a symbol to be rendered as hyperlinks
to the definition of the symbol. There is this directive:

.. productionlist:: [name]
This directive is used to enclose a group of productions. Each production is given on a single line
and consists of a name, separated by a colon from the following definition. If the definition spans
multiple lines, each continuation line must begin with a colon placed at the same column as in the
first line.
The argument to productionlist serves to distinguish different sets of production lists that
belong to different grammars.
Blank lines are not allowed within productionlist directive arguments.
The definition can contain token names which are marked as interpreted text (e.g. sum ::=
`integer` "+" `integer`) – this generates cross-references to the productions of these tokens.
Outside of the production list, you can reference to token productions using token.
Note that no further reST parsing is done in the production, so that you don’t have to escape * or |
characters.

The following is an example taken from the Python Reference Manual:

.. productionlist::
 try_stmt: try1_stmt | try2_stmt
 try1_stmt: "try" ":" `suite`
 : ("except" [`expression` ["," `target`]] ":" `suite`)+
 : ["else" ":" `suite`]
 : ["finally" ":" `suite`]
 try2_stmt: "try" ":" `suite`
 : "finally" ":" `suite`

 Sphinx Documentation, Release 1.6.3

7.5. Grammar production displays 33

7.6 Showing code examples

Examples of Python source code or interactive sessions are represented using standard reST literal blocks.
They are started by a :: at the end of the preceding paragraph and delimited by indentation.
Representing an interactive session requires including the prompts and output along with the Python
code. No special markup is required for interactive sessions. After the last line of input or output
presented, there should not be an “unused” primary prompt; this is an example of what not to do:

>>> 1 + 1
2
>>>

Syntax highlighting is done with Pygments and handled in a smart way:
• There is a “highlighting language” for each source file. Per default, this is 'python' as the majority

of files will have to highlight Python snippets, but the doc-wide default can be set with the
highlight_language config value.

• Within Python highlighting mode, interactive sessions are recognized automatically and highlighted
appropriately. Normal Python code is only highlighted if it is parseable (so you can use Python as
the default, but interspersed snippets of shell commands or other code blocks will not be high-
lighted as Python).

• The highlighting language can be changed using the highlight directive, used as follows:

.. highlight:: language
Example:

.. highlight:: c

This language is used until the next highlight directive is encountered.

• For documents that have to show snippets in different languages, there’s also a code-block direc-
tive that is given the highlighting language directly:

.. code-block:: language
Use it like this:

.. code-block:: ruby

 Some Ruby code.

The directive’s alias name sourcecode works as well.

• The valid values for the highlighting language are:
• none (no highlighting)
• python (the default when highlight_language isn’t set)
• guess (let Pygments guess the lexer based on contents, only works with certain well-recogniz-

able languages)
• rest

• c

• … and any other lexer alias that Pygments supports.

Sphinx Documentation, Release 1.6.3

34 Chapter 7. Sphinx Markup Constructs

http://pygments.org
http://pygments.org/docs/lexers/

5 There is a standard .. include directive, but it raises errors if the file is not found. This one only emits a warning.

• If highlighting with the selected language fails (i.e. Pygments emits an “Error” token), the block is
not highlighted in any way.

7.6.1 Line numbers

Pygments can generate line numbers for code blocks. For automatically-highlighted blocks (those started
by ::), line numbers must be switched on in a highlight directive, with the linenothreshold
option:

.. highlight:: python
 :linenothreshold: 5

This will produce line numbers for all code blocks longer than five lines.
For code-block blocks, a linenos flag option can be given to switch on line numbers for the individual
block:

.. code-block:: ruby
 :linenos:

 Some more Ruby code.

The first line number can be selected with the lineno-start option. If present, linenos is automati-
cally activated as well.

Some more Ruby code, with line numbering starting at 10.

Additionally, an emphasize-lines option can be given to have Pygments emphasize particular lines:

.. code-block:: python
 :emphasize-lines: 3,5

 def some_function():
 interesting = False
 print 'This line is highlighted.'
 print 'This one is not...'
 print '...but this one is.'

Changed in version 1.1: emphasize-lines has been added.
Changed in version 1.3: lineno-start has been added.

7.6.2 Includes

.. literalinclude:: filename
Longer displays of verbatim text may be included by storing the example text in an external file
containing only plain text. The file may be included using the literalinclude directive. 5 For
example, to include the Python source file example.py, use:

.. literalinclude:: example.py

The file name is usually relative to the current file’s path. However, if it is absolute (starting with /),
it is relative to the top source directory.
Tabs in the input are expanded if you give a tab-width option with the desired tab width.
Like code-block, the directive supports the linenos flag option to switch on line numbers, the
lineno-start option to select the first line number, the emphasize-lines option to emphasize
particular lines, and a language option to select a language different from the current file’s standard

 Sphinx Documentation, Release 1.6.3

7.6. Showing code examples 35

language. Example with options:

.. literalinclude:: example.rb
 :language: ruby
 :emphasize-lines: 12,15-18
 :linenos:

Include files are assumed to be encoded in the source_encoding. If the file has a different encod-
ing, you can specify it with the encoding option:

.. literalinclude:: example.py
 :encoding: latin-1

The directive also supports including only parts of the file. If it is a Python module, you can select a
class, function or method to include using the pyobject option:

.. literalinclude:: example.py
 :pyobject: Timer.start

This would only include the code lines belonging to the start() method in the Timer class within
the file.
Alternately, you can specify exactly which lines to include by giving a lines option:

.. literalinclude:: example.py
 :lines: 1,3,5-10,20-

This includes the lines 1, 3, 5 to 10 and lines 20 to the last line.
Another way to control which part of the file is included is to use the start-after and
end-before options (or only one of them). If start-after is given as a string option, only lines
that follow the first line containing that string are included. If end-before is given as a string
option, only lines that precede the first lines containing that string are included.
With lines selected using start-after it is still possible to use lines, the first allowed line having
by convention the line number 1.
When lines have been selected in any of the ways described above, the line numbers in
emphasize-lines also refer to the selection, with the first selected line having number 1.
When specifying particular parts of a file to display, it can be useful to display the original line
numbers. This can be done using the lineno-match option, which is however allowed only when
the selection consists of contiguous lines.
You can prepend and/or append a line to the included code, using the prepend and append option,
respectively. This is useful e.g. for highlighting PHP code that doesn’t include the <?php/?> mark-
ers.
If you want to show the diff of the code, you can specify the old file by giving a diff option:

.. literalinclude:: example.py
 :diff: example.py.orig

This shows the diff between example.py and example.py.orig with unified diff format.
New in version 0.4.3: The encoding option.
New in version 0.6: The pyobject, lines, start-after and end-before options, as well as
support for absolute filenames.
New in version 1.0: The prepend and append options, as well as tab-width.
New in version 1.3: The diff option. The lineno-match option.
Changed in version 1.6: With both start-after and lines in use, the first line as per start-after
is considered to be with line number 1 for lines.

Sphinx Documentation, Release 1.6.3

36 Chapter 7. Sphinx Markup Constructs

7.6.3 Caption and name

New in version 1.3.
A caption option can be given to show that name before the code block. A name option can be provided
implicit target name that can be referenced by using ref. For example:

.. code-block:: python
 :caption: this.py
 :name: this-py

 print 'Explicit is better than implicit.'

literalinclude also supports the caption and name option. caption has an additional feature that
if you leave the value empty, the shown filename will be exactly the one given as an argument.

7.6.4 Dedent

New in version 1.3.
A dedent option can be given to strip indentation characters from the code block. For example:

.. literalinclude:: example.rb
 :language: ruby
 :dedent: 4
 :lines: 10-15

code-block also supports the dedent option.

7.7 Inline markup

Sphinx uses interpreted text roles to insert semantic markup into documents. They are written as
:rolename:`content`.

Note: The default role (`content`) has no special meaning by default. You are free to use it for anything
you like, e.g. variable names; use the default_role config value to set it to a known role – the any role
to find anything or the py:obj role to find Python objects are very useful for this.

See Sphinx Domains for roles added by domains.

7.7.1 Cross-referencing syntax

Cross-references are generated by many semantic interpreted text roles. Basically, you only need to write
:role:`target`, and a link will be created to the item named target of the type indicated by role. The
link’s text will be the same as target.
There are some additional facilities, however, that make cross-referencing roles more versatile:

• You may supply an explicit title and reference target, like in reST direct hyperlinks: :role:`title
<target>` will refer to target, but the link text will be title.

• If you prefix the content with !, no reference/hyperlink will be created.
• If you prefix the content with ~, the link text will only be the last component of the target. For exam-

ple, :py:meth:`~Queue.Queue.get` will refer to Queue.Queue.get but only display get as
the link text. This does not work with all cross-reference roles, but is domain specific.

 Sphinx Documentation, Release 1.6.3

7.7. Inline markup 37

In HTML output, the link’s title attribute (that is e.g. shown as a tool-tip on mouse-hover) will
always be the full target name.

Cross-referencing anything

:any:

New in version 1.3.
This convenience role tries to do its best to find a valid target for its reference text.

• First, it tries standard cross-reference targets that would be referenced by doc, ref or option.
Custom objects added to the standard domain by extensions (see add_object_type()) are
also searched.

• Then, it looks for objects (targets) in all loaded domains. It is up to the domains how specific a
match must be. For example, in the Python domain a reference of :any:`Builder` would
match the sphinx.builders.Builder class.

If none or multiple targets are found, a warning will be emitted. In the case of multiple targets, you
can change “any” to a specific role.
This role is a good candidate for setting default_role. If you do, you can write cross-references
without a lot of markup overhead. For example, in this Python function documentation

.. function:: install()

 This function installs a `handler` for every signal known by the
 `signal` module. See the section `about-signals` for more information.

there could be references to a glossary term (usually :term:`handler`), a Python module (usually
:py:mod:`signal` or :mod:`signal`) and a section (usually :ref:`about-signals`).
The any role also works together with the intersphinx extension: when no local cross-reference is
found, all object types of intersphinx inventories are also searched.

Cross-referencing objects

These roles are described with their respective domains:
• Python
• C
• C++
• JavaScript
• ReST

Cross-referencing arbitrary locations

:ref:
To support cross-referencing to arbitrary locations in any document, the standard reST labels are
used. For this to work label names must be unique throughout the entire documentation. There are
two ways in which you can refer to labels:

• If you place a label directly before a section title, you can reference to it with
:ref:`label-name`. Example:

.. _my-reference-label:

Section to cross-reference

Sphinx Documentation, Release 1.6.3

38 Chapter 7. Sphinx Markup Constructs

This is the text of the section.

It refers to the section itself, see :ref:`my-reference-label`.

The :ref: role would then generate a link to the section, with the link title being “Section to
cross-reference”. This works just as well when section and reference are in different source files.
Automatic labels also work with figures: given

.. _my-figure:

.. figure:: whatever

 Figure caption

a reference :ref:`my-figure` would insert a reference to the figure with link text “Figure
caption”.
The same works for tables that are given an explicit caption using the table directive.

• Labels that aren’t placed before a section title can still be referenced to, but you must give the
link an explicit title, using this syntax: :ref:`Link title <label-name>`.

Using ref is advised over standard reStructuredText links to sections (like `Section title`_)
because it works across files, when section headings are changed, and for all builders that support
cross-references.

Cross-referencing documents

New in version 0.6.
There is also a way to directly link to documents:

:doc:
Link to the specified document; the document name can be specified in absolute or relative fashion.
For example, if the reference :doc:`parrot` occurs in the document sketches/index, then the
link refers to sketches/parrot. If the reference is :doc:`/people` or :doc:`../people`, the
link refers to people.
If no explicit link text is given (like usual: :doc:`Monty Python members </people>`), the
link caption will be the title of the given document.

Referencing downloadable files

New in version 0.6.

:download:
This role lets you link to files within your source tree that are not reST documents that can be viewed,
but files that can be downloaded.
When you use this role, the referenced file is automatically marked for inclusion in the output when
building (obviously, for HTML output only). All downloadable files are put into the _downloads
subdirectory of the output directory; duplicate filenames are handled.
An example:

See :download:`this example script <../example.py>`.

The given filename is usually relative to the directory the current source file is contained in, but if it
absolute (starting with /), it is taken as relative to the top source directory.
The example.py file will be copied to the output directory, and a suitable link generated to it.
Not to show unavailable download links, you should wrap whole paragraphs that have this role:

 Sphinx Documentation, Release 1.6.3

7.7. Inline markup 39

http://docutils.sourceforge.net/docs/ref/rst/directives.html#table

.. only:: builder_html

 See :download:`this example script <../example.py>`.

Cross-referencing figures by figure number

New in version 1.3.
Changed in version 1.5: numref role can also refer sections. And numref allows {name} for the link text.

:numref:
Link to the specified figures, tables, code-blocks and sections; the standard reST labels are used.
When you use this role, it will insert a reference to the figure with link text by its figure number like
“Fig. 1.1”.
If an explicit link text is given (like usual: :numref:`Image of Sphinx (Fig. %s)
<my-figure>`), the link caption will be the title of the reference. As a special character, %s and
{number} will be replaced to figure number. {name} will be replaced to figure caption. If no explicit
link text is given, the value of numfig_format is used to default value of link text.
If numfig is False, figures are not numbered. so this role inserts not a reference but labels or link
text.

Cross-referencing other items of interest

The following roles do possibly create a cross-reference, but do not refer to objects:

:envvar:
An environment variable. Index entries are generated. Also generates a link to the matching envvar
directive, if it exists.

:token:
The name of a grammar token (used to create links between productionlist directives).

:keyword:
The name of a keyword in Python. This creates a link to a reference label with that name, if it exists.

:option:
A command-line option to an executable program. This generates a link to a option directive, if it
exists.

The following role creates a cross-reference to a term in a glossary:

:term:
Reference to a term in a glossary. A glossary is created using the glossary directive containing a
definition list with terms and definitions. It does not have to be in the same file as the term markup,
for example the Python docs have one global glossary in the glossary.rst file.
If you use a term that’s not explained in a glossary, you’ll get a warning during build.

7.7.2 Other semantic markup

The following roles don’t do anything special except formatting the text in a different style:

:abbr:
An abbreviation. If the role content contains a parenthesized explanation, it will be treated specially:
it will be shown in a tool-tip in HTML, and output only once in LaTeX.
Example: :abbr:`LIFO (last-in, first-out)`.
New in version 0.6.

Sphinx Documentation, Release 1.6.3

40 Chapter 7. Sphinx Markup Constructs

:command:
The name of an OS-level command, such as rm.

:dfn:
Mark the defining instance of a term in the text. (No index entries are generated.)

:file:
The name of a file or directory. Within the contents, you can use curly braces to indicate a “variable”
part, for example:

... is installed in :file:`/usr/lib/python2.{x}/site-packages` ...

In the built documentation, the x will be displayed differently to indicate that it is to be replaced by
the Python minor version.

:guilabel:
Labels presented as part of an interactive user interface should be marked using guilabel. This
includes labels from text-based interfaces such as those created using curses or other text-based
libraries. Any label used in the interface should be marked with this role, including button labels,
window titles, field names, menu and menu selection names, and even values in selection lists.
Changed in version 1.0: An accelerator key for the GUI label can be included using an ampersand; this
will be stripped and displayed underlined in the output (example: :guilabel:`&Cancel`). To
include a literal ampersand, double it.

:kbd:
Mark a sequence of keystrokes. What form the key sequence takes may depend on platform- or
application-specific conventions. When there are no relevant conventions, the names of modifier
keys should be spelled out, to improve accessibility for new users and non-native speakers. For
example, an xemacs key sequence may be marked like :kbd:`C-x C-f`, but without reference to a
specific application or platform, the same sequence should be marked as :kbd:`Control-x
Control-f`.

:mailheader:
The name of an RFC 822-style mail header. This markup does not imply that the header is being
used in an email message, but can be used to refer to any header of the same “style.” This is also
used for headers defined by the various MIME specifications. The header name should be entered in
the same way it would normally be found in practice, with the camel-casing conventions being
preferred where there is more than one common usage. For example:
:mailheader:`Content-Type`.

:makevar:
The name of a make variable.

:manpage:
A reference to a Unix manual page including the section, e.g. :manpage:`ls(1)`.

:menuselection:
Menu selections should be marked using the menuselection role. This is used to mark a complete
sequence of menu selections, including selecting submenus and choosing a specific operation, or any
subsequence of such a sequence. The names of individual selections should be separated by -->.
For example, to mark the selection “Start > Programs”, use this markup:

:menuselection:`Start --> Programs`

When including a selection that includes some trailing indicator, such as the ellipsis some operating

 Sphinx Documentation, Release 1.6.3

7.7. Inline markup 41

systems use to indicate that the command opens a dialog, the indicator should be omitted from the
selection name.
menuselection also supports ampersand accelerators just like guilabel.

:mimetype:
The name of a MIME type, or a component of a MIME type (the major or minor portion, taken alone).

:newsgroup:
The name of a Usenet newsgroup.

:program:
The name of an executable program. This may differ from the file name for the executable for some
platforms. In particular, the .exe (or other) extension should be omitted for Windows programs.

:regexp:
A regular expression. Quotes should not be included.

:samp:
A piece of literal text, such as code. Within the contents, you can use curly braces to indicate a “vari-
able” part, as in file. For example, in :samp:`print 1+{variable}`, the part variable
would be emphasized.
If you don’t need the “variable part” indication, use the standard ``code`` instead.

There is also an index role to generate index entries.
The following roles generate external links:

:pep:
A reference to a Python Enhancement Proposal. This generates appropriate index entries. The text
“PEP number” is generated; in the HTML output, this text is a hyperlink to an online copy of the spec-
ified PEP. You can link to a specific section by saying :pep:`number#anchor`.

:rfc:
A reference to an Internet Request for Comments. This generates appropriate index entries. The text
“RFC number” is generated; in the HTML output, this text is a hyperlink to an online copy of the
specified RFC. You can link to a specific section by saying :rfc:`number#anchor`.

Note that there are no special roles for including hyperlinks as you can use the standard reST markup for
that purpose.

7.7.3 Substitutions

The documentation system provides three substitutions that are defined by default. They are set in the
build configuration file.

|release|
Replaced by the project release the documentation refers to. This is meant to be the full version
string including alpha/beta/release candidate tags, e.g. 2.5.2b3. Set by release.

|version|
Replaced by the project version the documentation refers to. This is meant to consist only of the
major and minor version parts, e.g. 2.5, even for version 2.5.1. Set by version.

|today|
Replaced by either today’s date (the date on which the document is read), or the date set in the build
configuration file. Normally has the format April 14, 2007. Set by today_fmt and today.

Sphinx Documentation, Release 1.6.3

42 Chapter 7. Sphinx Markup Constructs

7.8 Miscellaneous markup

7.8.1 File-wide metadata

reST has the concept of “field lists”; these are a sequence of fields marked up like this:

:fieldname: Field content

A field list near the top of a file is parsed by docutils as the “docinfo” which is normally used to record
the author, date of publication and other metadata. In Sphinx, a field list preceding any other markup is
moved from the docinfo to the Sphinx environment as document metadata and is not displayed in the
output; a field list appearing after the document title will be part of the docinfo as normal and will be
displayed in the output.
At the moment, these metadata fields are recognized:
tocdepth

The maximum depth for a table of contents of this file.
New in version 0.4.

nocomments
If set, the web application won’t display a comment form for a page generated from this source file.

orphan
If set, warnings about this file not being included in any toctree will be suppressed.
New in version 1.0.

7.8.2 Meta-information markup

.. sectionauthor:: name <email>
Identifies the author of the current section. The argument should include the author’s name such
that it can be used for presentation and email address. The domain name portion of the address
should be lower case. Example:

.. sectionauthor:: Guido van Rossum <guido@python.org>

By default, this markup isn’t reflected in the output in any way (it helps keep track of contributions),
but you can set the configuration value show_authors to True to make them produce a paragraph
in the output.

.. codeauthor:: name <email>
The codeauthor directive, which can appear multiple times, names the authors of the described
code, just like sectionauthor names the author(s) of a piece of documentation. It too only
produces output if the show_authors configuration value is True.

7.8.3 Index-generating markup

Sphinx automatically creates index entries from all object descriptions (like functions, classes or
attributes) like discussed in Sphinx Domains.
However, there is also explicit markup available, to make the index more comprehensive and enable index
entries in documents where information is not mainly contained in information units, such as the
language reference.

 Sphinx Documentation, Release 1.6.3

7.8. Miscellaneous markup 43

.. index:: <entries>
This directive contains one or more index entries. Each entry consists of a type and a value, sepa-
rated by a colon.
For example:

.. index::
 single: execution; context
 module: __main__
 module: sys
 triple: module; search; path

The execution context

...

This directive contains five entries, which will be converted to entries in the generated index which
link to the exact location of the index statement (or, in case of offline media, the corresponding page
number).
Since index directives generate cross-reference targets at their location in the source, it makes sense to
put them before the thing they refer to – e.g. a heading, as in the example above.
The possible entry types are:
single

Creates a single index entry. Can be made a subentry by separating the subentry text with a
semicolon (this notation is also used below to describe what entries are created).

pair
pair: loop; statement is a shortcut that creates two index entries, namely loop;
statement and statement; loop.

triple
Likewise, triple: module; search; path is a shortcut that creates three index entries,
which are module; search path, search; path, module and path; module search.

see
see: entry; other creates an index entry that refers from entry to other.

seealso
Like see, but inserts “see also” instead of “see”.

module, keyword, operator, object, exception, statement, builtin
These all create two index entries. For example, module: hashlib creates the entries
module; hashlib and hashlib; module. (These are Python-specific and therefore depre-
cated.)

You can mark up “main” index entries by prefixing them with an exclamation mark. The references
to “main” entries are emphasized in the generated index. For example, if two pages contain

.. index:: Python

and one page contains

.. index:: ! Python

then the backlink to the latter page is emphasized among the three backlinks.
For index directives containing only “single” entries, there is a shorthand notation:

.. index:: BNF, grammar, syntax, notation

This creates four index entries.

Sphinx Documentation, Release 1.6.3

44 Chapter 7. Sphinx Markup Constructs

6 For most builders name and format are the same. At the moment only builders derived from the html builder distinguish
between the builder format and the builder name.
Note that the current builder tag is not available in conf.py, it is only available after the builder is initialized.

Changed in version 1.1: Added see and seealso types, as well as marking main entries.

:index:
While the index directive is a block-level markup and links to the beginning of the next paragraph,
there is also a corresponding role that sets the link target directly where it is used.
The content of the role can be a simple phrase, which is then kept in the text and used as an index
entry. It can also be a combination of text and index entry, styled like with explicit targets of
cross-references. In that case, the “target” part can be a full entry as described for the directive
above. For example:

This is a normal reST :index:`paragraph` that contains several
:index:`index entries <pair: index; entry>`.

New in version 1.1.

7.8.4 Including content based on tags

.. only:: <expression>
Include the content of the directive only if the expression is true. The expression should consist of
tags, like this:

.. only:: html and draft

Undefined tags are false, defined tags (via the -t command-line option or within conf.py, see here)
are true. Boolean expressions, also using parentheses (like html and (latex or draft)) are
supported.
The format and the name of the current builder (html, latex or text) are always set as a tag 6. To
make the distinction between format and name explicit, they are also added with the prefix format_
and builder_, e.g. the epub builder defines the tags html, epub, format_html and
builder_epub.
These standard tags are set after the configuration file is read, so they are not available there.
All tags must follow the standard Python identifier syntax as set out in the Identifiers and keywords
documentation. That is, a tag expression may only consist of tags that conform to the syntax of
Python variables. In ASCII, this consists of the uppercase and lowercase letters A through Z, the
underscore _ and, except for the first character, the digits 0 through 9.
New in version 0.6.
Changed in version 1.2: Added the name of the builder and the prefixes.

Warning: This directive is designed to control only content of document. It could not control
sections, labels and so on.

7.8.5 Tables

Use reStructuredText tables, i.e. either
• grid table syntax (ref),
• simple table syntax (ref),
• csv-table syntax,
• or list-table syntax.

 Sphinx Documentation, Release 1.6.3

7.8. Miscellaneous markup 45

https://docs.python.org/2/reference/lexical_analysis.html#identifiers
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#grid-tables
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#simple-tables
http://docutils.sourceforge.net/docs/ref/rst/directives.html#csv-table
http://docutils.sourceforge.net/docs/ref/rst/directives.html#list-table

The table directive serves as optional wrapper of the grid and simple syntaxes.
They work fine in HTML output, however there are some gotchas when using tables in LaTeX: the column
width is hard to determine correctly automatically. For this reason, the following directive exists:

.. tabularcolumns:: column spec
This directive gives a “column spec” for the next table occurring in the source file. The spec is the
second argument to the LaTeX tabulary package’s environment (which Sphinx uses to translate
tables). It can have values like

|l|l|l|

which means three left-adjusted, nonbreaking columns. For columns with longer text that should
automatically be broken, use either the standard p{width} construct, or tabulary’s automatic speci-
fiers:

L flush left column with automatic width
R flush right column with automatic width
C centered column with automatic width
J justified column with automatic width

The automatic widths of the LRCJ columns are attributed by tabulary in proportion to the
observed shares in a first pass where the table cells are rendered at their natural “horizontal” widths.
By default, Sphinx uses a table layout with J for every column.
New in version 0.3.
Changed in version 1.6: Merged cells may now contain multiple paragraphs and are much better
handled, thanks to custom Sphinx LaTeX macros. This novel situation motivated the switch to J spec-
ifier and not L by default.

Hint: Sphinx actually uses T specifier having done \newcolumntype{T}{J}. To revert to previous
default, insert \newcolumntype{T}{L} in the LaTeX preamble (see latex_elements).
A frequent issue with tabulary is that columns with little contents are “squeezed”. The minimal
column width is a tabulary parameter called \tymin. You may set it globally in the LaTeX preamble
via \setlength{\tymin}{40pt} for example.
Else, use the tabularcolumns directive with an explicit p{40pt} (for example) for that column.
You may use also l specifier but this makes the task of setting column widths more difficult if some
merged cell intersects that column.

Warning: Tables with more than 30 rows are rendered using longtable, not tabulary, in
order to allow pagebreaks. The L, R, … specifiers do not work for these tables.
Tables that contain list-like elements such as object descriptions, blockquotes or any kind of lists
cannot be set out of the box with tabulary. They are therefore set with the standard LaTeX
tabular (or longtable) environment if you don’t give a tabularcolumns directive. If you
do, the table will be set with tabulary but you must use the p{width} construct (or Sphinx’s
\X and \Y specifiers described below) for the columns containing these elements.
Literal blocks do not work with tabulary at all, so tables containing a literal block are always set
with tabular. The verbatim environment used for literal blocks only works in p{width} (and
\X or \Y) columns, hence Sphinx generates such column specs for tables containing literal blocks.

Since Sphinx 1.5, the \X{a}{b} specifier is used (there is a backslash in the specifier letter). It is like
p{width} with the width set to a fraction a/b of the current line width. You can use it in the

Sphinx Documentation, Release 1.6.3

46 Chapter 7. Sphinx Markup Constructs

http://docutils.sourceforge.net/docs/ref/rst/directives.html#table

tabularcolumns (it is not a problem if some LaTeX macro is also called \X.)
It is not needed for b to be the total number of columns, nor for the sum of the fractions of the \X
specifiers to add up to one. For example |\X{2}{5}|\X{1}{5}|\X{1}{5}| is legitimate and the
table will occupy 80% of the line width, the first of its three columns having the same width as the
sum of the next two.
This is used by the :widths: option of the table directive.
Since Sphinx 1.6, there is also the \Y{f} specifier which admits a decimal argument, such has
\Y{0.15}: this would have the same effect as \X{3}{20}.
Changed in version 1.6: Merged cells from complex grid tables (either multi-row, multi-column, or
both) now allow blockquotes, lists, literal blocks, … as do regular cells.
Sphinx’s merged cells interact well with p{width}, \X{a}{b}, Y{f} and tabulary’s columns.

7.8.6 Math

See Math support in Sphinx.
More markup is added by Sphinx Domains.

 Sphinx Documentation, Release 1.6.3

7.8. Miscellaneous markup 47

http://docutils.sourceforge.net/docs/ref/rst/directives.html#table

Sphinx Documentation, Release 1.6.3

48 Chapter 7. Sphinx Markup Constructs

CHAPTER 8

Sphinx Domains

New in version 1.0.

8.1 What is a Domain?

Originally, Sphinx was conceived for a single project, the documentation of the Python language. Shortly
afterwards, it was made available for everyone as a documentation tool, but the documentation of Python
modules remained deeply built in – the most fundamental directives, like function, were designed for
Python objects. Since Sphinx has become somewhat popular, interest developed in using it for many
different purposes: C/C++ projects, JavaScript, or even reStructuredText markup (like in this documenta-
tion).
While this was always possible, it is now much easier to easily support documentation of projects using
different programming languages or even ones not supported by the main Sphinx distribution, by
providing a domain for every such purpose.
A domain is a collection of markup (reStructuredText directives and roles) to describe and link to objects
belonging together, e.g. elements of a programming language. Directive and role names in a domain have
names like domain:name, e.g. py:function. Domains can also provide custom indices (like the
Python Module Index).
Having domains means that there are no naming problems when one set of documentation wants to refer
to e.g. C++ and Python classes. It also means that extensions that support the documentation of whole
new languages are much easier to write.
This section describes what the domains that are included with Sphinx provide. The domain API is docu-
mented as well, in the section Domain API.

8.2 Basic Markup

Most domains provide a number of object description directives, used to describe specific objects provided
by modules. Each directive requires one or more signatures to provide basic information about what is
being described, and the content should be the description. The basic version makes entries in the general
index; if no index entry is desired, you can give the directive option flag :noindex:. An example using
a Python domain directive:

.. py:function:: spam(eggs)
 ham(eggs)

 Spam or ham the foo.

 49

This describes the two Python functions spam and ham. (Note that when signatures become too long, you
can break them if you add a backslash to lines that are continued in the next line. Example:

.. py:function:: filterwarnings(action, message='', category=Warning, \
 module='', lineno=0, append=False)
 :noindex:

(This example also shows how to use the :noindex: flag.)
The domains also provide roles that link back to these object descriptions. For example, to link to one of
the functions described in the example above, you could say

The function :py:func:`spam` does a similar thing.

As you can see, both directive and role names contain the domain name and the directive name.

Default Domain

For documentation describing objects from solely one domain, authors will not have to state again its
name at each directive, role, etc… after having specified a default. This can be done either via the config
value primary_domain or via this directive:

.. default-domain:: name
Select a new default domain. While the primary_domain selects a global default, this only has an
effect within the same file.

If no other default is selected, the Python domain (named py) is the default one, mostly for compatibility
with documentation written for older versions of Sphinx.
Directives and roles that belong to the default domain can be mentioned without giving the domain
name, i.e.

.. function:: pyfunc()

 Describes a Python function.

Reference to :func:`pyfunc`.

8.2.1 Cross-referencing syntax

For cross-reference roles provided by domains, the same facilities exist as for general cross-references. See
Cross-referencing syntax.
In short:

• You may supply an explicit title and reference target: :role:`title <target>` will refer to
target, but the link text will be title.

• If you prefix the content with !, no reference/hyperlink will be created.
• If you prefix the content with ~, the link text will only be the last component of the target. For exam-

ple, :py:meth:`~Queue.Queue.get` will refer to Queue.Queue.get but only display get as
the link text.

8.3 The Python Domain

The Python domain (name py) provides the following directives for module declarations:

Sphinx Documentation, Release 1.6.3

50 Chapter 8. Sphinx Domains

.. py:module:: name
This directive marks the beginning of the description of a module (or package submodule, in which
case the name should be fully qualified, including the package name). It does not create content (like
e.g. py:class does).
This directive will also cause an entry in the global module index.
The platform option, if present, is a comma-separated list of the platforms on which the module is
available (if it is available on all platforms, the option should be omitted). The keys are short identi-
fiers; examples that are in use include “IRIX”, “Mac”, “Windows”, and “Unix”. It is important to use
a key which has already been used when applicable.
The synopsis option should consist of one sentence describing the module’s purpose – it is
currently only used in the Global Module Index.
The deprecated option can be given (with no value) to mark a module as deprecated; it will be
designated as such in various locations then.

.. py:currentmodule:: name
This directive tells Sphinx that the classes, functions etc. documented from here are in the given
module (like py:module), but it will not create index entries, an entry in the Global Module Index,
or a link target for py:mod. This is helpful in situations where documentation for things in a module
is spread over multiple files or sections – one location has the py:module directive, the others only
py:currentmodule.

The following directives are provided for module and class contents:

.. py:function:: name(parameters)
Describes a module-level function. The signature should include the parameters as given in the
Python function definition, see Python Signatures. For example:

.. py:function:: Timer.repeat(repeat=3, number=1000000)

For methods you should use py:method.
The description normally includes information about the parameters required and how they are used
(especially whether mutable objects passed as parameters are modified), side effects, and possible
exceptions.
This information can (in any py directive) optionally be given in a structured form, see Info field lists.

.. py:data:: name
Describes global data in a module, including both variables and values used as “defined constants.”
Class and object attributes are not documented using this environment.

.. py:exception:: name
Describes an exception class. The signature can, but need not include parentheses with constructor
arguments.

.. py:class:: name

.. py:class:: name(parameters)
Describes a class. The signature can optionally include parentheses with parameters which will be
shown as the constructor arguments. See also Python Signatures.
Methods and attributes belonging to the class should be placed in this directive’s body. If they are
placed outside, the supplied name should contain the class name so that cross-references still work.
Example:

.. py:class:: Foo

 .. py:method:: quux()

 Sphinx Documentation, Release 1.6.3

8.3. The Python Domain 51

-- or --

.. py:class:: Bar

.. py:method:: Bar.quux()

The first way is the preferred one.

.. py:attribute:: name
Describes an object data attribute. The description should include information about the type of the
data to be expected and whether it may be changed directly.

.. py:method:: name(parameters)
Describes an object method. The parameters should not include the self parameter. The descrip-
tion should include similar information to that described for function. See also Python Signatures
and Info field lists.

.. py:staticmethod:: name(parameters)
Like py:method, but indicates that the method is a static method.
New in version 0.4.

.. py:classmethod:: name(parameters)
Like py:method, but indicates that the method is a class method.
New in version 0.6.

.. py:decorator:: name

.. py:decorator:: name(parameters)
Describes a decorator function. The signature should represent the usage as a decorator. For exam-
ple, given the functions

def removename(func):
 func.__name__ = ''
 return func

def setnewname(name):
 def decorator(func):
 func.__name__ = name
 return func
 return decorator

the descriptions should look like this:

.. py:decorator:: removename

 Remove name of the decorated function.

.. py:decorator:: setnewname(name)

 Set name of the decorated function to *name*.

(as opposed to .. py:decorator:: removename(func).)
There is no py:deco role to link to a decorator that is marked up with this directive; rather, use the
py:func role.

.. py:decoratormethod:: name

.. py:decoratormethod:: name(signature)
Same as py:decorator, but for decorators that are methods.

Sphinx Documentation, Release 1.6.3

52 Chapter 8. Sphinx Domains

Refer to a decorator method using the py:meth role.

8.3.1 Python Signatures

Signatures of functions, methods and class constructors can be given like they would be written in
Python.
Default values for optional arguments can be given (but if they contain commas, they will confuse the
signature parser). Python 3-style argument annotations can also be given as well as return type annota-
tions:

.. py:function:: compile(source : string, filename, symbol='file') -> ast object

For functions with optional parameters that don’t have default values (typically functions implemented in
C extension modules without keyword argument support), you can use brackets to specify the optional
parts:

compile (source [, filename [, symbol]])

It is customary to put the opening bracket before the comma.

8.3.2 Info field lists

New in version 0.4.
Inside Python object description directives, reST field lists with these fields are recognized and formatted
nicely:

• param, parameter, arg, argument, key, keyword: Description of a parameter.
• type: Type of a parameter. Creates a link if possible.
• raises, raise, except, exception: That (and when) a specific exception is raised.
• var, ivar, cvar: Description of a variable.
• vartype: Type of a variable. Creates a link if possible.
• returns, return: Description of the return value.
• rtype: Return type. Creates a link if possible.

Note: In current release, all var, ivar and cvar are represented as “Variable”. There is no difference at
all.

The field names must consist of one of these keywords and an argument (except for returns and rtype,
which do not need an argument). This is best explained by an example:

.. py:function:: send_message(sender, recipient, message_body, [priority=1])

 Send a message to a recipient

 :param str sender: The person sending the message
 :param str recipient: The recipient of the message
 :param str message_body: The body of the message
 :param priority: The priority of the message, can be a number 1-5
 :type priority: integer or None
 :return: the message id
 :rtype: int
 :raises ValueError: if the message_body exceeds 160 characters

 Sphinx Documentation, Release 1.6.3

8.3. The Python Domain 53

 :raises TypeError: if the message_body is not a basestring

This will render like this:

send_message (sender, recipient, message_body [, priority=1])
Send a message to a recipient
Parameters • sender (str) – The person sending the message

• recipient (str) – The recipient of the message
• message_body (str) – The body of the message
• priority (integer or None) – The priority of the message, can be a

number 1-5

Returns the message id
Return type int
Raises • ValueError – if the message_body exceeds 160 characters

• TypeError – if the message_body is not a basestring

It is also possible to combine parameter type and description, if the type is a single word, like this:

:param int priority: The priority of the message, can be a number 1-5

New in version 1.5.
Container types such as lists and dictionaries can be linked automatically using the following syntax:

:type priorities: list(int)
:type priorities: list[int]
:type mapping: dict(str, int)
:type mapping: dict[str, int]
:type point: tuple(float, float)
:type point: tuple[float, float]

Multiple types in a type field will be linked automatically if separated by the word “or”:

:type an_arg: int or None
:vartype a_var: str or int
:rtype: float or str

8.3.3 Cross-referencing Python objects

The following roles refer to objects in modules and are possibly hyperlinked if a matching identifier is
found:

:py:mod:
Reference a module; a dotted name may be used. This should also be used for package names.

:py:func:
Reference a Python function; dotted names may be used. The role text needs not include trailing
parentheses to enhance readability; they will be added automatically by Sphinx if the
add_function_parentheses config value is True (the default).

:py:data:
Reference a module-level variable.

Sphinx Documentation, Release 1.6.3

54 Chapter 8. Sphinx Domains

:py:const:
Reference a “defined” constant. This may be a Python variable that is not intended to be changed.

:py:class:
Reference a class; a dotted name may be used.

:py:meth:
Reference a method of an object. The role text can include the type name and the method name; if it
occurs within the description of a type, the type name can be omitted. A dotted name may be used.

:py:attr:
Reference a data attribute of an object.

:py:exc:
Reference an exception. A dotted name may be used.

:py:obj:
Reference an object of unspecified type. Useful e.g. as the default_role.
New in version 0.4.

The name enclosed in this markup can include a module name and/or a class name. For example,
:py:func:`filter` could refer to a function named filter in the current module, or the built-in
function of that name. In contrast, :py:func:`foo.filter` clearly refers to the filter function in
the foo module.
Normally, names in these roles are searched first without any further qualification, then with the current
module name prepended, then with the current module and class name (if any) prepended. If you prefix
the name with a dot, this order is reversed. For example, in the documentation of Python’s codecs
module, :py:func:`open` always refers to the built-in function, while :py:func:`.open` refers to
codecs.open().
A similar heuristic is used to determine whether the name is an attribute of the currently documented
class.
Also, if the name is prefixed with a dot, and no exact match is found, the target is taken as a suffix and all
object names with that suffix are searched. For example, :py:meth:`.TarFile.close` references the
tarfile.TarFile.close() function, even if the current module is not tarfile. Since this can get
ambiguous, if there is more than one possible match, you will get a warning from Sphinx.
Note that you can combine the ~ and . prefixes: :py:meth:`~.TarFile.close` will reference the
tarfile.TarFile.close() method, but the visible link caption will only be close().

8.4 The C Domain

The C domain (name c) is suited for documentation of C API.

.. c:function:: type name(signature)
Describes a C function. The signature should be given as in C, e.g.:

.. c:function:: PyObject* PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t
nitems)

This is also used to describe function-like preprocessor macros. The names of the arguments should
be given so they may be used in the description.
Note that you don’t have to backslash-escape asterisks in the signature, as it is not parsed by the reST

 Sphinx Documentation, Release 1.6.3

8.4. The C Domain 55

inliner.

.. c:member:: type name
Describes a C struct member. Example signature:

.. c:member:: PyObject* PyTypeObject.tp_bases

The text of the description should include the range of values allowed, how the value should be inter-
preted, and whether the value can be changed. References to structure members in text should use
the member role.

.. c:macro:: name
Describes a “simple” C macro. Simple macros are macros which are used for code expansion, but
which do not take arguments so cannot be described as functions. This is a simple C-language
#define. Examples of its use in the Python documentation include PyObject_HEAD and
Py_BEGIN_ALLOW_THREADS.

.. c:type:: name
Describes a C type (whether defined by a typedef or struct). The signature should just be the type
name.

.. c:var:: type name
Describes a global C variable. The signature should include the type, such as:

.. c:var:: PyObject* PyClass_Type

8.4.1 Cross-referencing C constructs

The following roles create cross-references to C-language constructs if they are defined in the documenta-
tion:

:c:data:
Reference a C-language variable.

:c:func:
Reference a C-language function. Should include trailing parentheses.

:c:macro:
Reference a “simple” C macro, as defined above.

:c:type:
Reference a C-language type.

8.5 The C++ Domain

The C++ domain (name cpp) supports documenting C++ projects.

8.5.1 Directives

The following directives are available. All declarations can start with a visibility statement (public,
private or protected).

.. cpp:class:: class specifier
Describe a class/struct, possibly with specification of inheritance, e.g.,:

Sphinx Documentation, Release 1.6.3

56 Chapter 8. Sphinx Domains

.. cpp:class:: MyClass : public MyBase, MyOtherBase

The class can be directly declared inside a nested scope, e.g.,:

.. cpp:class:: OuterScope::MyClass : public MyBase, MyOtherBase

A template class can be declared:

.. cpp:class:: template<typename T, std::size_t N> std::array

or with a line break:

.. cpp:class:: template<typename T, std::size_t N> \
 std::array

Full and partial template specialisations can be declared:

.. cpp:class:: template<> \
 std::array<bool, 256>

.. cpp:class:: template<typename T> \
 std::array<T, 42>

.. cpp:function:: (member) function prototype
Describe a function or member function, e.g.,:

.. cpp:function:: bool myMethod(int arg1, std::string arg2)

 A function with parameters and types.

.. cpp:function:: bool myMethod(int, double)

 A function with unnamed parameters.

.. cpp:function:: const T &MyClass::operator[](std::size_t i) const

 An overload for the indexing operator.

.. cpp:function:: operator bool() const

 A casting operator.

.. cpp:function:: constexpr void foo(std::string &bar[2]) noexcept

 A constexpr function.

.. cpp:function:: MyClass::MyClass(const MyClass&) = default

 A copy constructor with default implementation.

Function templates can also be described:

.. cpp:function:: template<typename U> \
 void print(U &&u)

and function template specialisations:

.. cpp:function:: template<> \
 void print(int i)

 Sphinx Documentation, Release 1.6.3

8.5. The C++ Domain 57

.. cpp:member:: (member) variable declaration

.. cpp:var:: (member) variable declaration
Describe a variable or member variable, e.g.,:

.. cpp:member:: std::string MyClass::myMember

.. cpp:var:: std::string MyClass::myOtherMember[N][M]

.. cpp:member:: int a = 42

Variable templates can also be described:

.. cpp:member:: template<class T> \
 constexpr T pi = T(3.1415926535897932385)

.. cpp:type:: typedef declaration

.. cpp:type:: name

.. cpp:type:: type alias declaration
Describe a type as in a typedef declaration, a type alias declaration, or simply the name of a type with
unspecified type, e.g.,:

.. cpp:type:: std::vector<int> MyList

 A typedef-like declaration of a type.

.. cpp:type:: MyContainer::const_iterator

 Declaration of a type alias with unspecified type.

.. cpp:type:: MyType = std::unordered_map<int, std::string>

 Declaration of a type alias.

A type alias can also be templated:

.. cpp:type:: template<typename T> \
 MyContainer = std::vector<T>

The example are rendered as follows.

typedef std::vector<int> MyList
A typedef-like declaration of a type.

type MyContainer::const_iterator
Declaration of a type alias with unspecified type.

using MyType = std::unordered_map<int, std::string>
Declaration of a type alias.

template<typename T>
using MyContainer = std::vector<T>

.. cpp:enum:: unscoped enum declaration

.. cpp:enum-struct:: scoped enum declaration

.. cpp:enum-class:: scoped enum declaration
Describe a (scoped) enum, possibly with the underlying type specified. Any enumerators declared
inside an unscoped enum will be declared both in the enum scope and in the parent scope. Exam-

Sphinx Documentation, Release 1.6.3

58 Chapter 8. Sphinx Domains

ples:

.. cpp:enum:: MyEnum

 An unscoped enum.

.. cpp:enum:: MySpecificEnum : long

 An unscoped enum with specified underlying type.

.. cpp:enum-class:: MyScopedEnum

 A scoped enum.

.. cpp:enum-struct:: protected MyScopedVisibilityEnum :
std::underlying_type<MySpecificEnum>::type

 A scoped enum with non-default visibility, and with a specified underlying
type.

.. cpp:enumerator:: name

.. cpp:enumerator:: name = constant
Describe an enumerator, optionally with its value defined, e.g.,:

.. cpp:enumerator:: MyEnum::myEnumerator

.. cpp:enumerator:: MyEnum::myOtherEnumerator = 42

.. cpp:concept:: template-parameter-list name

.. cpp:concept:: template-parameter-list name()

Warning: The support for concepts is experimental. It is based on the Concepts Technical Specifi-
cation, and the features may change as the TS evolves.

Describe a variable concept or a function concept. Both must have exactly 1 template parameter list.
The name may be a nested name. Examples:

.. cpp:concept:: template<typename It> std::Iterator

 Proxy to an element of a notional sequence that can be compared,
 indirected, or incremented.

.. cpp:concept:: template<typename Cont> std::Container()

 Holder of elements, to which it can provide access via
 :cpp:concept:`Iterator` s.

They will render as follows:

template<typename It>
concept bool std::Iterator

Proxy to an element of a notional sequence that can be compared, indirected, or incremented.

template<typename Cont>
concept bool std::Container()

Holder of elements, to which it can provide access via Iterator s.

 Sphinx Documentation, Release 1.6.3

8.5. The C++ Domain 59

Options

Some directives support options:
• :noindex:, see Basic Markup.
• :tparam-line-spec:, for templated declarations. If specified, each template parameter will be

rendered on a separate line.

8.5.2 Constrained Templates

Warning: The support for constrained templates is experimental. It is based on the Concepts Technical
Specification, and the features may change as the TS evolves.

Note: Sphinx does not currently support requires clauses.

Placeholders

Declarations may use the name of a concept to introduce constrained template parameters, or the
keyword auto to introduce unconstrained template parameters:

.. cpp:function:: void f(auto &&arg)

 A function template with a single unconstrained template parameter.

.. cpp:function:: void f(std::Iterator it)

 A function template with a single template parameter, constrained by the
 Iterator concept.

Template Introductions

Simple constrained function or class templates can be declared with a template introduction instead of a
template parameter list:

.. cpp:function:: std::Iterator{It} void advance(It &it)

 A function template with a template parameter constrained to be an Iterator.

.. cpp:class:: std::LessThanComparable{T} MySortedContainer

 A class template with a template parameter constrained to be LessThanComparable.

They are rendered as follows.

std::Iterator{It}
void advance (It &it)

A function template with a template parameter constrained to be an Iterator.

std::LessThanComparable{T}
class MySortedContainer

A class template with a template parameter constrained to be LessThanComparable.

Note however that no checking is performed with respect to parameter compatibility. E.g., Iterator{A,
B, C} will be accepted as an introduction even though it would not be valid C++.

Sphinx Documentation, Release 1.6.3

60 Chapter 8. Sphinx Domains

8.5.3 Namespacing

Declarations in the C++ domain are as default placed in global scope. The current scope can be changed
using three namespace directives. They manage a stack declarations where cpp:namespace resets the
stack and changes a given scope. The cpp:namespace-push directive changes the scope to a given inner
scope of the current one. The cpp:namespace-pop directive undos the most recent
cpp:namespace-push directive.

.. cpp:namespace:: scope specification
Changes the current scope for the subsequent objects to the given scope, and resets the namespace
directive stack. Note that the namespace does not need to correspond to C++ namespaces, but can
end in names of classes, e.g.,:

.. cpp:namespace:: Namespace1::Namespace2::SomeClass::AnInnerClass

All subsequent objects will be defined as if their name were declared with the scope prepended. The
subsequent cross-references will be searched for starting in the current scope.
Using NULL, 0, or nullptr as the scope will change to global scope.
A namespace declaration can also be templated, e.g.,:

.. cpp:class:: template<typename T> \
 std::vector

.. cpp:namespace:: template<typename T> std::vector

.. cpp:function:: std::size_t size() const

declares size as a member function of the template class std::vector. Equivalently this could
have been declared using:

.. cpp:class:: template<typename T> \
 std::vector

 .. cpp:function:: std::size_t size() const

or::

.. cpp:class:: template<typename T> \
 std::vector

.. cpp:namespace-push:: scope specification
Change the scope relatively to the current scope. For example, after:

.. cpp:namespace:: A::B

.. cpp:namespace-push:: C::D

the current scope will be A::B::C::D.

.. cpp:namespace-pop::
Undo the previous cpp:namespace-push directive (not just pop a scope). For example, after:

.. cpp:namespace:: A::B

.. cpp:namespace-push:: C::D

.. cpp:namespace-pop::

 Sphinx Documentation, Release 1.6.3

8.5. The C++ Domain 61

the current scope will be A::B (not A::B::C).
If no previous cpp:namespace-push directive has been used, but only a cpp:namespace direc-
tive, then the current scope will be reset to global scope. That is, .. cpp:namespace:: A::B is
equivalent to:

.. cpp:namespace:: nullptr

.. cpp:namespace-push:: A::B

8.5.4 Info field lists

The C++ directives support the following info fields (see also Info field lists):
• param, parameter, arg, argument: Description of a parameter.
• tparam: Description of a template parameter.
• returns, return: Description of a return value.
• throws, throw, exception: Description of a possibly thrown exception.

8.5.5 Cross-referencing

These roles link to the given declaration types:

:cpp:any:
:cpp:class:
:cpp:func:
:cpp:member:
:cpp:var:
:cpp:type:
:cpp:concept:
:cpp:enum:
:cpp:enumerator:

Reference a C++ declaration by name (see below for details). The name must be properly qualified
relative to the position of the link.

Note on References with Templates Parameters/Arguments

Sphinx’s syntax to give references a custom title can interfere with linking to template classes, if nothing
follows the closing angle bracket, i.e. if the link looks like this: :cpp:class:`MyClass<int>`. This is
interpreted as a link to int with a title of MyClass. In this case, please escape the opening angle bracket
with a backslash, like this: :cpp:class:`MyClass\<int>`.

Note on References to Overloaded Functions

It is currently impossible to link to a specific version of an overloaded method. Currently the C++ domain
is the first domain that has basic support for overloaded methods and until there is more data for compar-
ison we don’t want to select a bad syntax to reference a specific overload. Currently Sphinx will link to
the first overloaded version of the method / function.

Declarations without template parameters and template arguments

For linking to non-templated declarations the name must be a nested name, e.g., f or MyClass::f.

Sphinx Documentation, Release 1.6.3

62 Chapter 8. Sphinx Domains

Templated declarations

Assume the following declarations.

class Wrapper

template<typename TOuter>
class Outer

template<typename TInner>
class Inner

In general the reference must include the template paraemter declarations, e.g., template\<typename
TOuter> Wrapper::Outer (template<typename TOuter> Wrapper::Outer). Currently the
lookup only succeed if the template parameter identifiers are equal strings. That is,
template\<typename UOuter> Wrapper::Outer will not work.
The inner template class can not be directly referenced, unless the current namespace is changed or the
following shorthand is used. If a template parameter list is omitted, then the lookup will assume either a
template or a non-template, but not a partial template specialisation. This means the following references
work.

• Wrapper::Outer (Wrapper::Outer)
• Wrapper::Outer::Inner (Wrapper::Outer::Inner)
• template\<typename TInner> Wrapper::Outer::Inner (template<typename TInner>
Wrapper::Outer::Inner)

(Full) Template Specialisations

Assume the following declarations.

template<typename TOuter>
class Outer

template<typename TInner>
class Inner

template<>
class Outer<int>

template<typename TInner>
class Inner

template<>
class Inner<bool>

In general the reference must include a template parameter list for each template argument list. The full
specialisation above can therefore be referenced with template\<> Outer\<int> (template<>
Outer<int>) and template\<> template\<> Outer\<int>::Inner\<bool> (template<>
template<> Outer<int>::Inner<bool>). As a shorthand the empty template parameter list can be
omitted, e.g., Outer\<int> (Outer<int>) and Outer\<int>::Inner\<bool>
(Outer<int>::Inner<bool>).
Partial Template Specialisations

Assume the following declaration.

 Sphinx Documentation, Release 1.6.3

8.5. The C++ Domain 63

template<typename T>
class Outer<T *>

References to partial specialisations must always include the template parameter lists, e.g.,
template\<typename T> Outer\<T*> (template<typename T> Outer<T*>). Currently the
lookup only succeed if the template parameter identifiers are equal strings.

8.5.6 Configuration Variables

See Options for the C++ domain.

8.6 The Standard Domain

The so-called “standard” domain collects all markup that doesn’t warrant a domain of its own. Its direc-
tives and roles are not prefixed with a domain name.
The standard domain is also where custom object descriptions, added using the add_object_type()
API, are placed.
There is a set of directives allowing documenting command-line programs:

.. option:: name args, name args, ...
Describes a command line argument or switch. Option argument names should be enclosed in angle
brackets. Examples:

.. option:: dest_dir

 Destination directory.

.. option:: -m <module>, --module <module>

 Run a module as a script.

The directive will create cross-reference targets for the given options, referencable by option (in the
example case, you’d use something like :option:`dest_dir`, :option:`-m`, or
:option:`--module`).
cmdoption directive is a deprecated alias for the option directive.

.. envvar:: name
Describes an environment variable that the documented code or program uses or defines. Referen-
cable by envvar.

.. program:: name
Like py:currentmodule, this directive produces no output. Instead, it serves to notify Sphinx that
all following option directives document options for the program called name.
If you use program, you have to qualify the references in your option roles by the program name,
so if you have the following situation

.. program:: rm

.. option:: -r

 Work recursively.

.. program:: svn

Sphinx Documentation, Release 1.6.3

64 Chapter 8. Sphinx Domains

.. option:: -r revision

 Specify the revision to work upon.

then :option:`rm -r` would refer to the first option, while :option:`svn -r` would refer to
the second one.
The program name may contain spaces (in case you want to document subcommands like svn add
and svn commit separately).
New in version 0.5.

There is also a very generic object description directive, which is not tied to any domain:

.. describe:: text

.. object:: text
This directive produces the same formatting as the specific ones provided by domains, but does not
create index entries or cross-referencing targets. Example:

.. describe:: PAPER

 You can set this variable to select a paper size.

8.7 The JavaScript Domain

The JavaScript domain (name js) provides the following directives:

.. js:module:: name
This directive sets the module name for object declarations that follow after. The module name is
used in the global module index and in cross references. This directive does not create an object
heading like py:class would, for example.
By default, this directive will create a linkable entity and will cause an entry in the global module
index, unless the noindex option is specified. If this option is specified, the directive will only
update the current module name.
To clear the current module, set the module name to null or None
New in version 1.6.

.. js:function:: name(signature)
Describes a JavaScript function or method. If you want to describe arguments as optional use square
brackets as documented for Python signatures.
You can use fields to give more details about arguments and their expected types, errors which may
be thrown by the function, and the value being returned:

.. js:function:: $.getJSON(href, callback[, errback])

 :param string href: An URI to the location of the resource.
 :param callback: Gets called with the object.
 :param errback:
 Gets called in case the request fails. And a lot of other
 text so we need multiple lines.
 :throws SomeError: For whatever reason in that case.
 :returns: Something.

This is rendered as:

 Sphinx Documentation, Release 1.6.3

8.7. The JavaScript Domain 65

$.getJSON (href, callback [, errback])
Arguments • href (string) – An URI to the location of the resource.

• callback – Gets called with the object.
• errback – Gets called in case the request fails. And a lot of other text so

we need multiple lines.

Throws SomeError – For whatever reason in that case.
Returns Something.

.. js:method:: name(signature)
This directive is an alias for js:function, however it describes a function that is implemented as a
method on a class object.
New in version 1.6.

.. js:class:: name
Describes a constructor that creates an object. This is basically like a function but will show up with
a class prefix:

.. js:class:: MyAnimal(name[, age])

 :param string name: The name of the animal
 :param number age: an optional age for the animal

This is rendered as:

class MyAnimal (name [, age])
Arguments • name (string) – The name of the animal

• age (number) – an optional age for the animal

.. js:data:: name
Describes a global variable or constant.

.. js:attribute:: object.name
Describes the attribute name of object.

These roles are provided to refer to the described objects:

:js:mod:
:js:func:
:js:meth:
:js:class:
:js:data:
:js:attr:

8.8 The reStructuredText domain

The reStructuredText domain (name rst) provides the following directives:

.. rst:directive:: name
Describes a reST directive. The name can be a single directive name or actual directive syntax (..

Sphinx Documentation, Release 1.6.3

66 Chapter 8. Sphinx Domains

prefix and :: suffix) with arguments that will be rendered differently. For example:

.. rst:directive:: foo

 Foo description.

.. rst:directive:: .. bar:: baz

 Bar description.

will be rendered as:

.. foo::
Foo description.

.. bar:: baz
Bar description.

.. rst:role:: name
Describes a reST role. For example:

.. rst:role:: foo

 Foo description.

will be rendered as:

:foo:
Foo description.

These roles are provided to refer to the described objects:

:rst:dir:
:rst:role:

8.9 More domains

The sphinx-contrib repository contains more domains available as extensions; currently Ada,
CoffeeScript, Erlang, HTTP, Lasso, MATLAB, PHP, and Ruby domains. Also available are domains for
Chapel, Common Lisp, dqn, Go, Jinja, Operation, and Scala.

 Sphinx Documentation, Release 1.6.3

8.9. More domains 67

https://bitbucket.org/birkenfeld/sphinx-contrib/
https://pypi.python.org/pypi/sphinxcontrib-adadomain
https://pypi.python.org/pypi/sphinxcontrib-coffee
https://pypi.python.org/pypi/sphinxcontrib-erlangdomain
https://pypi.python.org/pypi/sphinxcontrib-httpdomain
https://pypi.python.org/pypi/sphinxcontrib-lassodomain
https://pypi.python.org/pypi/sphinxcontrib-matlabdomain
https://pypi.python.org/pypi/sphinxcontrib-phpdomain
https://bitbucket.org/birkenfeld/sphinx-contrib/src/default/rubydomain
https://pypi.python.org/pypi/sphinxcontrib-chapeldomain
https://pypi.python.org/pypi/sphinxcontrib-cldomain
https://pypi.python.org/pypi/sphinxcontrib-dqndomain
https://pypi.python.org/pypi/sphinxcontrib-golangdomain
https://pypi.python.org/pypi/sphinxcontrib-jinjadomain
https://pypi.python.org/pypi/sphinxcontrib-operationdomain
https://pypi.python.org/pypi/sphinxcontrib-scaladomain

Sphinx Documentation, Release 1.6.3

68 Chapter 8. Sphinx Domains

CHAPTER 9

Available builders

These are the built-in Sphinx builders. More builders can be added by extensions.
The builder’s “name” must be given to the -b command-line option of sphinx-build to select a builder.

class sphinx.builders.html.StandaloneHTMLBuilder
This is the standard HTML builder. Its output is a directory with HTML files, complete with style
sheets and optionally the reST sources. There are quite a few configuration values that customize the
output of this builder, see the chapter Options for HTML output for details.

name = 'html'

format = 'html'

supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg']

class sphinx.builders.html.DirectoryHTMLBuilder
This is a subclass of the standard HTML builder. Its output is a directory with HTML files, where
each file is called index.html and placed in a subdirectory named like its page name. For example,
the document markup/rest.rst will not result in an output file markup/rest.html, but
markup/rest/index.html. When generating links between pages, the index.html is omitted,
so that the URL would look like markup/rest/.

name = 'dirhtml'

format = 'html'

supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg']

New in version 0.6.

class sphinx.builders.html.SingleFileHTMLBuilder
This is an HTML builder that combines the whole project in one output file. (Obviously this only
works with smaller projects.) The file is named like the master document. No indices will be gener-
ated.

name = 'singlehtml'

format = 'html'

supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg']

New in version 1.0.

 69

class sphinx.builders.htmlhelp.HTMLHelpBuilder
This builder produces the same output as the standalone HTML builder, but also generates HTML
Help support files that allow the Microsoft HTML Help Workshop to compile them into a CHM file.

name = 'htmlhelp'

format = 'html'

supported_image_types = ['image/png', 'image/gif', 'image/jpeg']

class sphinx.builders.qthelp.QtHelpBuilder
This builder produces the same output as the standalone HTML builder, but also generates Qt help
collection support files that allow the Qt collection generator to compile them.

name = 'qthelp'

format = 'html'

supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg']

class sphinx.builders.applehelp.AppleHelpBuilder
This builder produces an Apple Help Book based on the same output as the standalone HTML
builder.
If the source directory contains any .lproj folders, the one corresponding to the selected language
will have its contents merged with the generated output. These folders will be ignored by all other
documentation types.
In order to generate a valid help book, this builder requires the command line tool hiutil, which is
only available on Mac OS X 10.6 and above. You can disable the indexing step by setting
applehelp_disable_external_tools to True, in which case the output will not be valid until
hiutil has been run on all of the .lproj folders within the bundle.

name = 'applehelp'

format = 'html'

supported_image_types = ['image/png', 'image/gif', 'image/jpeg', 'image/tiff', 'image/jp2',
'image/svg+xml']

New in version 1.3.

class sphinx.builders.devhelp.DevhelpBuilder
This builder produces the same output as the standalone HTML builder, but also generates GNOME
Devhelp support file that allows the GNOME Devhelp reader to view them.

name = 'devhelp'

format = 'html'

supported_image_types = ['image/png', 'image/gif', 'image/jpeg']

class sphinx.builders.epub2.Epub2Builder
This builder produces the same output as the standalone HTML builder, but also generates an epub
file for ebook readers. See Epub info for details about it. For definition of the epub format, have a
look at http://idpf.org/epub or https://en.wikipedia.org/wiki/EPUB. The builder creates EPUB 2
files.

Sphinx Documentation, Release 1.6.3

70 Chapter 9. Available builders

https://doc.qt.io/qt-4.8/qthelp-framework.html
https://wiki.gnome.org/Apps/Devhelp
https://wiki.gnome.org/Apps/Devhelp
http://idpf.org/epub
https://en.wikipedia.org/wiki/EPUB

name = 'epub2'

format = 'html'

supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg']

Deprecated since version 1.5: Since Sphinx-1.5, the epub3 builder is used for the default builder of epub.
Now EpubBuilder is renamed to epub2.

class sphinx.builders.epub3.Epub3Builder
This builder produces the same output as the standalone HTML builder, but also generates an epub
file for ebook readers. See Epub info for details about it. For definition of the epub format, have a
look at http://idpf.org/epub or https://en.wikipedia.org/wiki/EPUB. The builder creates EPUB 3
files.

name = 'epub'

format = 'html'

supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg']

New in version 1.4.
Changed in version 1.5: Since Sphinx-1.5, the epub3 builder is used for the default builder of epub.

class sphinx.builders.latex.LaTeXBuilder
This builder produces a bunch of LaTeX files in the output directory. You have to specify which
documents are to be included in which LaTeX files via the latex_documents configuration value.
There are a few configuration values that customize the output of this builder, see the chapter Options
for LaTeX output for details.

Note: The produced LaTeX file uses several LaTeX packages that may not be present in a “minimal”
TeX distribution installation. For example, on Ubuntu, the following packages need to be installed for
successful PDF builds:

• texlive-latex-recommended
• texlive-fonts-recommended
• texlive-latex-extra
• latexmk (for make latexpdf)

Sphinx will use xcolor.sty if present: recent Ubuntu distributions have xcolor.sty included in
latex-recommended, earlier ones have it in latex-xcolor. Unicode engines will need texlive-luatex or
texlive-xetex.
The testing of Sphinx LaTeX is done on Ubuntu trusty with the above mentioned packages, which are
from a TeXLive 2013 snapshot dated February 2014.
Changed in version 1.6: Formerly, testing had been done for some years on Ubuntu precise (based on
TeXLive 2009).
Changed in version 1.6: Use of latexmk for make latexpdf on GNU/Linux and Mac OS X
Since 1.6, make latexpdf (or make -C "<builddir>/latex" after a sphinx-build run) uses
latexmk (not on Windows). One can pass to latexmk options via the LATEXMKOPTS Makefile vari-
able. For example:

make latexpdf LATEXMKOPTS="-silent"

 Sphinx Documentation, Release 1.6.3

8.9. More domains 71

http://idpf.org/epub
https://en.wikipedia.org/wiki/EPUB

reduces console output to a minimum. Also, if latexmk version is 4.52b or higher (Jan 17) and
xelatex is the latex_engine, then LATEXMKOPTS="-xelatex" will speed up PDF builds.
To pass options directly to the (pdf|xe|lua)latex executable, use variable LATEXOPTS (for
example LATEXOPTS="--interaction=nonstopmode").

name = 'latex'

format = 'latex'

supported_image_types = ['application/pdf', 'image/png', 'image/jpeg']

Note that a direct PDF builder is being provided by rinohtype. The builder’s name is rinoh. Refer to the
rinohtype manual for details. There is also PDF builder using ReportLab in rst2pdf version 0.12 or greater.
However, rst2pdf is no longer being actively maintained and suffers from some problems when used with
recent Sphinx versions. See the rst2pdf manual for usage instructions.

class sphinx.builders.text.TextBuilder
This builder produces a text file for each reST file – this is almost the same as the reST source, but
with much of the markup stripped for better readability.

name = 'text'

format = 'text'

supported_image_types = []

New in version 0.4.

class sphinx.builders.manpage.ManualPageBuilder
This builder produces manual pages in the groff format. You have to specify which documents are to
be included in which manual pages via the man_pages configuration value.

name = 'man'

format = 'man'

supported_image_types = []

New in version 1.0.

class sphinx.builders.texinfo.TexinfoBuilder
This builder produces Texinfo files that can be processed into Info files by the makeinfo program.
You have to specify which documents are to be included in which Texinfo files via the
texinfo_documents configuration value.
The Info format is the basis of the on-line help system used by GNU Emacs and the terminal-based
program info. See Texinfo info for more details. The Texinfo format is the official documentation
system used by the GNU project. More information on Texinfo can be found at
https://www.gnu.org/software/texinfo/.

name = 'texinfo'

format = 'texinfo'

supported_image_types = ['image/png', 'image/jpeg', 'image/gif']

New in version 1.1.

Sphinx Documentation, Release 1.6.3

72 Chapter 9. Available builders

https://github.com/brechtm/rinohtype
http://www.mos6581.org/rinohtype/quickstart.html#sphinx-builder
https://github.com/rst2pdf/rst2pdf
http://ralsina.me/static/manual.pdf
https://www.gnu.org/software/texinfo/

class sphinx.builders.html.SerializingHTMLBuilder
This builder uses a module that implements the Python serialization API (pickle, simplejson,
phpserialize, and others) to dump the generated HTML documentation. The pickle builder is a
subclass of it.
A concrete subclass of this builder serializing to the PHP serialization format could look like this:

import phpserialize

class PHPSerializedBuilder(SerializingHTMLBuilder):
 name = 'phpserialized'
 implementation = phpserialize
 out_suffix = '.file.phpdump'
 globalcontext_filename = 'globalcontext.phpdump'
 searchindex_filename = 'searchindex.phpdump'

implementation
A module that implements dump(), load(), dumps() and loads() functions that conform to the func-
tions with the same names from the pickle module. Known modules implementing this inter-
face are simplejson, phpserialize, plistlib, and others.

out_suffix
The suffix for all regular files.

globalcontext_filename
The filename for the file that contains the “global context”. This is a dict with some general
configuration values such as the name of the project.

searchindex_filename
The filename for the search index Sphinx generates.

See Serialization builder details for details about the output format.
New in version 0.5.

class sphinx.builders.html.PickleHTMLBuilder
This builder produces a directory with pickle files containing mostly HTML fragments and TOC
information, for use of a web application (or custom postprocessing tool) that doesn’t use the stan-
dard HTML templates.
See Serialization builder details for details about the output format.

name = 'pickle'
The old name web still works as well.

format = 'html'

supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg']
The file suffix is .fpickle. The global context is called globalcontext.pickle, the search index
searchindex.pickle.

class sphinx.builders.html.JSONHTMLBuilder
This builder produces a directory with JSON files containing mostly HTML fragments and TOC
information, for use of a web application (or custom postprocessing tool) that doesn’t use the stan-
dard HTML templates.
See Serialization builder details for details about the output format.

name = 'json'

 Sphinx Documentation, Release 1.6.3

8.9. More domains 73

https://pypi.python.org/pypi/phpserialize

format = 'html'

supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg']
The file suffix is .fjson. The global context is called globalcontext.json, the search index
searchindex.json.
New in version 0.5.

class sphinx.builders.gettext.MessageCatalogBuilder
This builder produces gettext-style message catalogs. Each top-level file or subdirectory grows a
single .pot catalog template.
See the documentation on Internationalization for further reference.

name = 'gettext'

format = ''

supported_image_types = []

New in version 1.1.

class sphinx.builders.changes.ChangesBuilder
This builder produces an HTML overview of all versionadded, versionchanged and
deprecated directives for the current version. This is useful to generate a ChangeLog file, for
example.

name = 'changes'

format = ''

supported_image_types = []

class sphinx.builders.dummy.DummyBuilder
This builder produces no output. The input is only parsed and checked for consistency. This is
useful for linting purposes.

name = 'dummy'

supported_image_types = []

New in version 1.4.

class sphinx.builders.linkcheck.CheckExternalLinksBuilder
This builder scans all documents for external links, tries to open them with urllib2, and writes an
overview which ones are broken and redirected to standard output and to output.txt in the
output directory.

name = 'linkcheck'

format = ''

supported_image_types = []

class sphinx.builders.xml.XMLBuilder
This builder produces Docutils-native XML files. The output can be transformed with standard XML
tools such as XSLT processors into arbitrary final forms.

Sphinx Documentation, Release 1.6.3

74 Chapter 9. Available builders

name = 'xml'

format = 'xml'

supported_image_types = []

New in version 1.2.

class sphinx.builders.xml.PseudoXMLBuilder
This builder is used for debugging the Sphinx/Docutils “Reader to Transform to Writer” pipeline. It
produces compact pretty-printed “pseudo-XML”, files where nesting is indicated by indentation (no
end-tags). External attributes for all elements are output, and internal attributes for any leftover
“pending” elements are also given.

name = 'pseudoxml'

format = 'pseudoxml'

supported_image_types = []

New in version 1.2.

Built-in Sphinx extensions that offer more builders are:
• doctest

• coverage

9.1 Serialization builder details

All serialization builders outputs one file per source file and a few special files. They also copy the reST
source files in the directory _sources under the output directory.
The PickleHTMLBuilder is a builtin subclass that implements the pickle serialization interface.
The files per source file have the extensions of out_suffix, and are arranged in directories just as the
source files are. They unserialize to a dictionary (or dictionary like structure) with these keys:
body

The HTML “body” (that is, the HTML rendering of the source file), as rendered by the HTML trans-
lator.

title
The title of the document, as HTML (may contain markup).

toc
The table of contents for the file, rendered as an HTML .

display_toc
A boolean that is True if the toc contains more than one entry.

current_page_name
The document name of the current file.

parents, prev and next
Information about related chapters in the TOC tree. Each relation is a dictionary with the keys link
(HREF for the relation) and title (title of the related document, as HTML). parents is a list of
relations, while prev and next are a single relation.

 Sphinx Documentation, Release 1.6.3

9.1. Serialization builder details 75

sourcename
The name of the source file under _sources.

The special files are located in the root output directory. They are:
SerializingHTMLBuilder.globalcontext_filename

A pickled dict with these keys:
project, copyright, release, version

The same values as given in the configuration file.
style

html_style.
last_updated

Date of last build.
builder

Name of the used builder, in the case of pickles this is always 'pickle'.
titles

A dictionary of all documents’ titles, as HTML strings.
SerializingHTMLBuilder.searchindex_filename

An index that can be used for searching the documentation. It is a pickled list with these entries:
• A list of indexed docnames.
• A list of document titles, as HTML strings, in the same order as the first list.
• A dict mapping word roots (processed by an English-language stemmer) to a list of integers,

which are indices into the first list.

environment.pickle
The build environment. This is always a pickle file, independent of the builder and a copy of the
environment that was used when the builder was started.

Todo

Document common members.

Unlike the other pickle files this pickle file requires that the sphinx package is available on unpick-
ling.

Sphinx Documentation, Release 1.6.3

76 Chapter 9. Available builders

CHAPTER 10

The build configuration file

The configuration directory must contain a file named conf.py. This file (containing Python code) is called
the “build configuration file” and contains all configuration needed to customize Sphinx input and output
behavior.
The configuration file is executed as Python code at build time (using execfile(), and with the current
directory set to its containing directory), and therefore can execute arbitrarily complex code. Sphinx then
reads simple names from the file’s namespace as its configuration.
Important points to note:

• If not otherwise documented, values must be strings, and their default is the empty string.
• The term “fully-qualified name” refers to a string that names an importable Python object inside a

module; for example, the FQN "sphinx.builders.Builder" means the Builder class in the
sphinx.builders module.

• Remember that document names use / as the path separator and don’t contain the file name exten-
sion.

• Since conf.py is read as a Python file, the usual rules apply for encodings and Unicode support:
declare the encoding using an encoding cookie (a comment like # -*- coding: utf-8 -*-) and
use Unicode string literals when you include non-ASCII characters in configuration values.

• The contents of the config namespace are pickled (so that Sphinx can find out when configuration
changes), so it may not contain unpickleable values – delete them from the namespace with del if
appropriate. Modules are removed automatically, so you don’t need to del your imports after use.

• There is a special object named tags available in the config file. It can be used to query and change
the tags (see Including content based on tags). Use tags.has('tag') to query, tags.add('tag')
and tags.remove('tag') to change. Only tags set via the -t command-line option or via
tags.add('tag') can be queried using tags.has('tag'). Note that the current builder tag is
not available in conf.py, as it is created after the builder is initialized.

10.1 General configuration

extensions
A list of strings that are module names of Sphinx Extensions. These can be extensions coming with
Sphinx (named sphinx.ext.*) or custom ones.
Note that you can extend sys.path within the conf file if your extensions live in another directory –
but make sure you use absolute paths. If your extension path is relative to the configuration directory,
use os.path.abspath() like so:

 77

7 A note on available globbing syntax: you can use the standard shell constructs *, ?, [...] and [!...] with the feature that
these all don’t match slashes. A double star ** can be used to match any sequence of characters including slashes.

import sys, os

sys.path.append(os.path.abspath('sphinxext'))

extensions = ['extname']

That way, you can load an extension called extname from the subdirectory sphinxext.
The configuration file itself can be an extension; for that, you only need to provide a setup() func-
tion in it.

source_suffix
The file name extension, or list of extensions, of source files. Only files with this suffix will be read as
sources. Default is '.rst'.
Changed in version 1.3: Can now be a list of extensions.

source_encoding
The encoding of all reST source files. The recommended encoding, and the default value, is
'utf-8-sig'.
New in version 0.5: Previously, Sphinx accepted only UTF-8 encoded sources.

source_parsers
If given, a dictionary of parser classes for different source suffices. The keys are the suffix, the values
can be either a class or a string giving a fully-qualified name of a parser class. The parser class can be
either docutils.parsers.Parser or sphinx.parsers.Parser. Files with a suffix that is not
in the dictionary will be parsed with the default reStructuredText parser.
For example:

source_parsers = {'.md': 'recommonmark.parser.CommonMarkParser'}

Note: Read more about how to use Markdown with Sphinx at Markdown support.

New in version 1.3.

master_doc
The document name of the “master” document, that is, the document that contains the root toctree
directive. Default is 'contents'.

exclude_patterns
A list of glob-style patterns that should be excluded when looking for source files. 7 They are matched
against the source file names relative to the source directory, using slashes as directory separators on
all platforms.
Example patterns:

• 'library/xml.rst' – ignores the library/xml.rst file (replaces entry in unused_docs)
• 'library/xml' – ignores the library/xml directory (replaces entry in exclude_trees)
• 'library/xml*' – ignores all files and directories starting with library/xml
• '**/.svn' – ignores all .svn directories (replaces entry in exclude_dirnames)

exclude_patterns is also consulted when looking for static files in html_static_path and
html_extra_path.

Sphinx Documentation, Release 1.6.3

78 Chapter 10. The build configuration file

New in version 1.0.

templates_path
A list of paths that contain extra templates (or templates that overwrite builtin/theme-specific
templates). Relative paths are taken as relative to the configuration directory.
Changed in version 1.3: As these files are not meant to be built, they are automatically added to
exclude_patterns.

template_bridge
A string with the fully-qualified name of a callable (or simply a class) that returns an instance of
TemplateBridge. This instance is then used to render HTML documents, and possibly the output
of other builders (currently the changes builder). (Note that the template bridge must be made
theme-aware if HTML themes are to be used.)

rst_epilog
A string of reStructuredText that will be included at the end of every source file that is read. This is
the right place to add substitutions that should be available in every file. An example:

rst_epilog = """
.. |psf| replace:: Python Software Foundation
"""

New in version 0.6.

rst_prolog
A string of reStructuredText that will be included at the beginning of every source file that is read.
New in version 1.0.

primary_domain
The name of the default domain. Can also be None to disable a default domain. The default is 'py'.
Those objects in other domains (whether the domain name is given explicitly, or selected by a
default-domain directive) will have the domain name explicitly prepended when named (e.g.,
when the default domain is C, Python functions will be named “Python function”, not just “func-
tion”).
New in version 1.0.

default_role
The name of a reST role (builtin or Sphinx extension) to use as the default role, that is, for text
marked up `like this`. This can be set to 'py:obj' to make `filter` a cross-reference to the
Python function “filter”. The default is None, which doesn’t reassign the default role.
The default role can always be set within individual documents using the standard reST
default-role directive.
New in version 0.4.

keep_warnings
If true, keep warnings as “system message” paragraphs in the built documents. Regardless of this
setting, warnings are always written to the standard error stream when sphinx-build is run.
The default is False, the pre-0.5 behavior was to always keep them.
New in version 0.5.

suppress_warnings
A list of warning types to suppress arbitrary warning messages.

 Sphinx Documentation, Release 1.6.3

10.1. General configuration 79

Sphinx supports following warning types:
• app.add_node
• app.add_directive
• app.add_role
• app.add_generic_role
• app.add_source_parser
• download.not_readable
• image.not_readable
• ref.term
• ref.ref
• ref.numref
• ref.keyword
• ref.option
• ref.citation
• ref.footnote
• ref.doc
• misc.highlighting_failure
• toc.secnum
• epub.unknown_project_files

You can choose from these types.
Now, this option should be considered experimental.
New in version 1.4.
Changed in version 1.5: Added misc.highlighting_failure
Changed in version 1.5.1: Added epub.unknown_project_files
Changed in version 1.6: Added ref.footnote

needs_sphinx
If set to a major.minor version string like '1.1', Sphinx will compare it with its version and refuse
to build if it is too old. Default is no requirement.
New in version 1.0.
Changed in version 1.4: also accepts micro version string

needs_extensions
This value can be a dictionary specifying version requirements for extensions in extensions, e.g.
needs_extensions = {'sphinxcontrib.something': '1.5'}. The version strings should
be in the form major.minor. Requirements do not have to be specified for all extensions, only for
those you want to check.
This requires that the extension specifies its version to Sphinx (see Developing extensions for Sphinx for
how to do that).
New in version 1.3.

Sphinx Documentation, Release 1.6.3

80 Chapter 10. The build configuration file

nitpicky
If true, Sphinx will warn about all references where the target cannot be found. Default is False.
You can activate this mode temporarily using the -n command-line switch.
New in version 1.0.

nitpick_ignore
A list of (type, target) tuples (by default empty) that should be ignored when generating warn-
ings in “nitpicky mode”. Note that type should include the domain name if present. Example
entries would be ('py:func', 'int') or ('envvar', 'LD_LIBRARY_PATH').
New in version 1.1.

numfig
If true, figures, tables and code-blocks are automatically numbered if they have a caption. At same
time, the numref role is enabled. For now, it works only with the HTML builder and LaTeX builder.
Default is False.

Note: The LaTeX builder always assigns numbers whether this option is enabled or not.

New in version 1.3.

numfig_format
A dictionary mapping 'figure', 'table', 'code-block' and 'section' to strings that are
used for format of figure numbers. As a special character, %s will be replaced to figure number.
Default is to use 'Fig. %s' for 'figure', 'Table %s' for 'table', 'Listing %s' for
'code-block' and 'Section' for 'section'.
New in version 1.3.

numfig_secnum_depth
The scope of figure numbers, that is, the numfig feature numbers figures in which scope. 0 means
“whole document”. 1 means “in a section”. Sphinx numbers like x.1, x.2, x.3… 2 means “in a subsec-
tion”. Sphinx numbers like x.x.1, x.x.2, x.x.3…, and so on. Default is 1.
New in version 1.3.

tls_verify
If true, Sphinx verifies server certifications. Default is True.
New in version 1.5.

tls_cacerts
A path to a certification file of CA or a path to directory which contains the certificates. This also
allows a dictionary mapping hostname to the path to certificate file. The certificates are used to verify
server certifications.
New in version 1.5.

10.2 Project information

project
The documented project’s name.

 Sphinx Documentation, Release 1.6.3

10.2. Project information 81

copyright
A copyright statement in the style '2008, Author Name'.

version
The major project version, used as the replacement for |version|. For example, for the Python
documentation, this may be something like 2.6.

release
The full project version, used as the replacement for |release| and e.g. in the HTML templates.
For example, for the Python documentation, this may be something like 2.6.0rc1.
If you don’t need the separation provided between version and release, just set them both to the
same value.

today
today_fmt

These values determine how to format the current date, used as the replacement for |today|.
• If you set today to a non-empty value, it is used.
• Otherwise, the current time is formatted using time.strftime() and the format given in
today_fmt.

The default is no today and a today_fmt of '%B %d, %Y' (or, if translation is enabled with
language, an equivalent format for the selected locale).

highlight_language
The default language to highlight source code in. The default is 'python3'. The value should be a
valid Pygments lexer name, see Showing code examples for more details.
New in version 0.5.
Changed in version 1.4: The default is now 'default'. It is similar to 'python3'; it is mostly a
superset of 'python'. but it fallbacks to 'none' without warning if failed. 'python3' and other
languages will emit warning if failed. If you prefer Python 2 only highlighting, you can set it back to
'python'.

highlight_options
A dictionary of options that modify how the lexer specified by highlight_language generates
highlighted source code. These are lexer-specific; for the options understood by each, see the
Pygments documentation.
New in version 1.3.

pygments_style
The style name to use for Pygments highlighting of source code. If not set, either the theme’s default
style or 'sphinx' is selected for HTML output.
Changed in version 0.3: If the value is a fully-qualified name of a custom Pygments style class, this is
then used as custom style.

add_function_parentheses
A boolean that decides whether parentheses are appended to function and method role text (e.g. the
content of :func:`input`) to signify that the name is callable. Default is True.

add_module_names
A boolean that decides whether module names are prepended to all object names (for object types
where a “module” of some kind is defined), e.g. for py:function directives. Default is True.

Sphinx Documentation, Release 1.6.3

82 Chapter 10. The build configuration file

http://pygments.org/docs/lexers/

show_authors
A boolean that decides whether codeauthor and sectionauthor directives produce any output
in the built files.

modindex_common_prefix
A list of prefixes that are ignored for sorting the Python module index (e.g., if this is set to
['foo.'], then foo.bar is shown under B, not F). This can be handy if you document a project
that consists of a single package. Works only for the HTML builder currently. Default is [].
New in version 0.6.

trim_footnote_reference_space
Trim spaces before footnote references that are necessary for the reST parser to recognize the foot-
note, but do not look too nice in the output.
New in version 0.6.

trim_doctest_flags
If true, doctest flags (comments looking like # doctest: FLAG, ...) at the ends of lines and
<BLANKLINE> markers are removed for all code blocks showing interactive Python sessions (i.e.
doctests). Default is True. See the extension doctest for more possibilities of including doctests.
New in version 1.0.
Changed in version 1.1: Now also removes <BLANKLINE>.

10.3 Options for internationalization

These options influence Sphinx’s Native Language Support. See the documentation on Internationalization
for details.

language
The code for the language the docs are written in. Any text automatically generated by Sphinx will
be in that language. Also, Sphinx will try to substitute individual paragraphs from your documents
with the translation sets obtained from locale_dirs. Sphinx will search language-specific figures
named by figure_language_filename and substitute them for original figures. In the LaTeX builder, a
suitable language will be selected as an option for the Babel package. Default is None, which means
that no translation will be done.
New in version 0.5.
Changed in version 1.4: Support figure substitution
Currently supported languages by Sphinx are:

• bn – Bengali
• ca – Catalan
• cs – Czech
• da – Danish
• de – German
• en – English
• es – Spanish
• et – Estonian

 Sphinx Documentation, Release 1.6.3

10.3. Options for internationalization 83

• eu – Basque
• fa – Iranian
• fi – Finnish
• fr – French
• he – Hebrew
• hr – Croatian
• hu – Hungarian
• id – Indonesian
• it – Italian
• ja – Japanese
• ko – Korean
• lt – Lithuanian
• lv – Latvian
• mk – Macedonian
• nb_NO – Norwegian Bokmal
• ne – Nepali
• nl – Dutch
• pl – Polish
• pt_BR – Brazilian Portuguese
• pt_PT – European Portuguese
• ru – Russian
• si – Sinhala
• sk – Slovak
• sl – Slovenian
• sv – Swedish
• tr – Turkish
• uk_UA – Ukrainian
• vi – Vietnamese
• zh_CN – Simplified Chinese
• zh_TW – Traditional Chinese

locale_dirs

New in version 0.5.
Directories in which to search for additional message catalogs (see language), relative to the source
directory. The directories on this path are searched by the standard gettext module.
Internal messages are fetched from a text domain of sphinx; so if you add the directory ./locale
to this setting, the message catalogs (compiled from .po format using msgfmt) must be in
./locale/language/LC_MESSAGES/sphinx.mo. The text domain of individual documents
depends on gettext_compact.
The default is ['locales'].

Sphinx Documentation, Release 1.6.3

84 Chapter 10. The build configuration file

Changed in version 1.5: Use locales directory as a default value

gettext_compact

New in version 1.1.
If true, a document’s text domain is its docname if it is a top-level project file and its very base direc-
tory otherwise.
By default, the document markup/code.rst ends up in the markup text domain. With this option
set to False, it is markup/code.

gettext_uuid
If true, Sphinx generates uuid information for version tracking in message catalogs. It is used for:

• Add uid line for each msgids in .pot files.
• Calculate similarity between new msgids and previously saved old msgids. This calculation

takes a long time.

If you want to accelerate the calculation, you can use python-levenshtein 3rd-party package
written in C by using pip install python-levenshtein.
The default is False.
New in version 1.3.

gettext_location
If true, Sphinx generates location information for messages in message catalogs.
The default is True.
New in version 1.3.

gettext_auto_build
If true, Sphinx builds mo file for each translation catalog files.
The default is True.
New in version 1.3.

gettext_additional_targets
To specify names to enable gettext extracting and translation applying for i18n additionally. You can
specify below names:
Index index terms
Literal-block literal blocks: :: and code-block.
Doctest-block doctest block
Raw raw content
Image image/figure uri and alt
For example: gettext_additional_targets = ['literal-block', 'image'].
The default is [].
New in version 1.3.

figure_language_filename
The filename format for language-specific figures. The default value is
{root}.{language}{ext}. It will be expanded to dirname/filename.en.png from ..
image:: dirname/filename.png. The available format tokens are:

• {root} - the filename, including any path component, without the file extension, e.g.
dirname/filename

 Sphinx Documentation, Release 1.6.3

10.3. Options for internationalization 85

• {path} - the directory path component of the filename, with a trailing slash if non-empty, e.g.
dirname/

• {basename} - the filename without the directory path or file extension components, e.g.
filename

• {ext} - the file extension, e.g. .png
• {language} - the translation language, e.g. en

For example, setting this to {path}{language}/{basename}{ext} will expand to
dirname/en/filename.png instead.
New in version 1.4.
Changed in version 1.5: Added {path} and {basename} tokens.

10.4 Options for HTML output

These options influence HTML as well as HTML Help output, and other builders that use Sphinx’s
HTMLWriter class.

html_theme
The “theme” that the HTML output should use. See the section about theming. The default is
'alabaster'.
New in version 0.6.

html_theme_options
A dictionary of options that influence the look and feel of the selected theme. These are theme-spe-
cific. For the options understood by the builtin themes, see this section.
New in version 0.6.

html_theme_path
A list of paths that contain custom themes, either as subdirectories or as zip files. Relative paths are
taken as relative to the configuration directory.
New in version 0.6.

html_style
The style sheet to use for HTML pages. A file of that name must exist either in Sphinx’s static/
path, or in one of the custom paths given in html_static_path. Default is the stylesheet given by
the selected theme. If you only want to add or override a few things compared to the theme’s
stylesheet, use CSS @import to import the theme’s stylesheet.

html_title
The “title” for HTML documentation generated with Sphinx’s own templates. This is appended to
the <title> tag of individual pages, and used in the navigation bar as the “topmost” element. It
defaults to '<project> v<revision> documentation'.

html_short_title
A shorter “title” for the HTML docs. This is used in for links in the header and in the HTML Help
docs. If not given, it defaults to the value of html_title.
New in version 0.4.

Sphinx Documentation, Release 1.6.3

86 Chapter 10. The build configuration file

html_context
A dictionary of values to pass into the template engine’s context for all pages. Single values can also
be put in this dictionary using the -A command-line option of sphinx-build.
New in version 0.5.

html_logo
If given, this must be the name of an image file (path relative to the configuration directory) that is the
logo of the docs. It is placed at the top of the sidebar; its width should therefore not exceed 200
pixels. Default: None.
New in version 0.4.1: The image file will be copied to the _static directory of the output HTML, but
only if the file does not already exist there.

html_favicon
If given, this must be the name of an image file (path relative to the configuration directory) that is the
favicon of the docs. Modern browsers use this as the icon for tabs, windows and bookmarks. It
should be a Windows-style icon file (.ico), which is 16x16 or 32x32 pixels large. Default: None.
New in version 0.4: The image file will be copied to the _static directory of the output HTML, but
only if the file does not already exist there.

html_static_path
A list of paths that contain custom static files (such as style sheets or script files). Relative paths are
taken as relative to the configuration directory. They are copied to the output’s _static directory
after the theme’s static files, so a file named default.css will overwrite the theme’s
default.css.
Changed in version 0.4: The paths in html_static_path can now contain subdirectories.
Changed in version 1.0: The entries in html_static_path can now be single files.

html_extra_path
A list of paths that contain extra files not directly related to the documentation, such as robots.txt
or .htaccess. Relative paths are taken as relative to the configuration directory. They are copied to
the output directory. They will overwrite any existing file of the same name.
As these files are not meant to be built, they are automatically added to exclude_patterns.
New in version 1.2.
Changed in version 1.4: The dotfiles in the extra directory will be copied to the output directory. And it
refers exclude_patterns on copying extra files and directories, and ignores if path matches to
patterns.

html_last_updated_fmt
If this is not None, a ‘Last updated on:’ timestamp is inserted at every page bottom, using the given
strftime() format. The empty string is equivalent to '%b %d, %Y' (or a locale-dependent equiva-
lent).

html_use_smartypants
If true, SmartyPants will be used to convert quotes and dashes to typographically correct entities.
Default: True.
Deprecated since version 1.6: Use the smart_quotes option in the Docutils configuration file
(docutils.conf) instead.

html_add_permalinks
Sphinx will add “permalinks” for each heading and description environment as paragraph signs that

 Sphinx Documentation, Release 1.6.3

10.4. Options for HTML output 87

https://daringfireball.net/projects/smartypants/
http://docutils.sourceforge.net/docs/user/config.html#smart-quotes

become visible when the mouse hovers over them.
This value determines the text for the permalink; it defaults to "¶". Set it to None or the empty string
to disable permalinks.
New in version 0.6: Previously, this was always activated.
Changed in version 1.1: This can now be a string to select the actual text of the link. Previously, only
boolean values were accepted.

html_sidebars
Custom sidebar templates, must be a dictionary that maps document names to template names.
The keys can contain glob-style patterns 7, in which case all matching documents will get the speci-
fied sidebars. (A warning is emitted when a more than one glob-style pattern matches for any docu-
ment.)
The values can be either lists or single strings.

• If a value is a list, it specifies the complete list of sidebar templates to include. If all or some of
the default sidebars are to be included, they must be put into this list as well.
The default sidebars (for documents that don’t match any pattern) are: ['localtoc.html',
'relations.html', 'sourcelink.html', 'searchbox.html'].

• If a value is a single string, it specifies a custom sidebar to be added between the
'sourcelink.html' and 'searchbox.html' entries. This is for compatibility with Sphinx
versions before 1.0.

Builtin sidebar templates that can be rendered are:
• localtoc.html – a fine-grained table of contents of the current document
• globaltoc.html – a coarse-grained table of contents for the whole documentation set, collapsed
• relations.html – two links to the previous and next documents
• sourcelink.html – a link to the source of the current document, if enabled in
html_show_sourcelink

• searchbox.html – the “quick search” box

Example:

html_sidebars = {
 '**': ['globaltoc.html', 'sourcelink.html', 'searchbox.html'],
 'using/windows': ['windowssidebar.html', 'searchbox.html'],
}

This will render the custom template windowssidebar.html and the quick search box within the
sidebar of the given document, and render the default sidebars for all other pages (except that the
local TOC is replaced by the global TOC).
New in version 1.0: The ability to use globbing keys and to specify multiple sidebars.
Note that this value only has no effect if the chosen theme does not possess a sidebar, like the builtin
scrolls and haiku themes.

html_additional_pages
Additional templates that should be rendered to HTML pages, must be a dictionary that maps docu-
ment names to template names.
Example:

html_additional_pages = {
 'download': 'customdownload.html',
}

Sphinx Documentation, Release 1.6.3

88 Chapter 10. The build configuration file

This will render the template customdownload.html as the page download.html.

html_domain_indices
If true, generate domain-specific indices in addition to the general index. For e.g. the Python domain,
this is the global module index. Default is True.
This value can be a bool or a list of index names that should be generated. To find out the index name
for a specific index, look at the HTML file name. For example, the Python module index has the
name 'py-modindex'.
New in version 1.0.

html_use_index
If true, add an index to the HTML documents. Default is True.
New in version 0.4.

html_split_index
If true, the index is generated twice: once as a single page with all the entries, and once as one page
per starting letter. Default is False.
New in version 0.4.

html_copy_source
If true, the reST sources are included in the HTML build as _sources/name. The default is True.

Warning: If this config value is set to False, the JavaScript search function will only display the
titles of matching documents, and no excerpt from the matching contents.

html_show_sourcelink
If true (and html_copy_source is true as well), links to the reST sources will be added to the side-
bar. The default is True.
New in version 0.6.

html_sourcelink_suffix
Suffix to be appended to source links (see html_show_sourcelink), unless they have this suffix
already. Default is '.txt'.
New in version 1.5.

html_use_opensearch
If nonempty, an OpenSearch description file will be output, and all pages will contain a <link> tag
referring to it. Since OpenSearch doesn’t support relative URLs for its search page location, the value
of this option must be the base URL from which these documents are served (without trailing slash),
e.g. "https://docs.python.org". The default is ''.

html_file_suffix
This is the file name suffix for generated HTML files. The default is ".html".
New in version 0.4.

html_link_suffix
Suffix for generated links to HTML files. The default is whatever html_file_suffix is set to; it
can be set differently (e.g. to support different web server setups).
New in version 0.6.

 Sphinx Documentation, Release 1.6.3

10.4. Options for HTML output 89

http://www.opensearch.org/Home

html_show_copyright
If true, “(C) Copyright …” is shown in the HTML footer. Default is True.
New in version 1.0.

html_show_sphinx
If true, “Created using Sphinx” is shown in the HTML footer. Default is True.
New in version 0.4.

html_output_encoding
Encoding of HTML output files. Default is 'utf-8'. Note that this encoding name must both be a
valid Python encoding name and a valid HTML charset value.
New in version 1.0.

html_compact_lists
If true, a list all whose items consist of a single paragraph and/or a sub-list all whose items etc…
(recursive definition) will not use the <p> element for any of its items. This is standard docutils
behavior. Default: True.
New in version 1.0.

html_secnumber_suffix
Suffix for section numbers. Default: ". ". Set to " " to suppress the final dot on section numbers.
New in version 1.0.

html_search_language
Language to be used for generating the HTML full-text search index. This defaults to the global
language selected with language. If there is no support for this language, "en" is used which
selects the English language.
Support is present for these languages:

• da – Danish
• nl – Dutch
• en – English
• fi – Finnish
• fr – French
• de – German
• hu – Hungarian
• it – Italian
• ja – Japanese
• no – Norwegian
• pt – Portuguese
• ro – Romanian
• ru – Russian
• es – Spanish
• sv – Swedish
• tr – Turkish

Sphinx Documentation, Release 1.6.3

90 Chapter 10. The build configuration file

• zh – Chinese

Accelerating build speed

Each language (except Japanese) provides its own stemming algorithm. Sphinx uses a Python imple-
mentation by default. You can use a C implementation to accelerate building the index file.

• PorterStemmer (en)
• PyStemmer (all languages)

New in version 1.1: With support for en and ja.
Changed in version 1.3: Added additional languages.

html_search_options
A dictionary with options for the search language support, empty by default. The meaning of these
options depends on the language selected.
The English support has no options.
The Japanese support has these options:
Type type is dotted module path string to specify Splitter implementation which should be derived

from sphinx.search.ja.BaseSplitter. If not specified or None is specified,
'sphinx.search.ja.DefaultSplitter' will be used.
You can choose from these modules:
‘sphinx.search.ja.DefaultSplitter’

TinySegmenter algorithm. This is default splitter.
‘sphinx.search.ja.MeCabSplitter’

MeCab binding. To use this splitter, ‘mecab’ python binding or dynamic link library (‘libme-
cab.so’ for linux, ‘libmecab.dll’ for windows) is required.

‘sphinx.search.ja.JanomeSplitter’
Janome binding. To use this splitter, Janome is required.

To keep compatibility, 'mecab', 'janome' and 'default' are also acceptable. However it
will be deprecated in Sphinx-1.6.

Other option values depend on splitter value which you choose.
Options for 'mecab':

dic_enc dic_enc option is the encoding for the MeCab algorithm.
dict dict option is the dictionary to use for the MeCab algorithm.
lib lib option is the library name for finding the MeCab library via ctypes if the Python

binding is not installed.
For example:

html_search_options = {
 'type': 'mecab',
 'dic_enc': 'utf-8',
 'dict': '/path/to/mecab.dic',
 'lib': '/path/to/libmecab.so',
}

Options for 'janome':
user_dic user_dic option is the user dictionary file path for Janome.

 Sphinx Documentation, Release 1.6.3

10.4. Options for HTML output 91

https://pypi.python.org/pypi/PorterStemmer
https://pypi.python.org/pypi/PyStemmer
https://pypi.python.org/pypi/Janome

user_dic_enc user_dic_enc option is the encoding for the user dictionary file specified by
user_dic option. Default is ‘utf8’.

New in version 1.1.
Changed in version 1.4: html_search_options for Japanese is re-organized and any custom splitter can
be used by type settings.
The Chinese support has these options:

• dict – the jieba dictionary path if want to use custom dictionary.

html_search_scorer
The name of a JavaScript file (relative to the configuration directory) that implements a search results
scorer. If empty, the default will be used.
New in version 1.2.

html_scaled_image_link
If true, images itself links to the original image if it doesn’t have ‘target’ option or scale related
options: ‘scale’, ‘width’, ‘height’. The default is True.
New in version 1.3.

htmlhelp_basename
Output file base name for HTML help builder. Default is 'pydoc'.

html_experimental_html5_writer
Output is processed with HTML5 writer. This feature needs docutils 0.13 or newer. Default is
False.
New in version 1.6.

10.5 Options for Apple Help output

New in version 1.3.
These options influence the Apple Help output. This builder derives from the HTML builder, so the
HTML options also apply where appropriate.

Note: Apple Help output will only work on Mac OS X 10.6 and higher, as it requires the hiutil and
codesign command line tools, neither of which are Open Source.
You can disable the use of these tools using applehelp_disable_external_tools, but the result
will not be a valid help book until the indexer is run over the .lproj folders within the bundle.

applehelp_bundle_name
The basename for the Apple Help Book. Defaults to the project name.

applehelp_bundle_id
The bundle ID for the help book bundle.

Warning: You must set this value in order to generate Apple Help.

Sphinx Documentation, Release 1.6.3

92 Chapter 10. The build configuration file

applehelp_dev_region
The development region. Defaults to 'en-us', which is Apple’s recommended setting.

applehelp_bundle_version
The bundle version (as a string). Defaults to '1'.

applehelp_icon
The help bundle icon file, or None for no icon. According to Apple’s documentation, this should be a
16-by-16 pixel version of the application’s icon with a transparent background, saved as a PNG file.

applehelp_kb_product
The product tag for use with applehelp_kb_url. Defaults to '<project>-<release>'.

applehelp_kb_url
The URL for your knowledgebase server, e.g.
https://example.com/kbsearch.py?p='product'&q='query'&l='lang'. Help Viewer
will replace the values 'product', 'query' and 'lang' at runtime with the contents of
applehelp_kb_product, the text entered by the user in the search box and the user’s system
language respectively.
Defaults to None for no remote search.

applehelp_remote_url
The URL for remote content. You can place a copy of your Help Book’s Resources folder at this
location and Help Viewer will attempt to use it to fetch updated content.
e.g. if you set it to https://example.com/help/Foo/ and Help Viewer wants a copy of
index.html for an English speaking customer, it will look at
https://example.com/help/Foo/en.lproj/index.html.
Defaults to None for no remote content.

applehelp_index_anchors
If True, tell the help indexer to index anchors in the generated HTML. This can be useful for jumping
to a particular topic using the AHLookupAnchor function or the openHelpAnchor:inBook:
method in your code. It also allows you to use help:anchor URLs; see the Apple documentation
for more information on this topic.

applehelp_min_term_length
Controls the minimum term length for the help indexer. Defaults to None, which means the default
will be used.

applehelp_stopwords
Either a language specification (to use the built-in stopwords), or the path to a stopwords plist, or
None if you do not want to use stopwords. The default stopwords plist can be found at
/usr/share/hiutil/Stopwords.plist and contains, at time of writing, stopwords for the
following languages:

Language Code
English en
German de
Spanish es
French fr
Swedish sv
Hungarian hu
Italian it

 Sphinx Documentation, Release 1.6.3

10.5. Options for Apple Help output 93

Defaults to language, or if that is not set, to en.

applehelp_locale
Specifies the locale to generate help for. This is used to determine the name of the .lproj folder
inside the Help Book’s Resources, and is passed to the help indexer.
Defaults to language, or if that is not set, to en.

applehelp_title
Specifies the help book title. Defaults to '<project> Help'.

applehelp_codesign_identity
Specifies the identity to use for code signing, or None if code signing is not to be performed.
Defaults to the value of the environment variable CODE_SIGN_IDENTITY, which is set by Xcode for
script build phases, or None if that variable is not set.

applehelp_codesign_flags
A list of additional arguments to pass to codesign when signing the help book.
Defaults to a list based on the value of the environment variable OTHER_CODE_SIGN_FLAGS, which
is set by Xcode for script build phases, or the empty list if that variable is not set.

applehelp_indexer_path
The path to the hiutil program. Defaults to '/usr/bin/hiutil'.

applehelp_codesign_path
The path to the codesign program. Defaults to '/usr/bin/codesign'.

applehelp_disable_external_tools
If True, the builder will not run the indexer or the code signing tool, no matter what other settings
are specified.
This is mainly useful for testing, or where you want to run the Sphinx build on a non-Mac OS X plat-
form and then complete the final steps on OS X for some reason.
Defaults to False.

10.6 Options for epub output

These options influence the epub output. As this builder derives from the HTML builder, the HTML
options also apply where appropriate. The actual values for some of the options is not really important,
they just have to be entered into the Dublin Core metadata.

epub_basename
The basename for the epub file. It defaults to the project name.

epub_theme
The HTML theme for the epub output. Since the default themes are not optimized for small screen
space, using the same theme for HTML and epub output is usually not wise. This defaults to
'epub', a theme designed to save visual space.

epub_theme_options
A dictionary of options that influence the look and feel of the selected theme. These are theme-spe-
cific. For the options understood by the builtin themes, see this section.
New in version 1.2.

Sphinx Documentation, Release 1.6.3

94 Chapter 10. The build configuration file

http://dublincore.org/

epub_title
The title of the document. It defaults to the html_title option but can be set independently for
epub creation.

epub_description
The description of the document. The default value is 'unknown'.
New in version 1.4.
Changed in version 1.5: Renamed from epub3_description

epub_author
The author of the document. This is put in the Dublin Core metadata. The default value is
'unknown'.

epub_contributor
The name of a person, organization, etc. that played a secondary role in the creation of the content of
an EPUB Publication. The default value is 'unknown'.
New in version 1.4.
Changed in version 1.5: Renamed from epub3_contributor

epub_language
The language of the document. This is put in the Dublin Core metadata. The default is the
language option or 'en' if unset.

epub_publisher
The publisher of the document. This is put in the Dublin Core metadata. You may use any sensible
string, e.g. the project homepage. The default value is 'unknown'.

epub_copyright
The copyright of the document. It defaults to the copyright option but can be set independently
for epub creation.

epub_identifier
An identifier for the document. This is put in the Dublin Core metadata. For published documents
this is the ISBN number, but you can also use an alternative scheme, e.g. the project homepage. The
default value is 'unknown'.

epub_scheme
The publication scheme for the epub_identifier. This is put in the Dublin Core metadata. For
published books the scheme is 'ISBN'. If you use the project homepage, 'URL' seems reasonable.
The default value is 'unknown'.

epub_uid
A unique identifier for the document. This is put in the Dublin Core metadata. You may use a XML’s
Name format string. You can’t use hyphen, period, numbers as a first character. The default value is
'unknown'.

epub_cover
The cover page information. This is a tuple containing the filenames of the cover image and the html
template. The rendered html cover page is inserted as the first item in the spine in content.opf. If
the template filename is empty, no html cover page is created. No cover at all is created if the tuple is
empty. Examples:

 Sphinx Documentation, Release 1.6.3

10.6. Options for epub output 95

https://www.w3.org/TR/REC-xml/#NT-NameStartChar
https://www.w3.org/TR/REC-xml/#NT-NameStartChar

epub_cover = ('_static/cover.png', 'epub-cover.html')
epub_cover = ('_static/cover.png', '')
epub_cover = ()

The default value is ().
New in version 1.1.

epub_guide
Meta data for the guide element of content.opf. This is a sequence of tuples containing the type,
the uri and the title of the optional guide information. See the OPF documentation at
http://idpf.org/epub for details. If possible, default entries for the cover and toc types are automati-
cally inserted. However, the types can be explicitly overwritten if the default entries are not appropri-
ate. Example:

epub_guide = (('cover', 'cover.html', u'Cover Page'),)

The default value is ().

epub_pre_files
Additional files that should be inserted before the text generated by Sphinx. It is a list of tuples
containing the file name and the title. If the title is empty, no entry is added to toc.ncx. Example:

epub_pre_files = [
 ('index.html', 'Welcome'),
]

The default value is [].

epub_post_files
Additional files that should be inserted after the text generated by Sphinx. It is a list of tuples
containing the file name and the title. This option can be used to add an appendix. If the title is
empty, no entry is added to toc.ncx. The default value is [].

epub_exclude_files
A list of files that are generated/copied in the build directory but should not be included in the epub
file. The default value is [].

epub_tocdepth
The depth of the table of contents in the file toc.ncx. It should be an integer greater than zero. The
default value is 3. Note: A deeply nested table of contents may be difficult to navigate.

epub_tocdup
This flag determines if a toc entry is inserted again at the beginning of its nested toc listing. This
allows easier navigation to the top of a chapter, but can be confusing because it mixes entries of
different depth in one list. The default value is True.

Note: epub3 builder ignores epub_tocdup option(always False)

epub_tocscope
This setting control the scope of the epub table of contents. The setting can have the following
values:

• 'default' – include all toc entries that are not hidden (default)
• 'includehidden' – include all toc entries

Sphinx Documentation, Release 1.6.3

96 Chapter 10. The build configuration file

http://idpf.org/epub

?? https://developer.mozilla.org/en-US/docs/Web/CSS/writing-mode

New in version 1.2.

epub_fix_images
This flag determines if sphinx should try to fix image formats that are not supported by some epub
readers. At the moment palette images with a small color table are upgraded. You need the Python
Image Library (Pillow the successor of the PIL) installed to use this option. The default value is
False because the automatic conversion may lose information.
New in version 1.2.

epub_max_image_width
This option specifies the maximum width of images. If it is set to a value greater than zero, images
with a width larger than the given value are scaled accordingly. If it is zero, no scaling is performed.
The default value is 0. You need the Python Image Library (Pillow) installed to use this option.
New in version 1.2.

epub_show_urls
Control whether to display URL addresses. This is very useful for readers that have no other means
to display the linked URL. The settings can have the following values:

• 'inline' – display URLs inline in parentheses (default)
• 'footnote' – display URLs in footnotes
• 'no' – do not display URLs

The display of inline URLs can be customized by adding CSS rules for the class link-target.
New in version 1.2.

epub_use_index
If true, add an index to the epub document. It defaults to the html_use_index option but can be
set independently for epub creation.
New in version 1.2.

epub_writing_mode
It specifies writing direction. It can accept 'horizontal' (default) and 'vertical'

epub_writing_mode 'horizontal' 'vertical'
writing-mode ?? horizontal-tb vertical-rl
page progression left to right right to left
iBook’s Scroll Theme support scroll-axis is vertical. scroll-axis is horizontal.

10.7 Options for LaTeX output

These options influence LaTeX output. See further LaTeX customization.

latex_engine
The LaTeX engine to build the docs. The setting can have the following values:

• 'pdflatex' – PDFLaTeX (default)
• 'xelatex' – XeLaTeX

 Sphinx Documentation, Release 1.6.3

10.7. Options for LaTeX output 97

https://developer.mozilla.org/en-US/docs/Web/CSS/writing-mode

• 'lualatex' – LuaLaTeX
• 'platex' – pLaTeX (default if language is 'ja')

latex_documents
This value determines how to group the document tree into LaTeX source files. It must be a list of
tuples (startdocname, targetname, title, author, documentclass,
toctree_only), where the items are:

• startdocname: document name that is the “root” of the LaTeX file. All documents referenced by it
in TOC trees will be included in the LaTeX file too. (If you want only one LaTeX file, use your
master_doc here.)

• targetname: file name of the LaTeX file in the output directory.
• title: LaTeX document title. Can be empty to use the title of the startdoc. This is inserted as

LaTeX markup, so special characters like a backslash or ampersand must be represented by the
proper LaTeX commands if they are to be inserted literally.

• author: Author for the LaTeX document. The same LaTeX markup caveat as for title applies. Use
\\and to separate multiple authors, as in: 'John \\and Sarah' (backslashes must be
Python-escaped to reach LaTeX).

• documentclass: Normally, one of 'manual' or 'howto' (provided by Sphinx and based on
'report', resp. 'article'; Japanese documents use 'jsbook', resp. 'jreport'.) “howto”
(non-Japanese) documents will not get appendices. Also they have a simpler title page. Other
document classes can be given. Independently of the document class, the “sphinx” package is
always loaded in order to define Sphinx’s custom LaTeX commands.

• toctree_only: Must be True or False. If true, the startdoc document itself is not included in the
output, only the documents referenced by it via TOC trees. With this option, you can put extra
stuff in the master document that shows up in the HTML, but not the LaTeX output.

New in version 1.2: In the past including your own document class required you to prepend the docu-
ment class name with the string “sphinx”. This is not necessary anymore.
New in version 0.3: The 6th item toctree_only. Tuples with 5 items are still accepted.

latex_logo
If given, this must be the name of an image file (relative to the configuration directory) that is the
logo of the docs. It is placed at the top of the title page. Default: None.

latex_toplevel_sectioning
This value determines the topmost sectioning unit. It should be chosen from part, chapter or
section. The default is None; the topmost sectioning unit is switched by documentclass. section
is used if documentclass will be howto, otherwise chapter will be used.
New in version 1.4.

latex_appendices
A list of document names to append as an appendix to all manuals.

latex_domain_indices
If true, generate domain-specific indices in addition to the general index. For e.g. the Python domain,
this is the global module index. Default is True.
This value can be a bool or a list of index names that should be generated, like for
html_domain_indices.
New in version 1.0.

Sphinx Documentation, Release 1.6.3

98 Chapter 10. The build configuration file

latex_show_pagerefs
If true, add page references after internal references. This is very useful for printed copies of the
manual. Default is False.
New in version 1.0.

latex_show_urls
Control whether to display URL addresses. This is very useful for printed copies of the manual. The
setting can have the following values:

• 'no' – do not display URLs (default)
• 'footnote' – display URLs in footnotes
• 'inline' – display URLs inline in parentheses

New in version 1.0.
Changed in version 1.1: This value is now a string; previously it was a boolean value, and a true value
selected the 'inline' display. For backwards compatibility, True is still accepted.

latex_keep_old_macro_names
If True the \strong, \code, \bfcode, \email, \tablecontinued, \titleref,
\menuselection, \accelerator, \crossref, \termref, and \optional text styling macros
are pre-defined by Sphinx and may be user-customized by some \renewcommand’s inserted either
via 'preamble' key or raw directive. If False, only \sphinxstrong, etc… macros are defined
(and may be redefined by user).
The default is False as it prevents macro name conflicts caused by latex packages. For example
(lualatex or xelatex) fontspec v2.6 has its own \strong macro.
New in version 1.4.5.
Changed in version 1.6: Default was changed from True to False.
Deprecated since version 1.6: This setting will be removed at Sphinx 1.7.

latex_use_latex_multicolumn
The default is False: it means that Sphinx’s own macros are used for merged cells from grid tables.
They allow general contents (literal blocks, lists, blockquotes, …) but may have problems if the
tabularcolumns directive was used to inject LaTeX mark-up of the type >{..}, <{..}, @{..} as
column specification.
Setting to True means to use LaTeX’s standard \multicolumn; this is incompatible with literal
blocks in the horizontally merged cell, and also with multiple paragraphs in such cell if the table is
rendered using tabulary.
New in version 1.6.

latex_elements

New in version 0.5.
A dictionary that contains LaTeX snippets that override those Sphinx usually puts into the generated
.tex files.
Keep in mind that backslashes must be doubled in Python string literals to avoid interpretation as
escape sequences.

• Keys that you may want to override include:
'papersize'

Paper size option of the document class ('a4paper' or 'letterpaper'), default
'letterpaper'.

 Sphinx Documentation, Release 1.6.3

10.7. Options for LaTeX output 99

http://docutils.sourceforge.net/docs/ref/rst/directives.html#raw-data-pass-through

'pointsize'
Point size option of the document class ('10pt', '11pt' or '12pt'), default '10pt'.

'pxunit'
the value of the px when used in image attributes width and height. The default value is
'0.75bp' which achieves 96px=1in (in TeX 1in = 72bp = 72.27pt.) To obtain for
example 100px=1in use '0.01in' or '0.7227pt' (the latter leads to TeX computing a
more precise value, due to the smaller unit used in the specification); for 72px=1in, simply
use '1bp'; for 90px=1in, use '0.8bp' or '0.803pt'.
New in version 1.5.

'sphinxsetup'
A comma separated list of key=value package options for the Sphinx LaTeX style, default
empty. See LaTeX customization.
New in version 1.5.

'passoptionstopackages'
A string which will be positioned early in the preamble, designed to contain
\\PassOptionsToPackage{options}{foo} commands. Default empty.
New in version 1.4.

'babel'
“babel” package inclusion, default '\\usepackage{babel}' (the suitable document
language string is passed as class option, and english is used if no language.) For Japa-
nese documents, the default is the empty string.
Changed in version 1.5: For latex_engine set to 'xelatex', the default is
'\\usepackage{polyglossia}\n\\setmainlanguage{<language>}'.
Changed in version 1.6: 'lualatex' uses same default setting as 'xelatex'

'fontpkg'
Font package inclusion, default '\\usepackage{times}' (which uses Times and
Helvetica). You can set this to '' to use the Computer Modern fonts.
Changed in version 1.2: Defaults to '' when the language uses the Cyrillic script.
Changed in version 1.5: Defaults to '' when latex_engine is 'xelatex'.
Changed in version 1.6: Defaults to '' also with 'lualatex'.

'fncychap'
Inclusion of the “fncychap” package (which makes fancy chapter titles), default
'\\usepackage[Bjarne]{fncychap}' for English documentation (this option is
slightly customized by Sphinx), '\\usepackage[Sonny]{fncychap}' for internation-
alized docs (because the “Bjarne” style uses numbers spelled out in English). Other “fncy-
chap” styles you can try are “Lenny”, “Glenn”, “Conny”, “Rejne” and “Bjornstrup”. You
can also set this to '' to disable fncychap.

'preamble'
Additional preamble content, default empty. See LaTeX customization.

'atendofbody'
Additional document content (right before the indices), default empty.
New in version 1.5.

'figure_align'
Latex figure float alignment, default ‘htbp’ (here, top, bottom, page). Whenever an image
doesn’t fit into the current page, it will be ‘floated’ into the next page but may be preceded
by any other text. If you don’t like this behavior, use ‘H’ which will disable floating and

Sphinx Documentation, Release 1.6.3

100 Chapter 10. The build configuration file

position figures strictly in the order they appear in the source.
New in version 1.3.

'footer'
Additional footer content (before the indices), default empty.
Deprecated since version 1.5: Use 'atendofbody' key instead.

• Keys that don’t need to be overridden unless in special cases are:
'extraclassoptions'

The default is the empty string. Example: 'extraclassoptions': 'openany' will
allow chapters (for documents of the 'manual' type) to start on any page.
New in version 1.2.
Changed in version 1.6: Added this documentation.

'maxlistdepth'
LaTeX allows by default at most 6 levels for nesting list and quote-like environments, with
at most 4 enumerated lists, and 4 bullet lists. Setting this key for example to '10' (as a
string) will allow up to 10 nested levels (of all sorts). Leaving it to the empty string means to
obey the LaTeX default.

Warning:

• Using this key may prove incompatible with some LaTeX packages or special
document classes which do their own list customization.

• The key setting is silently ignored if \usepackage{enumitem} is executed inside
the document preamble. Use then rather the dedicated commands of this LaTeX
package.

New in version 1.5.
'inputenc'

“inputenc” package inclusion, defaults to '\\usepackage[utf8]{inputenc}' when
using pdflatex. Otherwise empty.
Changed in version 1.4.3: Previously '\\usepackage[utf8]{inputenc}' was used for
all compilers.

'cmappkg'
“cmap” package inclusion, default '\\usepackage{cmap}'.
New in version 1.2.

'fontenc'
“fontenc” package inclusion, default '\\usepackage[T1]{fontenc}'.
Changed in version 1.5: Defaults to '\\usepackage{fontspec}' when latex_engine is
'xelatex'.
Changed in version 1.6: 'lualatex' also uses fontspec per default.

'geometry'
“geometry” package inclusion, the default definition is:

'\\usepackage{geometry}'
with an additional [dvipdfm] for Japanese documents. The Sphinx LaTeX style file
executes:

\PassOptionsToPackage{hmargin=1in,vmargin=1in,marginpar=0.5in}{geometry}

 Sphinx Documentation, Release 1.6.3

10.7. Options for LaTeX output 101

which can be customized via corresponding ‘sphinxsetup’ options.
New in version 1.5.
Changed in version 1.5.2: dvipdfm option if latex_engine is 'platex'.
New in version 1.5.3: The ‘sphinxsetup’ keys for the margins.
Changed in version 1.5.3: The location in the LaTeX file has been moved to after
\usepackage{sphinx} and \sphinxsetup{..}, hence also after insertion of
'fontpkg' key. This is in order to handle the paper layout options in a special way for
Japanese documents: the text width will be set to an integer multiple of the zenkaku width,
and the text height to an integer multiple of the baseline. See the hmargin documentation
for more.

'hyperref'
“hyperref” package inclusion; also loads package “hypcap” and issues
\urlstyle{same}. This is done after sphinx.sty file is loaded and before executing the
contents of 'preamble' key.

Attention! Loading of packages “hyperref” and “hypcap” is mandatory.

New in version 1.5: Previously this was done from inside sphinx.sty.
'maketitle'

“maketitle” call, default '\\maketitle' (but it has been redefined by the Sphinx manual
and howto classes.) Override if you want to generate a differently-styled title page.

'releasename'
value that prefixes 'release' element on title page, default 'Release'. As for title and
author used in the tuples of latex_documents, it is inserted as LaTeX markup.

'tableofcontents'
“tableofcontents” call, default '\\sphinxtableofcontents' (it is a wrapper of unmod-
ified \tableofcontents, which may itself be customized by user loaded packages.)
Override if you want to generate a different table of contents or put content between the
title page and the TOC.
Changed in version 1.5: Previously the meaning of \tableofcontents itself was modified
by Sphinx. This created an incompatibility with dedicated packages modifying it also such
as “tocloft” or “etoc”.

'transition'
Commands used to display transitions, default
'\n\n\\bigskip\\hrule\\bigskip\n\n'. Override if you want to display transitions
differently.
New in version 1.2.
Changed in version 1.6: Remove unneeded {} after \\hrule.

'printindex'
“printindex” call, the last thing in the file, default '\\printindex'. Override if you want
to generate the index differently or append some content after the index. For example
'\\footnotesize\\raggedright\\printindex' is advisable when the index is full
of long entries.

• Keys that are set by other options and therefore should not be overridden are:
'docclass' 'classoptions' 'title' 'date' 'release' 'author' 'logo'
'makeindex' 'shorthandoff'

Sphinx Documentation, Release 1.6.3

102 Chapter 10. The build configuration file

latex_docclass
A dictionary mapping 'howto' and 'manual' to names of real document classes that will be used
as the base for the two Sphinx classes. Default is to use 'article' for 'howto' and 'report' for
'manual'.
New in version 1.0.
Changed in version 1.5: In Japanese docs (language is 'ja'), by default 'jreport' is used for
'howto' and 'jsbook' for 'manual'.

latex_additional_files
A list of file names, relative to the configuration directory, to copy to the build directory when
building LaTeX output. This is useful to copy files that Sphinx doesn’t copy automatically, e.g. if they
are referenced in custom LaTeX added in latex_elements. Image files that are referenced in
source files (e.g. via .. image::) are copied automatically.
You have to make sure yourself that the filenames don’t collide with those of any automatically
copied files.
New in version 0.6.
Changed in version 1.2: This overrides the files which is provided from Sphinx such as sphinx.sty.

10.8 Options for text output

These options influence text output.

text_newlines
Determines which end-of-line character(s) are used in text output.

• 'unix': use Unix-style line endings (\n)
• 'windows': use Windows-style line endings (\r\n)
• 'native': use the line ending style of the platform the documentation is built on

Default: 'unix'.
New in version 1.1.

text_sectionchars
A string of 7 characters that should be used for underlining sections. The first character is used for
first-level headings, the second for second-level headings and so on.
The default is '*=-~"+`'.
New in version 1.1.

10.9 Options for manual page output

These options influence manual page output.

man_pages
This value determines how to group the document tree into manual pages. It must be a list of tuples
(startdocname, name, description, authors, section), where the items are:

• startdocname: document name that is the “root” of the manual page. All documents referenced
by it in TOC trees will be included in the manual file too. (If you want one master manual page,

 Sphinx Documentation, Release 1.6.3

10.8. Options for text output 103

use your master_doc here.)
• name: name of the manual page. This should be a short string without spaces or special charac-

ters. It is used to determine the file name as well as the name of the manual page (in the NAME
section).

• description: description of the manual page. This is used in the NAME section.
• authors: A list of strings with authors, or a single string. Can be an empty string or list if you do

not want to automatically generate an AUTHORS section in the manual page.
• section: The manual page section. Used for the output file name as well as in the manual page

header.

New in version 1.0.

man_show_urls
If true, add URL addresses after links. Default is False.
New in version 1.1.

10.10 Options for Texinfo output

These options influence Texinfo output.

texinfo_documents
This value determines how to group the document tree into Texinfo source files. It must be a list of
tuples (startdocname, targetname, title, author, dir_entry, description,
category, toctree_only), where the items are:

• startdocname: document name that is the “root” of the Texinfo file. All documents referenced by
it in TOC trees will be included in the Texinfo file too. (If you want only one Texinfo file, use
your master_doc here.)

• targetname: file name (no extension) of the Texinfo file in the output directory.
• title: Texinfo document title. Can be empty to use the title of the startdoc. Inserted as Texinfo

markup, so special characters like @ and {} will need to be escaped to be inserted literally.
• author: Author for the Texinfo document. Inserted as Texinfo markup. Use @* to separate

multiple authors, as in: 'John@*Sarah'.
• dir_entry: The name that will appear in the top-level DIR menu file.
• description: Descriptive text to appear in the top-level DIR menu file.
• category: Specifies the section which this entry will appear in the top-level DIR menu file.
• toctree_only: Must be True or False. If true, the startdoc document itself is not included in the

output, only the documents referenced by it via TOC trees. With this option, you can put extra
stuff in the master document that shows up in the HTML, but not the Texinfo output.

New in version 1.1.

texinfo_appendices
A list of document names to append as an appendix to all manuals.
New in version 1.1.

Sphinx Documentation, Release 1.6.3

104 Chapter 10. The build configuration file

texinfo_domain_indices
If true, generate domain-specific indices in addition to the general index. For e.g. the Python domain,
this is the global module index. Default is True.
This value can be a bool or a list of index names that should be generated, like for
html_domain_indices.
New in version 1.1.

texinfo_show_urls
Control how to display URL addresses.

• 'footnote' – display URLs in footnotes (default)
• 'no' – do not display URLs
• 'inline' – display URLs inline in parentheses

New in version 1.1.

texinfo_no_detailmenu
If true, do not generate a @detailmenu in the “Top” node’s menu containing entries for each
sub-node in the document. Default is False.
New in version 1.2.

texinfo_elements
A dictionary that contains Texinfo snippets that override those Sphinx usually puts into the gener-
ated .texi files.

• Keys that you may want to override include:
'paragraphindent'

Number of spaces to indent the first line of each paragraph, default 2. Specify 0 for no
indentation.

'exampleindent'
Number of spaces to indent the lines for examples or literal blocks, default 4. Specify 0 for
no indentation.

'preamble'
Texinfo markup inserted near the beginning of the file.

'copying'
Texinfo markup inserted within the @copying block and displayed after the title. The
default value consists of a simple title page identifying the project.

• Keys that are set by other options and therefore should not be overridden are:
'author' 'body' 'date' 'direntry' 'filename' 'project' 'release' 'title'

New in version 1.1.

10.11 Options for the linkcheck builder

linkcheck_ignore
A list of regular expressions that match URIs that should not be checked when doing a linkcheck
build. Example:

 Sphinx Documentation, Release 1.6.3

10.11. Options for the linkcheck builder 105

linkcheck_ignore = [r'http://localhost:\d+/']

New in version 1.1.

linkcheck_retries
The number of times the linkcheck builder will attempt to check a URL before declaring it broken.
Defaults to 1 attempt.
New in version 1.4.

linkcheck_timeout
A timeout value, in seconds, for the linkcheck builder. The default is to use Python’s global socket
timeout.
New in version 1.1.

linkcheck_workers
The number of worker threads to use when checking links. Default is 5 threads.
New in version 1.1.

linkcheck_anchors
If true, check the validity of #anchors in links. Since this requires downloading the whole docu-
ment, it’s considerably slower when enabled. Default is True.
New in version 1.2.

linkcheck_anchors_ignore
A list of regular expressions that match URIs that should skip checking the validity of anchors in
links. This allows skipping entire sites, where anchors are used to control dynamic pages, or just
specific anchors within a page, where javascript is used to add anchors dynamically, or use the frag-
ment as part of to trigger an internal REST request. Default is ["/#!"].
New in version 1.5.

10.12 Options for the XML builder

xml_pretty
If true, pretty-print the XML. Default is True.
New in version 1.2.

10.13 Options for the C++ domain

cpp_index_common_prefix
A list of prefixes that will be ignored when sorting C++ objects in the global index. For example
['awesome_lib::'].
New in version 1.5.

cpp_id_attributes
A list of strings that the parser additionally should accept as attributes. This can for example be used
when attributes have been #define d for portability.

Sphinx Documentation, Release 1.6.3

106 Chapter 10. The build configuration file

New in version 1.5.

cpp_paren_attributes
A list of strings that the parser additionally should accept as attributes with one argument. That is, if
my_align_as is in the list, then my_align_as(X) is parsed as an attribute for all strings X that
have balanced brances ((), [], and {}). This can for example be used when attributes have been
#define d for portability.
New in version 1.5.

 Sphinx Documentation, Release 1.6.3

10.13. Options for the C++ domain 107

Sphinx Documentation, Release 1.6.3

108 Chapter 10. The build configuration file

CHAPTER 11

Example of configuration file

-*- coding: utf-8 -*-
#
test documentation build configuration file, created by
sphinx-quickstart on Sun Jun 26 00:00:43 2016.
#
This file is execfile()d with the current directory set to its
containing dir.
#
Note that not all possible configuration values are present in this
autogenerated file.
#
All configuration values have a default; values that are commented out
serve to show the default.

If extensions (or modules to document with autodoc) are in another directory,
add these directories to sys.path here. If the directory is relative to the
documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
sys.path.insert(0, os.path.abspath('.'))

-- General configuration --

If your documentation needs a minimal Sphinx version, state it here.
#
needs_sphinx = '1.0'

Add any Sphinx extension module names here, as strings. They can be
extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
ones.
extensions = []

Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']

The suffix(es) of source filenames.
You can specify multiple suffix as a list of string:
#
source_suffix = ['.rst', '.md']
source_suffix = '.rst'

The encoding of source files.

 109

#
source_encoding = 'utf-8-sig'

The master toctree document.
master_doc = 'index'

General information about the project.
project = u'test'
copyright = u'2016, test'
author = u'test'

The version info for the project you're documenting, acts as replacement for
|version| and |release|, also used in various other places throughout the
built documents.
#
The short X.Y version.
version = u'test'
The full version, including alpha/beta/rc tags.
release = u'test'

The language for content autogenerated by Sphinx. Refer to documentation
for a list of supported languages.
#
This is also used if you do content translation via gettext catalogs.
Usually you set "language" from the command line for these cases.
language = None

There are two options for replacing |today|: either, you set today to some
non-false value, then it is used:
#
today = ''
#
Else, today_fmt is used as the format for a strftime call.
#
today_fmt = '%B %d, %Y'

List of patterns, relative to source directory, that match files and
directories to ignore when looking for source files.
These patterns also affect html_static_path and html_extra_path
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']

The reST default role (used for this markup: `text`) to use for all
documents.
#
default_role = None

If true, '()' will be appended to :func: etc. cross-reference text.
#
add_function_parentheses = True

If true, the current module name will be prepended to all description
unit titles (such as .. function::).
#
add_module_names = True

If true, sectionauthor and moduleauthor directives will be shown in the
output. They are ignored by default.
#
show_authors = False

Sphinx Documentation, Release 1.6.3

110 Chapter 11. Example of configuration file

The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'

A list of ignored prefixes for module index sorting.
modindex_common_prefix = []

If true, keep warnings as "system message" paragraphs in the built documents.
keep_warnings = False

If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = False

-- Options for HTML output --

The theme to use for HTML and HTML Help pages. See the documentation for
a list of builtin themes.
#
html_theme = 'alabaster'

Theme options are theme-specific and customize the look and feel of a theme
further. For a list of options available for each theme, see the
documentation.
#
html_theme_options = {}

Add any paths that contain custom themes here, relative to this directory.
html_theme_path = []

The name for this set of Sphinx documents.
"<project> v<release> documentation" by default.
#
html_title = u'test vtest'

A shorter title for the navigation bar. Default is the same as html_title.
#
html_short_title = None

The name of an image file (relative to this directory) to place at the top
of the sidebar.
#
html_logo = None

The name of an image file (relative to this directory) to use as a favicon of
the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
pixels large.
#
html_favicon = None

Add any paths that contain custom static files (such as style sheets) here,
relative to this directory. They are copied after the builtin static files,
so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']

Add any extra paths that contain custom files (such as robots.txt or
.htaccess) here, relative to this directory. These files are copied
directly to the root of the documentation.
#

 Sphinx Documentation, Release 1.6.3

10.13. Options for the C++ domain 111

html_extra_path = []

If not None, a 'Last updated on:' timestamp is inserted at every page
bottom, using the given strftime format.
The empty string is equivalent to '%b %d, %Y'.
#
html_last_updated_fmt = None

If true, SmartyPants will be used to convert quotes and dashes to
typographically correct entities.
#
html_use_smartypants = True

Custom sidebar templates, maps document names to template names.
#
html_sidebars = {}

Additional templates that should be rendered to pages, maps page names to
template names.
#
html_additional_pages = {}

If false, no module index is generated.
#
html_domain_indices = True

If false, no index is generated.
#
html_use_index = True

If true, the index is split into individual pages for each letter.
#
html_split_index = False

If true, links to the reST sources are added to the pages.
#
html_show_sourcelink = True

If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
#
html_show_sphinx = True

If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
#
html_show_copyright = True

If true, an OpenSearch description file will be output, and all pages will
contain a <link> tag referring to it. The value of this option must be the
base URL from which the finished HTML is served.
#
html_use_opensearch = ''

This is the file name suffix for HTML files (e.g. ".xhtml").
html_file_suffix = None

Language to be used for generating the HTML full-text search index.
Sphinx supports the following languages:
'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja'
'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr', 'zh'

Sphinx Documentation, Release 1.6.3

112 Chapter 11. Example of configuration file

#
html_search_language = 'en'

A dictionary with options for the search language support, empty by default.
'ja' uses this config value.
'zh' user can custom change `jieba` dictionary path.
#
html_search_options = {'type': 'default'}

The name of a javascript file (relative to the configuration directory) that
implements a search results scorer. If empty, the default will be used.
#
html_search_scorer = 'scorer.js'

Output file base name for HTML help builder.
htmlhelp_basename = 'testdoc'

-- Options for LaTeX output ---

latex_elements = {
 # The paper size ('letterpaper' or 'a4paper').
 #
 # 'papersize': 'letterpaper',

 # The font size ('10pt', '11pt' or '12pt').
 #
 # 'pointsize': '10pt',

 # Additional stuff for the LaTeX preamble.
 #
 # 'preamble': '',

 # Latex figure (float) alignment
 #
 # 'figure_align': 'htbp',
}

Grouping the document tree into LaTeX files. List of tuples
(source start file, target name, title,
author, documentclass [howto, manual, or own class]).
latex_documents = [
 (master_doc, 'test.tex', u'test Documentation',
 u'test', 'manual'),
]

The name of an image file (relative to this directory) to place at the top of
the title page.
#
latex_logo = None

If true, show page references after internal links.
#
latex_show_pagerefs = False

If true, show URL addresses after external links.
#
latex_show_urls = False

Documents to append as an appendix to all manuals.

 Sphinx Documentation, Release 1.6.3

10.13. Options for the C++ domain 113

#
latex_appendices = []

If false, will not define \strong, \code, \titleref, \crossref ... but only
\sphinxstrong, ..., \sphinxtitleref, ... to help avoid clash with user added
packages.
#
latex_keep_old_macro_names = True

If false, no module index is generated.
#
latex_domain_indices = True

-- Options for manual page output ---------------------------------------

One entry per manual page. List of tuples
(source start file, name, description, authors, manual section).
man_pages = [
 (master_doc, 'test', u'test Documentation',
 [author], 1)
]

If true, show URL addresses after external links.
#
man_show_urls = False

-- Options for Texinfo output ---

Grouping the document tree into Texinfo files. List of tuples
(source start file, target name, title, author,
dir menu entry, description, category)
texinfo_documents = [
 (master_doc, 'test', u'test Documentation',
 author, 'test', 'One line description of project.',
 'Miscellaneous'),
]

Documents to append as an appendix to all manuals.
#
texinfo_appendices = []

If false, no module index is generated.
#
texinfo_domain_indices = True

How to display URL addresses: 'footnote', 'no', or 'inline'.
#
texinfo_show_urls = 'footnote'

If true, do not generate a @detailmenu in the "Top" node's menu.
#
texinfo_no_detailmenu = False

-- A random example ---

import sys, os
sys.path.insert(0, os.path.abspath('.'))

Sphinx Documentation, Release 1.6.3

114 Chapter 11. Example of configuration file

exclude_patterns = ['zzz']

numfig = True
#language = 'ja'

extensions.append('sphinx.ext.todo')
extensions.append('sphinx.ext.autodoc')
#extensions.append('sphinx.ext.autosummary')
extensions.append('sphinx.ext.intersphinx')
extensions.append('sphinx.ext.mathjax')
extensions.append('sphinx.ext.viewcode')
extensions.append('sphinx.ext.graphviz')

autosummary_generate = True
html_theme = 'default'
#source_suffix = ['.rst', '.txt']

 Sphinx Documentation, Release 1.6.3

10.13. Options for the C++ domain 115

Sphinx Documentation, Release 1.6.3

116 Chapter 11. Example of configuration file

CHAPTER 12

Internationalization

New in version 1.1.
Complementary to translations provided for Sphinx-generated messages such as navigation bars, Sphinx
provides mechanisms facilitating document translations in itself. See the Options for internationalization for
details on configuration.

Figure 12.1. Workflow visualization of translations in Sphinx. (The stick-figure is taken from an XKCD comic.)

12.1 Sphinx internationalization details . 118
12.2 Translating with sphinx-intl . 118
12.3 Using Transifex service for team translation . 120
12.4 Contributing to Sphinx reference translation . 121

 117

http://xkcd.com/779/

8 See the GNU gettext utilities for details on that software suite.
9 Because nobody expects the Spanish Inquisition!

12.1 Sphinx internationalization details

gettext 8 is an established standard for internationalization and localization. It naively maps messages in
a program to a translated string. Sphinx uses these facilities to translate whole documents.
Initially project maintainers have to collect all translatable strings (also referred to as messages) to make
them known to translators. Sphinx extracts these through invocation of sphinx-build -b gettext.
Every single element in the doctree will end up in a single message which results in lists being equally
split into different chunks while large paragraphs will remain as coarsely-grained as they were in the
original document. This grants seamless document updates while still providing a little bit of context for
translators in free-text passages. It is the maintainer’s task to split up paragraphs which are too large as
there is no sane automated way to do that.
After Sphinx successfully ran the MessageCatalogBuilder you will find a collection of .pot files in
your output directory. These are catalog templates and contain messages in your original language only.
They can be delivered to translators which will transform them to .po files — so called message catalogs
— containing a mapping from the original messages to foreign-language strings.
Gettext compiles them into a binary format known as binary catalogs through msgfmt for efficiency
reasons. If you make these files discoverable with locale_dirs for your language, Sphinx will pick
them up automatically.
An example: you have a document usage.rst in your Sphinx project. The gettext builder will put its
messages into usage.pot. Imagine you have Spanish translations 9 on your hands in usage.po — for
your builds to be translated you need to follow these instructions:

• Compile your message catalog to a locale directory, say locale, so it ends up in
./locale/es/LC_MESSAGES/usage.mo in your source directory (where es is the language code
for Spanish.)

msgfmt "usage.po" -o "locale/es/LC_MESSAGES/usage.mo"

• Set locale_dirs to ["locale/"].
• Set language to es (also possible via -D).
• Run your desired build.

12.2 Translating with sphinx-intl

12.2.1 Quick guide

sphinx-intl is a useful tool to work with Sphinx translation flow. This section describe an easy way to
translate with sphinx-intl.

1. Install sphinx-intl by pip install sphinx-intl or easy_install sphinx-intl.
2. Add configurations to your conf.py:

locale_dirs = ['locale/'] # path is example but recommended.
gettext_compact = False # optional.

Sphinx Documentation, Release 1.6.3

118 Chapter 12. Internationalization

http://www.gnu.org/software/gettext/manual/gettext.html#Introduction
https://pypi.python.org/pypi/sphinx-intl
https://pypi.python.org/pypi/sphinx-intl

This case-study assumes that locale_dirs is set to ‘locale/’ and gettext_compact is set to False
(the Sphinx document is already configured as such).

3. Extract document’s translatable messages into pot files:

$ make gettext

As a result, many pot files are generated under _build/gettext directory.
4. Setup/Update your locale_dir:

$ sphinx-intl update -p _build/gettext -l de -l ja

Done. You got these directories that contain po files:
• ./locale/de/LC_MESSAGES/
• ./locale/ja/LC_MESSAGES/

5. Translate your po files under ./locale/<lang>/LC_MESSAGES/.
6. make translated document.

You need a language parameter in conf.py or you may also specify the parameter on the
command line:

$ make -e SPHINXOPTS="-D language='de'" html

Congratulations! You got the translated documentation in the _build/html directory.
New in version 1.3: sphinx-build that is invoked by make command will build po files into mo files.
If you are using 1.2.x or earlier, please invoke sphinx-intl build command before make command.

12.2.2 Translating

Translate po file under ./locale/de/LC_MESSAGES directory. The case of builders.po file for sphinx
document:

a5600c3d2e3d48fc8c261ea0284db79b
#: ../../builders.rst:4
msgid "Available builders"
msgstr "<FILL HERE BY TARGET LANGUAGE>"

Another case, msgid is multi-line text and contains reStructuredText syntax:

302558364e1d41c69b3277277e34b184
#: ../../builders.rst:9
msgid ""
"These are the built-in Sphinx builders. More builders can be added by "
":ref:`extensions <extensions>`."
msgstr ""
"FILL HERE BY TARGET LANGUAGE FILL HERE BY TARGET LANGUAGE FILL HERE "
"BY TARGET LANGUAGE :ref:`EXTENSIONS <extensions>` FILL HERE."

Please be careful not to break reST notation. Most po-editors will help you with that.

12.2.3 Update your po files by new pot files

If a document is updated, it is necessary to generate updated pot files and to apply differences to trans-
lated po files. In order to apply the updating difference of a pot file to po file, use the sphinx-intl
update command.

 Sphinx Documentation, Release 1.6.3

12.2. Translating with sphinx-intl 119

$ sphinx-intl update -p _build/locale

12.3 Using Transifex service for team translation

Transifex is one of several services that allow collaborative translation via a web interface. It has a nifty
Python-based command line client that makes it easy to fetch and push translations.

1. Install transifex-client
You need tx command to upload resources (pot files).

$ pip install transifex-client

See also:

Transifex Client v0.8 — Transifex documentation

2. Create your transifex account and create new project for your document
Currently, transifex does not allow for a translation project to have more than one version of the
document, so you’d better include a version number in your project name.
For example:
Project ID sphinx-document-test_1_0

Project URL https://www.transifex.com/projects/p/sphinx-document-test_1_0/

3. Create config files for tx command
This process will create .tx/config in the current directory, as well as a ~/.transifexrc file
that includes auth information.

$ tx init
Creating .tx folder...
Transifex instance [https://www.transifex.com]:
...
Please enter your transifex username: <transifex-username>
Password: <transifex-password>
...
Done.

4. Upload pot files to transifex service
Register pot files to .tx/config file:

$ cd /your/document/root
$ sphinx-intl update-txconfig-resources --pot-dir _build/locale \
 --transifex-project-name sphinx-document-test_1_0

and upload pot files:

$ tx push -s
Pushing translations for resource sphinx-document-test_1_0.builders:
Pushing source file (locale/pot/builders.pot)
Resource does not exist. Creating...
...
Done.

5. Forward the translation on transifex
6. Pull translated po files and make translated html

Sphinx Documentation, Release 1.6.3

120 Chapter 12. Internationalization

https://www.transifex.com/
https://pypi.python.org/pypi/transifex-client
http://docs.transifex.com/developer/client/
https://www.transifex.com/

Get translated catalogs and build mo files (ex. for ‘de’):

$ cd /your/document/root
$ tx pull -l de
Pulling translations for resource sphinx-document-test_1_0.builders (...)
 -> de: locale/de/LC_MESSAGES/builders.po
...
Done.

Invoke make html:

$ make -e SPHINXOPTS="-D language='de'" html

That’s all!

Tip: Translating locally and on Transifex
If you want to push all language’s po files, you can be done by using tx push -t command. Watch out!
This operation overwrites translations in transifex.
In other words, if you have updated each in the service and local po files, it would take much time and
effort to integrate them.

12.4 Contributing to Sphinx reference translation

The recommended way for new contributors to translate Sphinx reference is to join the translation team
on Transifex.
There is sphinx translation page for Sphinx-1.3 documentation.

1. Login to transifex service.
2. Go to sphinx translation page.
3. Click Request language and fill form.
4. Wait acceptance by transifex sphinx translation maintainers.
5. (after acceptance) translate on transifex.

 Sphinx Documentation, Release 1.6.3

12.4. Contributing to Sphinx reference translation 121

https://www.transifex.com/sphinx-doc/sphinx-doc-1_3/
https://www.transifex.com/
https://www.transifex.com/sphinx-doc/sphinx-doc-1_3/

Sphinx Documentation, Release 1.6.3

122 Chapter 12. Internationalization

CHAPTER 13

HTML theming support

New in version 0.6.
Sphinx supports changing the appearance of its HTML output via themes. A theme is a collection of
HTML templates, stylesheet(s) and other static files. Additionally, it has a configuration file which speci-
fies from which theme to inherit, which highlighting style to use, and what options exist for customizing
the theme’s look and feel.
Themes are meant to be project-unaware, so they can be used for different projects without change.

13.1 Using a theme

Using an existing theme is easy. If the theme is builtin to Sphinx, you only need to set the html_theme
config value. With the html_theme_options config value you can set theme-specific options that
change the look and feel. For example, you could have the following in your conf.py:

html_theme = "classic"
html_theme_options = {
 "rightsidebar": "true",
 "relbarbgcolor": "black"
}

That would give you the classic theme, but with a sidebar on the right side and a black background for
the relation bar (the bar with the navigation links at the page’s top and bottom).
If the theme does not come with Sphinx, it can be in two static forms: either a directory (containing
theme.conf and other needed files), or a zip file with the same contents. Either of them must be put
where Sphinx can find it; for this there is the config value html_theme_path. It gives a list of directo-
ries, relative to the directory containing conf.py, that can contain theme directories or zip files. For
example, if you have a theme in the file blue.zip, you can put it right in the directory containing
conf.py and use this configuration:

html_theme = "blue"
html_theme_path = ["."]

The third form is a python package. If a theme you want to use is distributed as a python package, you
can use it after installing

installing theme package
$ pip install sphinxjp.themes.dotted

use it in your conf.py

 123

html_theme = "dotted"

13.2 Builtin themes

Theme overview

alabaster classic

sphinxdoc scrolls

Sphinx Documentation, Release 1.6.3

124 Chapter 13. HTML theming support

agogo traditional

nature haiku

 Sphinx Documentation, Release 1.6.3

13.2. Builtin themes 125

pyramid bizstyle

Sphinx comes with a selection of themes to choose from.
These themes are:

• basic – This is a basically unstyled layout used as the base for the other themes, and usable as the
base for custom themes as well. The HTML contains all important elements like sidebar and relation
bar. There are these options (which are inherited by the other themes):

• nosidebar (true or false): Don’t include the sidebar. Defaults to False.
• sidebarwidth (an integer): Width of the sidebar in pixels. (Do not include px in the value.)

Defaults to 230 pixels.

• alabaster – Alabaster theme is a modified “Kr” Sphinx theme from @kennethreitz (especially as
used in his Requests project), which was itself originally based on @mitsuhiko’s theme used for Flask
& related projects. Check out at its installation page how to set up properly html_sidebars for its
use.

• classic – This is the classic theme, which looks like the Python 2 documentation. It can be custom-
ized via these options:

• rightsidebar (true or false): Put the sidebar on the right side. Defaults to False.
• stickysidebar (true or false): Make the sidebar “fixed” so that it doesn’t scroll out of view for

long body content. This may not work well with all browsers. Defaults to False.
• collapsiblesidebar (true or false): Add an experimental JavaScript snippet that makes the

sidebar collapsible via a button on its side. Doesn’t work with “stickysidebar”. Defaults to False.
• externalrefs (true or false): Display external links differently from internal links. Defaults to
False.

There are also various color and font options that can change the color scheme without having to
write a custom stylesheet:

• footerbgcolor (CSS color): Background color for the footer line.
• footertextcolor (CSS color): Text color for the footer line.
• sidebarbgcolor (CSS color): Background color for the sidebar.
• sidebarbtncolor (CSS color): Background color for the sidebar collapse button (used when

Sphinx Documentation, Release 1.6.3

126 Chapter 13. HTML theming support

https://pypi.python.org/pypi/alabaster
http://alabaster.readthedocs.io/en/latest/installation.html
https://docs.python.org/2/

collapsiblesidebar is True).
• sidebartextcolor (CSS color): Text color for the sidebar.
• sidebarlinkcolor (CSS color): Link color for the sidebar.
• relbarbgcolor (CSS color): Background color for the relation bar.
• relbartextcolor (CSS color): Text color for the relation bar.
• relbarlinkcolor (CSS color): Link color for the relation bar.
• bgcolor (CSS color): Body background color.
• textcolor (CSS color): Body text color.
• linkcolor (CSS color): Body link color.
• visitedlinkcolor (CSS color): Body color for visited links.
• headbgcolor (CSS color): Background color for headings.
• headtextcolor (CSS color): Text color for headings.
• headlinkcolor (CSS color): Link color for headings.
• codebgcolor (CSS color): Background color for code blocks.
• codetextcolor (CSS color): Default text color for code blocks, if not set differently by the high-

lighting style.
• bodyfont (CSS font-family): Font for normal text.
• headfont (CSS font-family): Font for headings.

• sphinxdoc – The theme used for this documentation. It features a sidebar on the right side. There
are currently no options beyond nosidebar and sidebarwidth.

• scrolls – A more lightweight theme, based on the Jinja documentation. The following color options
are available:

• headerbordercolor
• subheadlinecolor
• linkcolor
• visitedlinkcolor
• admonitioncolor

• agogo – A theme created by Andi Albrecht. The following options are supported:
• bodyfont (CSS font family): Font for normal text.
• headerfont (CSS font family): Font for headings.
• pagewidth (CSS length): Width of the page content, default 70em.
• documentwidth (CSS length): Width of the document (without sidebar), default 50em.
• sidebarwidth (CSS length): Width of the sidebar, default 20em.
• bgcolor (CSS color): Background color.
• headerbg (CSS value for “background”): background for the header area, default a grayish

gradient.
• footerbg (CSS value for “background”): background for the footer area, default a light gray

gradient.

 Sphinx Documentation, Release 1.6.3

13.2. Builtin themes 127

http://jinja.pocoo.org/

• linkcolor (CSS color): Body link color.
• headercolor1, headercolor2 (CSS color): colors for <h1> and <h2> headings.
• headerlinkcolor (CSS color): Color for the backreference link in headings.
• textalign (CSS text-align value): Text alignment for the body, default is justify.

• nature – A greenish theme. There are currently no options beyond nosidebar and sidebarwidth.
• pyramid – A theme from the Pyramid web framework project, designed by Blaise Laflamme. There

are currently no options beyond nosidebar and sidebarwidth.
• haiku – A theme without sidebar inspired by the Haiku OS user guide. The following options are

supported:
• full_logo (true or false, default False): If this is true, the header will only show the
html_logo. Use this for large logos. If this is false, the logo (if present) will be shown floating
right, and the documentation title will be put in the header.

• textcolor, headingcolor, linkcolor, visitedlinkcolor, hoverlinkcolor (CSS colors): Colors for
various body elements.

• traditional – A theme resembling the old Python documentation. There are currently no options
beyond nosidebar and sidebarwidth.

• epub – A theme for the epub builder. This theme tries to save visual space which is a sparse
resource on ebook readers. The following options are supported:

• relbar1 (true or false, default True): If this is true, the relbar1 block is inserted in the epub
output, otherwise it is omitted.

• footer (true or false, default True): If this is true, the footer block is inserted in the epub output,
otherwise it is omitted.

• bizstyle – A simple bluish theme. The following options are supported beyond nosidebar and
sidebarwidth:

• rightsidebar (true or false): Put the sidebar on the right side. Defaults to False.

New in version 1.3: ‘alabaster’, ‘sphinx_rtd_theme’ and ‘bizstyle’ theme.
Changed in version 1.3: The ‘default’ theme has been renamed to ‘classic’. ‘default’ is still available, however
it will emit a notice that it is an alias for the new ‘alabaster’ theme.

13.3 Creating themes

As said, themes are either a directory or a zipfile (whose name is the theme name), containing the follow-
ing:

• A theme.conf file, see below.
• HTML templates, if needed.
• A static/ directory containing any static files that will be copied to the output static directory on

build. These can be images, styles, script files.

Sphinx Documentation, Release 1.6.3

128 Chapter 13. HTML theming support

https://www.haiku-os.org/docs/userguide/en/contents.html

10 It is not an executable Python file, as opposed to conf.py, because that would pose an unnecessary security risk if themes are
shared.

The theme.conf file is in INI format 10 (readable by the standard Python ConfigParser module) and
has the following structure:

[theme]
inherit = base theme
stylesheet = main CSS name
pygments_style = stylename

[options]
variable = default value

• The inherit setting gives the name of a “base theme”, or none. The base theme will be used to
locate missing templates (most themes will not have to supply most templates if they use basic as
the base theme), its options will be inherited, and all of its static files will be used as well.

• The stylesheet setting gives the name of a CSS file which will be referenced in the HTML header. If
you need more than one CSS file, either include one from the other via CSS’ @import, or use a
custom HTML template that adds <link rel="stylesheet"> tags as necessary. Setting the
html_style config value will override this setting.

• The pygments_style setting gives the name of a Pygments style to use for highlighting. This can be
overridden by the user in the pygments_style config value.

• The options section contains pairs of variable names and default values. These options can be over-
ridden by the user in html_theme_options and are accessible from all templates as
theme_<name>.

13.4 Distribute your theme as a python package

As a way to distribute your theme, you can use python package. Python package brings to users easy
setting up ways.
To distribute your theme as a python package, please define an entry point called
sphinx.html_themes in your setup.py file, and write a setup() function to register your themes
using add_html_theme() API in it:

'setup.py'
setup(
 ...
 entry_points = {
 'sphinx.html_themes': [
 'name_of_theme = your_package',
]
 },
 ...
)

'your_package.py'
from os import path

def setup(app):
 app.add_html_theme('name_of_theme', path.abspath(path.dirname(__file__)))

If your theme package contains two or more themes, please call add_html_theme() twice or more.

 Sphinx Documentation, Release 1.6.3

13.4. Distribute your theme as a python package 129

New in version 1.2: ‘sphinx_themes’ entry_points feature.
Deprecated since version 1.6: sphinx_themes entry_points has been deprecated.
New in version 1.6: sphinx.html_themes entry_points feature.

13.4.1 Templating

The guide to templating is helpful if you want to write your own templates. What is important to keep in
mind is the order in which Sphinx searches for templates:

• First, in the user’s templates_path directories.
• Then, in the selected theme.
• Then, in its base theme, its base’s base theme, etc.

When extending a template in the base theme with the same name, use the theme name as an explicit
directory: {% extends "basic/layout.html" %}. From a user templates_path template, you
can still use the “exclamation mark” syntax as described in the templating document.

13.4.2 Static templates

Since theme options are meant for the user to configure a theme more easily, without having to write a
custom stylesheet, it is necessary to be able to template static files as well as HTML files. Therefore,
Sphinx supports so-called “static templates”, like this:
If the name of a file in the static/ directory of a theme (or in the user’s static path, for that matter) ends
with _t, it will be processed by the template engine. The _t will be left from the final file name. For
example, the classic theme has a file static/classic.css_t which uses templating to put the color
options into the stylesheet. When a documentation is built with the classic theme, the output directory
will contain a _static/classic.css file where all template tags have been processed.

13.5 Third Party Themes

Theme overview

sphinx_rtd_theme

Sphinx Documentation, Release 1.6.3

130 Chapter 13. HTML theming support

• sphinx_rtd_theme – Read the Docs Sphinx Theme. This is a mobile-friendly sphinx theme that was
made for readthedocs.org. View a working demo over on readthedocs.org. You can get install and
options information at Read the Docs Sphinx Theme page.
Changed in version 1.4: sphinx_rtd_theme has become optional.

 Sphinx Documentation, Release 1.6.3

13.5. Third Party Themes 131

https://pypi.python.org/pypi/sphinx_rtd_theme
https://pypi.python.org/pypi/sphinx_rtd_theme

Sphinx Documentation, Release 1.6.3

132 Chapter 13. HTML theming support

CHAPTER 14

Setuptools integration

Sphinx supports integration with setuptools and distutils through a custom command - BuildDoc.

14.1 Using setuptools integration

The Sphinx build can then be triggered from distutils, and some Sphinx options can be set in setup.py
or setup.cfg instead of Sphinx’s own configuration file.
For instance, from setup.py:

this is only necessary when not using setuptools/distribute
from sphinx.setup_command import BuildDoc
cmdclass = {'build_sphinx': BuildDoc}

name = 'My project'
version = '1.2'
release = '1.2.0'
setup(
 name=name,
 author='Bernard Montgomery',
 version=release,
 cmdclass=cmdclass,
 # these are optional and override conf.py settings
 command_options={
 'build_sphinx': {
 'project': ('setup.py', name),
 'version': ('setup.py', version),
 'release': ('setup.py', release)}},
)

Or add this section in setup.cfg:

[build_sphinx]
project = 'My project'
version = 1.2
release = 1.2.0

Once configured, call this by calling the relevant command on setup.py:

$ python setup.py build_sphinx

 133

14.2 Options for setuptools integration

fresh-env
A boolean that determines whether the saved environment should be discarded on build. Default is
false.
This can also be set by passing the -E flag to setup.py.

$ python setup.py build_sphinx -E

all-files
A boolean that determines whether all files should be built from scratch. Default is false.
This can also be set by passing the -a flag to setup.py:

$ python setup.py build_sphinx -a

source-dir
The target source directory. This can be relative to the setup.py or setup.cfg file, or it can be
absolute. Default is ''.
This can also be set by passing the -s flag to setup.py:

$ python setup.py build_sphinx -s $SOURCE_DIR

build-dir
The target build directory. This can be relative to the setup.py or setup.cfg file, or it can be abso-
lute. Default is ''.

config-dir
Location of the configuration directory. This can be relative to the setup.py or setup.cfg file, or it
can be absolute. Default is ''.
This can also be set by passing the -c flag to setup.py:

$ python setup.py build_sphinx -c $CONFIG_DIR

New in version 1.0.

builder
The builder or list of builders to use. Default is html.
This can also be set by passing the -b flag to setup.py:

$ python setup.py build_sphinx -b $BUILDER

Changed in version 1.6: This can now be a comma- or space-separated list of builders

warning-is-error
A boolean that ensures Sphinx warnings will result in a failed build. Default is false.
This can also be set by passing the -W flag to setup.py:

$ python setup.py build_sphinx -W

New in version 1.5.

Sphinx Documentation, Release 1.6.3

134 Chapter 14. Setuptools integration

project
The documented project’s name. Default is ''.
New in version 1.0.

version
The short X.Y version. Default is ''.
New in version 1.0.

release
The full version, including alpha/beta/rc tags. Default is ''.
New in version 1.0.

today
How to format the current date, used as the replacement for |today|. Default is ''.
New in version 1.0.

link-index
A boolean that ensures index.html will be linked to the master doc. Default is false.
This can also be set by passing the -i flag to setup.py:

$ python setup.py build_sphinx -i

New in version 1.0.

copyright
The copyright string. Default is ''.
New in version 1.3.

pdb
A boolean to configure pdb on exception. Default is false.
New in version 1.5.

 Sphinx Documentation, Release 1.6.3

14.2. Options for setuptools integration 135

Sphinx Documentation, Release 1.6.3

136 Chapter 14. Setuptools integration

CHAPTER 15

Templating

Sphinx uses the Jinja templating engine for its HTML templates. Jinja is a text-based engine, and inspired
by Django templates, so anyone having used Django will already be familiar with it. It also has excellent
documentation for those who need to make themselves familiar with it.

15.1 Do I need to use Sphinx’s templates to produce HTML?

No. You have several other options:
• You can write a TemplateBridge subclass that calls your template engine of choice, and set the
template_bridge configuration value accordingly.

• You can write a custom builder that derives from StandaloneHTMLBuilder and calls your template
engine of choice.

• You can use the PickleHTMLBuilder that produces pickle files with the page contents, and post-
process them using a custom tool, or use them in your Web application.

15.2 Jinja/Sphinx Templating Primer

The default templating language in Sphinx is Jinja. It’s Django/Smarty inspired and easy to understand.
The most important concept in Jinja is template inheritance, which means that you can overwrite only
specific blocks within a template, customizing it while also keeping the changes at a minimum.
To customize the output of your documentation you can override all the templates (both the layout
templates and the child templates) by adding files with the same name as the original filename into the
template directory of the structure the Sphinx quickstart generated for you.
Sphinx will look for templates in the folders of templates_path first, and if it can’t find the template it’s
looking for there, it falls back to the selected theme’s templates.
A template contains variables, which are replaced with values when the template is evaluated, tags,
which control the logic of the template and blocks which are used for template inheritance.
Sphinx’s basic theme provides base templates with a couple of blocks it will fill with data. These are
located in the themes/basic subdirectory of the Sphinx installation directory, and used by all builtin
Sphinx themes. Templates with the same name in the templates_path override templates supplied by
the selected theme.
For example, to add a new link to the template area containing related links all you have to do is to add a
new template called layout.html with the following contents:

 137

http://jinja.pocoo.org

{% extends "!layout.html" %}
{% block rootrellink %}
 Project Homepage »
 {{ super() }}
{% endblock %}

By prefixing the name of the overridden template with an exclamation mark, Sphinx will load the layout
template from the underlying HTML theme.
Important: If you override a block, call {{ super() }} somewhere to render the block’s content in the
extended template – unless you don’t want that content to show up.

15.3 Working with the builtin templates

The builtin basic theme supplies the templates that all builtin Sphinx themes are based on. It has the
following elements you can override or use:

15.3.1 Blocks

The following blocks exist in the layout.html template:
doctype

The doctype of the output format. By default this is XHTML 1.0 Transitional as this is the closest to
what Sphinx and Docutils generate and it’s a good idea not to change it unless you want to switch to
HTML 5 or a different but compatible XHTML doctype.

linktags
This block adds a couple of <link> tags to the head section of the template.

extrahead
This block is empty by default and can be used to add extra contents into the <head> tag of the
generated HTML file. This is the right place to add references to JavaScript or extra CSS files.

relbar1 / relbar2
This block contains the relation bar, the list of related links (the parent documents on the left, and the
links to index, modules etc. on the right). relbar1 appears before the document, relbar2 after the docu-
ment. By default, both blocks are filled; to show the relbar only before the document, you would
override relbar2 like this:

{% block relbar2 %}{% endblock %}

rootrellink / relbaritems
Inside the relbar there are three sections: The rootrellink, the links from the documentation and the
custom relbaritems. The rootrellink is a block that by default contains a list item pointing to the master
document by default, the relbaritems is an empty block. If you override them to add extra links into
the bar make sure that they are list items and end with the reldelim1.

document
The contents of the document itself. It contains the block “body” where the individual content is put
by subtemplates like page.html.

sidebar1 / sidebar2
A possible location for a sidebar. sidebar1 appears before the document and is empty by default, side-
bar2 after the document and contains the default sidebar. If you want to swap the sidebar location
override this and call the sidebar helper:

{% block sidebar1 %}{{ sidebar() }}{% endblock %}

Sphinx Documentation, Release 1.6.3

138 Chapter 15. Templating

{% block sidebar2 %}{% endblock %}

(The sidebar2 location for the sidebar is needed by the sphinxdoc.css stylesheet, for example.)
sidebarlogo

The logo location within the sidebar. Override this if you want to place some content at the top of the
sidebar.

footer
The block for the footer div. If you want a custom footer or markup before or after it, override this
one.

The following four blocks are only used for pages that do not have assigned a list of custom sidebars in the
html_sidebars config value. Their use is deprecated in favor of separate sidebar templates, which can
be included via html_sidebars.
sidebartoc

The table of contents within the sidebar.
Deprecated since version 1.0.

sidebarrel
The relation links (previous, next document) within the sidebar.
Deprecated since version 1.0.

sidebarsourcelink
The “Show source” link within the sidebar (normally only shown if this is enabled by
html_show_sourcelink).
Deprecated since version 1.0.

sidebarsearch
The search box within the sidebar. Override this if you want to place some content at the bottom of
the sidebar.
Deprecated since version 1.0.

15.3.2 Configuration Variables

Inside templates you can set a couple of variables used by the layout template using the {% set %} tag:

reldelim1
The delimiter for the items on the left side of the related bar. This defaults to ' »' Each item
in the related bar ends with the value of this variable.

reldelim2
The delimiter for the items on the right side of the related bar. This defaults to ' |'. Each item
except of the last one in the related bar ends with the value of this variable.

Overriding works like this:

{% extends "!layout.html" %}
{% set reldelim1 = ' >' %}

script_files
Add additional script files here, like this:

{% set script_files = script_files + ["_static/myscript.js"] %}

 Sphinx Documentation, Release 1.6.3

15.3. Working with the builtin templates 139

15.3.3 Helper Functions

Sphinx provides various Jinja functions as helpers in the template. You can use them to generate links or
output multiply used elements.

pathto (document)
Return the path to a Sphinx document as a URL. Use this to refer to built documents.

pathto (file, 1)
Return the path to a file which is a filename relative to the root of the generated output. Use this to
refer to static files.

hasdoc (document)
Check if a document with the name document exists.

sidebar ()
Return the rendered sidebar.

relbar ()
Return the rendered relation bar.

15.3.4 Global Variables

These global variables are available in every template and are safe to use. There are more, but most of
them are an implementation detail and might change in the future.

builder
The name of the builder (e.g. html or htmlhelp).

copyright
The value of copyright.

docstitle
The title of the documentation (the value of html_title), except when the “single-file” builder is
used, when it is set to None.

embedded
True if the built HTML is meant to be embedded in some viewing application that handles naviga-
tion, not the web browser, such as for HTML help or Qt help formats. In this case, the sidebar is not
included.

favicon
The path to the HTML favicon in the static path, or ''.

file_suffix
The value of the builder’s out_suffix attribute, i.e. the file name extension that the output files will
get. For a standard HTML builder, this is usually .html.

has_source
True if the reST document sources are copied (if html_copy_source is True).

language
The value of language.

Sphinx Documentation, Release 1.6.3

140 Chapter 15. Templating

last_updated
The build date.

logo
The path to the HTML logo image in the static path, or ''.

master_doc
The value of master_doc, for usage with pathto().

pagename
The “page name” of the current file, i.e. either the document name if the file is generated from a reST
source, or the equivalent hierarchical name relative to the output directory
([directory/]filename_without_extension).

project
The value of project.

release
The value of release.

rellinks
A list of links to put at the left side of the relbar, next to “next” and “prev”. This usually contains
links to the general index and other indices, such as the Python module index. If you add something
yourself, it must be a tuple (pagename, link title, accesskey, link text).

shorttitle
The value of html_short_title.

show_source
True if html_show_sourcelink is True.

sphinx_version
The version of Sphinx used to build.

style
The name of the main stylesheet, as given by the theme or html_style.

title
The title of the current document, as used in the <title> tag.

use_opensearch
The value of html_use_opensearch.

version
The value of version.

In addition to these values, there are also all theme options available (prefixed by theme_), as well as the
values given by the user in html_context.
In documents that are created from source files (as opposed to automatically-generated files like the
module index, or documents that already are in HTML form), these variables are also available:

body
A string containing the content of the page in HTML form as produced by the HTML builder, before
the theme is applied.

 Sphinx Documentation, Release 1.6.3

15.3. Working with the builtin templates 141

display_toc
A boolean that is True if the toc contains more than one entry.

meta
Document metadata (a dictionary), see File-wide metadata.

metatags
A string containing the page’s HTML meta tags.

next
The next document for the navigation. This variable is either false or has two attributes link and title.
The title contains HTML markup. For example, to generate a link to the next page, you can use this
snippet:

{% if next %}
{{ next.title }}
{% endif %}

page_source_suffix
The suffix of the file that was rendered. Since we support a list of source_suffix, this will allow
you to properly link to the original source file.

parents
A list of parent documents for navigation, structured like the next item.

prev
Like next, but for the previous page.

sourcename
The name of the copied source file for the current document. This is only nonempty if the
html_copy_source value is True. This has empty value on creating automatically-generated files.

title
The page title.

toc
The local table of contents for the current page, rendered as HTML bullet lists.

toctree
A callable yielding the global TOC tree containing the current page, rendered as HTML bullet lists.
Optional keyword arguments:

• collapse (True by default): if true, all TOC entries that are not ancestors of the current page
are collapsed

• maxdepth (defaults to the max depth selected in the toctree directive): the maximum depth of
the tree; set it to -1 to allow unlimited depth

• titles_only (False by default): if true, put only toplevel document titles in the tree
• includehidden (False by default): if true, the TOC tree will also contain hidden entries.

Sphinx Documentation, Release 1.6.3

142 Chapter 15. Templating

http://docutils.sourceforge.net/docs/ref/rst/directives.html#meta

CHAPTER 16

LaTeX customization

The latex target does not benefit from pre-prepared themes like the html target does (see HTML theming
support).

16.1 Basic customization

It is achieved via usage of the Options for LaTeX output as described in The build configuration file. For exam-
ple:

inside conf.py
latex_engine = 'xelatex'
latex_elements = {
 'fontpkg': r'''
\setmainfont{DejaVu Serif}
\setsansfont{DejaVu Sans}
\setmonofont{DejaVu Sans Mono}
''',
 'preamble': r'''
\usepackage[titles]{tocloft}
\cftsetpnumwidth {1.25cm}\cftsetrmarg{1.5cm}
\setlength{\cftchapnumwidth}{0.75cm}
\setlength{\cftsecindent}{\cftchapnumwidth}
\setlength{\cftsecnumwidth}{1.25cm}
''',
 'fncychap': r'\usepackage[Bjornstrup]{fncychap}',
 'printindex': r'\footnotesize\raggedright\printindex',
}
latex_show_urls = 'footnote'

If the size of the 'preamble' contents becomes inconvenient, one may move all needed macros into
some file mystyle.tex of the project source repertory, and get LaTeX to import it at run time:

'preamble': r'\input{mystyle.tex}',
or, if the \ProvidesPackage LaTeX macro is used in a file mystyle.sty
'preamble': r'\usepackage{mystyle}',

It is needed to set appropriately latex_additional_files, for example:

latex_additional_files = ["mystyle.tex"]

 143

16.2 The LaTeX style file options

16.2.1 The sphinxsetup interface

The 'sphinxsetup' key of latex_elements provides a convenient interface to the package options of
the Sphinx style file:

latex_elements = {
 'sphinxsetup': 'key1=value1, key2=value2, ...',
}

• some values may be LaTeX macros, then the backslashes must be Python-escaped, or the whole
must be a Python raw string,

• LaTeX boolean keys require lowercase true or false values,
• spaces around the commas and equal signs are ignored, spaces inside LaTeX macros may be signifi-

cant.

If non-empty, it will be passed as argument to the \sphinxsetup macro inside the document preamble,
like this:

\usepackage{sphinx}
\sphinxsetup{key1=value1, key2=value2,...}

New in version 1.5.
It is possible to insert further uses of the \sphinxsetup LaTeX macro directly into the body of the docu-
ment, via the help of the raw directive. This is what is done for this documentation, for local styling of
this chapter in the PDF output:

.. raw:: latex

 \begingroup
 \sphinxsetup{%
 verbatimwithframe=false,
 VerbatimColor={named}{OldLace},
 TitleColor={named}{DarkGoldenrod},
 hintBorderColor={named}{LightCoral},
 attentionborder=3pt,
 attentionBorderColor={named}{Crimson},
 attentionBgColor={named}{FloralWhite},
 noteborder=2pt,
 noteBorderColor={named}{Olive},
 cautionborder=3pt,
 cautionBorderColor={named}{Cyan},
 cautionBgColor={named}{LightCyan}}

at the start of the chapter and:

.. raw:: latex

 \endgroup

at its end.

Sphinx Documentation, Release 1.6.3

144 Chapter 16. LaTeX customization

Note: The colors above are made available via the svgnames option of the “xcolor” package:

latex_elements = {
 'passoptionstopackages': r'\PassOptionsToPackage{svgnames}{xcolor}',
}

16.2.2 The available styling options

hmargin, vmargin
The dimensions of the horizontal (resp. vertical) margins, passed as hmargin (resp. vmargin)
option to the geometry package. The default is 1in, which is equivalent to {1in,1in}. Example:

'sphinxsetup': 'hmargin={2in,1.5in}, vmargin={1.5in,2in}, marginpar=1in',

Japanese documents currently accept only the one-dimension format for these parameters. The
geometry package is then passed suitable options to get the text width set to an exact multiple of
the zenkaku width, and the text height set to an integer multiple of the baselineskip, with the closest
fit for the margins.

Hint: For Japanese 'manual' docclass with pointsize 11pt or 12pt, use the nomag extra document
class option (cf. 'extraclassoptions' key of latex_elements) or so-called TeX “true” units:

'sphinxsetup': 'hmargin=1.5truein, vmargin=1.5truein, marginpar=5zw',

New in version 1.5.3.
marginpar

The \marginparwidth LaTeX dimension, defaults to 0.5in. For Japanese documents, the value is
modified to be the closest integer multiple of the zenkaku width.
New in version 1.5.3.

verbatimwithframe
default true. Boolean to specify if code-blocks and literal includes are framed. Setting it to false
does not deactivate use of package “framed”, because it is still in use for the optional background
colour.

verbatimwrapslines
default true. Tells whether long lines in code-block’s contents should wrap.

verbatimhintsturnover
default false. If true, code-blocks display “continued on next page”, “continued from previous
page” hints in case of pagebreaks.
New in version 1.6.3: the default will change to true at 1.7 and horizontal positioning of continuation
hints (currently right aligned only) will be customizable.

parsedliteralwraps
default true. Tells whether long lines in parsed-literal’s contents should wrap.
New in version 1.5.2: set this option value to false to recover former behaviour.

inlineliteralwraps
default true. Allows linebreaks inside inline literals: but extra potential break-points (additionally to
those allowed by LaTeX at spaces or for hyphenation) are currently inserted only after the characters
. , ; ? ! /. Due to TeX internals, white space in the line will be stretched (or shrunk) in order to
accomodate the linebreak.

 Sphinx Documentation, Release 1.6.3

16.2. The LaTeX style file options 145

http://docutils.sourceforge.net/docs/ref/rst/directives.html#parsed-literal

New in version 1.5: set this option value to false to recover former behaviour.
verbatimvisiblespace

default \textcolor{red}{\textvisiblespace}. When a long code line is split, the last space
character from the source code line right before the linebreak location is typeset using this.

verbatimcontinued
A LaTeX macro inserted at start of continuation code lines. Its (complicated…) default typesets a
small red hook pointing to the right:

\makebox[2\fontcharwd\font`\x][r]{\textcolor{red}{\tiny\hookrightarrow}}

Changed in version 1.5: The breaking of long code lines was added at 1.4.2. The default definition of
the continuation symbol was changed at 1.5 to accomodate various font sizes (e.g. code-blocks can be
in footnotes).

TitleColor
default {rgb}{0.126,0.263,0.361}. The colour for titles (as configured via use of package
“titlesec”.)

Warning: Colours set via 'sphinxsetup' must obey the syntax of the argument of the
color/xcolor packages \definecolor command.

InnerLinkColor
default {rgb}{0.208,0.374,0.486}. A colour passed to hyperref as value of linkcolor and
citecolor.

OuterLinkColor
default {rgb}{0.216,0.439,0.388}. A colour passed to hyperref as value of filecolor,
menucolor, and urlcolor.

VerbatimColor
default {rgb}{1,1,1}. The background colour for code-blocks. The default is white.

VerbatimBorderColor
default {rgb}{0,0,0}. The frame color, defaults to black.

verbatimsep
default \fboxsep. The separation between code lines and the frame.

verbatimborder
default \fboxrule. The width of the frame around code-blocks.

shadowsep
default 5pt. The separation between contents and frame for contents and topic boxes.

shadowsize
default 4pt. The width of the lateral “shadow” to the right.

shadowrule
default \fboxrule. The width of the frame around topic boxes.

noteBorderColor, hintBorderColor, importantBorderColor, tipBorderColor
default {rgb}{0,0,0} (black). The colour for the two horizontal rules used by Sphinx in LaTeX for
styling a note type admonition.

Note: The actual colour names declared to “color” or “xcolor” are prefixed with “sphinx”.

noteborder, hintborder, importantborder, tipborder
default 0.5pt. The width of the two horizontal rules.

Sphinx Documentation, Release 1.6.3

146 Chapter 16. LaTeX customization

http://docutils.sourceforge.net/docs/ref/rst/directives.html#contents
http://docutils.sourceforge.net/docs/ref/rst/directives.html#topic
http://docutils.sourceforge.net/docs/ref/rst/directives.html#topic
http://docutils.sourceforge.net/docs/ref/rst/directives.html#note

warningBorderColor, cautionBorderColor, attentionBorderColor, dangerBorderColor,
errorBorderColor

default {rgb}{0,0,0} (black). The colour for the admonition frame.
warningBgColor, cautionBgColor, attentionBgColor, dangerBgColor, errorBgColor

default {rgb}{1,1,1} (white). The background colours for the respective admonitions.
warningBorder, cautionBorder, attentionBorder, dangerBorder, errorBorder

default 1pt. The width of the frame.
AtStartFootnote

default \mbox{ }. LaTeX macros inserted at the start of the footnote text at bottom of page, after the
footnote number.

BeforeFootnote
default \leavevmode\unskip. LaTeX macros inserted before the footnote mark. The default
removes possible space before it (else, TeX could insert a linebreak there).
New in version 1.5.

HeaderFamily
default \sffamily\bfseries. Sets the font used by headings.

16.3 LaTeX macros and environments

Here are some macros from the package file sphinx.sty and class files sphinxhowto.cls,
sphinxmanual.cls, which have public names thus allowing redefinitions. Check the respective files for
the defaults.

16.3.1 Macros

• text styling commands \sphinx<foo> with <foo> being one of strong, bfcode, email,
tablecontinued, titleref, menuselection, accelerator, crossref, termref,
optional. The non-prefixed macros will still be defined if option
latex_keep_old_macro_names has been set to True (default is False), in which case the
prefixed macros expand to the non-prefixed ones.
New in version 1.4.5: Use of \sphinx prefixed macro names to limit possibilities of conflict with
LaTeX packages.
Changed in version 1.6: The default value of latex_keep_old_macro_names changes to False,
and even if set to True, if a non-prefixed macro already exists at sphinx.sty loading time, only
the \sphinx prefixed one will be defined. The setting will be removed at 1.7.

• more text styling: \sphinxstyle<bar> with <bar> one of indexentry, indexextra,
indexpageref, topictitle, sidebartitle, othertitle, sidebarsubtitle, thead,
theadfamily, emphasis, literalemphasis, strong, literalstrong, abbreviation,
literalintitle, codecontinued, codecontinues.
New in version 1.5: these macros were formerly hard-coded as non customizable \texttt, \emph,
etc…
New in version 1.6: \sphinxstyletheadfamily which defaults to \sffamily and allows
multiple paragraphs in header cells of tables.
Deprecated since version 1.6: macro \sphinxstylethead is deprecated at 1.6 and will be removed at
1.7.
New in version 1.6.3: \sphinxstylecodecontinued and \sphinxstylecodecontinues.

 Sphinx Documentation, Release 1.6.3

16.3. LaTeX macros and environments 147

• by default the Sphinx style file sphinx.sty executes the command \fvset{fontsize=\small}
as part of its configuration of fancyvrb.sty. This may be overriden for example via
\fvset{fontsize=auto} which will let code listings use the ambient font size. Refer to
fancyvrb.sty’s documentation for further keys.
New in version 1.5.

• the table of contents is typeset via \sphinxtableofcontents which is a wrapper (whose defini-
tion can be found in sphinxhowto.cls or in sphinxmanual.cls) of standard
\tableofcontents.
Changed in version 1.5: formerly, the meaning of \tableofcontents was modified by Sphinx.

• the \maketitle command is redefined by the class files sphinxmanual.cls and
sphinxhowto.cls.

16.3.2 Environments

• a figure may have an optional legend with arbitrary body elements: they are rendered in a
sphinxlegend environment. The default definition issues \small, and ends with \par.
New in version 1.5.6: formerly, the \small was hardcoded in LaTeX writer and the ending \par was
lacking.

• for each admonition type <foo>, the used environment is named sphinx<foo>. They may be
\renewenvironment ‘d individually, and must then be defined with one argument (it is the
heading of the notice, for example Warning: for warning directive, if English is the document
language). Their default definitions use either the sphinxheavybox (for the first listed directives) or the
sphinxlightbox environments, configured to use the parameters (colours, border thickness) specific to
each type, which can be set via 'sphinxsetup' string.
Changed in version 1.5: use of public environment names, separate customizability of the parameters,
such as noteBorderColor, noteborder, warningBgColor, warningBorderColor,
warningborder, …

• the contents directive (with :local: option) and the topic directive are implemented by environ-
ment sphinxShadowBox.
New in version 1.4.2: former code refactored into an environment allowing page breaks.
Changed in version 1.5: options shadowsep, shadowsize, shadowrule.

• the literal blocks (via :: or code-block), are implemented using sphinxVerbatim environment
which is a wrapper of Verbatim environment from package fancyvrb.sty. It adds the handling
of the top caption and the wrapping of long lines, and a frame which allows pagebreaks. Inside
tables the used environment is sphinxVerbatimintable (it does not draw a frame, but allows a
caption).
Changed in version 1.5: Verbatim keeps exact same meaning as in fancyvrb.sty (also under the
name OriginalVerbatim); sphinxVerbatimintable is used inside tables.
New in version 1.5: options verbatimwithframe, verbatimwrapslines, verbatimsep,
verbatimborder.

• the bibliography uses sphinxthebibliography and the Python Module index as well as the
general index both use sphinxtheindex; these environments are wrappers of the
thebibliography and respectively theindex environments as provided by the document class
(or packages).
Changed in version 1.5: formerly, the original environments were modified by Sphinx.

Sphinx Documentation, Release 1.6.3

148 Chapter 16. LaTeX customization

http://docutils.sourceforge.net/docs/ref/rst/directives.html#figure
http://docutils.sourceforge.net/docs/ref/rst/directives.html#warning
http://docutils.sourceforge.net/docs/ref/rst/directives.html#contents
http://docutils.sourceforge.net/docs/ref/rst/directives.html#topic

16.3.3 Miscellany

• the section, subsection, … headings are set using titlesec’s \titleformat command.
• for the 'manual' docclass, the chapter headings can be customized using fncychap’s commands
\ChNameVar, \ChNumVar, \ChTitleVar. File sphinx.sty has custom re-definitions in case of
fncychap option Bjarne.
Changed in version 1.5: formerly, use of fncychap with other styles than Bjarne was dysfunctional.

• check file sphinx.sty for more…

Hint: As an experimental feature, Sphinx can use user-defined template file for LaTeX source if you have a
file named _templates/latex.tex_t in your project.
New in version 1.5: currently all template variables are unstable and undocumented.
Additional files longtable.tex_t, tabulary.tex_t and tabular.tex_t can be added to
_templates/ to configure some aspects of table rendering (such as the caption position).
New in version 1.6: currently all template variables are unstable and undocumented.

 Sphinx Documentation, Release 1.6.3

16.3. LaTeX macros and environments 149

Sphinx Documentation, Release 1.6.3

150 Chapter 16. LaTeX customization

CHAPTER 17

Markdown support

Markdown is a lightweight markup language with a simplistic plain text formatting syntax. It exists in
many syntactically different flavors. To support Markdown-based documentation, Sphinx can use
recommonmark. recommonmark is a Docutils bridge to CommonMark-py, a Python package for parsing
the CommonMark Markdown flavor.

17.1 Configuration

To configure your Sphinx project for Markdown support, proceed as follows:
1. Install recommonmark:

pip install recommonmark

2. Add the Markdown parser to the source_parsers configuration variable in your Sphinx configu-
ration file:

source_parsers = {
 '.md': 'recommonmark.parser.CommonMarkParser',
}

You can replace .md with a filename extension of your choice.
3. Add the Markdown filename extension to the source_suffix configuration variable:

source_suffix = ['.rst', '.md']

4. You can further configure recommonmark to allow custom syntax that standard CommonMark
doesn’t support. Read more in the recommonmark documentation.

 151

https://daringfireball.net/projects/markdown/
http://recommonmark.readthedocs.io/en/latest/index.html
https://github.com/rtfd/CommonMark-py
http://commonmark.org/
http://recommonmark.readthedocs.io/en/latest/auto_structify.html

Sphinx Documentation, Release 1.6.3

152 Chapter 17. Markdown support

CHAPTER 18

Sphinx Extensions

Since many projects will need special features in their documentation, Sphinx allows adding “extensions”
to the build process, each of which can modify almost any aspect of document processing.
This chapter describes the extensions bundled with Sphinx. For the API documentation on writing your
own extension, see Developing extensions for Sphinx.

18.1 Builtin Sphinx extensions

These extensions are built in and can be activated by respective entries in the extensions configuration
value:

18.1.1 sphinx.ext.autodoc – Include documentation from docstrings

This extension can import the modules you are documenting, and pull in documentation from docstrings
in a semi-automatic way.

Note: For Sphinx (actually, the Python interpreter that executes Sphinx) to find your module, it must be
importable. That means that the module or the package must be in one of the directories on sys.path –
adapt your sys.path in the configuration file accordingly.

Warning: autodoc imports the modules to be documented. If any modules have side effects on
import, these will be executed by autodoc when sphinx-build is run.
If you document scripts (as opposed to library modules), make sure their main routine is protected by
a if __name__ == '__main__' condition.

For this to work, the docstrings must of course be written in correct reStructuredText. You can then use
all of the usual Sphinx markup in the docstrings, and it will end up correctly in the documentation.
Together with hand-written documentation, this technique eases the pain of having to maintain two loca-
tions for documentation, while at the same time avoiding auto-generated-looking pure API documenta-
tion.
If you prefer NumPy or Google style docstrings over reStructuredText, you can also enable the napoleon
extension. napoleon is a preprocessor that converts your docstrings to correct reStructuredText before
autodoc processes them.
autodoc provides several directives that are versions of the usual py:module, py:class and so forth.
On parsing time, they import the corresponding module and extract the docstring of the given objects,

 153

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://google.github.io/styleguide/pyguide.html#Comments

inserting them into the page source under a suitable py:module, py:class etc. directive.

Note: Just as py:class respects the current py:module, autoclass will also do so. Likewise,
automethod will respect the current py:class.

.. automodule::

.. autoclass::

.. autoexception::
Document a module, class or exception. All three directives will by default only insert the docstring
of the object itself:

.. autoclass:: Noodle

will produce source like this:

.. class:: Noodle

 Noodle's docstring.

The “auto” directives can also contain content of their own, it will be inserted into the resulting
non-auto directive source after the docstring (but before any automatic member documentation).
Therefore, you can also mix automatic and non-automatic member documentation, like so:

.. autoclass:: Noodle
 :members: eat, slurp

 .. method:: boil(time=10)

 Boil the noodle *time* minutes.

Options and advanced usage
• If you want to automatically document members, there’s a members option:

.. automodule:: noodle
 :members:

will document all module members (recursively), and

.. autoclass:: Noodle
 :members:

will document all non-private member functions and properties (that is, those whose name
doesn’t start with _).
For modules, __all__ will be respected when looking for members; the order of the members
will also be the order in __all__.
You can also give an explicit list of members; only these will then be documented:

.. autoclass:: Noodle
 :members: eat, slurp

• If you want to make the members option (or other flag options described below) the default, see
autodoc_default_flags.

• Members without docstrings will be left out, unless you give the undoc-members flag option:

.. automodule:: noodle
 :members:
 :undoc-members:

Sphinx Documentation, Release 1.6.3

154 Chapter 18. Sphinx Extensions

• “Private” members (that is, those named like _private or __private) will be included if the
private-members flag option is given.
New in version 1.1.

• Python “special” members (that is, those named like __special__) will be included if the
special-members flag option is given:

.. autoclass:: my.Class
 :members:
 :private-members:
 :special-members:

would document both “private” and “special” members of the class.
New in version 1.1.
Changed in version 1.2: The option can now take arguments, i.e. the special members to docu-
ment.

• For classes and exceptions, members inherited from base classes will be left out when docu-
menting all members, unless you give the inherited-members flag option, in addition to
members:

.. autoclass:: Noodle
 :members:
 :inherited-members:

This can be combined with undoc-members to document all available members of the class or
module.
Note: this will lead to markup errors if the inherited members come from a module whose
docstrings are not reST formatted.
New in version 0.3.

• It’s possible to override the signature for explicitly documented callable objects (functions,
methods, classes) with the regular syntax that will override the signature gained from intro-
spection:

.. autoclass:: Noodle(type)

 .. automethod:: eat(persona)

This is useful if the signature from the method is hidden by a decorator.
New in version 0.4.

• The automodule, autoclass and autoexception directives also support a flag option
called show-inheritance. When given, a list of base classes will be inserted just below the
class signature (when used with automodule, this will be inserted for every class that is docu-
mented in the module).
New in version 0.4.

• All autodoc directives support the noindex flag option that has the same effect as for standard
py:function etc. directives: no index entries are generated for the documented object (and all
autodocumented members).
New in version 0.4.

• automodule also recognizes the synopsis, platform and deprecated options that the
standard py:module directive supports.
New in version 0.5.

 Sphinx Documentation, Release 1.6.3

18.1. Builtin Sphinx extensions 155

• automodule and autoclass also has an member-order option that can be used to override
the global value of autodoc_member_order for one directive.
New in version 0.6.

• The directives supporting member documentation also have a exclude-members option that
can be used to exclude single member names from documentation, if all members are to be
documented.
New in version 0.6.

• In an automodule directive with the members option set, only module members whose
__module__ attribute is equal to the module name as given to automodule will be docu-
mented. This is to prevent documentation of imported classes or functions. Set the
imported-members option if you want to prevent this behavior and document all available
members. Note that attributes from imported modules will not be documented, because
attribute documentation is discovered by parsing the source file of the current module.
New in version 1.2.

• Add a list of modules in the autodoc_mock_imports to prevent import errors to halt the
building process when some external dependencies are not importable at build time.
New in version 1.3.

.. autofunction::

.. autodata::

.. automethod::

.. autoattribute::
These work exactly like autoclass etc., but do not offer the options used for automatic member
documentation.
autodata and autoattribute support the annotation option. Without this option, the repre-
sentation of the object will be shown in the documentation. When the option is given without argu-
ments, only the name of the object will be printed:

.. autodata:: CD_DRIVE
 :annotation:

You can tell sphinx what should be printed after the name:

.. autodata:: CD_DRIVE
 :annotation: = your CD device name

For module data members and class attributes, documentation can either be put into a comment with
special formatting (using a #: to start the comment instead of just #), or in a docstring after the defini-
tion. Comments need to be either on a line of their own before the definition, or immediately after the
assignment on the same line. The latter form is restricted to one line only.
This means that in the following class definition, all attributes can be autodocumented:

class Foo:
 """Docstring for class Foo."""

 #: Doc comment for class attribute Foo.bar.
 #: It can have multiple lines.
 bar = 1

 flox = 1.5 #: Doc comment for Foo.flox. One line only.

 baz = 2
 """Docstring for class attribute Foo.baz."""

Sphinx Documentation, Release 1.6.3

156 Chapter 18. Sphinx Extensions

 def __init__(self):
 #: Doc comment for instance attribute qux.
 self.qux = 3

 self.spam = 4
 """Docstring for instance attribute spam."""

Changed in version 0.6: autodata and autoattribute can now extract docstrings.
Changed in version 1.1: Comment docs are now allowed on the same line after an assignment.
Changed in version 1.2: autodata and autoattribute have an annotation option.

Note: If you document decorated functions or methods, keep in mind that autodoc retrieves its
docstrings by importing the module and inspecting the __doc__ attribute of the given function or
method. That means that if a decorator replaces the decorated function with another, it must copy
the original __doc__ to the new function.
From Python 2.5, functools.wraps() can be used to create well-behaved decorating functions.

There are also new config values that you can set:

autoclass_content
This value selects what content will be inserted into the main body of an autoclass directive. The
possible values are:
"class"

Only the class’ docstring is inserted. This is the default. You can still document __init__ as a
separate method using automethod or the members option to autoclass.

"both"
Both the class’ and the __init__ method’s docstring are concatenated and inserted.

"init"
Only the __init__ method’s docstring is inserted.

New in version 0.3.
If the class has no __init__ method or if the __init__ method’s docstring is empty, but the class
has a __new__ method’s docstring, it is used instead.
New in version 1.4.

autodoc_member_order
This value selects if automatically documented members are sorted alphabetical (value
'alphabetical'), by member type (value 'groupwise') or by source order (value 'bysource').
The default is alphabetical.
Note that for source order, the module must be a Python module with the source code available.
New in version 0.6.
Changed in version 1.0: Support for 'bysource'.

autodoc_default_flags
This value is a list of autodoc directive flags that should be automatically applied to all autodoc direc-
tives. The supported flags are 'members', 'undoc-members', 'private-members',
'special-members', 'inherited-members' and 'show-inheritance'.
If you set one of these flags in this config value, you can use a negated form, 'no-flag', in an
autodoc directive, to disable it once. For example, if autodoc_default_flags is set to
['members', 'undoc-members'], and you write a directive like this:

 Sphinx Documentation, Release 1.6.3

18.1. Builtin Sphinx extensions 157

.. automodule:: foo
 :no-undoc-members:

the directive will be interpreted as if only :members: was given.
New in version 1.0.

autodoc_docstring_signature
Functions imported from C modules cannot be introspected, and therefore the signature for such
functions cannot be automatically determined. However, it is an often-used convention to put the
signature into the first line of the function’s docstring.
If this boolean value is set to True (which is the default), autodoc will look at the first line of the
docstring for functions and methods, and if it looks like a signature, use the line as the signature and
remove it from the docstring content.
New in version 1.1.

autodoc_mock_imports
This value contains a list of modules to be mocked up. This is useful when some external dependen-
cies are not met at build time and break the building process. You may only specify the root package
of the dependencies themselves and ommit the sub-modules:

autodoc_mock_imports = ["django"]

Will mock all imports under the django package.
New in version 1.3.
Changed in version 1.6: This config value only requires to declare the top-level modules that should be
mocked.

Docstring preprocessing

autodoc provides the following additional events:

autodoc-process-docstring (app, what, name, obj, options, lines)
New in version 0.4.
Emitted when autodoc has read and processed a docstring. lines is a list of strings – the lines of the
processed docstring – that the event handler can modify in place to change what Sphinx puts into the
output.
Parameters • app – the Sphinx application object

• what – the type of the object which the docstring belongs to (one of "module",
"class", "exception", "function", "method", "attribute")

• name – the fully qualified name of the object
• obj – the object itself
• options – the options given to the directive: an object with attributes
inherited_members, undoc_members, show_inheritance and noindex that
are true if the flag option of same name was given to the auto directive

• lines – the lines of the docstring, see above

autodoc-process-signature (app, what, name, obj, options, signature, return_annotation)
New in version 0.5.
Emitted when autodoc has formatted a signature for an object. The event handler can return a new
tuple (signature, return_annotation) to change what Sphinx puts into the output.

Sphinx Documentation, Release 1.6.3

158 Chapter 18. Sphinx Extensions

Parameters • app – the Sphinx application object
• what – the type of the object which the docstring belongs to (one of "module",
"class", "exception", "function", "method", "attribute")

• name – the fully qualified name of the object
• obj – the object itself
• options – the options given to the directive: an object with attributes
inherited_members, undoc_members, show_inheritance and noindex that
are true if the flag option of same name was given to the auto directive

• signature – function signature, as a string of the form "(parameter_1,
parameter_2)", or None if introspection didn’t succeed and signature wasn’t
specified in the directive.

• return_annotation – function return annotation as a string of the form " ->
annotation", or None if there is no return annotation

The sphinx.ext.autodoc module provides factory functions for commonly needed docstring
processing in event autodoc-process-docstring:

sphinx.ext.autodoc.cut_lines (pre, post=0, what=None)
Return a listener that removes the first pre and last post lines of every docstring. If what is a sequence
of strings, only docstrings of a type in what will be processed.
Use like this (e.g. in the setup() function of conf.py):

from sphinx.ext.autodoc import cut_lines
app.connect('autodoc-process-docstring', cut_lines(4, what=['module']))

This can (and should) be used in place of automodule_skip_lines.

sphinx.ext.autodoc.between (marker, what=None, keepempty=False, exclude=False)
Return a listener that either keeps, or if exclude is True excludes, lines between lines that match the
marker regular expression. If no line matches, the resulting docstring would be empty, so no change
will be made unless keepempty is true.
If what is a sequence of strings, only docstrings of a type in what will be processed.

Skipping members

autodoc allows the user to define a custom method for determining whether a member should be
included in the documentation by using the following event:

autodoc-skip-member (app, what, name, obj, skip, options)
New in version 0.5.
Emitted when autodoc has to decide whether a member should be included in the documentation.
The member is excluded if a handler returns True. It is included if the handler returns False.
If more than one enabled extension handles the autodoc-skip-member event, autodoc will use the
first non-None value returned by a handler. Handlers should return None to fall back to the skipping
behavior of autodoc and other enabled extensions.
Parameters • app – the Sphinx application object

• what – the type of the object which the docstring belongs to (one of "module",
"class", "exception", "function", "method", "attribute")

• name – the fully qualified name of the object
• obj – the object itself

 Sphinx Documentation, Release 1.6.3

18.1. Builtin Sphinx extensions 159

• skip – a boolean indicating if autodoc will skip this member if the user handler
does not override the decision

• options – the options given to the directive: an object with attributes
inherited_members, undoc_members, show_inheritance and noindex that
are true if the flag option of same name was given to the auto directive

18.1.2 sphinx.ext.autosectionlabel – Allow reference sections using its title

New in version 1.4.
This extension allows you to refer sections its title. This affects to the reference role (ref).
For example:

A Plain Title

This is the text of the section.

It refers to the section title, see :ref:`A Plain Title`.

Internally, this extension generates the labels for each section. If same section names are used in whole of
document, any one is used for a target by default. The autosectionlabel_prefix_document config-
uration variable can be used to make headings which appear multiple times but in different documents
unique.
Configuration

autosectionlabel_prefix_document
True to prefix each section label with the name of the document it is in, followed by a colon. For
example, index:Introduction for a section called Introduction that appears in document
index.rst. Useful for avoiding ambiguity when the same section heading appears in different
documents.

18.1.3 sphinx.ext.autosummary – Generate autodoc summaries

New in version 0.6.
This extension generates function/method/attribute summary lists, similar to those output e.g. by
Epydoc and other API doc generation tools. This is especially useful when your docstrings are long and
detailed, and putting each one of them on a separate page makes them easier to read.
The sphinx.ext.autosummary extension does this in two parts:

1. There is an autosummary directive for generating summary listings that contain links to the docu-
mented items, and short summary blurbs extracted from their docstrings.

2. Optionally, the convenience script sphinx-autogen or the new autosummary_generate config
value can be used to generate short “stub” files for the entries listed in the autosummary directives.
These files by default contain only the corresponding sphinx.ext.autodoc directive, but can be
customized with templates.

.. autosummary::
Insert a table that contains links to documented items, and a short summary blurb (the first sentence
of the docstring) for each of them.
The autosummary directive can also optionally serve as a toctree entry for the included items.
Optionally, stub .rst files for these items can also be automatically generated.

Sphinx Documentation, Release 1.6.3

160 Chapter 18. Sphinx Extensions

For example,

.. currentmodule:: sphinx

.. autosummary::

 environment.BuildEnvironment
 util.relative_uri

produces a table like this:

environment.BuildEnvironment(app) The environment in which the ReST files are
translated.

util.relative_uri(base, to) Return a relative URL from base to to.

Autosummary preprocesses the docstrings and signatures with the same
autodoc-process-docstring and autodoc-process-signature hooks as autodoc.
Options

• If you want the autosummary table to also serve as a toctree entry, use the toctree option,
for example:

.. autosummary::
 :toctree: DIRNAME

 sphinx.environment.BuildEnvironment
 sphinx.util.relative_uri

The toctree option also signals to the sphinx-autogen script that stub pages should be
generated for the entries listed in this directive. The option accepts a directory name as an argu-
ment; sphinx-autogen will by default place its output in this directory. If no argument is
given, output is placed in the same directory as the file that contains the directive.

• If you don’t want the autosummary to show function signatures in the listing, include the
nosignatures option:

.. autosummary::
 :nosignatures:

 sphinx.environment.BuildEnvironment
 sphinx.util.relative_uri

• You can specify a custom template with the template option. For example,

.. autosummary::
 :template: mytemplate.rst

 sphinx.environment.BuildEnvironment

would use the template mytemplate.rst in your templates_path to generate the pages for
all entries listed. See Customizing templates below.
New in version 1.0.

sphinx-autogen – generate autodoc stub pages

The sphinx-autogen script can be used to conveniently generate stub documentation pages for items
included in autosummary listings.
For example, the command

 Sphinx Documentation, Release 1.6.3

18.1. Builtin Sphinx extensions 161

$ sphinx-autogen -o generated *.rst

will read all autosummary tables in the *.rst files that have the :toctree: option set, and output
corresponding stub pages in directory generated for all documented items. The generated pages by
default contain text of the form:

sphinx.util.relative_uri
========================

.. autofunction:: sphinx.util.relative_uri

If the -o option is not given, the script will place the output files in the directories specified in the
:toctree: options.
Generating stub pages automatically

If you do not want to create stub pages with sphinx-autogen, you can also use this new config value:

autosummary_generate
Boolean indicating whether to scan all found documents for autosummary directives, and to generate
stub pages for each.
Can also be a list of documents for which stub pages should be generated.
The new files will be placed in the directories specified in the :toctree: options of the directives.

Customizing templates

New in version 1.0.
You can customize the stub page templates, in a similar way as the HTML Jinja templates, see Templating.
(TemplateBridge is not supported.)

Note: If you find yourself spending much time tailoring the stub templates, this may indicate that it’s a
better idea to write custom narrative documentation instead.

Autosummary uses the following Jinja template files:
• autosummary/base.rst – fallback template
• autosummary/module.rst – template for modules
• autosummary/class.rst – template for classes
• autosummary/function.rst – template for functions
• autosummary/attribute.rst – template for class attributes
• autosummary/method.rst – template for class methods

The following variables available in the templates:

name
Name of the documented object, excluding the module and class parts.

objname
Name of the documented object, excluding the module parts.

fullname
Full name of the documented object, including module and class parts.

Sphinx Documentation, Release 1.6.3

162 Chapter 18. Sphinx Extensions

module
Name of the module the documented object belongs to.

class
Name of the class the documented object belongs to. Only available for methods and attributes.

underline
A string containing len(full_name) * '='. Use the underline filter instead.

members
List containing names of all members of the module or class. Only available for modules and classes.

functions
List containing names of “public” functions in the module. Here, “public” here means that the name
does not start with an underscore. Only available for modules.

classes
List containing names of “public” classes in the module. Only available for modules.

exceptions
List containing names of “public” exceptions in the module. Only available for modules.

methods
List containing names of “public” methods in the class. Only available for classes.

attributes
List containing names of “public” attributes in the class. Only available for classes.

Additionally, the following filters are available

escape (s)
Escape any special characters in the text to be used in formatting RST contexts. For instance, this
prevents asterisks making things bolt. This replaces the builtin Jinja escape filter that does
html-escaping.

underline (s, line='=')
Add a title underline to a piece of text.

For instance, {{ fullname | escape | underline }} should be used to produce the title of a
page.

Note: You can use the autosummary directive in the stub pages. Stub pages are generated also based on
these directives.

18.1.4 sphinx.ext.coverage – Collect doc coverage stats

This extension features one additional builder, the CoverageBuilder.

class sphinx.ext.coverage.CoverageBuilder
To use this builder, activate the coverage extension in your configuration file and give -b coverage
on the command line.

Todo

 Sphinx Documentation, Release 1.6.3

18.1. Builtin Sphinx extensions 163

http://jinja.pocoo.org/docs/2.9/templates/#escape

Write this section.

Several new configuration values can be used to specify what the builder should check:

coverage_ignore_modules

coverage_ignore_functions

coverage_ignore_classes

coverage_c_path

coverage_c_regexes

coverage_ignore_c_items

coverage_write_headline
Set to False to not write headlines.
New in version 1.1.

coverage_skip_undoc_in_source
Skip objects that are not documented in the source with a docstring. False by default.
New in version 1.1.

18.1.5 sphinx.ext.doctest – Test snippets in the documentation

This extension allows you to test snippets in the documentation in a natural way. It works by collecting
specially-marked up code blocks and running them as doctest tests.
Within one document, test code is partitioned in groups, where each group consists of:

• zero or more setup code blocks (e.g. importing the module to test)
• one or more test blocks

When building the docs with the doctest builder, groups are collected for each document and run one
after the other, first executing setup code blocks, then the test blocks in the order they appear in the file.
There are two kinds of test blocks:

• doctest-style blocks mimic interactive sessions by interleaving Python code (including the interpreter
prompt) and output.

• code-output-style blocks consist of an ordinary piece of Python code, and optionally, a piece of output
for that code.

Directives

The group argument below is interpreted as follows: if it is empty, the block is assigned to the group
named default. If it is *, the block is assigned to all groups (including the default group). Other-
wise, it must be a comma-separated list of group names.

.. testsetup:: [group]
A setup code block. This code is not shown in the output for other builders, but executed before the
doctests of the group(s) it belongs to.

Sphinx Documentation, Release 1.6.3

164 Chapter 18. Sphinx Extensions

.. testcleanup:: [group]
A cleanup code block. This code is not shown in the output for other builders, but executed after the
doctests of the group(s) it belongs to.
New in version 1.1.

.. doctest:: [group]
A doctest-style code block. You can use standard doctest flags for controlling how actual output is
compared with what you give as output. The default set of flags is specified by the
doctest_default_flags configuration variable.
This directive supports three options:

• hide, a flag option, hides the doctest block in other builders. By default it is shown as a high-
lighted doctest block.

• options, a string option, can be used to give a comma-separated list of doctest flags that apply
to each example in the tests. (You still can give explicit flags per example, with doctest
comments, but they will show up in other builders too.)

• pyversion, a string option, can be used to specify the required Python version for the example
to be tested. For instance, in the following case the example will be tested only for Python
versions greather than 3.3:

.. doctest::
 :pyversion: > 3.3

The supported operands are <, <=, ==, >=, >, and comparison is performed by
distutils.version.LooseVersion.
New in version 1.6.

Note that like with standard doctests, you have to use <BLANKLINE> to signal a blank line in the
expected output. The <BLANKLINE> is removed when building presentation output (HTML, LaTeX
etc.).
Also, you can give inline doctest options, like in doctest:

>>> datetime.date.now() # doctest: +SKIP
datetime.date(2008, 1, 1)

They will be respected when the test is run, but stripped from presentation output.

.. testcode:: [group]
A code block for a code-output-style test.
This directive supports one option:

• hide, a flag option, hides the code block in other builders. By default it is shown as a high-
lighted code block.

Note: Code in a testcode block is always executed all at once, no matter how many statements it
contains. Therefore, output will not be generated for bare expressions – use print. Example:

.. testcode::

 1+1 # this will give no output!
 print 2+2 # this will give output

.. testoutput::

 Sphinx Documentation, Release 1.6.3

18.1. Builtin Sphinx extensions 165

https://www.python.org/dev/peps/pep-0386/#distutils

 4

Also, please be aware that since the doctest module does not support mixing regular output and an
exception message in the same snippet, this applies to testcode/testoutput as well.

.. testoutput:: [group]
The corresponding output, or the exception message, for the last testcode block.
This directive supports two options:

• hide, a flag option, hides the output block in other builders. By default it is shown as a literal
block without highlighting.

• options, a string option, can be used to give doctest flags (comma-separated) just like in
normal doctest blocks.

Example:

.. testcode::

 print 'Output text.'

.. testoutput::
 :hide:
 :options: -ELLIPSIS, +NORMALIZE_WHITESPACE

 Output text.

The following is an example for the usage of the directives. The test via doctest and the test via
testcode and testoutput are equivalent.

The parrot module
=================

.. testsetup:: *

 import parrot

The parrot module is a module about parrots.

Doctest example:

.. doctest::

 >>> parrot.voom(3000)
 This parrot wouldn't voom if you put 3000 volts through it!

Test-Output example:

.. testcode::

 parrot.voom(3000)

This would output:

.. testoutput::

 This parrot wouldn't voom if you put 3000 volts through it!

Sphinx Documentation, Release 1.6.3

166 Chapter 18. Sphinx Extensions

Configuration

The doctest extension uses the following configuration values:

doctest_default_flags
By default, these options are enabled:

• ELLIPSIS, allowing you to put ellipses in the expected output that match anything in the
actual output;

• IGNORE_EXCEPTION_DETAIL, causing everything following the leftmost colon and any
module information in the exception name to be ignored;

• DONT_ACCEPT_TRUE_FOR_1, rejecting “True” in the output where “1” is given – the default
behavior of accepting this substitution is a relic of pre-Python 2.2 times.

New in version 1.5.

doctest_path
A list of directories that will be added to sys.path when the doctest builder is used. (Make sure it
contains absolute paths.)

doctest_global_setup
Python code that is treated like it were put in a testsetup directive for every file that is tested, and
for every group. You can use this to e.g. import modules you will always need in your doctests.
New in version 0.6.

doctest_global_cleanup
Python code that is treated like it were put in a testcleanup directive for every file that is tested,
and for every group. You can use this to e.g. remove any temporary files that the tests leave behind.
New in version 1.1.

doctest_test_doctest_blocks
If this is a nonempty string (the default is 'default'), standard reST doctest blocks will be tested
too. They will be assigned to the group name given.
reST doctest blocks are simply doctests put into a paragraph of their own, like so:

Some documentation text.

>>> print 1
1

Some more documentation text.

(Note that no special :: is used to introduce a doctest block; docutils recognizes them from the
leading >>>. Also, no additional indentation is used, though it doesn’t hurt.)
If this value is left at its default value, the above snippet is interpreted by the doctest builder exactly
like the following:

Some documentation text.

.. doctest::

 >>> print 1
 1

Some more documentation text.

 Sphinx Documentation, Release 1.6.3

18.1. Builtin Sphinx extensions 167

This feature makes it easy for you to test doctests in docstrings included with the autodoc extension
without marking them up with a special directive.
Note though that you can’t have blank lines in reST doctest blocks. They will be interpreted as one
block ending and another one starting. Also, removal of <BLANKLINE> and # doctest: options
only works in doctest blocks, though you may set trim_doctest_flags to achieve that in all
code blocks with Python console content.

18.1.6 sphinx.ext.extlinks – Markup to shorten external links

Module author: Georg Brandl
New in version 1.0.
This extension is meant to help with the common pattern of having many external links that point to
URLs on one and the same site, e.g. links to bug trackers, version control web interfaces, or simply
subpages in other websites. It does so by providing aliases to base URLs, so that you only need to give
the subpage name when creating a link.
Let’s assume that you want to include many links to issues at the Sphinx tracker, at
https://github.com/sphinx-doc/sphinx/issues/num. Typing this URL again and again is
tedious, so you can use extlinks to avoid repeating yourself.
The extension adds one new config value:

extlinks
This config value must be a dictionary of external sites, mapping unique short alias names to a base
URL and a prefix. For example, to create an alias for the above mentioned issues, you would add

extlinks = {'issue': ('https://github.com/sphinx-doc/sphinx/issues/%s',
 'issue ')}

Now, you can use the alias name as a new role, e.g. :issue:`123`. This then inserts a link to
https://github.com/sphinx-doc/sphinx/issues/123. As you can see, the target given in the role is
substituted in the base URL in the place of %s.
The link caption depends on the second item in the tuple, the prefix:

• If the prefix is None, the link caption is the full URL.
• If the prefix is the empty string, the link caption is the partial URL given in the role content (123

in this case.)
• If the prefix is a non-empty string, the link caption is the partial URL, prepended by the prefix –

in the above example, the link caption would be issue 123.

You can also use the usual “explicit title” syntax supported by other roles that generate links, i.e.
:issue:`this issue <123>`. In this case, the prefix is not relevant.

Note: Since links are generated from the role in the reading stage, they appear as ordinary links to e.g. the
linkcheck builder.

18.1.7 sphinx.ext.githubpages – Publish HTML docs in GitHub Pages

New in version 1.4.
This extension creates .nojekyll file on generated HTML directory to publish the document on GitHub
Pages.

Sphinx Documentation, Release 1.6.3

168 Chapter 18. Sphinx Extensions

https://github.com/sphinx-doc/sphinx/issues/123

18.1.8 sphinx.ext.graphviz – Add Graphviz graphs

New in version 0.6.
This extension allows you to embed Graphviz graphs in your documents.
It adds these directives:

.. graphviz::
Directive to embed graphviz code. The input code for dot is given as the content. For example:

.. graphviz::

 digraph foo {
 "bar" -> "baz";
 }

In HTML output, the code will be rendered to a PNG or SVG image (see
graphviz_output_format). In LaTeX output, the code will be rendered to an embeddable PDF
file.
You can also embed external dot files, by giving the file name as an argument to graphviz and no
additional content:

.. graphviz:: external.dot

As for all file references in Sphinx, if the filename is absolute, it is taken as relative to the source
directory.
Changed in version 1.1: Added support for external files.

.. graph::
Directive for embedding a single undirected graph. The name is given as a directive argument, the
contents of the graph are the directive content. This is a convenience directive to generate graph
<name> { <content> }.
For example:

.. graph:: foo

 "bar" -- "baz";

Note: The graph name is passed unchanged to Graphviz. If it contains non-alphanumeric characters
(e.g. a dash), you will have to double-quote it.

.. digraph::
Directive for embedding a single directed graph. The name is given as a directive argument, the
contents of the graph are the directive content. This is a convenience directive to generate digraph
<name> { <content> }.
For example:

.. digraph:: foo

 "bar" -> "baz" -> "quux";

New in version 1.0: All three directives support an alt option that determines the image’s alternate text for
HTML output. If not given, the alternate text defaults to the graphviz code.
New in version 1.1: All three directives support a caption option that can be used to give a caption to the

 Sphinx Documentation, Release 1.6.3

18.1. Builtin Sphinx extensions 169

http://graphviz.org/

diagram.
Changed in version 1.4: All three directives support a graphviz_dot option that can be switch the dot
command within the directive.
New in version 1.5: All three directives support a align option to align the graph horizontal. The values
“left”, “center”, “right” are allowed.
New in version 1.6: All three directives support a name option to set the label to graph.
There are also these new config values:

graphviz_dot
The command name with which to invoke dot. The default is 'dot'; you may need to set this to a
full path if dot is not in the executable search path.
Since this setting is not portable from system to system, it is normally not useful to set it in conf.py;
rather, giving it on the sphinx-build command line via the -D option should be preferable, like
this:

sphinx-build -b html -D graphviz_dot=C:\graphviz\bin\dot.exe . _build/html

graphviz_dot_args
Additional command-line arguments to give to dot, as a list. The default is an empty list. This is the
right place to set global graph, node or edge attributes via dot’s -G, -N and -E options.

graphviz_output_format
The output format for Graphviz when building HTML files. This must be either 'png' or 'svg';
the default is 'png'. If 'svg' is used, in order to make the URL links work properly, an appropriate
target attribute must be set, such as "_top" and "_blank". For example, the link in the following
graph should work in the svg output:

.. graphviz::

 digraph example {
 a [label="sphinx", href="http://sphinx-doc.org", target="_top"];
 b [label="other"];
 a -> b;
 }

New in version 1.0: Previously, output always was PNG.

18.1.9 sphinx.ext.ifconfig – Include content based on configuration

This extension is quite simple, and features only one directive:

.. ifconfig::
Include content of the directive only if the Python expression given as an argument is True, evalu-
ated in the namespace of the project’s configuration (that is, all registered variables from conf.py
are available).
For example, one could write

.. ifconfig:: releaselevel in ('alpha', 'beta', 'rc')

 This stuff is only included in the built docs for unstable versions.

To make a custom config value known to Sphinx, use add_config_value() in the setup function
in conf.py, e.g.:

def setup(app):

Sphinx Documentation, Release 1.6.3

170 Chapter 18. Sphinx Extensions

 app.add_config_value('releaselevel', '', 'env')

The second argument is the default value, the third should always be 'env' for such values (it
selects if Sphinx re-reads the documents if the value changes).

18.1.10 sphinx.ext.imgconverter – Convert images to appropriate format for
builders

New in version 1.6.
This extension converts images in your document to appropriate format for builders. For example, it
allows you to use SVG images with LaTeX builder. As a result, you don’t mind what image format the
builder supports.
Internally, this extension uses Imagemagick to convert images.
Configuration

image_converter
A path to convert command. By default, the imgconverter uses the command from search paths.

image_converter_args
Additional command-line arguments to give to convert, as a list. The default is an empty list [].

18.1.11 sphinx.ext.inheritance_diagram – Include inheritance diagrams

New in version 0.6.
This extension allows you to include inheritance diagrams, rendered via the Graphviz extension.
It adds this directive:

.. inheritance-diagram::
This directive has one or more arguments, each giving a module or class name. Class names can be
unqualified; in that case they are taken to exist in the currently described module (see py:module).
For each given class, and each class in each given module, the base classes are determined. Then,
from all classes and their base classes, a graph is generated which is then rendered via the graphviz
extension to a directed graph.
This directive supports an option called parts that, if given, must be an integer, advising the direc-
tive to remove that many parts of module names from the displayed names. (For example, if all your
class names start with lib., you can give :parts: 1 to remove that prefix from the displayed node
names.)
It also supports a private-bases flag option; if given, private base classes (those whose name
starts with _) will be included.
You can use caption option to give a caption to the diagram.
Changed in version 1.1: Added private-bases option; previously, all bases were always included.
Changed in version 1.5: Added caption option

New config values are:

inheritance_graph_attrs
A dictionary of graphviz graph attributes for inheritance diagrams.
For example:

inheritance_graph_attrs = dict(rankdir="LR", size='"6.0, 8.0"',
 fontsize=14, ratio='compress')

 Sphinx Documentation, Release 1.6.3

18.1. Builtin Sphinx extensions 171

https://www.imagemagick.org/script/index.php

inheritance_node_attrs
A dictionary of graphviz node attributes for inheritance diagrams.
For example:

inheritance_node_attrs = dict(shape='ellipse', fontsize=14, height=0.75,
 color='dodgerblue1', style='filled')

inheritance_edge_attrs
A dictionary of graphviz edge attributes for inheritance diagrams.

18.1.12 sphinx.ext.intersphinx – Link to other projects’ documentation

New in version 0.5.
This extension can generate automatic links to the documentation of objects in other projects.
Usage is simple: whenever Sphinx encounters a cross-reference that has no matching target in the current
documentation set, it looks for targets in the documentation sets configured in intersphinx_mapping.
A reference like :py:class:`zipfile.ZipFile` can then link to the Python documentation for the
ZipFile class, without you having to specify where it is located exactly.
When using the “new” format (see below), you can even force lookup in a foreign set by prefixing the link
target appropriately. A link like :ref:`comparison manual <python:comparisons>` will then
link to the label “comparisons” in the doc set “python”, if it exists.
Behind the scenes, this works as follows:

• Each Sphinx HTML build creates a file named objects.inv that contains a mapping from object
names to URIs relative to the HTML set’s root.

• Projects using the Intersphinx extension can specify the location of such mapping files in the
intersphinx_mapping config value. The mapping will then be used to resolve otherwise missing
references to objects into links to the other documentation.

• By default, the mapping file is assumed to be at the same location as the rest of the documentation;
however, the location of the mapping file can also be specified individually, e.g. if the docs should be
buildable without Internet access.

To use intersphinx linking, add 'sphinx.ext.intersphinx' to your extensions config value, and
use these new config values to activate linking:

intersphinx_mapping
This config value contains the locations and names of other projects that should be linked to in this
documentation.
Relative local paths for target locations are taken as relative to the base of the built documentation,
while relative local paths for inventory locations are taken as relative to the source directory.
When fetching remote inventory files, proxy settings will be read from the $HTTP_PROXY environ-
ment variable.
Old format for this config value
This is the format used before Sphinx 1.0. It is still recognized.
A dictionary mapping URIs to either None or an URI. The keys are the base URI of the foreign
Sphinx documentation sets and can be local paths or HTTP URIs. The values indicate where the
inventory file can be found: they can be None (at the same location as the base URI) or another local
or HTTP URI.
New format for this config value
New in version 1.0.

Sphinx Documentation, Release 1.6.3

172 Chapter 18. Sphinx Extensions

A dictionary mapping unique identifiers to a tuple (target, inventory). Each target is the
base URI of a foreign Sphinx documentation set and can be a local path or an HTTP URI. The
inventory indicates where the inventory file can be found: it can be None (at the same location as
the base URI) or another local or HTTP URI.
The unique identifier can be used to prefix cross-reference targets, so that it is clear which intersphinx
set the target belongs to. A link like :ref:`comparison manual <python:comparisons>`
will link to the label “comparisons” in the doc set “python”, if it exists.
Example
To add links to modules and objects in the Python standard library documentation, use:

intersphinx_mapping = {'python': ('https://docs.python.org/3.4', None)}

This will download the corresponding objects.inv file from the Internet and generate links to the
pages under the given URI. The downloaded inventory is cached in the Sphinx environment, so it
must be re-downloaded whenever you do a full rebuild.
A second example, showing the meaning of a non-None value of the second tuple item:

intersphinx_mapping = {'python': ('https://docs.python.org/3.4',
 'python-inv.txt')}

This will read the inventory from python-inv.txt in the source directory, but still generate links to
the pages under https://docs.python.org/3.4. It is up to you to update the inventory file as
new objects are added to the Python documentation.
Multiple target for the inventory
New in version 1.3.
Alternative files can be specified for each inventory. One can give a tuple for the second inventory
tuple item as shown in the following example. This will read the inventory iterating through the (sec-
ond) tuple items until the first successful fetch. The primary use case for this to specify mirror sites
for server downtime of the primary inventory:

intersphinx_mapping = {'python': ('https://docs.python.org/3.4',
 (None, 'python-inv.txt'))}

intersphinx_cache_limit
The maximum number of days to cache remote inventories. The default is 5, meaning five days. Set
this to a negative value to cache inventories for unlimited time.

intersphinx_timeout
The number of seconds for timeout. The default is None, meaning do not timeout.

Note: timeout is not a time limit on the entire response download; rather, an exception is raised if the
server has not issued a response for timeout seconds.

18.1.13 sphinx.ext.linkcode – Add external links to source code

Module author: Pauli Virtanen
New in version 1.2.
This extension looks at your object descriptions (.. class::, .. function:: etc.) and adds external
links to code hosted somewhere on the web. The intent is similar to the sphinx.ext.viewcode exten-
sion, but assumes the source code can be found somewhere on the Internet.
In your configuration, you need to specify a linkcode_resolve function that returns an URL based on
the object.

 Sphinx Documentation, Release 1.6.3

18.1. Builtin Sphinx extensions 173

linkcode_resolve
This is a function linkcode_resolve(domain, info), which should return the URL to source
code corresponding to the object in given domain with given information.
The function should return None if no link is to be added.
The argument domain specifies the language domain the object is in. info is a dictionary with the
following keys guaranteed to be present (dependent on the domain):

• py: module (name of the module), fullname (name of the object)
• c: names (list of names for the object)
• cpp: names (list of names for the object)
• javascript: object (name of the object), fullname (name of the item)

Example:

def linkcode_resolve(domain, info):
 if domain != 'py':
 return None
 if not info['module']:
 return None
 filename = info['module'].replace('.', '/')
 return "http://somesite/sourcerepo/%s.py" % filename

18.1.14 Math support in Sphinx

New in version 0.5.
Since mathematical notation isn’t natively supported by HTML in any way, Sphinx supports math in
documentation with several extensions.
The basic math support is contained in sphinx.ext.mathbase. Other math support extensions should,
if possible, reuse that support too.

Note: mathbase is not meant to be added to the extensions config value, instead, use either
sphinx.ext.imgmath or sphinx.ext.mathjax as described below.

The input language for mathematics is LaTeX markup. This is the de-facto standard for plain-text math
notation and has the added advantage that no further translation is necessary when building LaTeX
output.
Keep in mind that when you put math markup in Python docstrings read by autodoc, you either have
to double all backslashes, or use Python raw strings (r"raw").
mathbase provides the following config values:

math_number_all
Set this option to True if you want all displayed math to be numbered. The default is False.

mathbase defines these new markup elements:

:math:
Role for inline math. Use like this:

Since Pythagoras, we know that :math:`a^2 + b^2 = c^2`.

Sphinx Documentation, Release 1.6.3

174 Chapter 18. Sphinx Extensions

.. math::
Directive for displayed math (math that takes the whole line for itself).
The directive supports multiple equations, which should be separated by a blank line:

.. math::

 (a + b)^2 = a^2 + 2ab + b^2

 (a - b)^2 = a^2 - 2ab + b^2

In addition, each single equation is set within a split environment, which means that you can have
multiple aligned lines in an equation, aligned at & and separated by \\:

.. math::

 (a + b)^2 &= (a + b)(a + b) \\
 &= a^2 + 2ab + b^2

For more details, look into the documentation of the AmSMath LaTeX package.
When the math is only one line of text, it can also be given as a directive argument:

.. math:: (a + b)^2 = a^2 + 2ab + b^2

Normally, equations are not numbered. If you want your equation to get a number, use the label
option. When given, it selects an internal label for the equation, by which it can be cross-referenced,
and causes an equation number to be issued. See eqref for an example. The numbering style
depends on the output format.
There is also an option nowrap that prevents any wrapping of the given math in a math environ-
ment. When you give this option, you must make sure yourself that the math is properly set up. For
example:

.. math::
 :nowrap:

 \begin{eqnarray}
 y & = & ax^2 + bx + c \\
 f(x) & = & x^2 + 2xy + y^2
 \end{eqnarray}

:eq:
Role for cross-referencing equations via their label. This currently works only within the same docu-
ment. Example:

.. math:: e^{i\pi} + 1 = 0
 :label: euler

Euler's identity, equation :eq:`euler`, was elected one of the most
beautiful mathematical formulas.

sphinx.ext.imgmath – Render math as images

New in version 1.4.
This extension renders math via LaTeX and dvipng or dvisvgm into PNG or SVG images. This of course
means that the computer where the docs are built must have both programs available.
There are various config values you can set to influence how the images are built:

 Sphinx Documentation, Release 1.6.3

18.1. Builtin Sphinx extensions 175

http://www.ams.org/publications/authors/tex/amslatex
http://savannah.nongnu.org/projects/dvipng/
http://dvisvgm.bplaced.net/

imgmath_image_format
The output image format. The default is 'png'. It should be either 'png' or 'svg'.

imgmath_latex
The command name with which to invoke LaTeX. The default is 'latex'; you may need to set this
to a full path if latex is not in the executable search path.
Since this setting is not portable from system to system, it is normally not useful to set it in conf.py;
rather, giving it on the sphinx-build command line via the -D option should be preferable, like
this:

sphinx-build -b html -D imgmath_latex=C:\tex\latex.exe . _build/html

This value should only contain the path to the latex executable, not further arguments; use
imgmath_latex_args for that purpose.

imgmath_dvipng
The command name with which to invoke dvipng. The default is 'dvipng'; you may need to set
this to a full path if dvipng is not in the executable search path. This option is only used when
imgmath_image_format is set to 'png'.

imgmath_dvisvgm
The command name with which to invoke dvisvgm. The default is 'dvisvgm'; you may need to
set this to a full path if dvisvgm is not in the executable search path. This option is only used when
imgmath_image_format is 'svg'.

imgmath_latex_args
Additional arguments to give to latex, as a list. The default is an empty list.

imgmath_latex_preamble
Additional LaTeX code to put into the preamble of the short LaTeX files that are used to translate the
math snippets. This is empty by default. Use it e.g. to add more packages whose commands you
want to use in the math.

imgmath_dvipng_args
Additional arguments to give to dvipng, as a list. The default value is ['-gamma', '1.5', '-D',
'110', '-bg', 'Transparent'] which makes the image a bit darker and larger then it is by
default, and produces PNGs with a transparent background. This option is used only when
imgmath_image_format is 'png'.

imgmath_dvisvgm_args
Additional arguments to give to dvisvgm, as a list. The default value is ['--no-fonts']. This
option is used only when imgmath_image_format is 'svg'.

imgmath_use_preview
dvipng has the ability to determine the “depth” of the rendered text: for example, when typesetting
a fraction inline, the baseline of surrounding text should not be flush with the bottom of the image,
rather the image should extend a bit below the baseline. This is what TeX calls “depth”. When this is
enabled, the images put into the HTML document will get a vertical-align style that correctly
aligns the baselines.
Unfortunately, this only works when the preview-latex package is installed. Therefore, the default for
this option is False.
Currently this option is only used when imgmath_image_format is 'png'.

Sphinx Documentation, Release 1.6.3

176 Chapter 18. Sphinx Extensions

http://www.gnu.org/software/auctex/preview-latex.html

imgmath_add_tooltips
Default: True. If false, do not add the LaTeX code as an “alt” attribute for math images.

imgmath_font_size
The font size (in pt) of the displayed math. The default value is 12. It must be a positive integer.

sphinx.ext.mathjax – Render math via JavaScript

New in version 1.1.
This extension puts math as-is into the HTML files. The JavaScript package MathJax is then loaded and
transforms the LaTeX markup to readable math live in the browser.
Because MathJax (and the necessary fonts) is very large, it is not included in Sphinx.

mathjax_path
The path to the JavaScript file to include in the HTML files in order to load MathJax.
The default is the https:// URL that loads the JS files from the cdnjs Content Delivery Network.
See the MathJax Getting Started page for details. If you want MathJax to be available offline, you have
to download it and set this value to a different path.
The path can be absolute or relative; if it is relative, it is relative to the _static directory of the built
docs.
For example, if you put MathJax into the static path of the Sphinx docs, this value would be
MathJax/MathJax.js. If you host more than one Sphinx documentation set on one server, it is
advisable to install MathJax in a shared location.
You can also give a full http:// URL different from the CDN URL.

sphinx.ext.jsmath – Render math via JavaScript

This extension works just as the MathJax extension does, but uses the older package jsMath. It provides
this config value:

jsmath_path
The path to the JavaScript file to include in the HTML files in order to load JSMath. There is no
default.
The path can be absolute or relative; if it is relative, it is relative to the _static directory of the built
docs.
For example, if you put JSMath into the static path of the Sphinx docs, this value would be
jsMath/easy/load.js. If you host more than one Sphinx documentation set on one server, it is
advisable to install jsMath in a shared location.

18.1.15 sphinx.ext.napoleon – Support for NumPy and Google style doc-
strings

Module author: Rob Ruana
New in version 1.3.
Napoleon - Marching toward legible docstrings

Are you tired of writing docstrings that look like this:

:param path: The path of the file to wrap
:type path: str
:param field_storage: The :class:`FileStorage` instance to wrap
:type field_storage: FileStorage
:param temporary: Whether or not to delete the file when the File
 instance is destructed

 Sphinx Documentation, Release 1.6.3

18.1. Builtin Sphinx extensions 177

https://www.mathjax.org/
https://cdjns.com
http://docs.mathjax.org/en/latest/start.html
http://www.math.union.edu/~dpvc/jsmath/

:type temporary: bool
:returns: A buffered writable file descriptor
:rtype: BufferedFileStorage

ReStructuredText is great, but it creates visually dense, hard to read docstrings. Compare the jumble
above to the same thing rewritten according to the Google Python Style Guide:

Args:
 path (str): The path of the file to wrap
 field_storage (FileStorage): The :class:`FileStorage` instance to wrap
 temporary (bool): Whether or not to delete the file when the File
 instance is destructed

Returns:
 BufferedFileStorage: A buffered writable file descriptor

Much more legible, no?
Napoleon is a Sphinx Extensions that enables Sphinx to parse both NumPy and Google style docstrings -
the style recommended by Khan Academy.
Napoleon is a pre-processor that parses NumPy and Google style docstrings and converts them to
reStructuredText before Sphinx attempts to parse them. This happens in an intermediate step while
Sphinx is processing the documentation, so it doesn’t modify any of the docstrings in your actual source
code files.
Getting Started

1. After setting up Sphinx to build your docs, enable napoleon in the Sphinx conf.py file:

conf.py

Add autodoc and napoleon to the extensions list
extensions = ['sphinx.ext.autodoc', 'sphinx.ext.napoleon']

2. Use sphinx-apidoc to build your API documentation:

$ sphinx-apidoc -f -o docs/source projectdir

Docstrings

Napoleon interprets every docstring that autodoc can find, including docstrings on: modules,
classes, attributes, methods, functions, and variables. Inside each docstring, specially
formatted Sections are parsed and converted to reStructuredText.
All standard reStructuredText formatting still works as expected.
Docstring Sections

All of the following section headers are supported:
• Args (alias of Parameters)
• Arguments (alias of Parameters)
• Attributes

• Example

• Examples

• Keyword Args (alias of Keyword Arguments)
• Keyword Arguments

Sphinx Documentation, Release 1.6.3

178 Chapter 18. Sphinx Extensions

http://docutils.sourceforge.net/rst.html
https://www.python.org/dev/peps/pep-0287/
http://google.github.io/styleguide/pyguide.html
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
http://google.github.io/styleguide/pyguide.html#Comments
https://github.com/Khan/style-guides/blob/master/style/python.md#docstrings
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
http://google.github.io/styleguide/pyguide.html#Comments

• Methods

• Note

• Notes

• Other Parameters

• Parameters

• Return (alias of Returns)
• Returns

• Raises

• References

• See Also

• Todo

• Warning

• Warnings (alias of Warning)
• Warns

• Yield (alias of Yields)
• Yields

Google vs NumPy

Napoleon supports two styles of docstrings: Google and NumPy. The main difference between the two
styles is that Google uses indention to separate sections, whereas NumPy uses underlines.
Google style:

def func(arg1, arg2):
 """Summary line.

 Extended description of function.

 Args:
 arg1 (int): Description of arg1
 arg2 (str): Description of arg2

 Returns:
 bool: Description of return value

 """
 return True

NumPy style:

def func(arg1, arg2):
 """Summary line.

 Extended description of function.

 Parameters

 arg1 : int
 Description of arg1
 arg2 : str

 Sphinx Documentation, Release 1.6.3

18.1. Builtin Sphinx extensions 179

http://google.github.io/styleguide/pyguide.html#Comments
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

 Description of arg2

 Returns

 bool
 Description of return value

 """
 return True

NumPy style tends to require more vertical space, whereas Google style tends to use more horizontal
space. Google style tends to be easier to read for short and simple docstrings, whereas NumPy style tends
be easier to read for long and in-depth docstrings.
The Khan Academy recommends using Google style.
The choice between styles is largely aesthetic, but the two styles should not be mixed. Choose one style for
your project and be consistent with it.

See also:

For complete examples:
• Example Google Style Python Docstrings
• Example NumPy Style Python Docstrings

Type Annotations

PEP 484 introduced a standard way to express types in Python code. This is an alternative to expressing
types directly in docstrings. One benefit of expressing types according to PEP 484 is that type checkers
and IDEs can take advantage of them for static code analysis.
Google style with Python 3 type annotations:

def func(arg1: int, arg2: str) -> bool:
 """Summary line.

 Extended description of function.

 Args:
 arg1: Description of arg1
 arg2: Description of arg2

 Returns:
 Description of return value

 """
 return True

Google style with types in docstrings:

def func(arg1, arg2):
 """Summary line.

 Extended description of function.

 Args:
 arg1 (int): Description of arg1
 arg2 (str): Description of arg2

Sphinx Documentation, Release 1.6.3

180 Chapter 18. Sphinx Extensions

https://github.com/Khan/style-guides/blob/master/style/python.md#docstrings
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/

 Returns:
 bool: Description of return value

 """
 return True

Note: Python 2/3 compatible annotations aren’t currently supported by Sphinx and won’t show up in the
docs.

Configuration

Listed below are all the settings used by napoleon and their default values. These settings can be changed
in the Sphinx conf.py file. Make sure that both “sphinx.ext.autodoc” and “sphinx.ext.napoleon” are
enabled in conf.py:

conf.py

Add any Sphinx extension module names here, as strings
extensions = ['sphinx.ext.autodoc', 'sphinx.ext.napoleon']

Napoleon settings
napoleon_google_docstring = True
napoleon_numpy_docstring = True
napoleon_include_init_with_doc = False
napoleon_include_private_with_doc = False
napoleon_include_special_with_doc = True
napoleon_use_admonition_for_examples = False
napoleon_use_admonition_for_notes = False
napoleon_use_admonition_for_references = False
napoleon_use_ivar = False
napoleon_use_param = True
napoleon_use_rtype = True

napoleon_google_docstring
True to parse Google style docstrings. False to disable support for Google style docstrings. Defaults to
True.

napoleon_numpy_docstring
True to parse NumPy style docstrings. False to disable support for NumPy style docstrings. Defaults
to True.

napoleon_include_init_with_doc
True to list __init___ docstrings separately from the class docstring. False to fall back to Sphinx’s
default behavior, which considers the __init___ docstring as part of the class documentation.
Defaults to False.
If True:

def __init__(self):
 \"\"\"
 This will be included in the docs because it has a docstring
 \"\"\"

def __init__(self):
 # This will NOT be included in the docs

 Sphinx Documentation, Release 1.6.3

18.1. Builtin Sphinx extensions 181

https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

napoleon_include_private_with_doc
True to include private members (like _membername) with docstrings in the documentation. False to
fall back to Sphinx’s default behavior. Defaults to False.
If True:

def _included(self):
 """
 This will be included in the docs because it has a docstring
 """
 pass

def _skipped(self):
 # This will NOT be included in the docs
 pass

napoleon_include_special_with_doc
True to include special members (like __membername__) with docstrings in the documentation.
False to fall back to Sphinx’s default behavior. Defaults to True.
If True:

def __str__(self):
 """
 This will be included in the docs because it has a docstring
 """
 return unicode(self).encode('utf-8')

def __unicode__(self):
 # This will NOT be included in the docs
 return unicode(self.__class__.__name__)

napoleon_use_admonition_for_examples
True to use the .. admonition:: directive for the Example and Examples sections. False to use the
.. rubric:: directive instead. One may look better than the other depending on what HTML
theme is used. Defaults to False.
This NumPy style snippet will be converted as follows:

Example

This is just a quick example

If True:

.. admonition:: Example

 This is just a quick example

If False:

.. rubric:: Example

This is just a quick example

napoleon_use_admonition_for_notes
True to use the .. admonition:: directive for Notes sections. False to use the .. rubric::
directive instead. Defaults to False.

Sphinx Documentation, Release 1.6.3

182 Chapter 18. Sphinx Extensions

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

Note: The singular Note section will always be converted to a .. note:: directive.

See also:

napoleon_use_admonition_for_examples

napoleon_use_admonition_for_references
True to use the .. admonition:: directive for References sections. False to use the .. rubric::
directive instead. Defaults to False.

See also:

napoleon_use_admonition_for_examples

napoleon_use_ivar
True to use the :ivar: role for instance variables. False to use the .. attribute:: directive
instead. Defaults to False.
This NumPy style snippet will be converted as follows:

Attributes

attr1 : int
 Description of `attr1`

If True:

:ivar attr1: Description of `attr1`
:vartype attr1: int

If False:

.. attribute:: attr1

 int

 Description of `attr1`

napoleon_use_param
True to use a :param: role for each function parameter. False to use a single :parameters: role for
all the parameters. Defaults to True.
This NumPy style snippet will be converted as follows:

Parameters

arg1 : str
 Description of `arg1`
arg2 : int, optional
 Description of `arg2`, defaults to 0

If True:

:param arg1: Description of `arg1`
:type arg1: str
:param arg2: Description of `arg2`, defaults to 0

 Sphinx Documentation, Release 1.6.3

18.1. Builtin Sphinx extensions 183

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

:type arg2: int, optional

If False:

:parameters: * **arg1** (*str*) --
 Description of `arg1`
 * **arg2** (*int, optional*) --
 Description of `arg2`, defaults to 0

napoleon_use_keyword
True to use a :keyword: role for each function keyword argument. False to use a single :keyword
arguments: role for all the keywords. Defaults to True.
This behaves similarly to napoleon_use_param. Note unlike docutils, :keyword: and :param:
will not be treated the same way - there will be a separate “Keyword Arguments” section, rendered
in the same fashion as “Parameters” section (type links created if possible)

See also:

napoleon_use_param

napoleon_use_rtype
True to use the :rtype: role for the return type. False to output the return type inline with the
description. Defaults to True.
This NumPy style snippet will be converted as follows:

Returns

bool
 True if successful, False otherwise

If True:

:returns: True if successful, False otherwise
:rtype: bool

If False:

:returns: *bool* -- True if successful, False otherwise

18.1.16 sphinx.ext.todo – Support for todo items

Module author: Daniel Bültmann
New in version 0.5.
There are two additional directives when using this extension:

.. todo::
Use this directive like, for example, note.
It will only show up in the output if todo_include_todos is True.
New in version 1.3.2: This directive supports an class option that determines the class attribute for
HTML output. If not given, the class defaults to admonition-todo.

.. todolist::
This directive is replaced by a list of all todo directives in the whole documentation, if
todo_include_todos is True.

Sphinx Documentation, Release 1.6.3

184 Chapter 18. Sphinx Extensions

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

There is also an additional config value:

todo_include_todos
If this is True, todo and todolist produce output, else they produce nothing. The default is
False.

todo_emit_warnings
If this is True, todo emits a warning for each TODO entries. The default is False.
New in version 1.5.

todo_link_only
If this is True, todolist produce output without file path and line, The default is False.
New in version 1.4.

autodoc provides the following an additional event:

todo-defined (app, node)
New in version 1.5.
Emitted when a todo is defined. node is the defined sphinx.ext.todo.todo_node node.

18.1.17 sphinx.ext.viewcode – Add links to highlighted source code

Module author: Georg Brandl
New in version 1.0.
This extension looks at your Python object descriptions (.. class::, .. function:: etc.) and tries to
find the source files where the objects are contained. When found, a separate HTML page will be output
for each module with a highlighted version of the source code, and a link will be added to all object
descriptions that leads to the source code of the described object. A link back from the source to the
description will also be inserted.
This extension works only on HTML related builders like html, applehelp, devhelp, htmlhelp,
qthelp and so on except singlehtml. By default epub builder doesn’t support this extension (see
viewcode_enable_epub).
There is an additional config value:

viewcode_import
If this is True, viewcode extension will follow alias objects that imported from another module such
as functions, classes and attributes. As side effects, this option else they produce nothing. The
default is True.

Warning: viewcode_import imports the modules to be followed real location. If any modules
have side effects on import, these will be executed by viewcode when sphinx-build is run.
If you document scripts (as opposed to library modules), make sure their main routine is
protected by a if __name__ == '__main__' condition.

New in version 1.3.

viewcode_enable_epub
If this is True, viewcode extension is also enabled even if you use epub builders. This extension
generates pages outside toctree, but this is not preferred as epub format.
Until 1.4.x, this extension is always enabled. If you want to generate epub as same as 1.4.x, you
should set True, but epub format checker’s score becomes worse.

 Sphinx Documentation, Release 1.6.3

18.1. Builtin Sphinx extensions 185

The default is False.
New in version 1.5.

Warning: Not all epub readers support pages generated by viewcode extension. These readers
ignore links to pages are not under toctree.
Some reader’s rendering result are corrupted and epubcheck’s score becomes worse even if the
reader supports.

18.2 Third-party extensions

You can find several extensions contributed by users in the Sphinx Contrib repository. It is open for
anyone who wants to maintain an extension publicly; just send a short message asking for write permis-
sions.
There are also several extensions hosted elsewhere. The Sphinx extension survey contains a comprehen-
sive list.
If you write an extension that you think others will find useful or you think should be included as a part
of Sphinx, please write to the project mailing list (join here).

18.2.1 Where to put your own extensions?

Extensions local to a project should be put within the project’s directory structure. Set Python’s module
search path, sys.path, accordingly so that Sphinx can find them. E.g., if your extension foo.py lies in
the exts subdirectory of the project root, put into conf.py:

import sys, os

sys.path.append(os.path.abspath('exts'))

extensions = ['foo']

You can also install extensions anywhere else on sys.path, e.g. in the site-packages directory.

Sphinx Documentation, Release 1.6.3

186 Chapter 18. Sphinx Extensions

https://github.com/IDPF/epubcheck
https://bitbucket.org/birkenfeld/sphinx-contrib
http://sphinxext-survey.readthedocs.org/en/latest/
https://groups.google.com/forum/#!forum/sphinx-dev

CHAPTER 19

Developing extensions for Sphinx

Since many projects will need special features in their documentation, Sphinx is designed to be extensible
on several levels.
This is what you can do in an extension: First, you can add new builders to support new output formats or
actions on the parsed documents. Then, it is possible to register custom reStructuredText roles and direc-
tives, extending the markup. And finally, there are so-called “hook points” at strategic places throughout
the build process, where an extension can register a hook and run specialized code.
An extension is simply a Python module. When an extension is loaded, Sphinx imports this module and
executes its setup() function, which in turn notifies Sphinx of everything the extension offers – see the
extension tutorial for examples.
The configuration file itself can be treated as an extension if it contains a setup() function. All other
extensions to load must be listed in the extensions configuration value.

19.1 Discovery of builders by entry point

New in version 1.6.
Builder extensions can be discovered by means of entry points so that they do not have to be listed in the
extensions configuration value.
Builder extensions should define an entry point in the sphinx.builders group. The name of the entry
point needs to match your builder’s name attribute, which is the name passed to the sphinx-build -b
option. The entry point value should equal the dotted name of the extension module. Here is an example
of how an entry point for ‘mybuilder’ can be defined in the extension’s setup.py:

setup(
 # ...
 entry_points={
 'sphinx.builders': [
 'mybuilder = my.extension.module',
],
 }
)

Note that it is still necessary to register the builder using add_builder() in the extension’s setup()
function.

 187

https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins

19.2 Extension metadata

New in version 1.3.
The setup() function can return a dictionary. This is treated by Sphinx as metadata of the extension.
Metadata keys currently recognized are:

• 'version': a string that identifies the extension version. It is used for extension version require-
ment checking (see needs_extensions) and informational purposes. If not given, "unknown
version" is substituted.

• 'parallel_read_safe': a boolean that specifies if parallel reading of source files can be used
when the extension is loaded. It defaults to False, i.e. you have to explicitly specify your extension
to be parallel-read-safe after checking that it is.

• 'parallel_write_safe': a boolean that specifies if parallel writing of output files can be used
when the extension is loaded. Since extensions usually don’t negatively influence the process, this
defaults to True.

19.3 APIs used for writing extensions

19.3.1 Tutorial: Writing a simple extension

This section is intended as a walkthrough for the creation of custom extensions. It covers the basics of
writing and activating an extension, as well as commonly used features of extensions.
As an example, we will cover a “todo” extension that adds capabilities to include todo entries in the docu-
mentation, and to collect these in a central place. (A similar “todo” extension is distributed with Sphinx.)
Important objects

There are several key objects whose API you will use while writing an extension. These are:
Application

The application object (usually called app) is an instance of Sphinx. It controls most high-level func-
tionality, such as the setup of extensions, event dispatching and producing output (logging).
If you have the environment object, the application is available as env.app.

Environment
The build environment object (usually called env) is an instance of BuildEnvironment. It is
responsible for parsing the source documents, stores all metadata about the document collection and
is serialized to disk after each build.
Its API provides methods to do with access to metadata, resolving references, etc. It can also be used
by extensions to cache information that should persist for incremental rebuilds.
If you have the application or builder object, the environment is available as app.env or
builder.env.

Builder
The builder object (usually called builder) is an instance of a specific subclass of Builder. Each
builder class knows how to convert the parsed documents into an output format, or otherwise
process them (e.g. check external links).
If you have the application object, the builder is available as app.builder.

Sphinx Documentation, Release 1.6.3

188 Chapter 19. Developing extensions for Sphinx

Config
The config object (usually called config) provides the values of configuration values set in conf.py
as attributes. It is an instance of Config.
The config is available as app.config or env.config.

Build Phases

One thing that is vital in order to understand extension mechanisms is the way in which a Sphinx project
is built: this works in several phases.
Phase 0: Initialization

In this phase, almost nothing of interest to us happens. The source directory is searched for source
files, and extensions are initialized. Should a stored build environment exist, it is loaded, otherwise
a new one is created.

Phase 1: Reading
In Phase 1, all source files (and on subsequent builds, those that are new or changed) are read and
parsed. This is the phase where directives and roles are encountered by docutils, and the corre-
sponding code is executed. The output of this phase is a doctree for each source file; that is a tree of
docutils nodes. For document elements that aren’t fully known until all existing files are read,
temporary nodes are created.
There are nodes provided by docutils, which are documented in the docutils documentation. Addi-
tional nodes are provided by Sphinx and documented here.
During reading, the build environment is updated with all meta- and cross reference data of the
read documents, such as labels, the names of headings, described Python objects and index entries.
This will later be used to replace the temporary nodes.
The parsed doctrees are stored on the disk, because it is not possible to hold all of them in memory.

Phase 2: Consistency checks
Some checking is done to ensure no surprises in the built documents.

Phase 3: Resolving
Now that the metadata and cross-reference data of all existing documents is known, all temporary
nodes are replaced by nodes that can be converted into output using components called tranform.
For example, links are created for object references that exist, and simple literal nodes are created
for those that don’t.

Phase 4: Writing
This phase converts the resolved doctrees to the desired output format, such as HTML or LaTeX.
This happens via a so-called docutils writer that visits the individual nodes of each doctree and
produces some output in the process.

Note: Some builders deviate from this general build plan, for example, the builder that checks external
links does not need anything more than the parsed doctrees and therefore does not have phases 2–4.

Extension Design

We want the extension to add the following to Sphinx:
• A “todo” directive, containing some content that is marked with “TODO”, and only shown in the

output if a new config value is set. (Todo entries should not be in the output by default.)
• A “todolist” directive that creates a list of all todo entries throughout the documentation.

 Sphinx Documentation, Release 1.6.3

19.3. APIs used for writing extensions 189

http://docutils.sourceforge.net/docs/ref/doctree.html

For that, we will need to add the following elements to Sphinx:
• New directives, called todo and todolist.
• New document tree nodes to represent these directives, conventionally also called todo and
todolist. We wouldn’t need new nodes if the new directives only produced some content repre-
sentable by existing nodes.

• A new config value todo_include_todos (config value names should start with the extension
name, in order to stay unique) that controls whether todo entries make it into the output.

• New event handlers: one for the doctree-resolved event, to replace the todo and todolist nodes,
and one for env-purge-doc (the reason for that will be covered later).

The Setup Function

The new elements are added in the extension’s setup function. Let us create a new Python module called
todo.py and add the setup function:

def setup(app):
 app.add_config_value('todo_include_todos', False, 'html')

 app.add_node(todolist)
 app.add_node(todo,
 html=(visit_todo_node, depart_todo_node),
 latex=(visit_todo_node, depart_todo_node),
 text=(visit_todo_node, depart_todo_node))

 app.add_directive('todo', TodoDirective)
 app.add_directive('todolist', TodolistDirective)
 app.connect('doctree-resolved', process_todo_nodes)
 app.connect('env-purge-doc', purge_todos)

 return {'version': '0.1'} # identifies the version of our extension

The calls in this function refer to classes and functions not yet written. What the individual calls do is the
following:

• add_config_value() lets Sphinx know that it should recognize the new config value
todo_include_todos, whose default value should be False (this also tells Sphinx that it is a
boolean value).
If the third argument was 'html', HTML documents would be full rebuild if the config value
changed its value. This is needed for config values that influence reading (build phase 1).

• add_node() adds a new node class to the build system. It also can specify visitor functions for each
supported output format. These visitor functions are needed when the new nodes stay until phase 4
– since the todolist node is always replaced in phase 3, it doesn’t need any.
We need to create the two node classes todo and todolist later.

• add_directive() adds a new directive, given by name and class.
The handler functions are created later.

• Finally, connect() adds an event handler to the event whose name is given by the first argument.
The event handler function is called with several arguments which are documented with the event.

The Node Classes

Let’s start with the node classes:

from docutils import nodes

Sphinx Documentation, Release 1.6.3

190 Chapter 19. Developing extensions for Sphinx

class todo(nodes.Admonition, nodes.Element):
 pass

class todolist(nodes.General, nodes.Element):
 pass

def visit_todo_node(self, node):
 self.visit_admonition(node)

def depart_todo_node(self, node):
 self.depart_admonition(node)

Node classes usually don’t have to do anything except inherit from the standard docutils classes defined
in docutils.nodes. todo inherits from Admonition because it should be handled like a note or
warning, todolist is just a “general” node.

Note: Many extensions will not have to create their own node classes and work fine with the nodes
already provided by docutils and Sphinx.

The Directive Classes

A directive class is a class deriving usually from docutils.parsers.rst.Directive. The directive
interface is also covered in detail in the docutils documentation; the important thing is that the class
should have attributes that configure the allowed markup, and a run method that returns a list of nodes.
The todolist directive is quite simple:

from docutils.parsers.rst import Directive

class TodolistDirective(Directive):

 def run(self):
 return [todolist('')]

An instance of our todolist node class is created and returned. The todolist directive has neither
content nor arguments that need to be handled.
The todo directive function looks like this:

from sphinx.locale import _

class TodoDirective(Directive):

 # this enables content in the directive
 has_content = True

 def run(self):
 env = self.state.document.settings.env

 targetid = "todo-%d" % env.new_serialno('todo')
 targetnode = nodes.target('', '', ids=[targetid])

 todo_node = todo('\n'.join(self.content))
 todo_node += nodes.title(_('Todo'), _('Todo'))
 self.state.nested_parse(self.content, self.content_offset, todo_node)

 if not hasattr(env, 'todo_all_todos'):

 Sphinx Documentation, Release 1.6.3

19.3. APIs used for writing extensions 191

http://docutils.sourceforge.net/docs/ref/doctree.html
http://docutils.sourceforge.net/docs/ref/rst/directives.html

 env.todo_all_todos = []
 env.todo_all_todos.append({
 'docname': env.docname,
 'lineno': self.lineno,
 'todo': todo_node.deepcopy(),
 'target': targetnode,
 })

 return [targetnode, todo_node]

Several important things are covered here. First, as you can see, you can refer to the build environment
instance using self.state.document.settings.env.
Then, to act as a link target (from the todolist), the todo directive needs to return a target node in addition
to the todo node. The target ID (in HTML, this will be the anchor name) is generated by using
env.new_serialno which returns a new unique integer on each call and therefore leads to unique
target names. The target node is instantiated without any text (the first two arguments).
On creating admonition node, the content body of the directive are parsed using
self.state.nested_parse. The first argument gives the content body, and the second one gives
content offset. The third argument gives the parent node of parsed result, in our case the todo node.
Then, the todo node is added to the environment. This is needed to be able to create a list of all todo
entries throughout the documentation, in the place where the author puts a todolist directive. For this
case, the environment attribute todo_all_todos is used (again, the name should be unique, so it is
prefixed by the extension name). It does not exist when a new environment is created, so the directive
must check and create it if necessary. Various information about the todo entry’s location are stored along
with a copy of the node.
In the last line, the nodes that should be put into the doctree are returned: the target node and the admo-
nition node.
The node structure that the directive returns looks like this:

+--------------------+
| target node |
+--------------------+
+--------------------+
| todo node |
+--------------------+
 __+--------------------+
 | admonition title |
 +--------------------+
 | paragraph |
 +--------------------+
 | ... |
 +--------------------+

The Event Handlers

Finally, let’s look at the event handlers. First, the one for the env-purge-doc event:

def purge_todos(app, env, docname):
 if not hasattr(env, 'todo_all_todos'):
 return
 env.todo_all_todos = [todo for todo in env.todo_all_todos
 if todo['docname'] != docname]

Since we store information from source files in the environment, which is persistent, it may become out of
date when the source file changes. Therefore, before each source file is read, the environment’s records of

Sphinx Documentation, Release 1.6.3

192 Chapter 19. Developing extensions for Sphinx

it are cleared, and the env-purge-doc event gives extensions a chance to do the same. Here we clear out
all todos whose docname matches the given one from the todo_all_todos list. If there are todos left in
the document, they will be added again during parsing.
The other handler belongs to the doctree-resolved event. This event is emitted at the end of phase 3
and allows custom resolving to be done:

def process_todo_nodes(app, doctree, fromdocname):
 if not app.config.todo_include_todos:
 for node in doctree.traverse(todo):
 node.parent.remove(node)

 # Replace all todolist nodes with a list of the collected todos.
 # Augment each todo with a backlink to the original location.
 env = app.builder.env

 for node in doctree.traverse(todolist):
 if not app.config.todo_include_todos:
 node.replace_self([])
 continue

 content = []

 for todo_info in env.todo_all_todos:
 para = nodes.paragraph()
 filename = env.doc2path(todo_info['docname'], base=None)
 description = (
 _('(The original entry is located in %s, line %d and can be found ')
%
 (filename, todo_info['lineno']))
 para += nodes.Text(description, description)

 # Create a reference
 newnode = nodes.reference('', '')
 innernode = nodes.emphasis(_('here'), _('here'))
 newnode['refdocname'] = todo_info['docname']
 newnode['refuri'] = app.builder.get_relative_uri(
 fromdocname, todo_info['docname'])
 newnode['refuri'] += '#' + todo_info['target']['refid']
 newnode.append(innernode)
 para += newnode
 para += nodes.Text('.)', '.)')

 # Insert into the todolist
 content.append(todo_info['todo'])
 content.append(para)

 node.replace_self(content)

It is a bit more involved. If our new “todo_include_todos” config value is false, all todo and todolist
nodes are removed from the documents.
If not, todo nodes just stay where and how they are. Todolist nodes are replaced by a list of todo entries,
complete with backlinks to the location where they come from. The list items are composed of the nodes
from the todo entry and docutils nodes created on the fly: a paragraph for each entry, containing text that
gives the location, and a link (reference node containing an italic node) with the backreference. The refer-
ence URI is built by app.builder.get_relative_uri which creates a suitable URI depending on the
used builder, and appending the todo node’s (the target’s) ID as the anchor name.

 Sphinx Documentation, Release 1.6.3

19.3. APIs used for writing extensions 193

19.3.2 Application API

Each Sphinx extension is a Python module with at least a setup() function. This function is called at
initialization time with one argument, the application object representing the Sphinx process.

class sphinx.application.Sphinx
This application object has the public API described in the following.

Extension setup

These methods are usually called in an extension’s setup() function.
Examples of using the Sphinx extension API can be seen in the sphinx.ext package.

Sphinx.setup_extension (name)
Load the extension given by the module name. Use this if your extension needs the features provided
by another extension.

Sphinx.add_builder (builder)
Register a new builder. builder must be a class that inherits from Builder.

Sphinx.add_config_value (name, default, rebuild)
Register a configuration value. This is necessary for Sphinx to recognize new values and set default
values accordingly. The name should be prefixed with the extension name, to avoid clashes. The
default value can be any Python object. The string value rebuild must be one of those values:

• 'env' if a change in the setting only takes effect when a document is parsed – this means that
the whole environment must be rebuilt.

• 'html' if a change in the setting needs a full rebuild of HTML documents.
• '' if a change in the setting will not need any special rebuild.

Changed in version 0.4: If the default value is a callable, it will be called with the config object as its
argument in order to get the default value. This can be used to implement config values whose
default depends on other values.
Changed in version 0.6: Changed rebuild from a simple boolean (equivalent to '' or 'env') to a string.
However, booleans are still accepted and converted internally.

Sphinx.add_domain (domain)
Make the given domain (which must be a class; more precisely, a subclass of Domain) known to
Sphinx.
New in version 1.0.

Sphinx.override_domain (domain)
Make the given domain class known to Sphinx, assuming that there is already a domain with its
.name. The new domain must be a subclass of the existing one.
New in version 1.0.

Sphinx.add_index_to_domain (domain, index)
Add a custom index class to the domain named domain. index must be a subclass of Index.
New in version 1.0.

Sphinx.add_event (name)
Register an event called name. This is needed to be able to emit it.

Sphinx Documentation, Release 1.6.3

194 Chapter 19. Developing extensions for Sphinx

Sphinx.set_translator (name, translator_class)
Register or override a Docutils translator class. This is used to register a custom output translator or
to replace a builtin translator. This allows extensions to use custom translator and define custom
nodes for the translator (see add_node()).
New in version 1.3.

Sphinx.add_node (node, **kwds)
Register a Docutils node class. This is necessary for Docutils internals. It may also be used in the
future to validate nodes in the parsed documents.
Node visitor functions for the Sphinx HTML, LaTeX, text and manpage writers can be given as
keyword arguments: the keyword should be one or more of 'html', 'latex', 'text', 'man',
'texinfo' or any other supported translators, the value a 2-tuple of (visit, depart) methods.
depart can be None if the visit function raises docutils.nodes.SkipNode. Example:

class math(docutils.nodes.Element): pass

def visit_math_html(self, node):
 self.body.append(self.starttag(node, 'math'))
def depart_math_html(self, node):
 self.body.append('</math>')

app.add_node(math, html=(visit_math_html, depart_math_html))

Obviously, translators for which you don’t specify visitor methods will choke on the node when
encountered in a document to translate.
Changed in version 0.5: Added the support for keyword arguments giving visit functions.

Sphinx.add_enumerable_node (node, figtype, title_getter=None, **kwds)
Register a Docutils node class as a numfig target. Sphinx numbers the node automatically. And then
the users can refer it using numref.
figtype is a type of enumerable nodes. Each figtypes have individual numbering sequences. As a
system figtypes, figure, table and code-block are defined. It is able to add custom nodes to
these default figtypes. It is also able to define new custom figtype if new figtype is given.
title_getter is a getter function to obtain the title of node. It takes an instance of the enumerable node,
and it must return its title as string. The title is used to the default title of references for ref. By
default, Sphinx searches docutils.nodes.caption or docutils.nodes.title from the node
as a title.
Other keyword arguments are used for node visitor functions. See the Sphinx.add_node() for
details.
New in version 1.4.

Sphinx.add_directive (name, func, content, arguments, **options)
Sphinx.add_directive (name, directiveclass)

Register a Docutils directive. name must be the prospective directive name. There are two possible
ways to write a directive:

• In the docutils 0.4 style, obj is the directive function. content, arguments and options are set as
attributes on the function and determine whether the directive has content, arguments and
options, respectively. This style is deprecated.

• In the docutils 0.5 style, directiveclass is the directive class. It must already have attributes
named has_content, required_arguments, optional_arguments, final_argument_whitespace and
option_spec that correspond to the options for the function way. See the Docutils docs for details.
The directive class must inherit from the class docutils.parsers.rst.Directive.

 Sphinx Documentation, Release 1.6.3

19.3. APIs used for writing extensions 195

http://docutils.sourceforge.net/docs/howto/rst-directives.html

For example, the (already existing) literalinclude directive would be added like this:

from docutils.parsers.rst import directives
add_directive('literalinclude', literalinclude_directive,
 content = 0, arguments = (1, 0, 0),
 linenos = directives.flag,
 language = directives.unchanged,
 encoding = directives.encoding)

Changed in version 0.6: Docutils 0.5-style directive classes are now supported.

Sphinx.add_directive_to_domain (domain, name, func, content, arguments, **options)
Sphinx.add_directive_to_domain (domain, name, directiveclass)

Like add_directive(), but the directive is added to the domain named domain.
New in version 1.0.

Sphinx.add_role (name, role)
Register a Docutils role. name must be the role name that occurs in the source, role the role function
(see the Docutils documentation on details).

Sphinx.add_role_to_domain (domain, name, role)
Like add_role(), but the role is added to the domain named domain.
New in version 1.0.

Sphinx.add_generic_role (name, nodeclass)
Register a Docutils role that does nothing but wrap its contents in the node given by nodeclass.
New in version 0.6.

Sphinx.add_object_type (directivename, rolename, indextemplate='', parse_node=None,
ref_nodeclass=None, objname='', doc_field_types=[])

This method is a very convenient way to add a new object type that can be cross-referenced. It will do
this:

• Create a new directive (called directivename) for documenting an object. It will automatically add
index entries if indextemplate is nonempty; if given, it must contain exactly one instance of %s.
See the example below for how the template will be interpreted.

• Create a new role (called rolename) to cross-reference to these object descriptions.
• If you provide parse_node, it must be a function that takes a string and a docutils node, and it

must populate the node with children parsed from the string. It must then return the name of
the item to be used in cross-referencing and index entries. See the conf.py file in the source
for this documentation for an example.

• The objname (if not given, will default to directivename) names the type of object. It is used when
listing objects, e.g. in search results.

For example, if you have this call in a custom Sphinx extension:

app.add_object_type('directive', 'dir', 'pair: %s; directive')

you can use this markup in your documents:

.. rst:directive:: function

 Document a function.

Sphinx Documentation, Release 1.6.3

196 Chapter 19. Developing extensions for Sphinx

http://docutils.sourceforge.net/docs/howto/rst-roles.html

<...>

See also the :rst:dir:`function` directive.

For the directive, an index entry will be generated as if you had prepended

.. index:: pair: function; directive

The reference node will be of class literal (so it will be rendered in a proportional font, as appro-
priate for code) unless you give the ref_nodeclass argument, which must be a docutils node class.
Most useful are docutils.nodes.emphasis or docutils.nodes.strong – you can also use
docutils.nodes.generated if you want no further text decoration. If the text should be treated
as literal (e.g. no smart quote replacement), but not have typewriter styling, use
sphinx.addnodes.literal_emphasis or sphinx.addnodes.literal_strong.
For the role content, you have the same syntactical possibilities as for standard Sphinx roles (see
Cross-referencing syntax).
This method is also available under the deprecated alias add_description_unit.

Sphinx.add_crossref_type (directivename, rolename, indextemplate='', ref_nodeclass=None, objname='')
This method is very similar to add_object_type() except that the directive it generates must be
empty, and will produce no output.
That means that you can add semantic targets to your sources, and refer to them using custom roles
instead of generic ones (like ref). Example call:

app.add_crossref_type('topic', 'topic', 'single: %s', docutils.nodes.emphasis)

Example usage:

.. topic:: application API

The application API

<...>

See also :topic:`this section <application API>`.

(Of course, the element following the topic directive needn’t be a section.)

Sphinx.add_transform (transform)
Add the standard docutils Transform subclass transform to the list of transforms that are applied
after Sphinx parses a reST document.

Sphinx.add_post_transform (transform)
Add the standard docutils Transform subclass transform to the list of transforms that are applied
before Sphinx writes a document.

Sphinx.add_javascript (filename)
Add filename to the list of JavaScript files that the default HTML template will include. The filename
must be relative to the HTML static path, see the docs for the config value. A full URI
with scheme, like http://example.org/foo.js, is also supported.
New in version 0.5.

Sphinx.add_stylesheet (filename, alternate=None, title=None)
Add filename to the list of CSS files that the default HTML template will include. Like for
add_javascript(), the filename must be relative to the HTML static path, or a full URI with
scheme.

 Sphinx Documentation, Release 1.6.3

19.3. APIs used for writing extensions 197

New in version 1.0.
Changed in version 1.6: Optional alternate and/or title attributes can be supplied with the alter-
nate (of boolean type) and title (a string) arguments. The default is no title and alternate = False (see
this explanation).

Sphinx.add_latex_package (packagename, options=None)
Add packagename to the list of packages that LaTeX source code will include. If you provide options, it
will be taken to usepackage declaration.

app.add_latex_package('mypackage') # => \usepackage{mypackage}
app.add_latex_package('mypackage', 'foo,bar') # =>
\usepackage[foo,bar]{mypackage}

New in version 1.3.

Sphinx.add_lexer (alias, lexer)
Use lexer, which must be an instance of a Pygments lexer class, to highlight code blocks with the
given language alias.
New in version 0.6.

Sphinx.add_autodocumenter (cls)
Add cls as a new documenter class for the sphinx.ext.autodoc extension. It must be a subclass
of sphinx.ext.autodoc.Documenter. This allows to auto-document new types of objects. See
the source of the autodoc module for examples on how to subclass Documenter.
New in version 0.6.

Sphinx.add_autodoc_attrgetter (type, getter)
Add getter, which must be a function with an interface compatible to the getattr() builtin, as the
autodoc attribute getter for objects that are instances of type. All cases where autodoc needs to get an
attribute of a type are then handled by this function instead of getattr().
New in version 0.6.

Sphinx.add_search_language (cls)
Add cls, which must be a subclass of sphinx.search.SearchLanguage, as a support language
for building the HTML full-text search index. The class must have a lang attribute that indicates the
language it should be used for. See html_search_language.
New in version 1.1.

Sphinx.add_source_parser (suffix, parser)
Register a parser class for specified suffix.
New in version 1.4.

Sphinx.add_html_theme (name, theme_path)
Register a HTML Theme. The name is a name of theme, and path is a full path to the theme (refs:
Distribute your theme as a python package).
New in version 1.6.

Sphinx.add_env_collector (collector)
Register an environment collector class (refs: Environment Collector API)
New in version 1.6.

Sphinx Documentation, Release 1.6.3

198 Chapter 19. Developing extensions for Sphinx

https://developer.mozilla.org/en-US/docs/Web/CSS/Alternative_style_sheets

Sphinx.require_sphinx (version)
Compare version (which must be a major.minor version string, e.g. '1.1') with the version of the
running Sphinx, and abort the build when it is too old.
New in version 1.0.

Sphinx.connect (event, callback)
Register callback to be called when event is emitted. For details on available core events and the argu-
ments of callback functions, please see Sphinx core events.
The method returns a “listener ID” that can be used as an argument to disconnect().

Sphinx.disconnect (listener_id)
Unregister callback listener_id.

exception sphinx.application.ExtensionError
All these methods raise this exception if something went wrong with the extension API.

Emitting events

Sphinx.emit (event, *arguments)
Emit event and pass arguments to the callback functions. Return the return values of all callbacks as a
list. Do not emit core Sphinx events in extensions!

Sphinx.emit_firstresult (event, *arguments)
Emit event and pass arguments to the callback functions. Return the result of the first callback that
doesn’t return None.
New in version 0.5.

Producing messages / logging

The application object also provides support for emitting leveled messages.

Note: There is no “error” call: in Sphinx, errors are defined as things that stop the build; just raise an
exception (sphinx.errors.SphinxError or a custom subclass) to do that.

Deprecated since version 1.6: Please use Logging API instead.

Sphinx.warn (message, location=None, prefix=None, type=None, subtype=None, colorfunc=None)
Emit a warning.
If location is given, it should either be a tuple of (docname, lineno) or a string describing the location
of the warning as well as possible.
prefix usually should not be changed.
type and subtype are used to suppress warnings with suppress_warnings.

Note: For warnings emitted during parsing, you should use BuildEnvironment.warn() since
that will collect all warnings during parsing for later output.

Sphinx.info (message='', nonl=False)
Emit an informational message.
If nonl is true, don’t emit a newline at the end (which implies that more info output will follow soon.)

Sphinx.verbose (message, *args, **kwargs)
Emit a verbose informational message.

 Sphinx Documentation, Release 1.6.3

19.3. APIs used for writing extensions 199

Sphinx.debug (message, *args, **kwargs)
Emit a debug-level informational message.

Sphinx.debug2 (message, *args, **kwargs)
Emit a lowlevel debug-level informational message.

Sphinx core events

These events are known to the core. The arguments shown are given to the registered event handlers.
Use connect() in an extension’s setup function (note that conf.py can also have a setup function) to
connect handlers to the events. Example:

def source_read_handler(app, docname, source):
 print('do something here...')

def setup(app):
 app.connect('source-read', source_read_handler)

builder-inited (app)
Emitted when the builder object has been created. It is available as app.builder.

env-get-outdated (app, env, added, changed, removed)
Emitted when the environment determines which source files have changed and should be re-read.
added, changed and removed are sets of docnames that the environment has determined. You can
return a list of docnames to re-read in addition to these.
New in version 1.1.

env-purge-doc (app, env, docname)
Emitted when all traces of a source file should be cleaned from the environment, that is, if the source
file is removed or before it is freshly read. This is for extensions that keep their own caches in
attributes of the environment.
For example, there is a cache of all modules on the environment. When a source file has been
changed, the cache’s entries for the file are cleared, since the module declarations could have been
removed from the file.
New in version 0.5.

env-before-read-docs (app, env, docnames)
Emitted after the environment has determined the list of all added and changed files and just before
it reads them. It allows extension authors to reorder the list of docnames (inplace) before processing,
or add more docnames that Sphinx did not consider changed (but never add any docnames that are
not in env.found_docs).
You can also remove document names; do this with caution since it will make Sphinx treat changed
files as unchanged.
New in version 1.3.

source-read (app, docname, source)
Emitted when a source file has been read. The source argument is a list whose single element is the
contents of the source file. You can process the contents and replace this item to implement
source-level transformations.
For example, if you want to use $ signs to delimit inline math, like in LaTeX, you can use a regular
expression to replace $...$ by :math:`...`.
New in version 0.5.

Sphinx Documentation, Release 1.6.3

200 Chapter 19. Developing extensions for Sphinx

doctree-read (app, doctree)
Emitted when a doctree has been parsed and read by the environment, and is about to be pickled.
The doctree can be modified in-place.

missing-reference (app, env, node, contnode)
Emitted when a cross-reference to a Python module or object cannot be resolved. If the event handler
can resolve the reference, it should return a new docutils node to be inserted in the document tree in
place of the node node. Usually this node is a reference node containing contnode as a child.
Parameters • env – The build environment (app.builder.env).

• node – The pending_xref node to be resolved. Its attributes reftype,
reftarget, modname and classname attributes determine the type and target of
the reference.

• contnode – The node that carries the text and formatting inside the future refer-
ence and should be a child of the returned reference node.

New in version 0.5.

doctree-resolved (app, doctree, docname)
Emitted when a doctree has been “resolved” by the environment, that is, all references have been
resolved and TOCs have been inserted. The doctree can be modified in place.
Here is the place to replace custom nodes that don’t have visitor methods in the writers, so that they
don’t cause errors when the writers encounter them.

env-merge-info (env, docnames, other)
This event is only emitted when parallel reading of documents is enabled. It is emitted once for
every subprocess that has read some documents.
You must handle this event in an extension that stores data in the environment in a custom location.
Otherwise the environment in the main process will not be aware of the information stored in the
subprocess.
other is the environment object from the subprocess, env is the environment from the main process.
docnames is a set of document names that have been read in the subprocess.
For a sample of how to deal with this event, look at the standard sphinx.ext.todo extension. The
implementation is often similar to that of env-purge-doc, only that information is not removed,
but added to the main environment from the other environment.
New in version 1.3.

env-updated (app, env)
Emitted when the update() method of the build environment has completed, that is, the environ-
ment and all doctrees are now up-to-date.
You can return an iterable of docnames from the handler. These documents will then be considered
updated, and will be (re-)written during the writing phase.
New in version 0.5.
Changed in version 1.3: The handlers’ return value is now used.

env-check-consistency (env)
Emmited when Consistency checks phase. You can check consistency of metadata for whole of docu-
ments.
New in version 1.6: As a experimental event

 Sphinx Documentation, Release 1.6.3

19.3. APIs used for writing extensions 201

html-collect-pages (app)
Emitted when the HTML builder is starting to write non-document pages. You can add pages to
write by returning an iterable from this event consisting of (pagename, context,
templatename).
New in version 1.0.

html-page-context (app, pagename, templatename, context, doctree)
Emitted when the HTML builder has created a context dictionary to render a template with – this can
be used to add custom elements to the context.
The pagename argument is the canonical name of the page being rendered, that is, without .html
suffix and using slashes as path separators. The templatename is the name of the template to render,
this will be 'page.html' for all pages from reST documents.
The context argument is a dictionary of values that are given to the template engine to render the
page and can be modified to include custom values. Keys must be strings.
The doctree argument will be a doctree when the page is created from a reST documents; it will be
None when the page is created from an HTML template alone.
You can return a string from the handler, it will then replace 'page.html' as the HTML template
for this page.
New in version 0.4.
Changed in version 1.3: The return value can now specify a template name.

build-finished (app, exception)
Emitted when a build has finished, before Sphinx exits, usually used for cleanup. This event is
emitted even when the build process raised an exception, given as the exception argument. The
exception is reraised in the application after the event handlers have run. If the build process raised
no exception, exception will be None. This allows to customize cleanup actions depending on the
exception status.
New in version 0.5.

Checking the Sphinx version

Use this to adapt your extension to API changes in Sphinx.

sphinx.version_info
A tuple of five elements; for Sphinx version 1.2.1 beta 3 this would be (1, 2, 1, 'beta', 3).
New in version 1.2: Before version 1.2, check the string sphinx.__version__.

The Config object

class sphinx.config.Config
The config object makes the values of all config values available as attributes.
It is available as the config attribute on the application and environment objects. For example, to
get the value of language, use either app.config.language or env.config.language.

The template bridge

class sphinx.application.TemplateBridge
This class defines the interface for a “template bridge”, that is, a class that renders templates given a
template name and a context.

init (builder, theme=None, dirs=None)
Called by the builder to initialize the template system.

Sphinx Documentation, Release 1.6.3

202 Chapter 19. Developing extensions for Sphinx

builder is the builder object; you’ll probably want to look at the value of
builder.config.templates_path.
theme is a sphinx.theming.Theme object or None; in the latter case, dirs can be list of fixed
directories to look for templates.

newest_template_mtime ()
Called by the builder to determine if output files are outdated because of template changes.
Return the mtime of the newest template file that was changed. The default implementation
returns 0.

render (template, context)
Called by the builder to render a template given as a filename with a specified context (a Python
dictionary).

render_string (template, context)
Called by the builder to render a template given as a string with a specified context (a Python
dictionary).

Exceptions

exception sphinx.errors.SphinxError
This is the base class for “nice” exceptions. When such an exception is raised, Sphinx will abort the
build and present the exception category and message to the user.
Extensions are encouraged to derive from this exception for their custom errors.
Exceptions not derived from SphinxError are treated as unexpected and shown to the user with a
part of the traceback (and the full traceback saved in a temporary file).

category
Description of the exception “category”, used in converting the exception to a string (“category:
message”). Should be set accordingly in subclasses.

exception sphinx.errors.ConfigError
Used for erroneous values or nonsensical combinations of configuration values.

exception sphinx.errors.ExtensionError
Used for errors in setting up extensions.

exception sphinx.errors.ThemeError
Used for errors to do with themes.

exception sphinx.errors.VersionRequirementError
Raised when the docs require a higher Sphinx version than the current one.

19.3.3 Build environment API

class sphinx.environment.BuildEnvironment
Attributes

app
Reference to the Sphinx (application) object.

config
Reference to the Config object.

 Sphinx Documentation, Release 1.6.3

19.3. APIs used for writing extensions 203

srcdir
Source directory.

confdir
Directory containing conf.py.

doctreedir
Directory for storing pickled doctrees.

found_docs
A set of all existing docnames.

metadata
Dictionary mapping docnames to “metadata” (see File-wide metadata).

titles
Dictionary mapping docnames to the docutils node for their main title.

docname
Returns the docname of the document currently being parsed.

Utility methods

warn (docname, msg, lineno=None, **kwargs)
Emit a warning.
This differs from using app.warn() in that the warning may not be emitted instantly, but
collected for emitting all warnings after the update of the environment.

warn_node (msg, node, **kwargs)
Like warn(), but with source information taken from node.

doc2path (docname, base=True, suffix=None)
Return the filename for the document name.
If base is True, return absolute path under self.srcdir. If base is None, return relative path to self.s-
rcdir. If base is a path string, return absolute path under that. If suffix is not None, add it instead
of config.source_suffix.

relfn2path (filename, docname=None)
Return paths to a file referenced from a document, relative to documentation root and absolute.
In the input “filename”, absolute filenames are taken as relative to the source dir, while relative
filenames are relative to the dir of the containing document.

note_dependency (filename)
Add filename as a dependency of the current document.
This means that the document will be rebuilt if this file changes.
filename should be absolute or relative to the source directory.

new_serialno (category='')
Return a serial number, e.g. for index entry targets.
The number is guaranteed to be unique in the current document.

note_reread ()
Add the current document to the list of documents that will automatically be re-read at the next
build.

Sphinx Documentation, Release 1.6.3

204 Chapter 19. Developing extensions for Sphinx

19.3.4 Builder API

Todo

Expand this.

class sphinx.builders.Builder
This is the base class for all builders.
These attributes should be set on builder classes:

name = ''
The builder’s name, for the -b command line option.

format = ''
The builder’s output format, or ‘’ if no document output is produced.

supported_image_types = []
The list of MIME types of image formats supported by the builder. Image files are searched in
the order in which they appear here.

These methods are predefined and will be called from the application:

get_relative_uri (from_, to, typ=None)
Return a relative URI between two source filenames.
May raise environment.NoUri if there’s no way to return a sensible URI.

build_all ()
Build all source files.

build_specific (filenames)
Only rebuild as much as needed for changes in the filenames.

build_update ()
Only rebuild what was changed or added since last build.

build (docnames, summary=None, method='update')
Main build method.
First updates the environment, and then calls write().

These methods can be overridden in concrete builder classes:

init ()
Load necessary templates and perform initialization. The default implementation does nothing.

get_outdated_docs ()
Return an iterable of output files that are outdated, or a string describing what an update build
will build.
If the builder does not output individual files corresponding to source files, return a string here.
If it does, return an iterable of those files that need to be written.

get_target_uri (docname, typ=None)
Return the target URI for a document name.
typ can be used to qualify the link characteristic for individual builders.

 Sphinx Documentation, Release 1.6.3

19.3. APIs used for writing extensions 205

prepare_writing (docnames)
A place where you can add logic before write_doc() is run

write_doc (docname, doctree)
Where you actually write something to the filesystem.

finish ()
Finish the building process.
The default implementation does nothing.

19.3.5 Environment Collector API

class sphinx.environment.collectors.EnvironmentCollector
An EnvironmentCollector is a specific data collector from each document.
It gathers data and stores BuildEnvironment as a database. Examples of specific data would be
images, download files, section titles, metadatas, index entries and toctrees, etc.

clear_doc (app, env, docname)
Remove specified data of a document.
This method is called on the removal of the document.

get_outdated_docs (app, env, added, changed, removed)
Return a list of docnames to re-read.
This methods is called before reading the documents.

get_updated_docs (app, env)
Return a list of docnames to re-read.
This methods is called after reading the whole of documents (experimental).

merge_other (app, env, docnames, other)
Merge in specified data regarding docnames from a different BuildEnvironment object which
coming from a subprocess in parallel builds.

process_doc (app, doctree)
Process a document and gather specific data from it.
This method is called after the document is read.

19.3.6 Docutils markup API

This section describes the API for adding ReST markup elements (roles and directives).
Roles

Directives

Directives are handled by classes derived from docutils.parsers.rst.Directive. They have to be
registered by an extension using Sphinx.add_directive() or
Sphinx.add_directive_to_domain().

class docutils.parsers.rst.Directive
The markup syntax of the new directive is determined by the follow five class attributes:

required_arguments = 0
Number of required directive arguments.

Sphinx Documentation, Release 1.6.3

206 Chapter 19. Developing extensions for Sphinx

optional_arguments = 0
Number of optional arguments after the required arguments.

final_argument_whitespace = False
May the final argument contain whitespace?

option_spec = None
Mapping of option names to validator functions.
Option validator functions take a single parameter, the option argument (or None if not given),
and should validate it or convert it to the proper form. They raise ValueError or TypeError
to indicate failure.
There are several predefined and possibly useful validators in the
docutils.parsers.rst.directives module.

has_content = False
May the directive have content?

New directives must implement the run() method:

run ()
This method must process the directive arguments, options and content, and return a list of
Docutils/Sphinx nodes that will be inserted into the document tree at the point where the direc-
tive was encountered.

Instance attributes that are always set on the directive are:

name
The directive name (useful when registering the same directive class under multiple names).

arguments
The arguments given to the directive, as a list.

options
The options given to the directive, as a dictionary mapping option names to validated/converted
values.

content
The directive content, if given, as a ViewList.

lineno
The absolute line number on which the directive appeared. This is not always a useful value; use
srcline instead.

src
The source file of the directive.

srcline
The line number in the source file on which the directive appeared.

content_offset
Internal offset of the directive content. Used when calling nested_parse (see below).

block_text
The string containing the entire directive.

 Sphinx Documentation, Release 1.6.3

19.3. APIs used for writing extensions 207

state
state_machine

The state and state machine which controls the parsing. Used for nested_parse.

ViewLists

Docutils represents document source lines in a class docutils.statemachine.ViewList. This is a
list with extended functionality – for one, slicing creates views of the original list, and also the list
contains information about the source line numbers.
The Directive.content attribute is a ViewList. If you generate content to be parsed as ReST, you have
to create a ViewList yourself. Important for content generation are the following points:

• The constructor takes a list of strings (lines) and a source (document) name.
• The .append() method takes a line and a source name as well.

Parsing directive content as ReST

Many directives will contain more markup that must be parsed. To do this, use one of the following APIs
from the Directive.run() method:

• self.state.nested_parse

• sphinx.util.nodes.nested_parse_with_titles() – this allows titles in the parsed content.

Both APIs parse the content into a given node. They are used like this:

node = docutils.nodes.paragraph()
either
from sphinx.ext.autodoc import AutodocReporter
self.state.memo.reporter = AutodocReporter(self.result, self.state.memo.reporter) #
override reporter to avoid errors from "include" directive
nested_parse_with_titles(self.state, self.result, node)
or
self.state.nested_parse(self.result, 0, node)

If you don’t need the wrapping node, you can use any concrete node type and return node.children
from the Directive.

See also:

Creating directives
HOWTO of the Docutils documentation

19.3.7 Domain API

class sphinx.domains.Domain (env)
A Domain is meant to be a group of “object” description directives for objects of a similar nature, and
corresponding roles to create references to them. Examples would be Python modules, classes, func-
tions etc., elements of a templating language, Sphinx roles and directives, etc.
Each domain has a separate storage for information about existing objects and how to reference them
in self.data, which must be a dictionary. It also must implement several functions that expose the
object information in a uniform way to parts of Sphinx that allow the user to reference or search for
objects in a domain-agnostic way.
About self.data: since all object and cross-referencing information is stored on a BuildEnvironment
instance, the domain.data object is also stored in the env.domaindata dict under the key domain.name.

Sphinx Documentation, Release 1.6.3

208 Chapter 19. Developing extensions for Sphinx

http://docutils.sourceforge.net/docs/howto/rst-directives.html

Before the build process starts, every active domain is instantiated and given the environment object;
the domaindata dict must then either be nonexistent or a dictionary whose ‘version’ key is equal to the
domain class’ data_version attribute. Otherwise, IOError is raised and the pickled environment is
discarded.

check_consistency ()
Do consistency checks (experimental).

clear_doc (docname)
Remove traces of a document in the domain-specific inventories.

directive (name)
Return a directive adapter class that always gives the registered directive its full name (‘domain:-
name’) as self.name.

get_full_qualified_name (node)
Return full qualified name for given node.

get_objects ()
Return an iterable of “object descriptions”, which are tuples with five items:

• name – fully qualified name
• dispname – name to display when searching/linking
• type – object type, a key in self.object_types
• docname – the document where it is to be found
• anchor – the anchor name for the object
• priority – how “important” the object is (determines placement in search results)

• 1: default priority (placed before full-text matches)
• 0: object is important (placed before default-priority objects)
• 2: object is unimportant (placed after full-text matches)
• -1: object should not show up in search at all

get_type_name (type, primary=False)
Return full name for given ObjType.

merge_domaindata (docnames, otherdata)
Merge in data regarding docnames from a different domaindata inventory (coming from a
subprocess in parallel builds).

process_doc (env, docname, document)
Process a document after it is read by the environment.

process_field_xref (pnode)
Process a pending xref created in a doc field. For example, attach information about the current
scope.

resolve_any_xref (env, fromdocname, builder, target, node, contnode)
Resolve the pending_xref node with the given target.
The reference comes from an “any” or similar role, which means that we don’t know the type.
Otherwise, the arguments are the same as for resolve_xref().

 Sphinx Documentation, Release 1.6.3

19.3. APIs used for writing extensions 209

The method must return a list (potentially empty) of tuples ('domain:role', newnode),
where 'domain:role' is the name of a role that could have created the same reference, e.g.
'py:func'. newnode is what resolve_xref() would return.
New in version 1.3.

resolve_xref (env, fromdocname, builder, typ, target, node, contnode)
Resolve the pending_xref node with the given typ and target.
This method should return a new node, to replace the xref node, containing the contnode which
is the markup content of the cross-reference.
If no resolution can be found, None can be returned; the xref node will then given to the ‘miss-
ing-reference’ event, and if that yields no resolution, replaced by contnode.
The method can also raise sphinx.environment.NoUri to suppress the ‘missing-reference’
event being emitted.

role (name)
Return a role adapter function that always gives the registered role its full name (‘domain:name’)
as the first argument.

dangling_warnings = {}
role name -> a warning message if reference is missing

data = None
data value

data_version = 0
data version, bump this when the format of self.data changes

directives = {}
directive name -> directive class

indices = []
a list of Index subclasses

initial_data = {}
data value for a fresh environment

label = ''
domain label: longer, more descriptive (used in messages)

name = ''
domain name: should be short, but unique

object_types = {}
type (usually directive) name -> ObjType instance

roles = {}
role name -> role callable

class sphinx.domains.ObjType (lname, *roles, **attrs)
An ObjType is the description for a type of object that a domain can document. In the object_types
attribute of Domain subclasses, object type names are mapped to instances of this class.
Constructor arguments:

• lname: localized name of the type (do not include domain name)

Sphinx Documentation, Release 1.6.3

210 Chapter 19. Developing extensions for Sphinx

• roles: all the roles that can refer to an object of this type
• attrs: object attributes – currently only “searchprio” is known, which defines the object’s priority

in the full-text search index, see Domain.get_objects().

class sphinx.domains.Index (domain)
An Index is the description for a domain-specific index. To add an index to a domain, subclass Index,
overriding the three name attributes:

• name is an identifier used for generating file names.
• localname is the section title for the index.
• shortname is a short name for the index, for use in the relation bar in HTML output. Can be

empty to disable entries in the relation bar.

and providing a generate() method. Then, add the index class to your domain’s indices list.
Extensions can add indices to existing domains using add_index_to_domain().

generate (docnames=None)
Return entries for the index given by name. If docnames is given, restrict to entries referring to
these docnames.
The return value is a tuple of (content, collapse), where collapse is a boolean that deter-
mines if sub-entries should start collapsed (for output formats that support collapsing sub-en-
tries).
content is a sequence of (letter, entries) tuples, where letter is the “heading” for the given
entries, usually the starting letter.
entries is a sequence of single entries, where a single entry is a sequence [name, subtype,
docname, anchor, extra, qualifier, descr]. The items in this sequence have the
following meaning:

• name – the name of the index entry to be displayed
• subtype – sub-entry related type: 0 – normal entry 1 – entry with sub-entries 2 – sub-entry
• docname – docname where the entry is located
• anchor – anchor for the entry within docname
• extra – extra info for the entry
• qualifier – qualifier for the description
• descr – description for the entry

Qualifier and description are not rendered e.g. in LaTeX output.

19.3.8 Parser API

class sphinx.parsers.Parser
A base class of source parsers. The additonal parsers should inherits this class instead of
docutils.parsers.Parser. Compared with docutils.parsers.Parser, this class improves
accessibility to Sphinx APIs.
The subclasses can access following objects and functions:
self.app

The application object (sphinx.application.Sphinx)
self.config

The config object (sphinx.config.Config)

 Sphinx Documentation, Release 1.6.3

19.3. APIs used for writing extensions 211

self.env
The environment object (sphinx.environment.BuildEnvironment)

self.warn()
Emit a warning. (Same as sphinx.application.Sphinx.warn())

self.info()
Emit a informational message. (Same as sphinx.application.Sphinx.info())

19.3.9 Doctree node classes added by Sphinx

Nodes for domain-specific object descriptions

class sphinx.addnodes.desc (rawsource='', *children, **attributes)
Node for object descriptions.
This node is similar to a “definition list” with one definition. It contains one or more
desc_signature and a desc_content.

class sphinx.addnodes.desc_signature (rawsource='', text='', *children, **attributes)
Node for object signatures.
The “term” part of the custom Sphinx definition list.
As default the signature is a single line signature, but set is_multiline = True to describe a
multi-line signature. In that case all child nodes must be desc_signature_line nodes.

class sphinx.addnodes.desc_signature_line (rawsource='', text='', *children, **attributes)
Node for a line in a multi-line object signatures.
It should only be used in a desc_signature with is_multiline set. Set add_permalink =
True for the line that should get the permalink.

class sphinx.addnodes.desc_addname (rawsource='', text='', *children, **attributes)
Node for additional name parts (module name, class name).

class sphinx.addnodes.desc_type (rawsource='', text='', *children, **attributes)
Node for return types or object type names.

class sphinx.addnodes.desc_returns (rawsource='', text='', *children, **attributes)
Node for a “returns” annotation (a la -> in Python).

class sphinx.addnodes.desc_name (rawsource='', text='', *children, **attributes)
Node for the main object name.

class sphinx.addnodes.desc_parameterlist (rawsource='', text='', *children, **attributes)
Node for a general parameter list.

class sphinx.addnodes.desc_parameter (rawsource='', text='', *children, **attributes)
Node for a single parameter.

class sphinx.addnodes.desc_optional (rawsource='', text='', *children, **attributes)
Node for marking optional parts of the parameter list.

class sphinx.addnodes.desc_annotation (rawsource='', text='', *children, **attributes)
Node for signature annotations (not Python 3-style annotations).

class sphinx.addnodes.desc_content (rawsource='', *children, **attributes)
Node for object description content.

Sphinx Documentation, Release 1.6.3

212 Chapter 19. Developing extensions for Sphinx

This is the “definition” part of the custom Sphinx definition list.

New admonition-like constructs

class sphinx.addnodes.versionmodified (rawsource='', text='', *children, **attributes)
Node for version change entries.
Currently used for “versionadded”, “versionchanged” and “deprecated” directives.

class sphinx.addnodes.seealso (rawsource='', *children, **attributes)
Custom “see also” admonition.

Other paragraph-level nodes

class sphinx.addnodes.compact_paragraph (rawsource='', text='', *children, **attributes)
Node for a compact paragraph (which never makes a <p> node).

New inline nodes

class sphinx.addnodes.index (rawsource='', text='', *children, **attributes)
Node for index entries.
This node is created by the index directive and has one attribute, entries. Its value is a list of 5-tu-
ples of (entrytype, entryname, target, ignored, key).
entrytype is one of “single”, “pair”, “double”, “triple”.
key is categolziation characters (usually it is single character) for general index page. For the detail of
this, please see also: glossary and issue #2320.

class sphinx.addnodes.pending_xref (rawsource='', *children, **attributes)
Node for cross-references that cannot be resolved without complete information about all documents.
These nodes are resolved before writing output, in BuildEnvironment.resolve_references.

class sphinx.addnodes.literal_emphasis (rawsource='', text='', *children, **attributes)
Node that behaves like emphasis, but further text processors are not applied (e.g. smartypants for
HTML output).

class sphinx.addnodes.abbreviation (rawsource='', text='', *children, **attributes)
Node for abbreviations with explanations.

class sphinx.addnodes.download_reference (rawsource='', text='', *children, **attributes)
Node for download references, similar to pending_xref.

Special nodes

class sphinx.addnodes.only (rawsource='', *children, **attributes)
Node for “only” directives (conditional inclusion based on tags).

class sphinx.addnodes.meta (rawsource='', *children, **attributes)
Node for meta directive – same as docutils’ standard meta node, but pickleable.

class sphinx.addnodes.highlightlang (rawsource='', *children, **attributes)
Inserted to set the highlight language and line number options for subsequent code blocks.

You should not need to generate the nodes below in extensions.

class sphinx.addnodes.glossary (rawsource='', *children, **attributes)
Node to insert a glossary.

 Sphinx Documentation, Release 1.6.3

19.3. APIs used for writing extensions 213

class sphinx.addnodes.toctree (rawsource='', *children, **attributes)
Node for inserting a “TOC tree”.

class sphinx.addnodes.start_of_file (rawsource='', *children, **attributes)
Node to mark start of a new file, used in the LaTeX builder only.

class sphinx.addnodes.productionlist (rawsource='', *children, **attributes)
Node for grammar production lists.
Contains production nodes.

class sphinx.addnodes.production (rawsource='', text='', *children, **attributes)
Node for a single grammar production rule.

19.3.10 Logging API

sphinx.util.logging.getLogger (name)
Returns a logger wrapped by SphinxLoggerAdapter with the specified name.
Example usage:

from sphinx.util import logging # Load on top of python's logging module

logger = logging.getLogger(__name__)
logger.info('Hello, this is an extension!')

class SphinxLoggerAdapter (logging.LoggerAdapter)

error (level, msg, *args, **kwargs)

critical (level, msg, *args, **kwargs)

warning (level, msg, *args, **kwargs)
Logs a message on this logger with the specified level. Basically, the arguments are as with
python’s logging module.
In addition, Sphinx logger supports following keyword arguments:
type, *subtype*

Categories of warning logs. It is used to suppress warnings by suppress_warnings
setting.

location
Where the warning happened. It is used to include the path and line number in each log. It
allows docname, tuple of docname and line number and nodes:

logger = sphinx.util.logging.getLogger(__name__)
logger.warning('Warning happened!', location='index')
logger.warning('Warning happened!', location=('chapter1/index', 10))
logger.warning('Warning happened!', location=some_node)

color
The color of logs. By default, warning level logs are colored as "darkred". The others are
not colored.

log (level, msg, *args, **kwargs)

info (level, msg, *args, **kwargs)

Sphinx Documentation, Release 1.6.3

214 Chapter 19. Developing extensions for Sphinx

verbose (level, msg, *args, **kwargs)

debug (level, msg, *args, **kwargs)
Logs a message to this logger with the specified level. Basically, the arguments are as with
python’s logging module.
In addition, Sphinx logger supports following keyword arguments:
nonl

If true, the logger does not fold lines at the end of the log message. The default is False.
color

The color of logs. By default, debug level logs are colored as "darkgray", and debug2
level ones are "lightgray". The others are not colored.

pending_logging ()
Marks all logs as pending:

with pending_logging():
 logger.warning('Warning message!') # not flushed yet
 some_long_process()

the warning is flushed here

pending_warnings ()
Marks warning logs as pending. Similar to pending_logging().

 Sphinx Documentation, Release 1.6.3

19.3. APIs used for writing extensions 215

Sphinx Documentation, Release 1.6.3

216 Chapter 19. Developing extensions for Sphinx

CHAPTER 20

Sphinx Web Support

New in version 1.1.
Sphinx provides a Python API to easily integrate Sphinx documentation into your web application. To
learn more read the Web Support Quick Start.

20.1 Web Support Quick Start

20.1.1 Building Documentation Data

To make use of the web support package in your application you’ll need to build the data it uses. This
data includes pickle files representing documents, search indices, and node data that is used to track
where comments and other things are in a document. To do this you will need to create an instance of the
WebSupport class and call its build() method:

from sphinxcontrib.websupport import WebSupport

support = WebSupport(srcdir='/path/to/rst/sources/',
 builddir='/path/to/build/outdir',
 search='xapian')

support.build()

This will read reStructuredText sources from srcdir and place the necessary data in builddir. The builddir
will contain two sub-directories: one named “data” that contains all the data needed to display docu-
ments, search through documents, and add comments to documents. The other directory will be called
“static” and contains static files that should be served from “/static”.

Note: If you wish to serve static files from a path other than “/static”, you can do so by providing the stat-
icdir keyword argument when creating the WebSupport object.

20.1.2 Integrating Sphinx Documents Into Your Webapp

Now that the data is built, it’s time to do something useful with it. Start off by creating a WebSupport
object for your application:

from sphinxcontrib.websupport import WebSupport

support = WebSupport(datadir='/path/to/the/data',

 217

 search='xapian')

You’ll only need one of these for each set of documentation you will be working with. You can then call
its get_document() method to access individual documents:

contents = support.get_document('contents')

This will return a dictionary containing the following items:
• body: The main body of the document as HTML
• sidebar: The sidebar of the document as HTML
• relbar: A div containing links to related documents
• title: The title of the document
• css: Links to CSS files used by Sphinx
• script: JavaScript containing comment options

This dict can then be used as context for templates. The goal is to be easy to integrate with your existing
templating system. An example using Jinja2 is:

{%- extends "layout.html" %}

{%- block title %}
 {{ document.title }}
{%- endblock %}

{% block css %}
 {{ super() }}
 {{ document.css|safe }}
 <link rel="stylesheet" href="/static/websupport-custom.css" type="text/css">
{% endblock %}

{%- block script %}
 {{ super() }}
 {{ document.script|safe }}
{%- endblock %}

{%- block relbar %}
 {{ document.relbar|safe }}
{%- endblock %}

{%- block body %}
 {{ document.body|safe }}
{%- endblock %}

{%- block sidebar %}
 {{ document.sidebar|safe }}
{%- endblock %}

Authentication

To use certain features such as voting, it must be possible to authenticate users. The details of the authen-
tication are left to your application. Once a user has been authenticated you can pass the user’s details to
certain WebSupport methods using the username and moderator keyword arguments. The web support
package will store the username with comments and votes. The only caveat is that if you allow users to
change their username you must update the websupport package’s data:

Sphinx Documentation, Release 1.6.3

218 Chapter 20. Sphinx Web Support

http://jinja.pocoo.org/

support.update_username(old_username, new_username)

username should be a unique string which identifies a user, and moderator should be a boolean repre-
senting whether the user has moderation privileges. The default value for moderator is False.
An example Flask function that checks whether a user is logged in and then retrieves a document is:

from sphinxcontrib.websupport.errors import *

@app.route('/<path:docname>')
def doc(docname):
 username = g.user.name if g.user else ''
 moderator = g.user.moderator if g.user else False
 try:
 document = support.get_document(docname, username, moderator)
 except DocumentNotFoundError:
 abort(404)
 return render_template('doc.html', document=document)

The first thing to notice is that the docname is just the request path. This makes accessing the correct docu-
ment easy from a single view. If the user is authenticated, then the username and moderation status are
passed along with the docname to get_document(). The web support package will then add this data
to the COMMENT_OPTIONS that are used in the template.

Note: This only works if your documentation is served from your document root. If it is served from
another directory, you will need to prefix the url route with that directory, and give the docroot keyword
argument when creating the web support object:

support = WebSupport(..., docroot='docs')

@app.route('/docs/<path:docname>')

20.1.3 Performing Searches

To use the search form built-in to the Sphinx sidebar, create a function to handle requests to the url
‘search’ relative to the documentation root. The user’s search query will be in the GET parameters, with
the key q. Then use the get_search_results() method to retrieve search results. In Flask that would
be like this:

@app.route('/search')
def search():
 q = request.args.get('q')
 document = support.get_search_results(q)
 return render_template('doc.html', document=document)

Note that we used the same template to render our search results as we did to render our documents.
That’s because get_search_results() returns a context dict in the same format that
get_document() does.

20.1.4 Comments & Proposals

Now that this is done it’s time to define the functions that handle the AJAX calls from the script. You will
need three functions. The first function is used to add a new comment, and will call the web support
method add_comment():

@app.route('/docs/add_comment', methods=['POST'])

 Sphinx Documentation, Release 1.6.3

20.1. Web Support Quick Start 219

http://flask.pocoo.org/
http://flask.pocoo.org/

def add_comment():
 parent_id = request.form.get('parent', '')
 node_id = request.form.get('node', '')
 text = request.form.get('text', '')
 proposal = request.form.get('proposal', '')
 username = g.user.name if g.user is not None else 'Anonymous'
 comment = support.add_comment(text, node_id='node_id',
 parent_id='parent_id',
 username=username, proposal=proposal)
 return jsonify(comment=comment)

You’ll notice that both a parent_id and node_id are sent with the request. If the comment is being attached
directly to a node, parent_id will be empty. If the comment is a child of another comment, then node_id will
be empty. Then next function handles the retrieval of comments for a specific node, and is aptly named
get_data():

@app.route('/docs/get_comments')
def get_comments():
 username = g.user.name if g.user else None
 moderator = g.user.moderator if g.user else False
 node_id = request.args.get('node', '')
 data = support.get_data(node_id, username, moderator)
 return jsonify(**data)

The final function that is needed will call process_vote(), and will handle user votes on comments:

@app.route('/docs/process_vote', methods=['POST'])
def process_vote():
 if g.user is None:
 abort(401)
 comment_id = request.form.get('comment_id')
 value = request.form.get('value')
 if value is None or comment_id is None:
 abort(400)
 support.process_vote(comment_id, g.user.id, value)
 return "success"

20.1.5 Comment Moderation

By default, all comments added through add_comment() are automatically displayed. If you wish to
have some form of moderation, you can pass the displayed keyword argument:

comment = support.add_comment(text, node_id='node_id',
 parent_id='parent_id',
 username=username, proposal=proposal,
 displayed=False)

You can then create a new view to handle the moderation of comments. It will be called when a moder-
ator decides a comment should be accepted and displayed:

@app.route('/docs/accept_comment', methods=['POST'])
def accept_comment():
 moderator = g.user.moderator if g.user else False
 comment_id = request.form.get('id')
 support.accept_comment(comment_id, moderator=moderator)
 return 'OK'

Rejecting comments happens via comment deletion.

Sphinx Documentation, Release 1.6.3

220 Chapter 20. Sphinx Web Support

To perform a custom action (such as emailing a moderator) when a new comment is added but not
displayed, you can pass callable to the WebSupport class when instantiating your support object:

def moderation_callback(comment):
 """Do something..."""

support = WebSupport(..., moderation_callback=moderation_callback)

The moderation callback must take one argument, which will be the same comment dict that is returned
by add_comment().

20.2 The WebSupport Class

class sphinxcontrib.websupport.WebSupport
The main API class for the web support package. All interactions with the web support package
should occur through this class.
The class takes the following keyword arguments:
srcdir

The directory containing reStructuredText source files.
builddir

The directory that build data and static files should be placed in. This should be used when
creating a WebSupport object that will be used to build data.

datadir
The directory that the web support data is in. This should be used when creating a
WebSupport object that will be used to retrieve data.

search
This may contain either a string (e.g. ‘xapian’) referencing a built-in search adapter to use, or an
instance of a subclass of BaseSearch.

storage
This may contain either a string representing a database uri, or an instance of a subclass of
StorageBackend. If this is not provided, a new sqlite database will be created.

moderation_callback
A callable to be called when a new comment is added that is not displayed. It must accept one
argument: a dictionary representing the comment that was added.

staticdir
If static files are served from a location besides '/static', this should be a string with the
name of that location (e.g. '/static_files').

docroot
If the documentation is not served from the base path of a URL, this should be a string speci-
fying that path (e.g. 'docs').

Changed in version 1.6: WebSupport class is moved to sphinxcontrib.websupport from sphinx.websupport.
Please add sphinxcontrib-websupport package in your dependency and use moved class instead.

20.2.1 Methods

WebSupport.build ()
Build the documentation. Places the data into the outdir directory. Use it like this:

 Sphinx Documentation, Release 1.6.3

20.2. The WebSupport Class 221

support = WebSupport(srcdir, builddir, search='xapian')
support.build()

This will read reStructured text files from srcdir. Then it will build the pickles and search index,
placing them into builddir. It will also save node data to the database.

WebSupport.get_document (docname, username='', moderator=False)
Load and return a document from a pickle. The document will be a dict object which can be used to
render a template:

support = WebSupport(datadir=datadir)
support.get_document('index', username, moderator)

In most cases docname will be taken from the request path and passed directly to this function. In
Flask, that would be something like this:

@app.route('/<path:docname>')
def index(docname):
 username = g.user.name if g.user else ''
 moderator = g.user.moderator if g.user else False
 try:
 document = support.get_document(docname, username,
 moderator)
 except DocumentNotFoundError:
 abort(404)
 render_template('doc.html', document=document)

The document dict that is returned contains the following items to be used during template render-
ing.

• body: The main body of the document as HTML
• sidebar: The sidebar of the document as HTML
• relbar: A div containing links to related documents
• title: The title of the document
• css: Links to css files used by Sphinx
• script: Javascript containing comment options

This raises DocumentNotFoundError if a document matching docname is not found.
Parameters docname – the name of the document to load.

WebSupport.get_data (node_id, username=None, moderator=False)
Get the comments and source associated with node_id. If username is given vote information will be
included with the returned comments. The default CommentBackend returns a dict with two keys,
source, and comments. source is raw source of the node and is used as the starting point for proposals a
user can add. comments is a list of dicts that represent a comment, each having the following items:

Key Contents
text The comment text.
username The username that was stored with the comment.
id The comment’s unique identifier.
rating The comment’s current rating.
age The time in seconds since the comment was added.

Sphinx Documentation, Release 1.6.3

222 Chapter 20. Sphinx Web Support

time
A dict containing time information. It contains the following keys: year, month,
day, hour, minute, second, iso, and delta. iso is the time formatted in ISO 8601
format. delta is a printable form of how old the comment is (e.g. “3 hours ago”).

vote If user_id was given, this will be an integer representing the vote. 1 for an upvote, -1
for a downvote, or 0 if unvoted.

node The id of the node that the comment is attached to. If the comment’s parent is
another comment rather than a node, this will be null.

parent The id of the comment that this comment is attached to if it is not attached to a
node.

children A list of all children, in this format.

proposal_diff An HTML representation of the differences between the the current source and the
user’s proposed source.

Parameters • node_id – the id of the node to get comments for.
• username – the username of the user viewing the comments.
• moderator – whether the user is a moderator.

WebSupport.add_comment (text, node_id='', parent_id='', displayed=True, username=None, time=None,
proposal=None, moderator=False)

Add a comment to a node or another comment. Returns the comment in the same format as
get_comments(). If the comment is being attached to a node, pass in the node’s id (as a string)
with the node keyword argument:

comment = support.add_comment(text, node_id=node_id)

If the comment is the child of another comment, provide the parent’s id (as a string) with the parent
keyword argument:

comment = support.add_comment(text, parent_id=parent_id)

If you would like to store a username with the comment, pass in the optional username keyword
argument:

comment = support.add_comment(text, node=node_id,
 username=username)

Parameters • parent_id – the prefixed id of the comment’s parent.
• text – the text of the comment.
• displayed – for moderation purposes
• username – the username of the user making the comment.
• time – the time the comment was created, defaults to now.

WebSupport.process_vote (comment_id, username, value)
Process a user’s vote. The web support package relies on the API user to perform authentication. The
API user will typically receive a comment_id and value from a form, and then make sure the user is
authenticated. A unique username must be passed in, which will also be used to retrieve the user’s
past voting data. An example, once again in Flask:

@app.route('/docs/process_vote', methods=['POST'])
def process_vote():
 if g.user is None:

 Sphinx Documentation, Release 1.6.3

20.2. The WebSupport Class 223

 abort(401)
 comment_id = request.form.get('comment_id')
 value = request.form.get('value')
 if value is None or comment_id is None:
 abort(400)
 support.process_vote(comment_id, g.user.name, value)
 return "success"

Parameters • comment_id – the comment being voted on
• username – the unique username of the user voting
• value – 1 for an upvote, -1 for a downvote, 0 for an unvote.

WebSupport.get_search_results (q)
Perform a search for the query q, and create a set of search results. Then render the search results as
html and return a context dict like the one created by get_document():

document = support.get_search_results(q)

Parameters q – the search query

20.3 Search Adapters

To create a custom search adapter you will need to subclass the BaseSearch class. Then create an
instance of the new class and pass that as the search keyword argument when you create the WebSupport
object:

support = WebSupport(srcdir=srcdir,
 builddir=builddir,
 search=MySearch())

For more information about creating a custom search adapter, please see the documentation of the
BaseSearch class below.

class sphinxcontrib.websupport.search.BaseSearch
Defines an interface for search adapters.

Changed in version 1.6: BaseSearch class is moved to sphinxcontrib.websupport.search from sphinx.web-
support.search.

20.3.1 BaseSearch Methods

The following methods are defined in the BaseSearch class. Some methods do not need to be over-
ridden, but some (add_document() and handle_query()) must be overridden in your subclass.
For a working example, look at the built-in adapter for whoosh.

BaseSearch.init_indexing (changed=[])
Called by the builder to initialize the search indexer. changed is a list of pagenames that will be rein-
dexed. You may want to remove these from the search index before indexing begins.
Parameters changed – a list of pagenames that will be re-indexed

BaseSearch.finish_indexing ()
Called by the builder when writing has been completed. Use this to perform any finalization or
cleanup actions after indexing is complete.

Sphinx Documentation, Release 1.6.3

224 Chapter 20. Sphinx Web Support

BaseSearch.feed (pagename, filename, title, doctree)
Called by the builder to add a doctree to the index. Converts the doctree to text and passes it to
add_document(). You probably won’t want to override this unless you need access to the doctree.
Override add_document() instead.
Parameters • pagename – the name of the page to be indexed

• filename – the name of the original source file
• title – the title of the page to be indexed
• doctree – is the docutils doctree representation of the page

BaseSearch.add_document (pagename, filename, title, text)
Called by feed() to add a document to the search index. This method should should do everything
necessary to add a single document to the search index.
pagename is name of the page being indexed. It is the combination of the source files relative path and
filename, minus the extension. For example, if the source file is “ext/builders.rst”, the pagename
would be “ext/builders”. This will need to be returned with search results when processing a query.
Parameters • pagename – the name of the page being indexed

• filename – the name of the original source file
• title – the page’s title
• text – the full text of the page

BaseSearch.query (q)
Called by the web support api to get search results. This method compiles the regular expression to
be used when extracting context, then calls handle_query(). You won’t want to override
this unless you don’t want to use the included extract_context() method. Override
handle_query() instead.
Parameters q – the search query string.

BaseSearch.handle_query (q)
Called by query() to retrieve search results for a search query q. This should return an iterable
containing tuples of the following format:

(<path>, <title>, <context>)

path and title are the same values that were passed to add_document(), and context should be a
short text snippet of the text surrounding the search query in the document.
The extract_context() method is provided as a simple way to create the context.
Parameters q – the search query

BaseSearch.extract_context (text, length=240)
Extract the context for the search query from the document’s full text.
Parameters • text – the full text of the document to create the context for

• length – the length of the context snippet to return.

 Sphinx Documentation, Release 1.6.3

20.4. Storage Backends 225

20.4 Storage Backends

To create a custom storage backend you will need to subclass the StorageBackend class. Then create an
instance of the new class and pass that as the storage keyword argument when you create the
WebSupport object:

support = WebSupport(srcdir=srcdir,
 builddir=builddir,
 storage=MyStorage())

For more information about creating a custom storage backend, please see the documentation of the
StorageBackend class below.

class sphinxcontrib.websupport.storage.StorageBackend
Defines an interface for storage backends.

Changed in version 1.6: StorageBackend class is moved to sphinxcontrib.websupport.storage from
sphinx.websupport.storage.

20.4.1 StorageBackend Methods

StorageBackend.pre_build ()
Called immediately before the build process begins. Use this to prepare the StorageBackend for the
addition of nodes.

StorageBackend.add_node (id, document, source)
Add a node to the StorageBackend.
Parameters • id – a unique id for the comment.

• document – the name of the document the node belongs to.
• source – the source files name.

StorageBackend.post_build ()
Called after a build has completed. Use this to finalize the addition of nodes if needed.

StorageBackend.add_comment (text, displayed, username, time, proposal, node_id, parent_id, moderator)
Called when a comment is being added.
Parameters • text – the text of the comment

• displayed – whether the comment should be displayed
• username – the name of the user adding the comment
• time – a date object with the time the comment was added
• proposal – the text of the proposal the user made
• node_id – the id of the node that the comment is being added to
• parent_id – the id of the comment’s parent comment.
• moderator – whether the user adding the comment is a moderator

Sphinx Documentation, Release 1.6.3

226 Chapter 20. Sphinx Web Support

StorageBackend.delete_comment (comment_id, username, moderator)
Delete a comment.
Raises UserNotAuthorizedError if moderator is False and username doesn’t match the username
on the comment.
Parameters • comment_id – The id of the comment being deleted.

• username – The username of the user requesting the deletion.
• moderator – Whether the user is a moderator.

StorageBackend.get_data (node_id, username, moderator)
Called to retrieve all data for a node. This should return a dict with two keys, source and comments as
described by WebSupport’s get_data() method.
Parameters • node_id – The id of the node to get data for.

• username – The name of the user requesting the data.
• moderator – Whether the requestor is a moderator.

StorageBackend.process_vote (comment_id, username, value)
Process a vote that is being cast. value will be either -1, 0, or 1.
Parameters • comment_id – The id of the comment being voted on.

• username – The username of the user casting the vote.
• value – The value of the vote being cast.

StorageBackend.update_username (old_username, new_username)
If a user is allowed to change their username this method should be called so that there is not stag-
nate data in the storage system.
Parameters • old_username – The username being changed.

• new_username – What the username is being changed to.

StorageBackend.accept_comment (comment_id)
Called when a moderator accepts a comment. After the method is called the comment should be
displayed to all users.
Parameters comment_id – The id of the comment being accepted.

 Sphinx Documentation, Release 1.6.3

20.4. Storage Backends 227

Sphinx Documentation, Release 1.6.3

228 Chapter 20. Sphinx Web Support

CHAPTER 21

Sphinx FAQ

This is a list of Frequently Asked Questions about Sphinx. Feel free to suggest new entries!

21.1 How do I…

… create PDF files without LaTeX?
rinohtype provides a PDF builder that can be used as a drop-in replacement for the LaTeX builder.
Alternatively, you can use rst2pdf version 0.12 or greater which comes with built-in Sphinx integra-
tion. See the Available builders section for details.

… get section numbers?
They are automatic in LaTeX output; for HTML, give a :numbered: option to the toctree directive
where you want to start numbering.

… customize the look of the built HTML files?
Use themes, see HTML theming support.

… add global substitutions or includes?
Add them in the rst_epilog config value.

… display the whole TOC tree in the sidebar?
Use the toctree callable in a custom layout template, probably in the sidebartoc block.

… write my own extension?
See the extension tutorial.

… convert from my existing docs using MoinMoin markup?
The easiest way is to convert to xhtml, then convert xhtml to reST. You’ll still need to mark up classes
and such, but the headings and code examples come through cleanly.

… create HTML slides from Sphinx documents?
See the “Hieroglyph” package at https://github.com/nyergler/hieroglyph.

For many more extensions and other contributed stuff, see the sphinx-contrib repository.

21.2 Using Sphinx with…

Read the Docs
https://readthedocs.org is a documentation hosting service based around Sphinx. They will host
sphinx documentation, along with supporting a number of other features including version support,
PDF generation, and more. The Getting Started guide is a good place to start.

 229

https://github.com/brechtm/rinohtype
https://github.com/rst2pdf/rst2pdf
http://docutils.sourceforge.net/sandbox/xhtml2rest/xhtml2rest.py
https://github.com/nyergler/hieroglyph
https://bitbucket.org/birkenfeld/sphinx-contrib/
https://readthedocs.org
http://read-the-docs.readthedocs.org/en/latest/getting_started.html

Epydoc
There’s a third-party extension providing an api role which refers to Epydoc’s API docs for a given
identifier.

Doxygen
Michael Jones is developing a reST/Sphinx bridge to doxygen called breathe.

SCons
Glenn Hutchings has written a SCons build script to build Sphinx documentation; it is hosted here:
https://bitbucket.org/zondo/sphinx-scons

PyPI
Jannis Leidel wrote a setuptools command that automatically uploads Sphinx documentation to the
PyPI package documentation area at http://pythonhosted.org/.

GitHub Pages
Directories starting with underscores are ignored by default which breaks static files in Sphinx.
GitHub’s preprocessor can be disabled to support Sphinx HTML output properly.

MediaWiki
See https://bitbucket.org/kevindunn/sphinx-wiki/wiki/Home, a project by Kevin Dunn.

Google Analytics
You can use a custom layout.html template, like this:

{% extends "!layout.html" %}

{%- block extrahead %}
{{ super() }}
<script type="text/javascript">
 var _gaq = _gaq || [];
 _gaq.push(['_setAccount', 'XXX account number XXX']);
 _gaq.push(['_trackPageview']);
</script>
{% endblock %}

{% block footer %}
{{ super() }}
<div class="footer">This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.
<script type="text/javascript">
 (function() {
 var ga = document.createElement('script');
 ga.src = ('https:' == document.location.protocol ?
 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
 ga.setAttribute('async', 'true');
 document.documentElement.firstChild.appendChild(ga);
 })();
</script>
</div>
{% endblock %}

21.3 Epub info

The following list gives some hints for the creation of epub files:
• Split the text into several files. The longer the individual HTML files are, the longer it takes the

Sphinx Documentation, Release 1.6.3

230 Chapter 21. Sphinx FAQ

http://git.savannah.gnu.org/cgit/kenozooid.git/tree/doc/extapi.py
https://github.com/michaeljones/breathe/tree/master
https://bitbucket.org/zondo/sphinx-scons
https://pypi.python.org/pypi/Sphinx-PyPI-upload
http://pythonhosted.org/
https://github.com/blog/572-bypassing-jekyll-on-github-pages
https://bitbucket.org/kevindunn/sphinx-wiki/wiki/Home

ebook reader to render them. In extreme cases, the rendering can take up to one minute.
• Try to minimize the markup. This also pays in rendering time.
• For some readers you can use embedded or external fonts using the CSS @font-face directive.

This is extremely useful for code listings which are often cut at the right margin. The default Courier
font (or variant) is quite wide and you can only display up to 60 characters on a line. If you replace it
with a narrower font, you can get more characters on a line. You may even use FontForge and create
narrow variants of some free font. In my case I get up to 70 characters on a line.
You may have to experiment a little until you get reasonable results.

• Test the created epubs. You can use several alternatives. The ones I am aware of are Epubcheck,
Calibre, FBreader (although it does not render the CSS), and Bookworm. For Bookworm, you can
download the source from https://code.google.com/archive/p/threepress and run your own local
server.

• Large floating divs are not displayed properly. If they cover more than one page, the div is only
shown on the first page. In that case you can copy the epub.css from the
sphinx/themes/epub/static/ directory to your local _static/ directory and remove the float
settings.

• Files that are inserted outside of the toctree directive must be manually included. This sometimes
applies to appendixes, e.g. the glossary or the indices. You can add them with the
epub_post_files option.

• The handling of the epub cover page differs from the reStructuredText procedure which automati-
cally resolves image paths and puts the images into the _images directory. For the epub cover page
put the image in the html_static_path directory and reference it with its full path in the
epub_cover config option.

• kindlegen command can convert from epub3 resulting file to .mobi file for Kindle. You can get
yourdoc.mobi under _build/epub after the following command:

$ make epub
$ kindlegen _build/epub/yourdoc.epub

The kindlegen command doesn’t accept documents that have section titles surrounding toctree
directive:

Section Title
=============

.. toctree::

 subdocument

Section After Toc Tree
======================

kindlegen assumes all documents order in line, but the resulting document has complicated order
for kindlegen:

``parent.xhtml`` -> ``child.xhtml`` -> ``parent.xhtml``

If you get the following error, fix your document structure:

Error(prcgen):E24011: TOC section scope is not included in the parent
chapter:(title)
Error(prcgen):E24001: The table of content could not be built.

 Sphinx Documentation, Release 1.6.3

21.3. Epub info 231

https://fontforge.github.io/
https://github.com/IDPF/epubcheck
https://calibre-ebook.com/
https://fbreader.org/
http://www.oreilly.com/bookworm/index.html
https://code.google.com/archive/p/threepress
https://www.amazon.com/gp/feature.html?docId=1000765211

21.4 Texinfo info

There are two main programs for reading Info files, info and GNU Emacs. The info program has less
features but is available in most Unix environments and can be quickly accessed from the terminal.
Emacs provides better font and color display and supports extensive customization (of course).

21.4.1 Displaying Links

One noticeable problem you may encounter with the generated Info files is how references are displayed.
If you read the source of an Info file, a reference to this section would look like:

* note Displaying Links: target-id

In the stand-alone reader, info, references are displayed just as they appear in the source. Emacs, on the
other-hand, will by default replace *note: with see and hide the target-id. For example:

Displaying Links
The exact behavior of how Emacs displays references is dependent on the variable
Info-hide-note-references. If set to the value of hide, Emacs will hide both the *note: part and
the target-id. This is generally the best way to view Sphinx-based documents since they often make
frequent use of links and do not take this limitation into account. However, changing this variable affects
how all Info documents are displayed and most do take this behavior into account.
If you want Emacs to display Info files produced by Sphinx using the value hide for
Info-hide-note-references and the default value for all other Info files, try adding the following
Emacs Lisp code to your start-up file, ~/.emacs.d/init.el.

(defadvice info-insert-file-contents (after
 sphinx-info-insert-file-contents
 activate)
 "Hack to make `Info-hide-note-references' buffer-local and
automatically set to `hide' iff it can be determined that this file
was created from a Texinfo file generated by Docutils or Sphinx."
 (set (make-local-variable 'Info-hide-note-references)
 (default-value 'Info-hide-note-references))
 (save-excursion
 (save-restriction
 (widen) (goto-char (point-min))
 (when (re-search-forward
 "^Generated by \\(Sphinx\\|Docutils\\)"
 (save-excursion (search-forward "\x1f" nil t)) t)
 (set (make-local-variable 'Info-hide-note-references)
 'hide)))))

21.4.2 Notes

The following notes may be helpful if you want to create Texinfo files:
• Each section corresponds to a different node in the Info file.
• Colons (:) cannot be properly escaped in menu entries and xrefs. They will be replaced with semi-

colons (;).
• Links to external Info files can be created using the somewhat official URI scheme info. For exam-

ple:

Sphinx Documentation, Release 1.6.3

232 Chapter 21. Sphinx FAQ

info:Texinfo#makeinfo_options

• Inline markup
The standard formatting for *strong* and _emphasis_ can result in ambiguous output when
used to markup parameter names and other values. Since this is a fairly common practice, the
default formatting has been changed so that emphasis and strong are now displayed like
`literal's.
The standard formatting can be re-enabled by adding the following to your conf.py:

texinfo_elements = {'preamble': """
@definfoenclose strong,*,*
@definfoenclose emph,_,_
"""}

 Sphinx Documentation, Release 1.6.3

21.4. Texinfo info 233

Sphinx Documentation, Release 1.6.3

234 Chapter 21. Sphinx FAQ

CHAPTER 22

Glossary

builder
A class (inheriting from Builder) that takes parsed documents and performs an action on them.
Normally, builders translate the documents to an output format, but it is also possible to use the
builder builders that e.g. check for broken links in the documentation, or build coverage information.
See Available builders for an overview over Sphinx’s built-in builders.

configuration directory
The directory containing conf.py. By default, this is the same as the source directory, but can be set
differently with the -c command-line option.

directive
A reStructuredText markup element that allows marking a block of content with special meaning.
Directives are supplied not only by docutils, but Sphinx and custom extensions can add their own.
The basic directive syntax looks like this:

.. directivename:: argument ...
 :option: value

 Content of the directive.

See Directives for more information.
document name

Since reST source files can have different extensions (some people like .txt, some like .rst – the
extension can be configured with source_suffix) and different OSes have different path separa-
tors, Sphinx abstracts them: document names are always relative to the source directory, the extension is
stripped, and path separators are converted to slashes. All values, parameters and such referring to
“documents” expect such document names.
Examples for document names are index, library/zipfile, or
reference/datamodel/types. Note that there is no leading or trailing slash.

domain
A domain is a collection of markup (reStructuredText directives and roles) to describe and link to
objects belonging together, e.g. elements of a programming language. Directive and role names in a
domain have names like domain:name, e.g. py:function.
Having domains means that there are no naming problems when one set of documentation wants to
refer to e.g. C++ and Python classes. It also means that extensions that support the documentation of
whole new languages are much easier to write. For more information about domains, see the chapter
Sphinx Domains.

environment
A structure where information about all documents under the root is saved, and used for cross-refer-
encing. The environment is pickled after the parsing stage, so that successive runs only need to read

 235

and parse new and changed documents.
master document

The document that contains the root toctree directive.
object

The basic building block of Sphinx documentation. Every “object directive” (e.g. function or
object) creates such a block; and most objects can be cross-referenced to.

RemoveInSphinxXXXWarning
The feature which is warned will be removed in Sphinx-XXX version. It usually caused from Sphinx
extensions which is using deprecated. See also Deprecation Warnings.

role
A reStructuredText markup element that allows marking a piece of text. Like directives, roles are
extensible. The basic syntax looks like this: :rolename:`content`. See Inline markup for details.

source directory
The directory which, including its subdirectories, contains all source files for one Sphinx project.

Sphinx Documentation, Release 1.6.3

236 Chapter 22. Glossary

CHAPTER 23

Sphinx Developer’s Guide

Abstract

This document describes the development process of Sphinx, a documentation system used by
developers to document systems used by other developers to develop other systems that may
also be documented using Sphinx.

23.1 Bug Reports and Feature Requests . 237
23.2 Contributing to Sphinx . 238
23.3 Coding Guide . 240
23.4 Deprecating a feature . 241
23.5 Deprecation policy . 241
23.6 Unit Testing . 242

The Sphinx source code is managed using Git and is hosted on GitHub.
git clone git://github.com/sphinx-doc/sphinx

Community
sphinx-users <sphinx-users@googlegroups.com>

Mailing list for user support.
sphinx-dev <sphinx-dev@googlegroups.com>

Mailing list for development related discussions.
#sphinx-doc on irc.freenode.net

IRC channel for development questions and user support.

23.1 Bug Reports and Feature Requests

If you have encountered a problem with Sphinx or have an idea for a new feature, please submit it to the
issue tracker on GitHub or discuss it on the sphinx-dev mailing list.
For bug reports, please include the output produced during the build process and also the log file Sphinx
creates after it encounters an un-handled exception. The location of this file should be shown towards the
end of the error message.
Including or providing a link to the source files involved may help us fix the issue. If possible, try to
create a minimal project that produces the error and post that instead.

 237

mailto:sphinx-users@googlegroups.com
mailto:sphinx-dev@googlegroups.com
https://github.com/sphinx-doc/sphinx/issues

23.2 Contributing to Sphinx

The recommended way for new contributors to submit code to Sphinx is to fork the repository on GitHub
and then submit a pull request after committing the changes. The pull request will then need to be
approved by one of the core developers before it is merged into the main repository.

1. Check for open issues or open a fresh issue to start a discussion around a feature idea or a bug.
2. If you feel uncomfortable or uncertain about an issue or your changes, feel free to email

sphinx-dev@googlegroups.com.
3. Fork the repository on GitHub to start making your changes to the master branch for next major

version, or stable branch for next minor version.
4. Write a test which shows that the bug was fixed or that the feature works as expected.
5. Send a pull request and bug the maintainer until it gets merged and published. Make sure to add

yourself to AUTHORS and the change to CHANGES.

23.2.1 Getting Started

These are the basic steps needed to start developing on Sphinx.
1. Create an account on GitHub.
2. Fork the main Sphinx repository (sphinx-doc/sphinx) using the GitHub interface.
3. Clone the forked repository to your machine.

git clone https://github.com/USERNAME/sphinx
cd sphinx

4. Checkout the appropriate branch.
For changes that should be included in the next minor release (namely bug fixes), use the stable
branch.

git checkout stable

For new features or other substantial changes that should wait until the next major release, use the
master branch.

5. Optional: setup a virtual environment.

virtualenv ~/sphinxenv
. ~/sphinxenv/bin/activate
pip install -e .

6. Create a new working branch. Choose any name you like.

git checkout -b feature-xyz

7. Hack, hack, hack.
For tips on working with the code, see the Coding Guide.

8. Test, test, test. Possible steps:
• Run the unit tests:

pip install -r test-reqs.txt
make test

Sphinx Documentation, Release 1.6.3

238 Chapter 23. Sphinx Developer’s Guide

mailto:sphinx-dev@googlegroups.com
https://github.com/sphinx-doc/sphinx
https://github.com/sphinx-doc/sphinx/blob/master/AUTHORS
https://github.com/sphinx-doc/sphinx/blob/master/CHANGES
https://github.com/sphinx-doc/sphinx

• Again, it’s useful to turn on deprecation warnings on so they’re shown in the test output:

PYTHONWARNINGS=all make test

• Build the documentation and check the output for different builders:

cd doc
make clean html latexpdf

• Run code style checks and type checks (type checks require mypy):

make style-check
make type-check

• Run the unit tests under different Python environments using tox:

pip install tox
tox -v

• Add a new unit test in the tests directory if you can.
• For bug fixes, first add a test that fails without your changes and passes after they are applied.
• Tests that need a sphinx-build run should be integrated in one of the existing test modules if

possible. New tests that to @with_app and then build_all for a few assertions are not good
since the test suite should not take more than a minute to run.

9. Please add a bullet point to CHANGES if the fix or feature is not trivial (small doc updates, typo fixes).
Then commit:

git commit -m '#42: Add useful new feature that does this.'

GitHub recognizes certain phrases that can be used to automatically update the issue tracker.
For example:

git commit -m 'Closes #42: Fix invalid markup in docstring of Foo.bar.'

would close issue #42.
10. Push changes in the branch to your forked repository on GitHub.

git push origin feature-xyz

11. Submit a pull request from your branch to the respective branch (master or stable) on
sphinx-doc/sphinx using the GitHub interface.

12. Wait for a core developer to review your changes.

23.2.2 Core Developers

The core developers of Sphinx have write access to the main repository. They can commit changes, accep-
t/reject pull requests, and manage items on the issue tracker.
You do not need to be a core developer or have write access to be involved in the development of Sphinx.
You can submit patches or create pull requests from forked repositories and have a core developer add the
changes for you.
The following are some general guidelines for core developers:

• Questionable or extensive changes should be submitted as a pull request instead of being committed
directly to the main repository. The pull request should be reviewed by another core developer

 Sphinx Documentation, Release 1.6.3

23.2. Contributing to Sphinx 239

before it is merged.
• Trivial changes can be committed directly but be sure to keep the repository in a good working state

and that all tests pass before pushing your changes.
• When committing code written by someone else, please attribute the original author in the commit

message and any relevant CHANGES entry.

23.2.3 Locale updates

The parts of messages in Sphinx that go into builds are translated into several locales. The translations
are kept as gettext .po files translated from the master template sphinx/locale/sphinx.pot.
Sphinx uses Babel to extract messages and maintain the catalog files. It is integrated in setup.py:

• Use python setup.py extract_messages to update the .pot template.
• Use python setup.py update_catalog to update all existing language catalogs in
sphinx/locale/*/LC_MESSAGES with the current messages in the template file.

• Use python setup.py compile_catalog to compile the .po files to binary .mo files and .js
files.

When an updated .po file is submitted, run compile_catalog to commit both the source and the compiled
catalogs.
When a new locale is submitted, add a new directory with the ISO 639-1 language identifier and put
sphinx.po in there. Don’t forget to update the possible values for language in doc/config.rst.
The Sphinx core messages can also be translated on Transifex. There exists a client tool named tx in the
Python package “transifex_client”, which can be used to pull translations in .po format from Transifex.
To do this, go to sphinx/locale and then run tx pull -f -l LANG where LANG is an existing
language identifier. It is good practice to run python setup.py update_catalog afterwards to
make sure the .po file has the canonical Babel formatting.

23.3 Coding Guide

• Try to use the same code style as used in the rest of the project. See the Pocoo Styleguide for more
information.

• For non-trivial changes, please update the CHANGES file. If your changes alter existing behavior,
please document this.

• New features should be documented. Include examples and use cases where appropriate. If possi-
ble, include a sample that is displayed in the generated output.

• When adding a new configuration variable, be sure to document it and update
sphinx/quickstart.py if it’s important enough.

• Use the included utils/check_sources.py script to check for common formatting issues
(trailing whitespace, lengthy lines, etc).

• Add appropriate unit tests.

23.3.1 Debugging Tips

• Delete the build cache before building documents if you make changes in the code by running the
command make clean or using the sphinx-build -E option.

Sphinx Documentation, Release 1.6.3

240 Chapter 23. Sphinx Developer’s Guide

http://babel.pocoo.org/en/latest/
https://www.transifex.com/
http://flask.pocoo.org/docs/styleguide/

• Use the sphinx-build -P option to run Pdb on exceptions.
• Use node.pformat() and node.asdom().toxml() to generate a printable representation of the

document structure.
• Set the configuration variable keep_warnings to True so warnings will be displayed in the gener-

ated output.
• Set the configuration variable nitpicky to True so that Sphinx will complain about references

without a known target.
• Set the debugging options in the Docutils configuration file.
• JavaScript stemming algorithms in sphinx/search/*.py (except en.py) are generated by this

modified snowballcode generator. Generated JSX files are in this repository. You can get the
resulting JavaScript files using the following command:

$ npm install
$ node_modules/.bin/grunt build # -> dest/*.global.js

23.4 Deprecating a feature

There are a couple reasons that code in Sphinx might be deprecated:
• If a feature has been improved or modified in a backwards-incompatible way, the old feature or

behavior will be deprecated.
• Sometimes Sphinx will include a backport of a Python library that’s not included in a version of

Python that Sphinx currently supports. When Sphinx no longer needs to support the older version of
Python that doesn’t include the library, the library will be deprecated in Sphinx.

As the Deprecation policy describes, the first release of Sphinx that deprecates a feature (A.B) should raise
a RemovedInSphinxXXWarning (where XX is the Sphinx version where the feature will be removed)
when the deprecated feature is invoked. Assuming we have good test coverage, these warnings are
converted to errors when running the test suite with warnings enabled: python -Wall
tests/run.py. Thus, when adding a RemovedInSphinxXXWarning you need to eliminate or silence
any warnings generated when running the tests.

23.5 Deprecation policy

A feature release may deprecate certain features from previous releases. If a feature is deprecated in
feature release 1.A, it will continue to work in all 1.A.x versions (for all versions of x) but raise warnings.
Deprecated features will be removed in the first 1.B release, or 1.B.1 for features deprecated in the last
1.A.x feature release to ensure deprecations are done over at least 2 feature releases.
So, for example, if we decided to start the deprecation of a function in Sphinx 1.4:

• Sphinx 1.4.x will contain a backwards-compatible replica of the function which will raise a
RemovedInSphinx16Warning.

• Sphinx 1.5 (the version that follows 1.4) will still contain the backwards-compatible replica.
• Sphinx 1.6 will remove the feature outright.

The warnings are displayed by default. You can turn off display of these warnings with:

 Sphinx Documentation, Release 1.6.3

23.4. Deprecating a feature 241

http://docutils.sourceforge.net/docs/user/config.html
https://github.com/shibukawa/snowball
https://jsx.github.io/
https://github.com/shibukawa/snowball-stemmer.jsx

• PYTHONWARNINGS= make html (Linux/Mac)
• export PYTHONWARNINGS= and do make html (Linux/Mac)
• set PYTHONWARNINGS= and do make html (Windows)

23.6 Unit Testing

Sphinx has been tested with pytest runner. Sphinx developers write unit tests using pytest notation.
Utility functions and pytest fixtures for testing are provided in sphinx.testing. If you are a developer
of Sphinx extensions, you can write unit tests with using pytest. At this time, sphinx.testing will help
your test implementation.
How to use pytest fixtures that are provided by sphinx.testing? You can require
'sphinx.testing.fixtures' in your test modules or conftest.py files like this:

pytest_plugins = 'sphinx.testing.fixtures'

If you want to know more detailed usage, please refer to tests/conftest.py and other test_*.py
files under tests directory.

Note: Prior to Sphinx - 1.5.2, Sphinx was running the test with nose.

New in version 1.6: sphinx.testing as a experimental.

Sphinx Documentation, Release 1.6.3

242 Chapter 23. Sphinx Developer’s Guide

CHAPTER 24

Changes in Sphinx

24.1 Release 1.6.3 (released Jul 02, 2017)

24.1.1 Features added

• latex: hint that code-block continues on next page (refs: #3764, #3792)

24.1.2 Bugs fixed

• #3821: Failed to import sphinx.util.compat with docutils-0.14rc1
• #3829: sphinx-quickstart template is incomplete regarding use of alabaster
• #3772: ‘str object’ has no attribute ‘filename’
• Emit wrong warnings if citation label includes hyphens (refs: #3565)
• #3858: Some warnings are not colored when using –color option
• #3775: Remove unwanted whitespace in default template
• #3835: sphinx.ext.imgmath fails to convert SVG images if project directory name contains spaces
• #3850: Fix color handling in make mode’s help command
• #3865: use of self.env.warn in sphinx extension fails
• #3824: production lists apply smart quotes transform since Sphinx 1.6.1
• latex: fix \sphinxbfcode swallows initial space of argument
• #3878: Quotes in auto-documented class attributes should be straight quotes in PDF output
• #3881: LaTeX figure floated to next page sometimes leaves extra vertical whitespace
• #3885: duplicated footnotes raises IndexError
• #3873: Failure of deprecation warning mechanism of sphinx.util.compat.Directive
• #3874: Bogus warnings for “citation not referenced” for cross-file citations
• #3860: Don’t download images when builders not supported images
• #3860: Remote image URIs without filename break builders not supported remote images
• #3833: command line messages are translated unintentionally with language setting.
• #3840: make checking epub_uid strict

 243

• #3851, #3706: Fix about box drawing characters for PDF output
• #3900: autosummary could not find methods
• #3902: Emit error if latex_documents contains non-unicode string in py2

24.2 Release 1.6.2 (released May 28, 2017)

24.2.1 Incompatible changes

• #3789: Do not require typing module for python>=3.5

24.2.2 Bugs fixed

• #3754: HTML builder crashes if HTML theme appends own stylesheets
• #3756: epub: Entity ‘mdash’ not defined
• #3758: Sphinx crashed if logs are emitted in conf.py
• #3755: incorrectly warns about dedent with literalinclude
• #3742: RTD PDF builds of Sphinx own docs are missing an index entry in the bookmarks and table

of contents. This is rtfd/readthedocs.org#2857 issue, a workaround is obtained using some extra
LaTeX code in Sphinx’s own conf.py

• #3770: Build fails when a “code-block” has the option emphasize-lines and the number indicated is
higher than the number of lines

• #3774: Incremental HTML building broken when using citations
• #3763: got epubcheck validations error if epub_cover is set
• #3779: ‘ImportError’ in sphinx.ext.autodoc due to broken ‘sys.meta_path’. Thanks to Tatiana

Tereshchenko.
• #3796: env.resolve_references() crashes when non-document node given
• #3803: Sphinx crashes with invalid PO files
• #3791: PDF “continued on next page” for long tables isn’t internationalized
• #3788: smartquotes emits warnings for unsupported languages
• #3807: latex Makefile for make latexpdf is only for unixen
• #3781: double hyphens in option directive are compiled as endashes
• #3817: latex builder raises AttributeError

24.3 Release 1.6.1 (released May 16, 2017)

24.3.1 Dependencies

1.6b1
• (updated) latex output is tested with Ubuntu trusty’s texlive packages (Feb. 2014) and earlier tex

installations may not be fully compliant, particularly regarding Unicode engines xelatex and lualatex

Sphinx Documentation, Release 1.6.3

244 Chapter 24. Changes in Sphinx

https://readthedocs.org/
https://github.com/rtfd/readthedocs.org/issues/2857

• (added) latexmk is required for make latexpdf on GNU/Linux and Mac OS X (refs: #3082)

24.3.2 Incompatible changes

1.6b1
• #1061, #2336, #3235: Now generation of autosummary doesn’t contain imported members by default.

Thanks to Luc Saffre.
• LaTeX \includegraphics command isn’t overloaded: only \sphinxincludegraphics has the

custom code to fit image to available width if oversized.
• The subclasses of sphinx.domains.Index should override generate() method. The default

implementation raises NotImplementedError
• LaTeX positioned long tables horizontally centered, and short ones flushed left (no text flow around

table.) The position now defaults to center in both cases, and it will obey Docutils 0.13 :align:
option (refs #3415, #3377)

• option directive also allows all punctuations for the option name (refs: #3366)
• #3413: if literalinclude’s :start-after: is used, make :lines: relative (refs #3412)
• literalinclude directive does not allow the combination of :diff: option and other options

(refs: #3416)
• LuaLaTeX engine uses fontspec like XeLaTeX. It is advised latex_engine = 'lualatex' be

used only on up-to-date TeX installs (refs #3070, #3466)
• latex_keep_old_macro_names default value has been changed from True to False. This

means that some LaTeX macros for styling are by default defined only with \sphinx.. prefixed
names. (refs: #3429)

• Footer “Continued on next page” of LaTeX longtable’s now not framed (refs: #3497)
• #3529: The arguments of BuildEnvironment.__init__ is changed
• #3082: Use latexmk for pdf (and dvi) targets (Unix-like platforms only)
• #3558: Emit warnings if footnotes and citations are not referenced. The warnings can be suppressed

by suppress_warnings.
• latex made available (non documented) colour macros from a file distributed with pdftex engine for

Plain TeX. This is removed in order to provide better support for multiple TeX engines. Only inter-
face from color or xcolor packages should be used by extensions of Sphinx latex writer. (refs
#3550)

• Builder.env is not filled at instantiation
• #3594: LaTeX: single raw directive has been considered as block level element
• #3639: If html_experimental_html5_writer is available, epub builder use it by default.
• Sphinx.add_source_parser() raises an error if duplicated

1.6b2
• #3345: Replace the custom smartypants code with Docutils’ smart_quotes. Thanks to Dmitry

Shachnev, and to Günter Milde at Docutils.

1.6b3
• LaTeX package eqparbox is not used and not loaded by Sphinx anymore
• LaTeX package multirow is not used and not loaded by Sphinx anymore

 Sphinx Documentation, Release 1.6.3

24.3. Release 1.6.1 (released May 16, 2017) 245

• Add line numbers to citation data in std domain

1.6 final
• LaTeX package threeparttable is not used and not loaded by Sphinx anymore (refs #3686, #3532,

#3377)

24.3.3 Features removed

• Configuration variables
• epub3_contributor
• epub3_description
• epub3_page_progression_direction
• html_translator_class
• html_use_modindex
• latex_font_size
• latex_paper_size
• latex_preamble
• latex_use_modindex
• latex_use_parts

• termsep node
• defindex.html template
• LDML format support in today, today_fmt and html_last_updated_fmt
• :inline: option for the directives of sphinx.ext.graphviz extension
• sphinx.ext.pngmath extension
• sphinx.util.compat.make_admonition()

24.3.4 Features added

1.6b1
• #3136: Add :name: option to the directives in sphinx.ext.graphviz
• #2336: Add imported_members option to sphinx-autogen command to document imported

members.
• C++, add :tparam-line-spec: option to templated declarations. When specified, each template

parameter will be rendered on a separate line.
• #3359: Allow sphinx.js in a user locale dir to override sphinx.js from Sphinx
• #3303: Add :pyversion: option to the doctest directive.
• #3378: (latex) support for :widths: option of table directives (refs: #3379, #3381)
• #3402: Allow to suppress “download file not readable” warnings using suppress_warnings.
• #3377: latex: Add support for Docutils 0.13 :align: option for tables (but does not implement text

flow around table).
• latex: footnotes from inside tables are hyperlinked (except from captions or headers) (refs: #3422)

Sphinx Documentation, Release 1.6.3

246 Chapter 24. Changes in Sphinx

• Emit warning if over dedent has detected on literalinclude directive (refs: #3416)
• Use for LuaLaTeX same default settings as for XeLaTeX (i.e. fontspec and polyglossia). (refs:

#3070, #3466)
• Make 'extraclassoptions' key of latex_elements public (refs #3480)
• #3463: Add warning messages for required EPUB3 metadata. Add default value to
epub_description to avoid warning like other settings.

• #3476: setuptools: Support multiple builders
• latex: merged cells in LaTeX tables allow code-blocks, lists, blockquotes… as do normal cells (refs:

#3435)
• HTML builder uses experimental HTML5 writer if html_experimental_html5_writer is True

and docutils 0.13 or later is installed.
• LaTeX macros to customize space before and after tables in PDF output (refs #3504)
• #3348: Show decorators in literalinclude and viewcode directives
• #3108: Show warning if :start-at: and other literalinclude options does not match to the text
• #3609: Allow to suppress “duplicate citation” warnings using suppress_warnings
• #2803: Discovery of builders by entry point
• #1764, #1676: Allow setting ‘rel’ and ‘title’ attributes for stylesheets
• #3589: Support remote images on non-HTML builders
• #3589: Support images in Data URI on non-HTML builders
• #2961: improve autodoc_mock_imports. Now the config value only requires to declare the

top-level modules that should be mocked. Thanks to Robin Jarry.
• #3449: On py3, autodoc use inspect.signature for more accurate signature calculation. Thanks to

Nathaniel J. Smith.
• #3641: Epub theme supports HTML structures that are generated by HTML5 writer.
• #3644 autodoc uses inspect instead of checking types. Thanks to Jeroen Demeyer.
• Add a new extension; sphinx.ext.imgconverter. It converts images in the document to appro-

priate format for builders
• latex: Use templates to render tables (refs #3389, 2a37b0e)

1.6b2
• LATEXMKOPTS variable for the Makefile in $BUILDDIR/latex to pass options to latexmk when

executing make latexpdf (refs #3695, #3720)
• Add a new event env-check-consistency to check consistency to extensions
• Add Domain.check_consistency() to check consistency

24.3.5 Bugs fixed

1.6b1
• literalinclude directive expands tabs after dedent-ing (refs: #3416)
• #1574: Paragraphs in table cell doesn’t work in Latex output
• #3288: Table with merged headers not wrapping text
• #3491: Inconsistent vertical space around table and longtable in PDF

 Sphinx Documentation, Release 1.6.3

24.3. Release 1.6.1 (released May 16, 2017) 247

• #3506: Depart functions for all admonitions in HTML writer now properly pass node to
depart_admonition.

• #2693: Sphinx latex style file wrongly inhibits colours for section headings for latex+dvi(p-
s,pdf,pdfmx)

• C++, properly look up any references.
• #3624: sphinx.ext.intersphinx couldn’t load inventories compressed with gzip
• #3551: PDF information dictionary is lacking author and title data
• #3351: intersphinx does not refers context like py:module, py:class and so on.
• Fail to load template file if the parent template is archived

1.6b2
• #3661: sphinx-build crashes on parallel build
• #3669: gettext builder fails with “ValueError: substring not found”
• #3660: Sphinx always depends on sphinxcontrib-websupport and its dependencies
• #3472: smart quotes getting wrong in latex (at least with list of strings via autoattribute) (refs: #3345,

#3666)

1.6b3
• #3588: No compact (p tag) html output in the i18n document build even when
html_compact_lists is True.

• The make latexpdf from 1.6b1 (for GNU/Linux and Mac OS, using latexmk) aborted earlier in
case of LaTeX errors than was the case with 1.5 series, due to hard-coded usage of
--halt-on-error option. (refs #3695)

• #3683: sphinx.websupport module is not provided by default
• #3683: Failed to build document if builder.css_file.insert() is called
• #3714: viewcode extension not taking highlight_code='none' in account
• #3698: Moving :doc: to std domain broke backwards compatibility
• #3633: misdetect unreferenced citations

1.6 final
• LaTeX tables do not allow multiple paragraphs in a header cell
• LATEXOPTS is not passed over correctly to pdflatex since 1.6b3
• #3532: Figure or literal block captions in cells of short tables cause havoc in PDF output
• Fix: in PDF captions of tables are rendered differently whether table is of longtable class or not (refs

#3686)
• #3725: Todo looks different from note in LaTeX output
• #3479: stub-columns have no effect in LaTeX output
• #3738: Nonsensical code in theming.py
• #3746: PDF builds fail with latexmk 4.48 or earlier due to undefined options -pdfxe and -pdflua

Sphinx Documentation, Release 1.6.3

248 Chapter 24. Changes in Sphinx

24.3.6 Deprecated

1.6b1
• sphinx.util.compat.Directive class is now deprecated. Please use instead
docutils.parsers.rst.Directive

• sphinx.util.compat.docutils_version is now deprecated
• #2367: Sphinx.warn(), Sphinx.info() and other logging methods are now deprecated. Please

use sphinx.util.logging (Logging API) instead.
• #3318: notice is now deprecated as LaTeX environment name and will be removed at Sphinx 1.7.

Extension authors please use sphinxadmonition instead (as Sphinx does since 1.5.)
• Sphinx.status_iterator() and Sphinx.old_status_iterator() is now deprecated.

Please use sphinx.util:status_iterator() instead.
• Sphinx._directive_helper() is deprecated. Please use
sphinx.util.docutils.directive_helper() instead.

• BuildEnvironment.set_warnfunc() is now deprecated
• Following methods of BuildEnvironment is now deprecated.

• BuildEnvironment.note_toctree()

• BuildEnvironment.get_toc_for()

• BuildEnvironment.get_toctree_for()

• BuildEnvironment.create_index()

Please use sphinx.environment.adapters modules instead.
• latex package footnote is not loaded anymore by its bundled replacement
footnotehyper-sphinx. The redefined macros keep the same names as in the original package.

• #3429: deprecate config setting latex_keep_old_macro_names. It will be removed at 1.7, and
already its default value has changed from True to False.

• #3221: epub2 builder is deprecated
• #3254: sphinx.websupport is now separated into independent package;
sphinxcontrib-websupport. sphinx.websupport will be removed in Sphinx-2.0.

• #3628: sphinx_themes entry_point is deprecated. Please use sphinx.html_themes instead.

1.6b2
• #3662: builder.css_files is deprecated. Please use add_stylesheet() API instead.

1.6 final
• LaTeX \sphinxstylethead is deprecated at 1.6 and will be removed at 1.7. Please move

customization into new macro \sphinxstyletheadfamily.

24.3.7 Testing

1.6 final
• #3458: Add sphinx.testing (experimental)

 Sphinx Documentation, Release 1.6.3

24.3. Release 1.6.1 (released May 16, 2017) 249

24.4 Release 1.6 (unreleased)

• not released (because of package script error)

24.5 Release 1.5.6 (released May 15, 2017)

24.5.1 Bugs fixed

• #3614: Sphinx crashes with requests-2.5.0
• #3618: autodoc crashes with tupled arguments
• #3664: No space after the bullet in items of a latex list produced by Sphinx
• #3657: EPUB builder crashes if document startswith genindex exists
• #3588: No compact (p tag) html output in the i18n document build even when
html_compact_lists is True.

• #3685: AttributeError when using 3rd party domains
• #3702: LaTeX writer styles figure legends with a hard-coded \small
• #3708: LaTeX writer allows irc scheme
• #3717: Stop enforcing that favicon’s must be .ico
• #3731, #3732: Protect isenumclass predicate against non-class arguments
• #3320: Warning about reference target not being found for container types
• Misspelled ARCHIVEPREFIX in Makefile for latex build repertory

24.6 Release 1.5.5 (released Apr 03, 2017)

24.6.1 Bugs fixed

• #3597: python domain raises UnboundLocalError if invalid name given
• #3599: Move to new Mathjax CDN

24.7 Release 1.5.4 (released Apr 02, 2017)

24.7.1 Features added

• #3470: Make genindex support all kinds of letters, not only Latin ones

Sphinx Documentation, Release 1.6.3

250 Chapter 24. Changes in Sphinx

24.7.2 Bugs fixed

• #3445: setting 'inputenc' key to \\usepackage[utf8x]{inputenc} leads to failed PDF build
• EPUB file has duplicated nav.xhtml link in content.opf except first time build
• #3488: objects.inv has broken when release or version contain return code
• #2073, #3443, #3490: gettext builder that writes pot files unless the content are same without creation

date. Thanks to Yoshiki Shibukawa.
• #3487: intersphinx: failed to refer options
• #3496: latex longtable’s last column may be much wider than its contents
• #3507: wrong quotes in latex output for productionlist directive
• #3533: Moving from Sphinx 1.3.1 to 1.5.3 breaks LaTeX compilation of links rendered as code
• #2665, #2607: Link names in C++ docfields, and make it possible for other domains.
• #3542: C++, fix parsing error of non-type template argument with template.
• #3065, #3520: python domain fails to recognize nested class
• #3575: Problems with pdflatex in a Turkish document built with sphinx has reappeared (refs #2997,

#2397)
• #3577: Fix intersphinx debug tool
• A LaTeX command such as \\large inserted in the title items of latex_documents causes failed

PDF build (refs #3551, #3567)

24.8 Release 1.5.3 (released Feb 26, 2017)

24.8.1 Features added

• Support requests-2.0.0 (experimental) (refs: #3367)
• (latex) PDF page margin dimensions may be customized (refs: #3387)
• literalinclude directive allows combination of :pyobject: and :lines: options (refs: #3416)
• #3400: make-mode doesn’t use subprocess on building docs

24.8.2 Bugs fixed

• #3370: the caption of code-block is not picked up for translation
• LaTeX: release is not escaped (refs: #3362)
• #3364: sphinx-quickstart prompts overflow on Console with 80 chars width
• since 1.5, PDF’s TOC and bookmarks lack an entry for general Index (refs: #3383)
• #3392: 'releasename' in latex_elements is not working
• #3356: Page layout for Japanese 'manual' docclass has a shorter text area
• #3394: When 'pointsize' is not 10pt, Japanese 'manual' document gets wrong PDF page

dimensions
• #3399: quickstart: conf.py was not overwritten by template

 Sphinx Documentation, Release 1.6.3

24.8. Release 1.5.3 (released Feb 26, 2017) 251

• #3366: option directive does not allow punctuations
• #3410: return code in release breaks html search
• #3427: autodoc: memory addresses are not stripped on Windows
• #3428: xetex build tests fail due to fontspec v2.6 defining \strong
• #3349: Result of IndexBuilder.load() is broken
• #3450: is appeared in EPUB docs
• #3418: Search button is misaligned in nature and pyramid theme
• #3421: Could not translate a caption of tables
• #3552: linkcheck raises UnboundLocalError

24.9 Release 1.5.2 (released Jan 22, 2017)

24.9.1 Incompatible changes

• Dependency requirement updates: requests 2.4.0 or above (refs: #3268, #3310)

24.9.2 Features added

• #3241: emit latex warning if buggy titlesec (ref #3210)
• #3194: Refer the $MAKE environment variable to determine make command
• Emit warning for nested numbered toctrees (refs: #3142)
• #978: intersphinx_mapping also allows a list as a parameter
• #3340: (LaTeX) long lines in parsed-literal are wrapped like in code-block, inline math and foot-

notes are fully functional.

24.9.3 Bugs fixed

• #3246: xapian search adapter crashes
• #3253: In Py2 environment, building another locale with a non-captioned toctree produces None

captions
• #185: References to section title including raw node has broken
• #3255: In Py3.4 environment, autodoc doesn’t support documentation for attributes of Enum class

correctly.
• #3261: latex_use_parts makes sphinx crash
• The warning type misc.highlighting_failure does not work
• #3294: add_latex_package() make crashes non-LaTeX builders
• The caption of table are rendered as invalid HTML (refs: #3287)
• #3268: Sphinx crashes with requests package from Debian jessie
• #3284: Sphinx crashes on parallel build with an extension which raises unserializable exception
• #3315: Bibliography crashes on latex build with docclass ‘memoir’

Sphinx Documentation, Release 1.6.3

252 Chapter 24. Changes in Sphinx

http://docutils.sourceforge.net/docs/ref/rst/directives.html#parsed-literal

• #3328: Could not refer rubric implicitly
• #3329: emit warnings if po file is invalid and can’t read it. Also writing mo too
• #3337: Ugly rendering of definition list term’s classifier
• #3335: gettext does not extract field_name of a field in a field_list
• #2952: C++, fix refs to operator() functions.
• Fix Unicode super- and subscript digits in code-block and parsed-literal LaTeX output (ref #3342)
• LaTeX writer: leave " character inside parsed-literal as is (ref #3341)
• #3234: intersphinx failed for encoded inventories
• #3158: too much space after captions in PDF output
• #3317: An URL in parsed-literal contents gets wrongly rendered in PDF if with hyphen
• LaTeX crash if the filename of an image inserted in parsed-literal via a substitution contains an

hyphen (ref #3340)
• LaTeX rendering of inserted footnotes in parsed-literal is wrong (ref #3340)
• Inline math in parsed-literal is not rendered well by LaTeX (ref #3340)
• #3308: Parsed-literals don’t wrap very long lines with pdf builder (ref #3340)
• #3295: Could not import extension sphinx.builders.linkcheck
• #3285: autosummary: asterisks are escaped twice
• LaTeX, pass dvipdfm option to geometry package for Japanese documents (ref #3363)
• Fix parselinenos() could not parse left half open range (cf. “-4”)

24.10 Release 1.5.1 (released Dec 13, 2016)

24.10.1 Features added

• #3214: Allow to suppress “unknown mimetype” warnings from epub builder using
suppress_warnings.

24.10.2 Bugs fixed

• #3195: Can not build in parallel
• #3198: AttributeError is raised when toctree has ‘self’
• #3211: Remove untranslated sphinx locale catalogs (it was covered by untranslated it_IT)
• #3212: HTML Builders crashes with docutils-0.13
• #3207: more latex problems with references inside parsed-literal directive (\DUrole)
• #3205: sphinx.util.requests crashes with old pyOpenSSL (< 0.14)
• #3220: KeyError when having a duplicate citation
• #3200: LaTeX: xref inside desc_name not allowed
• #3228: build_sphinx command crashes when missing dependency
• #2469: Ignore updates of catalog files for gettext builder. Thanks to Hiroshi Ohkubo.

 Sphinx Documentation, Release 1.6.3

24.10. Release 1.5.1 (released Dec 13, 2016) 253

• #3183: Randomized jump box order in generated index page.

24.11 Release 1.5 (released Dec 5, 2016)

24.11.1 Incompatible changes

1.5a1
• latex, package fancybox is not longer a dependency of sphinx.sty
• Use 'locales' as a default value of locale_dirs
• latex, package ifthen is not any longer a dependency of sphinx.sty
• latex, style file does not modify fancyvrb’s Verbatim (also available as OriginalVerbatim) but uses

sphinxVerbatim for name of custom wrapper.
• latex, package newfloat is not used (and not included) anymore (ref #2660; it was used since 1.3.4

and shipped with Sphinx since 1.4).
• latex, literal blocks in tables do not use OriginalVerbatim but sphinxVerbatimintable which handles

captions and wraps lines (ref #2704).
• latex, replace pt by TeX equivalent bp if found in width or height attribute of an image.
• latex, if width or height attribute of an image is given with no unit, use px rather than ignore it.
• latex: Separate stylesheets of pygments to independent .sty file
• #2454: The filename of sourcelink is now changed. The value of html_sourcelink_suffix will

be appended to the original filename (like index.rst.txt).
• sphinx.util.copy_static_entry() is now deprecated. Use
sphinx.util.fileutil.copy_asset() instead.

• sphinx.util.osutil.filecopy() skips copying if the file has not been changed (ref: #2510,
#2753)

• Internet Explorer 6-8, Opera 12.1x or Safari 5.1+ support is dropped because jQuery version is
updated from 1.11.0 to 3.1.0 (ref: #2634, #2773)

• QtHelpBuilder doens’t generate search page (ref: #2352)
• QtHelpBuilder uses nonav theme instead of default one to improve readability.
• latex: To provide good default settings to Japanese documents, Sphinx uses jreport and jsbook

as docclass if language is ja.
• sphinx-quickstart now allows a project version is empty
• Fix :download: role on epub/qthelp builder. They ignore the role because they don’t support it.
• sphinx.ext.viewcode doesn’t work on epub building by default. viewcode_enable_epub

option
• sphinx.ext.viewcode disabled on singlehtml builder.
• Use make-mode of sphinx-quickstart by default. To disable this, use -M option
• Fix genindex.html, Sphinx’s document template, link address to itself to satisfy xhtml standard.
• Use epub3 builder by default. And the old epub builder is renamed to epub2.
• Fix epub and epub3 builders that contained links to genindex even if epub_use_index =
False.

Sphinx Documentation, Release 1.6.3

254 Chapter 24. Changes in Sphinx

• html_translator_class is now deprecated. Use Sphinx.set_translator() API instead.
• Drop python 2.6 and 3.3 support
• Drop epub3 builder’s epub3_page_progression_direction option (use
epub3_writing_mode).

• #2877: Rename latex_elements['footer'] to latex_elements['atendofbody']

1.5a2
• #2983: Rename epub3_description and epub3_contributor to epub_description and
epub_contributor.

• Remove themes/basic/defindex.html; no longer used
• Sphinx does not ship anymore (but still uses) LaTeX style file fncychap
• #2435: Slim down quickstarted conf.py
• The sphinx.sty latex package does not load itself “hyperref”, as this is done later in the preamble

of the latex output via 'hyperref' key.
• Sphinx does not ship anymore a custom modified LaTeX style file tabulary. The non-modified

package is used.
• #3057: By default, footnote marks in latex PDF output are not preceded by a space anymore,
\sphinxBeforeFootnote allows user customization if needed.

• LaTeX target requires that option hyperfootnotes of package hyperref be left unchanged to its
default (i.e. true) (refs: #3022)

1.5 final
• #2986: themes/basic/defindex.html is now deprecated
• Emit warnings that will be deprecated in Sphinx 1.6 by default. Users can change the behavior by

setting the environment variable PYTHONWARNINGS. Please refer Deprecation Warnings.
• #2454: new JavaScript variable SOURCELINK_SUFFIX is added

24.11.2 Deprecated

These features are removed in Sphinx-1.6:
• LDML format support in i18n feature
• sphinx.addnodes.termsep

• Some functions and classes in sphinx.util.pycompat: zip_longest, product, all, any,
next, open, class_types, base_exception, relpath, StringIO, BytesIO. Please use the
standard library version instead;

If any deprecation warning like RemovedInSphinxXXXWarning are displayed, please refer Deprecation
Warnings.

24.11.3 Features added

1.5a1
• #2951: Add --implicit-namespaces PEP-0420 support to apidoc.
• Add :caption: option for sphinx.ext.inheritance_diagram.

 Sphinx Documentation, Release 1.6.3

24.11. Release 1.5 (released Dec 5, 2016) 255

• #2471: Add config variable for default doctest flags.
• Convert linkcheck builder to requests for better encoding handling
• #2463, #2516: Add keywords of “meta” directive to search index
• :maxdepth: option of toctree affects secnumdepth (ref: #2547)
• #2575: Now sphinx.ext.graphviz allows :align: option
• Show warnings if unknown key is specified to latex_elements
• Show warnings if no domains match with primary_domain (ref: #2001)
• C++, show warnings when the kind of role is misleading for the kind of target it refers to (e.g., using

the class role for a function).
• latex, writer abstracts more of text styling into customizable macros, e.g. the visit_emphasis will

output \sphinxstyleemphasis rather than \emph (which may be in use elsewhere or in an
added LaTeX package). See list at end of sphinx.sty (ref: #2686)

• latex, public names for environments and parameters used by note, warning, and other admonition
types, allowing full customizability from the 'preamble' key or an input file (ref: feature request
#2674, #2685)

• latex, better computes column widths of some tables (as a result, there will be slight changes as
tables now correctly fill the line width; ref: #2708)

• latex, sphinxVerbatim environment is more easily customizable (ref: #2704). In addition to already
existing VerbatimColor and VerbatimBorderColor:

• two lengths \sphinxverbatimsep and \sphinxverbatimborder,
• booleans \ifsphinxverbatimwithframe and \ifsphinxverbatimwrapslines.

• latex, captions for literal blocks inside tables are handled, and long code lines wrapped to fit table
cell (ref: #2704)

• #2597: Show warning messages as darkred
• latex, allow image dimensions using px unit (default is 96px=1in)
• Show warnings if invalid dimension units found
• #2650: Add --pdb option to setup.py command
• latex, make the use of \small for code listings customizable (ref #2721)
• #2663: Add --warning-is-error option to setup.py command
• Show warnings if deprecated latex options are used
• Add sphinx.config.ENUM to check the config values is in candidates
• math: Add hyperlink marker to each equations in HTML output
• Add new theme nonav that doesn’t include any navigation links. This is for any help generator like

qthelp.
• #2680: sphinx.ext.todo now emits warnings if todo_emit_warnings enabled. Also, it emits

an additional event named todo-defined to handle the TODO entries in 3rd party extensions.
• Python domain signature parser now uses the xref mixin for ‘exceptions’, allowing exception classes

to be autolinked.
• #2513: Add latex_engine to switch the LaTeX engine by conf.py
• #2682: C++, basic support for attributes (C++11 style and GNU style). The new configuration vari-

ables ‘cpp_id_attributes’ and ‘cpp_paren_attributes’ can be used to introduce custom attributes.

Sphinx Documentation, Release 1.6.3

256 Chapter 24. Changes in Sphinx

• #1958: C++, add configuration variable ‘cpp_index_common_prefix’ for removing prefixes from the
index text of C++ objects.

• C++, added concept directive. Thanks to mickk-on-cpp.
• C++, added support for template introduction syntax. Thanks to mickk-on-cpp.
• #2725: latex builder: allow to use user-defined template file (experimental)
• apidoc now avoids invalidating cached files by not writing to files whose content doesn’t change.

This can lead to significant performance wins if apidoc is run frequently.
• #2851: sphinx.ext.math emits missing-reference event if equation not found
• #1210: eqref role now supports cross reference
• #2892: Added -a (--append-syspath) option to sphinx-apidoc
• #1604: epub3 builder: Obey font-related CSS when viewing in iBooks.
• #646: option directive support ‘.’ character as a part of options
• Add document about kindlegen and fix document structure for it.
• #2474: Add intersphinx_timeout option to sphinx.ext.intersphinx
• #2926: EPUB3 builder supports vertical mode (epub3_writing_mode option)
• #2695: build_sphinx subcommand for setuptools handles exceptions as same as sphinx-build

does
• #326: numref role can also refer sections
• #2916: numref role can also refer caption as an its linktext

1.5a2
• #3008: linkcheck builder ignores self-signed certificate URL
• #3020: new 'geometry' key to latex_elements whose default uses LaTeX style file
geometry.sty to set page layout

• #2843: Add :start-at: and :end-at: options to literalinclude directive
• #2527: Add :reversed: option to toctree directive
• Add -t and -d option to sphinx-quickstart to support templating generated sphinx project.
• #3028: Add {path} and {basename} to the format of figure_language_filename
• new 'hyperref' key in the latex_elements dictionary (ref #3030)
• #3022: Allow code-blocks in footnotes for LaTeX PDF output

1.5b1
• #2513: A better default settings for XeLaTeX
• #3096: 'maxlistdepth' key to work around LaTeX list limitations
• #3060: autodoc supports documentation for attributes of Enum class. Now autodoc render just the

value of Enum attributes instead of Enum attribute representation.
• Add --extensions to sphinx-quickstart to support enable arbitrary extensions from

command line (ref: #2904)
• #3104, #3122: 'sphinxsetup' for key=value styling of Sphinx LaTeX
• #3071: Autodoc: Allow mocked module decorators to pass-through functions unchanged
• #2495: linkcheck: Allow skipping anchor checking using linkcheck_anchors_ignore

 Sphinx Documentation, Release 1.6.3

24.11. Release 1.5 (released Dec 5, 2016) 257

• #3083: let Unicode no-break space act like LaTeX ~ (fixed #3019)
• #3116: allow word wrap in PDF output for inline literals (ref #3110)
• #930: sphinx-apidoc allow wildcards for excluding paths. Thanks to Nick Coghlan.
• #3121: add inlineliteralwraps option to control if inline literal word-wraps in latex

1.5 final
• #3095: Add tls_verify and tls_cacerts to support self-signed HTTPS servers in linkcheck and

intersphinx
• #2215: make.bat generated by sphinx-quickstart can be called from another dir. Thanks to Timotheus

Kampik.
• #3185: Add new warning type misc.highlighting_failure

24.11.4 Bugs fixed

1.5a1
• #2707: (latex) the column width is badly computed for tabular
• #2799: Sphinx installs roles and directives automatically on importing sphinx module. Now Sphinx

installs them on running application.
• sphinx.ext.autodoc crashes if target code imports * from mock modules by
autodoc_mock_imports.

• #1953: Sphinx.add_node does not add handlers the translator installed by
html_translator_class

• #1797: text builder inserts blank line on top
• #2894: quickstart main() doesn’t use argv argument
• #2874: gettext builder could not extract all text under the only directives
• #2485: autosummary crashes with multiple source_suffix values
• #1734: Could not translate the caption of toctree directive
• Could not translate the content of meta directive (ref: #1734)
• #2550: external links are opened in help viewer
• #2687: Running Sphinx multiple times produces ‘already registered’ warnings

1.5a2
• #2810: Problems with pdflatex in an Italian document
• Use latex_elements.papersize to specify papersize of LaTeX in Makefile
• #2988: linkcheck: retry with GET request if denied HEAD request
• #2990: linkcheck raises “Can’t convert ‘bytes’ object to str implicitly” error if linkcheck_anchors

enabled
• #3004: Invalid link types “top” and “up” are used
• #3009: Bad rendering of parsed-literals in LaTeX since Sphinx 1.4.4
• #3000: option directive generates invalid HTML anchors
• #2984: Invalid HTML has been generated if html_split_index enabled

Sphinx Documentation, Release 1.6.3

258 Chapter 24. Changes in Sphinx

• #2986: themes/basic/defindex.html should be changed for html5 friendly
• #2987: Invalid HTML has been generated if multiple IDs are assigned to a list
• #2891: HTML search does not provide all the results
• #1986: Title in PDF Output
• #147: Problem with latex chapter style
• #3018: LaTeX problem with page layout dimensions and chapter titles
• Fix an issue with \pysigline in LaTeX style file (ref #3023)
• #3038: sphinx.ext.math* raises TypeError if labels are duplicated
• #3031: incompatibility with LaTeX package tocloft
• #3003: literal blocks in footnotes are not supported by Latex
• #3047: spacing before footnote in pdf output is not coherent and allows breaks
• #3045: HTML search index creator should ignore “raw” content if now html
• #3039: English stemmer returns wrong word if the word is capitalized
• Fix make-mode Makefile template (ref #3056, #2936)

1.5b1
• #2432: Fix unwanted * between varargs and keyword only args. Thanks to Alex Grönholm.
• #3062: Failed to build PDF using 1.5a2 (undefined \hypersetup for Japanese documents since

PR#3030)
• Better rendering of multiline signatures in html.
• #777: LaTeX output “too deeply nested” (ref #3096)
• Let LaTeX image inclusion obey scale before textwidth fit (ref #2865, #3059)
• #3019: LaTeX fails on description of C function with arguments (ref #3083)
• fix latex inline literals where < > - gobbled a space

1.5 final
• #3069: Even if 'babel' key is set to empty string, LaTeX output contains one
\addto\captions...

• #3123: user 'babel' key setting is not obeyed anymore
• #3155: Fix JavaScript for html_sourcelink_suffix fails with IE and Opera
• #3085: keep current directory after breaking build documentation. Thanks to Timotheus Kampik.
• #3181: pLaTeX crashes with a section contains endash
• #3180: latex: add stretch/shrink between successive singleline or multipleline cpp signatures (ref

#3072)
• #3128: globing images does not support .svgz file
• #3015: fix a broken test on Windows.
• #1843: Fix documentation of descriptor classes that have a custom metaclass. Thanks to Erik Bray.
• #3190: util.split_docinfo fails to parse multi-line field bodies
• #3024, #3037: In Python3, application.Sphinx._log crushed when the log message cannot be encoded

into console encoding.

 Sphinx Documentation, Release 1.6.3

24.11. Release 1.5 (released Dec 5, 2016) 259

24.11.5 Testing

• To simplify, sphinx uses external mock package even if unittest.mock exists.

24.12 Release 1.4.9 (released Nov 23, 2016)

24.12.1 Bugs fixed

• #2936: Fix doc/Makefile that can’t build man because doc/man exists
• #3058: Using the same ‘caption’ attribute in multiple ‘toctree’ directives results in warning / error
• #3068: Allow the ‘=’ character in the -D option of sphinx-build.py
• #3074: add_source_parser() crashes in debug mode
• #3135: sphinx.ext.autodoc crashes with plain Callable
• #3150: Fix query word splitter in JavaScript. It behaves as same as Python’s regular expression.
• #3093: gettext build broken on substituted images.
• #3093: gettext build broken on image node under note directive.
• imgmath: crashes on showing error messages if image generation failed
• #3117: LaTeX writer crashes if admonition is placed before first section title
• #3164: Change search order of sphinx.ext.inheritance_diagram

24.13 Release 1.4.8 (released Oct 1, 2016)

24.13.1 Bugs fixed

• #2996: The wheel package of Sphinx got crash with ImportError

24.14 Release 1.4.7 (released Oct 1, 2016)

24.14.1 Bugs fixed

• #2890: Quickstart should return an error consistently on all error conditions
• #2870: flatten genindex columns’ heights.
• #2856: Search on generated HTML site doesnt find some symbols
• #2882: Fall back to a GET request on 403 status in linkcheck
• #2902: jsdump.loads fails to load search index if keywords starts with underscore
• #2900: Fix epub content.opf: add auto generated orphan files to spine.
• #2899: Fix hasdoc() function in Jinja2 template. It can detect genindex, search collectly.

Sphinx Documentation, Release 1.6.3

260 Chapter 24. Changes in Sphinx

• #2901: Fix epub result: skip creating links from image tags to original image files.
• #2917: inline code is hyphenated on HTML
• #1462: autosummary warns for namedtuple with attribute with trailing underscore
• Could not reference equations if :nowrap: option specified
• #2873: code-block overflow in latex (due to commas)
• #1060, #2056: sphinx.ext.intersphinx: broken links are generated if relative paths are used in
intersphinx_mapping

• #2931: code-block directive with same :caption: causes warning of duplicate target. Now
code-block and literalinclude does not define hyperlink target using its caption automatially.

• #2962: latex: missing label of longtable
• #2968: autodoc: show-inheritance option breaks docstrings

24.15 Release 1.4.6 (released Aug 20, 2016)

24.15.1 Incompatible changes

• #2867: linkcheck builder crashes with six-1.4. Now Sphinx depends on six-1.5 or later

24.15.2 Bugs fixed

• applehelp: Sphinx crashes if hiutil or codesign commands not found
• Fix make clean abort issue when build dir contains regular files like DS_Store.
• Reduce epubcheck warnings/errors:

• Fix DOCTYPE to html5
• Change extension from .html to .xhtml.
• Disable search page on epub results

• #2778: Fix autodoc crashes if obj.__dict__ is a property method and raises exception
• Fix duplicated toc in epub3 output.
• #2775: Fix failing linkcheck with servers not supporting identidy encoding
• #2833: Fix formatting instance annotations in ext.autodoc.
• #1911: -D option of sphinx-build does not override the extensions variable
• #2789: sphinx.ext.intersphinx generates wrong hyperlinks if the inventory is given
• parsing errors for caption of code-blocks are displayed in document (ref: #2845)
• #2846: singlehtml builder does not include figure numbers
• #2816: Fix data from builds cluttering the Domain.initial_data class attributes

 Sphinx Documentation, Release 1.6.3

24.15. Release 1.4.6 (released Aug 20, 2016) 261

24.16 Release 1.4.5 (released Jul 13, 2016)

24.16.1 Incompatible changes

• latex, inclusion of non-inline images from image directive resulted in non-coherent whitespaces
depending on original image width; new behaviour by necessity differs from earlier one in some
cases. (ref: #2672)

• latex, use of \includegraphics to refer to Sphinx custom variant is deprecated; in future it will
revert to original LaTeX macro, custom one already has alternative name
\sphinxincludegraphics.

24.16.2 Features added

• new config option latex_keep_old_macro_names, defaults to True. If False, lets macros (for text
styling) be defined only with \sphinx-prefixed names.

• latex writer allows user customization of “shadowed” boxes (topics), via three length variables.
• woff-format web font files now supported by the epub builder.

24.16.3 Bugs fixed

• jsdump fix for python 3: fixes the HTML search on python > 3
• #2676: (latex) Error with verbatim text in captions since Sphinx 1.4.4
• #2629: memoir class crashes LaTeX. Fixed by latex_keep_old_macro_names=False (ref 2675)
• #2684: sphinx.ext.intersphinx crashes with six-1.4.1
• #2679: float package needed for 'figure_align': 'H' latex option
• #2671: image directive may lead to inconsistent spacing in pdf
• #2705: toctree generates empty bullet_list if :titlesonly: specified
• #2479: sphinx.ext.viewcode uses python2 highlighter by default
• #2700: HtmlHelp builder has hard coded index.html
• latex, since 1.4.4 inline literal text is followed by spurious space
• #2722: C++, fix id generation for var/member declarations to include namespaces.
• latex, images (from image directive) in lists or quoted blocks did not obey indentation (fixed together

with #2671)
• #2733: since Sphinx-1.4.4 make latexpdf generates lots of hyperref warnings
• #2731: sphinx.ext.autodoc does not access propertymethods which raises any exceptions
• #2666: C++, properly look up nested names involving constructors.
• #2579: Could not refer a label including both spaces and colons via sphinx.ext.intersphinx
• #2718: Sphinx crashes if the document file is not readable
• #2699: hyperlinks in help HTMLs are broken if html_file_suffix is set
• #2723: extra spaces in latex pdf output from multirow cell

Sphinx Documentation, Release 1.6.3

262 Chapter 24. Changes in Sphinx

• #2735: latexpdf Underfull \hbox (badness 10000) warnings from title page
• #2667: latex crashes if resized images appeared in section title
• #2763: (html) Provide default value for required alt attribute for image tags of SVG source, required

to validate and now consistent w/ other formats.

24.17 Release 1.4.4 (released Jun 12, 2016)

24.17.1 Bugs fixed

• #2630: Latex sphinx.sty Notice Enviroment formatting problem
• #2632: Warning directives fail in quote environment latex build
• #2633: Sphinx crashes with old styled indices
• Fix a \begin{\minipage} typo in sphinx.sty from 1.4.2 (ref: 68becb1)
• #2622: Latex produces empty pages after title and table of contents
• #2640: 1.4.2 LaTeX crashes if code-block inside warning directive
• Let LaTeX use straight quotes also in inline code (ref #2627)
• #2351: latex crashes if enumerated lists are placed on footnotes
• #2646: latex crashes if math contains twice empty lines
• #2480: sphinx.ext.autodoc: memory addresses were shown
• latex: allow code-blocks appearing inside lists and quotes at maximal nesting depth (ref #777, #2624,

#2651)
• #2635: Latex code directives produce inconsistent frames based on viewing resolution
• #2639: Sphinx now bundles iftex.sty
• Failed to build PDF with framed.sty 0.95
• Sphinx now bundles needspace.sty

24.18 Release 1.4.3 (released Jun 5, 2016)

24.18.1 Bugs fixed

• #2530: got “Counter too large” error on building PDF if large numbered footnotes existed in admoni-
tions

• width option of figure directive does not work if align option specified at same time (ref: #2595)
• #2590: The inputenc package breaks compiling under lualatex and xelatex
• #2540: date on latex front page use different font
• Suppress “document isn’t included in any toctree” warning if the document is included (ref: #2603)
• #2614: Some tables in PDF output will end up shifted if user sets non zero parindent in preamble
• #2602: URL redirection breaks the hyperlinks generated by sphinx.ext.intersphinx
• #2613: Show warnings if merged extensions are loaded

 Sphinx Documentation, Release 1.6.3

24.17. Release 1.4.4 (released Jun 12, 2016) 263

• #2619: make sure amstext LaTeX package always loaded (ref: d657225, 488ee52, 9d82cad and #2615)
• #2593: latex crashes if any figures in the table

24.19 Release 1.4.2 (released May 29, 2016)

24.19.1 Features added

• Now suppress_warnings accepts following configurations (ref: #2451, #2466):
• app.add_node

• app.add_directive

• app.add_role

• app.add_generic_role

• app.add_source_parser

• image.data_uri

• image.nonlocal_uri

• #2453: LaTeX writer allows page breaks in topic contents; and their horizontal extent now fits in the
line width (with shadow in margin). Also warning-type admonitions allow page breaks and their
vertical spacing has been made more coherent with the one for hint-type notices (ref #2446).

• #2459: the framing of literal code-blocks in LaTeX output (and not only the code lines themselves)
obey the indentation in lists or quoted blocks.

• #2343: the long source lines in code-blocks are wrapped (without modifying the line numbering) in
LaTeX output (ref #1534, #2304).

24.19.2 Bugs fixed

• #2370: the equations are slightly misaligned in LaTeX writer
• #1817, #2077: suppress pep8 warnings on conf.py generated by sphinx-quickstart
• #2407: building docs crash if document includes large data image URIs
• #2436: Sphinx does not check version by needs_sphinx if loading extensions failed
• #2397: Setup shorthandoff for turkish documents
• #2447: VerbatimBorderColor wrongly used also for captions of PDF
• #2456: C++, fix crash related to document merging (e.g., singlehtml and Latex builders).
• #2446: latex(pdf) sets local tables of contents (or more generally topic nodes) in unbreakable boxes,

causes overflow at bottom
• #2476: Omit MathJax markers if :nowrap: is given
• #2465: latex builder fails in case no caption option is provided to toctree directive
• Sphinx crashes if self referenced toctree found
• #2481: spelling mistake for mecab search splitter. Thanks to Naoki Sato.
• #2309: Fix could not refer “indirect hyperlink targets” by ref-role
• intersphinx fails if mapping URL contains any port

Sphinx Documentation, Release 1.6.3

264 Chapter 24. Changes in Sphinx

• #2088: intersphinx crashes if the mapping URL requires basic auth
• #2304: auto line breaks in latexpdf codeblocks
• #1534: Word wrap long lines in Latex verbatim blocks
• #2460: too much white space on top of captioned literal blocks in PDF output
• Show error reason when multiple math extensions are loaded (ref: #2499)
• #2483: any figure number was not assigned if figure title contains only non text objects
• #2501: Unicode subscript numbers are normalized in LaTeX
• #2492: Figure directive with :figwidth: generates incorrect Latex-code
• The caption of figure is always put on center even if :align: was specified
• #2526: LaTeX writer crashes if the section having only images
• #2522: Sphinx touches mo files under installed directory that caused permission error.
• #2536: C++, fix crash when an immediately nested scope has the same name as the current scope.
• #2555: Fix crash on any-references with unicode.
• #2517: wrong bookmark encoding in PDF if using LuaLaTeX
• #2521: generated Makefile causes BSD make crashed if sphinx-build not found
• #2470: typing backport package causes autodoc errors with python 2.7
• sphinx.ext.intersphinx crashes if non-string value is used for key of
intersphinx_mapping

• #2518: intersphinx_mapping disallows non alphanumeric keys
• #2558: unpack error on devhelp builder
• #2561: Info builder crashes when a footnote contains a link
• #2565: The descriptions of objects generated by sphinx.ext.autosummary overflow lines at

LaTeX writer
• Extend pdflatex config in sphinx.sty to subparagraphs (ref: #2551)
• #2445: rst_prolog and rst_epilog affect to non reST sources
• #2576: sphinx.ext.imgmath crashes if subprocess raises error
• #2577: sphinx.ext.imgmath: Invalid argument are passed to dvisvgm
• #2556: Xapian search does not work with Python 3
• #2581: The search doesn’t work if language=”es” (spanish)
• #2382: Adjust spacing after abbreviations on figure numbers in LaTeX writer
• #2383: The generated footnote by latex_show_urls overflows lines
• #2497, #2552: The label of search button does not fit for the button itself

24.20 Release 1.4.1 (released Apr 12, 2016)

24.20.1 Incompatible changes

• The default format of today_fmt and html_last_updated_fmt is back to strftime format again.
Locale Date Markup Language is also supported for backward compatibility until Sphinx-1.5.

 Sphinx Documentation, Release 1.6.3

24.20. Release 1.4.1 (released Apr 12, 2016) 265

24.20.2 Translations

• Added Welsh translation, thanks to Geraint Palmer.
• Added Greek translation, thanks to Stelios Vitalis.
• Added Esperanto translation, thanks to Dinu Gherman.
• Added Hindi translation, thanks to Purnank H. Ghumalia.
• Added Romanian translation, thanks to Razvan Stefanescu.

24.20.3 Bugs fixed

• C++, added support for extern and thread_local.
• C++, type declarations are now using the prefixes typedef, using, and type, depending on the

style of declaration.
• #2413: C++, fix crash on duplicate declarations
• #2394: Sphinx crashes when html_last_updated_fmt is invalid
• #2408: dummy builder not available in Makefile and make.bat
• #2412: hyperlink targets are broken in LaTeX builder
• figure directive crashes if non paragraph item is given as caption
• #2418: time formats no longer allowed in today_fmt
• #2395: Sphinx crashes if unicode character in image filename
• #2396: “too many values to unpack” in genindex-single
• #2405: numref link in PDF jumps to the wrong location
• #2414: missing number in PDF hyperlinks to code listings
• #2440: wrong import for gmtime. Thanks to Uwe L. Korn.

24.21 Release 1.4 (released Mar 28, 2016)

24.21.1 Incompatible changes

• Drop PorterStemmer package support. Use PyStemmer instead of PorterStemmer to accelerate
stemming.

• sphinx_rtd_theme has become optional. Please install it manually. Refs #2087, #2086, #1845 and
#2097. Thanks to Victor Zverovich.

• #2231: Use DUrole instead of DUspan for custom roles in LaTeX writer. It enables to take title of roles
as an argument of custom macros.

• #2022: ‘Thumbs.db’ and ‘.DS_Store’ are added to exclude_patterns default values in conf.py that
will be provided on sphinx-quickstart.

• #2027, #2208: The html_title accepts string values only. And The None value cannot be accepted.
• sphinx.ext.graphviz: show graph image in inline by default
• #2060, #2224: The manpage role now generate sphinx.addnodes.manpage node instead of

Sphinx Documentation, Release 1.6.3

266 Chapter 24. Changes in Sphinx

sphinx.addnodes.literal_emphasis node.
• #2022: html_extra_path also copies dotfiles in the extra directory, and refers to
exclude_patterns to exclude extra files and directories.

• #2300: enhance autoclass:: to use the docstring of __new__ if __init__ method’s is missing of empty
• #2251: Previously, under glossary directives, multiple terms for one definition are converted into

single term node and the each terms in the term node are separated by termsep node. In new
implementation, each terms are converted into individual term nodes and termsep node is
removed. By this change, output layout of every builders are changed a bit.

• The default highlight language is now Python 3. This means that source code is highlighted as
Python 3 (which is mostly a superset of Python 2), and no parsing is attempted to distinguish valid
code. To get the old behavior back, add highlight_language = "python" to conf.py.

• Locale Date Markup Language like "MMMM dd, YYYY" is default format for today_fmt and
html_last_updated_fmt. However strftime format like "%B %d, %Y" is also supported for
backward compatibility until Sphinx-1.5. Later format will be disabled from Sphinx-1.5.

• #2327: latex_use_parts is deprecated now. Use latex_toplevel_sectioning instead.
• #2337: Use \url{URL} macro instead of \href{URL}{URL} in LaTeX writer.
• #1498: manpage writer: don’t make whole of item in definition list bold if it includes strong node.
• #582: Remove hint message from quick search box for html output.
• #2378: Sphinx now bundles newfloat.sty

24.21.2 Features added

• #2092: add todo directive support in napoleon package.
• #1962: when adding directives, roles or nodes from an extension, warn if such an element is already

present (built-in or added by another extension).
• #1909: Add “doc” references to Intersphinx inventories.
• C++ type alias support (e.g., .. type:: T = int).
• C++ template support for classes, functions, type aliases, and variables (#1729, #1314).
• C++, added new scope management directives namespace-push and namespace-pop.
• #1970: Keyboard shortcuts to navigate Next and Previous topics
• Intersphinx: Added support for fetching Intersphinx inventories with URLs using HTTP basic auth.
• C++, added support for template parameter in function info field lists.
• C++, added support for pointers to member (function).
• #2113: Allow :class: option to code-block directive.
• #2192: Imgmath (pngmath with svg support).
• #2200: Support XeTeX and LuaTeX for the LaTeX builder.
• #1906: Use xcolor over color for fcolorbox where available for LaTeX output.
• #2216: Texinputs makefile improvements.
• #2170: Support for Chinese language search index.
• #2214: Add sphinx.ext.githubpages to publish the docs on GitHub Pages
• #1030: Make page reference names for latex_show_pagerefs translatable

 Sphinx Documentation, Release 1.6.3

24.21. Release 1.4 (released Mar 28, 2016) 267

http://unicode.org/reports/tr35/tr35-dates.html#Date_Format_Patterns

• #2162: Add Sphinx.add_source_parser() to add source_suffix and source_parsers from extension
• #2207: Add sphinx.parsers.Parser class; a base class for new parsers
• #656: Add graphviz_dot option to graphviz directives to switch the dot command
• #1939: Added the dummy builder: syntax check without output.
• #2230: Add math_number_all option to number all displayed math in math extensions
• #2235: needs_sphinx supports micro version comparison
• #2282: Add “language” attribute to html tag in the “basic” theme
• #1779: Add EPUB 3 builder
• #1751: Add todo_link_only to avoid file path and line indication on todolist. Thanks to

Francesco Montesano.
• #2199: Use imagesize package to obtain size of images.
• #1099: Add configurable retries to the linkcheck builder. Thanks to Alex Gaynor. Also don’t check

anchors starting with !.
• #2300: enhance autoclass:: to use the docstring of __new__ if __init__ method’s is missing of empty
• #1858: Add Sphinx.add_enumerable_node() to add enumerable nodes for numfig feature
• #1286, #2099: Add sphinx.ext.autosectionlabel extension to allow reference sections using

its title. Thanks to Tadhg O’Higgins.
• #1854: Allow to choose Janome for Japanese splitter.
• #1853: support custom text splitter on html search with language='ja'.
• #2320: classifier of glossary terms can be used for index entries grouping key. The classifier also be

used for translation. See also Glossary.
• #2308: Define \tablecontinued macro to redefine the style of continued label for longtables.
• Select an image by similarity if multiple images are globbed by .. image:: filename.*
• #1921: Support figure substitutions by language and figure_language_filename
• #2245: Add latex_elements["passoptionstopackages"] option to call PassOptionsToPack-

ages in early stage of preambles.
• #2340: Math extension: support alignment of multiple equations for MathJAX.
• #2338: Define \titleref macro to redefine the style of title-reference roles.
• Define \menuselection and \accelerator macros to redefine the style of menuselection

roles.
• Define \crossref macro to redefine the style of references
• #2301: Texts in the classic html theme should be hyphenated.
• #2355: Define \termref macro to redefine the style of term roles.
• Add suppress_warnings to suppress arbitrary warning message (experimental)
• #2229: Fix no warning is given for unknown options
• #2327: Add latex_toplevel_sectioning to switch the top level sectioning of LaTeX document.

24.21.3 Bugs fixed

• #1913: C++, fix assert bug for enumerators in next-to-global and global scope.
• C++, fix parsing of ‘signed char’ and ‘unsigned char’ as types.

Sphinx Documentation, Release 1.6.3

268 Chapter 24. Changes in Sphinx

• C++, add missing support for ‘friend’ functions.
• C++, add missing support for virtual base classes (thanks to Rapptz).
• C++, add support for final classes.
• C++, fix parsing of types prefixed with ‘enum’.
• #2023: Dutch search support uses Danish stemming info.
• C++, add support for user-defined literals.
• #1804: Now html output wraps overflowed long-line-text in the sidebar. Thanks to Hassen ben

tanfous.
• #2183: Fix porterstemmer causes make json to fail.
• #1899: Ensure list is sent to OptParse.
• #2164: Fix wrong check for pdftex inside sphinx.sty (for graphicx package option).
• #2165, #2218: Remove faulty and non-need conditional from sphinx.sty.
• Fix broken LaTeX code is generated if unknown language is given
• #1944: Fix rst_prolog breaks file-wide metadata
• #2074: make gettext should use canonical relative paths for .pot. Thanks to anatoly techtonik.
• #2311: Fix sphinx.ext.inheritance_diagram raises AttributeError
• #2251: Line breaks in .rst files are transferred to .pot files in a wrong way.
• #794: Fix date formatting in latex output is not localized
• Remove image/gif from supported_image_types of LaTeX writer (#2272)
• Fix ValueError is raised if LANGUAGE is empty string
• Fix unpack warning is shown when the directives generated from Sphinx.add_crossref_type

is used
• The default highlight language is now default. This means that source code is highlighted as

Python 3 (which is mostly a superset of Python 2) if possible. To get the old behavior back, add
highlight_language = "python" to conf.py.

• #2329: Refresh environment forcely if source directory has changed.
• #2331: Fix code-blocks are filled by block in dvi; remove xcdraw option from xcolor package
• Fix the confval type checker emits warnings if unicode is given to confvals which expects string

value
• #2360: Fix numref in LaTeX output is broken
• #2361: Fix additional paragraphs inside the “compound” directive are indented
• #2364: Fix KeyError ‘rootSymbol’ on Sphinx upgrade from older version.
• #2348: Move amsmath and amssymb to before fontpkg on LaTeX writer.
• #2368: Ignore emacs lock files like .#foo.rst by default.
• #2262: literal_block and its caption has been separated by pagebreak in LaTeX output.
• #2319: Fix table counter is overrided by code-block’s in LaTeX. Thanks to jfbu.
• Fix unpack warning if combinated with 3rd party domain extensions.
• #1153: Fix figures in sidebar causes latex build error.
• #2358: Fix user-preamble could not override the tocdepth definition.
• #2358: Redece tocdepth if part or chapter is used for top_sectionlevel.

 Sphinx Documentation, Release 1.6.3

24.21. Release 1.4 (released Mar 28, 2016) 269

• #2351: Fix footnote spacing
• #2363: Fix toctree() in templates generates broken links in SingleHTMLBuilder.
• #2366: Fix empty hyperref is generated on toctree in HTML builder.

24.21.4 Documentation

• #1757: Fix for usage of html_last_updated_fmt. Thanks to Ralf Hemmecke.

24.22 Release 1.3.6 (released Feb 29, 2016)

24.22.1 Features added

• #1873, #1876, #2278: Add page_source_suffix html context variable. This should be introduced
with source_parsers feature. Thanks for Eric Holscher.

24.22.2 Bugs fixed

• #2265: Fix babel is used in spite of disabling it on latex_elements
• #2295: Avoid mutating dictionary errors while enumerating members in autodoc with Python 3
• #2291: Fix pdflatex “Counter too large” error from footnotes inside tables of contents
• #2292: Fix some footnotes disappear from LaTeX output
• #2287: sphinx.transforms.Locale always uses rst parser. Sphinx i18n feature should support

parsers that specified source_parsers.
• #2290: Fix sphinx.ext.mathbase use of amsfonts may break user choice of math fonts
• #2324: Print a hint how to increase the recursion limit when it is hit.
• #1565, #2229: Revert new warning; the new warning will be triggered from version 1.4 on.
• #2329: Refresh environment forcely if source directory has changed.
• #2019: Fix the domain objects in search result are not escaped

24.23 Release 1.3.5 (released Jan 24, 2016)

24.23.1 Bugs fixed

• Fix line numbers was not shown on warnings in LaTeX and texinfo builders
• Fix filenames were not shown on warnings of citations
• Fix line numbers was not shown on warnings in LaTeX and texinfo builders
• Fix line numbers was not shown on warnings of indices
• #2026: Fix LaTeX builder raises error if parsed-literal includes links
• #2243: Ignore strange docstring types for classes, do not crash
• #2247: Fix #2205 breaks make html for definition list with classifiers that contains regular-expression

Sphinx Documentation, Release 1.6.3

270 Chapter 24. Changes in Sphinx

like string
• #1565: Sphinx will now emit a warning that highlighting was skipped if the syntax is incorrect for
code-block, literalinclude and so on.

• #2211: Fix paragraphs in table cell doesn’t work in Latex output
• #2253: :pyobject: option of literalinclude directive can’t detect indented body block when

the block starts with blank or comment lines.
• Fix TOC is not shown when no :maxdepth: for toctrees (ref: #771)
• Fix warning message for :numref: if target is in orphaned doc (ref: #2244)

24.24 Release 1.3.4 (released Jan 12, 2016)

24.24.1 Bugs fixed

• #2134: Fix figure caption with reference causes latex build error
• #2094: Fix rubric with reference not working in Latex
• #2147: Fix literalinclude code in latex does not break in pages
• #1833: Fix email addresses is showed again if latex_show_urls is not None
• #2176: sphinx.ext.graphviz: use <object> instead of to embed svg
• #967: Fix SVG inheritance diagram is not hyperlinked (clickable)
• #1237: Fix footnotes not working in definition list in LaTeX
• #2168: Fix raw directive does not work for text writer
• #2171: Fix cannot linkcheck url with unicode
• #2182: LaTeX: support image file names with more than 1 dots
• #2189: Fix previous sibling link for first file in subdirectory uses last file, not intended previous from

root toctree
• #2003: Fix decode error under python2 (only) when make linkcheck is run
• #2186: Fix LaTeX output of mathbb in math
• #1480, #2188: LaTeX: Support math in section titles
• #2071: Fix same footnote in more than two section titles => LaTeX/PDF Bug
• #2040: Fix UnicodeDecodeError in sphinx-apidoc when author contains non-ascii characters
• #2193: Fix shutil.SameFileError if source directory and destination directory are same
• #2178: Fix unparseable C++ cross-reference when referencing a function with :cpp:any:
• #2206: Fix Sphinx latex doc build failed due to a footnotes
• #2201: Fix wrong table caption for tables with over 30 rows
• #2213: Set <blockquote> in the classic theme to fit with <p>
• #1815: Fix linkcheck does not raise an exception if warniserror set to true and link is broken
• #2197: Fix slightly cryptic error message for missing index.rst file
• #1894: Unlisted phony targets in quickstart Makefile
• #2125: Fix unifies behavior of collapsed fields (GroupedField and TypedField)

 Sphinx Documentation, Release 1.6.3

24.24. Release 1.3.4 (released Jan 12, 2016) 271

• #1408: Check latex_logo validity before copying
• #771: Fix latex output doesn’t set tocdepth
• #1820: On Windows, console coloring is broken with colorama version 0.3.3. Now sphinx use

colorama>=0.3.5 to avoid this problem.
• #2072: Fix footnotes in chapter-titles do not appear in PDF output
• #1580: Fix paragraphs in longtable don’t work in Latex output
• #1366: Fix centered image not centered in latex
• #1860: Fix man page using :samp: with braces - font doesn’t reset
• #1610: Sphinx crashes in japanese indexing in some systems
• Fix Sphinx crashes if mecab initialization failed
• #2160: Fix broken TOC of PDFs if section includes an image
• #2172: Fix dysfunctional admonition py@lightbox in sphinx.sty. Thanks to jfbu.
• #2198,#2205: make gettext generate broken msgid for definition lists.
• #2062: Escape characters in doctests are treated incorrectly with Python 2.
• #2225: Fix if the option does not begin with dash, linking is not performed
• #2226: Fix math is not HTML-encoded when :nowrap: is given (jsmath, mathjax)
• #1601, #2220: ‘any’ role breaks extended domains behavior. Affected extensions doesn’t support

resolve_any_xref and resolve_xref returns problematic node instead of None. sphinxcontrib-httpdo-
main is one of them.

• #2229: Fix no warning is given for unknown options

24.25 Release 1.3.3 (released Dec 2, 2015)

24.25.1 Bugs fixed

• #2177: Fix parallel hangs
• #2012: Fix exception occurred if numfig_format is invalid
• #2142: Provide non-minified JS code in sphinx/search/non-minified-js/*.js for source

distribution on PyPI.
• #2148: Error while building devhelp target with non-ASCII document.

24.26 Release 1.3.2 (released Nov 29, 2015)

24.26.1 Features added

• #1935: Make “numfig_format” overridable in latex_elements.

24.26.2 Bugs fixed

• #1976: Avoid “2.0” version of Babel because it doesn’t work with Windows environment.

Sphinx Documentation, Release 1.6.3

272 Chapter 24. Changes in Sphinx

mailto:py@lightbox

• Add a “default.css” stylesheet (which imports “classic.css”) for compatibility.
• #1788: graphviz extension raises exception when caption option is present.
• #1789: :pyobject: option of literalinclude directive includes following lines after class defi-

nitions
• #1790: literalinclude strips empty lines at the head and tail
• #1802: load plugin themes automatically when theme.conf use it as ‘inherit’. Thanks to Takayuki

Hirai.
• #1794: custom theme extended from alabaster or sphinx_rtd_theme can’t find base theme.
• #1834: compatibility for docutils-0.13: handle_io_errors keyword argument for docutils.io.FileInput

cause TypeError.
• #1823: ‘.’ as <module_path> for sphinx-apidoc cause an unfriendly error. Now ‘.’ is converted to

absolute path automatically.
• Fix a crash when setting up extensions which do not support metadata.
• #1784: Provide non-minified JS code in sphinx/search/non-minified-js/*.js
• #1822, #1892: Fix regression for #1061. autosummary can’t generate doc for imported members since

sphinx-1.3b3. Thanks to Eric Larson.
• #1793, #1819: “see also” misses a linebreak in text output. Thanks to Takayuki Hirai.
• #1780, #1866: “make text” shows “class” keyword twice. Thanks to Takayuki Hirai.
• #1871: Fix for LaTeX output of tables with one column and multirows.
• Work around the lack of the HTMLParserError exception in Python 3.5.
• #1949: Use safe_getattr in the coverage builder to avoid aborting with descriptors that have

custom behavior.
• #1915: Do not generate smart quotes in doc field type annotations.
• #1796: On py3, automated .mo building caused UnicodeDecodeError.
• #1923: Use babel features only if the babel latex element is nonempty.
• #1942: Fix a KeyError in websupport.
• #1903: Fix strange id generation for glossary terms.
• make text will crush if a definition list item has more than 1 classifiers as: term : classifier1
: classifier2.

• #1855: make gettext generates broken po file for definition lists with classifier.
• #1869: Fix problems when dealing with files containing non-ASCII characters. Thanks to Marvin

Schmidt.
• #1798: Fix building LaTeX with references in titles.
• #1725: On py2 environment, doctest with using non-ASCII characters causes 'ascii' codec
can't decode byte exception.

• #1540: Fix RuntimeError with circular referenced toctree
• #1983: i18n translation feature breaks references which uses section name.
• #1990: Use caption of toctree to title of tableofcontents in LaTeX
• #1987: Fix ampersand is ignored in :menuselection: and :guilabel: on LaTeX builder
• #1994: More supporting non-standard parser (like recommonmark parser) for Translation and

WebSupport feature. Now node.rawsource is fall backed to node.astext() during docutils transform-

 Sphinx Documentation, Release 1.6.3

24.26. Release 1.3.2 (released Nov 29, 2015) 273

ing.
• #1989: “make blahblah” on Windows indicate help messages for sphinx-build every time. It was

caused by wrong make.bat that generated by Sphinx-1.3.0/1.3.1.
• On Py2 environment, conf.py that is generated by sphinx-quickstart should have u prefixed config

value for ‘version’ and ‘release’.
• #2102: On Windows + Py3, using |today| and non-ASCII date format will raise UnicodeEncodeEr-

ror.
• #1974: UnboundLocalError: local variable ‘domain’ referenced before assignment when using any

role and sphinx.ext.intersphinx in same time.
• #2121: multiple words search doesn’t find pages when words across on the page title and the page

content.
• #1884, #1885: plug-in html themes cannot inherit another plug-in theme. Thanks to Suzumizaki.
• #1818: sphinx.ext.todo directive generates broken html class attribute as ‘admonition-‘ when
language is specified with non-ASCII linguistic area like ‘ru’ or ‘ja’. To fix this, now todo directive
can use :class: option.

• #2140: Fix footnotes in table has broken in LaTeX
• #2127: MecabBinder for html searching feature doesn’t work with Python 3. Thanks to Tomoko

Uchida.

24.27 Release 1.3.1 (released Mar 17, 2015)

24.27.1 Bugs fixed

• #1769: allows generating quickstart files/dirs for destination dir that doesn’t overwrite existent
files/dirs. Thanks to WAKAYAMA shirou.

• #1773: sphinx-quickstart doesn’t accept non-ASCII character as a option argument.
• #1766: the message “least Python 2.6 to run” is at best misleading.
• #1772: cross reference in docstrings like :param .write: breaks building.
• #1770, #1774: literalinclude with empty file occurs exception. Thanks to Takayuki Hirai.
• #1777: Sphinx 1.3 can’t load extra theme. Thanks to tell-k.
• #1776: source_suffix = ['.rst'] cause unfriendly error on prior version.
• #1771: automated .mo building doesn’t work properly.
• #1783: Autodoc: Python2 Allow unicode string in __all__. Thanks to Jens Hedegaard Nielsen.
• #1781: Setting html_domain_indices to a list raises a type check warnings.

24.28 Release 1.3 (released Mar 10, 2015)

24.28.1 Incompatible changes

• Roles ref, term and menusel now don’t generate emphasis nodes anymore. If you want to keep
italic style, adapt your stylesheet.

Sphinx Documentation, Release 1.6.3

274 Chapter 24. Changes in Sphinx

http://docutils.sourceforge.net/docs/ref/rst/roles.html#emphasis

• Role numref uses %s as special character to indicate position of figure numbers instead # symbol.

24.28.2 Features added

• Add convenience directives and roles to the C++ domain: directive cpp:var as alias for
cpp:member, role :cpp:var as alias for :cpp:member, and role any for cross-reference to any
C++ declaraction. #1577, #1744

• The source_suffix config value can now be a list of multiple suffixes.
• Add the ability to specify source parsers by source suffix with the source_parsers config value.
• #1675: A new builder, AppleHelpBuilder, has been added that builds Apple Help Books.

24.28.3 Bugs fixed

• 1.3b3 change breaks a previous gettext output that contains duplicated msgid such as “foo bar” and
“version changes in 1.3: foo bar”.

• #1745: latex builder cause maximum recursion depth exceeded when a footnote has a footnote mark
itself.

• #1748: SyntaxError in sphinx/ext/ifconfig.py with Python 2.6.
• #1658, #1750: No link created (and warning given) if option does not begin with -, / or +. Thanks to

Takayuki Hirai.
• #1753: C++, added missing support for more complex declarations.
• #1700: Add :caption: option for toctree.
• #1742: :name: option is provided for toctree, code-block and literalinclude dirctives.
• #1756: Incorrect section titles in search that was introduced from 1.3b3.
• #1746: C++, fixed name lookup procedure, and added missing lookups in declarations.
• #1765: C++, fix old id generation to use fully qualified names.

24.28.4 Documentation

• #1651: Add vartype field descritpion for python domain.

24.29 Release 1.3b3 (released Feb 24, 2015)

24.29.1 Incompatible changes

• Dependency requirement updates: docutils 0.11, Pygments 2.0
• The gettext_enables config value has been renamed to gettext_additional_targets.
• #1735: Use https://docs.python.org/ instead of http protocol. It was used for
sphinx.ext.intersphinx and some documentation.

24.29.2 Features added

• #1346: Add new default theme;

 Sphinx Documentation, Release 1.6.3

24.29. Release 1.3b3 (released Feb 24, 2015) 275

https://docs.python.org/

• Add ‘alabaster’ theme.
• Add ‘sphinx_rtd_theme’ theme.
• The ‘default’ html theme has been renamed to ‘classic’. ‘default’ is still available, however it will

emit notice a recommendation that using new ‘alabaster’ theme.

• Added highlight_options configuration value.
• The language config value is now available in the HTML templates.
• The env-updated event can now return a value, which is interpreted as an iterable of additional

docnames that need to be rewritten.
• #772: Support for scoped and unscoped enums in C++. Enumerators in unscoped enums are injected

into the parent scope in addition to the enum scope.
• Add todo_include_todos config option to quickstart conf file, handled as described in documen-

tation.
• HTML breadcrumb items tag has class “nav-item” and “nav-item-N” (like nav-item-0, 1, 2…).
• New option sphinx-quickstart --use-make-mode for generating Makefile that use

sphinx-build make-mode.
• #1235: i18n: several node can be translated if it is set to gettext_additional_targets in

conf.py. Supported nodes are:
• ‘literal-block’
• ‘doctest-block’
• ‘raw’
• ‘image’

• #1227: Add html_scaled_image_link config option to conf.py, to control scaled image link.

24.29.3 Bugs fixed

• LaTeX writer now generates correct markup for cells spanning multiple rows.
• #1674: Do not crash if a module’s __all__ is not a list of strings.
• #1629: Use VerbatimBorderColor to add frame to code-block in LaTeX
• On windows, make-mode didn’t work on Win32 platform if sphinx was invoked as python
sphinx-build.py.

• #1687: linkcheck now treats 401 Unauthorized responses as “working”.
• #1690: toctrees with glob option now can also contain entries for single documents with explicit

title.
• #1591: html search results for C++ elements now has correct interpage links.
• bizstyle theme: nested long title pages make long breadcrumb that breaks page layout.
• bizstyle theme: all breadcrumb items become ‘Top’ on some mobile browser (iPhone5s safari).
• #1722: restore toctree() template function behavior that was changed at 1.3b1.
• #1732: i18n: localized table caption raises exception.
• #1718: :numref: does not work with capital letters in the label
• #1630: resolve CSS conflicts, div.container css target for literal block wrapper now renamed to

Sphinx Documentation, Release 1.6.3

276 Chapter 24. Changes in Sphinx

div.literal-block-wrapper.
• sphinx.util.pycompat has been restored in its backwards-compatibility; slated for removal in

Sphinx 1.4.
• #1719: LaTeX writer does not respect numref_format option in captions

24.30 Release 1.3b2 (released Dec 5, 2014)

24.30.1 Incompatible changes

• update bundled ez_setup.py for setuptools-7.0 that requires Python 2.6 or later.

24.30.2 Features added

• #1597: Added possibility to return a new template name from html-page-context.
• PR#314, #1150: Configuration values are now checked for their type. A warning is raised if the

configured and the default value do not have the same type and do not share a common non-trivial
base class.

24.30.3 Bugs fixed

• PR#311: sphinx-quickstart does not work on python 3.4.
• Fix autodoc_docstring_signature not working with signatures in class docstrings.
• Rebuilding cause crash unexpectedly when source files were added.
• #1607: Fix a crash when building latexpdf with “howto” class
• #1251: Fix again. Sections which depth are lower than :tocdepth: should not be shown on localtoc

sidebar.
• make-mode didn’t work on Win32 platform if sphinx was installed by wheel package.

24.31 Release 1.3b1 (released Oct 10, 2014)

24.31.1 Incompatible changes

• Dropped support for Python 2.5, 3.1 and 3.2.
• Dropped support for docutils versions up to 0.9.
• Removed the sphinx.ext.oldcmarkup extension.
• The deprecated config values exclude_trees, exclude_dirnames and unused_docs have

been removed.
• A new node, sphinx.addnodes.literal_strong, has been added, for text that should appear

literally (i.e. no smart quotes) in strong font. Custom writers will have to be adapted to handle this
node.

• PR#269, #1476: replace <tt> tag by <code>. User customized stylesheets should be updated If the
css contain some styles for tt> tag. Thanks to Takeshi Komiya.

 Sphinx Documentation, Release 1.6.3

24.30. Release 1.3b2 (released Dec 5, 2014) 277

• #1543: templates_path is automatically added to exclude_patterns to avoid reading auto-
summary rst templates in the templates directory.

• Custom domains should implement the new Domain.resolve_any_xref method to make the
any role work properly.

• gettext builder: gettext doesn’t emit uuid information to generated pot files by default. Please set
True to gettext_uuid to emit uuid information. Additionally, if the python-levenshtein
3rd-party package is installed, it will improve the calculation time.

• gettext builder: disable extracting/apply ‘index’ node by default. Please set ‘index’ to
gettext_enables to enable extracting index entries.

• PR#307: Add frame to code-block in LaTeX. Thanks to Takeshi Komiya.

24.31.2 Features added

• Add support for Python 3.4.
• Add support for docutils 0.12
• Added sphinx.ext.napoleon extension for NumPy and Google style docstring support.
• Added support for parallel reading (parsing) of source files with the sphinx-build -j option.

Third-party extensions will need to be checked for compatibility and may need to be adapted if they
store information in the build environment object. See env-merge-info.

• Added the any role that can be used to find a cross-reference of any type in any domain. Custom
domains should implement the new Domain.resolve_any_xref method to make this work
properly.

• Exception logs now contain the last 10 messages emitted by Sphinx.
• Added support for extension versions (a string returned by setup(), these can be shown in the

traceback log files). Version requirements for extensions can be specified in projects using the new
needs_extensions config value.

• Changing the default role within a document with the default-role directive is now supported.
• PR#214: Added stemming support for 14 languages, so that the built-in document search can now

handle these. Thanks to Shibukawa Yoshiki.
• PR#296, PR#303, #76: numfig feature: Assign numbers to figures, tables and code-blocks. This

feature is configured with numfig, numfig_secnum_depth and numfig_format. Also numref
role is available. Thanks to Takeshi Komiya.

• PR#202: Allow “.” and “~” prefixed references in :param: doc fields for Python.
• PR#184: Add autodoc_mock_imports, allowing to mock imports of external modules that need

not be present when autodocumenting.
• #925: Allow list-typed config values to be provided on the command line, like -D key=val1,val2.
• #668: Allow line numbering of code-block and literalinclude directives to start at an arbi-

trary line number, with a new lineno-start option.
• PR#172, PR#266: The code-block and literalinclude directives now can have a caption

option that shows a filename before the code in the output. Thanks to Nasimul Haque, Takeshi
Komiya.

• Prompt for the document language in sphinx-quickstart.
• PR#217: Added config values to suppress UUID and location information in generated gettext cata-

logs.

Sphinx Documentation, Release 1.6.3

278 Chapter 24. Changes in Sphinx

http://docutils.sourceforge.net/docs/ref/rst/directives.html#default-role

• PR#236, #1456: apidoc: Add a -M option to put module documentation before submodule documen-
tation. Thanks to Wes Turner and Luc Saffre.

• #1434: Provide non-minified JS files for jquery.js and underscore.js to clarify the source of the mini-
fied files.

• PR#252, #1291: Windows color console support. Thanks to meu31.
• PR#255: When generating latex references, also insert latex target/anchor for the ids defined on the

node. Thanks to Olivier Heurtier.
• PR#229: Allow registration of other translators. Thanks to Russell Sim.
• Add app.set_translator() API to register or override a Docutils translator class like
html_translator_class.

• PR#267, #1134: add ‘diff’ parameter to literalinclude. Thanks to Richard Wall and WAKAYAMA
shirou.

• PR#272: Added ‘bizstyle’ theme. Thanks to Shoji KUMAGAI.
• Automatically compile *.mo files from *.po files when gettext_auto_build is True (default)

and *.po is newer than *.mo file.
• #623: sphinx.ext.viewcode supports imported function/class aliases.
• PR#275: sphinx.ext.intersphinx supports multiple target for the inventory. Thanks to Brigitta

Sipocz.
• PR#261: Added the env-before-read-docs event that can be connected to modify the order of

documents before they are read by the environment.
• #1284: Program options documented with option can now start with +.
• PR#291: The caption of code-block is recognised as a title of ref target. Thanks to Takeshi Komiya.
• PR#298: Add new API: add_latex_package(). Thanks to Takeshi Komiya.
• #1344: add gettext_enables to enable extracting ‘index’ to gettext catalog output / applying

translation catalog to generated documentation.
• PR#301, #1583: Allow the line numbering of the directive literalinclude to match that of the

included file, using a new lineno-match option. Thanks to Jeppe Pihl.
• PR#299: add various options to sphinx-quickstart. Quiet mode option --quiet will skips wizard

mode. Thanks to WAKAYAMA shirou.
• #1623: Return types specified with :rtype: are now turned into links if possible.

24.31.3 Bugs fixed

• #1438: Updated jQuery version from 1.8.3 to 1.11.1.
• #1568: Fix a crash when a “centered” directive contains a reference.
• Now sphinx.ext.autodoc works with python-2.5 again.
• #1563: add_search_language() raises AssertionError for correct type of argument. Thanks to

rikoman.
• #1174: Fix smart quotes being applied inside roles like program or makevar.
• PR#235: comment db schema of websupport lacked a length of the node_id field. Thanks to solos.
• #1466,PR#241: Fix failure of the cpp domain parser to parse C+11 “variadic templates” declarations.

Thanks to Victor Zverovich.
• #1459,PR#244: Fix default mathjax js path point to http:// that cause mixed-content error on

 Sphinx Documentation, Release 1.6.3

24.31. Release 1.3b1 (released Oct 10, 2014) 279

HTTPS server. Thanks to sbrandtb and robo9k.
• PR#157: autodoc remove spurious signatures from @property decorated attributes. Thanks to David

Ham.
• PR#159: Add coverage targets to quickstart generated Makefile and make.bat. Thanks to Matthias

Troffaes.
• #1251: When specifying toctree :numbered: option and :tocdepth: metadata, sub section number that

is larger depth than :tocdepth: is shrunk.
• PR#260: Encode underscore in citation labels for latex export. Thanks to Lennart Fricke.
• PR#264: Fix could not resolve xref for figure node with :name: option. Thanks to Takeshi Komiya.
• PR#265: Fix could not capture caption of graphviz node by xref. Thanks to Takeshi Komiya.
• PR#263, #1013, #1103: Rewrite of C++ domain. Thanks to Jakob Lykke Andersen.

• Hyperlinks to all found nested names and template arguments (#1103).
• Support for function types everywhere, e.g., in std::function<bool(int, int)> (#1013).
• Support for virtual functions.
• Changed interpretation of function arguments to following standard prototype declarations,

i.e., void f(arg) means that arg is the type of the argument, instead of it being the name.
• Updated tests.
• Updated documentation with elaborate description of what declarations are supported and

how the namespace declarations influence declaration and cross-reference lookup.
• Index names may be different now. Elements are indexed by their fully qualified name. It

should be rather easy to change this behaviour and potentially index by namespaces/classes as
well.

• PR#258, #939: Add dedent option for code-block and literalinclude. Thanks to Zafar
Siddiqui.

• PR#268: Fix numbering section does not work at singlehtml mode. It still ad-hoc fix because there is
a issue that section IDs are conflicted. Thanks to Takeshi Komiya.

• PR#273, #1536: Fix RuntimeError with numbered circular toctree. Thanks to Takeshi Komiya.
• PR#274: Set its URL as a default title value if URL appears in toctree. Thanks to Takeshi Komiya.
• PR#276, #1381: rfc and pep roles support custom link text. Thanks to Takeshi Komiya.
• PR#277, #1513: highlights for function pointers in argument list of c:function. Thanks to Takeshi

Komiya.
• PR#278: Fix section entries were shown twice if toctree has been put under only directive. Thanks to

Takeshi Komiya.
• #1547: pgen2 tokenizer doesn’t recognize ... literal (Ellipsis for py3).
• PR#294: On LaTeX builder, wrap float environment on writing literal_block to avoid separation of

caption and body. Thanks to Takeshi Komiya.
• PR#295, #1520: make.bat latexpdf mechanism to cd back to the current directory. Thanks to

Peter Suter.
• PR#297, #1571: Add imgpath property to all builders. It make easier to develop builder extensions.

Thanks to Takeshi Komiya.
• #1584: Point to master doc in HTML “top” link.
• #1585: Autosummary of modules broken in Sphinx-1.2.3.

Sphinx Documentation, Release 1.6.3

280 Chapter 24. Changes in Sphinx

• #1610: Sphinx cause AttributeError when MeCab search option is enabled and python-mecab is not
installed.

• #1674: Do not crash if a module’s __all__ is not a list of strings.
• #1673: Fix crashes with nitpick_ignore and :doc: references.
• #1686: ifconfig directive doesn’t care about default config values.
• #1642: Fix only one search result appearing in Chrome.

24.31.4 Documentation

• Add clarification about the syntax of tags. (doc/markup/misc.rst)

24.32 Release 1.2.3 (released Sep 1, 2014)

24.32.1 Features added

• #1518: sphinx-apidoc command now has a --version option to show version information and
exit

• New locales: Hebrew, European Portuguese, Vietnamese.

24.32.2 Bugs fixed

• #636: Keep straight single quotes in literal blocks in the LaTeX build.
• #1419: Generated i18n sphinx.js files are missing message catalog entries from ‘.js_t’ and ‘.html’. The

issue was introduced from Sphinx-1.1
• #1363: Fix i18n: missing python domain’s cross-references with currentmodule directive or current-

class directive.
• #1444: autosummary does not create the description from attributes docstring.
• #1457: In python3 environment, make linkcheck cause “Can’t convert ‘bytes’ object to str implicitly”

error when link target url has a hash part. Thanks to Jorge_C.
• #1467: Exception on Python3 if nonexistent method is specified by automethod
• #1441: autosummary can’t handle nested classes correctly.
• #1499: With non-callable setup in a conf.py, now sphinx-build emits a user-friendly error message.
• #1502: In autodoc, fix display of parameter defaults containing backslashes.
• #1226: autodoc, autosummary: importing setup.py by automodule will invoke setup process and

execute sys.exit(). Now sphinx avoids SystemExit exception and emits warnings without unex-
pected termination.

• #1503: py:function directive generate incorrectly signature when specifying a default parameter with
an empty list []. Thanks to Geert Jansen.

• #1508: Non-ASCII filename raise exception on make singlehtml, latex, man, texinfo and changes.
• #1531: On Python3 environment, docutils.conf with ‘source_link=true’ in the general section cause

type error.
• PR#270, #1533: Non-ASCII docstring cause UnicodeDecodeError when uses with inheritance-dia-

 Sphinx Documentation, Release 1.6.3

24.32. Release 1.2.3 (released Sep 1, 2014) 281

gram directive. Thanks to WAKAYAMA shirou.
• PR#281, PR#282, #1509: TODO extension not compatible with websupport. Thanks to Takeshi

Komiya.
• #1477: gettext does not extract nodes.line in a table or list.
• #1544: make text generates wrong table when it has empty table cells.
• #1522: Footnotes from table get displayed twice in LaTeX. This problem has been appeared from

Sphinx-1.2.1 by #949.
• #508: Sphinx every time exit with zero when is invoked from setup.py command. ex. python
setup.py build_sphinx -b doctest return zero even if doctest failed.

24.33 Release 1.2.2 (released Mar 2, 2014)

24.33.1 Bugs fixed

• PR#211: When checking for existence of the html_logo file, check the full relative path and not the
basename.

• PR#212: Fix traceback with autodoc and __init__ methods without docstring.
• PR#213: Fix a missing import in the setup command.
• #1357: Option names documented by option are now again allowed to not start with a dash or

slash, and referencing them will work correctly.
• #1358: Fix handling of image paths outside of the source directory when using the “wildcard” style

reference.
• #1374: Fix for autosummary generating overly-long summaries if first line doesn’t end with a period.
• #1383: Fix Python 2.5 compatibility of sphinx-apidoc.
• #1391: Actually prevent using “pngmath” and “mathjax” extensions at the same time in

sphinx-quickstart.
• #1386: Fix bug preventing more than one theme being added by the entry point mechanism.
• #1370: Ignore “toctree” nodes in text writer, instead of raising.
• #1364: Fix ‘make gettext’ fails when the ‘.. todolist::’ directive is present.
• #1367: Fix a change of PR#96 that break sphinx.util.docfields.Field.make_field interface/behavior for
item argument usage.

24.33.2 Documentation

• Extended the documentation about building extensions.

24.34 Release 1.2.1 (released Jan 19, 2014)

24.34.1 Bugs fixed

• #1335: Fix autosummary template overloading with exclamation prefix like {% extends

Sphinx Documentation, Release 1.6.3

282 Chapter 24. Changes in Sphinx

"!autosummary/class.rst" %} cause infinite recursive function call. This was caused by
PR#181.

• #1337: Fix autodoc with autoclass_content="both" uses useless object.__init__ docstring
when class does not have __init__. This was caused by a change for #1138.

• #1340: Can’t search alphabetical words on the HTML quick search generated with language=’ja’.
• #1319: Do not crash if the html_logo file does not exist.
• #603: Do not use the HTML-ized title for building the search index (that resulted in “literal” being

found on every page with a literal in the title).
• #751: Allow production lists longer than a page in LaTeX by using longtable.
• #764: Always look for stopwords lowercased in JS search.
• #814: autodoc: Guard against strange type objects that don’t have __bases__.
• #932: autodoc: Do not crash if __doc__ is not a string.
• #933: Do not crash if an option value is malformed (contains spaces but no option name).
• #908: On Python 3, handle error messages from LaTeX correctly in the pngmath extension.
• #943: In autosummary, recognize “first sentences” to pull from the docstring if they contain upper-

case letters.
• #923: Take the entire LaTeX document into account when caching pngmath-generated images. This

rebuilds them correctly when pngmath_latex_preamble changes.
• #901: Emit a warning when using docutils’ new “math” markup without a Sphinx math extension

active.
• #845: In code blocks, when the selected lexer fails, display line numbers nevertheless if configured.
• #929: Support parsed-literal blocks in LaTeX output correctly.
• #949: Update the tabulary.sty packed with Sphinx.
• #1050: Add anonymous labels into objects.inv to be referenced via intersphinx.
• #1095: Fix print-media stylesheet being included always in the “scrolls” theme.
• #1085: Fix current classname not getting set if class description has :noindex: set.
• #1181: Report option errors in autodoc directives more gracefully.
• #1155: Fix autodocumenting C-defined methods as attributes in Python 3.
• #1233: Allow finding both Python classes and exceptions with the “class” and “exc” roles in inter-

sphinx.
• #1198: Allow “image” for the “figwidth” option of the figure directive as documented by docutils.
• #1152: Fix pycode parsing errors of Python 3 code by including two grammar versions for Python 2

and 3, and loading the appropriate version for the running Python version.
• #1017: Be helpful and tell the user when the argument to option does not match the required

format.
• #1345: Fix two bugs with nitpick_ignore; now you don’t have to remove the store environment

for changes to have effect.
• #1072: In the JS search, fix issues searching for upper-cased words by lowercasing words before

stemming.
• #1299: Make behavior of the math directive more consistent and avoid producing empty environ-

ments in LaTeX output.
• #1308: Strip HTML tags from the content of “raw” nodes before feeding it to the search indexer.

 Sphinx Documentation, Release 1.6.3

24.34. Release 1.2.1 (released Jan 19, 2014) 283

http://docutils.sourceforge.net/docs/ref/rst/directives.html#figure

• #1249: Fix duplicate LaTeX page numbering for manual documents.
• #1292: In the linkchecker, retry HEAD requests when denied by HTTP 405. Also make the redirect

code apparent and tweak the output a bit to be more obvious.
• #1285: Avoid name clashes between C domain objects and section titles.
• #848: Always take the newest code in incremental rebuilds with the sphinx.ext.viewcode exten-

sion.
• #979, #1266: Fix exclude handling in sphinx-apidoc.
• #1302: Fix regression in sphinx.ext.inheritance_diagram when documenting classes that

can’t be pickled.
• #1316: Remove hard-coded font-face resources from epub theme.
• #1329: Fix traceback with empty translation msgstr in .po files.
• #1300: Fix references not working in translated documents in some instances.
• #1283: Fix a bug in the detection of changed files that would try to access doctrees of deleted docu-

ments.
• #1330: Fix exclude_patterns behavior with subdirectories in the html_static_path.
• #1323: Fix emitting empty tags in the HTML writer, which is not valid HTML.
• #1147: Don’t emit a sidebar search box in the “singlehtml” builder.

24.34.2 Documentation

• #1325: Added a “Intersphinx” tutorial section. (doc/tutorial.rst)

24.35 Release 1.2 (released Dec 10, 2013)

24.35.1 Features added

• Added sphinx.version_info tuple for programmatic checking of the Sphinx version.

24.35.2 Incompatible changes

• Removed the sphinx.ext.refcounting extension – it is very specific to CPython and has no
place in the main distribution.

24.35.3 Bugs fixed

• Restore versionmodified CSS class for versionadded/changed and deprecated directives.
• PR#181: Fix html_theme_path = ['.'] is a trigger of rebuild all documents always (This change

keeps the current “theme changes cause a rebuild” feature).
• #1296: Fix invalid charset in HTML help generated HTML files for default locale.
• PR#190: Fix gettext does not extract figure caption and rubric title inside other blocks. Thanks to

Michael Schlenker.
• PR#176: Make sure setup_command test can always import Sphinx. Thanks to Dmitry Shachnev.

Sphinx Documentation, Release 1.6.3

284 Chapter 24. Changes in Sphinx

• #1311: Fix test_linkcode.test_html fails with C locale and Python 3.
• #1269: Fix ResourceWarnings with Python 3.2 or later.
• #1138: Fix: When autodoc_docstring_signature = True and autoclass_content =
'init' or 'both', __init__ line should be removed from class documentation.

24.36 Release 1.2 beta3 (released Oct 3, 2013)

24.36.1 Features added

• The Sphinx error log files will now include a list of the loaded extensions for help in debugging.

24.36.2 Incompatible changes

• PR#154: Remove “sphinx” prefix from LaTeX class name except ‘sphinxmanual’ and ‘sphinxhowto’.
Now you can use your custom document class without ‘sphinx’ prefix. Thanks to Erik B.

24.36.3 Bugs fixed

• #1265: Fix i18n: crash when translating a section name that is pointed to from a named target.
• A wrong condition broke the search feature on first page that is usually index.rst. This issue was

introduced in 1.2b1.
• #703: When Sphinx can’t decode filenames with non-ASCII characters, Sphinx now catches

UnicodeError and will continue if possible instead of raising the exception.

24.37 Release 1.2 beta2 (released Sep 17, 2013)

24.37.1 Features added

• apidoc now ignores “_private” modules by default, and has an option -P to include them.
• apidoc now has an option to not generate headings for packages and modules, for the case that the

module docstring already includes a reST heading.
• PR#161: apidoc can now write each module to a standalone page instead of combining all modules

in a package on one page.
• Builders: rebuild i18n target document when catalog updated.
• Support docutils.conf ‘writers’ and ‘html4css1 writer’ section in the HTML writer. The latex,

manpage and texinfo writers also support their respective ‘writers’ sections.
• The new html_extra_path config value allows to specify directories with files that should be

copied directly to the HTML output directory.
• Autodoc directives for module data and attributes now support an annotation option, so that the

default display of the data/attribute value can be overridden.
• PR#136: Autodoc directives now support an imported-members option to include members

imported from different modules.

 Sphinx Documentation, Release 1.6.3

24.36. Release 1.2 beta3 (released Oct 3, 2013) 285

• New locales: Macedonian, Sinhala, Indonesian.
• Theme package collection by using setuptools plugin mechanism.

24.37.2 Incompatible changes

• PR#144, #1182: Force timezone offset to LocalTimeZone on POT-Creation-Date that was generated by
gettext builder. Thanks to masklinn and Jakub Wilk.

24.37.3 Bugs fixed

• PR#132: Updated jQuery version to 1.8.3.
• PR#141, #982: Avoid crash when writing PNG file using Python 3. Thanks to Marcin Wojdyr.
• PR#145: In parallel builds, sphinx drops second document file to write. Thanks to tychoish.
• PR#151: Some styling updates to tables in LaTeX.
• PR#153: The “extensions” config value can now be overridden.
• PR#155: Added support for some C++11 function qualifiers.
• Fix: ‘make gettext’ caused UnicodeDecodeError when templates contain utf-8 encoded strings.
• #828: use inspect.getfullargspec() to be able to document functions with keyword-only arguments on

Python 3.
• #1090: Fix i18n: multiple cross references (term, ref, doc) in the same line return the same link.
• #1157: Combination of ‘globaltoc.html’ and hidden toctree caused exception.
• #1159: fix wrong generation of objects inventory for Python modules, and add a workaround in

intersphinx to fix handling of affected inventories.
• #1160: Citation target missing caused an AssertionError.
• #1162, PR#139: singlehtml builder didn’t copy images to _images/.
• #1173: Adjust setup.py dependencies because Jinja2 2.7 discontinued compatibility with Python < 3.3

and Python < 2.6. Thanks to Alexander Dupuy.
• #1185: Don’t crash when a Python module has a wrong or no encoding declared, and non-ASCII

characters are included.
• #1188: sphinx-quickstart raises UnicodeEncodeError if “Project version” includes non-ASCII charac-

ters.
• #1189: “Title underline is too short” WARNING is given when using fullwidth characters to “Project

name” on quickstart.
• #1190: Output TeX/texinfo/man filename has no basename (only extension) when using non-ASCII

characters in the “Project name” on quickstart.
• #1192: Fix escaping problem for hyperlinks in the manpage writer.
• #1193: Fix i18n: multiple link references in the same line return the same link.
• #1176: Fix i18n: footnote reference number missing for auto numbered named footnote and auto

symbol footnote.
• PR#146,#1172: Fix ZeroDivisionError in parallel builds. Thanks to tychoish.
• #1204: Fix wrong generation of links to local intersphinx targets.
• #1206: Fix i18n: gettext did not translate admonition directive’s title.

Sphinx Documentation, Release 1.6.3

286 Chapter 24. Changes in Sphinx

• #1232: Sphinx generated broken ePub files on Windows.
• #1259: Guard the debug output call when emitting events; to prevent the repr() implementation of

arbitrary objects causing build failures.
• #1142: Fix NFC/NFD normalizing problem of rst filename on Mac OS X.
• #1234: Ignoring the string consists only of white-space characters.

24.38 Release 1.2 beta1 (released Mar 31, 2013)

24.38.1 Incompatible changes

• Removed sphinx.util.compat.directive_dwim() and sphinx.roles.xfileref_role()
which were deprecated since version 1.0.

• PR#122: the files given in latex_additional_files now override TeX files included by Sphinx,
such as sphinx.sty.

• PR#124: the node generated by versionadded, versionchanged and deprecated directives
now includes all added markup (such as “New in version X”) as child nodes, and no additional text
must be generated by writers.

• PR#99: the seealso directive now generates admonition nodes instead of the custom seealso
node.

24.38.2 Features added

• Markup
• The toctree directive and the toctree() template function now have an includehidden

option that includes hidden toctree entries (bugs #790 and #1047). A bug in the maxdepth
option for the toctree() template function has been fixed (bug #1046).

• PR#99: Strip down seealso directives to normal admonitions. This removes their unusual CSS
classes (admonition-see-also), inconsistent LaTeX admonition title (“See Also” instead of “See
also”), and spurious indentation in the text builder.

• HTML builder
• #783: Create a link to full size image if it is scaled with width or height.
• #1067: Improve the ordering of the JavaScript search results: matches in titles come before

matches in full text, and object results are better categorized. Also implement a pluggable
search scorer.

• #1053: The “rightsidebar” and “collapsiblesidebar” HTML theme options now work together.
• Update to jQuery 1.7.1 and Underscore.js 1.3.1.

• Texinfo builder
• An “Index” node is no longer added when there are no entries.
• “deffn” categories are no longer capitalized if they contain capital letters.
• desc_annotation nodes are now rendered.
• strong and emphasis nodes are now formatted like literals. The reason for this is because

 Sphinx Documentation, Release 1.6.3

24.38. Release 1.2 beta1 (released Mar 31, 2013) 287

the standard Texinfo markup (*strong* and _emphasis_) resulted in confusing output due
to the common usage of using these constructs for documenting parameter names.

• Field lists formatting has been tweaked to better display “Info field lists”.
• system_message and problematic nodes are now formatted in a similar fashion as done

by the text builder.
• “en-dash” and “em-dash” conversion of hyphens is no longer performed in option directive

signatures.
• @ref is now used instead of @pxref for cross-references which prevents the word “see” from

being added before the link (does not affect the Info output).
• The @finalout command has been added for better TeX output.
• transition nodes are now formatted using underscores (“_”) instead of asterisks (“*”).
• The default value for the paragraphindent has been changed from 2 to 0 meaning that para-

graphs are no longer indented by default.
• #1110: A new configuration value texinfo_no_detailmenu has been added for controlling

whether a @detailmenu is added in the “Top” node’s menu.
• Detailed menus are no longer created except for the “Top” node.
• Fixed an issue where duplicate domain indices would result in invalid output.

• LaTeX builder:
• PR#115: Add 'transition' item in latex_elements for customizing how transitions are

displayed. Thanks to Jeff Klukas.
• PR#114: The LaTeX writer now includes the “cmap” package by default. The 'cmappkg' item

in latex_elements can be used to control this. Thanks to Dmitry Shachnev.
• The 'fontpkg' item in latex_elements now defaults to '' when the language uses the

Cyrillic script. Suggested by Dmitry Shachnev.
• The latex_documents, texinfo_documents, and man_pages configuration values will be

set to default values based on the master_doc if not explicitly set in conf.py. Previously, if
these values were not set, no output would be generated by their respective builders.

• Internationalization:
• Add i18n capabilities for custom templates. For example: The Sphinx reference documentation

in doc directory provides a sphinx.pot file with message strings from
doc/_templates/*.html when using make gettext.

• PR#61,#703: Add support for non-ASCII filename handling.

• Other builders:
• Added the Docutils-native XML and pseudo-XML builders. See XMLBuilder and
PseudoXMLBuilder.

• PR#45: The linkcheck builder now checks #anchors for existence.
• PR#123, #1106: Add epub_use_index configuration value. If provided, it will be used instead

of html_use_index for epub builder.
• PR#126: Add epub_tocscope configuration value. The setting controls the generation of the

epub toc. The user can now also include hidden toc entries.
• PR#112: Add epub_show_urls configuration value.

Sphinx Documentation, Release 1.6.3

288 Chapter 24. Changes in Sphinx

• Extensions:
• PR#52: special_members flag to autodoc now behaves like members.
• PR#47: Added sphinx.ext.linkcode extension.
• PR#25: In inheritance diagrams, the first line of the class docstring is now the tooltip for the

class.

• Command-line interfaces:
• PR#75: Added --follow-links option to sphinx-apidoc.
• #869: sphinx-build now has the option -T for printing the full traceback after an unhandled

exception.
• sphinx-build now supports the standard --help and --version options.
• sphinx-build now provides more specific error messages when called with invalid options or

arguments.
• sphinx-build now has a verbose option -v which can be repeated for greater effect. A single

occurrence provides a slightly more verbose output than normal. Two or more occurrences of
this option provides more detailed output which may be useful for debugging.

• Locales:
• PR#74: Fix some Russian translation.
• PR#54: Added Norwegian bokmaal translation.
• PR#35: Added Slovak translation.
• PR#28: Added Hungarian translation.
• #1113: Add Hebrew locale.
• #1097: Add Basque locale.
• #1037: Fix typos in Polish translation. Thanks to Jakub Wilk.
• #1012: Update Estonian translation.

• Optimizations:
• Speed up building the search index by caching the results of the word stemming routines.

Saves about 20 seconds when building the Python documentation.
• PR#108: Add experimental support for parallel building with a new sphinx-build -j

option.

24.38.3 Documentation

• PR#88: Added the “Sphinx Developer’s Guide” (doc/devguide.rst) which outlines the basic
development process of the Sphinx project.

• Added a detailed “Installing Sphinx” document (doc/install.rst).

24.38.4 Bugs fixed

• PR#124: Fix paragraphs in versionmodified are ignored when it has no dangling paragraphs. Fix
wrong html output (nested <p> tag). Fix versionmodified is not translatable. Thanks to Nozomu

 Sphinx Documentation, Release 1.6.3

24.38. Release 1.2 beta1 (released Mar 31, 2013) 289

Kaneko.
• PR#111: Respect add_autodoc_attrgetter() even when inherited-members is set. Thanks to A. Jesse

Jiryu Davis.
• PR#97: Fix footnote handling in translated documents.
• Fix text writer not handling visit_legend for figure directive contents.
• Fix text builder not respecting wide/fullwidth characters: title underline width, table layout width

and text wrap width.
• Fix leading space in LaTeX table header cells.
• #1132: Fix LaTeX table output for multi-row cells in the first column.
• #1128: Fix Unicode errors when trying to format time strings with a non-standard locale.
• #1127: Fix traceback when autodoc tries to tokenize a non-Python file.
• #1126: Fix double-hyphen to en-dash conversion in wrong places such as command-line option

names in LaTeX.
• #1123: Allow whitespaces in filenames given to literalinclude.
• #1120: Added improvements about i18n for themes “basic”, “haiku” and “scrolls” that Sphinx

built-in. Thanks to Leonardo J. Caballero G.
• #1118: Updated Spanish translation. Thanks to Leonardo J. Caballero G.
• #1117: Handle .pyx files in sphinx-apidoc.
• #1112: Avoid duplicate download files when referenced from documents in different ways (abso-

lute/relative).
• #1111: Fix failure to find uppercase words in search when html_search_language is ‘ja’. Thanks

to Tomo Saito.
• #1108: The text writer now correctly numbers enumerated lists with non-default start values (based

on patch by Ewan Edwards).
• #1102: Support multi-context “with” statements in autodoc.
• #1090: Fix gettext not extracting glossary terms.
• #1074: Add environment version info to the generated search index to avoid compatibility issues

with old builds.
• #1070: Avoid un-pickling issues when running Python 3 and the saved environment was created

under Python 2.
• #1069: Fixed error caused when autodoc would try to format signatures of “partial” functions

without keyword arguments (patch by Artur Gaspar).
• #1062: sphinx.ext.autodoc use __init__ method signature for class signature.
• #1055: Fix web support with relative path to source directory.
• #1043: Fix sphinx-quickstart asking again for yes/no questions because input() returns values

with an extra ‘r’ on Python 3.2.0 + Windows. Thanks to Régis Décamps.
• #1041: Fix failure of the cpp domain parser to parse a const type with a modifier.
• #1038: Fix failure of the cpp domain parser to parse C+11 “static constexpr” declarations. Thanks to

Jakub Wilk.
• #1029: Fix intersphinx_mapping values not being stable if the mapping has plural key/value set

with Python 3.3.
• #1028: Fix line block output in the text builder.

Sphinx Documentation, Release 1.6.3

290 Chapter 24. Changes in Sphinx

• #1024: Improve Makefile/make.bat error message if Sphinx is not found. Thanks to Anatoly Tech-
tonik.

• #1018: Fix “container” directive handling in the text builder.
• #1015: Stop overriding jQuery contains() in the JavaScript.
• #1010: Make pngmath images transparent by default; IE7+ should handle it.
• #1008: Fix test failures with Python 3.3.
• #995: Fix table-of-contents and page numbering for the LaTeX “howto” class.
• #976: Fix gettext does not extract index entries.
• PR#72: #975: Fix gettext not extracting definition terms before docutils 0.10.
• #961: Fix LaTeX output for triple quotes in code snippets.
• #958: Do not preserve environment.pickle after a failed build.
• #955: Fix i18n transformation.
• #940: Fix gettext does not extract figure caption.
• #920: Fix PIL packaging issue that allowed to import Image without PIL namespace. Thanks to

Marc Schlaich.
• #723: Fix the search function on local files in WebKit based browsers.
• #440: Fix coarse timestamp resolution in some filesystem generating a wrong list of outdated files.

24.39 Release 1.1.3 (Mar 10, 2012)

• PR#40: Fix safe_repr function to decode bytestrings with non-ASCII characters correctly.
• PR#37: Allow configuring sphinx-apidoc via SPHINX_APIDOC_OPTIONS.
• PR#34: Restore Python 2.4 compatibility.
• PR#36: Make the “bibliography to TOC” fix in LaTeX output specific to the document class.
• #695: When the highlight language “python” is specified explicitly, do not try to parse the code to

recognize non-Python snippets.
• #859: Fix exception under certain circumstances when not finding appropriate objects to link to.
• #860: Do not crash when encountering invalid doctest examples, just emit a warning.
• #864: Fix crash with some settings of modindex_common_prefix.
• #862: Fix handling of -D and -A options on Python 3.
• #851: Recognize and warn about circular toctrees, instead of running into recursion errors.
• #853: Restore compatibility with docutils trunk.
• #852: Fix HtmlHelp index entry links again.
• #854: Fix inheritance_diagram raising attribute errors on builtins.
• #832: Fix crashes when putting comments or lone terms in a glossary.
• #834, #818: Fix HTML help language/encoding mapping for all Sphinx supported languages.
• #844: Fix crashes when dealing with Unicode output in doctest extension.
• #831: Provide --project flag in setup_command as advertised.

 Sphinx Documentation, Release 1.6.3

24.39. Release 1.1.3 (Mar 10, 2012) 291

• #875: Fix reading config files under Python 3.
• #876: Fix quickstart test under Python 3.
• #870: Fix spurious KeyErrors when removing documents.
• #892: Fix single-HTML builder misbehaving with the master document in a subdirectory.
• #873: Fix assertion errors with empty only directives.
• #816: Fix encoding issues in the Qt help builder.

24.40 Release 1.1.2 (Nov 1, 2011) – 1.1.1 is a silly version number any-
way!

• #809: Include custom fixers in the source distribution.

24.41 Release 1.1.1 (Nov 1, 2011)

• #791: Fix QtHelp, DevHelp and HtmlHelp index entry links.
• #792: Include “sphinx-apidoc” in the source distribution.
• #797: Don’t crash on a misformatted glossary.
• #801: Make intersphinx work properly without SSL support.
• #805: Make the Sphinx.add_index_to_domain method work correctly.
• #780: Fix Python 2.5 compatibility.

24.42 Release 1.1 (Oct 9, 2011)

24.42.1 Incompatible changes

• The py:module directive doesn’t output its platform option value anymore. (It was the only
thing that the directive did output, and therefore quite inconsistent.)

• Removed support for old dependency versions; requirements are now:
• Pygments >= 1.2
• Docutils >= 0.7
• Jinja2 >= 2.3

24.42.2 Features added

• Added Python 3.x support.
• New builders and subsystems:

• Added a Texinfo builder.

Sphinx Documentation, Release 1.6.3

292 Chapter 24. Changes in Sphinx

• Added i18n support for content, a gettext builder and related utilities.
• Added the websupport library and builder.
• #98: Added a sphinx-apidoc script that autogenerates a hierarchy of source files containing

autodoc directives to document modules and packages.
• #273: Add an API for adding full-text search support for languages other than English. Add

support for Japanese.

• Markup:
• #138: Added an index role, to make inline index entries.
• #454: Added more index markup capabilities: marking see/seealso entries, and main entries for

a given key.
• #460: Allowed limiting the depth of section numbers for HTML using the toctree’s
numbered option.

• #586: Implemented improved glossary markup which allows multiple terms per definition.
• #478: Added py:decorator directive to describe decorators.
• C++ domain now supports array definitions.
• C++ domain now supports doc fields (:param x: inside directives).
• Section headings in only directives are now correctly handled.
• Added emphasize-lines option to source code directives.
• #678: C++ domain now supports superclasses.

• HTML builder:
• Added pyramid theme.
• #559: html_add_permalinks is now a string giving the text to display in permalinks.
• #259: HTML table rows now have even/odd CSS classes to enable “Zebra styling”.
• #554: Add theme option sidebarwidth to the basic theme.

• Other builders:
• #516: Added new value of the latex_show_urls option to show the URLs in footnotes.
• #209: Added text_newlines and text_sectionchars config values.
• Added man_show_urls config value.
• #472: linkcheck builder: Check links in parallel, use HTTP HEAD requests and allow config-

uring the timeout. New config values: linkcheck_timeout and linkcheck_workers.
• #521: Added linkcheck_ignore config value.
• #28: Support row/colspans in tables in the LaTeX builder.

• Configuration and extensibility:
• #537: Added nitpick_ignore.
• #306: Added env-get-outdated event.
• Application.add_stylesheet() now accepts full URIs.

• Autodoc:

 Sphinx Documentation, Release 1.6.3

24.42. Release 1.1 (Oct 9, 2011) 293

• #564: Add autodoc_docstring_signature. When enabled (the default), autodoc retrieves
the signature from the first line of the docstring, if it is found there.

• #176: Provide private-members option for autodoc directives.
• #520: Provide special-members option for autodoc directives.
• #431: Doc comments for attributes can now be given on the same line as the assignment.
• #437: autodoc now shows values of class data attributes.
• autodoc now supports documenting the signatures of functools.partial objects.

• Other extensions:
• Added the sphinx.ext.mathjax extension.
• #443: Allow referencing external graphviz files.
• Added inline option to graphviz directives, and fixed the default (block-style) in LaTeX

output.
• #590: Added caption option to graphviz directives.
• #553: Added testcleanup blocks in the doctest extension.
• #594: trim_doctest_flags now also removes <BLANKLINE> indicators.
• #367: Added automatic exclusion of hidden members in inheritance diagrams, and an option to

selectively enable it.
• Added pngmath_add_tooltips.
• The math extension displaymath directives now support name in addition to label for giving

the equation label, for compatibility with Docutils.

• New locales:
• #221: Added Swedish locale.
• #526: Added Iranian locale.
• #694: Added Latvian locale.
• Added Nepali locale.
• #714: Added Korean locale.
• #766: Added Estonian locale.

• Bugs fixed:
• #778: Fix “hide search matches” link on pages linked by search.
• Fix the source positions referenced by the “viewcode” extension.

24.43 Release 1.0.8 (Sep 23, 2011)

• #627: Fix tracebacks for AttributeErrors in autosummary generation.
• Fix the abbr role when the abbreviation has newlines in it.
• #727: Fix the links to search results with custom object types.

Sphinx Documentation, Release 1.6.3

294 Chapter 24. Changes in Sphinx

• #648: Fix line numbers reported in warnings about undefined references.
• #696, #666: Fix C++ array definitions and template arguments that are not type names.
• #633: Allow footnotes in section headers in LaTeX output.
• #616: Allow keywords to be linked via intersphinx.
• #613: Allow Unicode characters in production list token names.
• #720: Add dummy visitors for graphviz nodes for text and man.
• #704: Fix image file duplication bug.
• #677: Fix parsing of multiple signatures in C++ domain.
• #637: Ignore Emacs lock files when looking for source files.
• #544: Allow .pyw extension for importable modules in autodoc.
• #700: Use $(MAKE) in quickstart-generated Makefiles.
• #734: Make sidebar search box width consistent in browsers.
• #644: Fix spacing of centered figures in HTML output.
• #767: Safely encode SphinxError messages when printing them to sys.stderr.
• #611: Fix LaTeX output error with a document with no sections but a link target.
• Correctly treat built-in method descriptors as methods in autodoc.
• #706: Stop monkeypatching the Python textwrap module.
• #657: viewcode now works correctly with source files that have non-ASCII encoding.
• #669: Respect the noindex flag option in py:module directives.
• #675: Fix IndexErrors when including nonexisting lines with literalinclude.
• #676: Respect custom function/method parameter separator strings.
• #682: Fix JS incompatibility with jQuery >= 1.5.
• #693: Fix double encoding done when writing HTMLHelp .hhk files.
• #647: Do not apply SmartyPants in parsed-literal blocks.
• C++ domain now supports array definitions.

24.44 Release 1.0.7 (Jan 15, 2011)

• #347: Fix wrong generation of directives of static methods in autosummary.
• #599: Import PIL as from PIL import Image.
• #558: Fix longtables with captions in LaTeX output.
• Make token references work as hyperlinks again in LaTeX output.
• #572: Show warnings by default when reference labels cannot be found.
• #536: Include line number when complaining about missing reference targets in nitpicky mode.
• #590: Fix inline display of graphviz diagrams in LaTeX output.
• #589: Build using app.build() in setup command.
• Fix a bug in the inheritance diagram exception that caused base classes to be skipped if one of them

is a builtin.

 Sphinx Documentation, Release 1.6.3

24.44. Release 1.0.7 (Jan 15, 2011) 295

• Fix general index links for C++ domain objects.
• #332: Make admonition boundaries in LaTeX output visible.
• #573: Fix KeyErrors occurring on rebuild after removing a file.
• Fix a traceback when removing files with globbed toctrees.
• If an autodoc object cannot be imported, always re-read the document containing the directive on

next build.
• If an autodoc object cannot be imported, show the full traceback of the import error.
• Fix a bug where the removal of download files and images wasn’t noticed.
• #571: Implement ~ cross-reference prefix for the C domain.
• Fix regression of LaTeX output with the fix of #556.
• #568: Fix lookup of class attribute documentation on descriptors so that comment documentation

now works.
• Fix traceback with only directives preceded by targets.
• Fix tracebacks occurring for duplicate C++ domain objects.
• Fix JavaScript domain links to objects with $ in their name.

24.45 Release 1.0.6 (Jan 04, 2011)

• #581: Fix traceback in Python domain for empty cross-reference targets.
• #283: Fix literal block display issues on Chrome browsers.
• #383, #148: Support sorting a limited range of accented characters in the general index and the glos-

sary.
• #570: Try decoding -D and -A command-line arguments with the locale’s preferred encoding.
• #528: Observe locale_dirs when looking for the JS translations file.
• #574: Add special code for better support of Japanese documents in the LaTeX builder.
• Regression of #77: If there is only one parameter given with :param: markup, the bullet list is now

suppressed again.
• #556: Fix missing paragraph breaks in LaTeX output in certain situations.
• #567: Emit the autodoc-process-docstring event even for objects without a docstring so that it

can add content.
• #565: In the LaTeX builder, not only literal blocks require different table handling, but also quite a

few other list-like block elements.
• #515: Fix tracebacks in the viewcode extension for Python objects that do not have a valid signature.
• Fix strange reports of line numbers for warnings generated from autodoc-included docstrings, due

to different behavior depending on docutils version.
• Several fixes to the C++ domain.

Sphinx Documentation, Release 1.6.3

296 Chapter 24. Changes in Sphinx

24.46 Release 1.0.5 (Nov 12, 2010)

• #557: Add CSS styles required by docutils 0.7 for aligned images and figures.
• In the Makefile generated by LaTeX output, do not delete pdf files on clean; they might be required

images.
• #535: Fix LaTeX output generated for line blocks.
• #544: Allow .pyw as a source file extension.

24.47 Release 1.0.4 (Sep 17, 2010)

• #524: Open intersphinx inventories in binary mode on Windows, since version 2 contains zlib-com-
pressed data.

• #513: Allow giving non-local URIs for JavaScript files, e.g. in the JSMath extension.
• #512: Fix traceback when intersphinx_mapping is empty.

24.48 Release 1.0.3 (Aug 23, 2010)

• #495: Fix internal vs. external link distinction for links coming from a docutils table-of-contents.
• #494: Fix the maxdepth option for the toctree() template callable when used with
collapse=True.

• #507: Fix crash parsing Python argument lists containing brackets in string literals.
• #501: Fix regression when building LaTeX docs with figures that don’t have captions.
• #510: Fix inheritance diagrams for classes that are not picklable.
• #497: Introduce separate background color for the sidebar collapse button, making it easier to see.
• #502, #503, #496: Fix small layout bugs in several builtin themes.

24.49 Release 1.0.2 (Aug 14, 2010)

• #490: Fix cross-references to objects of types added by the add_object_type() API function.
• Fix handling of doc field types for different directive types.
• Allow breaking long signatures, continuing with backlash-escaped newlines.
• Fix unwanted styling of C domain references (because of a namespace clash with Pygments styles).
• Allow references to PEPs and RFCs with explicit anchors.
• #471: Fix LaTeX references to figures.
• #482: When doing a non-exact search, match only the given type of object.
• #481: Apply non-exact search for Python reference targets with .name for modules too.

 Sphinx Documentation, Release 1.6.3

24.46. Release 1.0.5 (Nov 12, 2010) 297

• #484: Fix crash when duplicating a parameter in an info field list.
• #487: Fix setting the default role to one provided by the oldcmarkup extension.
• #488: Fix crash when json-py is installed, which provides a json module but is incompatible to

simplejson.
• #480: Fix handling of target naming in intersphinx.
• #486: Fix removal of ! for all cross-reference roles.

24.50 Release 1.0.1 (Jul 27, 2010)

• #470: Fix generated target names for reST domain objects; they are not in the same namespace.
• #266: Add Bengali language.
• #473: Fix a bug in parsing JavaScript object names.
• #474: Fix building with SingleHTMLBuilder when there is no toctree.
• Fix display names for objects linked to by intersphinx with explicit targets.
• Fix building with the JSON builder.
• Fix hyperrefs in object descriptions for LaTeX.

24.51 Release 1.0 (Jul 23, 2010)

24.51.1 Incompatible changes

• Support for domains has been added. A domain is a collection of directives and roles that all
describe objects belonging together, e.g. elements of a programming language. A few builtin
domains are provided:

• Python
• C
• C++
• JavaScript
• reStructuredText

• The old markup for defining and linking to C directives is now deprecated. It will not work
anymore in future versions without activating the oldcmarkup extension; in Sphinx 1.0, it is acti-
vated by default.

• Removed support for old dependency versions; requirements are now:
• docutils >= 0.5
• Jinja2 >= 2.2

• Removed deprecated elements:
• exclude_dirs config value
• sphinx.builder module

Sphinx Documentation, Release 1.6.3

298 Chapter 24. Changes in Sphinx

24.51.2 Features added

• General:
• Added a “nitpicky” mode that emits warnings for all missing references. It is activated by the
sphinx-build -n command-line switch or the nitpicky config value.

• Added latexpdf target in quickstart Makefile.

• Markup:
• The menuselection and guilabel roles now support ampersand accelerators.
• New more compact doc field syntax is now recognized: :param type name:
description.

• Added tab-width option to literalinclude directive.
• Added titlesonly option to toctree directive.
• Added the prepend and append options to the literalinclude directive.
• #284: All docinfo metadata is now put into the document metadata, not just the author.
• The ref role can now also reference tables by caption.
• The include directive now supports absolute paths, which are interpreted as relative to the

source directory.
• In the Python domain, references like :func:`.name` now look for matching names with any

prefix if no direct match is found.

• Configuration:
• Added rst_prolog config value.
• Added html_secnumber_suffix config value to control section numbering format.
• Added html_compact_lists config value to control docutils’ compact lists feature.
• The html_sidebars config value can now contain patterns as keys, and the values can be lists

that explicitly select which sidebar templates should be rendered. That means that the builtin
sidebar contents can be included only selectively.

• html_static_path can now contain single file entries.
• The new universal config value exclude_patterns makes the old unused_docs,
exclude_trees and exclude_dirnames obsolete.

• Added html_output_encoding config value.
• Added the latex_docclass config value and made the “twoside” documentclass option

overridable by “oneside”.
• Added the trim_doctest_flags config value, which is true by default.
• Added html_show_copyright config value.
• Added latex_show_pagerefs and latex_show_urls config values.
• The behavior of html_file_suffix changed slightly: the empty string now means “no

suffix” instead of “default suffix”, use None for “default suffix”.

• New builders:
• Added a builder for the Epub format.

 Sphinx Documentation, Release 1.6.3

24.51. Release 1.0 (Jul 23, 2010) 299

http://docutils.sourceforge.net/docs/ref/rst/directives.html#include

• Added a builder for manual pages.
• Added a single-file HTML builder.

• HTML output:
• Inline roles now get a CSS class with their name, allowing styles to customize their appearance.

Domain-specific roles get two classes, domain and domain-rolename.
• References now get the class internal if they are internal to the whole project, as opposed to

internal to the current page.
• External references can be styled differently with the new externalrefs theme option for the

default theme.
• In the default theme, the sidebar can experimentally now be made collapsible using the new
collapsiblesidebar theme option.

• #129: Toctrees are now wrapped in a div tag with class toctree-wrapper in HTML output.
• The toctree callable in templates now has a maxdepth keyword argument to control the

depth of the generated tree.
• The toctree callable in templates now accepts a titles_only keyword argument.
• Added htmltitle block in layout template.
• In the JavaScript search, allow searching for object names including the module name, like
sys.argv.

• Added new theme haiku, inspired by the Haiku OS user guide.
• Added new theme nature.
• Added new theme agogo, created by Andi Albrecht.
• Added new theme scrolls, created by Armin Ronacher.
• #193: Added a visitedlinkcolor theme option to the default theme.
• #322: Improved responsiveness of the search page by loading the search index asynchronously.

• Extension API:
• Added html-collect-pages.
• Added needs_sphinx config value and require_sphinx() application API method.
• #200: Added add_stylesheet() application API method.

• Extensions:
• Added the viewcode extension.
• Added the extlinks extension.
• Added support for source ordering of members in autodoc, with autodoc_member_order =
'bysource'.

• Added autodoc_default_flags config value, which can be used to select default flags for
all autodoc directives.

• Added a way for intersphinx to refer to named labels in other projects, and to specify the
project you want to link to.

• #280: Autodoc can now document instance attributes assigned in __init__ methods.
• Many improvements and fixes to the autosummary extension, thanks to Pauli Virtanen.

Sphinx Documentation, Release 1.6.3

300 Chapter 24. Changes in Sphinx

• #309: The graphviz extension can now output SVG instead of PNG images, controlled by the
graphviz_output_format config value.

• Added alt option to graphviz extension directives.
• Added exclude argument to autodoc.between().

• Translations:
• Added Croatian translation, thanks to Bojan Mihelač.
• Added Turkish translation, thanks to Firat Ozgul.
• Added Catalan translation, thanks to Pau Fernández.
• Added simplified Chinese translation.
• Added Danish translation, thanks to Hjorth Larsen.
• Added Lithuanian translation, thanks to Dalius Dobravolskas.

• Bugs fixed:
• #445: Fix links to result pages when using the search function of HTML built with the dirhtml

builder.
• #444: In templates, properly re-escape values treated with the “striptags” Jinja filter.

24.52 Previous versions

The changelog for versions before 1.0 can be found in the file CHANGES.old in the source distribution or
at GitHub.

 Sphinx Documentation, Release 1.6.3

24.52. Previous versions 301

https://github.com/sphinx-doc/sphinx/raw/master/CHANGES.old

Sphinx Documentation, Release 1.6.3

302 Chapter 24. Changes in Sphinx

CHAPTER 25

Projects using Sphinx

This is an (incomplete) alphabetic list of projects that use Sphinx or are experimenting with using it for
their documentation. If you like to be included, please mail to the Google group.
I’ve grouped the list into sections to make it easier to find interesting examples.

25.1 Documentation using the alabaster theme

• CodePy: https://documen.tician.de/codepy/
• MeshPy: https://documen.tician.de/meshpy/
• PyCuda: https://documen.tician.de/pycuda/
• PyLangAcq: http://pylangacq.org/

25.2 Documentation using the classic theme

• APSW: https://rogerbinns.github.io/apsw/
• Calibre: http://manual.calibre-ebook.com/
• Cython: http://docs.cython.org/
• Cormoran: http://cormoran.nhopkg.org/docs/
• Director: http://pythonhosted.org/director/
• F2py: http://f2py.sourceforge.net/docs/
• Genomedata: http://noble.gs.washington.edu/proj/genomedata/doc/1.2.2/genomedata.html
• GSL Shell: http://www.nongnu.org/gsl-shell/
• Hands-on Python Tutorial: http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/
• Hedge: https://documen.tician.de/hedge/
• Leo: http://leoeditor.com/
• Lino: http://www.lino-framework.org/
• mpmath: http://mpmath.org/doc/current/
• OpenEXR: http://excamera.com/articles/26/doc/index.html

 303

https://groups.google.com/forum/#!forum/sphinx-users
https://documen.tician.de/codepy/
https://documen.tician.de/meshpy/
https://documen.tician.de/pycuda/
http://pylangacq.org/
https://rogerbinns.github.io/apsw/
http://manual.calibre-ebook.com/
http://docs.cython.org/
http://cormoran.nhopkg.org/docs/
http://pythonhosted.org/director/
http://f2py.sourceforge.net/docs/
http://noble.gs.washington.edu/proj/genomedata/doc/1.2.2/genomedata.html
http://www.nongnu.org/gsl-shell/
http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/
https://documen.tician.de/hedge/
http://leoeditor.com/
http://www.lino-framework.org/
http://mpmath.org/doc/current/
http://excamera.com/articles/26/doc/index.html

• OpenGDA: http://www.opengda.org/gdadoc/html/
• openWNS: http://docs.openwns.org/
• Pioneers and Prominent Men of Utah: http://pioneers.rstebbing.com/
• PyCantonese: http://pycantonese.org/
• Pyevolve: http://pyevolve.sourceforge.net/
• PyMQI: http://pythonhosted.org/pymqi/
• pySPACE: http://pyspace.github.io/pyspace/
• Python: https://docs.python.org/3/
• python-apt: http://apt.alioth.debian.org/python-apt-doc/
• PyUblas: https://documen.tician.de/pyublas/
• Ring programming language: http://ring-lang.sourceforge.net/doc/index.html
• Scapy: http://www.secdev.org/projects/scapy/doc/
• Segway: http://noble.gs.washington.edu/proj/segway/doc/1.1.0/segway.html
• SymPy: http://docs.sympy.org/
• WTForms: http://wtforms.simplecodes.com/docs/
• z3c: http://www.ibiblio.org/paulcarduner/z3ctutorial/

25.3 Documentation using a customized version of the classic theme

• Advanced Generic Widgets: http://xoomer.virgilio.it/infinity77/AGW_Docs/index.html
• Arb: http://fredrikj.net/arb/
• Bazaar: http://doc.bazaar.canonical.com/en/
• CakePHP: http://book.cakephp.org/2.0/en/index.html
• Chaco: http://docs.enthought.com/chaco/
• Chef: https://docs.chef.io/index.html
• Djagios: http://djagios.org/
• EZ-Draw: http://pageperso.lif.univ-mrs.fr/~edouard.thiel/ez-draw/doc/en/html/ez-manual.html
• GetFEM++: http://home.gna.org/getfem/
• Google or-tools: https://or-tools.googlecode.com/svn/trunk/documentation/user_manual/in-

dex.html
• GPAW: https://wiki.fysik.dtu.dk/gpaw/
• Grok: http://grok.zope.org/doc/current/
• Kaa: http://api.freevo.org/kaa-base/
• LEPL: http://www.acooke.org/lepl/
• Mayavi: http://docs.enthought.com/mayavi/mayavi/
• NICOS: http://trac.frm2.tum.de/nicos/doc/nicos-master/index.html
• NOC: http://redmine.nocproject.org/projects/noc
• NumPy: http://docs.scipy.org/doc/numpy/reference/

Sphinx Documentation, Release 1.6.3

304 Chapter 25. Projects using Sphinx

http://www.opengda.org/gdadoc/html/
http://docs.openwns.org/
http://pioneers.rstebbing.com/
http://pycantonese.org/
http://pyevolve.sourceforge.net/
http://pythonhosted.org/pymqi/
http://pyspace.github.io/pyspace/
https://docs.python.org/3/
http://apt.alioth.debian.org/python-apt-doc/
https://documen.tician.de/pyublas/
http://ring-lang.sourceforge.net/doc/index.html
http://www.secdev.org/projects/scapy/doc/
http://noble.gs.washington.edu/proj/segway/doc/1.1.0/segway.html
http://docs.sympy.org/
http://wtforms.simplecodes.com/docs/
http://www.ibiblio.org/paulcarduner/z3ctutorial/
http://xoomer.virgilio.it/infinity77/AGW_Docs/index.html
http://fredrikj.net/arb/
http://doc.bazaar.canonical.com/en/
http://book.cakephp.org/2.0/en/index.html
http://docs.enthought.com/chaco/
https://docs.chef.io/index.html
http://djagios.org/
http://pageperso.lif.univ-mrs.fr/~edouard.thiel/ez-draw/doc/en/html/ez-manual.html
http://home.gna.org/getfem/
https://or-tools.googlecode.com/svn/trunk/documentation/user_manual/index.html
https://or-tools.googlecode.com/svn/trunk/documentation/user_manual/index.html
https://wiki.fysik.dtu.dk/gpaw/
http://grok.zope.org/doc/current/
http://api.freevo.org/kaa-base/
http://www.acooke.org/lepl/
http://docs.enthought.com/mayavi/mayavi/
http://trac.frm2.tum.de/nicos/doc/nicos-master/index.html
http://redmine.nocproject.org/projects/noc
http://docs.scipy.org/doc/numpy/reference/

• OpenCV: http://docs.opencv.org/
• Peach^3: http://peach3.nl/doc/latest/userdoc/
• Pygame: http://www.pygame.org/docs/
• Sage: http://www.sagemath.org/doc/
• SciPy: http://docs.scipy.org/doc/scipy/reference/
• simuPOP: http://simupop.sourceforge.net/manual_release/build/userGuide.html
• Sprox: http://sprox.org/
• TurboGears: http://turbogears.readthedocs.org/en/latest/
• Varnish: https://www.varnish-cache.org/docs/
• Zentyal: http://doc.zentyal.org/
• Zope: http://docs.zope.org/zope2/index.html
• zc.async: http://pythonhosted.org/zc.async/1.5.0/

25.4 Documentation using the sphinxdoc theme

• Fityk: http://fityk.nieto.pl/
• MapServer: http://mapserver.org/
• Matplotlib: http://matplotlib.org/
• Music21: http://web.mit.edu/music21/doc/index.html
• NetworkX: http://networkx.github.io/
• Pweave: http://mpastell.com/pweave/
• Pyre: http://docs.danse.us/pyre/sphinx/
• Pysparse: http://pysparse.sourceforge.net/
• PyTango: http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/pytango/latest/in-

dex.html
• Python Wild Magic: http://vmlaker.github.io/pythonwildmagic/
• Reteisi: http://www.reteisi.org/contents.html
• Sqlkit: http://sqlkit.argolinux.org/
• Turbulenz: http://docs.turbulenz.com/
• WebFaction: https://docs.webfaction.com/

25.5 Documentation using another builtin theme

• ASE: https://wiki.fysik.dtu.dk/ase/ (sphinx_rtd_theme)
• C/C++ Development with Eclipse: http://eclipsebook.in/ (agogo)
• ESWP3 (http://eswp3.org) (sphinx_rtd_theme)
• Jinja: http://jinja.pocoo.org/ (scrolls)

 Sphinx Documentation, Release 1.6.3

25.4. Documentation using the sphinxdoc theme 305

http://docs.opencv.org/
http://peach3.nl/doc/latest/userdoc/
http://www.pygame.org/docs/
http://www.sagemath.org/doc/
http://docs.scipy.org/doc/scipy/reference/
http://simupop.sourceforge.net/manual_release/build/userGuide.html
http://sprox.org/
http://turbogears.readthedocs.org/en/latest/
https://www.varnish-cache.org/docs/
http://doc.zentyal.org/
http://docs.zope.org/zope2/index.html
http://pythonhosted.org/zc.async/1.5.0/
http://fityk.nieto.pl/
http://mapserver.org/
http://matplotlib.org/
http://web.mit.edu/music21/doc/index.html
http://networkx.github.io/
http://mpastell.com/pweave/
http://docs.danse.us/pyre/sphinx/
http://pysparse.sourceforge.net/
http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/pytango/latest/index.html
http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/pytango/latest/index.html
http://vmlaker.github.io/pythonwildmagic/
http://www.reteisi.org/contents.html
http://sqlkit.argolinux.org/
http://docs.turbulenz.com/
https://docs.webfaction.com/
https://wiki.fysik.dtu.dk/ase/
http://eclipsebook.in/
http://eswp3.org
http://jinja.pocoo.org/

• jsFiddle: http://doc.jsfiddle.net/ (nature)
• libLAS: http://www.liblas.org/ (nature)
• Linguistica: http://linguistica-uchicago.github.io/lxa5/ (sphinx_rtd_theme)
• MoinMoin: https://moin-20.readthedocs.io/en/latest/ (sphinx_rtd_theme)
• MPipe: http://vmlaker.github.io/mpipe/ (sphinx13)
• Paver: http://paver.readthedocs.io/en/latest/
• pip: https://pip.pypa.io/en/latest/ (sphinx_rtd_theme)
• Programmieren mit PyGTK und Glade (German): http://www.florian-diesch.de/-

doc/python-und-glade/online/ (agogo)
• PyPubSub: http://pypubsub.readthedocs.io/ (bizstyle)
• Pyramid web framework: http://docs.pylonsproject.org/projects/pyramid/en/latest/ (pyramid)
• Quex: http://quex.sourceforge.net/doc/html/main.html
• Satchmo: http://docs.satchmoproject.com/en/latest/ (sphinx_rtd_theme)
• Setuptools: http://pythonhosted.org/setuptools/ (nature)
• SimPy: http://simpy.readthedocs.org/en/latest/
• Spring Python: http://docs.spring.io/spring-python/1.2.x/sphinx/html/ (nature)
• sqlparse: http://python-sqlparse.googlecode.com/svn/docs/api/index.html (agogo)
• Sylli: http://sylli.sourceforge.net/ (nature)
• Tuleap Open ALM: https://tuleap.net/doc/en/ (nature)
• Valence: http://docs.valence.desire2learn.com/ (haiku)

25.6 Documentation using a custom theme/integrated in a site

• Blender: https://www.blender.org/api/250PythonDoc/
• Blinker: http://discorporate.us/projects/Blinker/docs/
• Ceph: http://docs.ceph.com/docs/master/
• Classy: http://www.pocoo.org/projects/classy/
• DEAP: http://deap.gel.ulaval.ca/doc/0.8/index.html
• Django: https://docs.djangoproject.com/
• Elemental: http://libelemental.org/documentation/dev/index.html
• Enterprise Toolkit for Acrobat products: http://www.adobe.com/devnet-docs/acrobatetk/
• e-cidadania: http://e-cidadania.readthedocs.org/en/latest/
• Flask: http://flask.pocoo.org/docs/
• Flask-OpenID: http://pythonhosted.org/Flask-OpenID/
• Gameduino: http://excamera.com/sphinx/gameduino/
• GeoServer: http://docs.geoserver.org/
• gevent: http://www.gevent.org/
• GHC - Glasgow Haskell Compiler: http://downloads.haskell.org/~ghc/master/users-guide/

Sphinx Documentation, Release 1.6.3

306 Chapter 25. Projects using Sphinx

http://doc.jsfiddle.net/
http://www.liblas.org/
http://linguistica-uchicago.github.io/lxa5/
https://moin-20.readthedocs.io/en/latest/
http://vmlaker.github.io/mpipe/
http://paver.readthedocs.io/en/latest/
https://pip.pypa.io/en/latest/
http://www.florian-diesch.de/doc/python-und-glade/online/
http://www.florian-diesch.de/doc/python-und-glade/online/
http://pypubsub.readthedocs.io/
http://docs.pylonsproject.org/projects/pyramid/en/latest/
http://quex.sourceforge.net/doc/html/main.html
http://docs.satchmoproject.com/en/latest/
http://pythonhosted.org/setuptools/
http://simpy.readthedocs.org/en/latest/
http://docs.spring.io/spring-python/1.2.x/sphinx/html/
http://python-sqlparse.googlecode.com/svn/docs/api/index.html
http://sylli.sourceforge.net/
https://tuleap.net/doc/en/
http://docs.valence.desire2learn.com/
https://www.blender.org/api/250PythonDoc/
http://discorporate.us/projects/Blinker/docs/
http://docs.ceph.com/docs/master/
http://www.pocoo.org/projects/classy/
http://deap.gel.ulaval.ca/doc/0.8/index.html
https://docs.djangoproject.com/
http://libelemental.org/documentation/dev/index.html
http://www.adobe.com/devnet-docs/acrobatetk/
http://e-cidadania.readthedocs.org/en/latest/
http://flask.pocoo.org/docs/
http://pythonhosted.org/Flask-OpenID/
http://excamera.com/sphinx/gameduino/
http://docs.geoserver.org/
http://www.gevent.org/
http://downloads.haskell.org/~ghc/master/users-guide/

• Glashammer: http://glashammer.org/
• Istihza (Turkish Python documentation project): http://belgeler.istihza.com/py2/
• Lasso: http://lassoguide.com/
• Manage documentation such as source code (fr): http://redaction-technique.org/
• MathJax: http://docs.mathjax.org/en/latest/
• MirrorBrain: http://mirrorbrain.org/docs/
• MyHDL: http://docs.myhdl.org/en/latest/
• nose: http://nose.readthedocs.org/en/latest/
• NoTex: https://www.notex.ch/overview/
• ObjectListView: http://objectlistview.sourceforge.net/python/
• Open ERP: https://doc.odoo.com/
• OpenCV: http://docs.opencv.org/
• Open Dylan: http://opendylan.org/documentation/
• OpenLayers: http://docs.openlayers.org/
• PyEphem: http://rhodesmill.org/pyephem/
• German Plone user manual: http://www.hasecke.com/plone-benutzerhandbuch/
• PSI4: http://www.psicode.org/psi4manual/master/index.html
• Pylons: http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/
• PyMOTW: https://pymotw.com/2/
• python-aspectlib: http://python-aspectlib.readthedocs.org/en/latest/

(sphinx-py3doc-enhanced-theme)
• QGIS: http://qgis.org/en/docs/index.html
• qooxdoo: http://manual.qooxdoo.org/current/
• Roundup: http://www.roundup-tracker.org/
• Seaborn: https://stanford.edu/~mwaskom/software/seaborn/
• Selenium: http://docs.seleniumhq.org/docs/
• Self: http://www.selflanguage.org/
• Substance D: http://docs.pylonsproject.org/projects/substanced/en/latest/
• Tablib: http://tablib.org/
• SQLAlchemy: http://www.sqlalchemy.org/docs/
• tinyTiM: http://tinytim.sourceforge.net/docs/2.0/
• Ubuntu packaging guide: http://packaging.ubuntu.com/html/
• Werkzeug: http://werkzeug.pocoo.org/docs/
• WFront: http://discorporate.us/projects/WFront/

25.7 Homepages and other non-documentation sites

• A personal page: http://www.dehlia.in/

 Sphinx Documentation, Release 1.6.3

25.7. Homepages and other non-documentation sites 307

http://glashammer.org/
http://belgeler.istihza.com/py2/
http://lassoguide.com/
http://redaction-technique.org/
http://docs.mathjax.org/en/latest/
http://mirrorbrain.org/docs/
http://docs.myhdl.org/en/latest/
http://nose.readthedocs.org/en/latest/
https://www.notex.ch/overview/
http://objectlistview.sourceforge.net/python/
https://doc.odoo.com/
http://docs.opencv.org/
http://opendylan.org/documentation/
http://docs.openlayers.org/
http://rhodesmill.org/pyephem/
http://www.hasecke.com/plone-benutzerhandbuch/
http://www.psicode.org/psi4manual/master/index.html
http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/
https://pymotw.com/2/
http://python-aspectlib.readthedocs.org/en/latest/
https://pypi.python.org/pypi/sphinx_py3doc_enhanced_theme
http://qgis.org/en/docs/index.html
http://manual.qooxdoo.org/current/
http://www.roundup-tracker.org/
https://stanford.edu/~mwaskom/software/seaborn/
http://docs.seleniumhq.org/docs/
http://www.selflanguage.org/
http://docs.pylonsproject.org/projects/substanced/en/latest/
http://tablib.org/
http://www.sqlalchemy.org/docs/
http://tinytim.sourceforge.net/docs/2.0/
http://packaging.ubuntu.com/html/
http://werkzeug.pocoo.org/docs/
http://discorporate.us/projects/WFront/
http://www.dehlia.in/

• Benoit Boissinot: http://bboissin.appspot.com/
• lunarsite: http://lunaryorn.de/
• The Wine Cellar Book: http://www.thewinecellarbook.com/doc/en/
• UC Berkeley Advanced Control Systems course: http://msc.berkeley.edu/-

tomizuka/me233spring13/
• VOR: http://www.vor-cycling.be/

25.8 Books produced using Sphinx

• “The repoze.bfg Web Application Framework”: http://www.amazon.com/repoze-bfg-Web-Ap-
plication-Framework-Version/dp/0615345379

• A Theoretical Physics Reference book: http://www.theoretical-physics.net/
• “Simple and Steady Way of Learning for Software Engineering” (in Japanese): http://www.ama-

zon.co.jp/dp/477414259X/
• “Expert Python Programming”: https://www.packtpub.com/application-development/ex-

pert-python-programming
• “Expert Python Programming” (Japanese translation): http://www.amazon.co.jp/dp/4048686291/
• “Pomodoro Technique Illustrated” (Japanese translation): http://www.amazon.co.jp/d-

p/4048689525/
• “Python Professional Programming” (in Japanese): http://www.amazon.co.jp/dp/4798032948/
• “Die Wahrheit des Sehens. Der DEKALOG von Krzysztof Kieślowski”: http://www.hasecke.eu-

/Dekalog/
• The “Varnish Book”: http://book.varnish-software.com/4.0/
• “Learning Sphinx” (in Japanese): http://www.oreilly.co.jp/books/9784873116488/
• “LassoGuide”: http://www.lassosoft.com/Lasso-Documentation
• “Software-Dokumentation mit Sphinx”: http://www.amazon.de/dp/1497448689/

25.9 Thesis using Sphinx

• “A Web-Based System for Comparative Analysis of OpenStreetMap Data by the Use of CouchDB”:
https://www.yumpu.com/et/document/view/11722645/masterthesis-markusmayr-0542042

Sphinx Documentation, Release 1.6.3

308 Chapter 25. Projects using Sphinx

http://bboissin.appspot.com/
http://lunaryorn.de/
http://www.thewinecellarbook.com/doc/en/
http://msc.berkeley.edu/tomizuka/me233spring13/
http://msc.berkeley.edu/tomizuka/me233spring13/
http://www.vor-cycling.be/
http://www.amazon.com/repoze-bfg-Web-Application-Framework-Version/dp/0615345379
http://www.amazon.com/repoze-bfg-Web-Application-Framework-Version/dp/0615345379
http://www.theoretical-physics.net/
http://www.amazon.co.jp/dp/477414259X/
http://www.amazon.co.jp/dp/477414259X/
https://www.packtpub.com/application-development/expert-python-programming
https://www.packtpub.com/application-development/expert-python-programming
http://www.amazon.co.jp/dp/4048686291/
http://www.amazon.co.jp/dp/4048689525/
http://www.amazon.co.jp/dp/4048689525/
http://www.amazon.co.jp/dp/4798032948/
http://www.hasecke.eu/Dekalog/
http://www.hasecke.eu/Dekalog/
http://book.varnish-software.com/4.0/
http://www.oreilly.co.jp/books/9784873116488/
http://www.lassosoft.com/Lasso-Documentation
http://www.amazon.de/dp/1497448689/
https://www.yumpu.com/et/document/view/11722645/masterthesis-markusmayr-0542042

CHAPTER 26

Sphinx authors

Sphinx is written and maintained by Georg Brandl <georg@python.org>.
Substantial parts of the templates were written by Armin Ronacher <armin.ronacher@active-4.com>.
Other co-maintainers:

• Takayuki Shimizukawa <shimizukawa@gmail.com>
• Daniel Neuhäuser <@DasIch>
• Jon Waltman <@jonwaltman>
• Rob Ruana <@RobRuana>
• Robert Lehmann <@lehmannro>
• Roland Meister <@rolmei>
• Takeshi Komiya <@tk0miya>
• Jean-François Burnol <@jfbu>
• Yoshiki Shibukawa <@shibu_jp>

Other contributors, listed alphabetically, are:
• Alastair Houghton – Apple Help builder
• Andi Albrecht – agogo theme
• Jakob Lykke Andersen – Rewritten C++ domain
• Henrique Bastos – SVG support for graphviz extension
• Daniel Bültmann – todo extension
• Marco Buttu – doctest extension (pyversion option)
• Etienne Desautels – apidoc module
• Michael Droettboom – inheritance_diagram extension
• Charles Duffy – original graphviz extension
• Kevin Dunn – MathJax extension
• Josip Dzolonga – coverage builder
• Buck Evan – dummy builder
• Hernan Grecco – search improvements
• Horst Gutmann – internationalization support

 309

mailto:georg@python.org
mailto:armin.ronacher@active-4.com
mailto:shimizukawa@gmail.com

• Martin Hans – autodoc improvements
• Doug Hellmann – graphviz improvements
• Timotheus Kampik - JS theme & search enhancements
• Dave Kuhlman – original LaTeX writer
• Blaise Laflamme – pyramid theme
• Thomas Lamb – linkcheck builder
• Łukasz Langa – partial support for autodoc
• Ian Lee – quickstart improvements
• Robert Lehmann – gettext builder (GSOC project)
• Dan MacKinlay – metadata fixes
• Martin Mahner – nature theme
• Will Maier – directory HTML builder
• Jacob Mason – websupport library (GSOC project)
• Glenn Matthews – python domain signature improvements
• Roland Meister – epub builder
• Ezio Melotti – collapsible sidebar JavaScript
• Bruce Mitchener – Minor epub improvement
• Daniel Neuhäuser – JavaScript domain, Python 3 support (GSOC)
• Christopher Perkins – autosummary integration
• Benjamin Peterson – unittests
• T. Powers – HTML output improvements
• Jeppe Pihl – literalinclude improvements
• Rob Ruana – napoleon extension
• Stefan Seefeld – toctree improvements
• Gregory Szorc – performance improvements
• Taku Shimizu – epub3 builder
• Antonio Valentino – qthelp builder
• Filip Vavera – napoleon todo directive
• Pauli Virtanen – autodoc improvements, autosummary extension
• Stefan van der Walt – autosummary extension
• Thomas Waldmann – apidoc module fixes
• John Waltman – Texinfo builder
• Barry Warsaw – setup command improvements
• Sebastian Wiesner – image handling, distutils support
• Michael Wilson – Intersphinx HTTP basic auth support
• Joel Wurtz – cellspanning support in LaTeX
• Hong Xu – svg support in imgmath extension and various bug fixes
• Stephen Finucane – setup command improvements and documentation

Sphinx Documentation, Release 1.6.3

310 Chapter 26. Sphinx authors

Many thanks for all contributions!
There are also a few modules or functions incorporated from other authors and projects:

• sphinx.util.jsdump uses the basestring encoding from simplejson, written by Bob Ippolito, released
under the MIT license

• sphinx.util.stemmer was written by Vivake Gupta, placed in the Public Domain

 Sphinx Documentation, Release 1.6.3

25.9. Thesis using Sphinx 311

Python Module Index

a
sphinx.addnodes, 212
sphinx.application, 194

b
sphinx.builders, 69

sphinx.builders.applehelp, 70
sphinx.builders.changes, 74
sphinx.builders.devhelp, 70
sphinx.builders.dummy, 74
sphinx.builders.epub2, 70
sphinx.builders.epub3, 71
sphinx.builders.gettext, 74
sphinx.builders.html, 69
sphinx.builders.htmlhelp, 70
sphinx.builders.latex, 71
sphinx.builders.linkcheck, 74
sphinx.builders.manpage, 72
sphinx.builders.qthelp, 70
sphinx.builders.texinfo, 72
sphinx.builders.text, 72
sphinx.builders.xml, 74

c
conf, 77
sphinx.config, 202

d
docutils

docutils.parsers.rst, 206
sphinx.domains, 208

e
sphinx.environment, 203

sphinx.environment.collectors, 206
sphinx.errors, 203

sphinx.ext
sphinx.ext.autodoc, 153
sphinx.ext.autosectionlabel, 160
sphinx.ext.autosummary, 160
sphinx.ext.coverage, 163
sphinx.ext.doctest, 164
sphinx.ext.extlinks, 168
sphinx.ext.githubpages, 168
sphinx.ext.graphviz, 169
sphinx.ext.ifconfig, 170
sphinx.ext.imgconverter, 171
sphinx.ext.imgmath, 175
sphinx.ext.inheritance_diagram,

171
sphinx.ext.intersphinx, 172
sphinx.ext.jsmath, 177
sphinx.ext.linkcode, 173
sphinx.ext.mathbase, 174
sphinx.ext.mathjax, 177
sphinx.ext.napoleon, 177
sphinx.ext.todo, 184
sphinx.ext.viewcode, 185

l
latex, 143

p
sphinx.parsers, 211

 313

Sphinx Documentation, Release 1.6.3

314 Python Module Index

Index

Symbols
$.getJSON() ($ method), 66
--batchfile, --no-batchfile

sphinx-quickstart command line option, 11
--dot=DOT

sphinx-quickstart command line option, 9
--epub

sphinx-quickstart command line option, 10
--ext-autodoc

sphinx-quickstart command line option, 10
--ext-coverage

sphinx-quickstart command line option, 10
--ext-doctest

sphinx-quickstart command line option, 10
--ext-ifconfig

sphinx-quickstart command line option, 10
--ext-imgmath

sphinx-quickstart command line option, 10
--ext-intersphinx

sphinx-quickstart command line option, 10
--ext-mathjax

sphinx-quickstart command line option, 10
--ext-todo

sphinx-quickstart command line option, 10
--ext-viewcode

sphinx-quickstart command line option, 10
--extensions=EXTENSIONS

sphinx-quickstart command line option, 10
--implicit-namespaces

sphinx-apidoc command line option, 18
--makefile, --no-makefile

sphinx-quickstart command line option, 11
--master=MASTER

sphinx-quickstart command line option, 10
--sep

sphinx-quickstart command line option, 9
--suffix=SUFFIX

sphinx-quickstart command line option, 10
--use-make-mode, --no-use-make-mode

sphinx-quickstart command line option, 11
-a

sphinx-apidoc command line option, 18
sphinx-build command line option, 14

-A author
sphinx-apidoc command line option, 18

-a AUTHOR, --author=AUTHOR
sphinx-quickstart command line option, 9

-A name=value
sphinx-build command line option, 15

-b buildername
sphinx-build command line option, 13

-C
sphinx-build command line option, 14

-c path
sphinx-build command line option, 14

-d maxdepth
sphinx-apidoc command line option, 17

-d NAME=VALUE
sphinx-quickstart command line option, 11

-d path
sphinx-build command line option, 14

-D setting=value
sphinx-build command line option, 14

-E
sphinx-build command line option, 14

-f, --force
sphinx-apidoc command line option, 17

-F, --full
sphinx-apidoc command line option, 18

-H project
sphinx-apidoc command line option, 18

-h, --help, --version
sphinx-build command line option, 15
sphinx-quickstart command line option, 9

-j N
sphinx-build command line option, 14

 315

-l LANGUAGE, --language=LANGUAGE
sphinx-quickstart command line option, 10

-l, --follow-links
sphinx-apidoc command line option, 17

-M
sphinx-apidoc command line option, 18

-N
sphinx-build command line option, 15

-n
sphinx-build command line option, 15

-n, --dry-run
sphinx-apidoc command line option, 17

-o outputdir
sphinx-apidoc command line option, 17

-P
sphinx-build command line option, 15

-p PROJECT, --project=PROJECT
sphinx-quickstart command line option, 9

-Q
sphinx-build command line option, 15

-q
sphinx-build command line option, 15

-q, --quiet
sphinx-quickstart command line option, 9

-R release
sphinx-apidoc command line option, 18

-r RELEASE, --release=RELEASE
sphinx-quickstart command line option, 10

-s suffix
sphinx-apidoc command line option, 17

-T
sphinx-build command line option, 15

-t tag
sphinx-build command line option, 14

-T, --no-toc
sphinx-apidoc command line option, 18

-t, --templatedir=TEMPLATEDIR
sphinx-quickstart command line option, 11

-v
sphinx-build command line option, 15

-V version
sphinx-apidoc command line option, 18

-v VERSION
sphinx-quickstart command line option, 9

-W
sphinx-build command line option, 15

-w file
sphinx-build command line option, 15

A
abbr (role), 40
abbreviation (class in sphinx.addnodes), 213
accept_comment() (sphinxcontrib.websupport.s-

torage.StorageBackend method), 227
add_autodoc_attrgetter() (sphinx.applica-

tion.Sphinx method), 198
add_autodocumenter() (sphinx.applica-

tion.Sphinx method), 198
add_builder() (sphinx.application.Sphinx

method), 194
add_comment() (sphinxcontrib.websupport.stor-

age.StorageBackend method), 226
add_comment() (sphinxcontrib.websupport.Web-

Support method), 223
add_config_value() (sphinx.application.Sphinx

method), 194
add_crossref_type() (sphinx.application.Sphinx

method), 197
add_directive() (sphinx.application.Sphinx

method), 195
add_directive_to_domain() (sphinx.applica-

tion.Sphinx method), 196
add_document() (sphinxcontrib.websupport-

.search.BaseSearch method), 225
add_domain() (sphinx.application.Sphinx

method), 194
add_enumerable_node() (sphinx.applica-

tion.Sphinx method), 195
add_env_collector() (sphinx.application.Sphinx

method), 198
add_event() (sphinx.application.Sphinx method),

194
add_function_parentheses

configuration value, 82
add_generic_role() (sphinx.application.Sphinx

method), 196
add_html_theme() (sphinx.application.Sphinx

method), 198
add_index_to_domain() (sphinx.applica-

tion.Sphinx method), 194
add_javascript() (sphinx.application.Sphinx

method), 197
add_latex_package() (sphinx.application.Sphinx

method), 198
add_lexer() (sphinx.application.Sphinx method),

198
add_module_names

configuration value, 82
add_node() (sphinx.application.Sphinx method),

195
add_node() (sphinxcontrib.websupport.storage.S-

torageBackend method), 226
add_object_type() (sphinx.application.Sphinx

method), 196
add_post_transform() (sphinx.application.Sphinx

method), 197
add_role() (sphinx.application.Sphinx method),

Sphinx Documentation, Release 1.6.3

316 Index

196
add_role_to_domain() (sphinx.applica-

tion.Sphinx method), 196
add_search_language() (sphinx.applica-

tion.Sphinx method), 198
add_source_parser() (sphinx.application.Sphinx

method), 198
add_stylesheet() (sphinx.application.Sphinx

method), 197
add_transform() (sphinx.application.Sphinx

method), 197
advance (C++ function), 60
all-files

configuration value, 134
any (role), 38
app (sphinx.environment.BuildEnvironment

attribute), 203
applehelp_bundle_id

configuration value, 92
applehelp_bundle_name

configuration value, 92
applehelp_bundle_version

configuration value, 93
applehelp_codesign_flags

configuration value, 94
applehelp_codesign_identity

configuration value, 94
applehelp_codesign_path

configuration value, 94
applehelp_dev_region

configuration value, 93
applehelp_disable_external_tools

configuration value, 94
applehelp_icon

configuration value, 93
applehelp_index_anchors

configuration value, 93
applehelp_indexer_path

configuration value, 94
applehelp_kb_product

configuration value, 93
applehelp_kb_url

configuration value, 93
applehelp_locale

configuration value, 94
applehelp_min_term_length

configuration value, 93
applehelp_remote_url

configuration value, 93
applehelp_stopwords

configuration value, 93
applehelp_title

configuration value, 94
AppleHelpBuilder (class in sphinx.builders.ap-

plehelp), 70
arguments (docutils.parsers.rst.Directive

attribute), 207
attributes (built-in variable), 163
autoattribute (directive), 156
autoclass (directive), 154
autoclass_content

configuration value, 157
autodata (directive), 156
autodoc-process-docstring

event, 158
autodoc-process-signature

event, 158
autodoc-skip-member

event, 159
autodoc_default_flags

configuration value, 157
autodoc_docstring_signature

configuration value, 158
autodoc_member_order

configuration value, 157
autodoc_mock_imports

configuration value, 158
autoexception (directive), 154
autofunction (directive), 156
automatic

documentation, 153
linking, 172
testing, 164

automethod (directive), 156
automodule (directive), 154
autosectionlabel_prefix_document

configuration value, 160
autosummary (directive), 160
autosummary_generate

configuration value, 162

B
bar (directive), 67
BaseSearch (class in sphinxcontrib.websupport-

.search), 224
between() (in module sphinx.ext.autodoc), 159
block_text (docutils.parsers.rst.Directive

attribute), 207
body (built-in variable), 141
build() (sphinx.builders.Builder method), 205
build() (sphinxcontrib.websupport.WebSupport

method), 221
build-dir

configuration value, 134
build-finished

event, 202
build_all() (sphinx.builders.Builder method), 205

 Sphinx Documentation, Release 1.6.3

Index 317

build_specific() (sphinx.builders.Builder
method), 205

build_update() (sphinx.builders.Builder method),
205

BuildEnvironment (class in sphinx.environment),
203

builder, 235
configuration value, 134

builder (built-in variable), 140
Builder (class in sphinx.builders), 205
builder-inited

event, 200

C
c:data (role), 56
c:func (role), 56
c:function (directive), 55
c:macro (directive), 56
c:macro (role), 56
c:member (directive), 56
c:type (directive), 56
c:type (role), 56
c:var (directive), 56
category (sphinx.errors.SphinxError attribute),

203
centered (directive), 31
changes

in version, 30
ChangesBuilder (class in sphinx.builder-

s.changes), 74
check_consistency() (sphinx.domains.Domain

method), 209
CheckExternalLinksBuilder (class in

sphinx.builders.linkcheck), 74
class (built-in variable), 163
classes (built-in variable), 163
clear_doc() (sphinx.domains.Domain method),

209
clear_doc() (sphinx.environment.collectors.Envi-

ronmentCollector method), 206
code

examples, 34
code-block (directive), 34
codeauthor (directive), 43
command (role), 41
compact_paragraph (class in sphinx.addnodes),

213
compile() (built-in function), 53
conf (module), 77
confdir (sphinx.environment.BuildEnvironment

attribute), 204
Config (class in sphinx.config), 202
config (sphinx.environment.BuildEnvironment

attribute), 203
config-dir

configuration value, 134
ConfigError, 203
configuration directory, 235
configuration value

add_function_parentheses, 82
add_module_names, 82
all-files, 134
applehelp_bundle_id, 92
applehelp_bundle_name, 92
applehelp_bundle_version, 93
applehelp_codesign_flags, 94
applehelp_codesign_identity, 94
applehelp_codesign_path, 94
applehelp_dev_region, 93
applehelp_disable_external_tools, 94
applehelp_icon, 93
applehelp_index_anchors, 93
applehelp_indexer_path, 94
applehelp_kb_product, 93
applehelp_kb_url, 93
applehelp_locale, 94
applehelp_min_term_length, 93
applehelp_remote_url, 93
applehelp_stopwords, 93
applehelp_title, 94
autoclass_content, 157
autodoc_default_flags, 157
autodoc_docstring_signature, 158
autodoc_member_order, 157
autodoc_mock_imports, 158
autosectionlabel_prefix_document, 160
autosummary_generate, 162
build-dir, 134
builder, 134
config-dir, 134
copyright, 82, 135
coverage_c_path, 164
coverage_c_regexes, 164
coverage_ignore_c_items, 164
coverage_ignore_classes, 164
coverage_ignore_functions, 164
coverage_ignore_modules, 164
coverage_skip_undoc_in_source, 164
coverage_write_headline, 164
cpp_id_attributes, 106
cpp_index_common_prefix, 106
cpp_paren_attributes, 107
default_role, 79
doctest_default_flags, 167
doctest_global_cleanup, 167
doctest_global_setup, 167
doctest_path, 167

Sphinx Documentation, Release 1.6.3

318 Index

doctest_test_doctest_blocks, 167
epub_author, 95
epub_basename, 94
epub_contributor, 95
epub_copyright, 95
epub_cover, 95
epub_description, 95
epub_exclude_files, 96
epub_fix_images, 97
epub_guide, 96
epub_identifier, 95
epub_language, 95
epub_max_image_width, 97
epub_post_files, 96
epub_pre_files, 96
epub_publisher, 95
epub_scheme, 95
epub_show_urls, 97
epub_theme, 94
epub_theme_options, 94
epub_title, 95
epub_tocdepth, 96
epub_tocdup, 96
epub_tocscope, 96
epub_uid, 95
epub_use_index, 97
epub_writing_mode, 97
exclude_patterns, 78
extensions, 77
extlinks, 168
figure_language_filename, 85
fresh-env, 134
gettext_additional_targets, 85
gettext_auto_build, 85
gettext_compact, 85
gettext_location, 85
gettext_uuid, 85
graphviz_dot, 170
graphviz_dot_args, 170
graphviz_output_format, 170
highlight_language, 82
highlight_options, 82
html_add_permalinks, 87
html_additional_pages, 88
html_compact_lists, 90
html_context, 87
html_copy_source, 89
html_domain_indices, 89
html_experimental_html5_writer, 92
html_extra_path, 87
html_favicon, 87
html_file_suffix, 89
html_last_updated_fmt, 87
html_link_suffix, 89

html_logo, 87
html_output_encoding, 90
html_scaled_image_link, 92
html_search_language, 90
html_search_options, 91
html_search_scorer, 92
html_secnumber_suffix, 90
html_short_title, 86
html_show_copyright, 90
html_show_sourcelink, 89
html_show_sphinx, 90
html_sidebars, 88
html_sourcelink_suffix, 89
html_split_index, 89
html_static_path, 87
html_style, 86
html_theme, 86
html_theme_options, 86
html_theme_path, 86
html_title, 86
html_use_index, 89
html_use_opensearch, 89
html_use_smartypants, 87
htmlhelp_basename, 92
image_converter, 171
image_converter_args, 171
imgmath_add_tooltips, 177
imgmath_dvipng, 176
imgmath_dvipng_args, 176
imgmath_dvisvgm, 176
imgmath_dvisvgm_args, 176
imgmath_font_size, 177
imgmath_image_format, 176
imgmath_latex, 176
imgmath_latex_args, 176
imgmath_latex_preamble, 176
imgmath_use_preview, 176
inheritance_edge_attrs, 172
inheritance_graph_attrs, 171
inheritance_node_attrs, 172
intersphinx_cache_limit, 173
intersphinx_mapping, 172
intersphinx_timeout, 173
jsmath_path, 177
keep_warnings, 79
language, 83
latex_additional_files, 103
latex_appendices, 98
latex_docclass, 103
latex_documents, 98
latex_domain_indices, 98
latex_elements, 99
latex_engine, 97
latex_keep_old_macro_names, 99

 Sphinx Documentation, Release 1.6.3

Index 319

latex_logo, 98
latex_show_pagerefs, 99
latex_show_urls, 99
latex_toplevel_sectioning, 98
latex_use_latex_multicolumn, 99
link-index, 135
linkcheck_anchors, 106
linkcheck_anchors_ignore, 106
linkcheck_ignore, 105
linkcheck_retries, 106
linkcheck_timeout, 106
linkcheck_workers, 106
linkcode_resolve, 174
locale_dirs, 84
man_pages, 103
man_show_urls, 104
master_doc, 78
math_number_all, 174
mathjax_path, 177
modindex_common_prefix, 83
napoleon_google_docstring, 181
napoleon_include_init_with_doc, 181
napoleon_include_private_with_doc, 182
napoleon_include_special_with_doc, 182
napoleon_numpy_docstring, 181
napoleon_use_admonition_for_examples,

182
napoleon_use_admonition_for_notes, 182
napoleon_use_admonition_for_references,

183
napoleon_use_ivar, 183
napoleon_use_keyword, 184
napoleon_use_param, 183
napoleon_use_rtype, 184
needs_extensions, 80
needs_sphinx, 80
nitpick_ignore, 81
nitpicky, 81
numfig, 81
numfig_format, 81
numfig_secnum_depth, 81
pdb, 135
primary_domain, 79
project, 81, 135
pygments_style, 82
release, 82, 135
rst_epilog, 79
rst_prolog, 79
show_authors, 83
source-dir, 134
source_encoding, 78
source_parsers, 78
source_suffix, 78
suppress_warnings, 79

template_bridge, 79
templates_path, 79
texinfo_appendices, 104
texinfo_documents, 104
texinfo_domain_indices, 105
texinfo_elements, 105
texinfo_no_detailmenu, 105
texinfo_show_urls, 105
text_newlines, 103
text_sectionchars, 103
tls_cacerts, 81
tls_verify, 81
today, 82, 135
today_fmt, 82
todo_emit_warnings, 185
todo_include_todos, 185
todo_link_only, 185
trim_doctest_flags, 83
trim_footnote_reference_space, 83
version, 82, 135
viewcode_enable_epub, 185
viewcode_import, 185
warning-is-error, 134
xml_pretty, 106

connect() (sphinx.application.Sphinx method),
199

content (docutils.parsers.rst.Directive attribute),
207

content_offset (docutils.parsers.rst.Directive
attribute), 207

contents
table of, 27

copyright
configuration value, 82, 135

copyright (built-in variable), 140
coverage_c_path

configuration value, 164
coverage_c_regexes

configuration value, 164
coverage_ignore_c_items

configuration value, 164
coverage_ignore_classes

configuration value, 164
coverage_ignore_functions

configuration value, 164
coverage_ignore_modules

configuration value, 164
coverage_skip_undoc_in_source

configuration value, 164
coverage_write_headline

configuration value, 164
CoverageBuilder (class in sphinx.ext.coverage),

163
cpp:any (role), 62

Sphinx Documentation, Release 1.6.3

320 Index

cpp:class (directive), 56
cpp:class (role), 62
cpp:concept (directive), 59
cpp:concept (role), 62
cpp:enum (directive), 58
cpp:enum (role), 62
cpp:enum-class (directive), 58
cpp:enum-struct (directive), 58
cpp:enumerator (directive), 59
cpp:enumerator (role), 62
cpp:func (role), 62
cpp:function (directive), 57
cpp:member (directive), 58
cpp:member (role), 62
cpp:namespace (directive), 61
cpp:namespace-pop (directive), 61
cpp:namespace-push (directive), 61
cpp:type (directive), 58
cpp:type (role), 62
cpp:var (directive), 58
cpp:var (role), 62
cpp_id_attributes

configuration value, 106
cpp_index_common_prefix

configuration value, 106
cpp_paren_attributes

configuration value, 107
critical() (SphinxLoggerAdapter method), 214
cut_lines() (in module sphinx.ext.autodoc), 159

D
dangling_warnings (sphinx.domains.Domain

attribute), 210
data (sphinx.domains.Domain attribute), 210
data_version (sphinx.domains.Domain attribute),

210
debug() (sphinx.application.Sphinx method), 200
debug() (SphinxLoggerAdapter method), 215
debug2() (sphinx.application.Sphinx method),

200
default

domain, 79
role, 79

default-domain (directive), 50
default_role

configuration value, 79
delete_comment() (sphinxcontrib.websupport.s-

torage.StorageBackend method), 227
deprecated (directive), 31
desc (class in sphinx.addnodes), 212
desc_addname (class in sphinx.addnodes), 212
desc_annotation (class in sphinx.addnodes), 212
desc_content (class in sphinx.addnodes), 212

desc_name (class in sphinx.addnodes), 212
desc_optional (class in sphinx.addnodes), 212
desc_parameter (class in sphinx.addnodes), 212
desc_parameterlist (class in sphinx.addnodes),

212
desc_returns (class in sphinx.addnodes), 212
desc_signature (class in sphinx.addnodes), 212
desc_signature_line (class in sphinx.addnodes),

212
desc_type (class in sphinx.addnodes), 212
describe (directive), 65
DevhelpBuilder (class in sphinx.builders.de-

vhelp), 70
dfn (role), 41
digraph (directive), 169
directive, 235
Directive (class in docutils.parsers.rst), 206
directive() (sphinx.domains.Domain method),

209
directives (sphinx.domains.Domain attribute),

210
DirectoryHTMLBuilder (class in sphinx.builder-

s.html), 69
disconnect() (sphinx.application.Sphinx method),

199
display_toc (built-in variable), 142
doc (role), 39
doc2path() (sphinx.environment.BuildEnviron-

ment method), 204
docname (sphinx.environment.BuildEnviron-

ment attribute), 204
docstitle (built-in variable), 140
docstring, 153
doctest, 164
doctest (directive), 165
doctest_default_flags

configuration value, 167
doctest_global_cleanup

configuration value, 167
doctest_global_setup

configuration value, 167
doctest_path

configuration value, 167
doctest_test_doctest_blocks

configuration value, 167
doctree-read

event, 201
doctree-resolved

event, 201
doctreedir (sphinx.environment.BuildEnviron-

ment attribute), 204
document name, 235
documentation

automatic, 153

 Sphinx Documentation, Release 1.6.3

Index 321

docutils.parsers.rst (module), 206
domain, 235
Domain (class in sphinx.domains), 208
download (role), 39
download_reference (class in sphinx.addnodes),

213
DummyBuilder (class in sphinx.builders.dum-

my), 74

E
embedded (built-in variable), 140
emit() (sphinx.application.Sphinx method), 199
emit_firstresult() (sphinx.application.Sphinx

method), 199
enumerate() (built-in function), 5
env-before-read-docs

event, 200
env-check-consistency

event, 201
env-get-outdated

event, 200
env-merge-info

event, 201
env-purge-doc

event, 200
env-updated

event, 201
environment, 236
EnvironmentCollector (class in sphinx.environ-

ment.collectors), 206
envvar (directive), 64
envvar (role), 40
Epub2Builder (class in sphinx.builders.epub2), 70
Epub3Builder (class in sphinx.builders.epub3), 71
epub_author

configuration value, 95
epub_basename

configuration value, 94
epub_contributor

configuration value, 95
epub_copyright

configuration value, 95
epub_cover

configuration value, 95
epub_description

configuration value, 95
epub_exclude_files

configuration value, 96
epub_fix_images

configuration value, 97
epub_guide

configuration value, 96
epub_identifier

configuration value, 95
epub_language

configuration value, 95
epub_max_image_width

configuration value, 97
epub_post_files

configuration value, 96
epub_pre_files

configuration value, 96
epub_publisher

configuration value, 95
epub_scheme

configuration value, 95
epub_show_urls

configuration value, 97
epub_theme

configuration value, 94
epub_theme_options

configuration value, 94
epub_title

configuration value, 95
epub_tocdepth

configuration value, 96
epub_tocdup

configuration value, 96
epub_tocscope

configuration value, 96
epub_uid

configuration value, 95
epub_use_index

configuration value, 97
epub_writing_mode

configuration value, 97
eq (role), 175
error() (SphinxLoggerAdapter method), 214
escape() (built-in function), 163
event

autodoc-process-docstring, 158
autodoc-process-signature, 158
autodoc-skip-member, 159
build-finished, 202
builder-inited, 200
doctree-read, 201
doctree-resolved, 201
env-before-read-docs, 200
env-check-consistency, 201
env-get-outdated, 200
env-merge-info, 201
env-purge-doc, 200
env-updated, 201
html-collect-pages, 202
html-page-context, 202
missing-reference, 201
source-read, 200

Sphinx Documentation, Release 1.6.3

322 Index

todo-defined, 185
examples

code, 34
exceptions (built-in variable), 163
exclude_patterns

configuration value, 78
ExtensionError, 199, 203
extensions

configuration value, 77
extlinks

configuration value, 168
extract_context() (sphinxcontrib.websupport-

.search.BaseSearch method), 225

F
favicon (built-in variable), 140
feed() (sphinxcontrib.websupport-

.search.BaseSearch method), 225
figure_language_filename

configuration value, 85
file (role), 41
file_suffix (built-in variable), 140
final_argument_whitespace (docutils.parser-

s.rst.Directive attribute), 207
finish() (sphinx.builders.Builder method), 206
finish_indexing() (sphinxcontrib.websupport-

.search.BaseSearch method), 224
foo (directive), 67
foo (role), 67
format (sphinx.builders.applehelp.AppleHelp-

Builder attribute), 70
format (sphinx.builders.Builder attribute), 205
format (sphinx.builders.changes.ChangesBuilder

attribute), 74
format (sphinx.builders.devhelp.DevhelpBuilder

attribute), 70
format (sphinx.builders.epub2.Epub2Builder

attribute), 71
format (sphinx.builders.epub3.Epub3Builder

attribute), 71
format (sphinx.builders.gettext.MessageCatalog-

Builder attribute), 74
format (sphinx.builders.html.DirectoryHTML-

Builder attribute), 69
format (sphinx.builders.html.JSONHTMLBuilder

attribute), 74
format (sphinx.builders.html.PickleHTML-

Builder attribute), 73
format (sphinx.builders.html.SingleFileHTML-

Builder attribute), 69
format (sphinx.builders.html.StandaloneHTML-

Builder attribute), 69
format (sphinx.builders.htmlhelp.HTMLHelp-

Builder attribute), 70
format (sphinx.builders.latex.LaTeXBuilder

attribute), 72
format (sphinx.builders.linkcheck.CheckExter-

nalLinksBuilder attribute), 74
format (sphinx.builders.manpage.ManualPage-

Builder attribute), 72
format (sphinx.builders.qthelp.QtHelpBuilder

attribute), 70
format (sphinx.builders.texinfo.TexinfoBuilder

attribute), 72
format (sphinx.builders.text.TextBuilder

attribute), 72
format (sphinx.builders.xml.PseudoXMLBuilder

attribute), 75
format (sphinx.builders.xml.XMLBuilder

attribute), 75
found_docs (sphinx.environment.BuildEnviron-

ment attribute), 204
fresh-env

configuration value, 134
fullname (built-in variable), 162
functions (built-in variable), 163

G
generate() (sphinx.domains.Index method), 211
get_data() (sphinxcontrib.websupport.storage.S-

torageBackend method), 227
get_data() (sphinxcontrib.websupport.WebSup-

port method), 222
get_document() (sphinxcontrib.websupport.Web-

Support method), 222
get_full_qualified_name() (sphinx.domains.Do-

main method), 209
get_objects() (sphinx.domains.Domain method),

209
get_outdated_docs() (sphinx.builders.Builder

method), 205
get_outdated_docs() (sphinx.environment.collec-

tors.EnvironmentCollector method), 206
get_relative_uri() (sphinx.builders.Builder

method), 205
get_search_results() (sphinxcontrib.websupport-

.WebSupport method), 224
get_target_uri() (sphinx.builders.Builder

method), 205
get_type_name() (sphinx.domains.Domain

method), 209
get_updated_docs() (sphinx.environment.collec-

tors.EnvironmentCollector method), 206
gettext_additional_targets

configuration value, 85
gettext_auto_build

 Sphinx Documentation, Release 1.6.3

Index 323

configuration value, 85
gettext_compact

configuration value, 85
gettext_location

configuration value, 85
gettext_uuid

configuration value, 85
global

substitutions, 79
globalcontext_filename (sphinx.builders.html.Se-

rializingHTMLBuilder attribute), 73
glossary (class in sphinx.addnodes), 213
glossary (directive), 32
graph (directive), 169
graphviz (directive), 169
graphviz_dot

configuration value, 170
graphviz_dot_args

configuration value, 170
graphviz_output_format

configuration value, 170
guilabel (role), 41

H
handle_query() (sphinxcontrib.websupport-

.search.BaseSearch method), 225
has_content (docutils.parsers.rst.Directive

attribute), 207
has_source (built-in variable), 140
hasdoc() (built-in function), 140
highlight (directive), 34
highlight_language

configuration value, 82
highlight_options

configuration value, 82
highlightlang (class in sphinx.addnodes), 213
hlist (directive), 32
html-collect-pages

event, 202
html-page-context

event, 202
html_add_permalinks

configuration value, 87
html_additional_pages

configuration value, 88
html_compact_lists

configuration value, 90
html_context

configuration value, 87
html_copy_source

configuration value, 89
html_domain_indices

configuration value, 89

html_experimental_html5_writer
configuration value, 92

html_extra_path
configuration value, 87

html_favicon
configuration value, 87

html_file_suffix
configuration value, 89

html_last_updated_fmt
configuration value, 87

html_link_suffix
configuration value, 89

html_logo
configuration value, 87

html_output_encoding
configuration value, 90

html_scaled_image_link
configuration value, 92

html_search_language
configuration value, 90

html_search_options
configuration value, 91

html_search_scorer
configuration value, 92

html_secnumber_suffix
configuration value, 90

html_short_title
configuration value, 86

html_show_copyright
configuration value, 90

html_show_sourcelink
configuration value, 89

html_show_sphinx
configuration value, 90

html_sidebars
configuration value, 88

html_sourcelink_suffix
configuration value, 89

html_split_index
configuration value, 89

html_static_path
configuration value, 87

html_style
configuration value, 86

html_theme
configuration value, 86

html_theme_options
configuration value, 86

html_theme_path
configuration value, 86

html_title
configuration value, 86

html_use_index
configuration value, 89

Sphinx Documentation, Release 1.6.3

324 Index

html_use_opensearch
configuration value, 89

html_use_smartypants
configuration value, 87

htmlhelp_basename
configuration value, 92

HTMLHelpBuilder (class in sphinx.builder-
s.htmlhelp), 70

I
ifconfig (directive), 170
image_converter

configuration value, 171
image_converter_args

configuration value, 171
imgmath_add_tooltips

configuration value, 177
imgmath_dvipng

configuration value, 176
imgmath_dvipng_args

configuration value, 176
imgmath_dvisvgm

configuration value, 176
imgmath_dvisvgm_args

configuration value, 176
imgmath_font_size

configuration value, 177
imgmath_image_format

configuration value, 176
imgmath_latex

configuration value, 176
imgmath_latex_args

configuration value, 176
imgmath_latex_preamble

configuration value, 176
imgmath_use_preview

configuration value, 176
implementation (sphinx.builders.html.Serializ-

ingHTMLBuilder attribute), 73
in version

changes, 30
index (class in sphinx.addnodes), 213
Index (class in sphinx.domains), 211
index (directive), 44
index (role), 45
indices (sphinx.domains.Domain attribute), 210
info() (sphinx.application.Sphinx method), 199
info() (SphinxLoggerAdapter method), 214
inheritance-diagram (directive), 171
inheritance_edge_attrs

configuration value, 172
inheritance_graph_attrs

configuration value, 171

inheritance_node_attrs
configuration value, 172

init() (sphinx.application.TemplateBridge
method), 202

init() (sphinx.builders.Builder method), 205
init_indexing() (sphinxcontrib.websupport-

.search.BaseSearch method), 224
initial_data (sphinx.domains.Domain attribute),

210
intersphinx_cache_limit

configuration value, 173
intersphinx_mapping

configuration value, 172
intersphinx_timeout

configuration value, 173

J
js:attr (role), 66
js:attribute (directive), 66
js:class (directive), 66
js:class (role), 66
js:data (directive), 66
js:data (role), 66
js:func (role), 66
js:function (directive), 65
js:meth (role), 66
js:method (directive), 66
js:mod (role), 66
js:module (directive), 65
jsmath_path

configuration value, 177
JSONHTMLBuilder (class in sphinx.builder-

s.html), 73

K
kbd (role), 41
keep_warnings

configuration value, 79
keyword (role), 40

L
label (sphinx.domains.Domain attribute), 210
language

configuration value, 83
language (built-in variable), 140
last_updated (built-in variable), 141
latex (module), 143
latex_additional_files

configuration value, 103
latex_appendices

configuration value, 98
latex_docclass

configuration value, 103

 Sphinx Documentation, Release 1.6.3

Index 325

latex_documents
configuration value, 98

latex_domain_indices
configuration value, 98

latex_elements
configuration value, 99

latex_engine
configuration value, 97

latex_keep_old_macro_names
configuration value, 99

latex_logo
configuration value, 98

latex_show_pagerefs
configuration value, 99

latex_show_urls
configuration value, 99

latex_toplevel_sectioning
configuration value, 98

latex_use_latex_multicolumn
configuration value, 99

LaTeXBuilder (class in sphinx.builders.latex), 71
lineno (docutils.parsers.rst.Directive attribute),

207
link-index

configuration value, 135
linkcheck_anchors

configuration value, 106
linkcheck_anchors_ignore

configuration value, 106
linkcheck_ignore

configuration value, 105
linkcheck_retries

configuration value, 106
linkcheck_timeout

configuration value, 106
linkcheck_workers

configuration value, 106
linkcode_resolve

configuration value, 174
linking

automatic, 172
literal_emphasis (class in sphinx.addnodes), 213
literalinclude (directive), 35
locale_dirs

configuration value, 84
log() (SphinxLoggerAdapter method), 214
logo (built-in variable), 141

M
mailheader (role), 41
makevar (role), 41
man_pages

configuration value, 103

man_show_urls
configuration value, 104

manpage (role), 41
ManualPageBuilder (class in sphinx.builders.-

manpage), 72
master document, 236
master_doc

configuration value, 78
master_doc (built-in variable), 141
math (directive), 175
math (role), 174
math_number_all

configuration value, 174
mathjax_path

configuration value, 177
members (built-in variable), 163
menuselection (role), 41
merge_domaindata() (sphinx.domains.Domain

method), 209
merge_other() (sphinx.environment.collectors.En-

vironmentCollector method), 206
MessageCatalogBuilder (class in sphinx.builder-

s.gettext), 74
meta (built-in variable), 142
meta (class in sphinx.addnodes), 213
metadata (sphinx.environment.BuildEnviron-

ment attribute), 204
metatags (built-in variable), 142
methods (built-in variable), 163
mimetype (role), 42
missing-reference

event, 201
modindex_common_prefix

configuration value, 83
module (built-in variable), 163
MyAnimal() (class), 66
MyContainer (C++ type), 58
MyContainer::const_iterator (C++ type), 58
MyList (C++ type), 58
MySortedContainer (C++ class), 60
MyType (C++ type), 58

N
name (built-in variable), 162
name (docutils.parsers.rst.Directive attribute),

207
name (sphinx.builders.applehelp.AppleHelp-

Builder attribute), 70
name (sphinx.builders.Builder attribute), 205
name (sphinx.builders.changes.ChangesBuilder

attribute), 74
name (sphinx.builders.devhelp.DevhelpBuilder

attribute), 70

Sphinx Documentation, Release 1.6.3

326 Index

name (sphinx.builders.dummy.DummyBuilder
attribute), 74

name (sphinx.builders.epub2.Epub2Builder
attribute), 71

name (sphinx.builders.epub3.Epub3Builder
attribute), 71

name (sphinx.builders.gettext.MessageCatalog-
Builder attribute), 74

name (sphinx.builders.html.DirectoryHTML-
Builder attribute), 69

name (sphinx.builders.html.JSONHTMLBuilder
attribute), 73

name (sphinx.builders.html.PickleHTMLBuilder
attribute), 73

name (sphinx.builders.html.SingleFileHTML-
Builder attribute), 69

name (sphinx.builders.html.StandaloneHTML-
Builder attribute), 69

name (sphinx.builders.htmlhelp.HTMLHelp-
Builder attribute), 70

name (sphinx.builders.latex.LaTeXBuilder
attribute), 72

name (sphinx.builders.linkcheck.CheckExter-
nalLinksBuilder attribute), 74

name (sphinx.builders.manpage.ManualPage-
Builder attribute), 72

name (sphinx.builders.qthelp.QtHelpBuilder
attribute), 70

name (sphinx.builders.texinfo.TexinfoBuilder
attribute), 72

name (sphinx.builders.text.TextBuilder attribute),
72

name (sphinx.builders.xml.PseudoXMLBuilder
attribute), 75

name (sphinx.builders.xml.XMLBuilder
attribute), 75

name (sphinx.domains.Domain attribute), 210
napoleon_google_docstring

configuration value, 181
napoleon_include_init_with_doc

configuration value, 181
napoleon_include_private_with_doc

configuration value, 182
napoleon_include_special_with_doc

configuration value, 182
napoleon_numpy_docstring

configuration value, 181
napoleon_use_admonition_for_examples

configuration value, 182
napoleon_use_admonition_for_notes

configuration value, 182
napoleon_use_admonition_for_references

configuration value, 183
napoleon_use_ivar

configuration value, 183
napoleon_use_keyword

configuration value, 184
napoleon_use_param

configuration value, 183
napoleon_use_rtype

configuration value, 184
needs_extensions

configuration value, 80
needs_sphinx

configuration value, 80
new_serialno() (sphinx.environment.BuildEnvi-

ronment method), 204
newest_template_mtime() (sphinx.applica-

tion.TemplateBridge method), 203
newsgroup (role), 42
next (built-in variable), 142
nitpick_ignore

configuration value, 81
nitpicky

configuration value, 81
note, 30
note (directive), 30
note_dependency() (sphinx.environmen-

t.BuildEnvironment method), 204
note_reread() (sphinx.environment.BuildEnviron-

ment method), 204
numfig

configuration value, 81
numfig_format

configuration value, 81
numfig_secnum_depth

configuration value, 81
numref (role), 40

O
object, 236
object (directive), 65
object_types (sphinx.domains.Domain attribute),

210
objname (built-in variable), 162
ObjType (class in sphinx.domains), 210
only (class in sphinx.addnodes), 213
only (directive), 45
option (directive), 64
option (role), 40
option_spec (docutils.parsers.rst.Directive

attribute), 207
optional_arguments (docutils.parsers.rst.Direc-

tive attribute), 207
options (docutils.parsers.rst.Directive attribute),

207
out_suffix (sphinx.builders.html.Serializ-

 Sphinx Documentation, Release 1.6.3

Index 327

ingHTMLBuilder attribute), 73
Outer (C++ class), 63
Outer::Inner (C++ class), 63
Outer<int> (C++ class), 63
Outer<int>::Inner (C++ class), 63
Outer<int>::Inner<bool> (C++ class), 63
Outer<T *> (C++ class), 64
override_domain() (sphinx.application.Sphinx

method), 194

P
page_source_suffix (built-in variable), 142
pagename (built-in variable), 141
parents (built-in variable), 142
Parser (class in sphinx.parsers), 211
pathto() (built-in function), 140, 140
pdb

configuration value, 135
pending_logging() (built-in function), 215
pending_warnings() (built-in function), 215
pending_xref (class in sphinx.addnodes), 213
pep (role), 42
PickleHTMLBuilder (class in sphinx.builder-

s.html), 73
post_build() (sphinxcontrib.websupport.stor-

age.StorageBackend method), 226
pre_build() (sphinxcontrib.websupport.storage.S-

torageBackend method), 226
prepare_writing() (sphinx.builders.Builder

method), 206
prev (built-in variable), 142
primary

domain, 79
primary_domain

configuration value, 79
process_doc() (sphinx.domains.Domain method),

209
process_doc() (sphinx.environment.collectors.En-

vironmentCollector method), 206
process_field_xref() (sphinx.domains.Domain

method), 209
process_vote() (sphinxcontrib.websupport.stor-

age.StorageBackend method), 227
process_vote() (sphinxcontrib.websupport.Web-

Support method), 223
production (class in sphinx.addnodes), 214
productionlist (class in sphinx.addnodes), 214
productionlist (directive), 33
program (directive), 64
program (role), 42
project

configuration value, 81, 135
project (built-in variable), 141

PseudoXMLBuilder (class in sphinx.builder-
s.xml), 75

py:attr (role), 55
py:attribute (directive), 52
py:class (directive), 51
py:class (role), 55
py:classmethod (directive), 52
py:const (role), 55
py:currentmodule (directive), 51
py:data (directive), 51
py:data (role), 54
py:decorator (directive), 52
py:decoratormethod (directive), 52
py:exc (role), 55
py:exception (directive), 51
py:func (role), 54
py:function (directive), 51
py:meth (role), 55
py:method (directive), 52
py:mod (role), 54
py:module (directive), 51
py:obj (role), 55
py:staticmethod (directive), 52
pygments_style

configuration value, 82
Python Enhancement Proposals

PEP 420, 18

Q
QtHelpBuilder (class in sphinx.builders.qthelp),

70
query() (sphinxcontrib.websupport-

.search.BaseSearch method), 225

R
ref (role), 38
regexp (role), 42
relbar() (built-in function), 140
reldelim1 (built-in variable), 139
reldelim2 (built-in variable), 139
release

configuration value, 82, 135
release (built-in variable), 141
relfn2path() (sphinx.environment.BuildEnviron-

ment method), 204
rellinks (built-in variable), 141
RemoveInSphinxXXXWarning, 236
render() (sphinx.application.TemplateBridge

method), 203
render_string() (sphinx.application.Template-

Bridge method), 203
require_sphinx() (sphinx.application.Sphinx

method), 199

Sphinx Documentation, Release 1.6.3

328 Index

required_arguments (docutils.parsers.rst.Direc-
tive attribute), 206

resolve_any_xref() (sphinx.domains.Domain
method), 209

resolve_xref() (sphinx.domains.Domain method),
210

rfc (role), 42
role, 236
role() (sphinx.domains.Domain method), 210
roles (sphinx.domains.Domain attribute), 210
rst:dir (role), 67
rst:directive (directive), 66
rst:role (directive), 67
rst:role (role), 67
rst_epilog

configuration value, 79
rst_prolog

configuration value, 79
rubric (directive), 31
run() (docutils.parsers.rst.Directive method), 207

S
samp (role), 42
script_files (built-in variable), 139
searchindex_filename (sphinx.builders.html.Seri-

alizingHTMLBuilder attribute), 73
sectionauthor (directive), 43
seealso (class in sphinx.addnodes), 213
seealso (directive), 31
SerializingHTMLBuilder (class in sphinx.builder-

s.html), 73
set_translator() (sphinx.application.Sphinx

method), 195
setup_extension() (sphinx.application.Sphinx

method), 194
shorttitle (built-in variable), 141
show_authors

configuration value, 83
show_source (built-in variable), 141
sidebar() (built-in function), 140
SingleFileHTMLBuilder (class in sphinx.builder-

s.html), 69
snippets

testing, 164
source directory, 236
source-dir

configuration value, 134
source-read

event, 200
source_encoding

configuration value, 78
source_parsers

configuration value, 78

source_suffix
configuration value, 78

sourcecode, 34
sourcename (built-in variable), 142
Sphinx (class in sphinx.application), 194
sphinx-apidoc command line option

--implicit-namespaces, 18
-a, 18
-A author, 18
-d maxdepth, 17
-f, --force, 17
-F, --full, 18
-H project, 18
-l, --follow-links, 17
-M, 18
-n, --dry-run, 17
-o outputdir, 17
-R release, 18
-s suffix, 17
-T, --no-toc, 18
-V version, 18

sphinx-build command line option
-a, 14
-A name=value, 15
-b buildername, 13
-C, 14
-c path, 14
-d path, 14
-D setting=value, 14
-E, 14
-h, --help, --version, 15
-j N, 14
-N, 15
-n, 15
-P, 15
-Q, 15
-q, 15
-T, 15
-t tag, 14
-v, 15
-W, 15
-w file, 15

sphinx-quickstart command line option
--batchfile, --no-batchfile, 11
--dot=DOT, 9
--epub, 10
--ext-autodoc, 10
--ext-coverage, 10
--ext-doctest, 10
--ext-ifconfig, 10
--ext-imgmath, 10
--ext-intersphinx, 10
--ext-mathjax, 10
--ext-todo, 10

 Sphinx Documentation, Release 1.6.3

Index 329

--ext-viewcode, 10
--extensions=EXTENSIONS, 10
--makefile, --no-makefile, 11
--master=MASTER, 10
--sep, 9
--suffix=SUFFIX, 10
--use-make-mode, --no-use-make-mode, 11
-a AUTHOR, --author=AUTHOR, 9
-d NAME=VALUE, 11
-h, --help, --version, 9
-l LANGUAGE, --language=LANGUAGE, 10
-p PROJECT, --project=PROJECT, 9
-q, --quiet, 9
-r RELEASE, --release=RELEASE, 10
-t, --templatedir=TEMPLATEDIR, 11
-v VERSION, 9

sphinx.addnodes (module), 212
sphinx.application (module), 194
sphinx.builders (module), 69
sphinx.builders.applehelp (module), 70
sphinx.builders.changes (module), 74
sphinx.builders.devhelp (module), 70
sphinx.builders.dummy (module), 74
sphinx.builders.epub2 (module), 70
sphinx.builders.epub3 (module), 71
sphinx.builders.gettext (module), 74
sphinx.builders.html (module), 69
sphinx.builders.htmlhelp (module), 70
sphinx.builders.latex (module), 71
sphinx.builders.linkcheck (module), 74
sphinx.builders.manpage (module), 72
sphinx.builders.qthelp (module), 70
sphinx.builders.texinfo (module), 72
sphinx.builders.text (module), 72
sphinx.builders.xml (module), 74
sphinx.config (module), 202
sphinx.domains (module), 208
sphinx.environment (module), 203
sphinx.environment.collectors (module), 206
sphinx.errors (module), 203
sphinx.ext.autodoc (module), 153
sphinx.ext.autosectionlabel (module), 160
sphinx.ext.autosummary (module), 160
sphinx.ext.coverage (module), 163
sphinx.ext.doctest (module), 164
sphinx.ext.extlinks (module), 168
sphinx.ext.githubpages (module), 168
sphinx.ext.graphviz (module), 169
sphinx.ext.ifconfig (module), 170
sphinx.ext.imgconverter (module), 171
sphinx.ext.imgmath (module), 175
sphinx.ext.inheritance_diagram (module), 171
sphinx.ext.intersphinx (module), 172
sphinx.ext.jsmath (module), 177

sphinx.ext.linkcode (module), 173
sphinx.ext.mathbase (module), 174
sphinx.ext.mathjax (module), 177
sphinx.ext.napoleon (module), 177
sphinx.ext.todo (module), 184
sphinx.ext.viewcode (module), 185
sphinx.parsers (module), 211
sphinx.util.logging.getLogger() (built-in func-

tion), 214
sphinx_version (built-in variable), 141
SphinxError, 203
SphinxLoggerAdapter (built-in class), 214
src (docutils.parsers.rst.Directive attribute), 207
srcdir (sphinx.environment.BuildEnvironment

attribute), 204
srcline (docutils.parsers.rst.Directive attribute),

207
StandaloneHTMLBuilder (class in

sphinx.builders.html), 69
start_of_file (class in sphinx.addnodes), 214
state (docutils.parsers.rst.Directive attribute), 208
state_machine (docutils.parsers.rst.Directive

attribute), 208
std::Container (C++ concept), 59
std::Iterator (C++ concept), 59
StorageBackend (class in sphinxcontrib.websup-

port.storage), 226
style (built-in variable), 141
substitutions

global, 79
supported_image_types (sphinx.builders.apple-

help.AppleHelpBuilder attribute), 70
supported_image_types (sphinx.builders.Builder

attribute), 205
supported_image_types (sphinx.builder-

s.changes.ChangesBuilder attribute), 74
supported_image_types (sphinx.builders.de-

vhelp.DevhelpBuilder attribute), 70
supported_image_types (sphinx.builders.dum-

my.DummyBuilder attribute), 74
supported_image_types (sphinx.builders.epub-

2.Epub2Builder attribute), 71
supported_image_types (sphinx.builders.epub-

3.Epub3Builder attribute), 71
supported_image_types (sphinx.builders.gettex-

t.MessageCatalogBuilder attribute), 74
supported_image_types (sphinx.builders.htm-

l.DirectoryHTMLBuilder attribute), 69
supported_image_types (sphinx.builders.html.J-

SONHTMLBuilder attribute), 74
supported_image_types (sphinx.builders.htm-

l.PickleHTMLBuilder attribute), 73
supported_image_types (sphinx.builders.html.S-

ingleFileHTMLBuilder attribute), 69

Sphinx Documentation, Release 1.6.3

330 Index

supported_image_types (sphinx.builders.html.S-
tandaloneHTMLBuilder attribute), 69

supported_image_types (sphinx.builders.html-
help.HTMLHelpBuilder attribute), 70

supported_image_types (sphinx.builders.la-
tex.LaTeXBuilder attribute), 72

supported_image_types (sphinx.builder-
s.linkcheck.CheckExternalLinksBuilder
attribute), 74

supported_image_types (sphinx.builders.man-
page.ManualPageBuilder attribute), 72

supported_image_types (sphinx.builder-
s.qthelp.QtHelpBuilder attribute), 70

supported_image_types (sphinx.builders.texin-
fo.TexinfoBuilder attribute), 72

supported_image_types (sphinx.builders.text.-
TextBuilder attribute), 72

supported_image_types (sphinx.builders.xm-
l.PseudoXMLBuilder attribute), 75

supported_image_types (sphinx.builders.xm-
l.XMLBuilder attribute), 75

suppress_warnings
configuration value, 79

T
table of

contents, 27
tabularcolumns (directive), 46
template_bridge

configuration value, 79
TemplateBridge (class in sphinx.application), 202
templates_path

configuration value, 79
term (role), 40
testcleanup (directive), 165
testcode (directive), 165
testing

automatic, 164
snippets, 164

testoutput (directive), 166
testsetup (directive), 164
texinfo_appendices

configuration value, 104
texinfo_documents

configuration value, 104
texinfo_domain_indices

configuration value, 105
texinfo_elements

configuration value, 105
texinfo_no_detailmenu

configuration value, 105
texinfo_show_urls

configuration value, 105

TexinfoBuilder (class in sphinx.builders.texinfo),
72

text_newlines
configuration value, 103

text_sectionchars
configuration value, 103

TextBuilder (class in sphinx.builders.text), 72
ThemeError, 203
title (built-in variable), 141, 142
titles (sphinx.environment.BuildEnvironment

attribute), 204
tls_cacerts

configuration value, 81
tls_verify

configuration value, 81
toc (built-in variable), 142
toctree (built-in variable), 142
toctree (class in sphinx.addnodes), 214
toctree (directive), 27
today

configuration value, 82, 135
today_fmt

configuration value, 82
todo (directive), 184
todo-defined

event, 185
todo_emit_warnings

configuration value, 185
todo_include_todos

configuration value, 185
todo_link_only

configuration value, 185
todolist (directive), 184
token (role), 40
trim_doctest_flags

configuration value, 83
trim_footnote_reference_space

configuration value, 83

U
underline (built-in variable), 163
underline() (built-in function), 163
update_username() (sphinxcontrib.websupport.s-

torage.StorageBackend method), 227
use_opensearch (built-in variable), 141

V
verbose() (sphinx.application.Sphinx method),

199
verbose() (SphinxLoggerAdapter method), 215
version

configuration value, 82, 135
version (built-in variable), 141

 Sphinx Documentation, Release 1.6.3

Index 331

version_info (in module sphinx), 202
versionadded (directive), 30
versionchanged (directive), 31
versionmodified (class in sphinx.addnodes), 213
VersionRequirementError, 203
viewcode_enable_epub

configuration value, 185
viewcode_import

configuration value, 185

W
warn() (sphinx.application.Sphinx method), 199
warn() (sphinx.environment.BuildEnvironment

method), 204
warn_node() (sphinx.environment.BuildEnviron-

ment method), 204
warning, 30
warning (directive), 30
warning() (SphinxLoggerAdapter method), 214
warning-is-error

configuration value, 134
WebSupport (class in sphinxcontrib.websupport),

221
Wrapper (C++ class), 63
Wrapper::Outer (C++ class), 63
Wrapper::Outer::Inner (C++ class), 63
write_doc() (sphinx.builders.Builder method),

206

X
xml_pretty

configuration value, 106
XMLBuilder (class in sphinx.builders.xml), 74

Sphinx Documentation, Release 1.6.3

332 Index

	Table of Contents
	List of Figures
	1 Introduction
	1.1 Conversion from other systems
	1.2 Use with other systems
	1.3 Prerequisites
	1.4 Usage

	2 First Steps with Sphinx
	2.1 Install Sphinx
	2.2 Setting up the documentation sources
	2.3 Defining document structure
	2.4 Adding content
	2.5 Running the build
	2.6 Documenting objects
	2.7 Basic configuration
	2.8 Autodoc
	2.9 Intersphinx
	2.10 More topics to be covered

	3 Invocation of sphinx-quickstart
	3.1 Structure options
	3.2 Project basic options
	3.3 Extension options
	3.4 Makefile and Batchfile creation options
	3.5 Project templating

	4 Invocation of sphinx-build
	4.1 Environment variables
	4.2 Makefile options
	4.3 Deprecation Warnings

	5 Invocation of sphinx-apidoc
	6 reStructuredText Primer
	6.1 Paragraphs
	6.2 Inline markup
	6.3 Lists and Quote-like blocks
	6.4 Source Code
	6.5 Tables
	6.6 Hyperlinks
	6.6.1 External links
	6.6.2 Internal links

	6.7 Sections
	6.8 Explicit Markup
	6.9 Directives
	6.10 Images
	6.11 Footnotes
	6.12 Citations
	6.13 Substitutions
	6.14 Comments
	6.15 Source encoding
	6.16 Gotchas

	7 Sphinx Markup Constructs
	7.1 The TOC tree
	7.1.1 Special names

	7.2 Paragraph-level markup
	7.3 Table-of-contents markup
	7.4 Glossary
	7.5 Grammar production displays
	7.6 Showing code examples
	7.6.1 Line numbers
	7.6.2 Includes
	7.6.3 Caption and name
	7.6.4 Dedent

	7.7 Inline markup
	7.7.1 Cross-referencing syntax
	Cross-referencing anything
	Cross-referencing objects
	Cross-referencing arbitrary locations
	Cross-referencing documents
	Referencing downloadable files
	Cross-referencing figures by figure number
	Cross-referencing other items of interest

	7.7.2 Other semantic markup
	7.7.3 Substitutions

	7.8 Miscellaneous markup
	7.8.1 File-wide metadata
	7.8.2 Meta-information markup
	7.8.3 Index-generating markup
	7.8.4 Including content based on tags
	7.8.5 Tables
	7.8.6 Math

	8 Sphinx Domains
	8.1 What is a Domain?
	8.2 Basic Markup
	8.2.1 Cross-referencing syntax

	8.3 The Python Domain
	8.3.1 Python Signatures
	8.3.2 Info field lists
	8.3.3 Cross-referencing Python objects

	8.4 The C Domain
	8.4.1 Cross-referencing C constructs

	8.5 The C++ Domain
	8.5.1 Directives
	Options

	8.5.2 Constrained Templates
	Placeholders
	Template Introductions

	8.5.3 Namespacing
	8.5.4 Info field lists
	8.5.5 Cross-referencing
	Declarations without template parameters and template arguments
	Templated declarations
	(Full) Template Specialisations
	Partial Template Specialisations

	8.5.6 Configuration Variables

	8.6 The Standard Domain
	8.7 The JavaScript Domain
	8.8 The reStructuredText domain
	8.9 More domains

	9 Available builders
	9.1 Serialization builder details

	10 The build configuration file
	10.1 General configuration
	10.2 Project information
	10.3 Options for internationalization
	10.4 Options for HTML output
	10.5 Options for Apple Help output
	10.6 Options for epub output
	10.7 Options for LaTeX output
	10.8 Options for text output
	10.9 Options for manual page output
	10.10 Options for Texinfo output
	10.11 Options for the linkcheck builder
	10.12 Options for the XML builder
	10.13 Options for the C++ domain

	11 Example of configuration file
	12 Internationalization
	12.1 Sphinx internationalization details
	12.2 Translating with sphinx-intl
	12.2.1 Quick guide
	12.2.2 Translating
	12.2.3 Update your po files by new pot files

	12.3 Using Transifex service for team translation
	12.4 Contributing to Sphinx reference translation

	13 HTML theming support
	13.1 Using a theme
	13.2 Builtin themes
	13.3 Creating themes
	13.4 Distribute your theme as a python package
	13.4.1 Templating
	13.4.2 Static templates

	13.5 Third Party Themes

	14 Setuptools integration
	14.1 Using setuptools integration
	14.2 Options for setuptools integration

	15 Templating
	15.1 Do I need to use Sphinx’s templates to produce HTML?
	15.2 Jinja/Sphinx Templating Primer
	15.3 Working with the builtin templates
	15.3.1 Blocks
	15.3.2 Configuration Variables
	15.3.3 Helper Functions
	15.3.4 Global Variables

	16 LaTeX customization
	16.1 Basic customization
	16.2 The LaTeX style file options
	16.2.1 The sphinxsetup interface
	16.2.2 The available styling options

	16.3 LaTeX macros and environments
	16.3.1 Macros
	16.3.2 Environments
	16.3.3 Miscellany

	17 Markdown support
	17.1 Configuration

	18 Sphinx Extensions
	18.1 Builtin Sphinx extensions
	18.1.1 sphinx.ext.autodoc – Include documentation from docstrings
	Docstring preprocessing
	Skipping members

	18.1.2 sphinx.ext.autosectionlabel – Allow reference sections using its title
	Configuration

	18.1.3 sphinx.ext.autosummary – Generate autodoc summaries
	sphinx-autogen – generate autodoc stub pages
	Generating stub pages automatically
	Customizing templates

	18.1.4 sphinx.ext.coverage – Collect doc coverage stats
	18.1.5 sphinx.ext.doctest – Test snippets in the documentation
	Directives
	Configuration

	18.1.6 sphinx.ext.extlinks – Markup to shorten external links
	18.1.7 sphinx.ext.githubpages – Publish HTML docs in GitHub Pages
	18.1.8 sphinx.ext.graphviz – Add Graphviz graphs
	18.1.9 sphinx.ext.ifconfig – Include content based on configuration
	18.1.10 sphinx.ext.imgconverter – Convert images to appropriate format for builders
	Configuration

	18.1.11 sphinx.ext.inheritance_diagram – Include inheritance diagrams
	18.1.12 sphinx.ext.intersphinx – Link to other projects’ documentation
	18.1.13 sphinx.ext.linkcode – Add external links to source code
	18.1.14 Math support in Sphinx
	sphinx.ext.imgmath – Render math as images
	sphinx.ext.mathjax – Render math via JavaScript
	sphinx.ext.jsmath – Render math via JavaScript

	18.1.15 sphinx.ext.napoleon – Support for NumPy and Google style docstrings
	Napoleon - Marching toward legible docstrings
	Getting Started
	Docstrings
	Docstring Sections
	Google vs NumPy
	Type Annotations

	Configuration

	18.1.16 sphinx.ext.todo – Support for todo items
	18.1.17 sphinx.ext.viewcode – Add links to highlighted source code

	18.2 Third-party extensions
	18.2.1 Where to put your own extensions?

	19 Developing extensions for Sphinx
	19.1 Discovery of builders by entry point
	19.2 Extension metadata
	19.3 APIs used for writing extensions
	19.3.1 Tutorial: Writing a simple extension
	Important objects
	Build Phases
	Extension Design
	The Setup Function
	The Node Classes
	The Directive Classes
	The Event Handlers

	19.3.2 Application API
	Extension setup
	Emitting events
	Producing messages / logging
	Sphinx core events
	Checking the Sphinx version
	The Config object
	The template bridge
	Exceptions

	19.3.3 Build environment API
	19.3.4 Builder API
	19.3.5 Environment Collector API
	19.3.6 Docutils markup API
	Roles
	Directives
	ViewLists
	Parsing directive content as ReST

	19.3.7 Domain API
	19.3.8 Parser API
	19.3.9 Doctree node classes added by Sphinx
	Nodes for domain-specific object descriptions
	New admonition-like constructs
	Other paragraph-level nodes
	New inline nodes
	Special nodes

	19.3.10 Logging API

	20 Sphinx Web Support
	20.1 Web Support Quick Start
	20.1.1 Building Documentation Data
	20.1.2 Integrating Sphinx Documents Into Your Webapp
	Authentication

	20.1.3 Performing Searches
	20.1.4 Comments & Proposals
	20.1.5 Comment Moderation

	20.2 The WebSupport Class
	20.2.1 Methods

	20.3 Search Adapters
	20.3.1 BaseSearch Methods

	20.4 Storage Backends
	20.4.1 StorageBackend Methods

	21 Sphinx FAQ
	21.1 How do I…
	21.2 Using Sphinx with…
	21.3 Epub info
	21.4 Texinfo info
	21.4.1 Displaying Links
	21.4.2 Notes

	22 Glossary
	23 Sphinx Developer’s Guide
	23.1 Bug Reports and Feature Requests
	23.2 Contributing to Sphinx
	23.2.1 Getting Started
	23.2.2 Core Developers
	23.2.3 Locale updates

	23.3 Coding Guide
	23.3.1 Debugging Tips

	23.4 Deprecating a feature
	23.5 Deprecation policy
	23.6 Unit Testing

	24 Changes in Sphinx
	24.1 Release 1.6.3 (released Jul 02, 2017)
	24.1.1 Features added
	24.1.2 Bugs fixed

	24.2 Release 1.6.2 (released May 28, 2017)
	24.2.1 Incompatible changes
	24.2.2 Bugs fixed

	24.3 Release 1.6.1 (released May 16, 2017)
	24.3.1 Dependencies
	24.3.2 Incompatible changes
	24.3.3 Features removed
	24.3.4 Features added
	24.3.5 Bugs fixed
	24.3.6 Deprecated
	24.3.7 Testing

	24.4 Release 1.6 (unreleased)
	24.5 Release 1.5.6 (released May 15, 2017)
	24.5.1 Bugs fixed

	24.6 Release 1.5.5 (released Apr 03, 2017)
	24.6.1 Bugs fixed

	24.7 Release 1.5.4 (released Apr 02, 2017)
	24.7.1 Features added
	24.7.2 Bugs fixed

	24.8 Release 1.5.3 (released Feb 26, 2017)
	24.8.1 Features added
	24.8.2 Bugs fixed

	24.9 Release 1.5.2 (released Jan 22, 2017)
	24.9.1 Incompatible changes
	24.9.2 Features added
	24.9.3 Bugs fixed

	24.10 Release 1.5.1 (released Dec 13, 2016)
	24.10.1 Features added
	24.10.2 Bugs fixed

	24.11 Release 1.5 (released Dec 5, 2016)
	24.11.1 Incompatible changes
	24.11.2 Deprecated
	24.11.3 Features added
	24.11.4 Bugs fixed
	24.11.5 Testing

	24.12 Release 1.4.9 (released Nov 23, 2016)
	24.12.1 Bugs fixed

	24.13 Release 1.4.8 (released Oct 1, 2016)
	24.13.1 Bugs fixed

	24.14 Release 1.4.7 (released Oct 1, 2016)
	24.14.1 Bugs fixed

	24.15 Release 1.4.6 (released Aug 20, 2016)
	24.15.1 Incompatible changes
	24.15.2 Bugs fixed

	24.16 Release 1.4.5 (released Jul 13, 2016)
	24.16.1 Incompatible changes
	24.16.2 Features added
	24.16.3 Bugs fixed

	24.17 Release 1.4.4 (released Jun 12, 2016)
	24.17.1 Bugs fixed

	24.18 Release 1.4.3 (released Jun 5, 2016)
	24.18.1 Bugs fixed

	24.19 Release 1.4.2 (released May 29, 2016)
	24.19.1 Features added
	24.19.2 Bugs fixed

	24.20 Release 1.4.1 (released Apr 12, 2016)
	24.20.1 Incompatible changes
	24.20.2 Translations
	24.20.3 Bugs fixed

	24.21 Release 1.4 (released Mar 28, 2016)
	24.21.1 Incompatible changes
	24.21.2 Features added
	24.21.3 Bugs fixed
	24.21.4 Documentation

	24.22 Release 1.3.6 (released Feb 29, 2016)
	24.22.1 Features added
	24.22.2 Bugs fixed

	24.23 Release 1.3.5 (released Jan 24, 2016)
	24.23.1 Bugs fixed

	24.24 Release 1.3.4 (released Jan 12, 2016)
	24.24.1 Bugs fixed

	24.25 Release 1.3.3 (released Dec 2, 2015)
	24.25.1 Bugs fixed

	24.26 Release 1.3.2 (released Nov 29, 2015)
	24.26.1 Features added
	24.26.2 Bugs fixed

	24.27 Release 1.3.1 (released Mar 17, 2015)
	24.27.1 Bugs fixed

	24.28 Release 1.3 (released Mar 10, 2015)
	24.28.1 Incompatible changes
	24.28.2 Features added
	24.28.3 Bugs fixed
	24.28.4 Documentation

	24.29 Release 1.3b3 (released Feb 24, 2015)
	24.29.1 Incompatible changes
	24.29.2 Features added
	24.29.3 Bugs fixed

	24.30 Release 1.3b2 (released Dec 5, 2014)
	24.30.1 Incompatible changes
	24.30.2 Features added
	24.30.3 Bugs fixed

	24.31 Release 1.3b1 (released Oct 10, 2014)
	24.31.1 Incompatible changes
	24.31.2 Features added
	24.31.3 Bugs fixed
	24.31.4 Documentation

	24.32 Release 1.2.3 (released Sep 1, 2014)
	24.32.1 Features added
	24.32.2 Bugs fixed

	24.33 Release 1.2.2 (released Mar 2, 2014)
	24.33.1 Bugs fixed
	24.33.2 Documentation

	24.34 Release 1.2.1 (released Jan 19, 2014)
	24.34.1 Bugs fixed
	24.34.2 Documentation

	24.35 Release 1.2 (released Dec 10, 2013)
	24.35.1 Features added
	24.35.2 Incompatible changes
	24.35.3 Bugs fixed

	24.36 Release 1.2 beta3 (released Oct 3, 2013)
	24.36.1 Features added
	24.36.2 Incompatible changes
	24.36.3 Bugs fixed

	24.37 Release 1.2 beta2 (released Sep 17, 2013)
	24.37.1 Features added
	24.37.2 Incompatible changes
	24.37.3 Bugs fixed

	24.38 Release 1.2 beta1 (released Mar 31, 2013)
	24.38.1 Incompatible changes
	24.38.2 Features added
	24.38.3 Documentation
	24.38.4 Bugs fixed

	24.39 Release 1.1.3 (Mar 10, 2012)
	24.40 Release 1.1.2 (Nov 1, 2011) – 1.1.1 is a silly version number anyway!
	24.41 Release 1.1.1 (Nov 1, 2011)
	24.42 Release 1.1 (Oct 9, 2011)
	24.42.1 Incompatible changes
	24.42.2 Features added

	24.43 Release 1.0.8 (Sep 23, 2011)
	24.44 Release 1.0.7 (Jan 15, 2011)
	24.45 Release 1.0.6 (Jan 04, 2011)
	24.46 Release 1.0.5 (Nov 12, 2010)
	24.47 Release 1.0.4 (Sep 17, 2010)
	24.48 Release 1.0.3 (Aug 23, 2010)
	24.49 Release 1.0.2 (Aug 14, 2010)
	24.50 Release 1.0.1 (Jul 27, 2010)
	24.51 Release 1.0 (Jul 23, 2010)
	24.51.1 Incompatible changes
	24.51.2 Features added

	24.52 Previous versions

	25 Projects using Sphinx
	25.1 Documentation using the alabaster theme
	25.2 Documentation using the classic theme
	25.3 Documentation using a customized version of the classic theme
	25.4 Documentation using the sphinxdoc theme
	25.5 Documentation using another builtin theme
	25.6 Documentation using a custom theme/integrated in a site
	25.7 Homepages and other non-documentation sites
	25.8 Books produced using Sphinx
	25.9 Thesis using Sphinx

	26 Sphinx authors
	Python Module Index
	Index

