Parallel Chunking

Yucheng Low
May 6, 2025

1 Content Defined Chunking

The basic principle of Content Defined Chunking (CDC) is to split a file into
smaller chunks, produce variable sized-chunks, that are mostly stable to inser-
tions and deletions. This is as opposed to fixed-size chunking where a file is
split into constant sized chunks where insertions/deletions which are not ex-
actly chunk aligned will cause all remaining chunks to be modified. Content
defined chunking is excellent at data duplication as files with similar contents
(for instance two neural network models stored as different file formats) can
deduplicate against each other effectively.

We will not go too deep into implementation and usage of content defined
chunking here. We recommend reading the GearHash paper, or our prior paper
Git is for Data for a more detailed description. A challenge with CDC is that
due to the variable block sizes, it is generally necessary to start chunking from
the start of the file. However, this can be a performance issue with very large
files in which the CDC procedure can be a bottleneck and that is what we will
like to address in this paper.

Instead of assuming any particular chunking procedure, we will just rely
on a simplified formal description. Given a determinstic rolling hash function
H(z) — {0,1} which accepts a short string of length & and returns an boolean.
Given a string S. The basic CDC procedure works as follows:

ChunkStart = 0
for i in [0, |S|—K):
if H(fileli...i+ k1) == 1:

AddChunk (file[ChunkStart...i])
ChunkStart = ¢

AddChunk (file [ChunkStart...])

A minimum (m) and maximum (M) chunk size is normally used to avoid too
tiny and overly large chunks:

ChunkStart = 0
for ¢ in [0, |S|—K)):

if (¢ - ChunkStart > M) or (H(filel:...7+
k]l) == 1 and 7 - ChunkStart > m):

AddChunk (file[ChunkStart...i])
ChunkStart = ¢

AddChunk (file[ChunkStart...])

(Note that this simplified formulation does not cover more advanced procedures
like the the low variance chunking method in the Git Is for Data Paper, nor the
adaptive chunking method in FastCDC).

The goal is to find conditions in which we can “seek” into an arbitrary location
|S| and find a set of chunks that are guaranteed to align with chunks produced
by starting from the beginning of the file with the basic CDC procedure above.

2 Parallel Chunking

Consider two threads, first thread beginning chunking from S[0] and second
thread beginning chunking from an arbitrary location.

Under what condition will the chunks produced by thread 2 be gauranteed
to line up with the chunks produced by thread 1?7

Assume that second thread finds 3 consecutive chunk boundaries ¢y, ¢; and
co with the following conditions:

1. The chunk sizes are not “near” the chunk size limits: m < ¢ —cog < M —m
and m < co—cg <M —m.

2. There is no other chunk boundary within between Slcy...co]. i.e. there is
no substring s of length & in the range S[co...c2 + k] such that H(s) = 1.
(Equivalently, the basic chunking procedure will find ¢1,¢o a if T start
chunking from ¢; and set m = 0)

Then, we claim that first thread will align with the second thread on either c;
or co and so produce the same chunks after that.

Proof

Let b the first thread’s final chunk boundary such that b < ¢;.
Note that ¢; — M < b as since the maximum chunk size is M.
There are 4 cases.

Casel Ifci—M<b<cy—m,
As b is the last chunk boundary found by first thread where b < ¢; then there
must not be another chunk between ¢y — M and ¢ as that will be contradiction.
So since b+ m < ¢y , then ¢y must be next chunk boundary found. After
which we have aligned with the second thread.

Case 2 Ifcog—m<b<c.

The next chunk boundary found by first thread must be between b+ m and
b+ M.

From the case condition and condition 1, b4+m < ¢y +m < ¢;

And from the case condition b+ M > ¢;

So combining b+m < c¢; <b+ M

Hence ¢ will be found by first thread.

Case 3 Ifcyg<b<c —m.

As the next chunk boundary found by Thread 1 must be between b+ m and
b+ M,

We have b +m < ¢; from the case condition.

and b+ M > ¢y + M > ¢; combining the case condition and that ¢; — ¢y <
M — m from condition 1.

So combining b+m < c¢; < b+ M

As there are no other chunk boundaries from condition 2, ¢; must be found
by the first thread.

Case 4 Ifci —m<b<ec.

As the next chunk boundary found by Thread 1 must be between b+ m and
b+ M,

We must have b +m < ¢y from the case condition and condition 1.

Also, b+ M > ¢ + M — m > co combining the case condition and that
¢y —c; < M — m from condition 1.

So combining b+m < co < b+ M

As there are no other chunk boundaries from condition 2, ¢; must be found
by the first thread.

3 Implementation Errors

Now this procedure assumes that the hashing procedure *always* operates on
a consistent window of k bytes. However, as it turns in our implementation this
is not the case. Specifically the Rust Gear Hash implementation is streamed
and combining with a common performance optimization of skipping m bytes,
we really have the following implementation:

ChunkStart = 0
HashStreamStart = 0
while i < |S]:
if (¢ - ChunkStart >
M) or (H(file[HashStreamStart...i]) == 1):
AddChunk (file[ChunkStart, i])
ChunkStart = 1
HashStreamStart = ¢+ m
t=1i4+m

i=1+1
AddChunk (file [ChunkStart...])

Which has the odd side effect that for bytes m to m + k within a chunk we
are hashing less than k bytes. This means that in general, the hash output is a
function of the starting point of a chunk, and can disagree on hash values
for positions m to m + k of a chunk.

We can describe this using the following alternative notation for the hash
function H.

H(a,b) — {0,1}|b > a +m which is the output of the rolling hash chunking
procedure on bytes S[a...b]. Note that this is still a rolling hash and its output
in the usual case will depend only on the right-most & bytes of the string Sla...b].
The implementation error above means that H(a1,b1) = H(az,b1) IFF m+k <
by —a; and m+k < by — as.

Now, with this implementation, can we still perform parallel chunking?

I do not believe so. Due to the hash disagreement, under adverserial settings
it is possible to construct two chunk sequences which will *never* align.

