|
def | __init__ (self, "int" num_of_inputs, "int *" num_of_neurons_per_layer_array, "int" num_filtersInput, "double" minT, "double" maxT) |
|
"void" | doStep (self, *args) |
|
"double" | getFilterOutput (self, "int" inputIdx, "int" filterIdx) |
|
"int" | getNFiltersPerInput (self) |
|
def | __init__ (self, "int" num_of_inputs, "int *" num_of_neurons_per_layer_array) |
|
"double" | getOutput (self, "int" index) |
|
"void" | setLearningRate (self, "double" learningRate) |
|
"void" | setLearningRateDiscountFactor (self, "double" _learningRateDiscountFactor) |
|
"void" | setDecay (self, "double" decay) |
|
"void" | setMomentum (self, "double" momentum) |
|
"void" | setActivationFunction (self, "Neuron::ActivationFunction" _activationFunction) |
|
"void" | initWeights (self, *args) |
|
"void" | seedRandom (self, "int" s) |
|
"void" | setBias (self, "double" _bias) |
|
"int" | getNumLayers (self) |
|
"Layer *" | getLayer (self, "int" i) |
|
"Layer *" | getOutputLayer (self) |
|
"int" | getNumInputs (self) |
|
"Layer **" | getLayers (self) |
|
"bool" | saveModel (self, "char const *" name) |
|
"bool" | loadModel (self, "char const *" name) |
|
Proxy of C++ FeedforwardClosedloopLearningWithFilterbank class.
def feedforward_closedloop_learning.FeedforwardClosedloopLearningWithFilterbank.__init__ |
( |
|
self, |
|
|
"int" |
num_of_inputs, |
|
|
"int *" |
num_of_neurons_per_layer_array, |
|
|
"int" |
num_filtersInput, |
|
|
"double" |
minT, |
|
|
"double" |
maxT |
|
) |
| |
__init__(FeedforwardClosedloopLearningWithFilterbank self, int num_of_inputs, int * num_of_neurons_per_layer_array, int num_filtersInput, double minT, double maxT) -> FeedforwardClosedloopLearningWithFilterbank
Parameters
----------
num_of_inputs: int
num_of_neurons_per_layer_array: int *
num_filtersInput: int
minT: double
maxT: double