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1 Summary5

TFDWT is an open-source Python library that allows the construction of TensorFlow Layers6

for Fast Discrete Wavelet Transform (DWT) and Inverse Discrete Wavelet Transform (IDWT)7

in end-to-end backpropagation learning networks. These layers facilitate the construction8

of multilevel DWT filter banks and Wavelet Packet Transform (WPT) filter banks for a9

spatial-frequency representation of the inputs and features in shallow or deep networks. A10

multiresolution signal representation using a multi-rate discrete wavelet system creates enriched11

joint natural-frequency representations. The discrete wavelet system partitions the frequency12

plane into subbands using orthogonal dilated and translated lowpass scaling and highpass13

wavelet function. A realization of a fast discrete wavelet system is a two-band perfect14

reconstruction multi-rate filter bank with FIR filters corresponding to the impulse responses15

of the scaling and wavelet function with downsampling and upsampling operations. A filter16

bank for a higher dimensional input is a seamless extension by successive separable circular17

convolutions across each independent axis. The command pip install TFDWT installs the18

latest version of the package.19

2 Statement of need20

In machine or deep learning, an efficient multiresolution representation of data often helps21

to build economical and explainable models. The Wavelet toolbox (Misiti et al., 1996) by22

MathWorks is a proprietary software that has served the requirements for D-dimensional23

wavelet transforms in the MATLAB environment for a few decades. Several open-source24

packages are now available for 1D and 2D DWT in Python. Pywavelets (Lee et al., 2019) is25

a D-dimensional wavelet transform library in Python that works with Numpy (Harris et al.,26

2020) arrays. However, it is challenging to directly use Pywavelets with the symbolic tensors in27

TensorFlow (Developers, 2022) layers and CUDA (Fatica, 2008). WaveTF (Versaci, 2021) is a28

solution for constructing 1D and 2D DWT layers in TensorFlow but is limited to only Haar and29

Db2 wavelets. The package tensorflow-wavelets (Leiderman, 2025) supports multiple wavelets,30

but it has a minor bug in perfect reconstruction due to the padding and boundary effects in31

processing the finite-length inputs. In Pytorch (Imambi et al., 2021), the pytorch-wavelets32

(Cotter, 2023) package allows the construction of 1D and 2D DWT layers. However, there33

are limited libraries for 3D and higher dimensional transforms with a wide range of wavelet34

families for Graphics Processing Unit (GPU) computations.35

For a D-dimensional wavelet 𝜓 ∈ 𝐿2(ℝ)D, a discrete wavelet system defined by {𝜓𝑚,𝑝 ∶36

𝑚 ∈ ℤ,𝑝 ∈ ℤD,D ∈ ℕ} forms an orthonormal basis, where 𝜓𝑚,𝑝(𝑥) ∶= 2𝑚𝜓(2𝑚𝑥 − 𝑝).37

Then, by definition the DWT of 𝑥 ∈ ℤD is 𝑥 ↦ (⟨𝑥, 𝜓𝑚,𝑝⟩)𝑚,𝑝, where 𝑚 is the dilation38

parameter and 𝑝 is the shift or translation parameter. The TFDWT Python package is a simple39

standalone DWT and IDWT library with minimal dependencies that allow computation with40

symbolic tensors and CUDA. This release supports up to 3D forward and inverse transforms41
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with various orthogonal and biorthogonal wavelet families. A seamless package upgrade for42

higher dimensional DWT is possible by separable transforms of the independent axes. The43

boundary effects are taken care of with cyclic convolutions instead of padding. The package44

supports orthogonal and biorthogonal wavelets of different families having impulse responses of45

diverse lengths. In this paper, we defined the platform-independent, underlying mathematics46

for realizing fast D-dimensional DWT and IDWT layers with filter bank structures having FIR47

filters, downsamplers and upsamplers. Although our realization of the discrete wavelet system48

is in TensorFlow 2, a seamless reproduction of the computations is possible in other deep49

learning frameworks.50

3 Discrete wavelet system for sequences51

A discrete wavelet system contains a pair of quadrature mirror filters with a lowpass scaling52

function and a highpass mother wavelet. A discrete wavelet system with a continuous one-53

dimensional (D = 1) mother wavelet 𝜓 ∈ 𝐿2(ℝ) is realized by using the impulse responses54

of the scaling function and the wavelet as Finite Impulse Response (FIR) filters 𝑔[𝑛] and55

ℎ[𝑛]. Figure 1 shows wavelets and scaling functions of the analysis and synthesis bank of56

bior3.1 wavelet and their corresponding impulse responses are shown in Figure 2. These FIR57

filters are the building blocks of a two-band perfect reconstruction filter bank for realizing58

fast discrete wavelet systems. Figure 3 shows a two-band perfect reconstruction filter bank59

that operates on one-dimensional inputs, i.e., sequences in 𝑙2(ℤ). The analysis and synthesis60

bank in orthogonal wavelet systems have identical lowpass and highpass FIR filters but differ61

in biorthogonal wavelet systems. In biorthogonal wavelet filter banks, 𝑔[𝑛] and ℎ̃[𝑛] are the62

lowpass and highpass filters of the synthesis bank. The only difference in the biorthogonal63

families like bior and rbio is the interchange of the analysis and synthesis scaling and wavelets64

functions, for example, in bior3.1 and rbio3.1.65

Figure 1: Wavelets and scaling functions of bior3.1 analysis (left) and synthesis (right).

Figure 2: Impulse responses of different bior3.1 analysis (left two) and synthesis (right two) lowpass and
highpass FIR filters.

3.1 Circular convolution operators66

The four matrices in the two band perfect reconstruction filter bank in Figure 3 are — (i) 𝐺 is67

lowpass analysis matrix, (ii) 𝐻 is highpass analysis matrix, (iii) 𝐺̃ is lowpass synthesis matrix68

and (iv) 𝐻̃ is highpass synthesis matrix. These matrices are operators for circular convolution,69

constructed by circular shifts of the corresponding FIR filters 𝑔[𝑛 − 𝑘], ℎ[𝑛 − 𝑘], 𝑔[𝑛 − 𝑘]70

and ℎ̃[𝑛 − 𝑘], where 𝑔 = 𝑔 and ℎ = ℎ̃ for orthogonal wavelets.71
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Figure 3: Two band perfect reconstruction filter bank.

3.1.1 Analysis matrix72

For a lowpass analysis FIR filter of length 𝐿 and a input sequence of length 𝑁, the73

circular convolution operator is a matrix 𝐺 of shape 𝑁 × 𝑁. A downsampling by two74

𝑓(↓2) of the output the convolution is equivalent to getting rid of the even rows of 𝐺75

to give 𝑁
2 × 𝑁 operator 𝑓(↓2)𝐺. Similarly, for the highpass analysis FIR filter of same76

wavelet with convolution and downsampling is a 𝑁
2 ×𝑁 operator 𝑓(↓2)𝐻. The analysis matrix is,77

78

𝐴 = [ 𝑓(↓2)𝐺
𝑓(↓2)𝐻

]
𝑁×𝑁

where 𝐴 is a 𝑁 ×𝑁 decimated circular convolution operator formed by combining the lowpass79

and highpass decimated operators].80

3.1.2 Synthesis matrix81

The synthesis matrix 𝑆 is another 𝑁 ×𝑁 decimated circular convolution operator as given by82

equation [eq:SynthesisMatrix],83

𝑆 = [ 𝑓(↓2)𝐺̃
𝑓(↓2)𝐻̃

]
𝑇

𝑁×𝑁

where 𝐺̃ and 𝐻̃ are matrices formed by the lowpass and highpass synthesis FIR filters. The84

above is a general representation for both orthogonal and biorthogonal wavelets families where85

for orthogonal wavelets, 𝐺̃ = 𝐺, 𝐻̃ = 𝐻 and thus 𝑆 = 𝐴𝑇.86

A two-band perfect reconstruction discrete wavelet system for one-dimensional inputs is given87

by the analysis equation and the synthesis equation,88

𝑞 = DWT(𝑥) or, 𝑞 = (𝐴𝑥𝑇)𝑇 —Analysis

𝑥 = IDWT(𝑞) or, 𝑥 = (𝑆𝑞𝑇)𝑇—Synthesis

where 𝐴 and 𝑆 are analysis and synthesis matrices, 𝑥 is a input sequence and 𝑞 has a distinct89

lowpass and a highpass subband.90

Example 1. Given, a sequence 𝑥 ∈ ℝ8 or 𝑁 = 8 and FIR filters length 𝐿 = 6.91

LPF and downsampling 𝑓(↓2)𝐺 = ⎡
⎢
⎣

𝑔1 𝑔0 0 0 𝑔5 𝑔4 𝑔3 𝑔2
𝑔3 𝑔2 𝑔1 𝑔0 0 0 𝑔5 𝑔4
𝑔5 𝑔4 𝑔3 𝑔2 𝑔1 𝑔0 0 0
0 0 𝑔5 𝑔4 𝑔3 𝑔2 𝑔1 𝑔0

⎤
⎥
⎦𝑁

2 ×𝑁
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HPF and downsampling 𝑓(↓2)𝐻 = ⎡

⎢
⎣

ℎ1 ℎ0 0 0 ℎ5 ℎ4 ℎ3 ℎ2
ℎ3 ℎ2 ℎ1 ℎ0 0 0 ℎ5 ℎ4
ℎ5 ℎ4 ℎ3 ℎ2 ℎ1 ℎ0 0 0
0 0 ℎ5 ℎ4 ℎ3 ℎ2 ℎ1 ℎ0

⎤
⎥
⎦𝑁

2 ×𝑁

Analysis matrix is 𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑔1 𝑔0 0 0 𝑔5 𝑔4 𝑔3 𝑔2
𝑔3 𝑔2 𝑔1 𝑔0 0 0 𝑔5 𝑔4
𝑔5 𝑔4 𝑔3 𝑔2 𝑔1 𝑔0 0 0
0 0 𝑔5 𝑔4 𝑔3 𝑔2 𝑔1 𝑔0
ℎ1 ℎ0 0 0 ℎ5 ℎ4 ℎ3 ℎ2
ℎ3 ℎ2 ℎ1 ℎ0 0 0 ℎ5 ℎ4
ℎ5 ℎ4 ℎ3 ℎ2 ℎ1 ℎ0 0 0
0 0 ℎ5 ℎ4 ℎ3 ℎ2 ℎ1 ℎ0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦𝑁×𝑁

Similarly,92

Synthesis matrix is 𝑆 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑔1 𝑔0 0 0 𝑔5 𝑔4 𝑔3 𝑔2
𝑔3 𝑔2 𝑔1 𝑔0 0 0 𝑔5 𝑔4
𝑔5 𝑔4 𝑔3 𝑔2 𝑔1 𝑔0 0 0
0 0 𝑔5 𝑔4 𝑔3 𝑔2 𝑔1 𝑔0
ℎ̃1 ℎ̃0 0 0 ℎ̃5 ℎ̃4 ℎ̃3 ℎ̃2
ℎ̃3 ℎ̃2 ℎ̃1 ℎ̃0 0 0 ℎ̃5 ℎ̃4
ℎ̃5 ℎ̃4 ℎ̃3 ℎ̃2 ℎ̃1 ℎ̃0 0 0
0 0 ℎ̃5 ℎ̃4 ℎ̃3 ℎ̃2 ℎ̃1 ℎ̃0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦𝑁×𝑁

The DWT of 𝑥 produces subbbands,93

𝑞 = DWT(𝑥) or, 𝑞 = 𝐴𝑥

Perfect reconstruction,94

𝑥 = IDWT(𝑞) or, 𝑥 = 𝑆𝑞

3.2 DWT 1D layer95

A DWT 1Dayer operates on input tensors of shape (batch, length, channels) and produces an96

output of shape (batch, length/2, 2 × channels). as described in Algorithm 1a.97

Algorithm 1a —98

1. Input 𝑋 of shape (batch, length, channels).99

2. Generate analysis matrix 𝐴 using length of input.100

3. For each batched channel 𝑥 ∈ 𝑋 of shape (batch, length): 𝑞𝑐 = 𝐴𝑥𝑇
101

102

4. Stacking for all 𝑐 channels: 𝑄 ∶= (𝑞𝑐)∀𝑐 to a shape (batch, length, channels).103

5. Group subbands and return an output 𝑄(grouped) of shape (batch, length/2, , 2×channels)104

# Grouping two subbands in DWT 1D

mid = int(Q.shape[1]/2)

L = Q[:,:mid,:]

H = Q[:,mid:,:]

out = Concatenate([L, H], axis=-1)
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3.3 IDWT 1D layer105

An IDWT 1D layer operates on input tensors of shape (batch, length/2, 2 × channels) and106

produces an output of shape (batch, length, channels) as described in Algorithm 1b.107

Algorithm 1b —108

1. Input 𝑄(grouped) of shape (batch, length/2, 2 × channels)109

2. Ungroup the subbands to get 𝑄 of shape (batch, length, channels)110

3. Generate synthesis matrix 𝑆 using length of 𝑄.111

4. For each batched channel 𝑞 ∈ 𝑄 of shape (batch, length): 𝑥 = 𝑆𝑞𝑇, i.e., a perfect112

reconstruction, where, 𝑆 = 𝐴𝑇 for orthogonal wavelets113

5. Layer output (perfect reconstruction): 𝑋 ∶= (𝑥𝑐)∀𝑐 is of shape (batch, length, channels)114

4 Higher dimensional discrete wavelet systems115

In sequences (1D), the DWT 1D applies along the only independent variable. To achieve higher116

dimensional DWT, the same DWT 1D is successively applied separably to all the independent117

variables. For example, in an image (2D) the DWT 2D is a row-wise DWT 1D followed by a118

column-wise DWT 1D. Similarly, the reconstruction is column-wise IDWT 1D followed by a119

row-wise IDWT 1D.120

4.1 Two-dimensional discrete wavelet system121

The pixel values in an image are a function of two independent spatial axes. A DWT 2D filter122

bank is a separable transform with row-wise filtering followed by column-wise filtering that123

yields four subbands - LL, LH, HL and HH. A two-dimensional discrete wavelet system is,124

𝑞 = DWT(𝑥) ∶= 𝐴(𝐴𝑥021)𝑇021 —Analysis

𝑥 = IDWT(𝑞) ∶= 𝑆(𝑆 [𝐴(𝐴𝑥𝑇
021)𝑇021]

𝑇
021

)𝑇021 —Synthesis

where, 𝐴 and 𝑆 are the same analysis and synthesis matrices defined for one-dimensional125

wavelet system. Figure 4 shows an 𝑁 × 𝑁 image and its four localized spatial-frequency126

subbands after DWT. Here, the low-frequency band is LL, and the other three are high-127

frequency subbands representing horizontal, vertical and diagonal features. Figure 5 illustrates128

a separable 2D DWT perfect reconstruction filter bank. The 2D layers operate on batched,129

multichannel tensors of shape (batch, height, width, channels), where each image is of shape130

height and width. Figure 6 illustrates input, output and perfect reconstruction by DWT 2D131

and IDWT 2D layers. The Multiresolution Encoder-Decoder Convolutional Neural Network in132

(Tarafdar et al., 2025) uses these forward and inverse transform layers.133

Figure 4: Natural domain (left) and spatial-frequency tiling (right) after a DWT 2D.
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Figure 5: Separable DWT 2D perfect reconstruction filter bank.

4.1.1 DWT 2D layer134

A DWT 2D layer operates on input tensors of shape (batch, height, width, channels) and135

produces an output of shape (batch, height/2,width/2, 4×channels) as described in Algorithm136

2a.137

Algorithm 2a —138

1. Input 𝑋 of shape (batch, height, width, channels).139

2. Generate analysis matrix 𝐴 using height and width of input.140

3. For each batched channel 𝑥𝑐 ∈ 𝑋 of shape (batch, height, width):141

(omitting suffix 𝑐 in 𝑥 below for simplicity of notation)142

a. Row-wise batch DWT 1D: 𝐴𝑥𝑇
021 ∶= Einsum(𝑖𝑗, 𝑏𝑗𝑘 → 𝑏𝑖𝑘)143

b. Column-wise batch DWT 1D: 𝐴(𝐴𝑥𝑇
021)𝑇021 ∶= Einsum(𝑖𝑗, 𝑏𝑗𝑘 → 𝑏𝑖𝑘) Or, equiv-144

alently, DWT of a batched channel 𝑥 is,145

𝑞𝑐 = DWT(𝑥) or, 𝑞𝑐 = 𝐴(𝐴𝑥021)𝑇021

where, the suffix 021 in 𝑥𝑇
021 denotes permutation of axis, i.e., transpose.146

4. Stacking for all 𝑐 channels: 𝑄 ∶= (𝑞𝑐)∀𝑐 to a shape (batch, height, width, channels).147

5. Group subbands and return an output 𝑄(grouped) of shape (batch, height/2,width/2, 4×148

channels)149

# Grouping four subbands in DWT 2D

mid = int(Q.shape[1]/2)

LL = Q[:,:mid,:mid,:]

LH = Q[:,mid:,:mid,:]

HL = Q[:,:mid,mid:,:]

HH = Q[:,mid:,mid:,:]

output = Concatenate([LL, LH, HL, HH], axis=-1)

4.1.2 IDWT 2D layer150

An IDWT 2D layer operates on input tensors of shape (batch, height/2,width/2, 4× channels)151

and produces an output of shape (batch, height, width, channels) as described in Algorithm152

2b.153

Algorithm 2b —154

1. Input 𝑄(grouped) of shape (batch, height/2,width/2, 4 × channels)155
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2. Ungroup the subbands to get 𝑄 of shape (batch, height, width, channels)156

3. Generate synthesis matrix 𝑆 using height and width of 𝑄.157

4. For each batched channel 𝑞𝑐 ∈ 𝑄 of shape (batch, height, width):158

(omitting suffix 𝑐 in 𝑞 below for simplicity of notation)159

a. Row-wise batch IDWT 1D: 𝑆𝑞𝑇
021 ∶= Einsum(𝑖𝑗, 𝑏𝑗𝑘 → 𝑏𝑖𝑘)160

b. Column wise batch IDWT 1D: 𝑆(𝑆𝑞𝑇
021)

𝑇
021 ∶= Einsum(𝑖𝑗, 𝑏𝑗𝑘 → 𝑏𝑖𝑘) or equiva-161

lently, a perfect reconstruction,162

𝑥 = IDWT(𝑞) or, 𝑥 = 𝑆(𝑆𝑞𝑇
021)

𝑇
021

where, the suffix 021 in 𝑥𝑇
021 denotes permutation of axis, i.e., transpose and163

𝑆 = 𝐴𝑇 for orthogonal wavelets164

5. Layer output : 𝑋 ∶= (𝑥𝑐)∀𝑐 is of shape (batch, height, width, channels)165

(Perfect reconstruction)166

Figure 6: DWT decomposition and perfect reconstruction of a multichannel image tensor.

4.2 Three-dimensional discrete wavelet system167

A three-dimensional (3D) discrete wavelet system for a 3D input 𝑥 is given by,168

𝑞 = DWT(𝑥) ∶= [𝐴(𝐴(𝐴𝑥𝑇
0213)𝑇0213)𝑇0132] 𝑇0132 —Analysis

𝑥 = IDWT(𝑞) ∶= (𝑆(𝑆(𝑆 [𝐴(𝐴(𝐴𝑥𝑇
0213)𝑇0213)𝑇0132] 𝑇0132𝑇0132)𝑇0132)𝑇0213)0213 —Synthesis

where, 𝐴 and 𝑆 are the same analysis and synthesis matrices as defined for one-dimensional169

wavelet system. The DWT 3D and IDWT 3D layers operate on batched, multichannel tensors170

of shape (batch, height, width, depth, channels).171

4.2.1 DWT 3D layer172

A DWT 3D layer operates on input tensors of shape (batch, height, width, depth, channels)173

and produces an output of shape (batch, height/2,width/2, depth/2, 8×channels) as described174

in Algorithm 3a.175

Algorithm 3a —176

1. Input 𝑋 of shape (batch, height, width, depth, channels).177

2. Generate analysis matrix 𝐴 using height, width and depthof input.178

3. For each batched channel 𝑥𝑐 ∈ 𝑋 of shape (batch, height, width, depth):179

(omitting suffix 𝑐 in 𝑥 below for simplicity of notation)180

a. Row-wise batch DWT 1D: 𝐴𝑥𝑇
0213 ∶= Einsum(𝑖𝑗, 𝑏𝑗𝑘𝑙 → 𝑏𝑖𝑘𝑙)181

b. Column-wise batch DWT 1D: 𝐴 (𝐴𝑥𝑇
0213)

𝑇
0213

∶= Einsum(𝑖𝑗, 𝑏𝑗𝑘𝑙 → 𝑏𝑖𝑘𝑙)182

c. Depth-wise batch IDWT 1D: 𝐴(𝐴(𝐴𝑥𝑇
0213)𝑇0213)𝑇0132 ∶= Einsum(𝑖𝑘, 𝑏𝑗𝑘𝑙 → 𝑏𝑗𝑖𝑙)183

Therefore, DWT of 𝑥 yield coefficients:184

𝑞𝑐 ∶= DWT (𝑥) = [𝐴(𝐴(𝐴𝑥𝑇
0213)𝑇0213)𝑇0132] 𝑇0132
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4. Stacking for all 𝑐 channels as 𝑄 ∶= (𝑞𝑐)∀𝑐 to a shape (batch, height, width, depth,185

channels).186

5. Group subbands and return an output 𝑄(grouped) of shape (batch, height/2, width/2,187

depth/2, 8×channels).188

# Grouping Eight subbands in 3D DWT

mid = int(Q.shape[2]/2)

LLL = Q[:,:mid,:mid,:mid,:]

LLH = Q[:,mid:,:mid,:mid,:]

LHL = Q[:,:mid,mid:,:mid,:]

LHH = Q[:,mid:,mid:,:mid,:]

HLL = Q[:,:mid,:mid,mid:,:]

HLH = Q[:,mid:,mid:,mid:,:]

HHL = Q[:,:mid,mid:,mid:,:]

HHH = Q[:,_mid:,mid:,mid:,:]

output = Concatenate([LLL, LLH, LHL, LHH, HLL, HLH, HHL, HHH], axis=-1)

4.2.2 IDWT 3D layer189

An IDWT 3D layer operates on input tensors of shape (batch, height/2,width/2, depth/2, 8×190

channels) and produces an output of shape (batch, height, width, depth, channels) as de-191

scribed in Algorithm 3b.192

Algorithm 3b —193

1. Input 𝑄(grouped) of shape (batch, height/2,width/2, depth/2, 8 × channels)194

2. Ungroup to get 𝑄 of shape (batch, height, width, depth, channels)195

3. Generate synthesis matrix 𝑆 using height, width and depth of 𝑄.196

4. For each batched channel 𝑞𝑐 ∈ 𝑄 of shape (batch, height, width, depth):197

(omitting suffix 𝑐 in 𝑞 below for simplicity of notation)198

a. Row-wise batch IDWT 1D: 𝑆𝑞𝑇
0132 ∶= Einsum(𝑖𝑘, 𝑏𝑗𝑘𝑙 → 𝑏𝑗𝑖𝑙)199

b. Column-wise batch IDWT 1D: 𝑆(𝑆𝑞𝑇
0132)0132 ∶= Einsum(𝑖𝑗, 𝑏𝑗𝑘𝑙 → 𝑏𝑖𝑘𝑙)200

c. Depth-wise batch IDWT 1D: 𝑆(𝑆(𝑆𝑞𝑇
0132)

𝑇
0132)𝑇0213 ∶= Einsum(𝑖𝑗, 𝑏𝑗𝑘𝑙 → 𝑏𝑖𝑘𝑙)201

or equivalently, a perfect reconstruction,202

203

𝑥𝑐 ∶= IDWT (𝑞) = [𝑆(𝑆(𝑆𝑞𝑇
0132)

𝑇
0132)𝑇0213]

𝑇

0213

where, 𝑆 = 𝐴𝑇 for orthogonal wavelets.204

5. Layer output : 𝑋 ∶= (𝑥𝑐)∀𝑐 is of shape (batch, height, width, depth, channels)205

(Perfect reconstruction)206

In general, a seamless realization of fast D-dimensional DWT and IDWT is possible by extending207

the above separable method to all the independent 𝑁 axes one after the other. The number208

of subbands will be equal to 2D for a D dimensional DWT. For example, sequences (D = 1)209

yield two subbands, images (D = 2) yield four subbands, three-dimensional inputs (D = 3)210

with voxels yield eight subbands etc.211

5 Multilevel wavelet filter banks212

The above-discussed DWT and IDWT layers are building blocks in constructing multilevel213

DWT filter banks. Figure 7 shows the partitioning of the 1D frequency axis and tiling of214

the 2D frequency plane using a level-4 1D and 2D DWT. The multilevel DWT successively215

decomposes the low-frequency feature. If the high-frequency features are also decomposed216

successively, then we get a Wavelet Packet Transform (WPT) filter bank.217

Tarafdar, & Gadre. (2025). TFDWT: Fast Discrete Wavelet Transform TensorFlow Layers. Journal of Open Source Software, ¿VOL?(¿ISSUE?),
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Figure 7: Spatial-frequency tiling by DWT level 4 decomposition of a sequence of length N (top) and
image of shape Nimes N (bottom).
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