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1 Summary

@WT is an open-source Python package that allows the creation of TensorFlow Layers for Fast
Discrete Wavelet Transform (DWT) and Inverse Discrete Wavelet Transform (IDWT) in end-
to-end backpropagation learning networks. These layers facilitate the construction of multilevel
DWT filterbanks and Wavelet Packet Transform (WPT) filterbanks for a spatial-frequency
representation of the inputs and features in shallow or deep networks. A multiresolution
signal representation using a multi-rate discrete wavelet system creates enriched joint natural-
frequency representations. The discrete wavelet system partitions the frequency plane into
subbands using orthogonal dilated and translated lowpass scaling and highpass wavelet function.
A realization of a fast discrete wavelet system is a two-band perfect reconstruction multi-
rate filter bank with FIR filters corresponding to the impulse responses of the scaling and
wavelet function with downsampling and upsampling operations. A filter bank for a higher
dimensional input is a seamless extension by successive separable circular convolutions across
each independent axis. To install the latest version of the package, use pip install TFDWT.

2 Statement of need

In machine or deep learning, an efficient multiresolution representation of data often helps
to build economical and explainable models. The Wavelet toolbox (Misiti et al., 1996) by
MathWorks is a proprietary software that has served the requirements for D-dimensional
wavelet transforms in the MATLAB environment for a few decades. Several open-source
packages are now available for 1D and 2D DWT in Python. Pywavelets (Lee et al., 2019) is
a D-dimensional wavelet transform library in Python that works with Numpy (Harris et al.,
2020) arrays. However, it is challenging to directly use Pywavelets with the symbolic tensors in
TensorFlow (Developers, 2022) layers and CUDA (Fatica, 2008). WaveTF (Versaci, 2021) is a
solution for constructing 1D and 2D DWT layers in TensorFlow but is limited to only Haar and
Db2 wavelets. The package tensorflow-wavelets (Leiderman, 2025) supports multiple wavelets,
but it has a minor bug in perfect reconstruction due to the padding and boundary effects in
processing the finite-length inputs. In Pytorch (Imambi et al., 2021), the pytorch-wavelets
(Cotter, 2023) package allows the construction of 1D and 2D DWT layers. However, there
are limited libraries for 3D and higher transforms with a wide range of wavelet families for
Graphics Processing Unit (GPU) computations.

For a D-dimensional wavelet 1 € L%(R)P, a discrete wavelet system defined by { tm €

mp
Z,pe ZD} forms an orthonormal basis in » € L2(R)P, where t,!lm p(:z) = 2map(2M — p).
Then, by definition the DWT of @ € Z° is @ 1+ (02, Y. p) Jin,pr Where mis the dilation
parameter and p is the shift or translation parameter. The TFDWT Python package is a simple
standalone DWT and IDWT library with minimal dependencies that allow computation with
symbolic tensors and CUDA. This release supports up to 3D forward and inverse transforms with
various orthogonal and biorthogonal wavelet families. A seamless package upgrade for higher

Tarafdar, & Gadre. (2025). TFDWT: Fast Discrete Wavelet Transform TensorFlow Layers. Journal of Open Source Software, ; VOL?((1SSUE?), 1
IPAGE? https://doi.org,/ 10 500000/ draft.




The Journal of Open Source Software

dimensional DWT is possible by separable transforms. The boundary effects are taken care of
with cyclic convolutions instead of padding. The package supports orthogonal and biorthogonal
wavelets of different families having impulse responses of diverse lengths. In this paper, we
defined the platform-independent, underlying mathematics for realizing fast DWT and IDWT
layers with filter bank structures having FIR filters, downsamplers and upsamplers. Although
our realization of the discrete wavelet system is in TensorFlow 2, a seamless reproduction of
the computations is possible in other deep learning frameworks.

3 Discrete wavelet system for sequences

A discrete wavelet system has a lowpass scaling function and a highpass wavelet. The
realization of a discrete wavelet system with a continuous one-dimensional (D=1) mother
walEht 1) € L*(R) is by using the impulse responses of the scaling function and the wavelet
as Finite Impulse Response (FIR) filters g[n] and h[n]‘ Figure 1 shows wavelets and scaling
functions of the analysis and synthesis bank of bior3.1 wavelet and their corresponding impulse
responses are shown in Figure 2. These FIR filters are the building blocks of a two-band perfect
reconstruction filter bank for realizing fast discrete wavelet systems. Figure 3 shows a two-band
perfect reconstruction filter bank that operates on one-dimensional inputs, i.e., sequences in
[%(Z). The analysis and synthesis bank in orthogonal wavelet systems have identical lowpass
and highpass FIR filters but differ in biorthogonal wavelet systems. In biorthogonal wavelet
filter banks, §[n] and k[n] are the lowpass and highpass filters of the synthesis bank. The
only difference in the biorthogonal families like bior and rbio is the interchange of the analysis
and synthesis scaling and wavelets functions, for example, in bior3.1 and rbio3.1.
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Figure 1: Wavelets and scaling functions of bior3.1 analysis (left) and synthesis (right).
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Figure 2: Impulse responses of different bior3.1 analysis (left two) and synthesis (right two) lowpass and
highpass FIR filters.

3.1 Circular convolution operators

The four matrices in the two band perfect reconstruction filter bank in Figure 3 are — (i) G is
lowpass analysis matrix, (i) H is highpass analysis matrix, (iii) Gis lowpass synthesis matrix
and (iv) H is highpass synthesis matrix. These matrices are operators for ERBular convolution,
constructed by circular shifts of the corresponding FIR filters g[n — k]‘ h[nf k]. j[nf k]
and ;‘L[TL — k]‘ where g=gand h = h for orthogonal wavelets.
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Figure 3: Two band perfect reconstruction filter bank.

s 3.1.1 Analysis matrix

w For a lowpass analysis FIR filter of length L and a input sequence of length N, the
= circular convolution operator is a matrix G of shape N x N. A downsampling by two
7 fi|g of the output the convolution is equivalent to getting rid of the even rows of G
= to give & x N operator f12)G. Similarly, for the highpass analysis FIR filter of same

+  wavelet with convolution and downsampling isa % * N operator f;19)H. The analysis matrix is,

A= [ fun_\fl ]
funH |
w where A is a N x N decimated circular convolution operator formed by combining the lowpass
7 and highpass decimated operators).

7 3.1.2 Synthesis matrix

2 The synthesis matrix S is another N x N decimated circular convolution operater as given by
w0 equation [eq:SynthesisMatrix],

= 1T
§— fuzuq]

- H
faH 1

s where G and H are matrices formed by the lowpass and highpass synthesis FIR filters. The
= above is a general representation for both orthogonal and biorthogonal wavelets families where
afor orthogonal wavelets, G = G, H = H and thus S = AT,

s A two-band perfect reconstruction discrete wavelet system for one-dimensional inputs is given
as by the analysis equation and the synthesis equation,

gq=DWT(z) or, g= (A:zT)T—Analysis

x = IDWT(q) or, = = (SqT)T—Synthesis

s where A and S are analysis and synthesis matrices, @ is a input sequence and g has a distinct
o lowpass and a highpass subband.

w Example 1. Given, a sequence = € R® or N' = 8 and FIR filters length . = 6

4]

9 % 0 kﬂs 81 93 G2
Gy 92 9 0 0 g g9
9 1 95 % G H O 0
0 0 g % 95 9 0 D

LPF and downsampling f oG =

Han
HxN
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@

By hy 0 0 hy hy hy hy

hy 9 hy hy 0 0 hy hy

hy hy hy hy hy hy 0 O

0 0 hy hy hy hy hy hy 1, .
B

HPF and downsampling f, o H =

91 Yo FU 9 91 93 92

g5 92 G 0 0 g 9
g5 91 8§35 G2 G g 0 0
; i 0 g5 8 95 9% & 9
Analysis matrix is A = ? - e ;
Y y by 00 by hy By by
hy hy hy hy 0.0 hy hy
by hy hy hy, Hy By, 0 O
0 0 hy hy hy hy By By NEN
Similarly,
G 0 0 G G b ]
g3 92 Yo '0 0 & @
G5 91 938 G G 0 0
: e 0 G G 93 G &
Synthesis matrix is § = g By 0 0 hy hy hy Ry
hy  hy hy 0 0 hy hy
by By h, h, h, 0 0
0 0 hy hyg hy hy By Ryl o

The DWT of « produces subbbands,

q=DWT(z) or, g = Az

Perfect reconstruction,
z =IDWT(g) or, z = Sq

3.2 DWT 1D layer

A DWT 1Dayer operates on input tensors of shape (batch, length, channels) and produces an
output of shape (batch, length/2, 2 x channels). as described in Algorithm 1la.

Algorithm 1a —
1. Input X of shape (batch, length, channels).
2. Generate analysis matrix A using length of input

3. For each batched channel € X of shape (batch, length): q = AzxT

4. Stacking for all ¢ channels: @ := (1.]5)VC to a shape (batch, length, channels).

5. Group subbands and return an output Q8“P*Y) of shape (batch, length/2, , 2% channels)

WT 1D
DWT 10

int(Q.shape[1]1/2)
L=Q[:,:mid,:]

H = Q[:,mid:,:]

out = Concatenate([L, H], axis=-1)
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3.3 IDWT 1D layer

An IDWT 1D layer operates on input tensors of shape (batch, length /2, 2 x channels) and
produces an output of shape (batch, length, channels) as described in Algorithm 1b.

Algorithm 1b —

1. Input thm“pem of shape (batch, length/2,2 x channels)

2. Ungroup the subbands to get @ of shape (batch, length, channels)

3. Generate synthesis matrix S using length of Q.

4. For each batched channel g € @ of shape (batch, length): = = Sg7, ie., a perfect
reconstruction, where, § = AT for orthogonal wavelets

5. Layer output (perfect reconstruction): X := (:A:C)Vr is of shape (batch, length, channels)

4 Higher dimensional discrete wavelet systems

In sequences (1D), the DWT 1D applies along the only independent variable. To achieve higher
dimensional DWT, the same DWT 1D is successively applied separably to all the independent
variables. For example, in an image (2D) the DWT 2D is a row-wise DWT 1D followed by a
column-wise DWT 1D. Similarly, the reconstruction is column-wise IDWT 1D followed by a
row-wise IDWT 1D.

4.1 Two-dimensional discrete wavelet system

The pixel values in an image are a function of two independent spatial axes. A DWT 2D filter
bank is a separable trmorm with row-wise filtering followed by column-wise filtering that
yields four subbands - LL, LH, HL and HH. A two-dimensional discrete wavelet system is,

g = DWT(z) := A(Azgy )in —Analysis

@ = IDWT{g) := S(S[A(Az ], 15|71, —Synthesis

where, A and S are the same analysis and synthesis matrices defined for one-dimensional
wavelet system. Figure 4 shows an N x N image and its four localized spatial-frequency
subbands after DWT. Here, the low-frequency band is LL, and the other three are high-
frequency subbands representing horizontal, vertical and diagonal features. Figure 5 illustrates
a separable 2D DWT perfect reconstruction filter bank. The 2D layers operate on batched,
multichannel tensors of shape (batch, height, width, channels), where each image is of shape
height and width. Figure 6 illustrates input, output and perfect reconstruction by DWT 2D
and IDWT 2D layers. The Multiresolution Encoder-Decoder Convolutional Neural Network in
(Tarafdar et al., 2025) uses these layers.

0o M o (0,0) ki (,N)
ng by | L HL
l 1 LH | HH
(N,0) (N, N) (N,0) (N,N)
Spatial Spatial-frequency tiling

Figure 4: Natural domain (left) and spatial-frequency tiling (right) after a DWT 2D.
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Figure 5: Separable DWT 2D perfect reconstruction filter bank

1w 4.1.1 DWT 2D layer

12 A DWT 2D layer operates on input tensors of shape (batch, height, width, channels) and
1 produces an output of shape (batch, height /2, width/2,4 x channels) as described in Algorithm

o 2a.

us  Algorithm 2a —

138 1.
7 2.
138 3.

Input X of shape (batch, height, width, channels).
Generate analysis matrix A using height and width of input.

For each batched channel @z, € X of shape (batch, height, width):
(omitting suffix c in & below for simplicity of notation)
1. Row-wise batch DWT 1D: Az, := Einsum(ij, bjk — bik)
2. Column-wise batch DWT 1D: A(Awx{y )&y, := Einsum(ij, bjk — bik) Or, equiv-
alently, DWT of a batched channel x is,

q, = DWT(x) or, g, = A(Amgz))jm

. Stacking for all ¢ channels: Q := (qc)u to a shape (batch, height, width, channels)

. Group subbands and return an output Q'¥**** of shape (batch, height/2, width /2, 4 x

channels)

# Gr

mid = int(Q.shape[1]/2)

LL = Q[:,:mid,:mid,:]

LH = Q[:,mid:,:mid,:]

HL = Q[:,:mid,mid:,:]

HH = Q[:,mid:,mid:,:]

output = Concatenate([LL, LH, HL, HH], axis=-1)

us  4.1.2 IDWT 2D layer

wr An IDWT 2D layer operates on input tensors of shape (batch, height/2, width /2, 4 x channels)
s and produces an output of shape (batch, height, width, channels) as described in Algorithm

s 2b.

1w Algorithm 2b —

151 1.
152 2.

Input Q'&°"P*Y) of shape (batch, height/2, width/2, 4 x channels)
Ungroup the subbands to get @ of shape (batch, height, width, channels)
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153 3. Generate synthesis matrix S using height and width of Q.
154 4. For each batched channel g, € Q of shape (batch, height, width):

155 (omitting suffix ¢ in g below for simplicity of notation)

136 1. Row-wise batch IDWT 1D: Sq{21 i= Einsum(ij, bjk — bik)

157 2. Column wise batch IDWT 1D: S(ng‘zljg)L := Einsum(ij, bjk — bik) or equiva-
158 lently, a perfect reconstruction,

z = IDWT(g) or, z = S(SqElegzl

150 where, § = A for orthogonal wavelets

™ 5. Layer output (perfect reconstruction): X := (x.)_ is of shape (batch, height, width, channels)
o

e

({7 e -l x

LF LH, HL, HH

Figure 6: DWT decomposition and perfect reconstruction of a tensor , where is DWT 2D layer and is
IDWT 2D layer.

s 4.2 Three-dimensional discrete wavelet system

sz A three-dimensional (3D) discrete wavelet system for a 3D input x is given by,

q=DWT(z) = [A(A(AZy,3)0213)513] draz —Analysis

T = |DWT(‘1) = (S(5(S [A(A(Am§211ij§211ij51:12] gl:isz:ﬂzjgl:iz)Ezl:ﬁ)nzl:i —Synthesis

w2 where, A and S are the same analysis and synthesis matrices as defined for one-dimensional
16 wavelet system. The DWT 3D and IDWT 3D layers operate on batched, multichannel tensors
s of shape (batch, height, width, depth, channels).

s 4.2.1 DWT 3D layer

wr A DWT 3D layer operates on input tensors of shape (batch, height, width, depth, channels)
s and produces an output of shape (batch, height/2, width/2, depth /2, 8 % channels) as described
s in Algorithm 3a.

1o Algarithm 3a —
1 1. Input X of shape (batch, height, width, depth, channels).
w2 2. Generate analysis matrix A using height, width and depthof input.

173 3. For each batched channel &, € X of shape (batch, height, width, depth):

111 (omitting suffix c in = below for simplicity of notation)
17s 1. Row-wise batch DWT 1D: Az, 4 := Einsum(ij, bjkl — bikl)
17 2. Column-wise batch DWT 1D: A (Awgm:‘)T‘ _+= Einsum(ij, bjkl — bikl)

w7 3. Depth-wise batch IDWT 1D: A(A(Azl,, ,
ia Therefore, DWT of @ yield coefficients:

J215)8 150 = Einsum(ik, bkl — bjil)

q, = DWT (z) = [A'(A(A:‘:gzm)g)m)guz] gl‘.{)

179 4. Stacking for all ¢ channels as Q := (qr)u to a shape (batch, height, width, depth,
10 channels). '
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5. Group subbands and return an output Q®°%**¢ of shape (batch, height/2, width/2,
depth/Z chhannels).

# Gro ub
mid = int(Q.shape[2]/2)
LLL = Q[:,:mid,:mid,:mid,:]
LLH = Q[:,mid:,:mid, :mi
LHL = q[:, I
LHH = Q[:,mid:,mid:, :mid,:]

HLL = Q[:,:mid,:mid,mid:,:]

HLH = Q[:,mid:,mid:,mid:,:]

HHL = Q[:,:mid,mid:,mid:,:]

HHH = Q[:,_mid:,mid: ,mpply,:]

output = Concatenate( , LLH, LHL, LHH, HLL, HLH, HHL, HHH], axis=-1)

g

4.2.2 IDWT 3D layer

An IDWT 3D layer operates on input tensors of shape (batch, height/2, width/2 depth/2, 8 x
channels) and produces an output of shape (batch, height, width, depth, channels) as de-
scribed in Algorithm 3b.

Algorithm 3b —

1. Input Q&Y of shape (batch, height/2, width/2, depth/2, 8 x channels)
2. Ungroup to get @ of shape (batch, height, width, depth, channels)
3. Generate synthesis matrix S using height, width and depth of Q.
4. For each batched channel g, € @ of shape (batch, height, width, depth):
(omitting suffix ¢ in g below for simplicity of notation)

1. Row-wise batch IDWT 1D: ng;ﬂz i= Einsum(ik, bjkl — bjil)

2. Column-wise batch IDWT 1D: S(S‘lgmg)mm := Einsum(if, bjkl — bikl)

3. Depth-wise batch IDWT 1D: S(S(ngl;ag)gl:zz)gzl;a := Einsum (ij, bjkl — bikl)

or equivalently, a perfect reconstruction,

T

z, = IDWT (‘H = [S(S(ngl.gz)?;132)3"213]0213

where, S = AT for orthogonal wavelets.
5. Layer output (perfect reconstruction): X := ()  isof shape (batch, height, width, depth, chann
ve

In general, a seamless realization of fast D-dimensional DWT and IDWT is possible by extending
the above separable method to all the independent N axes one after the other. The number
of subbands will be equal to 2° for a D dimensional DWT. For example, sequences (D = 1)
yield two subbands, images (D = 2) yield four subbands, three-dimensional inputs (D = 3)

with voxels yield eight subbands etc.

5 Multilevel wavelet filter banks

The above-discussed DWT and IDWT layers are building blocks in constructing multilevel
DWT filter banks. Figure 7 shows the partitioning of the 1D frequency axis and tiling of
the 2D frequency plane using a level-4 1D and 2D DWT. The multilevel DWT successively
decomposes the low-frequency feature. If the high-frequency features are also decomposed
successively, then we get a Wavelet Packet Transform (WPT) filter bank.
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Figure 7: Spatial-frequency tiling by DWT level 4 decomposition of a sequence of length N (top) and
image of shape Nimes N (bottom)
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