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A.1 Dataset Description
In Graph-FL, we conduct experiments on the compounds networks
(MUTAG, BZR, COX2, DHFR, PTC-MR, AIDS, NCI1, hERG) [13, 22,
31, 73, 78, 82], protein networks (ENZYMES, DD, PROTEINS) [7, 15,
31], collaboration network (COLLAB) [42], movie networks (IMDB-
BINARY, IMDB-MULTI) [97], super-pixel networks (MNISTSuper-
Pixels) [65], and point cloud networks (ShapeNet) [103]. Notably,
the node features in Graph-FL often consist of node attributes and
labels. In most graph-level GNNs, these components are typically
concatenated and fed into the model. Therefore, we report the fea-
ture dimension by concatenating node attributes and labels. Notably,
super-pixel networks represent images as graphs, with nodes as
super-pixels and edges capturing spatial or semantic relationships,
enabling e�ective graph-based classi�cation by leveraging image
structure. Detailed dataset description is as follows:

MUTAG [13] is a widely used bioinformatics dataset consisting
of 188 graphs, each representing a nitro compound. The nodes are
labeled with one of 7 distinct node labels. The primary objective
of this dataset is to classify each graph to determine whether the
corresponding compound is mutagenic, speci�cally distinguishing
between aromatic and heteroaromatic compounds.

BZR [78] is a bioinformatics dataset used for compound activ-
ity prediction, with a primary focus on a collection of benzimida-
zole compounds. The dataset is designed to indicate the concentra-
tion of each compound necessary to inhibit the activity of speci�c
biomolecules, providing valuable insights into the e�ectiveness of
these compounds in biological processes.

COX2 [78] is a dataset centered on Cyclooxygenase-2, an en-
zyme that plays a critical role in in�ammation and painmechanisms.
The dataset is utilized to classify various compounds and predict
their potential inhibition potency against the COX-2 enzyme, which
is a key target in drug development for anti-in�ammatory therapies.

DHFR [78] describes the inhibitory activity of compounds against
dihydrofolate reductase, an enzyme critical in cellular folate metab-
olism and a target for many anticancers. By representing compound
molecules in the DHFR dataset as graphs, researchers can employ
machine learning models to predict the potential inhibitory e�ects
of unknown compounds against dihydrofolate reductase.

PTC-MR [31] is a bioinformatics dataset consisting of 344 graphs,
each representing a chemical compound. Within these graphs,
nodes are labeled with one of 19 distinct node labels. The primary
objective of this dataset is to predict the carcinogenicity of each
compound in rodents, making it valuable for studies related to
chemical toxicity and safety assessments.

AIDS [73] is a graph dataset comprising 2000 graphs, each rep-
resenting molecular compounds derived from the AIDS Antiviral
Screen Database of Active Compounds. The dataset includes a total
of 4395 chemical compounds, categorized into three classes: 423
compounds belonging to class CA, 1081 to class CM, and the re-
maining compounds to class CI. This dataset is widely used for tasks
involving molecular classi�cation and drug discovery research.

NCI1 [82] is a bioinformatics dataset comprising 4,110 graphs
representing chemical compounds. It contains data published by the
National Cancer Institute (NCI). Each node is assigned with one of
37 discrete node labels. The graph classi�cation label is determined
by NCI anti-cancer screens assessing the ability to suppress or
inhibit the growth of a panel of human tumor cell lines.

hERG [22] consists of molecular graphs that represent atoms
and chemical bonds within various compounds. This dataset is
crucial for predicting the inhibitory e�ects of these compounds on
the human Ether-à-go-go-Related Gene (hERG) potassium channel,
which is important in drug safety assessment. The prediction task
associated with hERG is essentially a graph regression, making it a
valuable resource for studies in drug discovery and toxicology.

ENZYMES [7] is a comprehensive dataset containing 600 protein
tertiary structures, meticulously curated from the BRENDA enzyme
database. Within the ENZYMES dataset, researchers can explore the
intricate structures of six unique enzymes, providing a rich resource
for computational analysis and machine learning applications.

DD [15] is a bioinformatics dataset composed of 1,178 graph
structures representing proteins. In these graphs, nodes correspond
to amino acids, and edges connect nodes that arewithin 6Angstroms
of each other, re�ecting the spatial proximity of amino acids within
the protein structure. The primary task associated with this dataset
is a binary classi�cation to di�erentiate between enzymes and
non-enzymes, making it a valuable resource for studies in protein
function prediction and structural bioinformatics.

PROTEINS [31] is a bioinformatics dataset comprising 1,113
structured proteins. Nodes in these graph-based proteins denote
secondary structure elements and are assigned discrete node labels
indicating whether they represent a helix, sheet, or turn. Edges indi-
cate adjacency along the amino-acid sequence or in space between
two nodes. The objective is to predict the protein function.

COLLAB [42] is a scienti�c collaboration dataset consisting of
5,000 ego networks represented as graphs. This dataset is compiled
from three public collaboration datasets. Each ego network com-
prises researchers from various �elds and is labeled according to
the corresponding �eld, namely High Energy Physics, Condensed
Matter Physics, and Astrophysics.

IMDB-BINARY [97] is amovie collaboration dataset comprising
1,000 graphs representing ego networks for actors and actresses.
Derived from collaboration graphs within the Action and Romance
genres, each graph features nodes representing actors/actresses
and edges denoting their collaboration in the same movie. Graphs
are labeled according to the corresponding genre, and the objective
is to classify the genre for each graph.

IMDB-MULTI [97] is the multi-class extension of the IMDB-
BINARY dataset, comprising 1,500 ego-networks. It includes three
additional movie genres: Comedy, Romance, and Sci-Fi, making
it suitable for multi-class classi�cation tasks. This dataset is com-
monly used to evaluate the performance of graph-level algorithms.
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MNISTSuperPixels [65] is a super-pixel network dataset de-
rived from the original MNIST dataset, where the standard 28x28
pixel images are converted into graphs with 75 nodes each. In
this transformation, each node represents a super-pixel, which is
a cluster of nearby pixels grouped based on their intensity and
spatial proximity. The edges between nodes capture the spatial
relationships between these super-pixels.

ShapeNet [103] is a comprehensive point cloud dataset consist-
ing of approximately 17,000 3D shape point clouds spanning 16
di�erent shape categories. Each category is further annotated with
2 to 6 parts, providing detailed segmentation labels. The primary
objectives for utilizing this dataset are point cloud classi�cation and
segmentation, making it an essential resource for benchmarking
algorithms in 3D shape analysis, recognition, and understanding.

As for the Subgraph-FL, OpenFGL integrates citation networks
(Cora, Citeseer, PubMed, FedDBLP, ogbn-arxiv) [32, 88, 101], co-
purchase networks (Amazon-Computers, Amazon-Photo, ogbn-
products) [32, 75], co-author networks (Co-author CS, Co-author
Physics) [75], wiki-page networks (Chameleon, ChameleonFilter,
Squirrel, SquirrelFilter) [68, 70], actor network (Actor) [68], game
synthetic network (Minesweeper) [70], crowd-sourcing network
(Tolokers) [70], article syntax network (Roman-empire) [70], rating
network (Amazon-rating) [70], social network (Questions) [70], and
point cloud networks (PCPNet, S3DIS) [4, 27].

Remarkably, while recent research has highlighted potential
data leakage issues due to duplicates in the original Chameleon
and Squirrel datasets, considering that previous studies commonly
utilized the original versions for validation, we integrated both ver-
sions in OpenFGL to o�er comprehensive evaluation. Furthermore,
point cloud datasets are utilized for downstream tasks where each
point is associated with geometric attributes like surface normals
and curvature, serving as node features in the graph representation.
For surface normal estimation, GNNs are employed to treat each
point as a node in the k-nearest neighbors (KNN) graph, learning
to predict normal vectors by aggregating information from neigh-
boring points. Similarly, in curvature estimation, GNNs capture
local geometric features to predict curvature values. For point cloud
classi�cation, the entire point cloud is represented as a graph, with
GNNs aggregating point-level information to classify the cloud. In
point cloud segmentation, GNNs assign labels to each node, seg-
menting the cloud based on local and global context. These methods
e�ectively utilize GNNs to leverage the geometric relationships
within point clouds for tasks like regression, classi�cation, and seg-
mentation. Developers can �exibly use the above point cloud data.
The detailed description of Subgraph-FL datasets is listed below:

Cora, CiteSeer, and PubMed [101] are widely used citation
network datasets, where nodes represent papers and edges denote
citation relationships. Node features are word vectors, indicating
the presence or absence of speci�c words in each paper. These
datasets are frequently used for node classi�cation.

FedDBLP [88] is the �rst collected dataset in a distributed man-
ner, where each node represents a published paper and each edge
signi�es a citation. The bag of words from each paper’s abstract is
used as node attributes, and the paper’s theme is designated as its
label. To simulate scenarios where a venue or organizer restricts
citations of its papers, users can split the dataset based on each
node’s venue or the organizer of that venue.

ogbn-arxiv [32] is a widely used citation graph indexed by
Microsoft Academic Graph (MAG) [85], especially for the large-
scale graph learning. Each paper in the dataset is represented by the
average of the word embeddings derived from its title and abstract.
These word embeddings are generated using the skip-gram model,
which captures semantic relationships between words based on
their context within the text. This dataset is widely used for graph-
based learning tasks, such as node classi�cation.

Amazon Photo and Amazon Computers [75] are subsets of
the Amazon co-purchase graph, where nodes represent individual
products, and edges signify that two products are frequently bought
together. The node features for these datasets are derived from
product reviews, represented as bag-of-words vectors, capturing
the textual information associated with each item. These datasets
are commonly used for graph-based downstream tasks such as node
classi�cation in graph-based recommendation systems.

ogbn-products [32] is a co-purchasing network where nodes
represent products and edges indicate frequent co-purchases. The
node features are derived from bag-of-words representations of
product descriptions. Due to its extensive size and complex struc-
ture, this dataset is particularly well-suited for large-scale graph
learning applications, making it an ideal benchmark for evaluating
the scalability and performance of graph-based algorithms.

Coauthor CS and Coauthor Physics [75] are co-authorship
graphs derived from the MAG [85]. In these graphs, nodes repre-
sent individual authors, edges denote co-authorship relationships
between them, and node features are constructed from the key-
words of the authors’ publications. The labels assigned to the nodes
indicate the speci�c research �elds in which the authors are ac-
tive. These datasets are commonly used for evaluating graph-based
methods, particularly in the context of node classi�cation.

Chameleon and Squirrel [68] are two page-page networks
extracted from speci�c topics within Wikipedia. In these datasets,
nodes represent web pages, while edges signify mutual links be-
tween pages. Node features are derived from several informative
nouns found on Wikipedia. They categorize the nodes into �ve
groups based on the average monthly web page tra�c.

Chameleon Filter and Squirrel Filter [70] emphasis nodes in
original datasets share the same regression target and neighborhood
simultaneously, resulting in duplicates. These duplicates are present
across the training, validation, and test sets, causing data leakage.
Therefore, these �ltered versions enable a fairer comparison.

Actor [68] is an actor co-occurrence network where nodes rep-
resent actors, and edges indicate their co-appearance on Wikipedia
pages. Node features are bag-of-words vectors derived from these
pages, and actors are categorized into �ve groups based on the
terms found in their respective Wikipedia entries. This dataset is
commonly used for graph-based tasks like node classi�cation.

Minesweeper [70] draws inspiration from the Minesweeper
game and stands as the synthetic dataset. The graph is a regular
100x100 grid, where each node (cell) is linked to its eight neighbor-
ing nodes (excluding nodes at the grid’s edge, which have fewer
neighbors). Twenty percent of the nodes are randomly designated as
mines. The objective is to predict which nodes conceal mines. Node
features consist of one-hot-encoded counts of neighboring mines.
However, for a randomly chosen 50% of the nodes, the features are
undisclosed, indicated by a distinct binary feature.
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Tolokers [70] is derived from the crowdsourcing platform [56].
Nodes correspond to workers who have engaged in at least one of
the 13 selected projects. An edge connects two workers if they have
collaborated on the same task. The objective is to predict which
workers have been banned in one of the projects.

Roman-empire [70] is based on the Roman Empire article from
the English Wikipedia [44], each node corresponds to a non-unique
word in the text, mirroring the article’s length. Nodes are connected
by an edge if the words either follow each other in the text or are
linked in the sentence’s dependency tree. Thus, the graph represents
a chain graph with additional connections.

Amazon-ratings [70] is derived from the co-purchasing net-
work and its metadata available in the SNAP [43]. Nodes are items
and edges connect items frequently bought together. The task is pre-
dicting the average rating given by reviewers, categorized into �ve
classes. Node features are based on the FastText embeddings [24]
of words in the product description. To manage graph size, only
the largest connected component of the 5-core is considered.

Questions [70] is derived from data collected from the question-
answering platform Yandex Q. In this dataset, nodes represent users,
and an edge exists between two nodes if one user answers another
user’s question within a one-year timeframe (from September 2021
to August 2022). The objective is to predict which users remained
active on the website (i.e., were not deleted or blocked) by the end
of the speci�ed period. For node features, it utilizes the average
FastText embeddings for words found in the user descriptions.

PCPNet [27] is a point cloud dataset consisting of 30 distinct
shapes, each represented as a densely sampled point cloud with
100,000 points. For each shape, surface normals and local curva-
tures are provided as node features, capturing essential geometric
properties. This dataset is intended for tasks such as point cloud
classi�cation and segmentation, making it a valuable resource for
evaluating algorithms in graph learning and 3D shape analysis.

S3DIS [4] is a point cloud dataset comprising six large-scale
indoor areas from three di�erent buildings. It includes 12 seman-
tic elements, such as walls, �oors, and furniture, as well as one
clutter class, making it a diverse dataset for indoor scene under-
standing. The primary objectives for using this dataset are point
cloud classi�cation and segmentation, o�ering a challenging bench-
mark for evaluating the performance of algorithms in recognizing
and segmenting complex indoor environments.

A.2 Baseline Description
Given the uniqueness of FGL, the baseline of OpenFGL consists of
three components: (1) Backbone graph learning models in multi-
clients; (2) Prevalent FL algorithm in graph-independent scenarios
(i.e., computer vision); (3) Recently proposed FGL algorithms.

For (1), considering that most FGL approaches entail additional
design for the local backbone model, we have implemented only
the most popular baseline models (GCN [40], GAT [81], Graph-
SAGE [28], SGC [90], GCNII [10], GIN [95], TopKPooling [19], SAG-
Pooling [41], EdgePooling [14], and PANPooling [62]) in centralized
graph learning, which is generally applicable to both graph-FL and
subgraph-FL scenarios, providing �exibility to the future FGL de-
velopers. The backbone GNN details implemented in our proposed
OpenFGL are listed below:

GCN [40] introduces a novel approach to graphs that is based
on a �rst-order approximation of spectral convolutions on graphs.
This approach learns hidden layer representations that encode both
local graph structure and features of nodes.

GAT [81] utilizes attention mechanisms to quantify the impor-
tance of neighbors for message aggregation. This strategy enables
implicitly specifying di�erent weights to di�erent nodes in a neigh-
borhood, without depending on the graph structure upfront.

GraphSAGE [28] leverages neighbor node attribute information
to e�ciently generate representations. This method introduces a
general inductive framework that leverages node feature informa-
tion to generate node embeddings for previously unseen data.

SGC [90] simpli�es GCN by removing non-linearities and col-
lapsing weight matrices between consecutive layers. Theoretical
analysis show that the simpli�ed model corresponds to a �xed
low-pass �lter followed by a linear classi�er.

GCNII [10] incorporates initial residual and identity mapping.
Theoretical and empirical evidence is presented to demonstrate
how these techniques alleviate the over-smoothing problem.

GIN [95] construct a straightforward architecture that is demon-
strably the most expressive within the GNN class and matches the
power of the Weisfeiler-Lehman graph isomorphism test.

MeanPooling [95] is a parameter-free pooling operation in
graph neural networks. It generates a graph embedding by averag-
ing the all node embeddings, encoding the complex graph into a
uni�ed vector representation.

TopKPooling [19] introduces novel graph pooling and unpool-
ing operations. The former adaptively selects nodes to form a
smaller graph based on their scalar projection values on a trainable
projection vector. The latter, as the inverse operation, restores the
graph to its original structure using the positional information of
nodes selected in the corresponding pooling layer.

SAGPooling [41] proposes a graph pooling approach based on
self-attention. By utilizing self-attention with graph convolution,
this method considers both node features and graph topology.

EdgePooling [14] proposes a graph pooling layer based on edge
contraction. This strategy learns a localized and sparse pooling
transform to improve predictive performance. It can be integrated
into existing GNN architectures without adding any additional
losses or regularization.

PANPooling [62] utilizes a convolution operation that con-
siders every path linking the message sender and receiver, with
learnable weights dependent on the path length, corresponding to
the maximal entropy random walk. This strategy o�ers a versatile
framework adaptable to di�erent graph data sizes and structures.

Regarding (2), while some prevalent FL approaches (FedAvg [63],
FedProx [48], Sca�old [37], MOON [47], and FedDC [20]) have
demonstrated e�ectiveness in computer vision-based (CV-based)
federated scenarios, recent FGL studies contend that they only
achieve sub-optimal performance. This weakness is attributed to
their failure to incorporate topological information during the col-
laborative optimization process of FGL. Therefore, we only imple-
ment prevalent FL as baselines to assist future FGL developers in
evaluating the e�ectiveness of their proposed methods.

Additionally, heterogeneity has been a persistent challenge in FL,
encompassing multi-level heterogeneity arising from di�erent local
systems. Speci�cally, this multi-level heterogeneity in terms of: (1)
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Data heterogeneity arises from variations in local data collection
methods and data quality, leading to optimization challenges due to
diverse multi-source data characterized by Non-iid data and domain
shift; (2) Model heterogeneity stems from varying computational re-
source requirements, scalability needs, and predictive performance
criteria across local systems, prompting the adoption of distinct
local backbone models; (3) Communication heterogeneity is driven
by variations in communication bandwidth among local devices,
demanding the minimization of communication overhead. Nonethe-
less, to enhance predictive performance in collaborative training,
FL algorithms frequently necessitate increased information sharing,
either at the client level or between clients and servers.

Building upon this foundation, to provide e�ective baselines,
we have particularly implemented prototype-based methods (Fed-
Proto [80], FedNH [11], FedTGP [107]). This has sparked a research
trend in recent CV-based FL, as this technology can comprehen-
sively address the aforementioned multi-level heterogeneity chal-
lenges. The prevalent graph-independent FL baseline details imple-
mented in our proposed OpenFGL are listed below:

FedAvg [63] serves as a foundational method in FL, enabling de-
centralized model training across diverse devices while preserving
data privacy. Initiated by a central server that distributes a global
model, clients independently execute local updates through stochas-
tic gradient descent. Subsequently, these updates are aggregated by
the server via averaging to re�ne the global model, with the cycle
repeating until convergence.

FedProx [48] allows for variable amounts of work to be per-
formed locally across devices, and relies on a proximal term in
model align loss to help stabilize the method. Theoretically, it o�ers
convergence guarantees under conditions of non-identical data
distributions and variable device workloads.

Sca�old [37] employs control variates to mitigate client-drift in
FL. Demonstrating signi�cant reductions in communication rounds,
Sca�old is resilient to data heterogeneity and client sampling.

MOON [47] is a model-contrastive FL framework that enhances
local training by leveragingmodel representation similarities through
contrastive learning at the model level.

FedDC [20] is a novel FL algorithm that corrects local drift
through lightweight modi�cations. Each client tracks the devia-
tion between local and global model parameters using an auxiliary
variable, enhancing parameter-level consistency.

FedProto [80] is the �rst federated prototype learning frame-
work for FL heterogeneity. Instead of exchanging gradients, clients
and the server share abstract class prototypes. FedProto aggregates
local prototypes and distributes global ones back to clients to regu-
larize local model training, aiming to align local prototypes with
global standards while minimizing local classi�cation errors.

FedNH [11] addresses class imbalance by enhancing both per-
sonalization and generalization of local models. FedNH distributes
class prototypes uniformly in the latent space, infusing class seman-
tics to prevent prototype collapse and enhance model performance.
This dual approach improves local models, boosting the generaliza-
tion of the global model and thus re�ning personalized models.

FedTGP [107] unlikes conventional methods that aggregate pro-
totypes via weighted averaging, FedTGP uses adaptive contrastive
Learning to train global prototypes on the server, enhancing proto-
type separability and preserving semantic integrity.

As for (3), it is the core of OpenFGL as a comprehensive bench-
mark. To provide future FGL researchers with a comprehensive
testing library and a user-friendly development framework, we
conducted a thorough review of recent FGL studies, encompassing
both the Graph-FL (GCFL+ [93], FedStar [79]) and Subgraph-FL
(FedSage+ [110], Fed-PUB [5], FedGTA [52], FGSSL [34], FedGL [8],
AdaFGL [51], FGGP [83], FedTAD [115], FedDEP [108]) scenarios,
and comprehensively integrated them. The FGL baseline details
implemented in our proposed OpenFGL are listed below:

GCFL+ [93] dynamically clusters local systems using GNN gradi-
ent patterns to reduce structural and feature heterogeneity, particu-
larly in the Graph-FL scenarios. Addressing the issue of �uctuating
gradients, they enhance GCFL with a gradient sequence-based clus-
tering mechanism using dynamic time warping, thereby improving
clustering quality and theoretical robustness.

FedStar [79] shares structural embeddings across clients using
an independent structure encoder. This design allows FedStar to
capture domain-invariant structural information while enabling
personalized feature learning, thereby avoiding feature misalign-
ment and enhancing inter-graph learning e�cacy.

FedSage+ [110] integrates node features, link structures, and
labels using a GraphSage model and FedAvg across local subgraphs.
FedSage+ extends this by training a generator to address missing
links, enhancing model robustness and completeness.

Fed-PUB [5] is a novel framework for personalized subgraph FL
that enhances local GNNs interdependently rather than forming a
single global model. Fed-PUB computes similarities between local
GNNs using functional embeddings derived from random graph
inputs, facilitating weighted averaging for server-side aggregation.
Additionally, it employs a personalized sparse mask at each client
to selectively update subgraph-relevant parameters.

FedGTA [52] innovatively merges large-scale graph learning
with FGL. Clients encode topology and node attributes, compute lo-
cal smoothing con�dence and mixed moments of neighbor features,
and then upload these to the server. The server uses this data to
perform personalized model aggregation, utilizing local smoothing
con�dence as weights for e�ective integration.

FGSSL [34] handles local client distortion in FL by focusing
on node-level semantics and graph-level structures via the well-
designed contrastive loss functions. They enhance node discrimi-
nation by aligning local nodes with their global counterparts of the
same class and distancing them from di�erent classes. Additionally,
FGSSL transforms adjacency relationships into similarity distribu-
tions, using the global model to distill relational knowledge into
local models, preserving both structure and discriminability.

FedGL [8] identi�es global self-supervision information, which
is then utilized to enhance prediction accuracy. Speci�cally, FedGL
involves uploading prediction outcomes and node embeddings to
the server to derive global pseudo labels and a global pseudo graph.
These global insights are distributed to each client, augmenting
training labels and re�ning graph structures, consequently enhanc-
ing the performance of local models.

AdaFGL [51] introduces a two-step personalized approach that
�rst aggregates multi-client models into a federated knowledge
extractor during the �nal round at the server. Subsequently, each
client undertakes personalized training utilizing the local subgraph
and this federated extractor.
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FGGP [83] divides the global model into two tiers linked by
prototypes. At the classi�er level, FGGP replaces traditional classi-
�ers with clustered prototypes to enhance class discrimination and
multi-domain prediction accuracy. Meanwhile, at the feature extrac-
tor level, FGGP leverages contrastive learning to imbue prototypes
with global knowledge, thereby improving model generalization.

FedTAD [115] initially computes topology-aware node embed-
dings to evaluate the reliability of class-wise knowledge, trans-
mitting this information to the server. Guided by the class-wise
knowledge reliability, FedTAD on the server side conducts data-free
knowledge distillation to transfer reliable knowledge from local
models across multiple clients to the global model.

FedDEP [108] leverages GNN embeddings for deep neighbor
generation based on the FedSage+, employing e�cient pseudo-
FL for neighbor generation through embedding prototyping, and
ensuring privacy protection via noiseless edge local DP. Meanwhile,
it utilizes prototype representation technologies to further reduce
communication costs.

A.3 Metric Description
Given the diverse downstream tasks in the FGL scenarios, we imple-
ment the following evaluation metrics tailored for regression (MSE,
RMSE), classi�cation (Accuracy, Precision, Recall, F1), prediction
(AUC-ROC, AP), and clustering (Clustering-accuracy, NMI, ARI)
tasks. Notably, in link prediction tasks within graph machine learn-
ing, AUC-ROC and AP are preferred over accuracy because they
better handle the typical class imbalance, where non-existent links
far outnumber actual links. Accuracy can be misleading, as a model
might achieve high accuracy by simply predicting the majority
class. In contrast, AUC-ROC and AP focus on the model’s ability to
correctly rank positive links higher than negative ones, providing a
more reliable evaluation of performance in scenarios where correct
identi�cation of the minority class (actual links) is crucial.

Mean Squared Error is a prevalent metric in graph regression
tasks. It measures the average squared deviation between predicted
values and actual ground truth across the entire dataset. Lower MSE
values signify superior model performance, indicating a tighter
alignment of predicted outcomes with observed results.

Root Mean Squared Error is an extension of MSE and o�ers a
more interpretable measure by taking the square root of the average
squared di�erences between predicted and actual values. Like MSE,
lower RMSE denotes better alignment.

Accuracy stands as a foundational metric in classi�cation tasks,
quantifying the ratio of correctly classi�ed instances to the total
instances in a dataset. It o�ers a clear indication of a graph learn-
ing model’s overall predictive capability. Higher accuracy values
re�ect a better alignment between predicted and actual class labels,
demonstrating the model’s e�ectiveness.

Precision focuses on positive predictions. Unlike Accuracy, it
emphasizes the correctness of positive predictions by measuring
the ratio of correctly predicted positive samples to all predicted
positive samples. This aspect becomes particularly critical when
dealing with imbalanced datasets.

Recall measures a model’s ability to capture all positive in-
stances. Unlike Precision, it emphasizes correctly identi�ed positive

samples and overall actual positives. This metric is vital in scenarios
where missing positives have critical implications.

F1 Score represents the harmonic mean of Precision and Recall.
This metric provides a balanced assessment of a model’s perfor-
mance by considering both the precision of positive predictions
and the model’s ability to capture all positive instances. F1 Score is
particularly valuable in scenarios where achieving high precision
and recall are equally important.

Area Under the Receiver Operating Characteristic curve
quanti�es the performance of a model in distinguishing between
positive and negative links. It provides a comprehensive measure
of a model’s ability to rank positive links higher than negative ones.
The high AUC-ROC indicates that the model e�ectively discrimi-
nates between positive and negative links.

Average Precisionmeasures the quality of a model’s ranked list
of positive links by calculating the average precision at each rele-
vant position. Unlike AUC-ROC, AP focuses solely on the precision-
recall curve, providing a more detailed assessment of a model’s
performance, especially in imbalanced datasets where positive links
are rare. The high AP indicates that the model e�ectively ranks
positive links higher than negative ones.

Clustering-accuracymeasures the agreement between the clus-
ter assignments produced by a clustering algorithm and a ground
truth clustering. This metric di�ers from traditional accuracy met-
rics used in node classi�cation, as it evaluates the overall coherence
of cluster assignments rather than individual node labels. A higher
clustering accuracy indicates a better alignment between the iden-
ti�ed clusters and the true underlying structure of the graph, thus
re�ecting the e�ectiveness of the clustering algorithm in uncover-
ing meaningful communities or groups of nodes.

Normalized Mutual Information quanti�es the similarity be-
tween predicted clusters and ground truth by measuring the mutual
information while normalizing for cluster size imbalances. NMI
ranges from 0 to 1, where higher values indicate better agreement
between the predicted clusters and ground truth. This metric is
particularly valuable in scenarios where accurately identifying com-
munity structures or functional groups within a graph is critical.

Adjusted Rand Index quanti�es the similarity between pre-
dicted clusters and ground truth while considering the chance-
corrected agreement. ARI ranges from -1 to 1, where values closer
to 1 indicate better agreement between the predicted clusters and
ground truth than random clustering.

A.4 Robustness Simulation Description
Given the practical applications driving FGL studies, the pivotal
goal of various FGL approaches should be their e�ective deploy-
ment in real-world industrial scenarios. Consequently, conducting a
thorough evaluation of the robustness of existing methods becomes
essential. In our proposal, besides exploring the generalization of
current methods across various federated data simulation settings
as discussed in Sec. 3.1, we draw insights from common business
challenges encountered in industrial scenarios. Speci�cally, we ad-
ditionally integrate the following experimental setups to provide a
comprehensive evaluation for industrial research projects from a
robustness perspective.
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Feature Noise. In real-world FGL applications, such as health-
care and �nance, distributed privacy data is independently collected
by local agents, leading to variations in data collectionmethods, pro-
cessing techniques, and data sources. These variations contribute
to node feature noise, a common issue in practical settings. For
example, in healthcare, di�erences in medical equipment, patient
demographics, and data entry practices across hospitals can re-
sult in inconsistent patient data, introducing noise into the node
features representing these data points. In �nance, variations in
transactional systems, data aggregation methods, and processing
protocols across institutions can lead to discrepancies in �nancial
data, further contributing to node feature noise. To accurately eval-
uate the robustness of existing FGL methods under such conditions,
we simulate this scenario by introducing Gaussian or Laplacian
noise into the node features of data samples within each client.
Notably, Gaussian noise re�ects natural data collection �uctuations,
while Laplacian noise captures more pronounced deviations.

Edge Noise. In our implementation, we introduce two edge
perturbation approaches: heterophilous noise (Subgraph-FL) and
meta noise (Subgraph-FL and Graph-FL). For heterophilous noise,
we randomly select non-connected node pairs for heterophilous
perturbations based on their labels. This approach is motivated by
recent studies [58, 61, 113], which indicate that most GNNs struggle
with heterophilous topology. Despite some GNN designs mitigating
this issue, it has been rarely addressed in most FGL studies. More-
over, heterophily is prevalent in the real world despite homophilous
topology presumably dominating in default. As for meta noise, gen-
erated by Metattack [116], we budget the attack as 0.2 for each local
dataset. This approach shares the motivation of heterophilous noise
but represents a more generalized and sophisticated perturbation
method for both two FGL scenarios, which achieves optimal noise
injection mechanisms through learnable means. In real-world appli-
cations, such as social networks, varying user interaction patterns
across platforms can lead to inaccurate connections between nodes.
These discrepancies create noise edges, re�ecting the inherent chal-
lenges of decentralized data environments.

Label Noise.Due to the diversity in data collection methods and
the quality of local data sources, label noise is prevalent in crowd-
sourcing scenarios. In this scenario, the update process of the local
model is inevitably a�ected, resulting in perturbed models. When
these model weights are uploaded to the server for multi-client col-
laboration, the naive federated paradigm su�ers from global knowl-
edge confusion, thereby signi�cantly impacting the initialization
of local models for the next round. To simulate this setting, we in-
troduce a novel perspective for evaluating algorithm robustness by
randomly perturbing the true labels of training set samples accord-
ing to a certain proportion. For instance, in crowd-sourcing, workers
from diverse backgrounds may label the same data di�erently, lead-
ing to inconsistencies. These factors contribute to prevalent label
noise, which disrupts the local model training process, resulting
in perturbed models. When these models are aggregated in the
federated collaboration, the naive model aggregation mechanism
struggles with global knowledge confusion, ultimately a�ecting
the initialization of local models in the next training round. To
simulate this real-world challenge, we introduce a novel approach
to evaluate algorithm robustness by randomly perturbing the true
labels of training set samples according to a speci�ed proportion.

Feature/Edge/Label Sparsity. In the current data explosion
era, gathering substantial volumes of high-quality data can incur
signi�cant economic costs. Additionally, the laborious annotation
requests both substantial manual labor and computational resources
and leads to the prevalence of sparse data. In graph-structured data,
this sparsity challenge often manifests in missing attributes in fea-
ture dimensions, sparse graphs, and the well-known label sparsity
issue. To integrate the aforementioned scenarios into our proposed
OpenFGL framework and evaluate the robustness of existing FGL
studies from an industrial application perspective, we provide the
following implementation details: In the feature sparsity setting,
we assume that the feature representation of unlabeled nodes is
partially missing. To simulate edge sparsity, we randomly remove
edges from subgraphs, providing a more challenging but realistic
scenario. For label sparsity, we change the ratio of labeled nodes.

Client Active Fraction/Client Sparsity. In practical FGL sce-
narios, it is necessary to select a subset of clients to participate
in each round to reduce communication costs or unavoidable de-
vice dropouts. However, the reduction in the number of clients
participating in collaborative training during each communication
round may lead to the global model deviating from the global op-
tima. In such a setting of client sparsity, it is crucial to test whether
FGL algorithms have the capability to accurately locate global op-
tima through sparse data distribution. Notably, client sparsity is a
unique yet highly signi�cant perspective for evaluating algorithm
robustness in federated distributed scenarios.

Based on the above noise and sparsity setting, we can evaluate
the resilience and performance of FGL studies under conditions of
data perturbation and practical scenarios, o�ering insights into their
robustness in real-world applications where data and deployment
environment may be imperfect.

A.5 E�ectiveness Evaluation Strategies
During our investigation, we observer a lack of descriptions for
evaluating the e�ectiveness of existing FGL studies. Therefore,
in this section, we aim to present structured criteria from both
data and model perspectives. These criteria aim to standardize the
e�ectiveness evaluation for future FGL studies and support the
experimental settings of this paper.

To begin with, due to privacy regulations and prohibitively high
manual costs, similar to FL in the computer vision domain, most
existing FGL studies adopt a data partition strategy based on global
data (i.e., benchmark datasets under centralized evaluation) to simu-
late distributed scenarios. Based on this, we allocate the partitioned
global data as multiple sets of local private data to di�erent clients.
Therefore, with the aforementioned data-driven experimental set-
tings, we gain access to both implicit global data and local data
from each client, providing an aspect for algorithm evaluation.
Subsequently, in federated collaborative training, most FGL algo-
rithms entail local training on private data at each client and model
aggregation at the server side. This procedure gives rise to two per-
spectives for evaluating the models produced by the algorithms: (1)
server-side global model, typically transmitted from local models
to the server and re�ned through well-designed server-side model
aggregation or update mechanisms. Since it integrates most local
models from the current communication round, we refer to it as
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the global model. (2) client-side local model, mainly updated by
local private data, which, in comparison to the global model, em-
phasizes �tting local data more closely. It is often emphasized by
personalized algorithms, as they focus on the local training frame-
works. To this end, considering both data and model perspectives,
we acquire global data and local data, along with the global model
and local model, respectively. Combining these aspects results in
four e�ectiveness evaluation strategies in FGL, which re�ect the
diverse business requirements of practical industrial scenarios. In a
nutshell, we derive the following four evaluation criteria:

(1) Global Model on Global Data: This primarily aims to ver-
ify the generalization of current FGL algorithms by evaluating the
performance of the server-side collaborative model on a broader em-
pirical data domain (i.e., global data). This evaluation is conducted
more for experimental analysis from a generalization perspective
during the research process.

(2) Global Model on Local Data: This evaluation is designed to
facilitate multi-client collaborative training facilitated by a trusted
server, leveraging diverse knowledge to enhance the robustness
of the server-side collaborative model without direct data sharing.
In practical applications, multiple clients undergo standardized
training and evaluation under the supervision of a trusted server.

(3) Local Model on Global Data: Similar to (1), this evaluation
is aimed at empirically analyzing personalized FGL algorithms
from a generalization perspective. Considering that personalized
algorithms highlight the distinct neural architectures or learning
mechanisms of individual local clients, essential generalization
analysis is conducted to determine whether the current algorithm
can produce unbiased predictions and mitigate over-�tting issues.
This analysis involves evaluating the performance of client-side
personalized models on global data.

(4) Local Model on Local Data: This evaluation represents the
most application-driven evaluation strategy among the above strate-
gies, as it aligns with the practical requirements of FL. In FL, multi-
ple clients collaborate to enhance their local scenarios with more
robust personalizedmodels while addressing privacy concerns. Con-
sequently, in our comprehensive benchmark incorporating multiple
algorithms, we default to this e�ective evaluation strategy. This
approach, driven by practical applications, serves to verify the real-
world deployment feasibility of current algorithms.

A.6 Experiment Environment
The experiments are conducted on themachinewith Intel(R) Xeon(R)
Gold 6240 CPU @ 2.60GHz, and NVIDIA A100 80GB PCIe and
CUDA 12.2. The operating system is Ubuntu 18.04.6 with 216GB
memory. As for software versions in the environment, we use
Python 3.9 and Pytorch 1.11.0.

A.7 Hyperparameter Settings
General Experimental Settings. For Graph-FL, the learning rate
is typically set to 1 ⇥ 10�3, with each client performing 1 epoch
per communication round and a batch size of 128. In Subgraph-FL,
the learning rate is raised to 1 ⇥ 10�2, and the local epochs are
extended to 3. This adjustment accommodates the typically larger
scale of node samples in Subgraph-FL, necessitating a larger learn-
ing rate and more local iterations to facilitate model convergence.

Additionally, for both scenarios, we standardize certain parameters.
The weight decay is set to 5 ⇥ 10�4, the number of communication
rounds is set to 100, the dropout rate is set to 0.5, and optimization
is conducted using the Adam [39] optimizer. To evaluate the robust-
ness of our results under varying initial conditions, we eliminate
the use of �xed random seeds. All experiments are repeated three
times to report the mean and variance of the respective metrics for
unbiased predictive performance.

Personalized Baseline Settings. We perform extensive hyper-
parameter tuning to ensure a comprehensive and unbiased evalua-
tion of these FGL methods using the Optuna framework [3]. The
hyperparameter search spaces for all baselines are available in our
GitHub repository. For detailed explanations of these hyperparam-
eters, please refer to their original papers.

Regarding graph-speci�c data simulation strategies in Table 5,
to enhance readability and avoid complex �gures or tables, we de-
fault to using 10-client label Dirichlet (i.e., Label Distribution Skew
and U = 1) and Metis partitioning (i.e., Metis-based Community
Split) separately for the Graph-FL and Subgraph-FL scenarios. The
former is inspired by data Non-iid simulation in CV [37, 47, 48],
while the latter is inspired by prevalent data simulation strategies
in current FGL studies [5, 51, 52]. Experimental evaluations of the
generalization of existing methods across di�erent data simulation
scenarios can be found in Sec. 4.2. Furthermore, in the selection of
local backbone models for graph learning, we choose prevalent GIN
and GCN models, applied to Graph-FL and Subgraph-FL, respec-
tively. Notably, we experiment with multiple datasets and baselines
in separate modules and use graph/node classi�cation to report
experimental results to further avoid complex charts, making the
results more reader-friendly.

A.8 DP-based Privacy Persevere
A.8.1 Preliminaries on Di�erential Privacy. DP [16] has become
the dominant model for the protection of individual privacy from
powerful and realistic adversaries. Informally, it requires that the
output of a di�erentially private query is not dramatically a�ected
by the inclusion or exclusion of any particular individual’s data in
the input. This means that even if an attacker can access all but one
individual’s data, they cannot determine whether it was included
in the computation. The formal de�nition of DP is as follows:

De�nition A.1 (Di�erential Privacy [16]). Let ⇡ and ⇡0 be two
adjacent datasets that di�er in at most one entry. A randomized algo-
rithmA satis�es (n, X)-di�erential privacy if for all$ ✓ '0=64 (A):

[A(⇡) 2 $]  4n · [A(⇡0) 2 $] + X . (1)

The privacy budget n controls the trade-o� between the level of
privacy protection and utility: a lower n indicates stricter privacy
preservation but leads to lower utility. The parameter X represents
the maximum permissible failure probability and is usually chosen
to be much smaller than the inverse of the number of data records.

The formal de�nition of DP revolves around the concept of
adjacency between datasets. When data are represented as a graph,
two notions of adjacency are de�ned: edge-level and node-level
adjacency. Edge-level adjacency occurs when two graphs di�er by
just one edge, while node-level adjacency involves a di�erence in
an entire node and its associated features, labels, and connections.
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Therefore, an algorithmA provides edge-level (or node-level) (n, X)-
DP if for any two edge-level (or node-level) adjacent graph datasets
⌧ and ⌧ 0 and any possible outputs $ ✓ '0=64 (A), the inequality
[A(⌧) 2 $]  4n · [A(⌧ 0) 2 $] + X holds. Edge-level DP focuses
on the protection of edge privacy, while node-level DP aims to
protect the privacy of nodes and their connections. In consequence,
the node-level DP can provide more robust privacy protection.

In this paper, we use an alternative de�nition of DP, called Rényi
Di�erential Privacy (RDP) [64], since it allows for tighter composi-
tion of DP across multiple steps.

De�nition A.2 (Rényi Di�erential Privacy [64]). An randomized
algorithm A is said to be (U,W)-RDP, if, for every pair of adjacent
datasets ⌧ and ⌧ 0, we have

⇡U (A(⌧)kA(⌧ 0))  W, (2)

where ⇡U (% k&) is the Rényi divergence of order U between proba-
bility distributions % and & de�ned as:

⇡U (% k&) =
1

U � 1
logEG⇠&


% (G)
& (G)

�U
. (3)

The concept of RDP is closely related to the standard (n, X)-DP.
According to [64], any mechanism that achieves (U,W)-RDP also
ful�lls (W + log(1/X)/(U �1), X)-DP for any X 2 (0, 1). A basic mech-
anism to achieve RDP is the Gaussian mechanism. Speci�cally, we
inject Gaussian noise into the algorithm’s output for privacy protec-
tion. And the noise follows the Gaussian distribution # (0,U�2

2/2W),
where �2 represents the ✓2-sensitivity.

De�nition A.3 (✓2-Sensitivity). Given a function 5 : G ! R3 , the
✓2-sensitivity of 5 is de�ned as

�2 = max
⌧,⌧ 0

| |5 (⌧) � 5 (⌧ 0) | |2, (4)

where ⌧ and ⌧ 0 are adjacent datasets and | | · | |2 is the ✓2 norm.

A.8.2 Privacy-Preserving Techniques in OpenFGL. In federated col-
laboration, each client uploads model gradients to the server. How-
ever, the gradients computed directly from raw data are susceptible
to inference attacks [59, 66] and reconstruction attacks [23, 114],
which can lead to privacy breaches. OpenFGL implements basic
privacy-preserving techniques that satisfy node-level RDP to pro-
tect individual privacy when model gradients are uploaded. The
core idea is that each client perturbs the gradients via the Gaussian
mechanism and then sends a perturbed version to the server.

Speci�cally, each client receives initial parameters from the
server. Then, similar to the standard mini-batch SGD technique,
each client samples a subset S that consists of : samples selected
uniformly at random from the training set. Clients can compute the
gradients via forward and backward propagation within this mini-
batch. Given that there is no a priori constraint on the size of the
model gradients, we employ the clipping operator ⇠;8?⇠ to handle
the gradient of each samplew8 :⇠;8?⇠ (w8 ) = w8 ·min(1,⇠/| |w8 | |2),
where⇠ is the clipping threshold. However, in the context of GNNs,
all direct and multi-hop neighbors participate in the calculation
of gradients for each node via recursive layer-wise message pass-
ing [29]. At each layer, the representation of each node is derived
not solely from its features but also from the features of adjacent
nodes. Therefore, each per-sample gradient term can be in�uenced

by private data from multiple nodes [12]. This means the sensitiv-
ity of the gradient due to the presence or absence of a node can
be extremely high due to the node itself and its neighbors, which
makes standard DP-SGD-based methods [2] infeasible, resulting
in either high privacy cost or poor utility due to the considerable
required DP noise. In this paper, we restrict the number of graph
convolutional layers and study models with only one GNN layer.
Under this limitation, the sensitivity of 1-Layer GNN as follows:

Lemma A.4 (Node-Level Sensitivity of the 1-Layer GNN [12]).
For any node E8 , let y8 represent the ground truth and ỹ8 the pre-
diction from a 1-layer GNN. Consider the loss function L of the
form: L(⌧,Θ) =

Õ
E8 2V ✓ (ỹ8 ; y8 ). The ✓2-sensitivity of the aggre-

gated gradient, w⌧ =
Õ

E8 2S ⇠;8?⇠ (rΘ✓ (ỹ8 ; y8 )), is determined by
the equation:

�2 (w⌧ ) = 2(3<0G + 1)⇠, (5)

where 3<0G denotes the maximum degree of the graph ⌧ .

To achieve a better trade-o� between privacy and utility, we
also utilize the privacy ampli�cation technique [12], which is im-
plemented by sampling. Next, we sample noise from a Gaussian
distribution # (0,U�2

2 (w⌧ )/2W) and add the noise to the aggregated
gradient over the mini-batch. Finally, the perturbed gradients are
sent to the server for model aggregation. The server aggregates the
perturbed gradients from all clients and updates the global model
parameters. The process is repeated until the model converges.

However, when a smaller privacy budget is allocated, there is
a signi�cant degradation in performance, as illustrated in Table 9.
This decline is primarily attributed to the unique characteristics of
the GNN model, as previously mentioned. This uniqueness results
in a high sensitivity of the model gradient and a�ects the privacy
ampli�cation techniques. Consequently, substantial noise is intro-
duced into the gradients during training, which markedly disrupts
the learning process. This indicates that training graph neural net-
works in federated scenarios still faces a tough test. Therefore, it
is crucial to develop new privacy-preserving techniques that can
e�ectively protect privacy while maintaining performance.

For Graph-FL, where each individual sample represents an entire
graph, the application of DP-SGD [2] can be directly extended to
these tasks. This approach not only preserves privacy but also
optimizes the model e�ectively, making it particularly suitable for
scenarios where maintaining the integrity and con�dentiality of
the entire graph as a cohesive data unit is crucial. This method is
ideal for ensuring that the learning process respects the privacy
constraints inherent in sensitive data environments.

A.8.3 Technique Details of FedDEP. In addition, we have imple-
mented the FedDEP [109] algorithm within the OpenFGL frame-
work. FedDEP achieves noise-free edge-level DP by employing ran-
dom sampling, ensuring robust privacy preservation without com-
promising data integrity. To tackle the issue of cross-subgraph miss-
ing neighbors, FedDEP incorporates an advanced deep neighbor
generation module known as DGen, which enhances the model’s ca-
pability to generate and integrate missing neighbors e�ectively. To
further optimize computational e�ciency within each client, local
GNN embeddings are clustered to create sets of missing neighbor
prototypes. Moreover, to reduce inter-client communication over-
head, FedDEP introduces a pseudo-federated learning approach,
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where these prototype embeddings are shared across the system
before the training of DGen, thereby streamlining the collaborative
learning process while maintaining model accuracy and privacy.

To protect privacy, FedDEP adapts noise-free di�erential pri-
vacy, originally developed for general domains [77], to edge-level
local di�erential privacy. Speci�cally, it implements two random
sampling strategies during the FedDEP model training: (i) random
neighborhood sampling within each graph convolutional layer,
and (ii) random sampling of the generated deep neighborhoods by
a Bernoulli sampler. These strategies collectively aim to obscure
the individual contributions of nodes, which ensures privacy guar-
antees with the smallest possible impact on the accuracy of the
model. However, the FedDEP algorithm is designed for edge-level
DP, which only protects the privacy of edge and not node features
or node embeddings. This limitation may lead to potential privacy
breaches when the node features contain sensitive information.

A.8.4 Future Research Directions. This section introduces several
promising research directions in DP-based FGL. Currently, there
are few privacy-preserving algorithms speci�cally tailored for FGL.
Given the distinctive properties of graph data, traditional privacy
mechanisms commonly employed in FL fail to seamlessly extend
to this domain. Therefore, it is crucial to develop new mechanisms
for FGL that should consider the unique characteristics of GNNs
to achieve an optimal trade-o� between privacy protection and
model utility. Furthermore, the convergence analysis of di�eren-
tially private FGL algorithms is still an open research problem.
A tight convergence upper bound not only theoretically assures
rapid convergence, but also facilitates an empirical examination of
how various hyperparameters in�uence convergence rates. Such in-
sights are pivotal for �ne-tuning parameters or the development of
innovative optimization strategies [53]. Existing analyses, such as
those presented in [54, 89], do not consider GNN-speci�c processes
like propagation and aggregation. Consequently, there is an urgent
need for advanced convergence analysis approaches suitable for
DP-FGL. Another important research direction is to evaluate the
performance of di�erentially private FGL algorithms against mali-
cious attacks, such as inference attacks [59, 66] and reconstruction
attacks [23, 114]. This research will contribute signi�cantly to the
robustness and reliability of DP-based FL.

A.9 Federated Heterogeneous Graph Learning
Heterogeneous graphs (HGs), which are characterized by multiple
types of nodes and relations, are widely encountered in real-world
scenarios, including social networks and recommendation systems.
These graphs o�er a more comprehensive representation of com-
plex systems, encompassing diverse information and richer seman-
tics compared to homogeneous graphs, making them particularly
valuable for modeling and analysis in various practical applications.

Therefore, HGs in federated settings present more complex sce-
narios and pose greater challenges for federated learning. Beyond
the typical feature heterogeneity, label heterogeneity, and struc-
tural heterogeneity encountered in homogeneous graphs within
FGL, the diverse relationships inherent in HGs introduce an addi-
tional layer of complexity—relation heterogeneity among di�erent
clients [94]. This diversity in relational types across clients com-
plicates the learning process, as it requires handling variations in

how di�erent clients structure and interpret these relationships.
Moreover, since meta-paths within HGs carry speci�c semantic
information, di�erences in relation types lead to semantic hetero-
geneity among clients, further complicating the design of e�ective
FGL algorithms [96]. Consequently, existing federated heteroge-
neous graph learning (FHGL) methods are often highly tailored to
speci�c scenarios and needs, leading to a lack of standardized ap-
proaches for these complex learning environments. This variability
underscores the need for more generalized and adaptable FHGL
frameworks that can e�ectively manage the diverse challenges
posed by HGs in federated settings.

In the following subsection, we provide a comprehensive sum-
mary of 6 FHGLmodels, categorizing them into two setups based on
their application scenarios: Relation Type Sharing and Relation Type
Protection. For each algorithm, we outline the core ideas and detail
their FL strategies, encoders, and client partitioning approaches,
as presented in Table 11. Additionally, we introduce a basic FHGL
framework within OpenFGL to assist users in e�ciently conducting
FL experiments on heterogeneous graphs, thereby facilitating more
streamlined research and development in this area.

A.9.1 Relation Type Sharing. This FHGL setup typically de�nes
global relation types on the server side, with each client construct-
ing its local heterogeneous graph according to these prede�ned
standards. The focus is primarily on addressing the challenges as-
sociated with federated training instability and performance degra-
dation that arise due to relation heterogeneity across clients.

As one of the pioneering FHGL models, FDRS [46] addresses
the cold start problem caused by sparse data within individual
clients. FDRS utilizes a two-level aggregation heterogeneous graph
convolutional network (HGCN) within each client. This approach
facilitates message passing between nodes of the same type through
object-level aggregation, while type-level aggregation updates in-
formation across di�erent types of nodes. After local training, each
client uploads its model parameters to the server, where the Fe-
dAvg [63] algorithm aggregates and updates the parameters from
all clients. Although FDRS does not implement a speci�c commu-
nication strategy tailored to FHGL, it e�ectively demonstrates the
bene�ts of cross-client HGNNs. Moreover, it underscores the ne-
cessity of learning heterogeneous relations from other clients to
enhance and enrich the local information available to each client,
thereby improving overall model performance.

FedAHE [84] underscores the signi�cance of recognizing the di-
versity of meta-path instances in HGs, stressing that this diversity
should be accounted for not only within individual clients but also
across di�erent clients. To address the semantic heterogeneity that
arises among clients due to di�erences in meta-paths, the authors
propose dynamic weighted aggregation of parameters (FedDWA).
This mechanism aims to harmonize the variations in meta-paths,
thereby reducing semantic discrepancies across clients. During the
training process, after each round of aggregation on the server,
FedAHE evaluates whether the model version gap between clients
exceeds a prede�ned threshold. If the version gap surpasses this
limit, the server initiates a synchronization process by distributing
the latest model weights to all clients, ensuring that local models
are updated and aligned with the most recent global model. This ap-
proach helps to maintain consistency across the federation, thereby
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Table 11: Summary of federated heterogeneous graph learning algorithms. Asterisk (*) indicates that the model has been
improved, and "None" indicates that it is not described in the original paper.

Client Setup Method Basic FL HGNN Encoder Datasets Graph Partitioning

FDRS [46] FedAvg [63] HGCN* Epinions None

FedAHE [84] FedDWA HAN [87]
ACM

NoneDBLP
Aminer

Relation

FedDA [26] Simple-HGN [60]

DBLP

Dominant
Type Dynamic Amazon

Sharing Activation LastFM
PubMed

FedHGNN [96] FedAvg HAN

ACM

Ego Graph
DBLP
Yelp

Douban

FedHGN [17] FedAvg* RGCN* [74]
AIFB Random Edges

MUTAG Random Edge Types
Relation BGS

Type

FedLIT [94] RGCN*

DBLP Distinct
Protection Dynamic PubMed Dominant

Clustering NELL Balanced
MIMIC3

enhancing the overall robustness and e�ectiveness of the FL process
in the presence of meta-path diversity.

Compared to FGL algorithms, FedDA [26] analyzes the unique
characteristics of FL on HGs: that is, only a small amount of client
parameters need to be uploaded in each communication round to
achieve rapid convergence. Based on these �ndings, FedDA pro-
poses a dynamic activation strategy, which achieves e�cient train-
ing by dynamically selecting a subset of clients for each round of
aggregation. Furthermore, considering the complex relations in
HGs, FedDA introduces the D-HGN model, which decouples the
parameters of relation types to allow partial updates of relation pa-
rameters on the server side instead of the entire model parameters.

FedHGNN [96] identi�es the semantic broken issue that may
arise due to the incompleteness of HGs across di�erent clients. To
mitigate this issue, FedHGNN proposes a semantic-preserving user
interaction publishing algorithm, which captures cross-client se-
mantic information by uploading a shared pattern to the server
side. Furthermore, to prevent the shared pattern from leaking the
local client’s privacy, FedHGNN introduces a two-stage perturba-
tion mechanism to disturb the interactions within the local client
and theoretically veri�es that this strategy satis�es both semantic
privacy and interaction privacy guided by semantics. This strategy
only requires one communication before the FL training and then
utilizes HAN [87] for encoding within the client and FedAvg for
cross-client communication training.

A.9.2 Relation Type Protection. This FHGL setup assumes that
the relation type of each client is private and protected, and the
server cannot know the speci�c relation types of clients. Therefore,
related models usually adopt some heuristic manners to achieve

personalized aggregation and updating of local model parameters
without exposing the speci�c client-side edge relations.

FedHGN [17] highlights that the complex relations in HGs make
it challenging for clients to collect andmaintain all types of relations.
To address this issue, they propose a schema-weight decoupling
strategy, which involves performing basis decomposition on the
weight matrix of locally speci�c relations to form relation-speci�c
coe�cients V and globally shared basis decomposition. Meanwhile,
FedHGN updates V by heuristically matching theminimum distance
between relation-speci�c coe�cients of di�erent clients.

FedLIT [94] is primarily designed for vertical FGL. For exam-
ple, in the same city, di�erent institutions may have similar user
samples, but due to institutional di�erences (such as hospitals and
shopping malls), the relations between users are also di�erent. To
address this, FedLIT proposes a dynamic latent link-type-aware
clustered strategy. This strategy clusters within clients based on
edge-type embeddings to obtain local centroids for each relation,
and then performs a secondary clustering of the local centroids on
the server side to obtain global centroids. Similarly, FedLIT employs
heuristic methods to group each local centroid on the server side
and aggregates and updates speci�c relation projection matrice.

A.9.3 Basic FHGL on OpenFGL. Due to the inherent complexity
of HGs, the aforementioned algorithms are designed only for spe-
ci�c scenarios rather than a general federated graph scenario. To
facilitate users in quickly conducting FGL tasks on HG datasets,
we provide a basic FHGL model on OpenFGL for users to perform
simulation experiments. Speci�cally, OpenFGL o�ers two types of
heterogeneous graph partitioning strategies: (1) Relation Type
Sharing: This strategy follows the traditional FL setup, where
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Table 12: Statistics of heterogeneous graph datasets.

Dataset #Node #Edge #Node Type #Relation #Classes

ACM 10,942 547,872
# Author (A) # Term (T) Pä A Pä T

3# Paper (P) # Subject (S) Pä P Pä S

DBLP4HGB 26,128 239,566
# Author (A) # Term (T) Aä P Pä T

4# Paper (P) # Venue (V) Pä V

DBLP4MGN 26,128 296,563
# Author (A) # Term (T) Aä P Pä T

4# Paper (P) # Conference (C) Pä C

IMDB 21,420 86,624
# Movie (M) # Director (D)

Mä D Mä A 3# Actor (A)

Table 13: The performances (%) of federated heterogeneous graph learning on node classi�cation.

Methods Datasets

Basic FL HGNN Encoder ACM DBLP4HGB DBLP4MGN IMDB

FedAvg [63]
HAN 86.36±1.40 78.32±4.17 77.19±4.26 50.39±0.98
RGCN 89.74±0.24 80.86±0.59 80.39±0.47 60.42±0.42
HGT 84.25±1.30 79.29±0.78 78.28±1.53 55.86±0.73

FedDC [20]
HAN 83.81±1.03 72.55±4.96 73.62±4.62 52.31±0.95
RGCN 71.53±4.45 81.23±0.57 81.27±0.47 60.95±0.62
HGT 85.22±2.16 79.61±0.78 78.28±1.53 50.57±0.91

Moon [47]
HAN 86.03±1.46 77.02±3.91 77.19±3.99 51.30±1.11
RGCN 89.50±0.51 81.24±0.42 81.42±0.38 60.99±0.72
HGT 82.25±2.53 77.75±1.36 79.42±1.26 56.80±1.11

Sca�old [37]
HAN 86.66±1.62 77.66±4.18 78.02±4.12 55.54±0.60
RGCN 89.87±0.32 81.07±0.65 80.86±0.76 59.02±0.07
HGT 87.78±0.91 79.24±0.83 79.46±0.71 55.96±0.75

nodes of the target type are partitioned among multiple clients
according to a Dirichlet distribution, and other types of nodes are
extracted based on their relations with the target nodes. In this way,
the relations and node types in each client are the same, and these
types are considered globally shared. (2) Relation Type Protec-
tion: According to the Random Edge Types strategy provided by
FedHGN [17], di�erent types of relations are randomly partitioned
among di�erent clients. This method requires that the relation types
in each client cannot be shared, necessitating the establishment of
speci�c FL strategies to protect this privacy.

For heterogeneous graph datasets, we used DBLP4HGB andACM
datasets provided by Simple-HGN [60], as well as the DBLP4MGN
and IMDB datasets provided by MAGNN [18]. The statistical infor-
mation of the datasets is shown in Table 12. Here, we provide some
experimental results, as shown in Table 13. The heterogeneous
subgraph partitioning strategy follows the relation type sharing
strategy and is divided into 10 clients. All experiments are repeated
ten times, and the mean and standard deviation are reported.

Although in FHGL, di�erent HGNNs [33, 74, 87] and FL meth-
ods [20, 37, 47, 63] can be combined to achieve the basic framework,
it lacks distributed characteristics. For example, in centralized learn-
ing, the attention mechanism is considered an e�ective method of

identifying relations [60]. However, in Table 13, HAN and HGT
based on di�erent attention mechanisms perform worse in the
FHGL scenario compared to the RGCN. We speculate that this is
because the attention mechanism requires additional parameters,
making it more prone to over-�tting and stronger local biases. Ad-
ditionally, the information loss caused by meta-paths is further
ampli�ed in FGL, resulting in HAN achieving the worst perfor-
mance. It is worth mentioning that in most cases, the performance
of the same HGNN model shows almost no signi�cant di�erences
across di�erent FL methods. Therefore, for distributed HGs, design-
ing more reasonable HGNNs seems to be a more e�ective approach.
OpenFGL has user-friendly extensibility, allowing users to quickly
experiment with their own HGNN and FHGL strategies. Given the
practical value of FL and the more realistic modeling scenarios of
HG, OpenFGL will inspire more users to conduct research on FHGL.

In the future, we will continue to enhance the adaptability of
OpenFGL on HGs, such as incorporating more heterogeneous graph
datasets with diverse scenarios (such as PubMed [94], Freebase [60],
and OGB-MAG [32]), developing more advanced and e�cient het-
erogeneous GNNs [100], expanding downstream tasks (link pre-
diction, graph classi�cation [99]), and implementing more realistic
distributed partitioning strategies [17].
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