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1

About this book

Lots of people working in cryptography have no
deep concern with real application issues. They
are trying to discover things clever enough to
write papers about.

Whitfield Diffie

This book is intended as an introduction to cryptography
for programmers of any skill level. It s̓ a continuation of a
talk of the same name, which was given by the author at Py-
Con 2013.

The structure of this book is very similar: it starts with
very simple primitives, and gradually introduces new ones,
demonstrating why theyʼre necessary. Eventually, all of this
is put together into complete, practical cryptosystems, such
as TLS, GPG and OTR.

The goal of this book is not to make anyone a cryptog-
rapher or a security researcher. The goal of this book is to
understand how complete cryptosystems work from a bird s̓
eye view, and how to apply them in real software.

The exercises accompanying this book focus on teaching
cryptography by breaking inferior systems. That way, you
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wonʼt just “know” that someparticular thing is broken; youʼll
know exactly how it s̓ broken, and that you, yourself, armed
with little more than some spare time and your favorite pro-
gramming language, can break them. By seeing how these
ostensibly secure systems are actually completely broken,
you will understand why all these primitives and construc-
tions are necessary for complete cryptosystems. Hopefully,
these exercises will also leave you with healthy distrust of
DIY cryptography in all its forms.

For a long time, cryptography has been deemed the ex-
clusive realm of experts. From the many internal leaks
weʼve seen over the years of the internals of both large and
small corporations alike, it has become obvious that that ap-
proach is doing more harm than good. We can no longer
afford to keep the two worlds strictly separate. Wemust join
them into one world where all programmers are educated
in the basic underpinnings of information security, so that
they can work together with information security profes-
sionals to produce more secure software systems for every-
one. That does not make people such as penetration testers
and security researchers obsolete or less valuable; quite the
opposite, in fact. By sensitizing all programmers to security
concerns, the need for professional security audits will be-
come more apparent, not less.

This book hopes to be a bridge: to teach everyday pro-
grammers fromanyfield or specialization to understand just
enough cryptography to do their jobs, or maybe just satisfy
their appetite.



2

Advanced sections

This book is intended as apractical guide to cryptography for
programmers. Some sections go into more depth than they
need to in order to achieve that goal. Theyʼre in the book any-
way, just in case youʼre curious; but I generally recommend
skipping these sections. Theyʼll be marked like this:

This is an optional, in-depth section. It
almost certainly wonʼt help you write bet-
ter software, so feel free to skip it. It is only
here to satisfy your inner geek s̓ curiosity.

12
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Development

The entire Crypto 101 project is publicly developed on
GitHub under the crypto101 organization, including this
book.

This is an early pre-release of this book. All of your
questions, comments and bug reports are highly appreci-
ated. If you donʼt understand something after reading it, or
a sentence is particularly clumsily worded, that’s a bug and
I would very much like to fix it! Of course, if I never hear
about your issue, it s̓ very hard for me to address…

The copy of this book that you are reading right now is
based on the git commit with hash 64e8ccf, also known as
0.6.0-95-g64e8ccf.
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5

Exclusive or

5.1 Description

Exclusive or, often called “XOR”, is a Boolean1 binary2 op-
erator that is true when either the first input or the second
input, but not both, are true.

Another way to think of XOR is as something called a
“programmable inverter”: one input bit decides whether
to invert the other input bit, or to just pass it through un-
changed. “Inverting” bits is colloquially called “flipping”
bits, a term weʼll use often throughout the book.

Inmathematics and cryptography papers, exclusive or is
generally represented by a cross in a circle: ⊕. Weʼll use the
same notation in this book:

1 Uses only “true” and “false” as input and output values.
2 Takes two parameters.

17



CHAPTER 5. EXCLUSIVE OR 18

The inputs and output here are named as if weʼre using
XOR as an encryption operation. On the left, we have the
plaintext bit Pi. The i is just an index, since weʼll usually
deal with more than one such bit. On top, we have the key
bit ki, that decides whether or not to invert Pi. On the right,
we have the ciphertext bit,Ci, which is the result of the XOR
operation.

5.2 A few properties of XOR

Sinceweʼll be dealingwith XOR extensively during this book,
weʼll take a closer look at some of its properties. If youʼre
already familiar with how XOR works, feel free to skip this
section.

We saw that the output of XOR is 1 when one input or the
other (but not both) is 1:

0⊕ 0 = 0 1⊕ 0 = 1
0⊕ 1 = 1 1⊕ 1 = 0

There are a few useful arithmetic tricks we can derive from
that.

1. You can apply XOR in any order: a⊕(b⊕c) = (a⊕b)⊕c

2. You can flip the operands around: a⊕ b = b⊕ a

3. Any bit XOR itself is 0: a ⊕ a = 0. If a is 0, then it s̓
0⊕ 0 = 0; if a is 1, then it s̓ 1⊕ 1 = 0.

4. Any bit XOR 0 is that bit again: a⊕ 0 = a. If a is 0, then
it s̓ 0⊕ 0 = 0; if a is 1, then it s̓ 1⊕ 0 = 1.
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These rules also imply a⊕ b⊕ a = b:

a⊕ b⊕ a = a⊕ a⊕ b (second rule)
= 0⊕ b (third rule)
= b (fourth rule)

Weʼll use this property oftenwhenusing XOR for encryption;
you can think of that first XOR with a as encrypting, and the
second one as decrypting.

5.3 Bitwise XOR

XOR, as weʼve just defined it, operates only on single bits
or Boolean values. Since we usually deal with values com-
prised of many bits, most programming languages provide
a “bitwise XOR” operator: an operator that performs XOR on
the respective bits in a value.

Python, for example, provides the ^ (caret) operator that
performs bitwise XOR on integers. It does this by first ex-
pressing those two integers in binary3, and then performing
XOR on their respective bits. Hence the name, bitwise XOR.

73⊕ 87 = 0b1001001⊕ 0b1010111

=
1 0 0 1 0 0 1 (left)
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
1 0 1 0 1 1 1 (right)

= 0 0 1 1 1 1 0

= 0b0011110

= 30

5.4 One-time pads

XOR may seem like an awfully simple, even trivial operator.
Even so, there s̓ an encryption scheme, called a one-time

3 Usually, numbers are already stored in binary internally, so this
doesnʼt actually take any work. When you see a number prefixed with
“0b”, the remaining digits are a binary representation.



CHAPTER 5. EXCLUSIVE OR 20

pad, which consists of just that single operator. It s̓ called
a one-time pad because it involves a sequence (the “pad”) of
randombits, and the security of the schemedepends ononly
using that pad once. The sequence is called a pad because it
was originally recorded on a physical, paper pad.

This scheme is unique not only in its simplicity, but also
because it has the strongest possible security guarantee. If
the bits are truly random (and therefore unpredictable by an
attacker), and the pad is only used once, the attacker learns
nothing about the plaintext when they see a ciphertext.4

Supposewe can translate our plaintext into a sequence of
bits. We also have the pad of random bits, shared between
the sender and the (one or more) recipients. We can com-
pute the ciphertext by taking the bitwise XOR of the two se-
quences of bits.

If an attacker sees the ciphertext, we can prove that
they will learn zero information about the plaintext without
the key. This property is called perfect security. The proof
can be understood intuitively by thinking of XOR as a pro-
grammable inverter, and then looking at a particular bit in-
tercepted by Eve, the eavesdropper.

Let s̓ say Eve sees that a particular ciphertext bit ci is 1.
She has no idea if the matching plaintext bit pi was 0 or 1,
because she has no idea if the key bit ki was 0 or 1. Since
all of the key bits are truly random, both options are exactly
equally probable.

4 The attacker does learn that the message exists, and, in this simple
scheme, the length of the message. While this typically isnʼt too impor-
tant, there are situations where this might matter, and there are secure
cryptosystems to both hide the existence and the length of a message.
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5.5 Attacks on “one-time pads”

The one-time pad security guarantee only holds if it is used
correctly. First of all, the one-time pad has to consist of truly
random data. Secondly, the one-time pad can only be used
once (hence the name). Unfortunately, most commercial
products that claim to be “one-time pads” are snake oil5, and
donʼt satisfy at least one of those two properties.

Not using truly random data
The first issue is that they use various deterministic con-
structs to produce the one-time pad, instead of using truly
random data. That isnʼt necessarily insecure: in fact, the
most obvious example, a synchronous stream cipher, is
something weʼll see later in the book. However, it does inval-
idate the “unbreakable” security property of one-time pads.
The end user would be better served by a more honest cryp-
tosystem, instead of one that lies about its security proper-
ties.

Reusing the “one-time” pad
The other issue is with key reuse, which is much more seri-
ous. Suppose an attacker gets two ciphertexts with the same
“one-time” pad. The attacker can then XOR the two cipher-

5 “Snake oil” is a term for all sorts of dubious products that claim ex-
traordinary benefits and features, but donʼt really realize any of them.
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texts, which is also the XOR of the plaintexts:

c1 ⊕ c2 = (p1 ⊕ k)⊕ (p2 ⊕ k) (definition)
= p1 ⊕ k ⊕ p2 ⊕ k (reorder terms)
= p1 ⊕ p2 ⊕ k ⊕ k (a⊕ b = b⊕ a)

= p1 ⊕ p2 ⊕ 0 (x⊕ x = 0)

= p1 ⊕ p2 (x⊕ 0 = x)

At first sight, that may not seem like an issue. To extract ei-
ther p1 or p2, youd̓ need to cancel out the XOR operation,
which means you need to know the other plaintext. The
problem is that even the result of the XOR operation on two
plaintexts contains quite a bit information about the plain-
texts themselves. Weʼll illustrate this visually with some im-
ages from a broken “one-time” pad process, starting with
Figure 5.1.

Crib-dragging
A classical approach to breaking multi-time pad systems in-
volves “crib-dragging”, a process that uses small sequences
that are expected to occur with high probability. Those se-
quences are called “cribs”. The name crib-dragging origi-
nated from the fact that these small “cribs” are dragged from
left to right across each ciphertext, and from top to bottom
across the ciphertexts, in the hope of finding a match some-
where. Those matches form the sites of the start, or “crib”,
if you will, of further decryption.

The idea is fairly simple. Suppose we have several en-
crypted messages Ci encrypted with the same “one-time”
pad K6. If we could correctly guess the plaintext for one of

6 We use capital letters when referring to an entire message, as op-
posed to just bits of a message.
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(a) First plaintext. (b) Second plaintext.

(c) First ciphertext. (d) Second ciphertext.

(e) Reused key. (f) XOR of ciphertexts.

Figure 5.1: Two plaintexts, the re-used key, their respective
ciphertexts, and the XOR of the ciphertexts. Information
about the plaintexts clearly leaks through when we XOR the
ciphertexts.
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the messages, let s̓ say Cj, we d̓ knowK:

Cj ⊕ Pj = (Pj ⊕K)⊕ Pj

= K ⊕ Pj ⊕ Pj

= K ⊕ 0

= K

SinceK is the shared secret, we can now use it to decrypt all
of the other messages, just as if we were the recipient:

Pi = Ci ⊕K for all i

Since we usually canʼt guess an entire message, this doesnʼt
actually work. However, we might be able to guess parts of
a message.

If we guess a few plaintext bits pi correctly for any of the
messages, that would reveal the key bits at that position for
all of the messages, since k = ci⊕ pi. Hence, all of the plain-
text bits at that position are revealed: using that value for k,
we can compute the plaintext bits pi = ci⊕k for all the other
messages.

Guessing parts of the plaintext is a lot easier than guess-
ing the entire plaintext. Suppose we know that the plaintext
is in English. There are some sequences that we know will
occur very commonly, for example (the ! symbol denotes a
space):

• !the! and variants such as .!The!

• !of! and variants

• !to! and variants

• !and! (no variants; only occurs in themiddle of a sen-
tence)

• !a! and variants
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If we know more about the plaintext, we can make even
better guesses. For example, if it s̓ HTTP serving HTML, we
would expect to see things like Content-Type, <a>, and so
on.

That only tells us which plaintext sequences are likely,
giving us likely guesses. How do we tell if any of those
guesses are correct? If our guess is correct, we know all the
other plaintexts at that position as well, using the technique
described earlier. We could simply look at those plaintexts
and decide if they look correct.

In practice, this process needs to be automated because
there are so many possible guesses. Fortunately that s̓ quite
easy to do. For example, a very simple but effective method
is to count how often different symbols occur in the guessed
plaintexts: if the messages contain English text, we d̓ expect
to see a lot of letters e, t, a, o, i, n. If weʼre seeing binary
nonsense instead, we know that the guess was probably in-
correct, or perhaps that message is actually binary data.

These small, highly probable sequences are called
“cribs” because theyʼre the start of a larger decryption pro-
cess. Suppose your crib, the, was successful and found the
five-letter sequence t thr in another message. You can
then use a dictionary to find common words starting with
thr, such as through. If that guess were correct, it would
reveal four more bytes in all of the ciphertexts, which can
be used to reveal even more. Similarly, you can use the dic-
tionary to find words ending in t.

This becomes even more effective for some plaintexts
that we know more about. If some HTTP data has the
plaintext ent-Len in it, then we can expand that to
Content-Length:, revealing many more bytes.

While this technique works as soon as two messages are
encrypted with the same key, it s̓ clear that this becomes
even easier with more ciphertexts using the same key, since
all of the steps become more effective:

• We get more cribbing positions.
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• More plaintext bytes are revealed with each successful
crib and guess, leading to more guessing options else-
where.

• More ciphertexts are available for any given position,
making guess validation easier and sometimes more
accurate.

These are just simple ideas for breakingmulti-time pads.
While theyʼre already quite effective, people have invented
even more effective methods by applying advanced, statis-
tical models based on natural language analysis. This only
demonstrates further just how broken multi-time pads are.
[MWES06]

5.6 Remaining problems
Real one-time pads, implemented properly, have an ex-
tremely strong security guarantee. It would appear, then,
that cryptography is over: encryption is a solved problem,
and we can all go home. Obviously, that s̓ not the case.

One-time pads are rarely used, because they are horri-
bly impractical: the key is at least as large as all informa-
tion youd̓ like to transmit, put together. Plus, youd̓ have to
exchange those keys securely, ahead of time, with all peo-
ple youd̓ like to communicate with. Wed̓ like to communi-
cate securelywith everyone on the Internet, and that s̓ a very
large number of people. Furthermore, since the keys have
to consist of truly random data for its security property to
hold, key generation is fairly difficult and time-consuming
without specialized hardware.

One-time pads pose a trade-off. It s̓ an algorithm with a
solid information-theoretic security guarantee, which you
can not get from any other system. On the other hand, it
also has extremely impractical key exchange requirements.
However, as weʼll see throughout this book, secure sym-
metric encryption algorithms arenʼt the pain point of mod-
ern cryptosystems. Cryptographers have designed plenty of
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those, while practical key management remains one of the
toughest challenges facing modern cryptography. One-time
pads may solve a problem, but it s̓ the wrong problem.

While they may have their uses, theyʼre obviously not a
panacea. We need something with manageable key sizes
while maintaining secrecy. We need ways to negotiate keys
over the Internet with people weʼve never met before.
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