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foreword
Welcome, dear reader, to this book about DuckDB. It feels somewhat surreal to write a
foreword for this book about DuckDB because it seems like everything has happened
so quickly. The world of data management systems moves slowly—software projects
started in the 70s are still in strong positions on the market.

 It has only been a few short years since we sat at the Joost bar in Amsterdam one
evening in 2018 and decided we were going to build a new system. We had been toy-
ing with the idea previously but had been hesitant, as we knew it was a daft idea. The
common wisdom is that it takes “ten million dollars” to make a new database system
successful. But we decided on an equally daft plan: we would create a new kind of data
management system—one that had never been built before—an in-process analytical
system. Maybe the usual rules did not apply to this new kind of system. After some
more beers, we had pretty much decided on the first rough draft of DuckDB’s archi-
tecture. The very next day, we started hacking.

 Only a year later, in 2019, we opened up our repository and started telling people
about it. We showed our first demo of DuckDB at the 2019 SIGMOD conference, coin-
cidentally in Amsterdam. Since we co-organized the conference, we snuck stickers in
the goodie bags in an early attempt at a type of viral marketing. At the same time, we
also opened up the source code repository to the public. The “duck was out of the
bag,” so to speak.

 But thousands of open source projects are started every day, and the vast majority
will—regrettably or not—never gain any traction. This was also our expectation—that,
most likely, nobody was going to care about our “DuckDB.” But an amazing thing hap-
pened: little by little, the stars on the GitHub repository started to accumulate. We
think this came about because of another design goal of DuckDB: ease of use. We had
observed that the prevailing sentiment in data systems seemed to have been that the
xii



FOREWORD xiii
world should be grateful to be allowed to use the hard-won results of database systems
research and the systems we build. We had observed a worrying effect, however: the
results of decades of research were simply being ignored because they were hard to
use. In somewhat of a paradigm shift for data systems, one design goal of DuckDB was
to make it as easy to use as possible and to fix some of the biggest gripes we had heard
from practitioners.

 Somehow, people seem to have noticed. Big popularity gains came from activity on
the social network formerly known as Twitter and most notably from regularly being
featured on Hacker News. Now DuckDB is downloaded millions of times each month
and used everywhere from the biggest companies to the smallest embedded devices.
MotherDuck offers practitioners a hosted version but in DuckDB style and with a
strong local component. Heck, people are even writing books about DuckDB.

 We’re glad that Mark and the two Michaels are the ones who bring this book to
you. It’s an honor for us that such an excellent team is writing this book. They are
experts in explaining challenging data technology to developers in a fun, engaging,
but still deeply competent way. We hope you enjoy this book and, of course, that you
enjoy working with DuckDB.

 
 —MARK RAASVELDT AND HANNES MÜHLEISEN

CREATORS OF DUCKDB, 2023



preface
This book covers DuckDB—a modern, fast, embedded analytical database. It runs on
your machine and can easily process many gigabytes of data from a variety of sources,
including JSON, CSV, Parquet, SQLite, and Postgres. DuckDB integrates well into the
Python and R ecosystems and allows you to query in-memory data frames without
copying the data. You don’t need to spin up cloud data warehouses for your day-to-day
data processing anymore; you can just run DuckDB on your data, locally or in the
cloud.

 With DuckDB, you can solve your relational data analytics tasks without friction. It
is really user friendly and easy to learn. Best of all, you can use it embedded in your
Python environments and applications, much like SQLite. We strongly believe that we
hit the sweet spot in teaching DuckDB, covering its CLI-embedded mode, Python inte-
grations, and capabilities for building data pipelines as well as processing data—all
while also guiding readers through a painless deep-dive into modern SQL with
DuckDB.

 While we all are longtime data expert practitioners and educators, we come from
different corners of this spectrum—graph, real-time columnar, and relational data-
bases—yet we all find something of value in DuckDB that we think is worth speaking
about. We enjoy using DuckDB a lot, both outside our expertise but also as a useful
tool in our respective areas of work.
xiv
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about this book
We didn’t want to write a reference book (that’s what the docs are for), but rather, to
share the excitement and joy we experienced when working with DuckDB so that
you’ll learn something new on every page, while having the same fun we had when
writing. The book is fast-paced, information-rich, hands-on, and informative, with
easy-to-understand and practical examples.

Who should read this book
The ideal reader for this book is a data engineer, data scientist, or developer who is
interested in analyzing existing structured data efficiently without having to set up
infrastructure. They should be familiar and comfortable with command-line tools and
preferably some Python. We will cover a lot of SQL, starting with simple clauses and
working our way toward advanced, analytical statements. DuckDB is available on all
major operating systems and does not require any installation process; downloading
and running the executable is enough. Our chapter on MotherDuck, the serverless
analytic platform, requires creating an account if you want to try it out.

How this book is organized: A road map
We start with a gentle introduction to DuckDB in chapters 1 and 2, presenting its use
cases and its place in modern data pipelines. First, we will make sure you are able to
use the DuckDB CLI before we proceed with an introduction to SQL in chapter 3. We
will cover the basic clauses and statements before entering the world of advanced data
analysis with SQL in chapter 4, using advanced aggregations, window functions, recur-
sive SQL, and more. Of course, we will include the vendor-specific, developer-friendly
extensions that DuckDB brings to the table.
xvii



ABOUT THIS BOOKxviii
 DuckDB has many facets to it, with one of them being the fact that it does not
force its persistence storage upon you. We spend the whole of chapter 5 discussing
how you can actually use the SQL engine on top of many different file formats for
your purpose, without ingesting the data into tables.

 Chapter 6 will dive deep into DuckDB’s Python integration before we move to the
cloud with MotherDuck in Chapter 7.

 After that, we will have all the tools ready to build effective data pipelines (chapter
8) and deploy data applications (chapter 9).

 In chapter 10, we will take a step back and discuss some considerations for large
datasets and apply what we’ve learned so far.

 DuckDB not only offers a CLI and a fantastic Python integration but also Java, C,
C++, Julia, Rust, and many other language integrations. In the appendix, we will have
a look at these, especially how to use DuckDB from Java.

About the code 
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, the source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes, code is also in bold to
highlight code that has changed from previous steps in the chapter, such as when a
new feature is added to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). In those cases, you might need to remove an extra space introduced by
that marker to make the code work or fix long URLs.

 Additionally, comments in the source code have often been removed from the list-
ings when the code is described in the text. Code annotations accompany many of the
listings, highlighting important concepts. 

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/duckdb-in-action. The complete code
for the examples in the book is available for download from the Manning website at
https://www.manning.com/books/duckdb-in-action, and from GitHub at https://
github.com/duckdb-in-action/examples.

liveBook discussion forum
Purchase of DuckDB in Action includes free access to liveBook, Manning’s online read-
ing platform. Using liveBook’s exclusive discussion features, you can attach comments
to the book globally or to specific sections or paragraphs. It’s a snap to make notes for
yourself, ask and answer technical questions, and receive help from the author and
other users. To access the forum, go to https://livebook.manning.com/book/duckdb
-in-action/discussion. You can also learn more about Manning’s forums and the rules
of conduct at https://livebook.manning.com/discussion.

https://www.manning.com/books/duckdb-in-action
https://github.com/duckdb-in-action/examples
https://github.com/duckdb-in-action/examples
https://github.com/duckdb-in-action/examples
https://livebook.manning.com/book/duckdb-in-action
https://livebook.manning.com/book/duckdb-in-action/discussion
https://livebook.manning.com/book/duckdb-in-action/discussion
https://livebook.manning.com/book/duckdb-in-action/discussion
https://livebook.manning.com/discussion


ABOUT THIS BOOK xix
 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.
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An introduction
to DuckDB
We’re excited that you’ve picked up this book and are ready to learn about a tech-
nology that seems to go against the grain of everything that we’ve learned about big
data systems over the last decade. We’ve had a lot of fun using DuckDB, and we
hope you will be as enthused as we are after reading this book. This book’s
approach to teaching is hands-on, concise, and fast paced and will include lots of
code examples.

 After reading the book, you should be able to use DuckDB to analyze tabular
data in a variety of formats. You will also have a handy new tool in your toolbox for
data transformation, cleanup, and conversion. You can integrate it into your
Python notebooks and processes to replace pandas DataFrames in situations where

This chapter covers 
 Why DuckDB, a single node in-memory database, 

emerged in the era of big data

 DuckDB’s capabilities

 How DuckDB works and fits into your data 
pipeline
1



2 CHAPTER 1 An introduction to DuckDB
they are not performing. You will be able to build quick applications for data analysis
using Streamlit with DuckDB. Let’s get started!

1.1 What is DuckDB?
DuckDB is a modern embedded analytics database that runs on your machine and lets
you efficiently process and query gigabytes of data from different sources. Embedded
databases run within another process, like your application or notebook, and are not
accessed over a network. DuckDB was created in 2018 by Mark Raasveldt and Hannes
Mühleisen, who, at the time, were researchers in database systems at Centrum
Wiskunde & Informatica (CWI)—the national research institute for mathematics and
computer science in the Netherlands. 

 The founders and the CWI spun DuckDB Labs off as a startup to further develop
DuckDB. Its engineering team focuses on making DuckDB more efficient, user
friendly, and better integrated.

 The nonprofit DuckDB Foundation governs the DuckDB Project by safeguarding
the intellectual property and ensuring the continuity of the open source project
under the MIT license. The foundation’s operations and DuckDB’s development are
supported by commercial members, while association members can inform the devel-
opment road map.

 While DuckDB focuses on the local processing of data, another startup, Mother-
Duck, aims to extend DuckDB to a distributed, self-serve analytics system that can pro-
cess data in the cloud and on the edge. It adds collaboration and sharing capabilities
to DuckDB and supports processing data from all kinds of cloud storage.

 The DuckDB ecosystem is quite broad, allowing many people and organizations to
create integrations and generally useable applications as well as get excited about its
possibilities. Fortunately, the DuckDB community is very helpful and friendly—you
can find them on Discord (https://discord.duckdb.org/) and GitHub (https://
github.com/duckdb/duckdb). The documentation is comprehensive and detailed
enough to answer most questions.

 DuckDB lets you process and join local or remote files (e.g., from cloud buckets or
URLs) in different formats, including CSV, JSON, Parquet, and Apache Arrow, as well
as several databases, like MySQL, SQLite, and Postgres. You can even query pandas or
Polars DataFrames from your Python scripts or Jupyter notebooks. A diagram showing
conceptually how DuckDB is typically used is shown in figure 1.1.

 Unlike the pandas and Polars DataFrame libraries, DuckDB is a real analytics data-
base, implementing more efficient data-processing mechanisms that can handle large
volumes of data in seconds. With its SQL dialect, even complex queries can be expressed
more succinctly. Its expressiveness allows you to handle more operations inside a single
database query, avoiding multiple executions, which would be more costly.

 The architecture of the core database engine is the basis for efficient processing
and memory management. You can see a diagram showing the way that a query is pro-
cessed in figure 1.2.

https://discord.duckdb.org/
https://github.com/duckdb/duckdb
https://github.com/duckdb/duckdb
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Figure 1.1 DuckDB and other tools in the ecosystem

Figure 1.2 A high-level overview of DuckDB’s query-processing pipeline

We can see that DuckDB processes queries the same way as other databases, with an
SQL parser, query execution planner, and query runtime. The query engine is vector-
ized, which means it processes chunks of data in parallel and benefits from modern
multicore CPU architectures. DuckDB supports several extensions that add new capa-
bilities to the system, as well as user-defined functions, and has a variety of user inter-
faces, including a CLI, API, and lower-level integration into other systems, like data
processing libraries. 

1.2 Why should you care about DuckDB?
DuckDB makes data analytics fast and fun again, without the need to set up large
Apache Spark clusters or run a cloud data warehouse just to process a few hundred
gigabytes of data. Accessing data from many different sources directly and running
the processing where the data resides without copying it over the wire makes your
work faster, simpler, and cheaper. This not only saves time, but also a lot of money,
and reduces frustration. 

 For example, we recently had to process AWS access log files residing in S3. Usu-
ally, we would run AWS Athena SQL queries against the compressed JSON files. This
tends to get expensive, with a large part of the cost being based on the amount of data
scanned by the analytics service. Now we can instead deploy DuckDB to an EC2 VM

Output data formats

SELECT year, avg(a.value)
FROM read_csv(...) as a
JOIN sales as b
  ON a.region = b.region
GROUP BY year

DuckDB

Data sources

Parser

SQL Statement Unoptimized
logical plan

Optimized
logical plan

Physical
plan

Planner Optimizer Physical planner



4 CHAPTER 1 An introduction to DuckDB
and query the files close to the data for a fraction of the cost, as we only pay for the
VM, not for the processed data volume.

 With DuckDB, you can run lots of experiments and validate your ideas and hypoth-
eses quickly and locally, all simply by using SQL. In addition to supporting the ANSI
SQL standard, DuckDB’s SQL dialect extends the standard with innovations like the
following:

 Simplifying SELECT * queries with SELECT * EXCLUDE() and SELECT * REPLACE()
 Ordering by and grouping results by ALL columns (e.g., GROUP BY ALL saves the

user from typing out all field names)
 Using PIVOT and UNPIVOT to transpose rows and columns
 The STRUCT data type and associated functions, which make it easy to work with

complex nested data

We are excited about DuckDB because it helps to simplify data pipelines and data prepa-
ration, allowing more time for the actual analysis, exploration, and experimentation.

 In this book, we hope to convince you of the following about DuckDB:

 It is faster than SQLite for analytical workloads.
 It is easier to set up than a Spark cluster.
 It has lower resource requirements than pandas.
 It doesn’t throw weird Rust errors like Polars.
 It is easier to set up and use than PostgreSQL, Redshift, and other relational

databases.
 It is faster and more powerful for data transformations than Talend. 

1.3 When should you use DuckDB?
You can use DuckDB for all analytics tasks that can be expressed in SQL and work on
structured data (i.e., tables or documents) as long as your data is already available
(not streaming) and data volumes don’t exceed a few hundred gigabytes. Its columnar
engine can deal well with both wide tables with many columns as well as large tables
with many rows. DuckDB can process a variety of data formats, as previously outlined,
and can be extended to integrate with other systems. 

 As the data doesn’t leave your system (local or privacy-compliant hosting), it’s also
great for analyzing private data, like health information, home automation data, patient
data, personal identifying information, financial statements, and similar datasets.

 Here are some examples of some common analysis tasks that DuckDB is well
placed to solve:

 Analyzing log files where they are stored, without needing to copy them to new
locations

 Quantifying personal medical data about one’s self, such as a runner might do
when monitoring heart rates

 Reporting on the power generation and consumption using data from smart
meters
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 Optimizing ride data from modern transport operations for bikes and cars
 Preprocessing and pre-cleaning of user-generated data for machine learning

training

A great use of DuckDB is for more efficiently processing data that is already available
in pandas or Polars DataFrames because it can access the data directly without having
to copy the data from the DataFrame representation. The same is true for outputs and
tables generated by DuckDB. These can be used as DataFrames without additional
memory usage or transfer. 

1.4 When should you not use DuckDB?
As DuckDB is an analytics database, it has minimal support for transactions and paral-
lel write access. Therefore, you couldn’t use it in applications and APIs that process
and store input data arriving arbitrarily. 

 The data volumes you can process with DuckDB are mostly limited by the main
memory of your computer. While it supports spilling over memory (out-of-memory
processing) to disk, that feature is aimed more at exceptional situations, where the
final portion of processing won’t fit into memory. In most cases, that means you’ll
have a limit of a few hundred gigabytes for processing, with not all of it needing to be
in memory at the same time, as DuckDB optimizes loading only what’s needed.

 DuckDB focuses on the long tail of data analytics use cases, so if you’re in an enter-
prise environment with a complex setup of data sources, tools, and applications pro-
cessing many terabytes of data, DuckDB might not be the right choice for you.
DuckDB does not support processing live data streams that update continuously. Data
updates should happen in bulk by loading new tables or large chunks of new data at
once. DuckDB is not a streaming, real-time database; you would have to implement a
batching approach yourself by setting up a process to create mini-batches of data from
the stream and store those mini-batches somewhere that could then be queried by
DuckDB. 

1.5 Use cases
There are many use cases for a tool like DuckDB. Of course, the most exciting is when
it can be integrated with existing cloud, mobile, desktop, and command-line applica-
tions and do its job behind the scenes. In these cases, it would be the equivalent of the
broad usage of SQLite today, only for analytical processing instead of transactional
data storage. When analyzing data that shouldn’t leave the user’s device, such as
health, training, financial or home automation data, an efficient local infrastructure
comes in handy. The local analytics and preprocessing also reduce the volume of data
that has to be transported from edge devices, like smart meters or sensors.

 DuckDB is also useful for fast analysis of larger datasets, such as log files, where
computation and reduction can be done where the data is stored, saving high data
transfer time and costs. Currently, cloud vendors offer expensive analytics services,
like BigQuery, Amazon Redshift, and AWS Athena, which charge by processed data



6 CHAPTER 1 An introduction to DuckDB
volume to process this kind of data. You can replace many of those uses with sched-
uled cloud functions processing the data with DuckDB. You can also chain those pro-
cessing functions by writing out intermediate results to cloud storage, which can then
also be used for auditing.

 For data scientists, using DuckDB’s state-of-the-art query engine can make data
preparation, analysis, filtering, and aggregation more efficient than using pandas or
other DataFrame libraries—and all of this without leaving the comfortable environ-
ment of a notebook with Python or R APIs. This will put more advanced data analytics
capabilities in the hands of data science users so that they can make better use of
larger data volumes while being faster and more efficient. We will show several of
these later in the book. Also, the complexity of the setup can be greatly reduced,
removing the need to involve a data operations group.

 A final exciting use case will be the distributed analysis of data between cloud storage,
the edge network, and the local device. This is, for instance, currently being worked on
by MotherDuck, which allows you to run DuckDB both in the cloud and locally. 

1.6 Where does DuckDB fit in?
This book assumes you have some existing data that you want to analyze or transform.
That data can reside in flat files like CSV, Parquet, or JSON, or another database sys-
tem, like PostgreSQL or SQLite. For the book, we provide example data in the book’s
GitHub repository: https://github.com/duckdb-in-action/examples. 

 Depending on your use case, you can use DuckDB transiently to transform, filter,
and pass the data through to another format (figure 1.3). In most cases, though, you
will create tables for your data to persist it for subsequent high-performance analysis.
When doing that, you can also transform and correct column names, data types, and
values. If your input data is nested documents, you can unnest and flatten the data to
make relational data analysis easier and more efficient.

Data sources

Optional persistence

Data transformation

Programming
languages

Figure 1.3 Using DuckDB 
in a data pipeline

https://github.com/duckdb-in-action/examples


71.7 Steps of the data processing flow
 In the next step, you need to determine which SQL capabilities or DuckDB fea-
tures can help you perform that analysis or transformation. You can also perform
exploratory data analysis (EDA) to quickly get an overview of the distribution, ranges,
and relationships in your data. 

 After getting acquainted with the data, you can proceed to the actual analytics
tasks. Here, you will build the relevant SQL statements incrementally, verifying at each
step that the sample of the results produced matches your expectations. At this stage,
you might create additional tables or views before using advanced SQL features, like
window functions, common table expressions, and pivots. Finally, you need to decide
which way the results are consumed: by turning them into files or databases again,
serving them to users through an application or API, or visualizing them in a Jupyter
notebook or dashboard. 

1.7 Steps of the data processing flow
In the following sections, we will describe some specific aspects of DuckDB’s architec-
ture and feature set at a high level to give you an overall understanding and apprecia-
tion. We have ordered the sections in the sequence of how you would use DuckDB,
from loading data to populating tables and writing SQL for analysis to visualizing
those results, as shown in figure 1.4. 

Figure 1.4 The data processing flow

1.7.1 Data formats and sources

DuckDB supports a large number of data formats and data sources, and it lets you
inspect and analyze their data with little ceremony. Unlike other data systems, such as
SQL Server, you don’t need to first specify schema details up front. When reading
data, the database uses sensible defaults and inherent schema information from the
data, which you can override when needed. 

NOTE With DuckDB, you can focus more on the data processing and analysis
you need to do and less on upfront data engineering. Because it is an open
source project built by practitioners, there is a lot of emphasis on usability—if
something is too hard to use, someone in the community will propose and
submit a fix. And if the built-in functionality does not reach far enough,
there’s probably an extension that addresses your needs (e.g., geospatial data
or full-text search).

Load
data

Populate
tables

Analyze
with
SQL

Use
results



8 CHAPTER 1 An introduction to DuckDB
DuckDB supports a variety of data formats:

 CSV files can be loaded in bulk and parallel, and their columns are automati-
cally mapped.

 DataFrames’ memory can be handled directly by DuckDB inside the same
Python process without the need to copy data.

 JSON formats can be destructured, flattened, and transformed into relational
tables. DuckDB also has a JSON type for storing this type of data.

 Parquet files, along with their schema metadata, can be queried. Predicates
used in queries are pushed down and evaluated at the Parquet storage layer to
reduce the amount of data loaded. This is the ideal columnar format to read
and write for data lakes.

 Apache Arrow columnar-shaped data can be read via Arrow Database Connec-
tivity (ADBC) without data copying and transformations. 

 Accessing data in cloud buckets, like S3 or GCP, reduces transfer and copy
infrastructure and allows for cheap processing of large data volumes.

1.7.2 Data structures

DuckDB handles a variety of tables, views, and data types. For table columns, process-
ing, and results, there are more data types available than just the traditional data
types, like string (varchar), numeric (integer, float, and decimal), dates, timestamps,
intervals, Boolean, and binary large objects (BLOBs). 

 DuckDB also supports structured data types like enums, lists, maps (dictionaries),
and structs:

 Enums—Indexed, named elements of a set that can be stored and processed
efficiently.

 Lists or arrays—These hold multiple elements of the same type, and there are a
variety of functions for operating on these lists.

 Maps—Efficient key–value pairs that can be used for keeping keyed data points.
They are used during JSON processing and can be constructed and accessed in
several ways.

 Structs—Consistent key–value structures, where the same key always has values
of the same data type. That allows for more efficient storage, reasoning, and
processing of structs.

DuckDB also allows you to create your own types and database extensions, which can
provide additional data types. DuckDB can also create virtual or derived columns that
are created from other data via expressions. 

1.7.3 Developing the SQL

When analyzing data, you usually start by gaining an understanding of the shape of the
data. Then, you work from simple queries to creating more and more complex ones
from the basic building blocks. You can use DESCRIBE to learn about the columns and
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data types of your data sources, tables, and views. Armed with that information, you can
get basic statistics and distributions of a dataset by running count queries, count(*),
globally or grouped by interesting dimensions like time, location, or item type. That
gives you some good insights into what to expect from the data available. 

 DuckDB even has a SUMMARIZE clause (https://duckdb.org/docs/guides/meta/
summarize.html) that gives you statistics per column:

 count

 min, max, avg, and std (deviation)
 approx_unique (estimated count of distinct values)
 percentiles (q25, q50, q75)
 null_percentage (part of the data being null)

To write your analytics query, you can start working on a subset of the data by using
LIMIT or by only looking at a single input file. Start by outlining the result columns
that you need (these may sometimes be converted—e.g., for dates using strptime).
Those are the columns you would group by. Then, apply aggregations and filters to
your data as needed. There are many different aggregation functions available in
DuckDB (https://duckdb.org/docs/sql/aggregates.html), from traditional ones, like
min, avg, and sum, to more advanced ones like histogram, bitstring_agg, list, or
approximations like approx_count_distinct. There are also advanced aggregations,
including percentiles, entropy or regression computation, and skewness. For running
totals and comparisons with previous and next rows, you would use window functions
aggregation OVER (PARTITION BY column ORDER BY column2 [RANGE …]). Repeatedly
used parts of your analytics statement can be extracted into named common table
expressions (CTEs) or views. Often, it also helps for readability to move parts of the
computation into subqueries and use their results to check for existence or do some
nested data preparation. 

 While you’re building up your analytical statement, you can check the results at
any time to make sure they are still correct and you’ve not taken an incorrect detour.
This takes us to our next and last section on using the results of your queries. 

1.7.4 Using or processing the results

You’ve written your statement and gotten the analytics results quickly from DuckDB.
Now what?

 It would be useful to keep your results around (e.g., by storing them in a file or a
table). Creating a table from your results is straightforward with CREATE TABLE <name>
AS SELECT …. DuckDB can write a variety of formats, including CSV, JSON, Parquet,
Excel, and Apache Arrow. It also supports other database formats, like SQLite, Post-
gres, and others, via custom extensions. For smaller results sets, you can also use the
DuckDB CLI to output the data as CSV or JSON.

 But because a picture tells more than 1,000 rows, often the preferred choice is data
visualization. With the built-in bar function, you can render inline bar charts of your

https://duckdb.org/docs/sql/aggregates.html
https://duckdb.org/docs/guides/meta/summarize.html
https://duckdb.org/docs/guides/meta/summarize.html
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data. You can also use command-line plotting tools, like youplot, for some quick
results in your terminal. 

 In most cases, though, you would use the large Python and JavaScript ecosystem to
visualize your results. For those purposes, you can turn your results into DataFrames,
which then can be rendered into a variety of charts with matplotlib; ggplot in
Python; ggplot2 in R; or d3, nivo, or observable in JavaScript. A visual representa-
tion showing this is provided in figure 1.5.

Figure 1.5 Visualizing data in a dashboard or Jupyter Notebook

As DuckDB is so fast, you can serve the results directly from your queries on the data
via an API that web, command-line, or mobile clients can consume. You only really
need a traditional client–database server setup if your source data is too big to move
around and your results are comparatively small (much less than 1% of the volume).

Line

Pie

Calendar heatmap
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Otherwise, you can embed DuckDB into your application (e.g., built with Streamlit)
or dashboarding tool and have it run on local raw data or a local DuckDB database. 

Summary
 DuckDB is a newly developed analytical database that excels at in-memory pro-

cessing.
 The database supports an extended dialect of SQL and gains new capabilities

with extensions.
 DuckDB can read a variety of formats natively from local and remote sources.
 The integration in Python, R, and other languages is seamless and efficient.
 As an in-process database, it can process data efficiently without copying.
 In addition to the traditional data types, DuckDB also supports lists, maps,

structs, and enums.
 DuckDB provides a lot of functions on data types and values, making data pro-

cessing and shaping much easier.
 Building up your SQL queries step by step after learning about the shape of

your data helps you stay in control.
 You can use the results of your query in a variety of ways, from generating

reports and visualizing in charts to outputting in new formats. 



Getting started
with DuckDB
Now that we have an understanding of what DuckDB is and why it came into prom-
inence in the early 2020s, it’s time to get familiar with it. This chapter will be cen-
tered on the DuckDB command-line interface (CLI). We’ll learn how to install it on
various environments, before learning about the its built-in commands. We’ll con-
clude by querying a remote CSV file.

2.1 Supported environments
DuckDB is available for a range of different programming languages and operating
systems (Linux, Windows, and macOS) both for Intel/AMD and ARM architec-
tures. At the time of writing, there is support for the command line, Python, R,
Java, JavaScript, Go, Rust, Node.js, Julia, C/C++, ODBC, JDBC, WASM, and Swift. In
this chapter, we will focus on the DuckDB command line exclusively, as we think

This chapter covers 
 Installing and learning how to use the DuckDB 

command-line interface 

 Executing commands in the DuckDB CLI

 Querying remote files
12
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that is the easiest way to get you up to speed. The DuckDB CLI does not require a sep-
arate server installation, as DuckDB is an embedded database, and in the case of the
CLI, it is embedded in the CLI executable. 

 The command-line tool is published to GitHub releases, and there are a variety of
packages for different operating systems and architectures. You can find the full list
on the installation page: https://duckdb.org/docs/installation/index. 

2.2 Installing the DuckDB CLI
The installation is a “copy to” installation, meaning no installers or libraries are
needed. The CLI consists of a single binary named duckdb. Let’s learn how to go
about installing DuckDB. 

2.2.1 macOS

On macOS, the official recommendation is to use the Homebrew (https://brew.sh)
package installer, as shown in the following listing. 

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/\
Homebrew/install/HEAD/install.sh)"

brew install duckdb

2.2.2 Linux and Windows

There are several different packages available for Linux and Windows, depending on
the particular architecture and version that you’re using. You can find a full listing on
the GitHub releases page (https://github.com/duckdb/duckdb/releases). In the fol-
lowing listing, we learn how to get the DuckDB CLI running on Linux with an AMD64
architecture. 

wget https://github.com/duckdb/duckdb/releases/download/v0.10.0/\
duckdb_cli-linux-amd64.zip
unzip duckdb_cli-linux-amd64.zip
./duckdb -version

2.3 Using the DuckDB CLI
The simplest way to launch the CLI is as follows—and yes, it’s that short, and it’s quick:

duckdb

This will launch DuckDB and the CLI. You should see something like the following
output:

Listing 2.1 Installing DuckDB on macOS via Homebrew

Listing 2.2 Getting DuckDB running on Linux

This is only necessary to install the 
Homebrew package manager itself—
don’t run it if you already have it.

Don’t forget to update this link to the latest 
version from the GitHub releases page 
(https://github.com/duckdb/duckdb/releases).

https://duckdb.org/docs/installation/index
https://brew.sh
https://github.com/duckdb/duckdb/releases
https://github.com/duckdb/duckdb/releases
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v0.10.0 20b1486d11
Enter ".help" for usage hints.
Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database.

The database will be transient, with all data held in memory. It will disappear when
you quit the CLI, which you can do by typing .quit or .exit.

2.3.1 SQL statements

You can enter or paste SQL statements directly in the command line and end them
with a semicolon and a newline. While there is no semicolon, you can enter newlines.
They will be executed directly and output the results in compact table format. You can
change the output formats as explained in section 2.5.1. For longer running opera-
tions, a progress bar will be shown. The following listing provides a simple example
selecting a few constant values.

select v.* from values (1),(3),(3),(7) as v;

By default, it will be printed in a tabular format:

┌───────┐
│ col0 │
│ int32 │
├───────┤
│ 1 │
│ 3 │
│ 3 │
│ 7 │
└───────┘

2.3.2 Dot commands

In addition to SQL statements and commands, the CLI has several special commands
that are only available in the CLI: the special dot commands. To use one of these com-
mands, begin the line with a period (.) immediately followed by the name of the com-
mand you wish to execute. Additional arguments to the command are entered, space
separated, after the command. Dot commands must be entered on a single line, and
no whitespace may occur before the period. No semicolon is required at the end of
the line in contrast to a normal SQL statement or command. 

 Some of the most popular dot commands are described as follows:

 .open closes the current database file and opens a new one.
 .read allows reading SQL files to execute from within the CLI.
 .tables lists the currently available tables and views.
 .timer on/off toggles SQL timing output.
 .mode controls output formats.

Listing 2.3 A simple select statement
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 .maxrows controls the number of rows to show by default (for duckbox format).
 .excel shows the output of next command in spreadsheet.
 .exit, .quit or ctrl-d exit the CLI.

A full overview can be retrieved via .help. 

2.3.3 CLI arguments

The CLI takes in arguments that can be used to adjust the database mode, control the
output format, or decide whether the CLI is going to enter interactive mode. The
usage is duckdb [OPTIONS] FILENAME [COMMANDS]. 

 Some of the most popular CLI arguments are described as follows:

 -readonly opens the database in read-only mode.
 -json sets the output mode to json.
 -line sets the output mode to line.
 -unsigned allows for the loading of unsigned extensions.
 -s COMMAND or -c COMMAND runs the provided command and then exits. This is

especially helpful when combined with the .read dot command, which reads
input from the given filename.

The following is an example that demonstrates how the CLI can be parameterized to
output the results of a query as JSON:

duckdb --json -c 'select v.* from values (1),(3),(3),(7) as v;'

[{"col0":1},
{"col0":3},
{"col0":3},
{"col0":7}]

To get a list of the available CLI arguments, call duckdb -help. 

2.4 DuckDB’s extension system
DuckDB has an extension system used to house functionality that isn’t part of the core
of the database. You can think of extensions as packages that you can install with
DuckDB. 

 DuckDB comes preloaded with several extensions, which vary depending on the
distribution that you’re using. You can get a list of all the available extensions, whether
installed or not, by calling the duckdb_extensions function. Let’s start by checking
the fields returned by this function. 

DESCRIBE
SELECT *
FROM duckdb_extensions();

Listing 2.4 The format of duckdb_extensions output
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The duckdb_extensions function returns, among other information, the name of the
extension and whether it is installed and actually loaded:

┌────────────────┬─────────────┐
│ column_name │ column_type │
│ varchar │ varchar │
├────────────────┼─────────────|
│ extension_name │ VARCHAR │
│ loaded │ BOOLEAN │
│ installed │ BOOLEAN │
│ install_path │ VARCHAR │
│ description │ VARCHAR │
│ aliases │ VARCHAR[] │
└────────────────┴─────────────┴

Let’s check which extensions we have installed on our machine:

SELECT extension_name, loaded, installed
from duckdb_extensions()
ORDER BY installed DESC, loaded DESC;

The results of running the query are as follows:

┌──────────────────┬─────────┬───────────┐
│ extension_name │ loaded │ installed │
│ varchar │ boolean │ boolean │
├──────────────────┼─────────┼───────────┤
│ autocomplete │ true │ true │
│ fts │ true │ true │
│ icu │ true │ true │
│ json │ true │ true │
│ parquet │ true │ true │
│ tpch │ true │ true │
│ httpfs │ false │ false │
│ inet │ false │ false │
│ jemalloc │ false │ false │
│ motherduck │ false │ false │
│ postgres_scanner │ false │ false │
│ spatial │ false │ false │
│ sqlite_scanner │ false │ false │
│ tpcds │ false │ false │
│ excel │ true │ │
├──────────────────┴─────────┴───────────┤
│ 15 rows 3 columns │
└────────────────────────────────────────┘

You can install any extension by typing the INSTALL command followed by the exten-
sion’s name. The extension will then be installed in your database but not loaded. To
load an extension, type LOAD followed by the same name. The extension mechanism is
idempotent, meaning you can issue both commands several times without running
into errors. 
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NOTE Since version 0.8 of DuckDB, the database autoloads installed exten-
sions if it can determine they are needed, so you might not need the LOAD
command. 

By default, DuckDB cannot query files that live elsewhere on the internet, but that
capability is available via the official httpfs extension. If it is not already in your distri-
bution, you can install and load the httpfs extension:

INSTALL httpfs;
LOAD httpfs;

This extension lets us directly query files hosted on an HTTP(S) server without having
to download the files locally, and it supports S3 as well as a few other cloud storage
providers. We can then check where that’s been installed by entering the following:

FROM duckdb_extensions()
SELECT loaded, installed, install_path
WHERE extension_name = 'httpfs';

You should see this output:

┌─────────┬───────────┬─────────────────────────────────----┐
│ loaded │ installed │ install_path │
│ boolean │ boolean │ varchar │
├─────────┼───────────┼─────────────────────────────────────┤
│ true │ true │ /path/to/httpfs.duckdb_extension │
└─────────┴───────────┴─────────────────────────────────────┘

We can see that this extension has now been loaded and installed and also view the
location where it’s been installed. 

2.5 Analyzing a CSV file with the DuckDB CLI
We’re going to start with a demonstration of the CLI for a common task for any data
engineer—making sense of the data in a CSV file! It doesn’t matter where our data is
stored, be it on a remote HTTP server or cloud storage (S3, GCP, or HDFS), DuckDB
can now process it directly without having to do a manual download and import pro-
cess. As the ingestion of many supported file formats, such as CSV and Parquet, is par-
allelized by default, it should be lightning quick to get your data into DuckDB. 

 We went looking for CSV files on GitHub and came across a dataset containing the
total population figures for several countries (https://mng.bz/KZKZ). We can write
the following query to count the number of records:

SELECT count(*)
FROM 'https://github.com/bnokoro/Data-Science/raw/master/'

'countries%20of%20the%20world.csv';

If we run this query, we should see the following output indicating we’ve got popula-
tion data for over 200 countries:

https://mng.bz/KZKZ
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┌──────────────┐
│ count_star() │
│ int64 │
├──────────────┤
│ 227 │
└──────────────┘

If, as is the case here, our URL or filename ends in a specific extension (e.g., .csv),
DuckDB will automatically process it. But what if we try to automatically process a
short link of that same CSV file?

SELECT count(*)
FROM 'https://bit.ly/3KoiZR0';

Running this query results in the following error:

Error: Catalog Error: Table with name https://bit.ly/3KoiZR0 does not exist!
Did you mean "Player"?
LINE 1: select count(*) from 'https://bit.ly/3KoiZR0';

Although it’s a CSV file, DuckDB doesn’t know that because it doesn’t have a .csv suf-
fix. We can solve this problem by using the read_csv_auto function, which processes
the provided URI as if it was a CSV file, despite its lack of .csv suffix. The updated
query is shown in the following listing. 

SELECT count(*)
FROM read_csv_auto("https://bit.ly/3KoiZR0");

This query will return the same result as the query that used the canonical link from
which the format could be deduced.

2.5.1 Result modes

For displaying the results, you can choose between different modes using .mode
<name>. You can see a list of available modes by typing .help mode. 

 Throughout this chapter, we’ve been using duckbox mode, which returns a flexible
table structure. DuckDB comes with a series of different modes, which broadly fit into
two categories:

 Table based—These types of modes work well with few columns and include
duckbox, box, csv, ascii, table, list, and column.

 Line based—These types of modes work well with many columns and include
json, jsonline, and line.

There are some others that don’t fit into those categories, including html, insert,
and trash (no output).

 Our first query counted the number of records in the CSV file, but it’d be interest-
ing to know what columns it has. Many columns would get truncated if we were to use
the default mode, so we’re going to change to line mode before running the query:

Listing 2.5 Specifying the format of a remote file
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.mode line
SELECT *
FROM read_csv_auto("https://bit.ly/3KoiZR0")
LIMIT 1;

The results of running this query are shown in the following listing.

Country = Afghanistan
Region = ASIA (EX. NEAR EAST)

Population = 31056997
Area (sq. mi.) = 647500

Pop. Density (per sq. mi.) = 48,0
Coastline (coast/area ratio) = 0,00

Net migration = 23,06
Infant mortality (per 1000 births) = 163,07

GDP ($ per capita) = 700
Literacy (%) = 36,0

Phones (per 1000) = 3,2
Arable (%) = 12,13
Crops (%) = 0,22
Other (%) = 87,65

Climate = 1
Birthrate = 46,6
Deathrate = 20,34

Agriculture = 0,38
Industry = 0,24
Service = 0,38

As you can see from the output, line mode takes up a lot more space than duckbox,
but we’ve found it to be the best mode for doing initial exploration of datasets that
have plenty of columns. You can always change back to another mode once you’ve
decided on a subset of columns you’d like to use.

 The dataset has lots of interesting information about various countries. Let’s write
a query to count the number of countries and find the maximum population average
area across all countries. This query only returns a few columns, so we’ll switch back to
duckbox mode before running the query:

.mode duckbox
SELECT count(*) AS countries,

max(Population) AS max_population,
round(avg(cast("Area (sq. mi.)" AS decimal))) AS avgArea

FROM read_csv_auto("https://bit.ly/3KoiZR0");

┌───────────┬────────────────┬──────────┐
│ countries │ max_population │ avgArea │
│ int64 │ int64 │ double │
├───────────┼────────────────┼──────────┤
│ 227 │ 1313973713 │ 598227.0 │
└───────────┴────────────────┴──────────┘

Listing 2.6 A result in line mode

Changing to 
line mode
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So far, no tables have been created in the process, and we’ve just touched the tip of
the iceberg of demonstrating what DuckDB actually can do. While the previous exam-
ples have all been run in interactive mode, the DuckDB CLI can also run in a nonin-
teractive fashion. It can read from standard input and write to standard output. This
makes it possible to build all sorts of pipelines.

 Let’s conclude with a script that extracts the population, birth rate, and death rate
in countries in Western Europe and creates a new local CSV file containing that data.
We can either .exit from the DuckDB CLI or open another tab before running the
following command:

duckdb -csv \
-s "SELECT Country, Population, Birthrate, Deathrate

FROM read_csv_auto('https://bit.ly/3KoiZR0')
WHERE trim(region) = 'WESTERN EUROPE'" \

> western_europe.csv

The first few lines of western_europe.csv can be viewed with a command-line tool or
text editor. If we use the head tool, we can find the first six lines—the header and five
rows of data—like this:

head -n6 western_europe.csv

The output would then look like table 2.1.

We can also create Parquet files, but for that, we can’t pipe the output straight into a
file with a Parquet extension. Instead, we can use the COPY … TO clause with the file-
name as the destination, as shown in the following listing.

duckdb \
-s "COPY (

SELECT Country, Population, Birthrate, Deathrate
FROM read_csv_auto('https://bit.ly/3KoiZR0')
WHERE trim(region) = 'WESTERN EUROPE'

) TO 'western_europe.parquet' (FORMAT PARQUET)"

Table 2.1 The first six lines of western_europe.csv, showing population, birth rate, and death rate of
some countries in Western Europe

Country Population Birthrate Deathrate

Andorra 71,201 8,71 6,25

Austria 8,192,880 8,74 9,76

Belgium 10,379,067 10,38 10,27

Denmark 5,450,661 11,13 10,36

Faroe Islands 47,246 14,05 8,7

Listing 2.7 Writing explicitly to a Parquet file
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You could then view the contents of the Parquet file using any Parquet reader, perhaps
even DuckDB itself!

duckdb -s "FROM 'western_europe.parquet' LIMIT 5"

The results will be the same as those in table 2.1.

Summary
 DuckDB is available as a library for Python, R, Java, JavaScript, Julia, C/C++,

ODBC, WASM, and Swift.
 The CLI supports additional dot commands for controlling outputs, reading

files, built-in help, and more.
 With .mode, you can use several display modes, including duckbox, line, and

ascii.
 You can query CSV files directly from an HTTP server by installing the httpfs

extension.
 You can use the CLI as a step in any data pipeline, without creating tables, by

querying external datasets and writing results to standard out or other files. 

Config file for repeated configuration and use
Repeated configuration and usage can be stored in a config file that lives at $HOME/
.duckdbrc. This file is read during startup, and all commands in it—both dot com-
mands and SQL commands—are executed via one .read command. This allows you
to store both the configuration state of the CLI and anything you might want to initial-
ize with SQL commands. 

An example of something that might go in the duckdbrc file is a custom prompt and
welcome message when you launch DuckDB, like this:

-- Duck head prompt
.prompt 'O> '
-- Example SQL statement
select 'Begin quacking now '||cast(now() as string) as "Ready, Set, ...";



Executing SQL queries
Now that you’ve learned about the DuckDB CLI, it’s time to tickle your SQL brain.
We will be using the CLI version of DuckDB throughout this chapter. However, all
the examples here can be fully applied from within any of the supported environ-
ments, such as the Python client, the Java JDBC driver, or any of the other sup-
ported language interfaces.

 In this chapter, we will quickly go over some basic and necessary SQL statements
and then move on to more advanced querying. In addition to explaining SQL
basics, we’ll also be covering more complex topics, including common table
expressions and window functions. DuckDB supports both of these, and this

This chapter covers 
 The different categories of SQL statements and 

their fundamental structure

 Creating tables and structures for ingesting a real-
world dataset

 Laying the fundamentals for analyzing a huge 
dataset in detail

 Exploring DuckDB-specific extensions to SQL
22
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chapter will teach you how to build queries for doing the best possible in-memory
online analytical processing (OLAP) with DuckDB. 

 To get the sample up and running, you should have an idea about data ingestion
with DuckDB, as discussed in chapter 2, especially how to ingest CSV files and deal
with implicit (automatic) or explicit column detection. Knowledge of the data types
presented in chapter 1 will also be helpful. If you want to go straight to querying data,
please jump to section 3.4.3, in which we discuss SQLs SELECT statement in detail. We
think it’s better to start by defining tables and structures first, populating them with
data, and then querying them, rather than making up queries on generated or nonex-
istent data.

3.1 A quick SQL recap
SQL queries are composed of several statements, which are in turn composed of
clauses. A command is a query submitted to the CLI or any other of the supported cli-
ents. Commands in the DuckDB CLI are terminated with a semicolon. Whitespaces
can be used freely in SQL commands. You have the option to either align your com-
mands beautifully or type them all in one line—it doesn’t matter which you choose.
SQL is case-insensitive for keywords and identifiers.

 Most statements support several clauses that change their behavior, most promi-
nently the WHERE, GROUP BY, and ORDER BY clauses. WHERE adds conditions on which
rows are included in the final result, GROUP BY aggregates many values into buckets
defined by one or more keys, and ORDER BY specifies the order of the results returned. 

 Next, we will demonstrate how to use each of the statements and clauses relevant
to your analytical workloads using a real-world example: energy production from pho-
tovoltaics. The aim of this example is to provide you with concrete details on each of
the concepts so that you leave with an understanding of how they are applicable in
your own workloads. 

3.2 Analyzing energy production
Energy consumption and production have been the subjects of OLAP-related analysis
for a while. Smart meters measuring consumption in 15-minute intervals have been
available to many industries—such as metal processing and large production plants—
for some time now and have become quite standard. These measurements are used to
price the consumed energy, forecast consumption, and more. 

 With the rise of smart monitoring systems, detailed energy readings are now avail-
able in private households as well, becoming more mainstream each year. Imagine you
have a photovoltaic grid and smart meter installed at your house. You want to be able
to plan your electricity usage a bit or forecast an amortization of your grid, the same way
large industries can. To do so, you don’t have to go into a full time-series database and
a live dashboard. Hopefully, DuckDB and the examples we use throughout this chapter
provide a good starting point for creating your own useful reports.
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 The dataset we are going to use in the following examples is available from the
U.S. Department of Energy under the name Photovoltaic Data Acquisition (PVDAQ;
https://mng.bz/9d6o). The dataset is documented on GitHub (https://github.com/
openEDI/documentation/blob/main/pvdaq.md). The National Renewable Energy
Laboratory from the Department of Energy also offers a nice, simple API for getting
the partitioned CSV/Parquet files via PVDAQ (https://developer.nrel.gov/docs/
solar/pvdaq-v3/). Access is free and requires little personal information. The dataset
is published under the Creative Commons Attribution license (http://opendefinition
.org/licenses/cc-by/). Parts of the dataset are redistributed unchanged for ease of
access in this chapter with the sources of this book. 

NOTE Why are we storing measurements in quarter-hour intervals when
modern sensors produce much finer measurements? A period of 15 minutes
turned out to be fit enough for the aforementioned purposes, such as pricing
and buying smart intervals, while simultaneously small enough to be handled
with ease in most modern relational systems. The power output or consump-
tion is measured in units of watts (W) or kilowatts (kW) and is typically sold
using kilowatt-hours (kWh). These 15-minute intervals can be easily con-
verted from W to kWh, while remaining accurate enough for good produc-
tion charts. In most cases, you want to smooth the values on at least an hourly
basis—peaks and dips due to clouds are often irrelevant. Reviewing a weather
forecasting chart and using daily measurements generally provides a good
base interval, as this accounts for weekends and bank holidays and smooths
out small irregularities.

3.2.1 Downloading the dataset

We will use DuckDB’s httpfs extension to load the data without going through CSV
files. To install it, run install httpfs; load httpfs; in your DuckDB CLI. We’ll be
working with the following data files:

 https://oedi-data-lake.s3.amazonaws.com/pvdaq/csv/systems.csv—This file contains
the list of all PV systems the PVDAQ measures.

 Readings for systems 10, 34, and 1,200 from 2019 and 2020—The URLs all follow
the schema discussed in the forthcoming text (please change the system_id
and year URL parameters accordingly). You’ll need an API key to access
them—we are using DEMO_KEY.

The URLs used to get the data are described as follows, with the API key, system ID,
and year all supplied via query string parameters:

https://developer.nrel.gov/api/pvdaq/v3/data_file?api_key=DEMO_KEY
&system_id=34&year=2019

If you can’t access those URLs for any reason, the source code of this book contains a
database export under the name ch03_db, which has the complete dataset. You can
import it into a fresh database by using the following commands:

https://mng.bz/9d6o
https://github.com/openEDI/documentation/blob/main/pvdaq.md
https://github.com/openEDI/documentation/blob/main/pvdaq.md
https://developer.nrel.gov/docs/solar/pvdaq-v3/
https://developer.nrel.gov/docs/solar/pvdaq-v3/
http://opendefinition.org/licenses/cc-by/
http://opendefinition.org/licenses/cc-by/
http://opendefinition.org/licenses/cc-by/
https://oedi-data-lake.s3.amazonaws.com/pvdaq/csv/systems.csv
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duckdb my_ch03.db
import database 'ch03_db';

TIP Another option is to use a remote database on motherduck.com via
ATTACH 'md:_share/duckdb_in_action_ch3_4/d0c08584-1d33-491c-8db7-

cf9c6910eceb' in your DuckDB CLI. While the shared example is read-only,
it contains all data we used, and you can follow all examples that don’t deal
with insertion and the like. Chapter 12 will cover the services offered by
MotherDuck in detail.

We picked this dataset for specific reasons: its domain is easy to grasp yet complex
enough to introduce many analytical concepts backed with actual real-world needs. As
with any analytical process, you will eventually run into inconsistent data. This is the
case in some series in this dataset too.

 If you don’t use the ready-made database, don’t worry yet about the necessary que-
ries for ingesting the raw data—we will get there in a bit. In the upcoming sections, we
will first discuss and create the database schema and then download the readings for
several PV systems. 

3.2.2 The target schema

DuckDB is a relational database management system (RDBMS). That means it is a system
for managing data stored in relations. A relation is essentially a mathematical term for
a table. 

 Each table is a named collection of rows. Each row of a given table has the same set
of named columns, and each column is of a specific data type. Tables themselves are
stored inside schemas, and a collection of schemas constitutes the entire database you
can access.

NOTE What is a surrogate key? To address rows in a table, a column with a
unique value or a combination of columns that is unique over all rows is
required. Such a column is usually referred to as the primary key. Not all data
you can possibly store in a database has unique attributes. For example, using
a person’s name as their unique or primary key would be an awful choice. In
such scenarios, database schema designers often introduce numerical col-
umns based on a monotonous, increasing sequence or columns containing a
universally unique identifier (UUID) as surrogate keys. 

The schema for our dataset consists of a handful of tables (figure 3.1). These tables
are normalized so that the supported joins can easily be demonstrated. The three
tables we’ll be working with are as follows:

 systems—This contains the systems for which production values are read.
 readings—This contains the actual readings taken for the systems.
 prices—This contains the prices for selling energy. Prices in our examples are

measured in European cents per kilowatt-hour (cents/kWh), but using any unit
per kilowatt-hour will work.

https://motherduck.com
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Figure 3.1 Energy consumption schema

The systems table uses the ID defined in the CSV set. We treat it as an externally gen-
erated surrogate key. Th prices table uses a SEQUENCE, and the readings table uses a
concatenated natural key (the ID of the system they have been read from plus the time-
stamp at which they have been read). 

3.3 Data definition language queries
We have already seen that you can query many sources with DuckDB without creating
a schema containing tables first. DuckDB, however, is a full-fledged RDBMS, and we
will use data definition language (DDL) queries to create our target schema prior to
ingesting our dataset. New tables are created with the CREATE TABLE statement, and
existing tables can be altered with the ALTER TABLE statement. If you don’t need a
table anymore, you will want to use DROP TABLE. 

NOTE DuckDB supports the entire collection of data definition language
clauses, but we only use a subset of them in this chapter for brevity’s sake. Be
sure to consult the statements documentation (https://duckdb.org/docs/
sql/statements/overview) to see all the supported clauses.

3.3.1 The CREATE TABLE statement

Let’s create the table for the systems we are going to monitor with the CREATE TABLE
statement. You must specify the name of the table to create and the list of columns.
Other options, such as modifiers to the whole statement, are optional. The column
list is defined by the name of the column followed by a type and optional column
constraints. 

systems

id

id

INTEGER

name VARCHAR

INTEGER

readings

prices

system_id INTEGER

read_on TIMESTAMP

power

123

ABC
123

123

INTEGER

TIMESTAMP

DECIMAL(8,3)

value DECIMAL(5,2) DECIMAL(5,2)

valid_from DATE

valid_until DATE

DATE

DATE

123

123

https://duckdb.org/docs/sql/statements/overview
https://duckdb.org/docs/sql/statements/overview
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CREATE TABLE IF NOT EXISTS systems (
id INTEGER PRIMARY KEY,
name VARCHAR(128) NOT NULL

);

In the previous examples, as well as upcoming examples that build upon the table cre-
ated here, we have made use of various constraints: primary and unique keys as well as
foreign keys. We do this not only to demonstrate the available options of the CREATE
STATEMENT but also because we care about data integrity. 

 In DuckDB—as with almost any other database—constraints usually have a nega-
tive effect on performance when loading a huge amount of data, as the indexes that
back those constraints must be recreated, respectively updated, and rules must be
checked. If you don’t need integrity checks, omit those constraints.

NOTE DuckDB also offers a CREATE OR REPLACE TABLE statement. This will
drop an existing table and replace it with the new definition. We prefer the IF
NOT EXISTS clause, though, as we consider it safer than unconditionally drop-
ping a table, since any potential data will be gone afterward. 

The definition of the readings table looks slightly different. The table uses a compos-
ite primary key. This is a key composed of the reference column system_id, which
points back to the systems table and the timestamp column containing the date and
time the value was read. Such a primary key constraint cannot be directly defined with
one of the columns but goes outside the column list. 

CREATE TABLE IF NOT EXISTS readings (
system_id INTEGER NOT NULL,
read_on TIMESTAMP NOT NULL,
power DECIMAL(10,3) NOT NULL

DEFAULT 0 CHECK(power >= 0),
PRIMARY KEY (system_id, read_on),
FOREIGN KEY (system_id)

REFERENCES systems(id)
);

Finally, we cover the prices table. The script for it actually contains two commands, as
we are going to use an incrementing numeric value as the surrogate primary key. We
do this by using a DEFAULT declaration with a function call to nextval(). This function

Listing 3.1 A basic CREATE TABLE statement

Listing 3.2 Creating the readings table with an idempotent statement

IF NOT EXISTS is an optional clause that 
makes the whole command idempotent, so 
it does not fail if the table already exists.

PRIMARY KEY makes this a mandatory column 
that serves as a primary, and therefore 
unique, key. An index will also be added.This modifier makes the column a

mandatory column (literal NULL
values cannot be inserted).

Here, several clauses are used to ensure 
data quality: a default value of 0 is 
assumed for the power readings, and since 
an additional column check constraint is 
used, no negative values are inserted.

This is how a composite primary key 
is defined after the list of columns.

Foreign key constraints are also 
table constraints and go after 
the column definitions.
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takes the name of a sequence as input. Sequences are numeric values stored in the
database outside table definitions. A sequence is created via CREATE SEQUENCE. 

CREATE SEQUENCE IF NOT EXISTS prices_id
INCREMENT BY 1 MINVALUE 10;

CREATE TABLE IF NOT EXISTS prices (
id INTEGER PRIMARY KEY

DEFAULT(nextval('prices_id')),
value DECIMAL(5,2) NOT NULL,
valid_from DATE NOT NULL,
CONSTRAINT prices_uk UNIQUE (valid_from)

);

Why don’t we use valid_from as the primary key? In the initial application, we might
be only dealing with selling prices, but in the future, we might be dealing with buying
prices too. There are several ways to model that, such as using an additional table or
introducing a type column to the prices table that specifies whether a certain value is
a selling or buying price. Using valid_from as a primary key would prevent two prices
with different types from being valid from the same date. Therefore, you would need
to change a simple primary key to a composite one. While other databases might allow
dropping and recreating primary and unique keys, DuckDB does not, so in this case,
you would need to go through a bigger migration. 

 Additionally, updating the values of primary keys can be costly on its own, not only
from an index perspective but also from an organizational one (e.g., if the column has
already been used as a reference column for a foreign key). Every constraint is backed
by an index, and changing values often requires a reorganization of that index, which
can be slow and costly. Updating several tables in one transaction is a common source
of errors, which often lead to inconsistencies. That danger is not present in the
readings table, where we used the timestamp column as the primary key because the
readings are essentially immutable. 

TIP Review the existing sequences in your database using SELECT sequence_
name FRIN duckdb_sequences();.

3.3.2 The ALTER TABLE statement

Defining a schema is a complex task, and organizations usually put a lot of effort into
it. However, you will rarely encounter a case in which a schema covers all eventualities
and is completely correct from the start. Requirements change all the time. Having a
requirement to capture the validity of a price, for example, makes an additional col-
umn necessary. In that case, use the ALTER TABLE statement:

ALTER TABLE prices
ADD COLUMN IF NOT EXISTS valid_until DATE;

Listing 3.3 Creating the prices table with a primary key based on a sequence

This creates a monotonous incrementing 
sequence, starting with 10.

This uses the nextval() function as
a default value for the id column.

This adds a unique table constraint 
for the valid_from column.

Many DDL-related statements support an IF NOT EXISTS
clause, which makes them less error-prone when

working with existing schemas.
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Additionally, with ALTER TABLE, we can DROP and RENAME the column as well as RENAME
the table. Some column options, such as default values, can be changed; however, add-
ing, dropping, or changing constraints is not supported at the time of writing. If you
want to do that, you’ll need to recreate the table.

 There are other ways to create tables, including Create table as select (CTAS). This is
a shortcut that duplicates the shape of a table and its content in one go. For example,
we could create a duplicate of the prices table like this:

CREATE TABLE prices_duplicate AS
SELECT * FROM prices;

We could also add a LIMIT 0 clause to copy the schema of a table without data or a
WHERE clause with conditions to copy the shape together with some data. 

3.3.3 The CREATE VIEW statement

The CREATE VIEW statement defines a view of a query. It essentially stores the state-
ment that represents the query, including all conditions and transformations. The
view will behave as any other table or relation when being queried, and additional
conditions and transformations can be applied. Some databases materialize views,
while others don’t. DuckDB will run the underlying statements of a view if you query
that view. If you find yourself running into performance bugs, you might want to
materialize the data of a view in a temporary table using a CTAS statement. Any addi-
tional predicates that you use when querying a view inside the WHERE clause are often-
times used as pushdown predicates. That means they will be added to the underlying
query defining the view and will not be used as filters after the data has been loaded. 

 A view that is helpful in our scenario is one that gives us the amount of energy pro-
duced per system and per day in kWh. This view will encapsulate the logic to compute
that value with the necessary grouping statements for us. Views are a great way to cre-
ate an API inside your database. That API can serve ad hoc queries and applications
alike. When the underlying computation changes, the view can be recreated with the
same structure without affecting any outside application.

 The GROUP BY clause is one of those clauses you hardly can go without in the rela-
tional world; we will explore exactly why it’s so important later in the chapter. For this
example, it is enough to understand that the GROUP BY clause computes the total
power produced by system and day. The sum function used in the select list is a
so-called aggregate function, aggregating the values belonging to a group. 

CREATE OR REPLACE VIEW v_power_per_day AS
SELECT system_id,

date_trunc('day', read_on) AS day,
round(sum(power) / 4 / 1000, 2) AS kWh,

FROM readings
GROUP BY system_id, day;

Listing 3.4 Creating a view for power production by system and day
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It does not matter whether the underlying tables are empty for a view to be created, as
long as they exist. While we did create the readings table, we haven’t inserted any
data yet, so querying the view with SELECT * FROM v_power_per_day will return an
empty result for now. We will return to this view in section 3.4.1 and use it in several
subsequent examples in this chapter and chapter 4. 

3.3.4 The DESCRIBE statement

Perhaps universally, relational databases support the DESCRIBE statement to query the
database schema. In its most basic implementation, it usually works with tables and
views. 

TIP Relational databases are based on the relational model and eventually
relational algebra. The relational model was first described by Edgar F. Codd
in 1970. In essence, all data is stored as sets of tuples grouped together in rela-
tions. A tuple is an ordered list of attributes—think of it as the column list of a
table. A table, then, is the relation of a set of tuples. A view is also a relation of
tuples, and so is the result of a query. Graph databases, in contrast to rela-
tional databases, store actual relations between entities. In this book, how-
ever, we use the term as defined in the relational model. 

The DESCRIBE statement in DuckDB works not only with tables but also with every-
thing else being a relation: views, queries, sets, and more. You might want to describe
the readings table with DESCRIBE readings;. Your result should be similar to the
following:

┌─────────────┬──────────────┬─────────┬─────────┬─────────┬───────┐
│ column_name │ column_type │ null │ key │ default │ extra │
│ varchar │ varchar │ varchar │ varchar │ varchar │ int32 │
├─────────────┼──────────────┼─────────┼─────────┼─────────┼───────┤
│ system_id │ INTEGER │ NO │ PRI │ │ │
│ read_on │ TIMESTAMP │ NO │ PRI │ │ │
│ power │ DECIMAL(8,3) │ NO │ │ 0 │ │
└─────────────┴──────────────┴─────────┴─────────┴─────────┴───────┘

Describing a specific subset of columns (a new tuple) selected from any table, such as

DESCRIBE SELECT read_on, power FROM readings;

yields the following:

┌─────────────┬──────────────┬─────────┬─────────┬─────────┬─────────┐
│ column_name │ column_type │ null │ key │ default │ extra │
│ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │
├─────────────┼──────────────┼─────────┼─────────┼─────────┼─────────┤
│ read_on │ TIMESTAMP │ YES │ │ │ │
│ power │ DECIMAL(8,3) │ YES │ │ │ │
└─────────────┴──────────────┴─────────┴─────────┴─────────┴─────────┘

Last but not least, describing any constructed tuple such as DESCRIBE VALUES (4711,
'2023-05-28 11:00'::timestamp, 42); works the same:
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┌─────────────┬─────────────┬─────────┬─────────┬─────────┬─────────┐
│ column_name │ column_type │ null │ key │ default │ extra │
│ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │
├─────────────┼─────────────┼─────────┼─────────┼─────────┼─────────┤
│ col0 │ INTEGER │ YES │ │ │ │
│ col1 │ TIMESTAMP │ YES │ │ │ │
│ col2 │ INTEGER │ YES │ │ │ │
└─────────────┴─────────────┴─────────┴─────────┴─────────┴─────────┘

TIP Use the DESCRIBE statement in all scenarios in which you are unsure
about the shape of the data. It works for all kinds of relations, local and
remote files. The type of file being used affects how efficiently DuckDB can
optimize the DESCRIBE statement. For example, remote files (e.g., files in Par-
quet format) can even be described very quickly, while files in CSV format
often take longer to describe, as they don’t carry a schema with them, and the
engine needs to sample their content. 

3.4 Data manipulation language queries
In the context of databases, all statements that insert, delete, modify, and read data are
referred to as data manipulation language (DML). This section will first cover the INSERT
and DELETE statements before going into querying data. We won’t go into much detail
on the UPDATE statement here. The beauty of SQL queries is that they compose very nat-
urally, so everything you’ll learn, for example, about the WHERE clause, also applies to
the clause being used in INSERT, DELETE, UPDATE, and SELECT statements.

3.4.1 The INSERT statement

When creating data, the INSERT statement is used. Inserting data is a task ranging
from simple “fire-and-forget” statements to complex statements mitigating conflicts
and ensuring high-data quality. We start simple and naive by populating the price
table we created in listing 3.3. An INSERT statement first specifies where you want to
insert and then what you want to insert. The where is a table name—here, it is the
prices table. The what can be a list of column values, but they must match the column
types and order of the table. In our case, we’re inserting one row with four values, two
numeric and two strings, with the latter automatically being cast to a DATE:

INSERT INTO prices
VALUES (1, 11.59, '2018-12-01', '2019-01-01');

The preceding query is fragile in a couple of ways. First, relying on the order of col-
umns will break your statement as soon as the target table changes. Also, we explicitly
use the 1 as a unique key. If you were to execute the query a second time, it would
rightfully fail, as the table contains already a row with the given key. The second row
violates the constraint that a primary key must be unique:

D INSERT INTO prices
> VALUES (1, 11.59, '2018-12-01', '2019-01-01');
Error: Constraint Error: Duplicate key "id: 1" violates primary key

➥constraint. If this is an unexpected constraint violation please
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➥double check with the known index limitations section in our

➥documentation (https://duckdb.org/docs/sql/indexes).

While the conflict could not have been prevented given the schema, we can mitigate it
by using the nonstandard ON CONFLICT clause and just do nothing. The DO NOTHING
clause targets the primary index by default (the id column, in this case). While still
being fragile, this statement is at least now idempotent:

INSERT INTO prices
VALUES (1, 11.59, '2018-12-01', '2019-01-01')
ON CONFLICT DO NOTHING;

In this case, idempotency might be less useful than you think: you don’t get an error,
but you most likely won’t get the expected result, either. In our example, a better solu-
tion would be to specify all columns we want to insert and avoid using an explicit value
for the ID. Overall, we already defined a sequence and a default value for the column
that generates IDs for us:

INSERT INTO prices(value, valid_from, valid_until)
VALUES (11.47, '2019-01-01', '2019-02-01'),

(11.35, '2019-02-01', '2019-03-01'),
(11.23, '2019-03-01', '2019-04-01'),
(11.11, '2019-04-01', '2019-05-01'),
(10.95, '2019-05-01', '2019-06-01');

There’s another possible cause of failure: we defined a unique key for the validity
date. On that error, we can actually react in a way that makes sense from a business
perspective. We can insert or replace the value when a conflict on that key arises. In
the following example, we use the new price to update the old one:

INSERT INTO prices(value, valid_from, valid_until)
VALUES (11.47, '2019-01-01', '2019-02-01')
ON CONFLICT (valid_from)

DO UPDATE SET value = excluded.value;

We will revisit that topic in section 3.4.2.
 Of course, it is possible to use the outcome of a SELECT statement as input for the

INSERT statement. We will have a look at the anatomy of a SELECT statement shortly,
but to complete the example, please use it as follows. Think of this statement as a
pipeline to the INSERT clause. As shown in listing 3.5, it selects all the data from the
file named prices.csv and inserts them in order of appearance (you can find that file
inside the ch03 folder in this book’s GitHub repository: https://github.com/duckdb
-in-action/examples).

INSERT INTO prices(value, valid_from, valid_until)
SELECT * FROM 'prices.csv' src;

Listing 3.5 Inserting data from other relations

As the table has multiple constraints (primary 
and unique keys), we must specify on which 
key the conflict mitigation shall happen.

https://github.com/duckdb-in-action/examples
https://github.com/duckdb-in-action/examples
https://github.com/duckdb-in-action/examples
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Let’s also fill the systems table and load the first bunch of readings before we go over
the SELECT statement in detail. To be able to write the INSERT statement properly, we
must understand what the CSV data looks like. We will make use of the fact that we
can use DESCRIBE with any relation—in this case, a relation that is defined by reading
the CSV file:

INSTALL 'httpfs';
LOAD 'httpfs';

DESCRIBE SELECT * FROM
'https://oedi-data-lake.s3.amazonaws.com/pvdaq/csv/systems.csv';

Without specifying any type hints, systems.csv looks like this for DuckDB:

┌────────────────────┬─────────────┬─────────┬─────────┬─────────┬────────┐
│ column_name │ column_type │ null │ key │ default │ extra │
│ varchar │ varchar │ varchar │ varchar │ varchar │ varchar│
├────────────────────┼─────────────┼─────────┼─────────┼─────────┼────────┤
│ system_id │ BIGINT │ YES │ │ │ │
│ system_public_name │ VARCHAR │ YES │ │ │ │
│ site_id │ BIGINT │ YES │ │ │ │
│ site_public_name │ VARCHAR │ YES │ │ │ │
│ site_location │ VARCHAR │ YES │ │ │ │
│ site_latitude │ DOUBLE │ YES │ │ │ │
│ site_longitude │ DOUBLE │ YES │ │ │ │
│ site_elevation │ DOUBLE │ YES │ │ │ │
└────────────────────┴─────────────┴─────────┴─────────┴─────────┴────────┘

Using the system_id and system_public_name will do nicely for us. However, it turns
out that there are duplicates in the file, which will cause our insertion to fail. The eas-
iest way to filter out duplicates is by applying the DISTINCT keyword in the columns
clause of the SELECT statement, as shown in the following listing. This ensures a
unique set over all the columns we select.

INSTALL 'httpfs';
LOAD 'httpfs';

INSERT INTO systems(id, name)
SELECT DISTINCT system_id, system_public_name
FROM 'https://oedi-data-lake.s3.amazonaws.com/pvdaq/csv/systems.csv'
ORDER BY system_id ASC;

The systems in section 3.2.1 have been selected for specific reasons. We start with the
dataset for system 34, as it suits our requirements to begin with (having readings in
15-minute intervals). It does have some inconsistencies to deal with: the power output
is sometimes NULL (not present) or negative. We will use a CASE expression to default
missing values to 0.

 The URL does not clearly identify which type of file or structure is behind it for
DuckDB (e.g., by using a familiar extension such as .csv or .parquet). To address this,

Listing 3.6 Inserting a distinct set of rows from another table

Installs the httpfs extension and loads 
it so that we can access the URL
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we must use the read_csv_auto function (see the following listing), as the database
won’t be able to infer the correct file type.

INSERT INTO readings(system_id, read_on, power)
SELECT SiteId, "Date-Time",

CASE
WHEN ac_power < 0 OR ac_power IS NULL THEN 0
ELSE ac_power END

FROM read_csv_auto(
'https://developer.nrel.gov/api/pvdaq/v3/data_file?' ||
'api_key=DEMO_KEY&system_id=34&year=2019'

);

A sample of the data for system 34 in 2019 we just ingested can be achieved with

SELECT * FROM readings WHERE date_trunc('day', read_on) = '2019-08-
26' AND power <> 0;

The sample looks as follows:

┌───────────┬─────────────────────┬───────────────┐
│ system_id │ read_on │ power │
│ int32 │ timestamp │ decimal(10,3) │
├───────────┼─────────────────────┼───────────────┤
│ 34 │ 2019-08-26 05:30:00 │ 1700.000 │
│ 34 │ 2019-08-26 05:45:00 │ 3900.000 │
│ 34 │ 2019-08-26 06:00:00 │ 8300.000 │
│ · │ · │ · │
│ · │ · │ · │
│ · │ · │ · │
│ 34 │ 2019-08-26 17:30:00 │ 5200.000 │
│ 34 │ 2019-08-26 17:45:00 │ 2200.000 │
│ 34 │ 2019-08-26 18:00:00 │ 600.000 │
├───────────┴─────────────────────┴───────────────┤
│ 51 rows (6 shown) 3 columns │
└─────────────────────────────────────────────────┘

Now that we’ve finally ingested some data into the readings table, the view v_power_
per_day created in listing 3.4 also returns data. Remember, v_power_per_day creates
daily groups and sums up their power values, as shown with the output of

`SELECT * FROM v_power_per_day WHERE day = '2019-08-26'`

The output is as follows:

┌───────────┬────────────┬────────┐
│ system_id │ day │ kWh │
│ int32 │ date │ double │
├───────────┼────────────┼────────┤
│ 34 │ 2019-08-26 │ 716.9 │
└───────────┴────────────┴────────┘

Listing 3.7 Downloading and ingesting the first set of readings
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If you don’t remember the definition of the view, be sure to check it again. A view is a
great way to encapsulate logic, such as by truncating the date to a day and aggregating
the total value of readings on that day, such as in our example.

 The query is essentially the same for 2020, apart from the URL parameter. Why
don’t we generate a list of filenames using the range function that acts as an inline
table like this?

SELECT *
FROM (

SELECT 'https://' || years.range || '.csv' AS v
FROM range(2019,2021) years

) urls, read_csv_auto(urls.v);

While this query is theoretically correct, it does not (yet) work due to restrictions in
how so-called table functions (see section 4.9) are implemented in DuckDB. At the
time of writing, they only accept constant parameters. Furthermore, read_csv or
read_parquet learn about their schema by looking at the input parameters and read-
ing the given files, so there’s a chicken-and-egg problem to be solved.

3.4.2 Merging data

Oftentimes, you find yourself with a dataset that contains duplicates or entries that
already exist within your database. While you can certainly ignore conflicts, as shown
in section 3.4.1, when your only task is to refine and clean new data, you sometimes
want to merge new data into existing data. For this purpose, DuckDB offers the ON
CONFLICT DO UPDATE clause, known as MERGE INTO in some other databases. In our
example, we might have multiple readings from different meters for the same system
and want to compute the average reading. Instead of doing nothing on conflict, we
use a DO UPDATE now.

 In listing 3.8, a random reading is inserted first, and then an attempt is made to
insert a reading on the same time for the same device. The second attempt will cause
a conflict, not on a primary key, but on the composed key of system_id and read_on.
With the DO UPDATE clause, we specify the action to take when a conflict arises. The
update clause can update as many columns as necessary, essentially doing a merge/
upsert; complex expressions, such as a CASE statement, are allowed too.

INSERT INTO readings(system_id, read_on, power)
VALUES (10, '2023-06-05 13:00:00', 4000);

INSERT INTO readings(system_id, read_on, power)
VALUES (10, '2023-06-05 13:00:00', 3000)

ON CONFLICT(system_id, read_on) DO UPDATE
SET power = CASE

WHEN power = 0 THEN excluded.power
ELSE (power + excluded.power) / 2 END;

Listing 3.8 Computing new values on conflict

Here, the action 
is specified.

Columns from the original dataset can 
be referred to by the alias .excluded.
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NOTE DuckDB also offers INSERT OR REPLACE and INSERT OR IGNORE as short-
hand alternatives for ON CONFLICT DO UPDATE and ON CONFLICT DO NOTHING,
respectively. INSERT OR REPLACE, however, does not have the ability to com-
bine existing values, as in the preceding example, nor does it allow you to
define the conflict target.

3.4.3 The DELETE statement

There are some outliers in the data sources we’re using. We imported a bunch of read-
ings that are measured on different minutes of the hour, and we don’t want them in
our dataset. The easiest way to deal with them is to apply the DELETE statement and get
rid of them. The following DELETE statement filters the rows to be deleted through a
condition based on a negated IN operator. That operator checks the containment of
the left expression inside the set of expressions on the right-hand side. date_part is
just one of the many built-in functions of DuckDB dealing with dates and timestamps.
This one (see the following listing) extracts a part from a timestamp—in this case, the
minutes from the read_on column.

DELETE FROM readings
WHERE date_part('minute', read_on) NOT IN (0,15,30,45);

Sometimes, you will know about quirks and inconsistencies like these upfront, and
you won’t have to deal with them after you ingest the data. With time-based data, as in
our example, you could have written the ingesting statement utilizing the time_
bucket function. We noticed that inconsistency only after importing and think it’s
worthwhile to point this out.

3.4.4 The SELECT statement

This section focuses on the SELECT statement and querying the ingested data. This
statement retrieves data as rows from the database or, if used in a nested fashion, cre-
ates ephemeral relations. Those relations can be queried again or used to insert data,
as we have already seen.

 The essential clauses of a SELECT statement and their canonical order are shown in
the following listing.

SELECT select_list
FROM tables
WHERE condition
GROUP BY groups
HAVING group_filter
ORDER BY order_expr
LIMIT n

Listing 3.9 Cleaning the ingested data

Listing 3.10 The structure of a SELECT statement
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There are more clauses, in both the standard and the DuckDB-specific SQL dialect,
and we will discuss a couple of them in the next chapter as well. The official DuckDB
documentation has a dedicated page to the SELECT statement (https://duckdb.org/
docs/sql/statements/select), which we recommend using as a reference on how each
clause of the SELECT statement is supposed to be constructed.

 We think the following clauses are the most important to understand:

 FROM in conjunction with JOIN
 WHERE

 GROUP BY

They define the sources of your queries, filter both reading queries as well as writing
queries, and, eventually, reshape them. They are used in many contexts in addition to
querying data. Many other clauses are easier to understand, such as ORDER, which—as
you’d expect—puts things in order.

THE SELECT AND FROM CLAUSES

Every standard SQL statement that reads data starts with the SELECT clause. The SELECT
clause defines the columns or expressions that will eventually be returned as rows. If
you want to get everything from the source tables of your statement, you can use the *.

NOTE Sometimes, the SELECT clause is called a projection, choosing which
columns to be returned. Ironically, the selection of rows happens in the
WHERE clause.

The SELECT and FROM clauses complement one another, and we could pick either to
explain first, or we could explain them together: the FROM clause specifies the source
of the data on which the remainder of the query should operate, and for most que-
ries, that will be one or more tables. If there is more than one table list in the FROM
clause or the additional JOIN clause is used, we speak about joining tables together.

 The following statement will return two rows from the prices table. The LIMIT
clause we are introducing here limits the number of returned rows. It’s often wise to
limit the amount of data you get back in case you don’t know the underlying dataset
so that you don’t cause a large amount of network traffic or end up with an unrespon-
sive client:

SELECT *
FROM prices
LIMIT 2;

It will return the first two rows. Without an ORDER clause, the order is actually unde-
fined and might differ in your instance:

┌───────┬──────────────┬────────────┬─────────────┐
│ id │ value │ valid_from │ valid_until │
│ int32 │ decimal(5,2) │ date │ date │
├───────┼──────────────┼────────────┼─────────────┤
│ 1 │ 11.59 │ 2018-12-01 │ 2019-01-01 │
│ 10 │ 11.47 │ 2019-01-01 │ 2019-02-01 │
└───────┴──────────────┴────────────┴─────────────┘

https://duckdb.org/docs/sql/statements/select
https://duckdb.org/docs/sql/statements/select
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The SQL dialect of DuckDB allows us to cut the previous code down to just FROM
prices;. (Without the limit, it will return all rows, but that’s OK, since we know the
content of that table from section 3.4.1.)

THE WHERE CLAUSE

The WHERE clause allows you to filter your data by adding conditions to a query. Those
conditions are built out of one or more expressions. Data selected using a SELECT,
DELETE, or UPDATE statement must match those predicates to be included in the oper-
ations. This allows you to select only a subset of the data in which you are interested.
Logically, the WHERE clause is applied immediately after the FROM clause or the preced-
ing DELETE or UPDATE statement.

 In our example, we can replace that arbitrary LIMIT with a proper condition that
will include only the prices for a specific year (2000) by adding the following WHERE
clause. Take note that we are using a DuckDB extension to SQL; in the case of a star-
select, you can omit the SELECT * and just start with the FROM clause:

FROM prices
WHERE valid_from BETWEEN

'2020-01-01' AND '2020-12-31';

Based on our example data, the query will return 11 rows:

┌───────┬──────────────┬────────────┬─────────────┐
│ id │ value │ valid_from │ valid_until │
│ int32 │ decimal(5,2) │ date │ date │
├───────┼──────────────┼────────────┼─────────────┤
│ 15 │ 8.60 │ 2020-11-01 │ 2023-01-01 │
│ 17 │ 8.64 │ 2020-10-01 │ 2020-11-01 │
│ · │ · │ · │ · │
│ · │ · │ · │ · │
│ · │ · │ · │ · │
│ 25 │ 9.72 │ 2020-02-01 │ 2020-03-01 │
│ 26 │ 9.87 │ 2020-01-01 │ 2020-02-01 │
├───────┴──────────────┴────────────┴─────────────┤
│ 11 rows (4 shown) 4 columns │
└─────────────────────────────────────────────────┘

THE GROUP BY CLAUSE

Grouping by one or more columns generates one row of output per unique value of
those columns; it lets you group all rows that match those fields together. Then, the
grouped values get aggregated via an aggregation function, such as count, sum, avg,
min, or max, so that one single value for that group is produced. This can be useful
when you want to do things like compute the average number of readings per day or
the sum of the customers in each state. If the GROUP BY clause is specified, the query is
always an aggregate query, even if no aggregations are present in the select list.
DuckDB has a handy extension that lets you group your query by all columns that are
not part of an aggregate function: GROUP BY ALL. Figure 3.2 demonstrates how a selec-
tion of rows is grouped by the column year as well as the results of applying the aggre-
gates count, avg, min, and max to it.

The BETWEEN keyword is shorthand 
for x <= v AND v <= y.
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Figure 3.2 Grouping a dataset by year

There are many aggregate functions to choose from. In addition to those previously
covered, which are relatively standard, here are some that we think are often helpful:

 list—Aggregates all values of each group into a list structure
 any_value—Picks any value from a nongrouping column
 first or last—Picks the first or the last value from a nongrouping column if

the result is ordered
 arg_max and arg_min—Solves the common task of finding the value of an

expression in the row having a maximum or minimum value

id year value

10 2019 11.47

11 2019 11.35

12 2019 11.23

13 2019 11.11

14 2019 10.95

27 2019 9.97

28 2019 10.08

29 2019 10.18

30 2019 10.33

31 2019 10.48

32 2019 10.64

33 2019 10.79

15 2020 8.60

17 2020 8.64

18 2020 8.77

19 2020 8.90

20 2020 9.03

21 2020 9.17

22 2020 9.30

23 2020 9.44

24 2020 9.58

25 2020 9.72

26 2020 9.87

Group 1 (2019)

Group 2 (2020)

year minimum_ price maximum_ price

2019 9.97 11.47

2020 8.60 9.87

The minimum 
price in group 2

The minimum 
price in group 1

min() and max() applied per group

year num_ prices avg_price

2019 12 10.715

2020 11 9.183636363636364

count() and avg() applied per group
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 bit_and, bit_or, bit_xor, and others—Bit operations that work on sets
 median, quantile computation, computing covariance, and general regressions—An

exhaustive set of statistical aggregates

The full list is available on the DuckDB website: https://duckdb.org/docs/sql/
aggregates. With that knowledge, let’s see what we can do with our dataset.

 Let’s pick up the prices example we started to use in section 3.4.4. First, we added
the WHERE clause to find prices in a year. While that was interesting, how about finding
out the minimum and maximum prices per year?

 We will use the min and max aggregates grouped by the year in which the prices
have been valid to find the highest and lowest prices in the years from 2019 to 2020.
The valid_from column is a date; we are only interested in the year. The date_part
function can extract that. If used without an alias, the resulting column will be named
date_part('year', valid_from). This does not read nicely, and it is also cumber-
some to refer to. Therefore, the AS keyword is used to introduce the alias year.
DuckDB allows us to refer to such an alias in the GROUP BY clause, which is different
from the SQL standard and is very helpful. The year becomes the grouping key by
specifying it in the GROUP BY clause, and its distinct values will define the buckets for
which the minimum and maximum values of the column we chose should be
computed.

SELECT date_part('year', valid_from) AS year,
min(value) AS minimum_price,
max(value) AS maximum_price

FROM prices
WHERE year BETWEEN 2019 AND 2020
GROUP BY year
ORDER BY year;

The result of this query is as follows:

┌───────┬───────────────┬───────────────┐
│ year │ minimum_price │ maximum_price │
│ int64 │ decimal(5,2) │ decimal(5,2) │
├───────┼───────────────┼───────────────┤
│ 2019 │ 9.97 │ 11.47 │
│ 2020 │ 8.60 │ 9.87 │
└───────┴───────────────┴───────────────┘

TIP DuckDB offers choices when dealing with date parts. You can use the
generic date_part function like we did and specify the part as a parameter.
There are identifiers for all relevant parts, such as 'day', 'hour','minute',
and many others. All of them exist also as dedicated functions, so in listing
3.11, we could have used year(valid_from) too. The generic function is
helpful when the part is derived from other expressions in the statement or

Listing 3.11 Grouped aggregates

You can have as many aggregate functions 
in the SELECT clause as you want.

Note how we can reuse the alias we gave in 
the SELECT clause in the GROUP BY clause.

https://duckdb.org/docs/sql/aggregates
https://duckdb.org/docs/sql/aggregates
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when you try to write portable SQL. The dedicated functions are easier to
read.

THE VALUES CLAUSE

The VALUES clause is used to specify a fixed number of rows. We have seen it already
while inserting data, which is a quite common use case. It is, however, much more ver-
satile in DuckDB than in some other databases, as it can be used both as a standalone
statement and as part of the FROM clause, with any number of rows and columns.
There are a couple of scenarios in which this is handy: for example, providing seed
data for conditions.

 Here’s how to define a single row with two columns—for example, a simple VALUES
(1,2);:

┌───────┬───────┐
│ col0 │ col1 │
│ int32 │ int32 │
├───────┼───────┤
│ 1 │ 2 │
└───────┴───────┘

Take note that multiple rows can be generated by simply enumerating multiple tuples:
VALUES (1,2), (3,4);. You don’t need to wrap them in additional parentheses:

┌───────┬───────┐
│ col0 │ col1 │
│ int32 │ int32 │
├───────┼───────┤
│ 1 │ 2 │
│ 3 │ 4 │
└───────┴───────┘

If you do, however, as in VALUES ((1,2), (3,4));, you will create a single row with
two columns, each containing a structured type:

┌────────────────────────────────┬────────────────────────────────┐
│ col0 │ col1 │
│ struct(v1 integer, v2 integer) │ struct(v1 integer, v2 integer) │
├────────────────────────────────┼────────────────────────────────┤
│ {'v1': 1, 'v2': 2} │ {'v1': 3, 'v2': 4} │
└────────────────────────────────┴────────────────────────────────┘

When used in a FROM clause, the resulting types can be named, together with their col-
umns. We will make use of that in the next section while discussing joining logic. The
following snippet defines two rows with three columns within the VALUES clause and
creates an inline named table that holds the column names. The name of that table is
arbitrary; we just picked t:

SELECT *
FROM (VALUES

(1, 'Row 1', now()),
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(2, 'Row 2', now())
) t(id, name, arbitrary_column_name);

The resulting virtual table looks like this:

┌───────┬─────────┬────────────────────────────┐
│ id │ name │ arbitrary_column_name │
│ int32 │ varchar │ timestamp with time zone │
├───────┼─────────┼────────────────────────────┤
│ 1 │ Row 1 │ 2023-06-02 13:44:30.309+02 │
│ 2 │ Row 2 │ 2023-06-02 13:44:30.309+02 │
└───────┴─────────┴────────────────────────────┘

THE JOIN CLAUSE

While you can get away with not using a JOIN clause when analyzing single Parquet or
CSV files, you should not skip this section: joins are a fundamental relational opera-
tion used to connect two tables or relations. The relations are referred to as the left
and right sides of the join, with the left side of the join being the table listed first. This
connection represents a new relation combining previously unconnected informa-
tion, thus providing new insights.

 In essence, a join creates matching pairs of rows from both sides of the join. The
matching is usually based on a key column in the left table being equal to a column in
the right table. Foreign key constraints are not required for joining tables together.
We prefer the SQL standard definition of joins based on the JOIN .. USING over JOIN
.. ON clauses, as you’ll see in the following examples and throughout the rest of the
book. Nevertheless, joins can be expressed by simply enumerating the tables in the
FROM clause and comparing the key columns in the WHERE clause.

NOTE We are not using Venn diagrams for explaining joins because join
operations are not pure set operations, for which Venn diagrams would be a
great choice. SQL does know set operations, such as UNION, INTERSECT, and
EXCEPT—and DuckDB supports all of them. Joins, on the other hand, are all
based on a Cartesian product in relational algebra, or in simple terms, they
are all based on joining everything with everything else and then filtering
things out. Essentially, all different joins can be derived from the CROSS JOIN.
The inner join then filters on some condition, and a left or right outer join
adds a union to it, but that’s all there is to set-based operations in joins.

In the following examples, we will use the VALUES clause to define virtual tables with a
fixed number of rows with a given set of values. These sets are helpful to understand-
ing the joining logic, as you will see both the sources and the resulting rows in the
example. Usually, you will find yourself joining different tables together, such as the
power readings and the prices in our example.

 The simplest way of joining is via an INNER JOIN (figure 3.3), which also happens
to be the default. An inner join matches all rows from the left-hand side to rows from
the right-hand side that have a column with the same value.
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Figure 3.3 The inner join only matching pairs with equal keys

If both relations have a column with the same name, the USING clause can be used to
specify that. The USING clause will look up the specified columns in both relations and
work the same way as specifying them yourself via the ON clause (ON tab1.col =
tab2.col).

SELECT *
FROM

(VALUES (1, 'a1'),
(2, 'a2'),
(3, 'a3')) l(id, nameA)

JOIN
(VALUES (1, 'b1'),

(2, 'b2'),
(4, 'b4')) r(id, nameB)

USING (id);

The result will look like this:

┌───────┬─────────┬─────────┐
│ id │ nameA │ nameB │
│ int32 │ varchar │ varchar │
├───────┼─────────┼─────────┤
│ 1 │ a1 │ b1 │
│ 2 │ a2 │ b2 │
└───────┴─────────┴─────────┘

An outer join, on the other hand, supplements NULL values for rows on the specified
side of the relation that have no matching entry on the other. Think of several power-
producing systems in your database: for some, you might have stored additional ven-
dor information in another table, and for some, you don’t. You would use an outer
join when tasked to give a list of all systems with the optional vendor or an empty col-
umn if there’s no such vendor. The following listing uses a LEFT OUTER JOIN so that all
rows of the left relations are included and supplemented with NULL values for rows
that don’t have a match.

Listing 3.12 Using an inner join

1, a1

2, a2

1, b1

2, b2

3, a3 4, b4

INNER JOIN =

a1 b1

a2 b2

1

2

This is equivalent 
to ON r1.id = r2.id.
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SELECT *
FROM

(VALUES (1, 'a1'),
(2, 'a2'),
(3, 'a3')) l(id, nameA)

LEFT OUTER JOIN
(VALUES (1, 'b1'),

(2, 'b2'),
(4, 'b4')) r(id, nameB)

USING (id)
ORDER BY id;

Joining the virtual tables from listing 3.13 with a LEFT OUTER JOIN results in the following:

┌───────┬─────────┬─────────┐
│ id │ nameA │ nameB │
│ int32 │ varchar │ varchar │
├───────┼─────────┼─────────┤
│ 1 │ a1 │ b1 │
│ 2 │ a2 │ b2 │
│ 3 │ a3 │ │
└───────┴─────────┴─────────┘

All rows from the left-hand side have been included, and for a3, a NULL value has been
joined. Try changing the outer join from LEFT to RIGHT, and observe which values are
now included. Both the LEFT and RIGHT outer join will return three rows in total. To
get back four rows, you must use a full outer join, as shown in the following listing.

SELECT *
FROM

(VALUES (1, 'a1'),
(2, 'a2'),
(3, 'a3')) l(id, nameA)

FULL OUTER JOIN
(VALUES (1, 'b1'),

(2, 'b2'),
(4, 'b4')) r(id, nameB)

USING (id)
ORDER BY id;

Four rows will be returned, with two NULL values, one for nameA and one for nameB:

┌───────┬─────────┬─────────┐
│ id │ nameA │ nameB │
│ int32 │ varchar │ varchar │
├───────┼─────────┼─────────┤
│ 1 │ a1 │ b1 │
│ 2 │ a2 │ b2 │
│ 3 │ a3 │ │
│ 4 │ │ b4 │
└───────┴─────────┴─────────┘

Listing 3.13 Using a left outer join

Listing 3.14 Using a full outer join
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Figure 3.4 depicts the left outer join; the full outer join, we had in code previously,
and the right outer join for comparison. While an outer join always gives you the rows
an inner join would give, it would be wrong to suggest always using outer joins. An
inner join will filter out rows that have no matching data in the other table, which is
often a requirement. An outer join will usually be appropriate when you want to
enrich required data with optional data.

The preceding example applies the USING clause for the join conditions, as both
tables have an id column. In our example, we defined an id column in the systems
table and the foreign key column in readings as system_id. We, therefore, must use
the ON clause. When joined on that column, the join will always produce a matching
row, as the join column (id) is the column referenced by the foreign key we defined
on system_id. That means there can’t be any row in the readings table without a
matching entry in the systems table:

SELECT name, count(*) as number_of_readings
FROM readings JOIN systems ON id = system_id
GROUP BY name;

NOTE A Cartesian product is a mathematical term describing the list of all
ordered pairs that you can produce from two sets of elements by combining
each element from the first set with each element of the second set. The size
of a Cartesian product is equal to the product of the sizes of each set.

There are more join types, such as the CROSS JOIN, which creates a Cartesian product
of all tuples, and the ASOF (as of ), which will come in handy when dealing with the
prices with a restricted validity. For example, the ASOF join allows you to match rows
from one table with rows from another table based on temporal validity (or, as a
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Figure 3.4 Types of outer joins
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matter of fact, with anything that has an inequality condition—<=, <, > or >=). You will
read about the ASOF join in detail in section 4.8.

We’d like to end this section with something akin to a warning. In our examples, for
inner and outer joins, we only discussed what happens when a value of a key column is
not found in one of the other tables. But what happens when one of the join columns
contains the same value multiple times, either in one of the join tables or in both?
Let’s find out in the next listing. The value 2 for the id column appears twice in the
left table, and the value 3 appears twice in the right table.

SELECT *
FROM

(VALUES (1, 'a1'),
(2, 'a2'),
(2, 'a2'),
(3, 'a3')) l(id, nameA)

JOIN
(VALUES (1, 'b1'),

(2, 'b2'),
(3, 'b3'),
(3, 'b3')) r(id, nameB)

USING (id)
ORDER BY id;

The result of this statement won’t be four rows, as before, but six:

┌───────┬─────────┬─────────┐
│ id │ nameA │ nameB │
│ int32 │ varchar │ varchar │
├───────┼─────────┼─────────┤
│ 1 │ a1 │ b1 │
│ 2 │ a2 │ b2 │
│ 2 │ a2 │ b2 │
│ 3 │ a3 │ b3 │
│ 3 │ a3 │ b3 │
└───────┴─────────┴─────────┘

The COPY TO command
You are building data pipelines around CSV files and often have data split across sev-
eral files with one common column per file. What if you wanted to reduce these files
to exactly one file without duplicating the common column? That’s easy to achieve
with an inner join and the COPY TO command. The latter takes any relation and copies
it to a file using the specified format:

duckdb -c "COPY (SELECT * FROM 'production.csv' JOIN 'consumption.csv'
USING (ts) JOIN 'export.csv' USING (ts) JOIN 'import.csv' USING (ts) )
TO '/dev/stdout' (HEADER)"

This command will join four CSV files on a shared column ts, keep only one copy of
the shared column in the SELECT * statement, and copy the result to standard out.

Listing 3.15 An inner join between tables with duplicate key columns
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This is something you can prepare for when defining your schema. Typically, joins will
happen on columns that are known up front. In our example, that would be the id
pair of the systems table referred to as system_id in the readings table. In the
systems table, that column is defined as the primary key, and as such, it will always be
a unique value; hence, it can only appear once in that table. On the readings table, it
is defined as the foreign key, meaning it must exist in the other one. The foreign key
usually creates a so-called index in the database, which allows quick lookups, without
going through all rows, making the join perform well. The foreign key is not unique
and does not need to be in most models. In our example, the system appearing multi-
ple times in the readings table (the right-hand side) is expected, unless you want your
system to produce power only once.

THE WITH CLAUSE

The WITH clause is also known as a common table expression (CTE). CTEs are essentially
views that are limited in scope to a particular query. Like a view, you might want to use
them to encapsulate parts of the logic of your query into a standalone statement, or at
least into an isolated part of a bigger query. While it would be perfectly fine to create a
view, you might not want that because you would only need its result in the specific
context of the bigger query. In addition, CTEs have one special trait that views don’t:
views can reference other views, but they cannot be nested. A CTE can reference
other CTEs defined in the same WITH clause. With that, you can build your query logic
in an incremental fashion.

 WITH clauses prevent the anti-pattern of having subqueries defined in the FROM
clause. A subquery as a source relation in a FROM clause is syntactically and semanti-
cally valid, as its result is a relation on its own, but it is often hard to read. In addition,
nested subqueries are not allowed to reference themselves.

 Finding the row containing the maximum value of a specific column within that
row is often computed using a subquery in the FROM clause like this:

SELECT max_power.v, read_on
FROM (

SELECT max(power) AS v FROM readings
) max_power
JOIN readings ON power = max_power.v;

As shown in listing 3.16, the subquery is relatively simple, and rewriting it as a CTE
doesn’t seem to make a big difference at first glance. We take the same query, move it
out of the FROM clause, and add a name within the WITH clause. The JOIN statement
stays the same.

WITH max_power AS (
SELECT max(power) AS v FROM readings

)
SELECT max_power.v, read_on
FROM max_power
JOIN readings ON power = max_power.v;

Listing 3.16 Replacing a subquery with a CTE
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For single and rather basic queries like this, it does not make much of a difference
whether we use a subquery or a CTE. But what if we ask for something like the maxi-
mum average production of power per system and hour? Aggregate functions, like
max and avg, cannot be nested (i.e., you cannot do avg(max(v))), so you need to use
individual aggregates.

 The question of which row contains the minimum or maximum value of a column
is such a common task that DuckDB has two built-in functions to perform it: arg_max
and arg_min. These functions compute an expression defined by their first parameter
on the columns in the row for which the minimum or maximum value of the second
parameter occurs the first time. The following query will produce one row from the
dataset at which the highest amount of power was generated (not the five times that
the query in listing 3.16 will return). This is because arg_max stops at the first value it
finds that matches the maximum value, while the join will include all rows:

SELECT max(power), arg_max(read_on, power) AS read_on
FROM readings;

The next query, shown in listing 3.17, makes use of the arg_max aggregate. It first
encapsulates the complex logic of grouping the readings into average production by
system and hour—creating the first aggregate—in a CTE that we name per_hour, and
then it takes that CTE and computes a second aggregate over it.

WITH per_hour AS (
SELECT system_id,

date_trunc('hour', read_on) AS read_on,
avg(power) / 1000 AS kWh

FROM readings
GROUP BY ALL

)
SELECT name,

max(kWh),
arg_max(read_on, kWh) AS 'Read on'

FROM per_hour
JOIN systems s ON s.id = per_hour.system_id

WHERE system_id = 34
GROUP by s.name;

The result shows the that the Andre Agassi Preparatory Academy has the system with
the highest production in our dataset:

┌───────────────────────────────────────┬──────────┬─────────────────────┐
│ name │ max(kWh) │ Read on │
│ varchar │ double │ timestamp │
├───────────────────────────────────────┼──────────┼─────────────────────┤
│ [34] Andre Agassi Preparatory Academy │ 123.75 │ 2020-04-09 11:00:00 │
└───────────────────────────────────────┴──────────┴─────────────────────┘

Listing 3.17 Creating multiple groups

Using a proper 
name for the CTE

The average value per hour and day is the 
first aggregate we need; GROUP BY ALL is 
a DuckDB extension creating a group from 
all columns not part of an aggregate.The nested aggregate 

we look for
Using the CTE as the driving 
table in the FROM clause
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NOTE We looked this building up, and the readings and values add up.
According to a fact sheet covering the installation, “Between April 2010 and
July 2011, Bombard installed 2,249 Sharp 240-watt solar modules on the roofs
of five buildings and three solar support structures at the Agassi Academy in
Las Vegas” (https://mng.bz/jXKp).

CTEs can do one more cool thing views and subqueries cannot. The WITH clause fea-
tures the additional keyword RECURSIVE, which makes it possible to reference a CTE
not only from other succeeding CTEs and the FROM clause but from within itself. Such
a recursive CTE essentially will follow this pattern (shown in listing 3.18). To make this
work, we need to have some kind of initial seed for the recursion. This is easy for a
tree structure: we take the row that has no parent row and use this as one leaf of a
UNION clause.

CREATE TABLE IF NOT EXISTS src (
id INT PRIMARY KEY,
parent_id INT, name VARCHAR(8)

);

INSERT INTO src (VALUES
(1, null, 'root1'),
(2, 1, 'ch1a'),
(3, 1, 'ch2a'),
(4, 3, 'ch3a'),
(5, null, 'root2'),
(6, 5, 'ch1b')

);

WITH RECURSIVE tree AS (
SELECT id,

id AS root_id,
[name] AS path

FROM src WHERE parent_id IS NULL
UNION ALL
SELECT src.id,

root_id,
list_append(tree.path, src.name) AS path

FROM src
JOIN tree ON (src.parent_id = tree.id)

)
SELECT path FROM tree;

The results are several paths, all starting at the root, making up their way to the corre-
sponding leaves:

 
 
 

Listing 3.18 Selecting a graph-shaped structure with recursive SQL

Initialize a new list 
with a list literal.

This is the recursive 
initial seed.

Recursive join until there are 
no more entries from the src 
table with the given parent id.

https://mng.bz/jXKp
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┌─────────────────────┐
│ path │
│ varchar[] │
├─────────────────────┤
│ [root1] │
│ [root2] │
│ [root1, ch1a] │
│ [root1, ch2a] │
│ [root2, ch1b] │
│ [root1, ch2a, ch3a] │
└─────────────────────┘

The example aggregates names into a path from the root of a tree to the leaf by using
list_append. You could use list_prepend and inverse the parameter to build up
paths from the leaves to the root nodes.

 As an exercise, you can try to compute the longest path in the tree. The recursive
CTE will stay the same, but you will want to apply the arg_max function you learned
about in the SELECT statement together with the length aggregate on a list.

3.5 DuckDB-specific SQL extensions
One of the goals of the authors of DuckDB is to make SQL more accessible and user-
friendly. One way they’ve done this is by adding additions to their implementation of
SQL that make it easy to do common tasks. In this section, we’ll introduce those
additions. 

3.5.1 Dealing with SELECT 

SELECT * is a two-edged sword: it is easy to write down, and the resulting tuples most
likely will contain what you actually need. Some problems associated with selecting all
columns of a relation include the following:

 Instability of the resulting tuples, as a table definition might change (adding or
removing columns).

 Putting more memory pressure on the database server or process.
 While DuckDB is an embedded database and won’t involve network traffic,

select-stars will cause more traffic on nonembedded databases.
 A select-star might prevent an index-only scan. An index-only scan will occur

when your query can use an index, and you only return columns from that
index so that any other IO can be avoided. An index-only scan is a desired
behaviour in most cases.

While it’s best to avoid doing too many SELECT * queries, sometimes they are neces-
sary, and DuckDB actually makes them safer to use with the addition of two keywords:
EXCLUDE and REPLACE. If you are certain you really want all columns, DuckDB offers a
simplified version of the SELECT statement, omitting the SELECT clause altogether.
Instead, it starts with the FROM clause so that, for example, a FROM prices is possible.
We will present another example in listing 3.22. 
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EXCLUDING SOME COLUMNS WITH EXCLUDE
EXCLUDE excludes one or more columns from a star query. This is helpful when you
have a table or relation with many columns, of which nearly all are necessary, exclud-
ing the few that are irrelevant to your use case. Normally, you would have to enumer-
ate all the columns you are interested in and exclude the ones you don’t care about.
For example, you want only the relevant data from prices:

SELECT value, valid_from, valid_until FROM prices;

This becomes tedious and error-prone very quickly, especially with more than a hand-
ful of columns. With the EXCLUDE clause, you only have to enumerate the columns you
are not interested in:

SELECT * EXCLUDE (id)
FROM prices;

You can exclude as many columns as you want. You will achieve most of the flexibility
of a pure SELECT *, keep the readability of the star, and ensure you don’t access some-
thing you don’t need.

RESHAPING RESULTS WITH REPLACE
Think about the view v_power_per_day. It computes the kWh in fractions. Some users
may only want to return the integer values. Instead of rewriting the whole view, you
can just replace the single column kWh with its rounded value while selecting the
remaining columns:

SELECT * REPLACE (round(kWh)::int AS kWh)
FROM v_power_per_day;

The REPLACE clause takes in one or more pairs of x AS y constructs, with x being an
expression that can refer to columns of the original select list, applying functions and
other transformations to them, and y being a name that has been used in the original
select list. 

 The structure of the result is the same, but the kWh column is now an integer
column:

┌───────────┬────────────┬───────┐
│ system_id │ day │ kWh │
│ int32 │ date │ int32 │
├───────────┼────────────┼───────┤
│ 1200 │ 2019-08-29 │ 289 │
│ · │ · │ · │
│ · │ · │ · │
│ · │ · │ · │
│ 10 │ 2020-03-19 │ 0 │
├───────────┴────────────┴───────┤
│ 1587 rows (2 shown) 3 columns │
└────────────────────────────────┘
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DYNAMICALLY PROJECTING AND FILTERING ON COLUMNS

Let’s recap the prices table. It has two columns containing information about the
validity of a price:

┌─────────────┬──────────────┬─────────┬───┬──────────────────────┬───────┐
│ column_name │ column_type │ null │ … │ default │ extra │
│ varchar │ varchar │ varchar │ │ varchar │ int32 │
├─────────────┼──────────────┼─────────┼───┼──────────────────────┼───────┤
│ id │ INTEGER │ NO │ … │ nextval('prices_id') │ │
│ value │ DECIMAL(5,2) │ NO │ … │ │ │
│ valid_from │ DATE │ NO │ … │ │ │
│ valid_until │ DATE │ YES │ … │ │ │
├─────────────┴──────────────┴─────────┴───┴──────────────────────┴───────┤
│ 4 rows 6 columns (5 shown) │
└─────────────────────────────────────────────────────────────────────────┘

The COLUMNS expression can be used to project, filter, and aggregate one or more col-
umns based on a regular expression. To select only columns that contain information
about validity, you can query the table like this:

SELECT COLUMNS('valid.*') FROM prices LIMIT 3;

This returns all the relevant columns:

┌────────────┬─────────────┐
│ valid_from │ valid_until │
│ date │ date │
├────────────┼─────────────┤
│ 2018-12-01 │ 2019-01-01 │
│ 2019-01-01 │ 2019-02-01 │
│ 2019-02-01 │ 2019-03-01 │
└────────────┴─────────────┘

You will benefit from using this technique if you have a table with lots of columns with
similar names. Such a table could, for example, take the form of a readings or mea-
surement table. More specifically, think of an IoT sensor that produces many different
readings per measurement. In that use case, there is another interesting feature: you
can apply any function over a dynamic selection of columns that will produce as many
computed columns. Here, we compute several maximum values at once for all col-
umns in the price table that contain the word valid:

SELECT max(COLUMNS('valid.*')) FROM prices;

This results in the maximum values for valid_from and valid_until:

┌────────────────────────┬─────────────────────────┐
│ max(prices.valid_from) │ max(prices.valid_until) │
│ date │ date │
├────────────────────────┼─────────────────────────┤
│ 2023-01-01 │ 2024-02-01 │
└────────────────────────┴─────────────────────────┘
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If you find yourself writing long conditions in the WHERE clause, combining many
predicates with AND, you can simplify that with the COLUMNS expression as well. To find
all the prices that have been valid in 2020 alone, you would want every row for which
both the valid_from and valid_until columns are between January 1, 2020 and
2021, which is just what the following query expresses:

FROM prices WHERE COLUMNS('valid.*') BETWEEN '2020-01-01' AND '2021-01-01';

You might have noticed that the regular expression .* sticks out a bit. Many people
are more familiar with the % and _ wildcards used with the LIKE operator. The % char-
acter represents zero, one, or multiple characters, while the underscore sign rep-
resents only one character. Luckily, COLUMNS supports lambda functions. 

TIP A lambda function is a self-contained block of functionality that can be
passed around and used in your code. Lambda functions have different
names in different programming languages, such as lambda expressions in
Java, Kotlin, and Python; closures in Swift; and blocks in C. 

The preceding query selecting a range of prices can also be written like this:

FROM prices
WHERE COLUMNS(col -> col LIKE 'valid%')
BETWEEN '2020-01-01' AND '2021-01-01';

Last but not least, you can combine the COLUMNS expression with the REPLACE or
EXCLUDE conditions too. Let’s say you want to compute the maximum value over all the
columns in the prices table, except the generated id value. You can get them like this:

SELECT max(COLUMNS(* EXCLUDE id)) FROM prices;

3.5.2 Inserting by name

Do you remember listing 3.6? In that listing, we used a statement in the form of
INSERT INTO target(col1, col2) SELECT a, b FROM src to populate our systems
table. This works but can be fragile to maintain, as the INSERT statement requires
either the selected columns to be in the same order as they are defined by the target
table or to repeat the column names—once in the INTO clause, once in the select list. 

 DuckDB offers a BY NAME clause to solve that problem, and listing 3.19 can be
rewritten as follows, keeping the mapping from the column names in the source to
the column names for the target together in one place. The BY NAME keyword in the
listing indicates that the columns in the select clause that follows shall be matched by
name onto columns of the target table. 

INSERT INTO systems BY NAME
SELECT DISTINCT

Listing 3.19 Insertion by name

The expression inside the COLUMNS expression
is a Lambda function evaluating to true when 
the column name is like the given text.
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system_id AS id,
system_public_name AS NAME

FROM 'https://oedi-data-lake.s3.amazonaws.com/pvdaq/csv/systems.csv'
ON CONFLICT DO NOTHING;

Whether you add new columns or remove columns from the insertion, you now only
need to change the query in one place. Any constraints, however, such as non-null col-
umns, must still be fulfilled. 

3.5.3 Accessing aliases everywhere

You probably haven’t noticed it, but several of our examples benefit from something
that should be the standard—but isn’t. The moment you introduce an alias to a col-
umn, you can access them in succeeding clauses. In listing 3.20, we access the nonag-
gregate alias is_not_system10—as defined in the select list—in the WHERE and GROUP
BY clauses without repeating the column definition. The latter is not possible in many
other relational databases. The same applies to the alias power_per_month we gave to
the sum aggregate; we can access it in the HAVING clause too. 

SELECT system_id > 10 AS is_not_system10,
date_trunc('month', read_on) AS month,
sum(power) / 1000 / 1000 AS power_per_month

FROM readings
WHERE is_not_system10 = TRUE
GROUP BY is_not_system10, month
HAVING power_per_month > 100;

3.5.4 Grouping and ordering by all relevant columns

As discussed in the section covering the GROUP BY clause, all nonaggregate columns
need to be enumerated in a GROUP BY clause. If you have many nonaggregate col-
umns, this can be a painful experience and one that DuckDB alleviates by allowing
you to use GROUP BY ALL. We can rewrite v_power_per_day as shown in the following
listing. 

CREATE OR REPLACE VIEW v_power_per_day AS
SELECT system_id,

date_trunc('day', read_on) AS day,
round(sum(power) / 4 / 1000, 2) AS kWh,

FROM readings
GROUP BY ALL;

A similar concept exists for ordering. An ORDER BY ALL will sort the result by the
included columns, from left to right. Querying the freshly created view with

Listing 3.20 Accessing aliases in WHERE, GROUP BY, and HAVING clauses

Listing 3.21 Creating grouping sets by grouping by all nonaggregate values

Accessing an alias that 
refers to a nonaggregate

Accessing an alias that 
refers to an aggregate
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SELECT system_id, day FROM v_power_per_day ORDER BY ALL

will sort the result first by system_id and then by day. In the case of a select-star, the
order of the columns is defined by the table or view definition, of course. The follow-
ing statement is valid SQL in DuckDB, and it returns the power produced in kWH per
day, sorted first by systems, by days, and then by kWH. 

FROM v_power_per_day ORDER BY ALL;

3.5.5 Sampling data

When working with large datasets, we often want to get a sample of the data rather
than look through everything. Assuming you have imported the readings for at least
system 34, you will have more than 50,000 records in your database. This can be con-
firmed with a SELECT count(*) FROM readings. We can get an overview of the nonzero
power readings by asking for a sample of n percent or n number of rows, as shown in
the following listing. 

SELECT power
FROM readings
WHERE power <> 0
USING SAMPLE 10%

(bernoulli);

This is much easier and more flexible than dealing with arbitrary limits, as it provides
a better and more reliable overview. The sampling itself uses probabilistic sampling
methods, however, unless a seed is specified with the additional REPEATABLE clause.
The sampling rate in percent is not meant to be an exact hit. In our example, it varies
by about 2,000 rows from the approximately 20,000 with a power column not equal to
zero. 

 If you instruct DuckDB to use a specific rate for sampling, it applies system sam-
pling, including each vector by an equal chance. Sampling on vectors instead of work-
ing on tuples (which is done by the alternative bernoulli method) is very effective
and has no extra overhead. As one vector is roughly about 2,048 tuples in size (see
https://duckdb.org/docs/api/c/data_chunk), it is not suited for smaller datasets, as
all data will be included or filtered out. Even for the ~100,000 readings that have a
power value greater than zero, we recommend bernoulli for a more evenly distrib-
uted sampling. 

 For a fixed sampling size, a method called reservoir is used. The reservoir is filled
up first with as many elements as requested and then streams the rest, randomly

Listing 3.22 Omitting the SELECT clause and simplifying ordering

Listing 3.23 Sampling a relation

Retrieves a sample of roughly 
10% the size of the data

Specifies the sampling 
method to use

https://duckdb.org/docs/api/c/data_chunk
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swapping elements in the reservoir. You can learn more about this interesting tech-
nique in the samples documentation (https://duckdb.org/docs/sql/samples). 

3.5.6 Functions with optional parameters

A couple of functions in DuckDB (e.g., read_json_auto) have required parameters
and one or more parameters with sensible defaults that are optional. The aforemen-
tioned example has 17 parameters; you can get a list of them with the following code:

SELECT DISTINCT unnest(parameters)
FROM duckdb_functions()
WHERE function_name = 'read_json_auto';

We are using a distinct here because there are a couple of overloads with different
types. Luckily, DuckDB supports named optional arguments. Assume you want to
specify the dateformat only; in that case, you would use the name=value syntax, as
shown in the following listing. 

echo '{"foo": "21.9.1979"}' > 'my.json'
duckdb -s \
"SELECT * FROM read_json_auto(

'my.json',
dateformat='%d.%M.%Y'

)"

DuckDB is able to parse the non-iso-formatted string into a proper date since we used
the dateformat parameter:

┌────────────┐
│ foo │
│ date │
├────────────┤
│ 1979-01-21 │
└────────────┘

Summary
 SQL queries are composed of several statements, which are, in turn, composed

of clauses. Queries are categorized as data definition language (DDL) or data
manipulation language (DML).

 DML queries cover creating, reading, updating, and deleting rows.
 Manipulation of data is not only about changing persistent state but also about

transforming existing relations into new ones; therefore, reading data also falls
under DML.

 DDL queries, such as CREATE TABLE and CREATE VIEW, are used in DuckDB to
create a persistent schema. This is inline with any other relational database and
is independent, regardless of whether DuckDB is started with the database
stored on disk or in memory.

Listing 3.24 Using named parameters

This is using the named 
parameter dateformat.

https://duckdb.org/docs/sql/samples
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 A rigid schema makes data inconsistencies more visible—blindly ingesting data
with inconsistencies will fail, due to constraint errors.

 Constraint errors can be mitigated with appropriate actions defined
ON CONFLICT when creating or updating rows.

 DuckDB makes SQL even easier to write, with innovations like SELECT *
EXCLUDE() and SELECT * REPLACE() and more intuitive alias usage.



Advanced aggregation
and analysis of data
The goal of this chapter is to give you some ideas on how an analytical database,
such as DuckDB, can be used to provide reports that would take a considerably
larger amount of code written in an imperative programming language. While we
will build upon the foundation laid in chapter 3, we will leave a simple SELECT xzy
FROM abc behind quickly. Investing your time in learning modern SQL won’t be
wasted. The constructs presented here can be used everywhere DuckDB can be run
or embedded and, therefore, enrich your application.

This chapter covers
 Preparing, cleaning and aggregating data while 

ingesting

 Using window functions to create new aggregates 
over different partitions of any dataset

 Understanding the different types of subqueries

 Using common table expressions

 Applying filters to any aggregate
58
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4.1 Pre-aggregating data while ingesting
Let’s move forward with our example scenario. In section 3.4.1, we worked with the
data for a photovoltaic grid that—while having some consistency problems—was a
good fit for our schema and idea. Remember, the goal is to store measurements in
intervals of 15 minutes. If you look at the other datasets you downloaded throughout
section 3.2.1, you will notice that some come in intervals of other than 15 minutes.
One quick way to peek into the files is the tail command, returning the last n lines of
a file (head would work as well). Using it on 2020_10.csv shows that this file contains
measurements in 1-minute intervals:

> duckdb -s ".maxwidth 40" -s "FROM read_csv_auto('2020_10.csv') LIMIT 3"
┌────────┬─────────────────────┬───┬───────────────┬────────────────┐
│ SiteID │ Date-Time │ … │ module_temp_3 │ poa_irradiance │
│ int64 │ timestamp │ │ double │ double │
├────────┼─────────────────────┼───┼───────────────┼────────────────┤
│ 10 │ 2020-01-23 11:20:00 │ … │ 14.971 │ 748.36 │
│ 10 │ 2020-01-23 11:21:00 │ … │ 14.921 │ 638.23 │
│ 10 │ 2020-01-23 11:22:00 │ … │ 14.895 │ 467.67 │
├────────┴─────────────────────┴───┴───────────────┴────────────────┤
│ 3 rows 16 columns (4 shown) │
└───────────────────────────────────────────────────────────────────┘

And, of course, 2020_1200.csv has another interval—this time, 5 minutes—but the
overall structure also looks different:

> duckdb -s ".maxwidth 40" -s "FROM read_csv_auto('2020_1200.csv') LIMIT 3"
┌────────┬─────────────────────┬───┬──────────────────┬──────────────┐
│ SiteID │ Date-Time │ … │ ac_power_metered │ power_factor │
│ int64 │ timestamp │ │ int64 │ double │
├────────┼─────────────────────┼───┼──────────────────┼──────────────┤
│ 1200 │ 2020-01-01 00:00:00 │ … │ 20 │ 0.029 │
│ 1200 │ 2020-01-01 00:05:00 │ … │ 20 │ 0.029 │
│ 1200 │ 2020-01-01 00:10:00 │ … │ 20 │ 0.029 │
├────────┴─────────────────────┴───┴──────────────────┴──────────────┤
│ 3 rows 6 columns (4 shown) │
└────────────────────────────────────────────────────────────────────┘

Remember, those are data files from the same pool. Even those are inconsistent
between different sources. Data analytics is quite often about dealing with those exact
same problems. Let’s use one of the many functions DuckDB offers to deal with dates,
times, and timestamps—in this case, time_bucket(). time_bucket() truncates time-
stamps to a given interval and aligns them to an optional offset, creating a time bucket.
Time buckets are a powerful mechanism for aggregating sensor readings and friends.
Together with GROUP BY and avg as aggregate functions, we can prepare and eventu-
ally ingest the data according to our requirements. We create time buckets in a
15-minute interval and compute the average power produced of all readings that fall
into a specific bucket. 
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NOTE The following examples will only work if you followed along with our
examples in chapter 3, populating the systems table. 

When you look at the query, you’ll notice a CASE WHEN THEN ELSE END construct, a CASE
statement, which works like an if/else construct. What it does here is turn readings
with a value lower than zero, or with no value at all, into zero before computing the
average. That’s one of the oddities of this dataset: maybe the sensor, or perhaps the
network, malfunctioned. You’ll never know, but you have to deal with the data. Here,
we decided it is OK to treat NULL values like negative values and cap them to zero. In
cases that throw off your calculation, you might consider a FILTER for the aggregate.
We will discuss this in section 4.6.3. 

INSERT INTO readings(system_id, read_on, power)
SELECT any_value(SiteId),

time_bucket(
INTERVAL '15 Minutes',
CAST("Date-Time" AS timestamp)

) AS read_on,
avg(

CASE
WHEN ac_power < 0 OR ac_power IS NULL THEN 0
ELSE ac_power END)

FROM
read_csv_auto(

'https://developer.nrel.gov/api/pvdaq/v3/' ||
'data_file?api_key=DEMO_KEY&system_id=10&year=2019'

)
GROUP BY read_on
ORDER BY read_on;

The imports for the remaining dataset are identical. You will want to change the file-
name in the FROM clause accordingly. 

NOTE There are many more date- and time-based functions in DuckDB.
When in doubt, have a look at the reference documentation: https://
duckdb.org/docs/sql/functions/timestamp. You will be able to parse nearly
any string into a proper date or timestamp.

Your decision on whether to avoid ingesting altogether and do all kinds of analytics
in-memory based on external files; aggregate, to some extent, during ingestion; or only
aggregate during analysis usually comes down to a tradeoff between, among other
things, the size of your dataset, your goals for long-term storage, and your further pro-
cessing needs. Trying to make a generally applicable solution here is, therefore, bound

Listing 4.1 Cleaning and transforming data during ingestion

This picks any value of the column SiteId from the CSV file. The
files are per system, which means that this column is the same in

each row, so picking any one of them is correct. Applying
any_value() is necessary, as we compute an aggregate (avg).

This truncates the timestamp to a quarter-hour. 
Notice how we explicitly cast the column to a 
timestamp with standard SQL syntax; in addition,
the transformed value gets an alias (read_on).

Here, avg computes 
the average of all 
readings in the bucket 
created previously 
because we group the 
result by this bucket.

https://duckdb.org/docs/sql/functions/timestamp
https://duckdb.org/docs/sql/functions/timestamp
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to fail. In the scenario here, we decided to both ingest and aggregate for educational
purposes and keep the dataset small enough to be shareable. 

4.2 Summarizing data
You usually want to know some characteristics of a new dataset before going into an
in-depth analysis of it, such as the number of values (in our example, how many read-
ings), the distribution and magnitude of numerical values (without knowing if we are
dealing in watts or kilowatts, our reports would be blatantly wrong), and the interval
size of time series. DuckDB has the unique SUMMARIZE command, which quickly gives
you this information about any dataset. Run SUMMARIZE readings; in your database.
Your results should be similar to this:

┌─────────────┬───────────────┬─────────────────────┬───┬─────────┬───────┐
│ column_name │ column_type │ max │ … │ q75 │ count │
│ varchar │ varchar │ varchar │ │ varchar │ int64 │
├─────────────┼───────────────┼─────────────────────┼───┼─────────┼───────┤
│ system_id │ INTEGER │ 1200 │ … │ 1200 │ 151879│
│ read_on │ TIMESTAMP │ 2020-06-26 11:00:00 │ … │ │ 151879│
│ power │ DECIMAL(10,3) │ 133900.000 │ … │ 5125 │ 151879│
└─────────────┴───────────────┴─────────────────────┴───┴─────────┴───────┘

There are many more columns, but we abbreviated the list for readability. Switch your
CLI to line mode by running .mode line and then summarizing a subset of the read-
ings with

SUMMARIZE SELECT read_on, power FROM readings WHERE system_id = 1200;

as follows:

column_name = read_on
column_type = TIMESTAMP

min = 2019-01-01 00:00:00
max = 2020-06-26 11:00:00

approx_unique = 50833
avg =
std =
q25 =
q50 =
q75 =

count = 52072
null_percentage = 0.0%

column_name = power
column_type = DECIMAL(10,3)

min = 0.000
max = 47873.333

approx_unique = 6438
avg = 7122.5597121293595
std = 11760.089219586542
q25 = 20
q50 = 27
q75 = 9532
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count = 52072
null_percentage = 0.0%

SUMMARIZE works directly on tables, but as shown in the preceding code snippet, it
works on query results too. You don’t even have to ingest data at all before applying
SUMMARIZE; it can be run against a CSV or Parquet file as well.

4.3 On subqueries
Imagine you want to compute the average of the total power produced by the systems
you manage. For that, you would need to apply two aggregate functions: avg and sum.
It turns out that you cannot nest them. A naive approach, like 

SELECT avg(sum(kWh)) FROM v_power_per_day GROUP BY system_id

fails with

Error: Binder Error: aggregate function calls cannot be nested

You need to stage that computation, and a subquery is one way to achieve this, as
shown in the following listing.

SELECT avg(sum_per_system)
FROM (

SELECT sum(kWh) AS sum_per_system
FROM v_power_per_day
GROUP BY system_id

);

This statement now dutifully returns avg(sum_per_system) = 133908.087. The inner
query in this statement has two characteristics:

 It returns several rows.
 It does not depend on values from the outer query.

This query is called an uncorrelated subquery. An uncorrelated subquery is just a query
nested inside another one, and it operates as if the outer query executed on the
results of the inner query. 

 Now on to the next question you might be faced with: On which day and for which
system was the highest amount of power produced? One way to solve this problem is
by using a subquery as the right-hand side of a comparison in the WHERE clause, as
shown in the following listing.

SELECT read_on, power
FROM readings
WHERE power = (SELECT max(power) FROM readings);

Listing 4.2 A subquery being used to compute nested aggregates

Listing 4.3 A subquery being used as a right-hand side in a comparison
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This subquery is different from the first one in that it only returns a single, scalar
value. This is called a scalar, uncorrelated subquery. 

NOTE arg_min and arg_max are aggregate functions that compute an expres-
sion of the row in which the minimum or maximum value appears. If you are
interested in only one expression, using these functions as your solution is
preferable to any subquery for tasks like the ones we’ve covered in the preced-
ing text. If you are interested in more than one expression or evaluating
other values than minimum or maximum values, you won’t get around sub-
queries in conditions.

The result essentially reads as follows: the maximum output of 133,900 W has been pro-
duced at five different times. The following snippet shows the full result:

┌─────────────────────┬───────────────┐
│ read_on │ power │
│ timestamp │ decimal(10,3) │
├─────────────────────┼───────────────┤
│ 2019-05-08 12:15:00 │ 133900.000 │
│ 2019-05-23 10:00:00 │ 133900.000 │
│ 2019-05-23 11:30:00 │ 133900.000 │
│ 2019-05-28 11:45:00 │ 133900.000 │
│ 2020-04-02 11:30:00 │ 133900.000 │
└─────────────────────┴───────────────┘

What if you wanted to determine the maximum power and reading time on a per-
system basis? This would be tricky to do with the original subquery because that only
shows us the values for the overall max-power production. Therefore, we would need
the subquery to return different values for different rows; to achieve this, we can use a
correlated subquery, which uses the fields from the outer query inside the inner one,
as shown in the following listing.

SELECT system_id, read_on, power
FROM readings r1
WHERE power = (

SELECT max(power)
FROM readings r2
WHERE r2.system_id = r1.system_id

)
ORDER BY ALL;

This subquery is a scalar, correlated subquery. The inner query is related to the outer
query in the way the database must evaluate it for every row of the outer query. In the
result, we again see the five days for the highest overall value, and now we also see the
highest values produced for systems 10 and 1,200:

 

Listing 4.4 Using correlated, scalar subqueries

This is the condition that correlates 
the subquery to the outer query, not 
the comparison of the power value.
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┌───────────┬─────────────────────┬───────────────┐
│ system_id │ read_on │ power │
│ int32 │ timestamp │ decimal(10,3) │
├───────────┼─────────────────────┼───────────────┤
│ 10 │ 2019-02-23 12:45:00 │ 1109.293 │
│ 34 │ 2019-05-08 12:15:00 │ 133900.000 │
│ 34 │ 2019-05-23 10:00:00 │ 133900.000 │
│ 34 │ 2019-05-23 11:30:00 │ 133900.000 │
│ 34 │ 2019-05-28 11:45:00 │ 133900.000 │
│ 34 │ 2020-04-02 11:30:00 │ 133900.000 │
│ 1200 │ 2020-04-16 12:15:00 │ 47873.333 │
└───────────┴─────────────────────┴───────────────┘

When used as expressions, subqueries may be rewritten as joins—with the computa-
tion of nested aggregates being the exception. For the last example, it would look like
the code in the following listing.

SELECT r1.system_id, read_on, power
FROM readings r1
JOIN (

SELECT r2.system_id, max(power) AS value
FROM readings r2
GROUP BY ALL

) AS max_power ON (
max_power.system_id = r1.system_id AND
max_power.value = r1.power

)
ORDER BY ALL;

It’s up to the reader to judge whether this adds to readability or not. In other rela-
tional databases, people often do this, as the evaluation of a correlated subquery for
every row in a large table might be slow. DuckDB, on the other hand, uses a subquery
decorrelation optimizer that always makes subqueries independent of outer queries,
thus allowing users to freely use subqueries to create expressive queries without hav-
ing to worry about manually rewriting subqueries into joins. It is not always possible to
manually decorrelate certain subqueries by rewriting the SQL. Internally, DuckDB
uses special types of joins that will decorrelate all subqueries. In fact, DuckDB does
not have support for executing subqueries that are not decorrelated.

 This is a positive for you because it allows you to focus on the readability and
expressiveness of your queries and the business problem you are trying to solve.
Indeed, DuckDB allows you to spend all your time focusing on the bigger picture—
you don’t need to worry about what type of subquery you use at all.

4.3.1 Subqueries as expressions

All forms of subqueries, both correlated and uncorrelated, that are not used as a rela-
tion in a JOIN are expressions. As such, many other operators can be used with them.

Listing 4.5 An uncorrelated subquery join with the outer table
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The = operator and the inequality operators <, <=, >=, and > require the subquery to
be scalar, returning exactly one row. When working with both scalar and nonscalar
subqueries, additional operators are available—IN, EXISTS, ANY, and ALL—all of which
work via set comparisons. 

 Subqueries can also be used in set comparisons, completing tasks like this one:
identify all the rows that compare successfully to all or any of the rows returned by another query.
The artificial examples in this section will all return v = 7.

EXISTS
You might want to select all the rows of a table that have a value that might exist inside
one row of another table. For this, you can use the EXISTS expression, shown in the
following listing. 

.mode line
SELECT * FROM VALUES (7), (11) s(v)
WHERE EXISTS (SELECT * FROM range(10) WHERE range = v);

IN
EXISTS can usually be rewritten as an uncorrelated subquery using the IN operator, as
shown in the following listing. When the outer value is contained at least once in the
results of the subquery, this operator evaluates to true.

.mode line
SELECT * FROM VALUES (7), (11) s(v)
WHERE v IN (SELECT * FROM range(10));

This is useful to know when you work with relational databases other than DuckDB
that might not do all kinds of optimizations on subqueries. 

ANY
The IN operator works with an equal comparison of each value. You might find your-
self in a situation in which you want to answer whether any value does satisfy an
inequality condition. Here, you need to use the ANY operator together with the
desired comparison, as shown in the following listing. When the comparison of the
outer value with any of the inner values evaluates to true, the whole expression evalu-
ates to true. 

.mode line
SELECT * FROM VALUES (7), (11) s(v)
WHERE v <= ANY (SELECT * FROM range(10));

Listing 4.6 A subquery used with the EXISTS expression

Listing 4.7 A subquery used with the IN expression

Listing 4.8 A subquery used with the ANY expression

Defines an inline table named 
s with one column named v 

Please take note of the additional 
comparison prior to ANY.
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ALL
Last but not least, we cover the ALL operator, which evaluates to true when the com-
parison of the outer value with all of the inner values evaluates to true. It helps you
find rows in which a value satisfies a comparison between all values of a subquery, as
shown in the following listing. While you can replace = ANY() with IN(), there is no
such simplification for the ALL operator. 

.mode line
SELECT * FROM VALUES (7), (11) s(v)
WHERE v = ALL (SELECT 7);

4.4 Grouping sets
In listing 3.2, we created a table named readings, which contains the date, time, and
actual value of power produced at that time. We also suggested several example data-
sets from the National Renewable Energy Laboratory to import. When looking at such
a dataset, it is always helpful to get an overview of the minimum and maximum values
of an attribute, or maybe the average. Sometimes, you may have outliers in there that
you want to delete, or you may have made a mistake with the units. The easiest way to
compute that is by using them in one query, without any GROUP BY clause, as shown in
the following listing, so that the aggregation happens in one bucket: the whole table. 

SELECT count(*),
min(power) AS min_W, max(power) AS max_W,
round(sum(power) / 4 / 1000, 2) AS kWh

FROM readings;

If you followed the suggestion, your readings table should have key figures like the
following, which is the result of the preceding query:

┌──────────────┬───────┬────────────┬───────────┐
│ count_star() │ min_W │ max_W │ kWh │
├──────────────┼───────┼────────────┼───────────┤
│ 151879 │ 0.000 │ 133900.000 │ 401723.22 │
└──────────────┴───────┴────────────┴───────────┘

The readings seem to be reasonable, even the minimum value of zero—there is just
no production during nighttime. As we already learned about the GROUP BY clause in
figure 3.2, we could go further and have a look at the production of kWh and system.
We will also select the number of readings per system. We imported several years,

Listing 4.9 A subquery used with the ALL expression

Listing 4.10 Using various aggregates to check if the imports make sense

When finding the amount of power produced, we express the conversion
from units of W per 15 minutes to units of kW per hour (kWh) by

summing the values, dividing them by 4, which gives us a result in W per
hour (Wh), and then dividing them by 1,000, achieving a result in kWh.
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truncating the readings to 15-minute intervals, so we should find roughly 35,040 read-
ings per year. A GROUP BY system_id, year confirms this assumption, as shown in the
next listing.

SELECT year(read_on) AS year,
system_id,
count(*),
round(sum(power) / 4 / 1000, 2) AS kWh

FROM readings
GROUP BY year, system_id
ORDER BY year, system_id;

The result adds up. We did have a bunch of invalid values, and the second year ends
halfway through 2020:

┌──────┬───────────┬──────────────┬───────────┐
│ year │ system_id │ count_star() │ kWh │
├──────┼───────────┼──────────────┼───────────┤
│ 2019 │ 10 │ 33544 │ 1549.34 │
│ 2019 │ 34 │ 35040 │ 205741.9 │
│ 2019 │ 1200 │ 35037 │ 62012.15 │
│ 2020 │ 10 │ 14206 │ 677.14 │
│ 2020 │ 34 │ 17017 │ 101033.35 │
│ 2020 │ 1200 │ 17035 │ 30709.34 │
└──────┴───────────┴──────────────┴───────────┘

Now what about the totals (i.e., the total number of readings as well as the total power
production per year, per year and system, and overall)? In other words, can we create
a drill-down report, showing different levels of detail per group? While we could now
enter the numbers into a calculator one by one and sum them manually or write an
additional count query without a grouping key like the initial one, there’s a better
option, as shown in the following listing: grouping sets. 

SELECT year(read_on) AS year,
system_id,
count(*),
round(sum(power) / 4 / 1000, 2) AS kWh

FROM readings
GROUP BY GROUPING SETS ((year, system_id), year, ())
ORDER BY year NULLS FIRST, system_id NULLS FIRST;

Before we dissect

GROUP BY GROUPING SETS ((system_id, year), year, ())

let’s have a look at the result:

Listing 4.11 A plain GROUP BY with essentially one set of grouping keys ()

Listing 4.12 Explicitly using GROUPING SETS
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┌──────┬───────────┬──────────────┬───────────┐
│ year │ system_id │ count_star() │ kWh │
├──────┼───────────┼──────────────┼───────────┤
│ │ │ 151879 │ 401723.22 │
│ 2019 │ │ 103621 │ 269303.39 │
│ 2019 │ 10 │ 33544 │ 1549.34 │
│ 2019 │ 34 │ 35040 │ 205741.9 │
│ 2019 │ 1200 │ 35037 │ 62012.15 │
│ 2020 │ │ 48258 │ 132419.83 │
│ 2020 │ 10 │ 14206 │ 677.14 │
│ 2020 │ 34 │ 17017 │ 101033.35 │
│ 2020 │ 1200 │ 17035 │ 30709.34 │
└──────┴───────────┴──────────────┴───────────┘

The grouping sets created several buckets to compute the aggregates as follows:

 Over a bucket defined by the combined values of system_id and year (six dif-
ferent combinations in our example, thus leading to six rows)

 Over a bucket defined by the year alone. For keys not included in this but in
other sets, NULL values are provided (here for the system_id).

 The last one (()) can be described as the empty bucket or group—NULL values
are provided for all other keys.

The result contains everything listing 4.11 returned plus the number of readings per
year (grouping by year alone) plus the overall count (grouping by nothing).

 The same result can be achieved by using the shorthand clause ROLLUP. As shown
in the following listing, the ROLLUP clause automatically produces the previously dis-
cussed sets as n + 1 grouping sets, where n is the number of terms in the ROLLUP
clause. 

SELECT year(read_on) AS year,
system_id,
count(*),
round(sum(power) / 4 / 1000, 2) AS kWh

FROM readings
GROUP BY ROLLUP (year, system_id)
ORDER BY year NULLS FIRST, system_id NULLS FIRST;

If we want to see the totals by system in all years, this is quite possible too. Instead of
falling back from ROLLUP to GROUP BY GROUPING SETS and manually adding, you
can use GROUP BY CUBE. GROUP BY CUBE will not produce subgroups but actual combina-
tions (2n grouping sets). In our example, it produces (year, system_id), (year),
(system), and (). 

 

Listing 4.13 Using GROUP BY ROLLUP
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SELECT year(read_on) AS year,
system_id,
count(*),
round(sum(power) / 4 / 1000, 2) AS kWh

FROM readings
GROUP BY CUBE (year, system_id)
ORDER BY year NULLS FIRST, system_id NULLS FIRST;

This produces the following:

┌──────┬───────────┬──────────────┬───────────┐
│ year │ system_id │ count_star() │ kWh │
├──────┼───────────┼──────────────┼───────────┤
│ │ │ 151879 │ 401723.22 │
│ │ 10 │ 47750 │ 2226.48 │
│ │ 34 │ 52057 │ 306775.25 │
│ │ 1200 │ 52072 │ 92721.48 │
│ 2019 │ │ 103621 │ 269303.39 │
│ 2019 │ 10 │ 33544 │ 1549.34 │
│ 2019 │ 34 │ 35040 │ 205741.9 │
│ 2019 │ 1200 │ 35037 │ 62012.15 │
│ 2020 │ │ 48258 │ 132419.83 │
│ 2020 │ 10 │ 14206 │ 677.14 │
│ 2020 │ 34 │ 17017 │ 101033.35 │
│ 2020 │ 1200 │ 17035 │ 30709.34 │
└──────┴───────────┴──────────────┴───────────┘

We now have a complete overview of our power production readings in a single com-
pact query, instead of several queries. All the drill downs we added on the way can be
expressed with grouping sets. The minimum and maximum values have only been
omitted to keep the listing readable. 

4.5 Window functions
Windows and functions applied over windows are an essential part of modern SQL
and analytics. Window functions, in general, let you look at other rows. Normally, an
SQL function can only see the current row at a time, unless you’re aggregating. In
that case, however, you reduce the number of rows. 

 Unlike a regular aggregate function, the use of a window function does not cause
rows to become grouped into a single output row—the rows retain their separate
identities. If you wanted to peek at other rows, you would use a window function. A
window is introduced by the OVER() clause, following the function you want to apply
to the data inside that window. The window itself is the definition of the rows that are
worked on, and you can think of it as a window that moves along a defined order with
a defined size of rows over your dataset. Windowing works by breaking a relation up
into independent partitions, optionally ordering those partitions, and then comput-
ing a new column for each row as a function of the nearby values. 

Listing 4.14 Using GROUP BY CUBE
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 For looking at all rows, you can use an empty window OVER (). If you want to look
at all rows that have the same value matching another field, use a partition for that
field. And last but not least, if you want to look at nearby rows, you can use a frame.

 The size of a window is not equal to the size of a partition; both can be defined
independently. Eventually, the contents of a window are fed to a function to compute
new values. While there are a couple of dedicated functions that work only in the con-
text of windows, all regular aggregate functions can be used as window functions.

 This allows use cases such as

 Ranking
 Computing independent aggregates per window
 Computing running totals per window
 Computing changes by accessing preceding or following rows via lag or lead

Let’s have a look at a concrete example. Suppose you want to retrieve the system as
well as the top three times (by quarter-hour) at which the most power was produced.
One naive approach would be ordering the results by amount of power produced and
limiting to 3, as follows:

SELECT * FROM readings ORDER BY power DESC LIMIT 3;

This approach yields the following results:

┌───────────┬─────────────────────┬───────────────┐
│ system_id │ read_on │ power │
│ int32 │ timestamp │ decimal(10,3) │
├───────────┼─────────────────────┼───────────────┤
│ 34 │ 2019-05-08 12:15:00 │ 133900.000 │
│ 34 │ 2019-05-23 10:00:00 │ 133900.000 │
│ 34 │ 2019-05-23 11:30:00 │ 133900.000 │
└───────────┴─────────────────────┴───────────────┘

While these results present readings for system 34 at different dates, you should notice
that they have the same value in the power column. This might be good enough, but it
is not necessarily what we have been asked for. For the raw value of power produced,
we only get the time at which the very most power was produced (i.e., top 1), not read-
ings for each of the top three power values. To compute a proper top three, we will
use the window function dense_rank(). This function computes the rank for a row
without skipping ranks for equal rankings. dense_rank, shown in listing 4.15, returns
the rank of the current row without gaps. That means, for example, that if five rows
are ranked 1 in power production, the row producing the next highest amount of
power will still be ranked 2, as opposed to 6. If you need gaps to be included (i.e., the
next row to be ranked 6, as opposed to 2), use rank instead. 

WITH ranked_readings AS (
SELECT *,

Listing 4.15 A proper top-n query
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dense_rank()
OVER (ORDER BY power DESC) AS rnk

FROM readings
)
SELECT *
FROM ranked_readings
WHERE rnk <= 3;

The result looks very different now, with three different decreasing values for power,
as shown in figure 4.1. We will revisit the preceding statement when we learn about
the QUALIFY clause in section 4.6.2, avoiding the somewhat odd condition in the
WHERE clause that filters on the rank. 

Figure 4.1 The simplest possible window over the power readings

The ORDER clause as part of the window definition inside the OVER() clause is optional,
and unlike the ORDER BY clause at the end of a statement, it does not sort the query
result. When used as part of the OVER() clause, ORDER BY defines the order in which
window functions are executed. If ORDER BY is omitted, the window function is exe-
cuted in an arbitrary order. In our preceding example, it would make no sense to omit
it, as an unordered, dense rank would always be one. We will see an example in the
next section, where we can safely omit ORDER BY. 

4.5.1 Defining partitions

The preceding ranked power values are better, but they are not yet particularly help-
ful, as the systems have production values that are orders of magnitudes different.
Computing ranks without differentiating the systems might not be what you are after.
What you actually need in this case is the top three readings per system, with each sys-
tem making up its own partition of the data. Partitioning breaks the relation up into

Here, the window is opened 
over one row each, ordered 
by the amount of power, in 
descending order.

34

system_id

2019-05-08  12:15:00

read_on

133900.000

power

133900.000

133900.000
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133700.000

133700.000
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133600.000

1

rnk

1

1

1

1

2

2

3

3

2019-05-23  10:00:00

2019-05-23  11:30:00

2019-05-28  11:45:00

2019-05-09  10:30:00

2019-05-10  12:15:00

2019-03-21  13:00:00

2019-04-02  10:30:00

2020-04-02  11:30:00

34

34

34

34

34

34

34

34

Rank changing here
when the power
value decreases

Window moving over
the dataset, ordered
by power (ascending,
1 row height)
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independent, unrelated pieces, in which the window function is applied. If we don’t
define how a partition is made up by using the PARTITION BY clause, the entire rela-
tion is treated as a single partition. Window functions cannot access values outside the
partition containing the row they are being evaluated at. 

 Requesting the top n measurements per system would be a partitioning task. For
the sake of readability of the results, in the following listing, we only request the two
highest power-production values per system.

WITH ranked_readings AS (
SELECT *,

dense_rank()
OVER (

PARTITION BY system_id
ORDER BY power DESC

) AS rnk
FROM readings

)
SELECT * FROM ranked_readings WHERE rnk <= 2
ORDER BY system_id, rnk ASC;

Look closely at how the number of ranks now repeat in the result in figure 4.2. They
have now been computed individually inside the respective partitions, which makes
quite a contrasting statement about the dataset.

Figure 4.2 Partitioning the data before applying a window

Listing 4.16 Applying a partition to a window

Starting the definition 
of the moving window

Defining a partition: 
the window

First partition (System 10)

Second partition (System 34)

Third partition (System 1200)

Partition function
(here, rank)
resets at the
partition boundary

Window moving over
the dataset, ordered 
by power (ascending,
1 row height)

system_id read_on power rnk

34 2019-05-08  12:15:00 133900.000

10 2019-02-23  12:45:00 1109.293

133900.000

133900.000

133900.000

133900.000

133700.000

133700.000

1

1

10 2019-03-01  12:15:00 1087.900 2

1

1

1

1

2

2

2019-05-23  10:00:00

2019-05-23  11:30:00

2019-05-28  11:45:00

2019-05-09  10:30:00

2019-05-10  12:15:00

2020-04-02  11:30:00

34

34

34

34

34

34

47873.333 12020-04-16  12:15:001200

47866.667 22020-04-02  12:30:001200

47866.667 22020-04-16  13:15:001200
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We see ranks 1 and 2 for all systems; system 34 reaches its highest rate of production,
133,900 W, five separate times and its second highest twice. System 1,200 only reaches
its top rate of production once and its second highest twice. The window was parti-
tioned by the systems and then ordered by the value of power produced.

 Of course, ranking tasks are not the only things that can be applied within parti-
tions. Aggregate functions, like avg, sum, max, and min, are other excellent candidates
to be used in a windowing context. The difference with using aggregates within a win-
dow context is that they don’t change the number of rows being produced. Let’s say
you want to select both the production on each system each day and in an additional
column, the average overall production of system. You might consider using GROUP BY
ROLLUP—and you would not be wrong. That grouping set would, however, be quite
large (GROUP BY ROLLUP (system_id, day, kwh)) and not produce the average value in
an additional column but additional rows instead. The value you would be looking for
(the overall production per system) would be found in the rows that have a value for
the system and no value for the day. 

 One way to avoid dealing with additional rows is a self-join, in which you select the
desired aggregate grouping by a key to join the same table again. While it does pro-
duce the results you want, it will be hard to read and most likely will not perform well,
as the whole table would be scanned twice. Using avg in a partitioned window context
is much easier to read and will perform well. The aggregate—in this case, avg(kWh)—
is computed over the window that follows; it does not change the number of rows and
will be present in each row. It will be computed for every system, as defined by the
partition:

SELECT *,
avg(kWh)

OVER (
PARTITION BY system_id

) AS average_per_system
FROM v_power_per_day;

And you will find the requested value in an additional column:

┌───────────┬────────────┬────────┬────────────────────┐
│ system_id │ day │ kWh │ average_per_system │
│ int32 │ date │ double │ double │
├───────────┼────────────┼────────┼────────────────────┤
│ 10 │ 2019-01-01 │ 2.19 │ 4.444051896207586 │
│ 10 │ 2019-01-04 │ 5.37 │ 4.444051896207586 │
│ · │ · │ · │ · │
│ · │ · │ · │ · │
│ · │ · │ · │ · │
│ 1200 │ 2019-07-25 │ 232.37 │ 170.75771639042347 │
│ 1200 │ 2019-04-29 │ 210.97 │ 170.75771639042347 │
├───────────┴────────────┴────────┴────────────────────┤
│ 1587 rows (4 shown) 4 columns │
└──────────────────────────────────────────────────────┘

Computing an aggregate 
over a partition
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Note that we omitted the ORDER BY inside the window definition, as it is irrelevant for
the average value, in which order values are fed to the aggregate. As a rule of the
thumb, you should probably use a window function every time you consider writing a
self-join like the one previously discussed for adding aggregates to your query without
changing the row count. 

4.5.2 Framing

Top n queries are useful, for example, if you happen to have a streaming service and
want to present the top n charts. A more interesting question in our example is this:
What is the seven-day moving average of energy produced system wide? To answer this ques-
tion, we must do the following:

 Aggregate the readings per 15-minute interval into days (grouping and
summing).

 Partition by day and systems.
 Create frames of seven days.

This is where framing comes into play. Framing specifies a set of rows relative to each
row where the function is evaluated. The distance from the current row is given as an
expression either preceding or following the current row. This distance can either be
specified as an integral number of rows or as a range delta expression from the value
of the ordering expression.

 For readability and to keep the following examples focused on the window defini-
tions, we will use the view v_power_per_day defined in chapter 3, which returns the
amount of energy produced in kWh per system and day. We could just as easily express
v_power_per_day as a CTE.

 The following statement computes the average power over a window per system
that moves along the days and is seven days wide (three days before, the actual day,
and three days ahead). The statement utilizes all options for defining a window.

SELECT system_id,
day,
kWh,
avg(kWh) OVER (

PARTITION BY system_id
ORDER BY day ASC
RANGE BETWEEN INTERVAL 3 Days PRECEDING

AND INTERVAL 3 Days FOLLOWING
) AS "kWh 7-day moving average"

FROM v_power_per_day
ORDER BY system_id, day;

The result will have as many rows as there are full days in the source readings, so we
can only show a subset as an example. Figure 4.3 demonstrates the size of the window
and how rows are included. 

Listing 4.17 Using a range partition for applying a window function

The window should move over 
partitions defined by the system id.Ordered

 by day

With a size of seven 
days in total
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Figure 4.3 The result of framing a window

4.5.3 Named windows

Window definitions can be pretty complex, as we just learned while discussing win-
dows with ranges. They can include the definition of the partition, the order, and the
actual range of a window. Sometimes, you are interested in more than just one aggre-
gate over a given window. Repeating the window definition over and over again would
be a tedious task. 

 For our domain—measuring power production from photovoltaic systems—we
could use quantiles to create a report that essentially takes in both the seasons and the
weather by computing the quantiles over a seven-day window per month. Sometimes,
a broad monthly average will be enough, but a chart would represent only a relatively
smooth curve, changing with the months. The fluctuation of the amount of power

Second partition

First partition

Moving direction

First window inside partition 
2, applying the average function 
to the current row and 3 
following rows

Fourth window inside partition 1,
applying the average function to 
the current row and 3 preceding 
and following rows

system_id day kWh kWh 7-day moving average

1200 1.662019-01-14 39.99571428571429

1200 0.482019-01-13 64.62857142857145

1200 58.182019-01-12 72.66000000000001

1200 186.972019-01-11 79.31999999999998

1200 188.992019-01-10 83.61285714285714

1200 65.662019-01-09 105.99714285714286

1200 53.32019-01-08 102.12428571428572

1200 31.712019-01-07 82.05142857142857

1200 157.172019-01-06 62.63857142857142

1200 31.072019-01-05 56.79857142857143

1200 46.462019-01-04 55.87142857142857

1200 53.12019-01-03 59.89833333333333

1200 24.782019-01-02 40.444

1200 46.812019-01-01 42.7875

10 5.092019-01-15 4.042857142857143

10 6.222019-01-14 4.064285714285715

10 5.92019-01-13 3.7814285714285716

10 1.582019-01-12 3.7214285714285715

10 0.282019-01-11 3.7542857142857144

10 3.462019-01-10 3.6957142857142853

10 3.522019-01-09 3.3800000000000003

10 5.322019-01-08 3.8142857142857145

10 5.812019-01-07 4.541428571428571

10 3.692019-01-06 4.864285714285715

10 4.622019-01-05 5.154285714285714

10 5.372019-01-04 4.707142857142857

10 5.722019-01-03 4.5523333333333334

10 5.552019-01-02 4.69

10 2.192019-01-01 4.7075000000000005
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produced is higher throughout the changing weather in a week. Outliers and runaway
values would be better caught and represented by quantiles. The result can easily be
used to create a moving box-and-whisker plot, for example.

 We need three aggregates (min, max, and quantiles) for caching outliers and com-
puting the quantiles, and we don’t want to define the window each time. We basically
take the definition from listing 4.17 and add the month of the reading to the parti-
tion, as shown in the following listing. Otherwise, the window definition is the same.
We move the definition after the FROM clause and name it seven_days. It can be refer-
enced from as many aggregates as necessary. 

SELECT system_id,
day,
min(kWh) OVER seven_days AS "7-day min",
quantile(kWh, [0.25, 0.5, 0.75])

OVER seven_days AS "kWh 7-day quartile",
max(kWh) OVER seven_days AS "7-day max",

FROM v_power_per_day
WINDOW

seven_days AS (
PARTITION BY system_id, month(day)
ORDER BY day ASC
RANGE BETWEEN INTERVAL 3 Days PRECEDING

AND INTERVAL 3 Days FOLLOWING
)

ORDER BY system_id, day;

The result now showcases a structured column type—kWh 7-day quartile:

┌──────────┬────────────┬───────────┬──────────────────────────┬──────────┐
│system_id │ day │ 7-day min │ kWh 7-day quartile │ 7-day max│
│ int32 │ date │ double │ double[] │ double │
├──────────┼────────────┼───────────┼──────────────────────────┼──────────┤
│ 10 │ 2019-01-01 │ 2.19 │ [2.19, 5.37, 5.55] │ 5.72│
│ 10 │ 2019-01-02 │ 2.19 │ [4.62, 5.37, 5.55] │ 5.72│
│ 10 │ 2019-01-03 │ 2.19 │ [3.69, 4.62, 5.55] │ 5.72│
│ 10 │ 2019-01-04 │ 2.19 │ [3.69, 5.37, 5.72] │ 5.81│
│ 10 │ 2019-01-05 │ 3.69 │ [4.62, 5.37, 5.72] │ 5.81│
│ · │ · │ · │ · │ · │
│ · │ · │ · │ · │ · │
│ · │ · │ · │ · │ · │
│ 1200 │ 2020-06-22 │ 107.68 │ [149.11, 191.61, 214.68] │ 279.8│
│ 1200 │ 2020-06-23 │ 0.0 │ [107.68, 191.61, 214.68] │ 279.8│
│ 1200 │ 2020-06-24 │ 0.0 │ [190.91, 191.61, 214.68] │ 279.8│
│ 1200 │ 2020-06-25 │ 0.0 │ [191.61, 203.06, 214.68] │ 279.8│
│ 1200 │ 2020-06-26 │ 0.0 │ [0.0, 203.06, 214.68] │ 279.8│
├──────────┴────────────┴───────────┴──────────────────────────┴──────────┤
│1587 rows (10 shown) 5 columns│
└─────────────────────────────────────────────────────────────────────────┘

Listing 4.18 Using a named window with a complex order and partition

Referencing the window 
defined after the FROM clause

The quantile function takes in 
the value for which the quantiles 
should be computed and a list of 
the desired quantiles.

The window clause must be 
specified after the FROM clause, 
and the definition of window 
itself follows inline windows.
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All aggregates can be used as windowing functions, as we already learned. That
includes complex statistical functions, such as computing the exact quantiles in a
group (quantile and quantile_disc) or the interpolated ones (quantile_cont), as
previously shown. The implementations of these functions have been optimized for
windowing, and we can use them without worrying about performance. Use a named
window when you’re querying for several aggregates. 

4.5.4 Accessing preceding or following rows in a partition

We already discussed ranking and will see an example of computing running totals in
section 4.8, but we haven’t used the ability to jump back and forth between rows inside
a partition. So let’s explore computing changes and what might be a better example
than prices these days. 

 In chapter 3, we created a table named prices, which contained the sales prices
(in ct/kWH) for feeding energy back to the grid in Germany. Suppose those sales
prices have since decreased as a reaction to a decrease in policy incentives promoting
renewable energy. You now want to know by how much the compensation for renew-
able energy has changed over time. To compute a difference, you need the price value
of row n, and then you need to compare it with the value in row n-1. This is not possi-
ble without windows, as the rows of a table are processed in isolation, essentially row
by row. If you, however, span a window over any orderable column, you can use lag()
and lead() to access rows outside the current window. This allows you to pick the
price from yesterday that you want to compare with today’s price. 

 The lag function will give you the value of the expression in the row preceding the
current one within the partition or NULL if there is none. This is the case for the first row
in a partition. lead behaves in the opposite manner (i.e., it returns NULL for the last row
in a partition). Both functions have several overloads in DuckDB that allow you to spec-
ify not only by how many rows to lag or lead but also a default window. Otherwise, work-
ing with coalesce would be an option when NULL values are not practicable. 

NOTE The coalesce function will return its first non-NULL argument. 

Using lag(), the following query computes the difference between the original prices
(i.e., those in the prices table in chapter 3) and the current prices (i.e., which have
increased in response to new regulations). 

SELECT valid_from,
value,
lag(value)

OVER validity AS "Previous value",
value - lag(value, 1, value)

OVER validity AS Change

Listing 4.19 Computing lagging and leading values of windows

Jumps back a row and picks 
out the value column The change is computed as the difference 

of the price in the current row and the 
price in the row before that, or the same 
value if there is no row before.
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FROM prices
WHERE date_part('year', valid_from) = 2019
WINDOW validity AS (ORDER BY valid_from)
ORDER BY valid_from;

As you can see, in each successive period, the price decreased considerably in 2019:

┌────────────┬──────────────┬────────────────┬──────────────┐
│ valid_from │ value │ Previous value │ Change │
│ date │ decimal(5,2) │ decimal(5,2) │ decimal(6,2) │
├────────────┼──────────────┼────────────────┼──────────────┤
│ 2019-01-01 │ 11.47 │ │ 0.00 │
│ 2019-02-01 │ 11.35 │ 11.47 │ -0.12 │
│ 2019-03-01 │ 11.23 │ 11.35 │ -0.12 │
│ 2019-04-01 │ 11.11 │ 11.23 │ -0.12 │
│ · │ · │ · │ · │
│ · │ · │ · │ · │
│ · │ · │ · │ · │
│ 2019-09-01 │ 10.33 │ 10.48 │ -0.15 │
│ 2019-10-01 │ 10.18 │ 10.33 │ -0.15 │
│ 2019-11-01 │ 10.08 │ 10.18 │ -0.10 │
│ 2019-12-01 │ 9.97 │ 10.08 │ -0.11 │
├────────────┴──────────────┴────────────────┴──────────────┤
│ 12 rows (8 shown) 4 columns │
└───────────────────────────────────────────────────────────┘

If we are interested in computing the total change in prices in 2019, we must use a
CTE, as we cannot nest window function calls inside aggregate functions. A solution is
shown in the following listing.

WITH changes AS (
SELECT value - lag(value, 1, value) OVER (ORDER BY valid_from) AS v
FROM prices
WHERE date_part('year', valid_from) = 2019
ORDER BY valid_from

)
SELECT sum(changes.v) AS total_change
FROM changes;

The result of this computation gives us the price difference for Germany in 2019 that
we’ve been looking for. For privately produced renewable energy, we find that the
compensation has been cut by 1.50 ct/kWh. 

4.6 Conditions and filtering outside the WHERE clause
Neither computed aggregates nor the result of a window function can be filtered via the
standard WHERE clause. Such filtering is necessary to answer questions like the following:

 Selection of groups that have an aggregated value that exceeds value x—For this, you
would have to use the HAVING clause.

Listing 4.20 Computing the aggregate over a window
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 Selection of data that exceeds a certain value in a range of days—Here, the QUALIFY
clause must be used.

In addition, you might need to filter out values to keep them from entering an aggre-
gate function at all, using the FILTER clause. Table 4.1 summarizes the options for fil-
tering the values that go into aggregates or filtering the results of those aggregates. 

4.6.1 Using the HAVING clause

Please give me all the days with production exceeding 900 kWh! In chapter 3, you learned
about both the WHERE clause and how GROUP BY works. You can attempt to combine
them like this:

SELECT system_id,
date_trunc('day', read_on) AS day,
round(sum(power) / 4 / 1000, 2) AS kWh,

FROM readings
WHERE kWh >= 900
GROUP BY ALL;

Prior to DuckDB 0.10, the query gave you an error like this: Error: Binder Error: Refer-
enced column “kWh” not found in FROM clause! Recent versions have improved the word-
ing of this error, now telling you that a WHERE clause cannot contain aggregates. What
that means is this: the computed column kWh is not yet known when the WHERE clause
will be applied, and it can’t be known at that point (in contrast to day, which is a com-
puted column as well). Selecting rows in the WHERE clause, or filtering rows, in other
words, modifies what rows get aggregated in the first place. Therefore, you need
another clause that gets applied after aggregation: the HAVING clause. It is used after
the GROUP BY clause to provide filter criteria after the aggregation of all selected rows
has been completed. 

 Returning to the initial task, all you need to do is move the condition out of the WHERE
clause into the HAVING clause that follows GROUP BY, as shown in the following listing. 

SELECT system_id,
date_trunc('day', read_on) AS day,
round(sum(power) / 4 / 1000, 2) AS kWh,

Table 4.1 Filtering clauses and where to use them

Where to use it Effect

HAVING After GROUP BY Filters rows based on aggregates com-
puted for a group

QUALIFY After the FROM clause referring to any win-
dow expression

Filters rows based on anything computed 
in that window

FILTER After any aggregate function Filters the values passed to the aggregate

Listing 4.21 Using the HAVING clause to filter rows based on aggregated values
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FROM readings
GROUP BY ALL
HAVING kWh >= 900
ORDER BY kWh DESC;

The results are now filtered after they have been grouped together by the sum
aggregate:

┌───────────┬────────────┬────────┐
│ system_id │ day │ kWh │
│ int32 │ date │ double │
├───────────┼────────────┼────────┤
│ 34 │ 2020-05-12 │ 960.03 │
│ 34 │ 2020-06-08 │ 935.33 │
│ 34 │ 2020-05-23 │ 924.08 │
│ 34 │ 2019-06-09 │ 915.4 │
│ 34 │ 2020-06-06 │ 914.98 │
│ 34 │ 2020-05-20 │ 912.65 │
│ 34 │ 2019-05-01 │ 912.6 │
│ 34 │ 2020-06-16 │ 911.93 │
│ 34 │ 2020-06-07 │ 911.73 │
│ 34 │ 2020-05-18 │ 907.98 │
│ 34 │ 2019-04-10 │ 907.63 │
│ 34 │ 2019-06-22 │ 906.78 │
│ 34 │ 2020-05-19 │ 906.4 │
├───────────┴────────────┴────────┤

4.6.2 Using the QUALIFY clause

Let’s say you want to only return rows where the result of a window function matches
some filter. You can’t add that filter in the WHERE clause because that would filter out
rows that get included in the window, and you need to use the results of the window
function. However, you also can’t use HAVING because window functions get evaluated
before an aggregation. So QUALIFY lets you filter on the results of a window function. 

 When we introduced window functions, we had to use a CTE to filter the results.
We can rewrite the query much more simply and clearly by using QUALIFY, still getting
the three highest-ranked values.

SELECT dense_rank() OVER (ORDER BY power DESC) AS rnk, *
FROM readings
QUALIFY rnk <= 3;

Let’s return to our example using a seven-day moving window (see listing 4.17). The
seven-day average production value is a good indicator of the efficiency of a photovol-
taic grid, and we might ask for the days at which a certain threshold was reached. We
only want results for which the average in a seven-day window was higher than 875
kWh, as shown in the following listing, so it goes into the QUALIFY clause. The
QUALIFIY clause can refer to the window function by name. 

Listing 4.22 Filter aggregated values in a window with the QUALIFY clause
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SELECT system_id,
day,
avg(kWh) OVER (

PARTITION BY system_id
ORDER BY day ASC
RANGE BETWEEN INTERVAL 3 Days PRECEDING

AND INTERVAL 3 Days FOLLOWING
) AS "kWh 7-day moving average"

FROM v_power_per_day
QUALIFY "kWh 7-day moving average" > 875
ORDER BY system_id, day;

With the example data, we find three dates that represent a typical “good day” of
photovoltaic power production in the western hemisphere:

┌───────────┬────────────┬──────────────────────────┐
│ system_id │ day │ kWh 7-day moving average │
│ int32 │ date │ double │
├───────────┼────────────┼──────────────────────────┤
│ 34 │ 2020-05-21 │ 887.4628571428572 │
│ 34 │ 2020-05-22 │ 884.7342857142858 │
│ 34 │ 2020-06-09 │ 882.4628571428572 │
└───────────┴────────────┴──────────────────────────┘

4.6.3 Using the FILTER clause

Sometimes, you want to compute an aggregate, an average, or a count of values, and
you realize there are some rows you don’t want to include. You could add to the FILTER
clause, but in a complex query, you might need to keep those rows to compute other
fields. For example, let’s say you sometimes get bad readings, which show up as negative
values. You want to compute the total number of readings and the average reading of
the sensor. If you were to filter out the bad readings in the WHERE clause, you wouldn’t
be able to compute the total number of readings. But if you were to simply average all
the readings, you would be including some of the bad, negative values. To solve this type
of problem, you can use FILTER expressions as part of the aggregation. 

 Returning to section 4.1, in which we had to deal with inconsistent sensor read-
ings, we are actually presented with the very problem of pulling NULL values into the
average, which is most likely not what we want. Instead of capping NULL values at zero,
we can filter them out of the average value altogether like this.

INSERT INTO readings(system_id, read_on, power)
SELECT any_value(SiteId),

time_bucket(
INTERVAL '15 Minutes',
CAST("Date-Time" AS timestamp)

) AS read_on,

Listing 4.23 Using the QUALIFY clause on windows spawning more than one row

Listing 4.24 Keeping nonsensical data out of the aggregates

Here’s where we 
set the threshold.



82 CHAPTER 4 Advanced aggregation and analysis of data
coalesce(avg(ac_power)
FILTER (
ac_power IS NOT NULL AND
ac_power >= 0

),0 )
FROM

read_csv_auto(
'https://developer.nrel.gov/api/pvdaq/v3/' ||
'data_file?api_key=DEMO_KEY&system_id=10&year=2019'

)
GROUP BY read_on
ORDER BY read_on
ON CONFLICT DO NOTHING;

You might wonder why we use the coalesce function; if all data is filtered out, noth-
ing goes into the aggregate, and the whole expression turns to NULL. That means that
if you filter out all the input from the aggregate, the value turns to NULL, which would
violate the constraint on our reading table. As usual, there is no one correct approach
here—it’s OK to prefer the solution in either listing 4.1 or 4.24. In this case, using the
FILTER-based solution combined with coalesce is a slightly better option because its
intention is slightly clearer. 

4.7 The PIVOT statement
You can have many aggregates in one query, and all of them can be filtered individu-
ally. This may help you answer a task like this: I want a report of the energy production per
system and year, and the years should be columns! Aggregating the production per system is
easy, and so is aggregating the production per year. Grouping by both keys isn’t diffi-
cult either—a statement like 

SELECT system_id, year(day), sum(kWh) FROM v_power_per_day GROUP BY ALL ORDER
BY system_id;

will do just fine and returns the following:

┌───────────┬─────────────┬────────────────────┐
│ system_id │ year("day") │ sum(kWh) │
│ int32 │ int64 │ double │
├───────────┼─────────────┼────────────────────┤
│ 10 │ 2019 │ 1549.280000000001 │
│ 10 │ 2020 │ 677.1900000000003 │
│ 34 │ 2019 │ 205742.59999999992 │
│ 34 │ 2020 │ 101033.75000000001 │
│ 1200 │ 2019 │ 62012.109999999986 │
│ 1200 │ 2020 │ 30709.329999999998 │
└───────────┴─────────────┴────────────────────┘

While we did group the data by system and year, the years per system appear in rows,
not columns. We want three rows with two columns, 2019 and 2020, containing the
values, pretty much as you would find the preceding data in a spreadsheet program.
The process of reorganizing such a table is called pivoting, and DuckDB offers a few

Values that are NULL or less 
than zero are not included 
in the average anymore.

We use the ON CONFLICT clause to avoid 
failures if you run this statement on a 
database that is already populated.
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ways to achieve this—one of which is the use of multiple filtered aggregates. Instead of
having only one sum aggregate, we define several and filter out each value we don’t
want for a specific column. We then end up with the following statement. 

SELECT system_id,
sum(kWh) FILTER (WHERE year(day) = 2019)

AS 'kWh in 2019',
sum(kWh) FILTER (WHERE year(day) = 2020)

AS 'kWh in 2020'
FROM v_power_per_day
GROUP BY system_id;

The values for the sum are equal, but the years are now columns, rather than individ-
ual groups. Now your fictitious boss can view that data in the way they are used to in
their spreadsheet program:

┌───────────┬────────────────────┬────────────────────┐
│ system_id │ kWh in 2019 │ kWh in 2020 │
│ int32 │ double │ double │
├───────────┼────────────────────┼────────────────────┤
│ 10 │ 1549.280000000001 │ 677.1900000000003 │
│ 34 │ 205742.59999999992 │ 101033.75000000001 │
│ 1200 │ 62012.109999999986 │ 30709.329999999998 │
└───────────┴────────────────────┴────────────────────┘

There’s one downside to this approach: the columns are essentially hardcoded, and
you need to revisit that query every time a year gets added. If you are sure that your
desired set of columns is constant, or you find yourself targeting other databases that
might not support any other form of pivoting, the static approach might be the right
solution for you.

 To solve this problem with DuckDB, use the PIVOT clause, shown in the following
listing, instead. DuckDB’s PIVOT clause allows for dynamically pivoting tables on arbi-
trary expressions. 

PIVOT (FROM v_power_per_day)
ON year(day)
USING sum(kWh);

The preceding statement is visualized in figure 4.4. We see all the steps from listing
4.26: selecting all columns, then using the ON clause to turn all distinct years into col-
umns and the sum aggregate for computing their value. The steps are numbered in
the same order as in the listing.

Listing 4.25 Statically pivoting a result by applying a filter to all aggregates selected

Listing 4.26 Using DuckDB’s PIVOT statement

You can omit the FROM if you want to select all 
columns, but we included it to demonstrate 
that this can actually be a full SELECT.

All distinct values from this 
expression are turned into columns.The aggregate to be 

computed for the columns
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Figure 4.4 Pivoting the power values on the year

The result produced by the simplified, dynamic statement matches exactly what we
statically constructed in listing 4.25— years as columns and systems as rows, with the
sum of the power produced by a system and year forming the intersection of rows and
columns:

┌───────────┬────────────────────┬────────────────────┐
│ system_id │ 2019 │ 2020 │
│ int32 │ double │ double │
├───────────┼────────────────────┼────────────────────┤
│ 10 │ 1549.280000000001 │ 677.1900000000003 │
│ 34 │ 205742.59999999992 │ 101033.75000000001 │
│ 1200 │ 62012.109999999986 │ 30709.329999999998 │
└───────────┴────────────────────┴────────────────────┘

In case you are using an aggregate for the cell values, all columns that are not part of
the ON clause will be used as a grouping key for the aggregate. However, you do not
need to use an aggregate. PIVOT v_power_per_day ON day will produce a result of
1,382 rows and 545(!) columns. Why is that? v_power_per_day contains 1,382 distinct
values of (system_id, kWh), which make up the rows. The system has been asked to

system_idSELECT year("day") sum (kWh)
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2019 1549.280000000001
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2020 30709.329999999998
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PIVOT (FROM v_power_per_day)
ON year (day)

FROM v_power_per_day)
GROUP BY ALL

USING sum (kWh)

(2)

(3)

(1)



854.7 The PIVOT statement
create a column using the day, not year(day), and there are 543 different days
recorded. The two additional columns are the system_id and kWh columns. So what’s
in the cells? There are many, many 0s and just a few 1s. Without the USING clause,
DuckDB will fill the cells with 0s for days that didn’t have the specific value and 1s for
days that did. So if you are actually interested in a tabular view of all days, you might
want to use the first aggregate like this in such a case:

PIVOT (
FROM v_power_per_day WHERE day BETWEEN '2020-05-30' AND '2020-06-02'

)
ON DAY USING first(kWh);

Note that we deliberately chose to select only a couple of days instead of trying to
print several hundred columns. The preceding query pivots this result into a tabular
view on the day:

┌───────────┬────────────┬────────┐
│ system_id │ day │ kWh │
│ int32 │ date │ double │
├───────────┼────────────┼────────┤
│ 1200 │ 2020-05-30 │ 280.4 │
│ 1200 │ 2020-05-31 │ 282.25 │
│ 1200 │ 2020-06-01 │ 288.29 │
│ 1200 │ 2020-06-02 │ 152.83 │
│ · │ · │ · │
│ · │ · │ · │
│ · │ · │ · │
│ 10 │ 2020-05-30 │ 4.24 │
│ 10 │ 2020-05-31 │ 3.78 │
│ 10 │ 2020-06-01 │ 4.47 │
│ 10 │ 2020-06-02 │ 5.09 │
├───────────┴────────────┴────────┤
│ 12 rows (8 shown) 3 columns │
└─────────────────────────────────┘

This result would make any spreadsheet artist happy:

┌───────────┬────────────┬────────────┬────────────┬────────────┐
│ system_id │ 2020-05-30 │ 2020-05-31 │ 2020-06-01 │ 2020-06-02 │
│ int32 │ double │ double │ double │ double │
├───────────┼────────────┼────────────┼────────────┼────────────┤
│ 10 │ 4.24 │ 3.78 │ 4.47 │ 5.09 │
│ 34 │ 732.5 │ 790.33 │ 796.55 │ 629.17 │
│ 1200 │ 280.4 │ 282.25 │ 288.29 │ 152.83 │
└───────────┴────────────┴────────────┴────────────┴────────────┘

All of the preceding queries use the proprietary DuckDB variant of PIVOT. DuckDB’s
syntax makes writing pivot statements much easier and less error-prone, as it com-
pletely eliminates any static enumeration of the rows on which the table should be piv-
oted. DuckDB also supports a more standard SQL form of PIVOT. However, the
support for the PIVOT clause wildly differs across different databases systems, and it is
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unlikely other possible target databases will have the exact same flavor of the stan-
dard. Therefore, we would rather use the proprietary syntax in this case, which is eas-
ier to read than hoping for more portable SQL. 

 In DuckDB, it is perfectly possible to compute multiple aggregates in the USING
clause as well as use multiple columns for pivoting. We could use this to not only com-
pute the total production per year (which is the sum of all days) but also add two more
columns that highlight the best day:

PIVOT v_power_per_day
ON year(day)
USING round(sum(kWh)) AS total, max(kWh) AS best_day;

We’ve rounded the totals so that the result is more readable:

┌───────────┬────────────┬───────────────┬────────────┬───────────────┐
│ system_id │ 2019_total │ 2019_best_day │ 2020_total │ 2020_best_day │
│ int32 │ double │ double │ double │ double │
├───────────┼────────────┼───────────────┼────────────┼───────────────┤
│ 10 │ 1549.0 │ 7.47 │ 677.0 │ 6.97 │
│ 34 │ 205743.0 │ 915.4 │ 101034.0 │ 960.03 │
│ 1200 │ 62012.0 │ 337.29 │ 30709.0 │ 343.43 │
└───────────┴────────────┴───────────────┴────────────┴───────────────┘

4.8 Using the ASOF JOIN
Imagine you are selling a volatile product at arbitrary times of day. You are able to pre-
dict prices at an interval, let’s say 15 minutes, but that’s as precise as you can get. How-
ever, people demand your product all the time, which leads to the following fictive
situation. The query in listing 4.27 generates two CTEs: a fictive price table with 4
entries for an hour of a random day as well as a sales table with 12 entries. It then joins
them together naively, and instead of the prices of 12 sales, you find only 4 results, as
shown in the following listing. 

WITH prices AS (
SELECT range AS valid_at,

random()*10 AS price
FROM range(

'2023-01-01 01:00:00'::timestamp,
'2023-01-01 02:00:00'::timestamp, INTERVAL '15 minutes')

),
sales AS (

SELECT range AS sold_at,
random()*10 AS num

FROM range(
'2023-01-01 01:00:00'::timestamp,
'2023-01-01 02:00:00'::timestamp, INTERVAL '5 minutes')

)
SELECT sold_at, valid_at AS 'with_price_at', round(num * price,2) as price
FROM sales
JOIN prices ON prices.valid_at = sales.sold_at;

Listing 4.27 Using an inner join for timestamps
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Figure 4.5 The inner join of time-series data gone wrong

Sales are quite poor, as clearly indicated by this result and represented in figure 4.5:

┌─────────────────────┬─────────────────────┬────────┐
│ sold_at │ with_price_at │ price │
│ timestamp │ timestamp │ double │
├─────────────────────┼─────────────────────┼────────┤
│ 2023-01-01 01:00:00 │ 2023-01-01 01:00:00 │ 21.17 │
│ 2023-01-01 01:15:00 │ 2023-01-01 01:15:00 │ 12.97 │
│ 2023-01-01 01:30:00 │ 2023-01-01 01:30:00 │ 44.61 │
│ 2023-01-01 01:45:00 │ 2023-01-01 01:45:00 │ 9.45 │
└─────────────────────┴─────────────────────┴────────┘

Enter the ASOF JOIN—the ASOF (pronounced as of) JOIN is a JOIN clause that joins on
inequality, picking a “good enough” value for the gaps where the JOIN columns are
not exactly equal. Returning to listing 4.27, we must change two things: replacing the
JOIN keyword with ASOF JOIN and providing an inequality operator. The following 

prices.valid_at <= sales.sold_at

inequality condition indicates that all prices valid at or before the point of sale can be
used to compute the total price.
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WITH prices AS (
SELECT range AS valid_at,

random()*10 AS price
FROM range(

'2023-01-01 01:00:00'::timestamp,
'2023-01-01 02:00:00'::timestamp, INTERVAL '15 minutes')

),
sales AS (

SELECT range AS sold_at,
random()*10 AS num

FROM range(
'2023-01-01 01:00:00'::timestamp,
'2023-01-01 02:00:00'::timestamp, INTERVAL '5 minutes')

)
SELECT sold_at, valid_at AS 'with_price_at', round(num * price,2) as price
FROM sales
ASOF JOIN prices

ON prices.valid_at <= sales.sold_at;

Note how DuckDB picks the price closest to that at the time of the sale. Additionally,
we now get the 12 expected rows:

┌─────────────────────┬─────────────────────┬────────┐
│ sold_at │ with_price_at │ price │
│ timestamp │ timestamp │ double │
├─────────────────────┼─────────────────────┼────────┤
│ 2023-01-01 01:00:00 │ 2023-01-01 01:00:00 │ 1.59 │
│ 2023-01-01 01:05:00 │ 2023-01-01 01:00:00 │ 3.56 │
│ 2023-01-01 01:10:00 │ 2023-01-01 01:00:00 │ 2.71 │
│ 2023-01-01 01:15:00 │ 2023-01-01 01:15:00 │ 29.12 │
│ 2023-01-01 01:20:00 │ 2023-01-01 01:15:00 │ 14.92 │
│ 2023-01-01 01:25:00 │ 2023-01-01 01:15:00 │ 4.83 │
│ 2023-01-01 01:30:00 │ 2023-01-01 01:30:00 │ 2.84 │
│ 2023-01-01 01:35:00 │ 2023-01-01 01:30:00 │ 3.84 │
│ 2023-01-01 01:40:00 │ 2023-01-01 01:30:00 │ 4.95 │
│ 2023-01-01 01:45:00 │ 2023-01-01 01:45:00 │ 23.1 │
│ 2023-01-01 01:50:00 │ 2023-01-01 01:45:00 │ 30.07 │
│ 2023-01-01 01:55:00 │ 2023-01-01 01:45:00 │ 11.6 │
├─────────────────────┴─────────────────────┴────────┤
│ 12 rows 3 columns │
└────────────────────────────────────────────────────┘

Figure 4.6 visualizes the algorithm: given four items p, each with a timestamp increas-
ing by 15 minutes each, and 12 items v, with a timestamp increasing by five minutes.
The ASOF JOIN in the figure is defined as p<=v so that each p item will be joined
together with three v items that have the same or higher timestamp. 

 The ASOF JOIN is often used to work with time series data, such as stock quotes,
prices, or IoT sensors. In our example, it can be used to join the changing selling
prices with the readings from the systems to compute the prices at any given point in

Listing 4.28 Using an ASOF JOIN for timestamps

Specify the
JOIN as ASOF.

Note the <=, in contrast 
to the = in listing 4.27.
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time. The final example, which follows, uses our photovoltaic example data again,
applying the same logic to pick a valid price. It then demonstrates that the ASOF JOIN
can be used with other constructs we learned in this chapter, such as using a window
to accumulate the running total earnings in a sales period with different prices, as
shown in the following listing.

SELECT power.day,
power.kWh,
prices.value as 'ct/kWh',
round(sum(prices.value * power.kWh)

OVER (ORDER BY power.day ASC) / 100, 2)
AS 'Accumulated earnings in EUR'

FROM v_power_per_day power
ASOF JOIN prices
ON prices.valid_from <= power.day

WHERE system_id = 34
ORDER BY day;

Listing 4.29 Computing a running total earning using ASOF JOIN and a window function
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Figure 4.6 Using ASOF JOIN to join all timestamps that don’t have an exact match
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The result shows the day, the amount of kWH produced, the price on that day (in
ct/kWH), and the accumulated sum of the product of the amount of power produced
and the price:

┌────────────┬────────┬──────────────┬─────────────────────────────┐
│ day │ kWh │ ct/kWh │ Accumulated earnings in EUR │
│ date │ double │ decimal(5,2) │ double │
├────────────┼────────┼──────────────┼─────────────────────────────┤
│ 2019-01-01 │ 471.4 │ 11.47 │ 54.07 │
│ 2019-01-02 │ 458.58 │ 11.47 │ 106.67 │
│ 2019-01-03 │ 443.65 │ 11.47 │ 157.56 │
│ 2019-01-04 │ 445.03 │ 11.47 │ 208.6 │
│ · │ · │ · │ · │
│ · │ · │ · │ · │
│ · │ · │ · │ · │
│ 2020-06-23 │ 798.85 │ 9.17 │ 31371.86 │
│ 2020-06-24 │ 741.15 │ 9.17 │ 31439.83 │
│ 2020-06-25 │ 762.6 │ 9.17 │ 31509.76 │
│ 2020-06-26 │ 11.98 │ 9.17 │ 31510.86 │
├────────────┴────────┴──────────────┴─────────────────────────────┤
│ 543 rows (8 shown) 4 columns │
└──────────────────────────────────────────────────────────────────┘

DuckDB is positioned as an OLAP database with a broad range of use cases. Dealing
with time-series data is certainly one of them, and the ASOF JOIN is part of that.
Regardless of the domain—which can take the form of anything from the sensor read-
ings in our example to the readings of a patient’s heart rate monitor to fluctuations in
the stock market—values recorded at a certain time are often enriched by joining
them with specific key values that have been valid for a time. Having support for ASOF
enables all scenarios in which timestamps are not aligned perfectly well. 

4.9 Using table functions
Most functions in SQL take parameters and return a single value. Table functions, on
the other hand, don’t just return a single value—they return a collection of rows. As
such, they can appear anywhere a table can appear. Depending on their function, they
can access external resources, such as files or URLs, and turn them into relations that
are part of standard SQL statements. DuckDB is not the only relational database sup-
porting the concept of table-producing functions, but it comes with an impressive set
of table functions, catering to many use cases. A list of all table functions in your
DuckDB installation can be retrieved via the following statement, which uses a table
function named duckdb_functions(). 

SELECT DISTINCT ON(function_name) function_name
FROM duckdb_functions()
WHERE function_type = 'table'
ORDER BY function_name;

Listing 4.30 Getting a list of all available table functions

The FROM clause is the most 
common place to call a 
table-producing function.
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In this chapter’s examples and during the ingestion of data, we have already made
extensive use of read_csv*, read_parquet, and others. Additional extensions, such as
the spatial extension, can be added to the list of table functions that read external
resources and produce relational data. 

 range(start, stop) and generate_series(start, stop) are a couple of very use-
ful table functions. Both functions create a list of values in the range between start
and stop. The start parameter is inclusive. For the range function, the stop parame-
ter is exclusive, while it is inclusive for generate_series. Both functions provide over-
loads, with an additional third parameter step defining the step size, which defaults
to 1. Variants that only take the stop parameter and default at 0 for start exist too.
While used as normal functions, they provide useful constructs but are much more
powerful when queried like a table.

 If you need a list of numbers between 1 and 5 and don’t want to hardcode them,
you can use SELECT generate_series(1, 5);. Numbers are helpful, but those func-
tions also work with temporal data. When using temporal data, be aware, though, that
you need to specify both start and end parameters, as there is no sensible default for
either. Let’s put this to practical use. The readings in our example data end in the
middle of 2020. Reports based on this would end prematurely if they were intended
for a whole year, as shown in the following snippet:

SELECT strftime(day, '%Y-%m') AS month, avg(kwh)
FROM v_power_per_day WHERE year(day) = 2020
GROUP BY ALL ORDER BY month;

The result will look like the following output:

┌─────────┬────────────────────┐
│ month │ avg(kwh) │
│ varchar │ double │
├─────────┼────────────────────┤
│ 2020-01 │ 222.13169014084497 │
│ 2020-02 │ 133.52356321839076 │
│ 2020-03 │ 207.86670454545438 │
│ 2020-04 │ 309.7838888888888 │
│ 2020-05 │ 349.5753763440861 │
│ 2020-06 │ 337.80820512820515 │
└─────────┴────────────────────┘

If you are tasked to create a chart, you might find yourself in a situation in which you
need to think about how to represent the future months. Here’s one way to use the
range() function to cover a whole year and indicate missing values with 0s. 

WITH full_year AS (
SELECT generate_series AS day
FROM generate_series(

'2020-01-01'::date,

Listing 4.31 Using a range of dates as a driving table

A range defined from the first up to the last 
day of the year, in an interval of 1 day
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.

'2020-12-31'::date, INTERVAL '1 day')
)
SELECT strftime(full_year.day, '%Y-%m') AS month,

avg(kWh) FILTER (kWh IS NOT NULL) AS actual
FROM full_year
LEFT OUTER JOIN v_power_per_day per_day

ON per_day.day = full_year.day
GROUP BY ALL ORDER BY month;

The result is now a report for a full year, which, sadly, lacks values after June 2020:

┌─────────┬────────────────────┐
│ month │ actual │
│ varchar │ double │
├─────────┼────────────────────┤
│ 2020-01 │ 222.13169014084508 │
│ 2020-02 │ 133.52356321839076 │
│ 2020-03 │ 207.86670454545455 │
│ 2020-04 │ 309.7838888888888 │
│ 2020-05 │ 349.57537634408607 │
│ 2020-06 │ 337.80820512820515 │
│ 2020-07 │ │
│ 2020-08 │ │
│ 2020-09 │ │
│ 2020-10 │ │
│ 2020-11 │ │
│ 2020-12 │ │
├─────────┴────────────────────┤
│ 12 rows 2 columns │
└──────────────────────────────┘

Taking this idea one step further, you could use the value of the same month in the
previous year to forecast the production value. To do that, you would have to join
v_power_per_day a second time, using an offset of one year, as shown in the following
listing.

WITH full_year AS (
SELECT generate_series AS day
FROM generate_series(

'2020-01-01'::date,
'2020-12-31'::date, INTERVAL '1 day')

)
SELECT strftime(full_year.day, '%Y-%m') AS month,

round(avg(present.kWh) FILTER (present.kWh IS NOT NULL),3) AS actual,
round(avg(past.kWh) FILTER (past.kWh IS NOT NULL), 3) AS forecast,

FROM full_year
LEFT OUTER JOIN v_power_per_day present

ON present.day = full_year.day
LEFT OUTER JOIN v_power_per_day past

ON past.day = full_year.day - INTERVAL '1 year'
GROUP BY ALL ORDER BY month;

Listing 4.32 Projecting past data into the future

Use the output of the table function 
in the FROM clause as a driving table

OUTER JOIN the 
values of interest.

Using the generated
series as a driving table

in the FROM clause

Joining power per day a second 
time but subtracting a year from 
the values of the generated series
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Note that we also added a call to round to both the actual and the forecast column,
avoiding clutter, as fractions with more than three digits don’t make much sense for
kWh values. Additionally, this change shows that the FILTER clause can also appear
inside a function call, as it belongs to the avg aggregate function, not the whole col-
umn. The result is much more pleasant and happens to provide a comparison
between this year and last year, essentially for free:

┌─────────┬─────────┬──────────┐
│ month │ actual │ forecast │
│ varchar │ double │ double │
├─────────┼─────────┼──────────┤
│ 2020-01 │ 222.132 │ 161.593 │
│ 2020-02 │ 133.524 │ 111.073 │
│ 2020-03 │ 207.867 │ 150.652 │
│ 2020-04 │ 309.784 │ 316.178 │
│ 2020-05 │ 349.575 │ 325.369 │
│ 2020-06 │ 337.808 │ 351.607 │
│ 2020-07 │ │ 334.323 │
│ 2020-08 │ │ 314.929 │
│ 2020-09 │ │ 289.605 │
│ 2020-10 │ │ 253.829 │
│ 2020-11 │ │ 191.384 │
│ 2020-12 │ │ 164.886 │
├─────────┴─────────┴──────────┤
│ 12 rows 3 columns │
└──────────────────────────────┘

4.10 Using LATERAL joins
In section 4.3, we learned about correlated and uncorrelated subqueries. Listing 4.5
demonstrated how an uncorrelated subquery can be joined once with the outer query.
From a performance perspective, that might be beneficial, as the subquery only needs
to be evaluated once and the join is then performed for each row of the other table
against the memorized values. 

 Sometimes, however, you want to evaluate precisely the inner query for each value
of an outer query. This is where the LATERAL JOIN comes into play. You can think of it
as the inner block of a for loop with the outer query being the control structure.

 Unnesting arrays, fanning out data, and similar tasks can be dealt with using
LATERAL. Assume you are interested in the intensity of the sun, specifically how much
of its energy reaches your place at certain hours of the day, past or future. Open
Meteo (https://open-meteo.com) offers a free API that provides a broad range of
weather data, including the so-called global horizontal irradiance (GHI)—that is, the
total amount of short-wave radiation received from above by a surface horizontal to
the ground. This value is of particular interest to photovoltaic installations and is mea-
sured in W/m². As shown in the following listing, their API generates a JSON object
that contains two individual arrays, one with the timestamps and another with the
selected values. The latter array is the array of interest; we want to retrieve specific val-
ues for some given facts. 

https://open-meteo.com
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{
"latitude": 50.78,
"longitude": 6.0799994,
"utc_offset_seconds": 7200,
"timezone": "Europe/Berlin",
"timezone_abbreviation": "CEST",
"elevation": 178.0,
"hourly_units": {

"time": "iso8601",
"shortwave_radiation_instant": "W/m\u00b2"

},
"hourly": {

"time": [
"2023-08-26T00:00",
"2023-08-26T01:00",
"2023-08-26T02:00",
"2023-08-26T03:00",
"2023-08-26T04:00",
"2023-08-26T05:00"

],
"shortwave_radiation_instant": [

0.0,
0.0,
0.0,
0.0,
0.0,
9.1

]
}

}

The preceding JSON is in the code repository of the book under ch04/ghi_past_and_
future.json. Alternatively, you can access fresh data via Open-Meteo’s API: https://
mng.bz/WE5w.

 At first sight, it might seem like a daunting task to use SQL to pick out the morning
hours, noon, and the evening hours from that array. Let’s see how LATERAL can solve
this task. We already read in chapter 1 that DuckDB is able to process JSON, and we
will examine this in greater detail in chapter 5. For now, it is enough to know that you
can select from a JSON file like from any other table in the FROM clause. The following
query generates a series of seven days and then joins those with the hours 8, 13, and
19 (7 p.m.) to create indexes. Those indexes are the day number multiplied by 24 plus
the hour of day at which you desire to find the value in the JSON array. That index is
the lateral driver for the subquery:

INSTALL json;
LOAD json;

WITH days AS (
SELECT generate_series AS value FROM generate_series(7)

Listing 4.33 Excerpt of a JSON response from Open Meteo containing GHI data

https://mng.bz/WE5w
https://mng.bz/WE5w
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), hours AS (
SELECT unnest([8, 13, 18]) AS value

), indexes AS (
SELECT days.value * 24 + hours.value AS i
FROM days, hours

)
SELECT date_trunc('day', now()) - INTERVAL '7 days' +

INTERVAL (indexes.i || ' hours') AS ts,
ghi.v AS 'GHI in W/m^2'

FROM indexes,
LATERAL (

SELECT hourly.shortwave_radiation_instant[i+1]
AS v

FROM 'code/ch04/ghi_past_and_future.json'
) AS ghi
ORDER BY ts;

The end of August 2023 did look like this in Aachen; it was not a great month for
photovoltaics:

┌──────────────────────────┬──────────────┐
│ ts │ GHI in W/m^2 │
│ timestamp with time zone │ double │
├──────────────────────────┼──────────────┤
│ 2023-08-26 08:00:00+02 │ 36.0 │
│ 2023-08-26 13:00:00+02 │ 490.7 │
│ 2023-08-26 18:00:00+02 │ 2.3 │
│ 2023-08-27 08:00:00+02 │ 243.4 │
│ 2023-08-27 13:00:00+02 │ 124.3 │
│ · │ · │
│ · │ · │
│ · │ · │
│ 2023-09-01 13:00:00+02 │ 392.0 │
│ 2023-09-01 18:00:00+02 │ 0.0 │
│ 2023-09-02 08:00:00+02 │ 451.0 │
│ 2023-09-02 13:00:00+02 │ 265.0 │
│ 2023-09-02 18:00:00+02 │ 0.0 │
├──────────────────────────┴──────────────┤
│ 24 rows (10 shown) 2 columns │
└─────────────────────────────────────────┘

The subquery can produce zero, one, or a larger number of rows for each row of the
driving outer table. In the preceding example, it produced one row for each outer row.
If the subquery produces more rows, the values of the outer row will be repeated, in a
manner similar to a CROSS JOIN. If the subquery does not produce any value, the join
won’t produce a value either. We must apply an OUTER JOIN in this case as well. At this
point, the LATERAL keyword alone is not enough, and we must use the full JOIN syntax
like this. The following query is artificial and of little value, except in demonstrating the
syntax. Both queries produce a series of values from 1 to 4, with the outer in a step size
of 1 and the inner in a step size of 2. We compare both values in the ON clause:

SELECT i, j
FROM generate_series(1, 4) t(i)

Recreates data from 
the hourly index

Arrays are 1 based in 
DuckDB (and SQL in general).

DuckDB automatically detects that 
this string refers to a JSON file,  
loads it, and then parses it.
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LEFT OUTER JOIN LATERAL (
SELECT * FROM generate_series(1, 4, 2) t(j)

) sq ON sq.j = i
ORDER BY i;

The result of this query looks like this:

┌───────┬───────┐
│ i │ j │
│ int64 │ int64 │
├───────┼───────┤
│ 1 │ 1 │
│ 2 │ │
│ 3 │ 3 │
│ 4 │ │
└───────┴───────┘

The problem with the prices in section 4.8 can be solved with a subquery and LATERAL
JOIN too. In essence, the subquery must return a row from the price table that has a
validity as close to the date in time of the sale as possible. For that to work, we cannot
use a normal JOIN, as the subquery must produce different values for each incoming
date. Therefore, the date column that would normally be part of the JOIN must move
inside the subquery. Thus, the joined subquery now becomes correlated, or laterally
joined to the outer query. The correlation in the following example is the validity of
the price compared to the day the power production was recorded. 

SELECT power.day, power.kWh,
prices.value as 'EUR/kWh'

FROM v_power_per_day power,
LATERAL (

SELECT *
FROM prices
WHERE prices.valid_from <= power.day
ORDER BY valid_from DESC limit 1

) AS prices
WHERE system_id = 34
ORDER BY day;

For time-series-related computations with DuckDB, we would most certainly use the
ASOF JOIN. LATERAL is attractive when considering portability, and there are probably
more databases supporting LATERAL than ASOF JOIN. Use LATERAL in scenarios in
which you want to fan out of a dataset to produce more rows. 

 
 

Listing 4.34 Comparing the ASOF JOIN from listing 4.29 to a LATERAL JOIN

While the condition is now on the outside 
and cannot be formulated otherwise, it is 
still a correlated subquery.

Mark the subquery as lateral, 
allowing correlation.

Correlate by 
inequality.

While the ASOF JOIN would 
automatically pick the closest value 
for us, we must order the values 
ourselves when using LATERAL.
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Summary
 The SQL standard has evolved greatly since its last major revision in 1992

(SQL-92). DuckDB supports a broad range of modern SQLs, including CTEs
(SQL:1999), window functions (SQL:2003), list aggregations (SQL:2016), and
more.

 Grouping sets allow the computation of aggregates over multiple groups, per-
forming a drill down into different levels of detail; ROLLUP and CUBE can be used
to generate subgroups or combinations of grouping keys.

 DuckDB fully supports window functions, including named windows and
ranges, enabling use cases such as computing running totals, ranks, and more.

 All aggregate functions, including statistic computations and interpolations, are
optimized for usage in a windowed context.

 HAVING and QUALIFY can be used to select aggregates and windows after they have
been computed; FILTER prevents unwanted data from going into aggregates.

 DuckDB includes ASOF JOIN, which is necessary in use cases involving time-
series data.

 DuckDB also supports LATERAL joins that help fan out data and can emulate
loops, to an extent.

 Results can be pivoted, either with a simplified, DuckDB-specific PIVOT state-
ment or a more static, standard SQL approach.



Exploring data
without persistence
In this chapter, we’re going to learn how to query data without persisting the data
in DuckDB, a technique that is quite unusual for a database and seems counterintu-
itive, but which is useful in the right situations. For example, if we need to trans-
form data from one format to another, we might not necessarily want to create an
intermediate storage model while doing this.

 This chapter also demonstrates the power of DuckDB’s analytical engine, even
when your data isn’t stored in the native format. We’ll show how to query several
common data formats, including JSON, CSV, and Parquet, as well as other data-
bases, such as SQLite.

This chapter covers 
 Converting CSV files to Parquet files

 Auto-inferring file type and data schema

 Creating views to simplify the querying of nested 
JSON documents

 Exploring the metadata of Parquet files

 Querying other databases, such as SQLite
98
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 The JSON and CSV sources we are working with in this chapter are located in the
ch05 folder of our example repository on GitHub: https://github.com/duckdb-in
-action/examples. We assume you have navigated to the root of this repository before
invoking the DuckDB CLI for the examples in this chapter.

5.1 Why use a database without persisting any data?
Exploring and analyzing data without persisting makes sense when we are working
with data stored in a remote location. For example, you might have files living in Ama-
zon S3. We don’t know yet whether we want to build a production pipeline with this
data, so we don’t want to spend a bunch of time defining a data model, like we did in
chapter 3, and ingest the remote data into DuckDB’s storage format. Or it might con-
tain data that we don’t want to persist for privacy reasons. However, we still want to uti-
lize what we learned about DuckDB and SQL in the previous chapters so that we can
use it to understand the shape and volume of the data. Depending on the file format
and storage location, DuckDB may not even need to download the entirety of the file
contents. At a later stage, we may then choose to ingest the data into DuckDB. 

 Most likely, you already have some kind of database in your infrastructure. DuckDB
is able to use the store systems of several other databases. Most notably, there are the
SQLite and Postgres integrations. The former works directly on the SQLite store files,
and the latter works with the binary transfer mode of the Postgres client–server protocol.
In either case, you don’t have the data inside your DuckDB process but are still able to
take advantage of DuckDB’s fast query engine and SQL support. In many cases, for 22
TPC-H benchmark queries, DuckDB had been faster when using the Postgres integra-
tion than Postgres itself (and faster in all queries when using its own storage). 

NOTE What is the TPC-H benchmark? It is a decision support benchmark, con-
sisting of a suite of business-oriented ad hoc queries and concurrent data
modifications. The benchmark uses a typical star schema for sales order, with
sales and line items as fact tables and a couple of dimension tables, such as
products and customers. This benchmark illustrates decision support systems
that examine large volumes of data, execute queries with a high degree of
complexity, and give answers to critical business questions. TPC-H is the most
commonly used benchmark for analytics, although many people only run the
read queries, not the updates, which are also part of the specification. 

5.2 Inferring file type and schema
DuckDB has two features that make it very easy to process files or sets of files. It can
determine both what kind of file is being read (also referred to as auto-inferring file
types) and the schema of the data in the file: 

 Auto-inferring files types—With DuckDB, you can query the content of supported
file formats, such as CSV, JSON, and Parquet, as simply as using

https://github.com/duckdb-in-action/examples
https://github.com/duckdb-in-action/examples
https://github.com/duckdb-in-action/examples
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FROM 'flights.csv';. The functionality is provided out of the box, and it sup-
ports all SQL clauses and functions mentioned in the previous chapters. When
you issue such a query, DuckDB works out first that you are not querying a table
or view in your current schema. If the file exists in the filesystems, DuckDB uses
its extension to determine the file type and calls an appropriate function that
knows how to process that data format to read the file. Those functions provide
sensible defaults for both behavior (e.g., the number of samples to take before
a data type is decided) and formats (e.g., date and time formats). If those
defaults don’t work for you, look out for the table functions read_csv_auto,
read_json_auto, and read_parquet_auto. These functions are called internally
when you issue a query like the preceding one. They provide a plethora of argu-
ments to change singular details but still automatically derive column names,
object structures, and so on. So instead of just querying FROM 'a_file.csv' or
FROM 'data*.json', you would use FROM read_json_auto('data*.json') with
the appropriate arguments you need.

 Auto-inferring schema—DuckDB automatically infers the schema of any data
sources we ask it to process. With data formats like Parquet, this is easier, as files
have an embedded schema that DuckDB can use. With others, like CSV or JSON,
it will infer the schema from a configurable number of sample objects. DuckDB
also infers the dialect of CSV files and detects whether they contain a header row.
If we aren’t completely happy with the inferences made, we can choose to over-
ride the types of all, or just some, of the columns. In such a case, you would not
use a plain filename but instead use a “non-auto” function, like read_csv:

FROM read_csv(
'flights.csv',
auto_detect=true,
columns={

'FlightDate': 'DATE',
'UniqueCarrier': 'VARCHAR',
'OriginCityName': 'VARCHAR',
'DestCityName': 'VARCHAR'

}
);

DuckDB can read multiple files of different types (CSV, Parquet, JSON files, etc.) at
the same time, using either the glob syntax or by providing a list of files to read. When
reading from multiple files, DuckDB must combine schemas from those files. That is
because each file may have its own schema, which can differ from the other files.
DuckDB offers two ways of unifying schemas of multiple files: by column position and
column name. By default, DuckDB reads the schema of the first file provided, and
then it unifies columns in subsequent files by column position. This works correctly as
long as all files have the same schema, with the same names, at identical positions.
Otherwise, you can use the union_by_name option for the read_xxx functions, which
allows DuckDB to construct the schema by reading all of the names instead. 

The file 
to read

Use auto-detection 
for all arguments.

Ensure the listed columns are being 
converted into the given data types.
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5.2.1 A note on CSV parsing

CSV parsing can be surprisingly difficult, even though the format is simple and, at first
glance, straightforward. DuckDB uses sampling in all cases in which read_csv_auto or
read_csv with auto_detect is set to true. A certain number of rows from the file
(20,480 by default) are read to detect the following:

 The dialect of the CSV file (delimiter, quoting rule, escape, etc.)
 The types of each of the columns
 Whether the file has a header row

We consider type detection to be the most important factor in ensuring good data
quality in any later step. DuckDB tries to determine the following types in descending
priority:

 BOOLEAN

 BIGINT

 DOUBLE

 TIME

 DATE

 TIMESTAMP

 VARCHAR

To the end, everything can be cast to VARCHAR. This type has the lowest priority—i.e.,
columns are converted to VARCHAR if they cannot be cast to anything else. 

 There’s a good chance you want or need to control the behavior of read_csv_auto
or read_csv. The DuckDB documentation lists the most important arguments in a
dedicated section (https://mng.bz/8w5B). These parameters apply to the corre-
sponding export functions as well. Arguments we found helpful were names, to config-
ure the column names in absence of header rows; dateformat, timestampformat, and
decimal_separator for date and number formats; and filename when dealing with
multiple files at once (this option adds an artificial column containing the filename of
the processed file). 

 If you find yourself in a scenario in which you don’t have access to the aforemen-
tioned documentation, you can always query DuckDB to give you a list of arguments
to its functions:

SELECT distinct function_name,
unnest(parameters) as parameter

FROM duckdb_functions()
WHERE function_name = 'read_csv'
ORDER BY parameter;

NOTE JSON and Parquet processing are configurable too. The focus is dif-
ferent in each format. The most relevant options for JSON are the format
specifications for dates and numbers, while Parquet requires some
thought—especially when writing—about the size of row groups and the
compression. 

This can be any other 
function too (e.g., read_json).

https://mng.bz/8w5B
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5.3 Shredding nested JSON
DuckDB’s built-in JSON extension has functions to create, read, and manipulate
JSON strings. This is achieved by automatically detecting the types and column names
and then converting the values within the JSON into DuckDB’s vectors. 

 We’re going to explore this capability using a set of JSON files to represent shots
that were taken in Premier League football matches. These files were created using
the understatapi library (https://pypi.org/project/understatapi/). The source data is
in JSON lines format, with one match per row. The files are stored in a subdirectory
xg, which stands for expected goals, a term borrowed from the understat site. 

 We can explore the high-level structure of each JSON document by executing the
following SQL query from the DuckDB CLI. The example shows that it is possible to
query not only a single file but many files at once. xg/shots_*.json is a wildcard
expression that will find all the files in the xg directory with the prefix shots_ and the
suffix .json. Our example files have slightly different schemas, which don’t work well
with either union, by position or name, so we must deal with those ourselves and stick
with the default: union by position. We will unnest the JSON objects into separate
rows and fix any conformity problems that become apparent in the process. We rec-
ommend using the line in the DuckDB CLI mode because there are a lot of fields,
which would get truncated if we were to use the default duckbox presentation mode:

.mode line
DESCRIBE FROM 'xg/shots_*.json';

NOTE By default, unnest only unpacks the first level of a JSON object. If you
want to unpack deeply nested objects, you can use the recursive := true
parameter. 

The output from running this query is shown in the following code. Please take note
that we line-wrapped the output. In line mode, the DuckDB CLI will produce the type
information without any line breaks. The schema that has been inferred for the
expected goals JSON data looks like this:

column_name = h
column_type = STRUCT(

id BIGINT, "minute" BIGINT, result VARCHAR,
X VARCHAR, Y VARCHAR, xG VARCHAR,
player VARCHAR, h_a VARCHAR, player_id BIGINT,
situation VARCHAR, season BIGINT, shotType VARCHAR, match_id BIGINT,
h_team VARCHAR, a_team VARCHAR, h_goals BIGINT, a_goals BIGINT,
date TIMESTAMP, player_assisted VARCHAR, lastAction VARCHAR)[]

null = YES
key =

default =
extra =

column_name = a
column_type = STRUCT(

id BIGINT, "minute" BIGINT, result VARCHAR,

https://pypi.org/project/understatapi/
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X VARCHAR, Y VARCHAR, xG VARCHAR,
player VARCHAR, h_a VARCHAR, player_id BIGINT,
situation VARCHAR, season BIGINT, shotType VARCHAR, match_id BIGINT,
h_team VARCHAR, a_team VARCHAR, h_goals BIGINT, a_goals BIGINT,
date TIMESTAMP, player_assisted VARCHAR, lastAction VARCHAR)[]

null = YES
key =

default =
extra =

From this output, we learn that each entry has h and a properties that point to STRUCT
arrays, where each STRUCT represents a single event. The content is identical, but
there was no way for DuckDB to create a unified schema for our input files because it
couldn’t match the columns by either position or name. The data will be easier to
work with if we unpack those arrays. Unpacking here means that we turn an array of
elements into individual elements so that we can easily use the LIMIT clause to restrict
the number of results returned. The unnest function will unpack those arrays. We use
it to create a row for each value in the arrays stored in the h and a properties. This is
done in two separate SELECT statements, which are then combined using the UNION
ALL clause. We also will limit the result to a small value greater than 1 (JSON docu-
ments don’t have to be uniform, so one result may be too few, but a result that
includes all rows will be overwhelming too):

FROM 'xg/shots_*.json'
SELECT unnest(h) AS row
UNION ALL
FROM 'xg/shots_*.json'
SELECT unnest(a) AS row
LIMIT 3;

If we run this query, we will receive three rows. While the source of each row is a JSON
object, DuckDB does return a DuckDB struct, and though it shares some similarities
with JSON, it does not parse as JSON. We’ve reproduced one row as follows, again
wrapping the lines to make the code more readable:

row = {'id': 54521, 'minute': 43, 'result': MissedShots,
'X': 0.9419999694824219, 'Y': 0.52, 'xG': 0.07078909873962402,
'player': Chancel Mbemba, 'h_a': h, 'player_id': 849,
'situation': FromCorner, 'season': 2015, 'shotType': Head,
'match_id': 229, 'h_team': Newcastle United, 'a_team': Liverpool,
'h_goals': 2, 'a_goals': 0, 'date': 2015-12-06 20:00:00,
'player_assisted': Papiss Demba Cissé, 'lastAction': Pass}

Before we do any further analysis, let’s create a view based on the results of that query.
A view is not physically materialized but instead runs the underlying query each time.
The benefit of defining a view is that it provides us with a shorthand for querying the
data rather than having to write out the full location of the file each time:

This combines the results of the statements 
before and after this clause, including 
duplicates (indicated by the ALL keyword).

Choose a number to limit the results returned 
that gives you enough results to judge 
data quality but does not overwhelm you.
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CREATE VIEW shots AS
FROM (

FROM 'xg/shots_*.json'
SELECT unnest(h) AS row
UNION ALL
FROM 'xg/shots_*.json'
SELECT unnest(a) AS row

);

Next, we’re going to look at the schema of that view:

DESCRIBE shots;

We should see output similar to the following:

column_name = row
column_type = STRUCT(

id BIGINT, "minute" BIGINT, result VARCHAR, X VARCHAR, Y VARCHAR,
xG VARCHAR, player VARCHAR, h_a VARCHAR, player_id BIGINT,
situation VARCHAR, season BIGINT, shotType VARCHAR, match_id BIGINT,
h_team VARCHAR, a_team VARCHAR, h_goals BIGINT, a_goals BIGINT,
date TIMESTAMP, player_assisted VARCHAR, lastAction VARCHAR)

null = YES
key =

default =
extra =

DuckDB’s inference wasn’t perfect. X, Y, and xG are coordinates in the original JSON
and should all have a numeric type (e.g., DOUBLE); otherwise, we won’t be able to per-
form numeric operations on those fields. To fix this, we take the inferred STRUCT type
and change the type definition of the fields in question and then cast each row to that
new STRUCT. 

 The following listing shows how we cast row to a STRUCT, with these fields set to the
DOUBLE type. Let’s replace the view with one in which we’ve cast those fields to the cor-
rect types. 

CREATE OR REPLACE VIEW shots AS
FROM (

FROM 'xg/shots_*.json'
SELECT unnest(h) AS row
UNION ALL
FROM 'xg/shots_*.json'
SELECT unnest(a) AS row

)
SELECT CAST(ROW AS STRUCT(

id BIGINT, "minute" BIGINT, result VARCHAR,
X DOUBLE, Y DOUBLE, xG DOUBLE,
player VARCHAR, h_a VARCHAR, player_id BIGINT,
situation VARCHAR, season BIGINT, shotType VARCHAR,
match_id BIGINT, h_team VARCHAR, a_team VARCHAR,

Listing 5.1 Using CAST on a whole STRUCT to fix the inferred types for some attributes

Note the different 
data type.
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h_goals BIGINT, a_goals BIGINT, date TIMESTAMP,
player_assisted VARCHAR, lastAction VARCHAR)) AS row;

Now let’s look at the schema of the view again:

DESCRIBE shots;

We can see that those types have been updated to DOUBLE:

column_name = row
column_type = STRUCT(

id BIGINT, "minute" BIGINT, result VARCHAR,
X DOUBLE, Y DOUBLE, xG DOUBLE,
player VARCHAR, h_a VARCHAR, player_id BIGINT,
situation VARCHAR, season BIGINT, shotType VARCHAR,
match_id BIGINT, h_team VARCHAR, a_team VARCHAR,
h_goals BIGINT, a_goals BIGINT, date TIMESTAMP,
player_assisted VARCHAR, lastAction VARCHAR)

null = YES
key =

default =
extra =

If you are lucky, as in this case, you can just cast the whole type, as DuckDB’s sampling
was wrong. If DuckDB’s sampling, however, was right, and there truly are fields that
cannot be automatically cast into a non-string type, queries on the view will be prob-
lematic. Numeric types, for example, might contain surprises, and from our experi-
ence, the representation of timestamps is often the hardest to deal with, despite the
fact that there is an adequate ISO standard for formatting dates and timestamps alike.

 While DuckDB does validate the property names of the JSON structure, it does not
try to cast each value at the moment the view is defined, so there may be data lurking
in your input that does not conform to an expected format. Additionally, if you hap-
pen to add new files to your pipeline, new, invalid data may appear. In this case, you
end up with an error such as Error: Conversion Error: Could not convert string
'abc' to DOUBLE when you query for SELECT row.x FROM shots. Sometimes this is
exactly what you want, but sometimes it is not.

 There are two ways you can address this. Your first option is to examine each of the
attributes at the field level and fix them individually (see section 5.4). If you take this
approach, be sure to use one of the date formatting functions DuckDB offers (any of
them will do) prior to casting. In an explorative use case, such as this, going down to
the field level is a task that requires a lot of effort, which may not be worth it. Instead,
we recommend switching from the cast function to try_cast (see listing 5.1, which
details the use of try_cast(row AS STRUCT(…)) AS row). Any fields with data that can-
not be cast to a DOUBLE will now be returned as literal NULL values. 

 At this point, we could start writing queries directly against this view, but one more
neat feature DuckDB supports is unpacking structs into columns. This means that
rather than having a single column with nested fields, each field would be its own col-
umn. As such, you can easily address that column to begin with or apply any kind of
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function or aggregation on it. You can compare this to the way we unnested, or flat-
tened, the lists in the original JSON files, which meant transforming a structure like
[1, 2, 3] into three rows: 1, 2, and 3. This is also supported for structs and map-
shaped types; unnesting them will result in one column per attribute or key. The
SELECT unnest({'x' :1, 'y':2, 'z': 3}) statement unnests, or flattens, the anony-
mous struct into three columns:

┌───────┬───────┬───────┐
│ x │ y │ z │
│ int32 │ int32 │ int32 │
├───────┼───────┼───────┤
│ 1 │ 2 │ 3 │
└───────┴───────┴───────┘

The * operator can be used as shorthand for expanding a struct to columns when the
struct can be referenced via a variable, as in this statement. This yields the same out-
put as our previous result:

WITH src AS (SELECT {'x' :1, 'y':2, 'z': 3} AS row)
SELECT row.* FROM src;

This technique saves you from the hassle of needing to qualify access to the elements
of your struct at all times. With that knowledge, let’s create a new view that flattens the
rows we extracted from the lists too:

CREATE OR REPLACE VIEW shotsFlattened AS (
SELECT row.*
FROM shots

);

We can then describe that new view:

.mode duckbox
DESCRIBE shotsFlattened;

We can see the new schema with individual columns. The output has been slightly
truncated for readability:

┌─────────────────┬─────────────┬─────────┐
│ column_name │ column_type │ null │
│ varchar │ varchar │ varchar │
├─────────────────┼─────────────┼─────────┤
│ id │ BIGINT │ YES │
│ minute │ BIGINT │ YES │
│ result │ VARCHAR │ YES │
│ X │ DOUBLE │ YES │
│ Y │ DOUBLE │ YES │
│ xG │ DOUBLE │ YES │
│ player │ VARCHAR │ YES │
│ h_a │ VARCHAR │ YES │
│ player_id │ BIGINT │ YES │
│ situation │ VARCHAR │ YES │

The .* syntax creates one column 
for every top-level field in a struct.
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│ season │ BIGINT │ YES │
│ shotType │ VARCHAR │ YES │
│ match_id │ BIGINT │ YES │
│ h_team │ VARCHAR │ YES │
│ a_team │ VARCHAR │ YES │
│ h_goals │ BIGINT │ YES │
│ a_goals │ BIGINT │ YES │
│ date │ TIMESTAMP │ YES │
│ player_assisted │ VARCHAR │ YES │
│ lastAction │ VARCHAR │ YES │
├─────────────────┴─────────────┴─────────┤
│ 20 rows │
└─────────────────────────────────────────┘

We’ll conclude our exploration of nested JSON files with a query that finds the teams
with the highest number of expected goals in the 2022 season since providing data
related to this metric is Understat’s mission (https://understat.com):

SELECT CASE
WHEN h_a = 'h' AND result <> 'OwnGoal' THEN h_team
WHEN h_a = 'a' AND result = 'OwnGoal' THEN h_team
ELSE a_team
END AS team,
round(sum(xg), 2) AS totalXG,
count(*) FILTER(WHERE result IN ('Goal', 'OwnGoal')) AS goals

FROM shotsFlattened
WHERE season = 2022
GROUP BY ALL
ORDER BY totalXG DESC
LIMIT 10;

NOTE Expected goals (xG) is a football metric which allows you to evaluate
team and player performance. In a low-scoring game, such as football, the
final match score does not always provide a clear picture of each team’s per-
formance. This is why more and more sports analysts turn to advanced mod-
els, like xG, which is a statistical measure of the quality of chances to score a
goal created and conceded in a match. Essentially, this is a problem field in
which an analytical database like DuckDB can be very useful.

If you follow Premier League football, you won’t be surprised to see that the best team
in the league, Manchester City, also recorded the highest xG metric in 2022:

┌───────────────────┬─────────┬───────┐
│ team │ totalXG │ goals │
│ varchar │ double │ int64 │
├───────────────────┼─────────┼───────┤
│ Manchester City │ 45.66 │ 53 │
│ Arsenal │ 41.2 │ 45 │
│ Liverpool │ 39.96 │ 34 │
│ Newcastle United │ 38.17 │ 33 │
│ Brighton │ 34.2 │ 37 │
│ Manchester United │ 34.03 │ 32 │

https://understat.com
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│ Tottenham │ 33.49 │ 40 │
│ Brentford │ 31.7 │ 32 │
│ Fulham │ 30.12 │ 32 │
│ Leeds │ 27.32 │ 26 │
├───────────────────┴─────────┴───────┤
│ 10 rows 3 columns │
└─────────────────────────────────────┘

5.4 Translating CSV to Parquet
A common task in data engineering is converting one data format to another. The ini-
tial tools in the space assumed that you’d need to load the entire source dataset into
memory before converting it to the target data format. DuckDB lets you set a memory
limit such that it will load a limited number of source data rows into memory. This is
useful if you’re dealing with large datasets or using a machine with limited resources. 

 In this section, we’re going to learn how to convert CSV files to Parquet format. Par-
quet is a commonly used columnar storage file format that was designed for big data pro-
cessing frameworks, like Apache Spark. Its efficient compression and encoding
techniques provide the benefit of reduced storage requirements and improved query
performance compared to text-based formats without metadata, like CSV and JSON.
This file type also uses predicate and projection pushdown, which enable the execution
of selective queries and minimize data transfer—which are especially beneficial in dis-
tributed environments. With these mechanisms, you can tell the storage layer to only
fetch selected columns or specific segments of data relevant for your query and match
conditions, leaving the remaining stored data completely untouched. 

 From the book’s GitHub repository, navigate to the ch05 directory:

cd ch05

You should see an atp directory that contains a set of files with the prefix atp_
rankings_. These files contain data on the rankings of professional tennis players
going back to the 1970s. You’ll also see a single atp_players.csv file, which contains
player metadata.

 Depending on your operating system, you can view this directory either in your UI
or using a command-line tool, like ls or du. The latter gives you a nice, human-
readable size of files to look at:

du -h atp/*.csv

Regardless of your approach, you should see the following files and approximate sizes:

2,1M atp/atp_players.csv
20M atp/atp_rankings_00s.csv
20M atp/atp_rankings_10s.csv

3,3M atp/atp_rankings_20s.csv
412K atp/atp_rankings_70s.csv
5,7M atp/atp_rankings_80s.csv
16M atp/atp_rankings_90s.csv

2,1M atp/atp_rankings_current.csv
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We are essentially looking at normalized tables—the players are stored independent of
their rankings, as one would do in a relational model. Our Parquet file should contain
denormalized data in the end, and we will join the rankings and players together in
our pipeline. 

 None of the most common file browsing programs, such as du, Windows Explorer,
and Finder for macOS, can give you direct insight into the files, such as the number of
rows or records in each file. This is an important quality for our task of taking the con-
tent of all CSV files and converting them to one Parquet file. As a columnar format type,
Parquet files group rows together. Finding a good size for the number of rows in a
group is important. If the row group size is too small, compression is less effective. A sig-
nificant portion of the file will be taken up with row group headers, and compression
works better over larger blocks. This means the file is going to be larger, and more pro-
cessing time will be spent reading headers. On the other hand, if the row group size is
too large, DuckDB cannot parallelize the reads, so performance may suffer.

 Let’s start by writing a query that counts the number of records in each of the rank-
ings files. The query is a nice example of how we want to use automatic structure and
type inference, while changing some aspects. Therefore, we use the read_csv_auto
function, which automatically infers the type of each field in the file, as FROM 'atp/
atp_rankings_*.csv'; would do, but it also allows us to pass in the filename=true
flag. This will add a computed column to the result, containing the filename of each
CSV file read:

SELECT filename, count(*)
FROM read_csv_auto(

'atp/atp_rankings_*.csv',
filename=true

)
GROUP BY ALL
ORDER BY ALL;

The individual filenames and the number of rows per file will be printed when run-
ning the statement:

┌──────────────────────────────┬──────────────┐
│ filename │ count_star() │
│ varchar │ int64 │
├──────────────────────────────┼──────────────┤
│ atp/atp_rankings_00s.csv │ 920907 │
│ atp/atp_rankings_10s.csv │ 915618 │
│ atp/atp_rankings_20s.csv │ 149977 │
│ atp/atp_rankings_70s.csv │ 20726 │
│ atp/atp_rankings_80s.csv │ 284809 │
│ atp/atp_rankings_90s.csv │ 725606 │
│ atp/atp_rankings_current.csv │ 95618 │
└──────────────────────────────┴──────────────┘

NOTE On some systems, you could use a counting utility, such as wc, using the
-l option for counting lines, wc -l atp/atp_rankings_*.csv, but where’s the
fun in that?

Add the filename of each 
file to the resulting rows.
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We have just over 3 million records, spread across seven files. A couple of those files
have almost 1 million records, and the smallest file has only 20,000. We can safely
assume there will be a relatively large row group size for the Parquet file further down
the road.

 In contrast to CSV files, Parquet files contain a self-describing schema with dedi-
cated data types. Whereas with CSVs, everything is typically a string by default, and
each column must be sampled to determine what kind of data is actually inside, Par-
quet files already contain this information. Parquets only natively store a small num-
ber of data types—called physical data types. However, they can represent a larger
number of types by adding annotations—called logical types. For example, Parquet files
store dates as numeric values, but additional metadata tells readers they should inter-
pret those numeric values as dates. 

 To create a valuable Parquet file, we should first examine the CSV file to see if each
column we deal with contains the most specific and precise data type. These types will
be written into the schema of the target file. Let’s explore what the individual records
look like by running the following query:

SELECT *
FROM 'atp/atp_rankings_*.csv'
LIMIT 5;

The output represents the rankings of several players from the first week of January
2000, limited to five records:

┌──────────────┬───────┬────────┬────────┐
│ ranking_date │ rank │ player │ points │
│ int64 │ int64 │ int64 │ int64 │
├──────────────┼───────┼────────┼────────┤
│ 20000110 │ 1 │ 101736 │ 4135 │
│ 20000110 │ 2 │ 102338 │ 2915 │
│ 20000110 │ 3 │ 101948 │ 2419 │
│ 20000110 │ 4 │ 103017 │ 2184 │
│ 20000110 │ 5 │ 102856 │ 2169 │
└──────────────┴───────┴────────┴────────┘

The ranking_date column is recognized as a numerical value by DuckDB. Looking
closely, we can be quite sure that it actually represents dates, formatted as %Y%m%d.
While this looks a bit like an ISO date format, it isn’t, and you can do only some oper-
ations over dates in this format, such as sort them. Otherwise, dates formatted this way
are awkward to use, and you can’t pass them as arguments to SQL date manipulation
functions. Notably, they won’t translate to the proper logical data type in Parquets
either. Let’s convert that column to a date, using the strptime function. strptime
takes two character arguments: the string to be parsed into a date and the format.
DuckDB will implicitly cast ranking_date, which is an int64, to a string before being
passed to strptime. The result of strptime is then cast to a date, stripping away the
time information:
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SELECT * REPLACE (
cast(strptime(ranking_date::VARCHAR, '%Y%m%d') AS DATE)

AS ranking_date
)
FROM 'atp/atp_rankings_*.csv'
LIMIT 5;

Now the result looks like this, showing the ranking_date as a proper date:

┌──────────────┬───────┬────────┬────────┐
│ ranking_date │ rank │ player │ points │
│ date │ int64 │ int64 │ int64 │
├──────────────┼───────┼────────┼────────┤
│ 2000-01-10 │ 1 │ 101736 │ 4135 │
│ 2000-01-10 │ 2 │ 102338 │ 2915 │
│ 2000-01-10 │ 3 │ 101948 │ 2419 │
│ 2000-01-10 │ 4 │ 103017 │ 2184 │
│ 2000-01-10 │ 5 │ 102856 │ 2169 │
└──────────────┴───────┴────────┴────────┘

Only the first column has changed; the others are the same as before.

NOTE We could have used FROM read_csv_auto('atp/atp_rankings_*

.csv', dateformat='%Y%m%d'); to specify that dateformat for all possible
columns. This feels like a bold move, as any 8-digit number would fit that for-
mat, so we decided to fix this per individual column.

At the moment, we don’t know which player each row refers to, but we can work this
out by joining the atp_players.csv file. We’re also going to fix a problem with the dob
field in the players CSV file, which is also formatted as a string in the %Y%m%d format.
We end up with the following query:

SELECT * EXCLUDE (
player,
wikidata_id,
name_first,
name_last, player_id, hand, ioc

)
REPLACE (
cast(strptime(ranking_date::VARCHAR, '%Y%m%d') AS DATE) AS ranking_

date,
cast(strptime(dob, '%Y%m%d') AS DATE) AS dob
),
name_first || ' ' || name_last AS name

FROM 'atp/atp_rankings_*.csv' rankings
JOIN (FROM 'atp/atp_players.csv' ) players

ON players.player_id = rankings.player
ORDER BY ranking_date DESC
LIMIT 5;

If we run this query, we’ll see the following results, including the players’ names!

Remember * REPLACE() selects all 
columns and replaces some of them.

Exclude some 
columns for brevity.

Join the atp_players.csv file on the 
player_id column matching the player 
column in the rankings CSV files.
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┌──────────────┬───────┬────────┬────────────┬────────┬────────────────────┐
│ ranking_date │ rank │ points │ dob │ height │ name │
│ date │ int64 │ int64 │ date │ int64 │ varchar │
├──────────────┼───────┼────────┼────────────┼────────┼────────────────────┤
│ 2022-12-26 │ 1 │ 6820 │ 2003-05-05 │ 185 │ Carlos Alcaraz │
│ 2022-12-26 │ 2 │ 6020 │ 1986-06-03 │ 185 │ Rafael Nadal │
│ 2022-12-26 │ 3 │ 5820 │ 1998-12-22 │ 183 │ Casper Ruud │
│ 2022-12-26 │ 4 │ 5550 │ 1998-08-12 │ 193 │ Stefanos Tsitsipas │
│ 2022-12-26 │ 5 │ 4820 │ 1987-05-22 │ 188 │ Novak Djokovic │
└──────────────┴───────┴────────┴────────────┴────────┴────────────────────┘

Next, we’re going to export the results to a Parquet file. We’d likely run the command
to generate our Parquet file as part of a scripted data pipeline, so let’s first exit the CLI
by typing .exit. The amount of data we’re exporting easily fits in memory, but we can
restrict the amount of memory DuckDB uses by adjusting the memory_limit setting.
The ability to restrict the memory being used is valuable in pipelines with a restricted
amount of memory or in a serverless setting. By default, DuckDB will use 80% of all
available RAM. After adjusting this setting, we’ll use the COPY..TO clause to convert
the contents of the CSV files into a single Parquet file; take note that the full state-
ment we developed in this section doesn’t include the LIMIT clause anymore. That was
useful for our investigation and exploration, but in the end, we want all rows pro-
cessed. DuckDB allows us to configure the compression algorithm to use when writing
Parquet files, and we opted for the SNAPPY codec here over GZIP. While the latter gen-
erally achieves a higher compression ratio, the former is optimized for speed—which
was our main concern when creating the file. The row group size appears sensible,
given the sheer amount of data:

duckdb -s "SET memory_limit='100MB';
COPY (

SELECT * EXCLUDE (player, wikidata_id)
REPLACE (

cast(strptime(ranking_date::VARCHAR, '%Y%m%d') AS DATE)
AS ranking_date,

cast(strptime(dob, '%Y%m%d') AS DATE) AS dob
)

FROM 'atp/atp_rankings_*.csv' rankings
JOIN (

FROM 'atp/atp_players.csv'
) players ON players.player_id = rankings.player

)
TO 'atp_rankings.parquet'
(FORMAT PARQUET, CODEC 'SNAPPY', ROW_GROUP_SIZE 100000);"

The -s flag lets us pass a command, which it will run before exiting. That should only
take a few seconds to run, after which we can check the size of the generated Parquet
file:

du -h *.parquet

The output is as follows:

36M atp_rankings.parquet
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NOTE Try exporting the query output to CSV and JSON formats so that you
can see the difference in the file size. 

5.5 Analyzing and querying Parquet files
Not only are Parquet files used extensively in data processing pipelines, but they can
also be a great data source to query from within DuckDB. They are much closer to a
database than CSV files or JSON files, as they provide a schema in their metadata.
Therefore, it might be the case that you didn’t create the atp_rankings.parquet file
but received it from someone else. You don’t know its structure or content but are
tasked to create reports on it. In this section, we’ll learn how to retrieve the schema
and additional metadata from Parquet files, and we will use the file we just created for
the sake of simplicity and adhering to our example. 

 If we’re just interested in the column names and types contained within a Parquet
file, we can use the DESCRIBE clause against the Parquet files, like you would with any
other supported data source:

DESCRIBE FROM 'atp/atp_rankings.parquet';

The output of this query is shown in the following snippet. Have a close look at the
ranking_date and dob columns—both have a DATE type, indicating that the type coer-
cion we did in the previous section was successful:

┌──────────────┬─────────────┬─────────┬─────────┬─────────┬─────────┐
│ column_name │ column_type │ null │ key │ default │ extra │
│ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │
├──────────────┼─────────────┼─────────┼─────────┼─────────┼─────────┤
│ ranking_date │ DATE │ YES │ │ │ │
│ rank │ BIGINT │ YES │ │ │ │
│ points │ BIGINT │ YES │ │ │ │
│ player_id │ BIGINT │ YES │ │ │ │
│ name_first │ VARCHAR │ YES │ │ │ │
│ name_last │ VARCHAR │ YES │ │ │ │
│ hand │ VARCHAR │ YES │ │ │ │
│ dob │ DATE │ YES │ │ │ │
│ ioc │ VARCHAR │ YES │ │ │ │
│ height │ BIGINT │ YES │ │ │ │
├──────────────┴─────────────┴─────────┴─────────┴─────────┴─────────┤
│ 10 rows 6 columns │
└────────────────────────────────────────────────────────────────────┘

All the columns from the previous section are there, and the types seem reasonable.
 This schema is enough when you just want to query and analyze the data. Accord-

ingly, you could stop here, treat the file as a table, and apply your SQL knowledge
from chapters 3 and 4. If you really did just create the file using DuckDB, you may
want to go deeper. Remember, Parquet has only a few physical types—Boolean, num-
bers of various size, and byte arrays—and needs to convert from those types to some-
thing “higher level.” When working with huge datasets, numbers may be of special
interest—Parquet has int32, int64, and int96 for integers. More vector-based opera-
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tions can be executed in parallel over smaller, numerical data types. If optimal perfor-
mance is the end goal, you should try to use the smallest data type possible that can
still hold your data. 

 The parquet_schema function can be used to query the internal schema contained
within a Parquet file. This is the schema stored as metadata inside the file. It will give
us some insight into which columns can use an existing physical Parquet data type as
well as those that don’t need conversions and those that do. This function returns
many fields, so let’s first prefix it with DESCRIBE to get a list of those fields:

DESCRIBE FROM parquet_schema('atp/atp_rankings.parquet');

The resulting description of the parquet_schema function is as follows:

┌─────────────────┬─────────────┬─────────┬─────────┬─────────┬─────────┐
│ column_name │ column_type │ null │ key │ default │ extra │
│ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │
├─────────────────┼─────────────┼─────────┼─────────┼─────────┼─────────┤
│ file_name │ VARCHAR │ YES │ │ │ │
│ name │ VARCHAR │ YES │ │ │ │
│ type │ VARCHAR │ YES │ │ │ │
│ type_length │ VARCHAR │ YES │ │ │ │
│ repetition_type │ VARCHAR │ YES │ │ │ │
│ num_children │ BIGINT │ YES │ │ │ │
│ converted_type │ VARCHAR │ YES │ │ │ │
│ scale │ BIGINT │ YES │ │ │ │
│ precision │ BIGINT │ YES │ │ │ │
│ field_id │ BIGINT │ YES │ │ │ │
│ logical_type │ VARCHAR │ YES │ │ │ │
├─────────────────┴─────────────┴─────────┴─────────┴─────────┴─────────┤
│ 11 rows 6 columns │
└───────────────────────────────────────────────────────────────────────┘

The most interesting fields, in this case, are the name and types, so let’s write a query
that returns only those values:

FROM parquet_schema('atp/atp_rankings.parquet')
SELECT name, type, converted_type, logical_type;

The updated results look like this:

┌───────────────┬────────────┬────────────────┬──────────────┐
│ name │ type │ converted_type │ logical_type │
│ varchar │ varchar │ varchar │ varchar │
├───────────────┼────────────┼────────────────┼──────────────┤
│ duckdb_schema │ │ │ │
│ ranking_date │ INT32 │ DATE │ │
│ rank │ INT64 │ INT_64 │ │
│ points │ INT64 │ INT_64 │ │
│ player_id │ INT64 │ INT_64 │ │
│ name_first │ BYTE_ARRAY │ UTF8 │ │
│ name_last │ BYTE_ARRAY │ UTF8 │ │
│ hand │ BYTE_ARRAY │ UTF8 │ │
│ dob │ INT32 │ DATE │ │
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│ ioc │ BYTE_ARRAY │ UTF8 │ │
│ height │ INT64 │ INT_64 │ │
├───────────────┴────────────┴────────────────┴──────────────┤
│ 11 rows 4 columns │
└────────────────────────────────────────────────────────────┘

The type field describes the actual type used on disk, which is intended to be as mini-
mal as possible. The converted_type and logical_type fields contain a description
of how the type should be interpreted. For example, ranking_date is stored as an
INT32 but should be treated as a DATE when that field is processed. converted_type
has been deprecated in Parquet, but as you can see, it is still written to Parquet fields
for backward compatibility. 

 Something that stands out when looking at this metadata is that rank, points,
player_id, and height are all represented as 64-bit integers. A signed 64-bit integer
has a maximum value of 9,223,372,036,854,775,807. It would be surprising if the
values for the points or height fields needed so much space, but we can write a query
to check the maximum values being stored:

from 'atp/atp_rankings.parquet'
select max(rank), max(points), max(player_id), max(height);

We can see those maximum values in the next output:

┌───────────┬─────────────┬────────────────┬─────────────┐
│ max(rank) │ max(points) │ max(player_id) │ max(height) │
│ int64 │ int64 │ int64 │ int64 │
├───────────┼─────────────┼────────────────┼─────────────┤
│ 2271 │ 16950 │ 211767 │ 211 │
└───────────┴─────────────┴────────────────┴─────────────┘

None of these values are anywhere near the upper bound of even a 32-bit integer, so
we could potentially optimize further operations on the data by casting the fields to
INT32 before exporting to Parquet format. 

NOTE See if you can work out how to export the data to Parquet format while
using int32 for those fields. In essence, you want to cast the relevant fields,
such as points. We previously examined the structure of the source CSV files,
seeing that the fields are recognized as int64 or BIGINT in DuckDB terms. A
cast can be written as CAST(points AS INTEGER) or points::integer, with
INTEGER corresponding to Parquet’s int32. DuckDB supports TINYINT
(int8), SMALLINT (int16), INTEGER (int32), BIGINT (int64), as well as their
unsigned variants and a HUGEINT (int128). 

We can also explore the structure of the Parquet file itself by using the parquet_
metadata function. This function returns one record per row group per column:

.mode line
FROM parquet_metadata('atp/atp_rankings.parquet')
LIMIT 1;
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This function returns many columns, so we’re using line mode again to prevent the
following from being printed as a tabular result. It shows the column with an ID of 0
in the first row group of the file:

file_name = atp/atp_rankings.parquet
row_group_id = 0

row_group_num_rows = 20726
row_group_num_columns = 10

row_group_bytes = 2374571
column_id = 0

file_offset = 0
num_values = 20726

path_in_schema = ranking_date
type = INT32

stats_min = 1973-08-27
stats_max = 1979-12-26

stats_null_count = 0
stats_distinct_count =

stats_min_value = 1973-08-27
stats_max_value = 1979-12-26

compression = SNAPPY
encodings = PLAIN

index_page_offset =
dictionary_page_offset =

data_page_offset = 4
total_compressed_size = 5479

total_uncompressed_size = 82934

This record is for the ranking_date column in the first row group (row_group_id =
0). From looking at stats_min, we learn that the smallest value in this row group is
August 27th, 1973, and from looking at stats_max, we know that the largest value is
December 26th, 1979.

 DuckDB uses this metadata when executing queries. For example, if you wrote a
query that was looking for records where the ranking_date was after 1980, it could
safely ignore all the values in this row group since it knows that the latest value is in
1979. Parquet is an excellent file format that provides a lot of information for a data-
base engine, allowing it to optimize its queries for you in the best way possible. 

5.6 Querying SQLite and other databases
Another interesting feature of DuckDB is that we can attach it to other databases and
query their contents. One such database is SQLite, an embedded OLTP database. We
might want to query existing SQLite files from DuckDB if we’re writing demanding
analytical queries and would like the benefit of DuckDB’s query engine. 

 While the SQL standard partially defines data types and behaviors, there may be
many differences in naming and semantics between different vendors’ implementa-
tions. Attaching foreign databases to DuckDB sometimes means you will have to work
around mismatches. Often, the automatic inference works; sometimes, it doesn’t. By
that token, you may be required to complete the same conversion work as for CSV
files—covered in the previous section—when querying foreign stores.
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 We’ve downloaded the Kaggle European Soccer Database (https://www.kaggle
.com/datasets/hugomathien/soccer), which contains data on over 25,000 European
professional football matches, players, and team attributes. It’s available as a 300 MB
SQLite database, which we provide in a compressed form in the example repository as
well. Before you follow the next examples, you must uncompress the database using
unzip or a Windows program of your choice. Here’s how to uncompress it using
unzip:

unzip database.sqlite.zip

To query SQLite, we’ll need to first install and load the sqlite extension:

INSTALL sqlite;
LOAD sqlite;

Once we’ve done that, we can attach all the tables to the fifa database. The TYPE
sqlite can also be inferred from the file extension:

ATTACH 'database.sqlite' AS fifa (TYPE sqlite);
USE fifa;

The tables from SQLite are registered as views in DuckDB. We can list them by run-
ning the following SQL command (or the .tables CLI command):

PRAGMA show_tables;

This database has several tables:

┌───────────────────┐
│ name │
│ varchar │
├───────────────────┤
│ Country │
│ League │
│ Match │
│ Player │
│ Player_Attributes │
│ Team │
│ Team_Attributes │
│ sqlite_sequence │
└───────────────────┘

It looks like everything has been attached successfully. Let’s see if we can query the
Player view:

FROM Player
LIMIT 5;

At the time of writing, we unexpectedly got the following error:

Error: Invalid Error: Mismatch Type Error: Invalid type in column "height":

➥column was declared as integer, found "182.88" of type "float" instead.

https://www.kaggle.com/datasets/hugomathien/soccer
https://www.kaggle.com/datasets/hugomathien/soccer
https://www.kaggle.com/datasets/hugomathien/soccer
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This may be a bug in the current DuckDB version (0.10), which may be fixed in the
future. However, it is actually quite an interesting problem. SQLite is a weakly typed
database system, which means types aren’t enforced when storing data. DuckDB, on the
other hand, is a strongly typed database system and requires all columns to have defined
types. DuckDB remains faithful to SQLite’s type system, which hasn’t quite worked in
this case—the height column in SQLite was defined as an INT, even though it con-
tains some float values. 

 Let’s inspect the Player view with DESCRIBE Player;, which returns the type of
each field, as shown in the next output. We can see that height is a BIGINT, even
though we saw from the previous query that it contains float values. It looks like we
could have a problem with the weight field as well, although perhaps we’ve been
lucky that there aren’t any decimal values in that field:

┌────────────────────┬─────────────┬─────────┐
│ column_name │ column_type │ null │
│ varchar │ varchar │ varchar │
├────────────────────┼─────────────┼─────────┤
│ id │ BIGINT │ YES │
│ player_api_id │ BIGINT │ YES │
│ player_name │ VARCHAR │ YES │
│ player_fifa_api_id │ BIGINT │ YES │
│ birthday │ VARCHAR │ YES │
│ height │ BIGINT │ YES │
│ weight │ BIGINT │ YES │
└────────────────────┴─────────────┴─────────┘

To fix this, we’re going to manually create the Player view, but first, we’ll need to
detach the SQLite database:

USE memory;
DETACH fifa;

Next, we’re going to have all SQLite columns converted into the VARCHAR type so that
we don’t run into any conversion errors:

SET GLOBAL sqlite_all_varchar=true;

We can now use the sqlite_scan command to get all the records from the Player
table. We’ll then manually cast each field to the correct type and redefine the Player
view accordingly:

USE main;
CREATE OR REPLACE VIEW Player AS
FROM sqlite_scan('database.sqlite', 'Player')
SELECT * REPLACE (

id :: BIGINT AS id,
player_api_id :: BIGINT AS player_api_id,
player_fifa_api_id :: BIGINT AS player_fifa_api_id,
birthday :: DATE AS birthday,

First, we must ensure we use a 
different database, as we cannot 
detach the database we are using.
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height :: FLOAT AS height,
weight :: FLOAT AS weight

);

We can then query the Player view as we tried to do earlier:

FROM Player SELECT * EXCLUDE player_fifa_api_id
LIMIT 5;

And this time it works! The IDs are proper int64 columns:

┌───────┬───────────────┬───────────────────┬────────────┬────────┬────────┐
│ id │ player_api_id │ player_name │ birthday │ height │ weight │
│ int64 │ int64 │ varchar │ date │ float │ float │
├───────┼───────────────┼───────────────────┼────────────┼────────┼────────┤
│ 1 │ 505942 │ Aaron Appindangye │ 1992-02-29 │ 182.88 │ 187.0 │
│ 2 │ 155782 │ Aaron Cresswell │ 1989-12-15 │ 170.18 │ 146.0 │
│ 3 │ 162549 │ Aaron Doran │ 1991-05-13 │ 170.18 │ 163.0 │
│ 4 │ 30572 │ Aaron Galindo │ 1982-05-08 │ 182.88 │ 198.0 │
│ 5 │ 23780 │ Aaron Hughes │ 1979-11-08 │ 182.88 │ 154.0 │
└───────┴───────────────┴───────────────────┴────────────┴────────┴────────┘

So far, so good. Now let’s set the sqlite_all_varchar back to false and manually cre-
ate the other views:

SET GLOBAL sqlite_all_varchar=false;

CREATE OR REPLACE VIEW Player_Attributes AS
FROM sqlite_scan('database.sqlite', 'Player_Attributes');

CREATE OR REPLACE VIEW Country AS
FROM sqlite_scan('database.sqlite', 'Country');

CREATE OR REPLACE VIEW League AS
FROM sqlite_scan('database.sqlite', 'League');

CREATE OR REPLACE VIEW Match AS
FROM sqlite_scan('database.sqlite', 'Match');

CREATE OR REPLACE VIEW Team AS
FROM sqlite_scan('database.sqlite', 'Team');

CREATE OR REPLACE VIEW Team_Attributes AS
FROM sqlite_scan('database.sqlite', 'Team_Attributes');

We could now, for example, write a query to find the top players, based on the most
recent rankings:

SELECT player_name, arg_max(overall_rating, date) AS overall_rating
FROM Player
JOIN Player_Attributes PA ON PA.player_api_id = Player.player_api_id
WHERE overall_rating is not null
GROUP BY ALL
ORDER BY overall_rating DESC, player_name
LIMIT 10;

Exclude the player_fifa_api_id 
field for brevity.
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This query joins together two SQLite tables before finding the highest overall_
rating for each player. The top 10 players are as follows:

┌────────────────────┬────────────────┐
│ player_name │ overall_rating │
│ varchar │ int64 │
├────────────────────┼────────────────┤
│ Lionel Messi │ 94 │
│ Cristiano Ronaldo │ 93 │
│ Luis Suarez │ 90 │
│ Manuel Neuer │ 90 │
│ Neymar │ 90 │
│ Arjen Robben │ 89 │
│ Zlatan Ibrahimovic │ 89 │
│ Andres Iniesta │ 88 │
│ Eden Hazard │ 88 │
│ Mesut Oezil │ 88 │
├────────────────────┴────────────────┤
│ 10 rows 2 columns │
└─────────────────────────────────────┘

That all looks like it’s working well, and we’ve successfully queried SQLite from
DuckDB.

NOTE DuckDB also has a postgres extension for querying Postgres data-
bases. The installation is similar to the SQLite extension—just run INSTALL
postgres; LOAD postgres; in your DuckDB session. After that, you must use
the ATTACH command to connect to the Postgres database and provide the
connection information for the instance. 

See the following DuckDB documentation topic for more information on the
extension: https://duckdb.org/docs/extensions/postgres.html. Querying
any Postgres table will be fully opaque, and all SQL features DuckDB offers
will work. 

5.7 Working with Excel files
DuckDB can read and write Excel files stored as Microsoft Office Open XML
(OOXML; file extension .xlsx). This format has been used by Microsoft Office since
2007, and other applications, including LibreOffice and Google Sheets, support it as
well. It requires the spatial extension to be installed in DuckDB. While this extension
is primarily used to deal with spatial data, its underlying machinery supports OOXML
too. The following listing shows how to install it inside the DuckDB CLI.

INSTALL spatial;
LOAD spatial;

The INSTALL statement is required only once: for the LOAD statement in each session
in which you want to use the extension. To read Excel files, you need to use the

Listing 5.2 Installing the spatial extension

https://duckdb.org/docs/extensions/postgres.html
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st_read function. We took a subset of the CSV data we dealt with in section 5.4 and
provided it as an Excel file in the example repository. The following statement reads
the first sheet from that file:

SELECT ranking_date, rank, name_last
FROM st_read('atp_rankings.xlsx')
ORDER BY ranking_date limit 5;

The machinery for detecting types is not directly implemented in DuckDB but rather
in the extension being used; it is less optimized than the type detection for CSV and
JSON files. In the result of the preceding query, we notice that date columns can be
read correctly, but for the rank, it picks a generic double, whereas in reality, it should
be an integer:

┌──────────────┬────────┬────────────────┐
│ ranking_date │ rank │ name_last │
│ date │ double │ varchar │
├──────────────┼────────┼────────────────┤
│ 1973-08-27 │ 129.0 │ Gonzalez │
│ 1973-08-27 │ 114.0 │ Ulrich │
│ 1973-08-27 │ 6.0 │ Rosewall │
│ 1973-08-27 │ 19.0 │ Emerson │
│ 1973-08-27 │ 82.0 │ Phillips Moore │
└──────────────┴────────┴────────────────┘

Excel files often contains formulas. These will be read as the raw formula string by
default and will not be evaluated. Some authoring tools store the last value with the
formula—in which case, that value can be read.

 There is also limited support for writing Excel files. Some datatypes, such as dates
and timestamps, are not supported and must be cast to a string or formatted as a
string, as we do in the following statement. The statement takes about a minute to run
on the author’s machine and produces a hefty 299 MB Excel file (the Parquet file is
just about 36 MB in size):

COPY (
SELECT * EXCLUDE (player, wikidata_id)

REPLACE (
strftime(strptime(ranking_date, '%Y%m%d'), '%Y-%m-%d')

AS ranking_date,
strftime(strptime(dob, '%Y%m%d'), '%Y-%m-%d') AS dob

)
FROM 'atp/atp_rankings_*.csv' rankings
JOIN (

FROM 'atp/atp_players.csv'
) players ON players.player_id = rankings.player
ORDER BY ranking_date ASC

)
TO 'atp_rankings_full.xlsx' WITH (FORMAT GDAL, DRIVER 'xlsx');

This is essentially the same statement that we used to create one Parquet file from
our set of CSV files representing ATP rankings. If the target file already exists,
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GDAL Error (1): File extension should be XLSX will be printed as an error message,
which is a bit misleading and may be fixed in future versions of the extension.

 In general, we recommend exporting Excel files to CSV before processing them
with DuckDB, if that’s possible for you. The general integration with DuckDB makes it
easier to work with. 

Summary
 You can use DuckDB’s powerful query language and engine to process data,

whether stored in files or flowing through a pipeline, even if you don’t use its
database storage functionality.

 DuckDB’s query engine can be used with many different sources, such as files in
different formats or the stores of other databases. DuckDB does a great job of
inferring the right content and data types for JSON, CSV, and Parquet files.

 DuckDB’s JSON processing capabilities allow you to query and normalize even
complex, denormalized JSON documents so that they feel like a natural source
of tabular data in any query.

 Data transformation with DuckDB—for example, filtering, type conversion, flat-
tening, or enriching by joining other sources—doesn’t require persistence in
DuckDB.

 The vector-based DuckDB query engine deals with some workloads and queries
so efficiently that using it with an external database store offers performance
advantages without losing any capabilities of the external database and without
requiring two different datasets to be kept in synchronization.

 Views are a helpful tool to encapsulate necessary transformation on external
data types. 



Integrating with
the Python ecosystem
Up until now, we’ve consistently used the DuckDB CLI to manage and execute our
queries. This tool is highly effective for on-the-spot analysis and for CLI-based pipe-
lines. Many data workflows, however, involve Python and its ecosystem to a large
extent. For example, pandas DataFrames can’t be ignored. In this chapter, we will
learn that DuckDB’s Python API goes way beyond just implementing the Python
DB-API. DuckDB’s Python API will let you not only use the embedded database in

This chapter covers 
 The differences between DuckDB’s 

implementation of Python DB-API 2.0 and the 
DuckDB relational API

 Ingesting data from pandas DataFrames, Apache 
Arrow tables, and more via the Python API

 Querying pandas DataFrames with DuckDB 
methods

 Exporting data to various DataFrames formats 
and Apache Arrow Tables

 Using DuckDB’s relational API to compose queries
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your Python process but also query Python objects like you would tables. At the same
time, you can easily convert results from queries to DataFrames. In this chapter, we
focus on integrations that are directly bundled with the DuckDB Python package.

NOTE We will not cover SQLAlchemy (https://www.sqlalchemy.org), a popu-
lar Python SQL tool kit. SQLAlchemy abstracts away over many different data-
bases and brings a full suite of well-known enterprise-level persistence patterns
to Python, which are just beyond the scope of this book. You can get a driver for
SQLAlchemy under the name duckdb_engine (https://pypi.org/project/
duckdb_engine/), which supports almost all of SQLAlchemy features. 

6.1 Getting started
Let’s get started by installing the DuckDB Python package and learning which depen-
dencies to import into your programs first. Next, we discuss the different options to
either acquire an in-memory DuckDB connection or open a database file. Getting the
idea of this is important for this chapter but also for the following ones, as we will
learn about more tools in the Python ecosystem that interact with DuckDB. 

6.1.1 Installing the Python package

The DuckDB Python package is published to PiPI, and we can install it by running the
following command:

pip install duckdb

Once you’ve done that, open up a Python command prompt, and import the follow-
ing libraries:

import duckdb

Next, run the following command to return the version of DuckDB:

duckdb.__version__

You should see an output similar to the following, although the exact version you see
may be different:

'0.10.0'

6.1.2 Opening up a database connection

One of the questions that often comes to mind when using a database from any pro-
gramming environment is, How do I open a connection? In the case of DuckDB, the
answer is simple: You don’t have to because as an embedded database, it is already running
inside your Python process. Once you have installed the package, as shown in the preced-
ing code snippets, you can go ahead and use duckdb in your Python interpreter to
interact with an in-memory database. sql is the entry point into DuckDB’s relational
Python API. The following example uses the show method of the object returned to
print the result of the statement:

https://www.sqlalchemy.org
https://pypi.org/project/duckdb_engine/
https://pypi.org/project/duckdb_engine/
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result = duckdb.sql('SELECT 42')
result.show()

The result will be printed in a tabular fashion, similar to what the DuckDB CLI would
output.

 Please take note that we ran the SQL statement on the duckdb object we imported
into our program. We didn’t acquire or use a dedicated connection object. The
duckdb object provided us with a default, in-memory connection. Of course, you can
use a dedicated connection too:

 To start an in-memory database—con = duckdb.connect(database=':memory:')

 To use a database file—con = duckdb.connect('my-db.duckdb')

 To use a database file and control whether it’s read-only or not—con = duckdb

.connect(database='my-db.duckdb', read_only=True)

The default connection can be acquired through both duckdb.default_connection
and duckdb.connect(database=':default:'), assuming you have the database name
in a parameter. The important takeaway here is that without any further configura-
tion, DuckDB will use an in-memory database that is stored globally inside the Python
module. 

 Both the global duckdb and the dedicated connection object offer various methods
to interact with a database. sql() will trigger the relational API of DuckDB as shown,
and execute() will use the Python DB-API 2.0. 

 The preceding example rewritten using the DB-API looks similar but behaves like
a traditional database API. It will execute the statement immediately and return an
object that allows fetching one or all resulting rows:

result = duckdb.execute('SELECT 42')
row = result.fetchone()
print(row)

There are some use cases for the DB-API, such as the ability to use prepared state-
ments and queries that utilize named parameters, but we will focus on the relational
API in this chapter. We think the latter is a unique approach to querying data, blur-
ring the lines between relational databases and queryable objects in memory, paving
the way for new, interesting solutions. The Python DB-API will appear again when we
discuss querying via SQL later in this chapter. 

6.2 Using the relational API
While we managed to avoid diving too deep into the mathematical concept of a relation
in chapters 3 and 4, there’s no way around covering some relational concepts now. We
already learned that you can not only query tables but views and functions too. You can
also query the result of another query. Tables, views, projections, and functions that act
as tables are all relations. Relations are essentially a generalized version of tables and

Defines an object but does 
not execute a query yetExecutes the query 

and prints the result

Executes the query and 
returns a connection objectFetches one row 

from the connectionPrints 
that row
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are composed of tuples and attributes instead of rows and columns. In a relational data-
base, a tuple is defined as a list of named—and ordered—attributes. Each tuple of a rela-
tion corresponds to one record, and each attribute of a tuple corresponds to a column.
Think of relations as more or less equivalent to a table. 

 In essence, it boils down to the fact that relations pass the duck tests—If it looks like
a duck, swims like a duck, and quacks like a duck, then it probably is a duck. If it looks like a
table, you can query it. While working in a database and running queries, this usually
feels quite natural, and you don’t expect it any other way. The DuckDB Python pack-
age brings this concept into Python itself and lets you query different objects as
though they would be tables or views in a database. The line between having a per-
sistent store with a relational schema and objects that just happen to behave like rela-
tions is quite blurry here.

6.2.1 Ingesting CSV data with the Python API

Similar to chapter 3, we have a bit of a hen-and-egg problem at hand when demon-
strating different ways of querying a database: without data, there’s nothing to query.
So let’s start again with ingesting data. We won’t, however, create a relational schema
for the data but instead, just use the provided objects as relations. 

 In this section, we’re going to revisit the Populations CSV file introduced in chap-
ter 2. As before, our approach will involve the use of the httpfs extension. However,
this time around, we are not using the DuckDB SQL function read_csv for file pro-
cessing but the function with the same name from the Python API’s read_csv. 

NOTE In the example, we are using read_csv, as we would like to reuse the
CSV file that we prepared in chapter 2, containing countries and their rele-
vant statistics. The same concepts and techniques apply as well to read_
parquet and read_json; these functions exist both as SQL functions and as
Python functions for DuckDB.

While executing SQL commands in DuckDB is powerful, using the read_csv function
directly through the Python API offers seamless integration with Python-based work-
flows. This method provides a “pythonic” approach to data manipulation, bridging the
gap between SQL databases and Python data structures, making it a preferred choice
for Python-based projects. The object being returned can be treated as a queryable rela-
tion right from within your Python code. In the code that follows, we will use the default
in-memory database, but you can easily change the connection, as shown previously.

import duckdb

con = duckdb.connect(database=':memory:')

con.execute("INSTALL httpfs")
con.execute("LOAD httpfs")

Listing 6.1 Querying a CSV file

Install the httpfs extension. 
You only need to do this once.

Load the httpfs extension. You need to do 
this each time you initialize a new database.
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population = \
con.read_csv("https://bit.ly/3KoiZR0")

This won’t print any data, but we get an object back, which we did assign to
population. We can check its type using Python’s type function, which returns the
Python type of the population variable:

type(population)

The result is as follows:

<class 'duckdb.DuckDBPyRelation'>

DuckDBPyRelation is the centerpiece of DuckDB’s relational API. It’s a queryable rela-
tion and an API. 

 If you want to query it, you can just use the execute method the same way you
would execute any other query from within Python against DuckDB. execute gives
you a new Python DB connection object, from which you can fetch the result, either
via fetchone until there are no more results, or via fetchall, like in the following
example.:

con.execute("SELECT * from population limit 2").fetchall()

fetchall will return the result as a list of two unformatted and difficult-to-read
Python tuples, so we won’t reproduce it here. The relational API, however, is much
more and can be used as an alternative to writing SQL statements. It is essentially a flu-
ent API, which allows incremental construction of queries. It consists of DuckDB-
PyRelation nodes and relations that can be seen as symbolic representations of SQL
queries. It supports the reuse of those nodes, as well as set operations, filters, projec-
tions, and aggregations. None of the objects involved hold any data, and no query is
executed until a trigger method, such as explicit fetch, showing, or similar is called.

 Let’s count the number of records in our relational object. Unsurprisingly, the
builder method to count records is called count. The result of this method is a relational
object again. The actual query will not execute yet. We use the show method in the exam-
ple to trigger the execution, but we could also just print the resulting object via print:

(population
.count("*")
.show()

)

Both the show method and the implicit string representation will give us a nice ren-
dering of the result, as shown here:

┌──────────────┐
│ count_star() │
│ int64 │
├──────────────┤
│ 227 │
└──────────────┘

Read the 
CSV files.

This is the equivalent of
 SQL’s SELECT count(*).
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If you have a slow internet connection, you may notice that it takes quite a long time
to return the result. This is because the CSV file is being downloaded every time we
call the show function, which isn’t ideal! We can fix this problem by persisting a
DuckDB table, using the to_table function. This function will perform a Create
Table as Select statement behind the scenes on your behalf, creating a table named
population, selecting from the relational object:

population.to_table("population")

We now have a table called population, which we can access using the table function,
like this:

population_table = con.table("population")

Bear in mind that while the population object created in listing 6.1 will always down-
load and read the CSV anew, the table, once created, represents a snapshot of the data
that was available at that point in time. This isn’t changed by the fact that you access
that table now through the relational API; it is not a view that would be recomputed
when accessed. 

NOTE If you call type(population_table), you will notice that it too is a
DuckDBPyRelation, and it thus has the same traits and capabilities as before.

We can then rerun the code to count the number of countries, and this time, the
results will be displayed instantly:

population_table.count("*").show()

With the data now being held in a table in memory, we are going to focus on compos-
ing queries with the relational API. 

6.2.2 Composing queries

Up to this point, we’ve primarily explored how to count records in a relation using the
DuckDB API. However, this is just a glimpse into its capabilities. The API offers a suite
of functions for the DuckDBPyRelation to enhance data manipulation:

 filter—Only include records that satisfy a provided predicate function.
 project—Only return the specified columns.
 limit—Return the first n records.
 aggregate—Apply the provided aggregation expressions.
 order—Sort the records by the provided columns.

Using the relational API as a builder solves some problems people might run into
when using plain SQL; there are many cases in which queries are generated or are
based on user input. While SQL allows for parameters in queries representing values,
it does not allow table or column names to be parameterized, so people often use
some kind of string concatenation for building queries that select from dynamic
tables. The relational API offers an advantage for creating these queries in a
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programmatic fashion; instead of messing with string concatenation, you can call ded-
icated methods that are context aware. Thus, the likelihood of creating an invalid
query or a query that is prone to SQL injection decreases, and the code will be more
readable and composable.

 Let’s have a look at what we can do if we combine a few of these functions. We’ll
start by finding out which countries have a population of over 10,000,000 people,
returning the country and population for the first five countries. We can do this by
using the filter, project, and limit functions. We only want to include the first five
rows that have a Population greater than 10,000,000, and we are only interested in
the country name and the actual population:

(population_table
.filter('Population > 10000000')
.project("Country, Population")
.limit(5)
.show()

)

When using the relational API, the order of the operations won’t affect the perfor-
mance, as no results will be materialized in between. This is different than the pandas
integration we are going to discuss in the following text. When a result set gets trans-
formed to a pandas DataFrame, that DataFrame will have pandas characteristics,
which usually means values will be computed eagerly. The output of running the pre-
ceding query is as follows:

┌──────────────┬────────────┐
│ Country │ Population │
│ varchar │ int64 │
├──────────────┼────────────┤
│ Afghanistan │ 31056997 │
│ Algeria │ 32930091 │
│ Angola │ 12127071 │
│ Argentina │ 39921833 │
│ Australia │ 20264082 │
└──────────────┴────────────┘

In our exploration, it’s crucial to note that the query does not get executed until the
show function is invoked. The object returned by the methods is still the same query
builder. For example, you could still call offset after limit to specify the number of
rows to skip. Now let’s say we want to use another query that operates only on popula-
tions with more than 10 million people. A simple approach would involve copying the
code and changing the filter criteria. However, this method lacks the elegance and
efficiency inherent in the relational API of DuckDB. Instead of copy–pasting, we’ll
create a variable for the filter part of the query and create another relational object
named over_10m. This relational object will be reused with several different queries,
providing a well-defined filter that can be seamlessly and coherently reused:

over_10m = population_table.filter('Population > 10000000')

This corresponds to the filter 
inside the WHERE clause.

This will eventually turn into a SELECT 
Country, Population, which is called a 
projection in relational terms.
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We could then find the average population of the medium to large-sized continents
and regions, ordered by the largest population, using the aggregate and order func-
tions. The relation over_10m just acts like a table, a view, or a common table expres-
sion would act. In the following example, we use the aggregate function too. This
function takes in one expression, which can be made up of one or many calls to any
SQL aggregate as well as zero or more columns not being part of an aggregate.
DuckDB will automatically group by these columns, thus using Region as the grouping
key while computing the average population:

(over_10m
.aggregate("Region, CAST(avg(Population) AS int) as pop")
.order("pop DESC")

)

┌─────────────────────────────────────┬───────────┐
│ Region │ pop │
│ varchar │ int32 │
├─────────────────────────────────────┼───────────┤
│ ASIA (EX. NEAR EAST) │ 192779730 │
│ NORTHERN AMERICA │ 165771574 │
│ LATIN AMER. & CARIB │ 48643375 │
│ C.W. OF IND. STATES │ 48487549 │
│ WESTERN EUROPE │ 38955933 │
│ NORTHERN AFRICA │ 38808343 │
│ NEAR EAST │ 32910924 │
│ SUB-SAHARAN AFRICA │ 30941436 │
│ EASTERN EUROPE │ 23691959 │
│ OCEANIA │ 20264082 │
├─────────────────────────────────────┴───────────┤
│ 10 rows 2 columns │
└─────────────────────────────────────────────────┘

The result underscores the demographic heft of ASIA (EX. NEAR EAST) and NORTHERN
AMERICA, with both regions significantly surpassing others in their average population.

 Alternatively, we might be interested in the economic standing of these populous
nations. By applying an additional filter clause to the over_10m relation, we zero in
on countries with a GDP per capita greater than $10,000:

(over_10m
.filter('"GDP ($ per capita)" > 10000')
.count("*")

)

The result reveals that 20 countries from our previously filtered set meet this eco-
nomic benchmark, highlighting a subset of nations that are not only populous but
also have a relatively higher economic output per individual. In the previous two
examples, we have been able to use the over_10m relation unchanged to drive an
aggregate over regions and extended by an additional filter; in both cases, we could
easily reuse the original definition:
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┌──────────────┐
│ count_star() │
│ int64 │
├──────────────┤
│ 20 │
└──────────────┘

When working with databases, there are often scenarios where interactions between
multiple relations are required. The relational API provides a suite of functions specif-
ically designed for such multi-relation operations:

 except_—Returns all rows in the first relation that aren’t in the second
 intersect—Returns all rows that appear in both relations
 join—Joins the relations on the provided keys or conditions
 union—Combines relations, returning all rows in the first relation followed by

all rows in the second relation

To illustrate the capabilities of the except_ function in the relational API, consider
the following scenario: you have been assigned the task of analyzing countries with
populations under 10 million. The following query achieves this by excluding coun-
tries in the over_10m relation, and then it further aggregates the results by region, cal-
culating both the average population and the number of countries in each:

(population_table
.except_(over_10m)
.aggregate("""
Region,
CAST(avg(population) AS int) AS population,
count(*)
""")

)

┌─────────────────────────────────────┬────────────┬──────────────┐
│ Region │ population │ count_star() │
│ varchar │ int32 │ int64 │
├─────────────────────────────────────┼────────────┼──────────────┤
│ EASTERN EUROPE │ 5426538 │ 9 │
│ OCEANIA │ 643379 │ 20 │
│ WESTERN EUROPE │ 2407190 │ 19 │
│ LATIN AMER. & CARIB │ 2154024 │ 35 │
│ C.W. OF IND. STATES │ 5377686 │ 7 │
│ NEAR EAST │ 2773978 │ 11 │
│ SUB-SAHARAN AFRICA │ 3322228 │ 30 │
│ NORTHERN AMERICA │ 43053 │ 3 │
│ ASIA (EX. NEAR EAST) │ 2796374 │ 9 │
│ BALTICS │ 2394991 │ 3 │
│ NORTHERN AFRICA │ 3086881 │ 2 │
├─────────────────────────────────────┴────────────┴──────────────┤
│ 11 rows 3 columns │
└─────────────────────────────────────────────────────────────────┘

Include records that aren’t 
in the over_10m relation.

Grouping by region, compute 
the average population, and 
count the number of records.
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The resulting table provides a breakdown by region, showcasing the average popula-
tion and number of countries with fewer than 10 million inhabitants. Notably,
EASTERN EUROPE stands out, with an average population of approximately 5.4 million
across 9 countries, while OCEANIA has a smaller average population but encompasses
20 countries. This data offers a nuanced view of regions with smaller countries in
terms of population.

 Exploring further, let’s consider a more specific subset of countries: those located
in Eastern Europe with populations exceeding 10 million. To achieve this, we initiate
by filtering out countries within the region of EASTERN EUROPE. Take note that we are
using the POSIX-style operator ~ for filtering with a regular expression—in this case,
an expression that finds all records with a region that contains EASTERN EUROPE:

eastern_europe = population_table \
.filter("Region ~ '.*EASTERN EUROPE.*'")

Having established the eastern_europe relation, the next step involves pinpointing
those countries that intersect with our previously defined over_10m relation:

(eastern_europe
.intersect(over_10m)
.project("Country, Population")

)

┌─────────────────┬────────────┐
│ Country │ Population │
│ varchar │ int64 │
├─────────────────┼────────────┤
│ Czech Republic │ 10235455 │
│ Poland │ 38536869 │
│ Romania │ 22303552 │
└─────────────────┴────────────┘

The output table distinctly lists three countries from Eastern Europe—Czech Repub-
lic, Poland, and Romania—each with a population that breaches the 10 million mark.

Pattern matching
DuckDB supports four ways of pattern matching:

1 LIKE testing whether a string matches a pattern as a whole, allowing % and _
as wildcards

2 SIMILAR TO testing whether a string matches a regular expression as a whole
3 GLOB testing whether a string matches a GLOB pattern, which is useful when

searching for filenames that follow a specific pattern
4 Generally applicable regular expression via functions

There are shorthands for the SQL operators: ~~ for LIKE, ~ for SIMILAR TO, and ~ for
GLOB.

Keep relations that are both in 
Eastern Europe and have a 
population of more than 10 million.

Return only the Country and 
Population fields.
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This refined analysis underscores the power of DuckDB’s relational API in catering to
specific data requirements. 

6.2.3 SQL querying

Relational objects can be treated with the same flexibility as SQL tables. This capabil-
ity allows for a fluid transition between Python-based data operations and SQL-like
querying. Taking a practical example into consideration, let’s say our objective is to
ascertain the count of medium- to large-sized nations, where the GDP per capita sur-
passes $10,000. The process for achieving this is illustrated as follows:

con.sql("""
SELECT count(*)
FROM over_10m
WHERE "GDP ($ per capita)" > 10000
""")

While the relational API of DuckDB offers a vast array of functionalities, there are cer-
tain scenarios, particularly those involving parameterized queries, where its innate
capabilities might feel restrictive.

NOTE A parameterized query uses placeholders in the statement text. The state-
ment text and the actual values for the placeholders—the parameters—are
passed independently to the engine. Using parameters has a couple of advan-
tages: user input, for example, should always be passed as a parameter and
never put into the statement text directly. If you just concatenate string frag-
ments of a statement with user input, you have a high risk of so-called SQL
injection attacks, in which a specially crafted text alters the semantics of your
query. When passed as parameters to the query engine, the engine will treat
input in such a way that a string will never mess up a query. Additionally, a
parameterized statement may need to be parsed only once by the query
engine, as its content is constant and only parameters change. 

Parameterized queries allow for dynamic input, making the queries both reusable and
secure by mitigating SQL injection risks. To bridge this gap in the relational API,
DuckDB provides the execute function, adhering to the Python DB-API 2.0. This
function not only facilitates the use of parameterized queries but also yields a connec-
tion object. The latter adheres to the Python Database API Specification v2.0 and
exposes all the methods you expect; once the query execution is done, extracting the
results can be approached in various ways. Commonly used methods in the Python
DB-API 2.0 are fetchall and fetchone. The former retrieves all rows, and the latter
retrieves the values of the first record in the result set. We use fetchone here, as the
count aggregate used in the query returns only one row, and we can spare ourselves
the effort of iterating over a list of rows:

con.execute("""
SELECT count(*)
FROM over_10m

We’re referencing over_10m, 
which is a variable, but it’s 
treated like a table in the query.
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WHERE "GDP ($ per capita)" > $gdp
""", {

"gdp":10000
}).fetchone()

The result, (20,), indicates that 20 countries meet the criteria. The more relevant fact
is this: the query we passed to execute does use named parameters, and it looks like
any other prepared statement. It does, however, query a relational object, over_10m,
not an actual table. The relational object might have been built in such a way that it
used parameters as well, either for the columns that should be projected or for the
underlying tables to be queried. Thus, you avoid using string concatenation in all
cases—the relational API and the standard DB-API complement each other here. The
DB-API can only execute well-formed SQL, which does not allow tables and columns
to be parameterized. The relational API allows it, and the relational objects can then
be queried like any other table. 

6.3 Querying pandas DataFrames
DuckDB’s popularity in the data ecosystem is largely attributed to its robust query
engine. Not limited to just file-based operations, this engine seamlessly integrates with
in-memory data structures from various data infrastructure tools. One notable tool in
this domain is pandas, a well-established open source data analysis library widely used
in the data community. The combination of DuckDB and pandas allows for powerful
data operations, bridging the capabilities of a database engine with the flexibility of a
data manipulation library. In this section, we’ll explore how to employ DuckDB to
query pandas DataFrames. To kick things off, we need to ensure pandas is installed in
our environment:

pip install pandas

Next, import the pandas and DuckDB libraries:

import duckdb
import pandas as pd

With the libraries in place, we proceed to create a pandas DataFrame that holds infor-
mation about your authors:

people = pd.DataFrame({
"name": ["Michael Hunger", "Michael Simons", "Mark Needham"],
"country": ["Germany", "Germany", "Great Britain"]

})

The DataFrame people now contains data about three authors and the countries they
live in. One of the salient features of DuckDB is its ability to interact directly with pandas
DataFrames; they are treated just like any relation we’ve dealt with before. This means
we can run SQL-like queries on people, just as we would a regular database table:

The GDP per capita filter is set 
based on the $gdp parameter.

Defines the parameters 
for the query

Fetches the results as a tuple
containing the first record’s values
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duckdb.sql("""
SELECT *
FROM people
WHERE country = 'Germany'
""")

┌────────────────┬─────────┐
│ name │ country │
│ varchar │ varchar │
├────────────────┼─────────┤
│ Michael Hunger │ Germany │
│ Michael Simons │ Germany │
└────────────────┴─────────┘

The result of the query gives us two authors living in the country Germany. This exam-
ple illustrates the seamless integration and querying capabilities of DuckDB inside the
Python ecosystem; it does not matter whether the relation has been created as a table,
sourced from a file, or represented by a pandas DataFrame.

 To query for people not living in Germany, we could use a parameterized query as
in this example. Take note that we don’t use execute.fetchall or execute.fetchone
but fetchdf. This returns the result as a DataFrame instead of a Python DB-API cur-
sor. Whether you would use a cursor to iterate the rows or a DataFrame depends on
your use case—the cursor is more lightweight, while the DataFrame integrates much
more efficiently in further analysis with pandas. DuckDB will take care of the dull
work, creating a DataFrame from a result set for you:

params = {"country": "Germany"}
duckdb.execute("""
SELECT *
FROM people
WHERE country <> $country
""", params).fetchdf()

name country
0 Mark Great Britain

If the relational API suits your needs better, you can query the DataFrame as such:

(duckdb.sql("FROM people")
.filter("country <> 'Germany'")
.show()

)

Extending this capability, DuckDB also facilitates querying other in-memory data
structures, like Polars DataFrames and PyArrow tables. The mechanics are akin to
what we’ve seen with pandas. Detailed examples and implementations for these data
structures can be found in the book’s accompanying GitHub repository.

NOTE The SQLAlchemy driver duckdb_engine supports querying DataFrames
as well. You can register them on an instance of the driver (see https://
mng.bz/EZpj). 

Creates a new relational 
object from the DataFrame

https://mng.bz/EZpj
https://mng.bz/EZpj
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6.4 User-defined functions
As data practitioners, we often encounter scenarios where pre-existing database func-
tions might not cater to our specific needs. Recognizing this, DuckDB has a powerful
feature: the ability to create user-defined functions (UDFs) within its Python package.
The beauty of UDFs lies in their ability to extend the SQL language’s native capabili-
ties. With UDFs, users can define their own custom functions, benefitting from the
vast ecosystem of Python libraries. Whether it’s complex data manipulations, mathe-
matical calculations, or even integrations with external tools and APIs, the possibilities
become virtually limitless. In practical terms, this means that if you’ve ever wished for
a specific function while writing an SQL query in DuckDB, you can now create it using
Python and then subsequently invoke it within your SQL code. 

 Data ingestion, while a fundamental step in any data analysis pipeline, often comes
with its own set of challenges. Raw data can be messy, and it’s not uncommon to
encounter errors that need rectification before any meaningful analysis can be con-
ducted. In our current scenario, the CSV file ingested at the beginning of this chapter
has presented an anomaly that needs addressing.

 A discernible problem lies in the Region field of our dataset. This field seems to be
padded with excessive space characters, making data processing and analysis cumber-
some. To visualize the extent of this problem, consider the following query, which
retrieves unique values of the Region field and computes the total character length
for each distinct Region:

con.sql("""
select DISTINCT Region, length(Region) AS numChars
from population
""")

From the following table, we can see that there are lots of trailing spaces, which is con-
firmed by the numChars column:

┌─────────────────────────────────────┬──────────┐
│ Region │ numChars │
│ varchar │ int64 │
├─────────────────────────────────────┼──────────┤
│ LATIN AMER. & CARIB │ 23 │
│ ASIA (EX. NEAR EAST) │ 29 │
│ EASTERN EUROPE │ 35 │
│ WESTERN EUROPE │ 35 │
│ NEAR EAST │ 35 │
│ C.W. OF IND. STATES │ 20 │
│ SUB-SAHARAN AFRICA │ 35 │
│ OCEANIA │ 35 │
│ NORTHERN AFRICA │ 35 │
│ BALTICS │ 35 │
│ NORTHERN AMERICA │ 35 │
├─────────────────────────────────────┴──────────┤
│ 11 rows 2 columns │
└────────────────────────────────────────────────┘

Returns the region and 
number of characters
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For instance, while BALTICS comprises just 7 characters, its total length, including
trailing spaces, is 35 characters. Of course, DuckDB has a built-in SQL function trim,
but we are going to build our own version as an easy example that allows us to put the
focus on how to define a UDF, instead of distracting with implementation details:

def remove_spaces(field:str) -> str:
if field:

return field.lstrip().rstrip()
else:

return field

The function, aptly named remove_spaces, is designed to trim spaces from both the
beginning and the end of the given string. Notice the type annotations: they signify
that the function expects a string input and will also return a string. 

 Once our function is defined, we need to register it with DuckDB:

con.create_function('remove_spaces', remove_spaces)

To confirm its registration, you can query the duckdb_functions SQL function:

con.sql("""
SELECT function_name, function_type, parameters, parameter_types, return_type
from duckdb_functions()
where function_name = 'remove_spaces'
""")

The outcome is a table that provides meta-information about our function:

┌──────────────┬──────────────┬────────────┬─────────────────┬─────────────┐
│function_name │function_type │ parameters │ parameter_types │ return_type │
│ varchar │ varchar │ varchar[] │ varchar[] │ varchar │
├──────────────┼──────────────┼────────────┼─────────────────┼─────────────┤
│remove_spaces │scalar │ [col0] │ [VARCHAR] │ VARCHAR │
└──────────────┴──────────────┴────────────┴─────────────────┴─────────────┘

You can call this function now in any SQL statement issued on the connection in
which you defined the function:

con.sql("select length(remove_spaces(' foo '))")

We wrapped it in a call to length, returning the length of the new string; otherwise,
spotting that the leading and trailing spaces have been trimmed might be difficult in
the output of the Python program. 

 SQL is a typed language, so DuckDB needs to know the types of both parameters and
return types of a function. DuckDB is usually able to infer those types from the Python
type annotations. This inference capability, however, might not always be spot-on, espe-
cially if we had decided to not use Python type hints in our code or if the function is dis-
tributed in a third-party library without type hints. In such scenarios, it becomes
necessary to explicitly define the types to ensure accurate function execution.

Defines a Python function
with type annotations

Checks that the 
field isn’t null

Strips spaces from the 
beginning and end of the value
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 Explicitly specifying types is beneficial for clarity, preventing potential type infer-
ence pitfalls, and ensuring consistent behavior across different environments. To
redefine our function with explicit types, we first need to remove the previously regis-
tered version of the function to avoid conflicts:

con.remove_function('remove_spaces')

Having done that, we can now reregister our function, but this time, we’ll explicitly
define the types. As shown in the following snippet, the function’s parameter type and
return type are distinctly specified:

 The function expects a single input parameter of type VARCHAR.
 It returns a value of type VARCHAR:

from duckdb.typing import *

con.create_function(
'remove_spaces',
remove_spaces,
[(VARCHAR)],
VARCHAR

)

Being explicit in such definitions can serve as a clear contract, stipulating how the
function should be used and what to expect in return, and ensuring the system and
the developers are in sync.

 Next, let’s use this function to write a query showing what we’ll see if we remove
the spaces from the Region column, shown in the following snippet. This query does
two things:

 Displays the original Region values along with their character lengths (len1)
 Showcases the cleaned Region values (using remove_spaces) and their charac-

ter lengths (len2):

con.sql("""
SELECT DISTINCT Region, length(Region) AS len1,

remove_spaces(Region) AS cleanRegion,
length(cleanRegion) AS len2

FROM population
WHERE len1 BETWEEN 20 AND 30
LIMIT 3
""")

A glance at the difference between len1 and len2 immediately makes it evident that
our function does, in fact, trim those unwarranted spaces:

┌───────────────────────────────┬───────┬──────────────────────┬───────┐
│ Region │ len1 │ cleanRegion │ len2 │
│ varchar │ int64 │ varchar │ int64 │
├───────────────────────────────┼───────┼──────────────────────┼───────┤
│ ASIA (EX. NEAR EAST) │ 29 │ ASIA (EX. NEAR EAST) │ 20 │
│ LATIN AMER. & CARIB │ 23 │ LATIN AMER. & CARIB │ 19 │
│ C.W. OF IND. STATES │ 20 │ C.W. OF IND. STATES │ 19 │
└───────────────────────────────┴───────┴──────────────────────┴───────┘

The function has one 
VARCHAR input parameter.

The function returns 
a VARCHAR.

Returns the region and 
the number of characters

Returns regions with no spaces 
and the number of characters

Limited for 
brevity of output
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With the confidence that our function is working as expected, we can then proceed to
update the original dataset:

con.sql("""
UPDATE population
SET Region = remove_spaces(Region);
""")

And once that’s done, let’s return the unique regions and the number of characters:

con.sql("""
select DISTINCT Region, length(Region) AS numChars
from population
""")

┌──────────────────────┬──────────┐
│ Region │ numChars │
│ varchar │ int64 │
├──────────────────────┼──────────┤
│ ASIA (EX. NEAR EAST) │ 20 │
│ EASTERN EUROPE │ 14 │
│ NORTHERN AFRICA │ 15 │
│ OCEANIA │ 7 │
│ WESTERN EUROPE │ 14 │
│ SUB-SAHARAN AFRICA │ 18 │
│ LATIN AMER. & CARIB │ 19 │
│ C.W. OF IND. STATES │ 19 │
│ NEAR EAST │ 9 │
│ NORTHERN AMERICA │ 16 │
│ BALTICS │ 7 │
├──────────────────────┴──────────┤
│ 11 rows 2 columns │
└─────────────────────────────────┘

The spaces are gone! Now we have a much cleaner dataset. The extra spaces around
each Region value have been eliminated, bringing more structure and uniformity to
our data.

 Working with data from diverse sources often introduces challenges stemming
from regional disparities. An excellent example of this is the representation of deci-
mal numbers. In the European region, a comma (,) is typically used as the decimal
separator, as opposed to the period (.) used in other regions. When ingesting data
into databases, these locale-specific notations can introduce complexity, especially if
the system’s locale doesn’t align with the data’s format.

 For our dataset in DuckDB, we’ve encountered such a challenge with fields repre-
senting decimal values. Due to the European format of these values, DuckDB has
interpreted them as VARCHARs, potentially hindering numerical analyses. 

 To rectify this, we can make use of Python’s extensive library ecosystem. The locale
module offers a solution to this particular challenge. We can define a function,
convert_locale, that will transition these European-formatted decimal values into a
format DuckDB can interpret as numeric types:
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from duckdb.typing import *
import locale

def convert_locale(field:str) -> float:
locale.setlocale(locale.LC_ALL, 'de_DE')
return locale.atof(field)

Having defined our function, the next step is to make DuckDB aware of its existence.
Registering this function allows us to use it in our SQL queries:

con.create_function('convert_locale', convert_locale)

To visualize the efficacy of this function, let’s apply it to a couple of columns, namely
Coastline (coast/area ratio) and Pop. Density (per sq. mi.):

con.sql("""
SELECT "Coastline (coast/area ratio)" AS coastline,

convert_locale(coastline) as cleanCoastline,
"Pop. Density (per sq. mi.)" as popDen,
convert_locale(popDen) as cleanPopDen

FROM population
LIMIT 5
""")

┌───────────┬────────────────┬─────────┬─────────────┐
│ coastline │ cleanCoastline │ popDen │ cleanPopDen │
│ varchar │ double │ varchar │ double │
├───────────┼────────────────┼─────────┼─────────────┤
│ 0,00 │ 0.0 │ 48,0 │ 48.0 │
│ 1,26 │ 1.26 │ 124,6 │ 124.6 │
│ 0,04 │ 0.04 │ 13,8 │ 13.8 │
│ 58,29 │ 58.29 │ 290,4 │ 290.4 │
│ 0,00 │ 0.0 │ 152,1 │ 152.1 │
└───────────┴────────────────┴─────────┴─────────────┘

Upon examining the results, the distinction between the original and cleaned values
is evident. Our function has successfully converted values like 0,00 to 0.0. It has done
so not by blindly replacing a colon with a dot but with semantic awareness that it is
dealing with a localization problem.

 Once confident in the function’s operation, it’s prudent to make these changes
permanent in our dataset. The ALTER TABLE clause allows us to modify column types
and update values simultaneously:

con.sql("""
ALTER TABLE population
ALTER "Coastline (coast/area ratio)"
SET DATA TYPE DOUBLE
USING

convert_locale("Coastline (coast/area ratio)")
""")

This process underscores the importance of understanding and adapting to regional
data nuances. It also highlights the flexibility and integration capabilities of DuckDB,

Updates the data 
type to double Uses our convert_locale 

function to update all the 
values in this column
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allowing users to bridge the gap between Python’s vast library ecosystem and SQL-
based data manipulation. 

NOTE We’ll leave repeating this process for the other columns that need
cleaning up as an exercise for the reader. The following columns still need to
be cleaned up: Pop. Density (per sq. mi.), Coastline (coast/area ratio),
Birthrate, and Deathrate.

6.5 Interoperability with Apache Arrow and Polars
In the realm of data analysis, adaptability is a defining quality of a robust system. The
ability to seamlessly transition between different formats or platforms allows for effi-
cient data manipulation, storage, and visualization. One of DuckDB’s strengths is its
capability to interact with a diverse array of data formats, both in-memory and exter-
nal. This interoperability is often invaluable, especially when integrating with other
tools or exporting results for further analysis. 

 Now, while the data science ecosystem is replete with tools, there’s a constant evo-
lution of libraries that offer improved performance or unique features. One such
emerging star is Polars. Though pandas has been the de facto standard for data analy-
sis in Python for many years, Polars presents itself as an exciting alternative. Devel-
oped in Rust—a language known for its performance characteristics—Polars offers
DataFrame operations that are both fast and memory efficient. The memory model
used by Polars is based upon Apache Arrow, a cross-language development platform
for in-memory data that specifies a standardized and language-independent columnar
memory format for flat and hierarchical data. Arrow allows for zero-copy reads and
fast data access and interchange without serialization overhead between languages
and systems. As a matter of fact, Polars is not the only framework that uses Arrows as
an in-memory format: pandas DataFrames and other Python libraries, such as NumPy
and PySpark, do too.

 Given our prior exploration of pandas in this chapter, it might be enlightening to
take Polars for a spin to give yourself a chance to experience the nuances and advan-
tages it brings to the table firsthand. Both libraries must be installed into your Python
environment for the DuckDB integration to work. You want to execute the following
command in a different shell without quitting the running Python interpreter so that
the objects and relations we defined earlier are kept intact:

pip install polars pyarrow

We can then convert the population table to Polars using the pl function and select
some columns from the first five rows:

import polars

population_table = con.table("population")

(population_table
.limit(5)
.pl()

Selects the first five rows 
(using the relational API) Converts the population 

table to Polars DataFrame
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[["Country", "Region", "Population"]]
)

The output of this code fragment is as follows:

shape: (5, 3)
┌─────────────────┬───────────────────────────────────┬────────────┐
│ Country | Region | Population │
│ --- | --- | --- │
│ str | str | i64 │
╞═════════════════╪═══════════════════════════════════╪════════════╡
│ Afghanistan | ASIA (EX. NEAR EAST) | 31056997 │
│ Albania | EASTERN EUROPE … | 3581655 │
│ Algeria | NORTHERN AFRICA … | 32930091 │
│ American Samoa | OCEANIA … | 57794 │
│ Andorra | WESTERN EUROPE … | 71201 │
└─────────────────┴───────────────────────────────────┴────────────┘

Executing this code results in a concise Polars DataFrame with just the Country,
Region, and Population columns for the first five entries. As the output suggests, the
transition from DuckDB to Polars is seamless; the DataFrame can partake in any com-
putation Polars offers. In your code, you will want to delay the transition as long as
possible, though. We could have limited the results to five rows by converting to a
DataFrame first and then using head(5) to get the first five rows; this would have
materialized all rows into the Python runtime followed by a client-side transformation.
Our recommendation for both Polars and pandas is to stick to the relational or data-
base API as long as possible and convert to a DataFrame only if you need to combine it
with external data or if a computation via SQL would just not be feasible.

 We could also convert the DuckDB table to an Apache Arrow table to take advan-
tage of the myriad tools and platforms that support Arrow. To do the conversion, we
can use the to_arrow_table function:

arrow_table = population_table.to_arrow_table()

After transforming our DuckDB table into Arrow’s format, we’re now in a position to
harness the computational capabilities of Arrow’s Python API. Suppose we are inter-
ested in countries from the NEAR EAST region. We’d like to retrieve the country,
region, and population of each of the top five NEAR EAST entries. In the following
snippet, we’ll complete the following operations:

 Filtering—We’re keen on countries that fall within the NEAR EAST region. This is
our primary criterion for data extraction.

 Column selection—For our analysis, we require just three columns: Country,
Region, and Population.

 Row limitation—To keep our output concise, we’ll limit it to the top five entries:

import pyarrow.compute as pc

(arrow_table
.filter(pc.field("Region") == "NEAR EAST")

Extracts the Country, Region, and 
Population for the first five rows

Only includes rows with a 
region in the NEAR EAST
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.select(["Country", "Region", "Population"])

.slice(length=5)
)

The resulting table is a reflection of our specifications: compact, focusing only on the
desired columns, and limited to the top five entries. The countries listed—Bahrain,
Cyprus, Gaza Strip, Iraq, and Israel—are representative of the NEAR EAST region,
with their respective populations displayed alongside:

pyarrow.Table
Country: string
Region: string
Population: int64
------
Country: [["Bahrain ","Cyprus ","Gaza Strip ","Iraq ","Israel "]]
Region: [["NEAR EAST","NEAR EAST","NEAR EAST","NEAR EAST","NEAR EAST"]]
Population: [[698585,784301,1428757,26783383,6352117]]

Those examples not only showcase the capabilities of Apache Arrow and Polars but
also its potential to bridge the divide between data storage and computation. Having
the ability to transform any result into an Apache Arrow object opens up the possibil-
ity of using all streaming, serialization, and interprocess communication (IPC) based on
Arrow. 

Summary
 DuckDB’s Python API blurs the lines between tables and views in a database and

objects outside.
 DuckDB enables many kinds of objects to be queried in a uniform fashion.
 Polar DataFrames, pandas DataFrames, Apache Arrow tables, and other sources

can be treated as if they were a table in an SQL query.
 The relational API makes it easy to write maintainable applications utilizing

reusable query fragments.
 The relational API allows the reuse of dynamic relations in a similar way to what

a view would do statically.
 User-defined functions allow us to implement the functionality of the entire set

of libraries in the Python ecosystem, integrating seamlessly within SQL queries,
bringing more flexibility and a tailored workflow to any data analysis experience.

 Data can be exported to a variety of formats, including pandas DataFrames,
Polars DataFrames, and Apache Arrow tables.

 Transitioning between various platforms becomes a lot easier with DuckDB’s
conversion capabilities that treat DataFrames, Apache Arrow tables, and other
sources the same way. 

Returns the Country, 
Region, and PopulationReturns the 

first five rows



DuckDB in the cloud
with MotherDuck
Up until this point, our focus has been on using DuckDB’s capabilities for querying
datasets—whether they’re stored locally or remotely—directly from our own com-
puters. While this approach addresses a broad range of needs, there are specific
scenarios in which a remote database server offers additional advantages.

 Enter MotherDuck: a solution for enhancing SQL analytics through a simplified
scale-up strategy. In this chapter, we will learn how MotherDuck enables hybrid
query execution, making use of a remotely hosted DuckDB alongside one operat-
ing on our own machine.

This chapter covers 
 The idea behind MotherDuck

 Understanding how the architecture works under 
the hood

 Use cases for serverless SQL analytics

 Creating, managing, and sharing MotherDuck 
databases

 Tips for optimizing your MotherDuck usage
144
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7.1 Introduction to MotherDuck
MotherDuck (https://motherduck.com) is a collaborative serverless analytics platform
that lets you query and analyze data in cloud databases and from cloud storage, using
your browser or any of the DuckDB APIs. Serverless, in this context, means that you as a
user won’t have to deal with spinning up servers, clusters, or configuring database
instances. Instead, you can just create a database, and the service will take care of the
rest for you.

 A closed beta of the platform was launched in June 2023, with general availability
introduced in September 2023. MotherDuck works closely with the DuckDB Labs
team to ensure the best interoperability and availability of all features in the cloud
platform. You can find the documentation for the MotherDuck service at https://
motherduck.com/docs/.

7.1.1 How it works

There are several ways to use MotherDuck. When you sign up for the service, you’ll
end up in the MotherDuck web UI running in the browser. This UI is running a spe-
cial DuckDB version in the browser that knows how to communicate with Mother-
Duck. The UI is both a tool to manage your MotherDuck databases and a notebook-
based approach to enter and execute queries and to view their results. We will cover
this later in the chapter in section 7.2.1. 

 The other entry points to MotherDuck are, of course, the CLI and the integrations
with languages, such as Python. MotherDuck is presented as an opt-in feature to the
open source database DuckDB via an extension. This extension will be automatically
loaded when you open a database using the md: or motherduck: protocol and will
integrate both with the query parser and engine. The parser is enhanced with func-
tionality around database and share management. In the query engine, the extension
analyzes if tables are available locally or remotely and then uses the appropriate exe-
cution engine and joins the data accordingly. If needed, parts of the local data are
sent to the server for joins or filters, or data from the remote side is fetched and
joined locally.

 MotherDuck’s architecture is shown in figure 7.1, and at the core of its operation
are the following components:

 A service layer—Sharing, admin, services, and monitoring
 Ducklings—Serverless DuckDB compute instances
 A catalog—Database and tables
 Storage—Internal storage and maintenance

The service layer of MotherDuck provides capabilities like secure identity, authoriza-
tion, administration, monitoring, billing, and so on. Where the serverless DuckDB
“Duckling” instances execute the “remote” parts of your query, the catalog exposes

https://motherduck.com
https://motherduck.com/docs/
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the databases, tables, and views that are managed in the storage layer. The storage is
durable, secure, and automatically optimized for best performance. MotherDuck—as
with other modern cloud data platforms—separates storage and compute facilities,
which will eventually be important for the cost that occurs when using MotherDuck.

Figure 7.1 Hybrid query execution as implemented within MotherDuck

MotherDuck is designed so that you can focus on your queries, not on the size of the
machines you need to spin up in the cloud to make the queries run quickly. The sepa-
ration of the storage—and compute—layers will have some impact on the cost; we will
discuss this later in the chapter in section 7.3.

7.1.2 Why use MotherDuck?

First and foremost, MotherDuck provides a simplified, performant, and efficient data
warehouse based on DuckDB. Most folks are in the long tail of cloud data warehouse
users and don’t need analytics-processing capabilities for tens or hundreds of tera-
bytes of hot data. Those use cases can benefit from a simpler, more efficient architec-
ture that is not based on a distributed system but instead uses the cloud as the main
data storage and DuckDB as the query engine. Think back to the fictional system pre-
sented in chapters 3 and 4, monitoring energy production. Even if you monitored sev-
eral hundreds or thousands of sites and their daily output in quarterly hour
measurements, you would not find anything close to a billion records per year, and
most likely, they would only total a few gigabytes in size. This could hardly be consid-
ered big data, and it’s something MotherDuck would be able to deal with easily. 

 Another way to utilize MotherDuck is as a query engine for data lakes made up of
heterogeneous sources, such as cold data stored as Parquet, CSV files in S3, or data
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stored in Apache Iceberg. You can easily join that data with hot data stored directly in
MotherDuck.

 MotherDuck can serve as a serverless backend for data applications, dashboards,
and APIs. Instead of running analytics queries on the main transactional database, you
can use MotherDuck to run those queries on a dedicated analytics database.

 Last but not least, MotherDuck allows sharing read-only snapshots of your data-
bases to other MotherDuck users. They can use your sources, as they are shared, or
join data from their instance together with your datasets as well.

 Independent of what you are planning to do with MotherDuck, you will need to
sign up with the MotherDuck service to use their cloud offering. We will cover this in
the next section. 

7.2 Getting started with MotherDuck
Throughout the book, we used the CLI or the integration with Python. To get started
with MotherDuck, you will need to bring up your browser of choice first. Navigate to
https://motherduck.com/, and click on the Sign Up button. You can create a free
account with your GitHub account, with your Google account, or by providing an
email address. Once you’ve done that, you’ll find yourself in the MotherDuck UI. The
UI shown in figure 7.2 displays your databases and their schema in a navigable tree to
the left, and a query and its result, including inline bar-charts, in the main view. 

Figure 7.2 MotherDuck UI

https://motherduck.com/
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7.2.1 Using MotherDuck through the UI

The web-based MotherDuck UI (https://app.motherduck.com) provides a central
place for accessing and querying all your remote databases, managing your account
settings, and storing any secrets necessary for querying remote data sources on S3. It
also gives access to your MotherDuck API token, which is needed to access Mother-
Duck outside the UI. 

NOTE The database running in the web UI is actually a local, embedded
database too! It is using a version of Duck that is compiled to WebAssembly
(WASM), thus running locally in your browser. The queries are executed, of
course, in the MotherDuck cloud, as explained earlier. Alternatively, if you
don’t have or want a MotherDuck account, you can visit https://shell.duckdb
.org, which behaves essentially like your CLI but without being able to persist
data or connect to MotherDuck.

Results of your SQL queries are cached in the DuckDB
instance local to your browser, enabling you to instantly
sort, pivot, and filter query results! The UI lists databases,
their tables with their columns, and uploaded files on the
left side. With a context menu, you can use, share, drop,
detach, or copy the names of databases. The menu shown
in figure 7.3 will appear as a context item when navigating
the tree-like structure.

 DuckDB offers a Jupyter-Notebook-like experience for
running queries, which allows you to write SQL statements
with auto-complete and then run them and see query
results rendered in a data grid below the cell. The output
data grids support local sorting, selecting output columns,
showing histograms and aggregations in the column header, and pivoting and filter-
ing the data. The state of the UI with your queries is kept across sessions, so you can
close the browser and continue from where you left off at a later date.

 The web-based UI is a great work environment for pre-existing, shared, and new
databases. Everything that you’ve learned so far about SQL and writing queries and
working with different data sources as explored in chapter 5 can be applied. There is
support for uploading CSV and Parquet files directly from the UI. They will be accessi-
ble in any query, and you will utilize a CREATE TABLE AS SELECT statement or transform
them to your needs. To import existing databases from the DuckDB CLI, or use Moth-
erDuck from any of the supported language bindings, you’ll need to authenticate the
CLI or the language binding of choice with MotherDuck. 

7.2.2 Connecting to MotherDuck with DuckDB via token-based authentication

Please make sure you have a MotherDuck account and are logged in before proceeding.
DuckDB triggers the authentication process with MotherDuck at the moment you try to
open a shared database instance. This can be a named database or the default one. 

Figure 7.3 Contextual 
menu of the navigator

https://app.motherduck.com
https://shell.duckdb.org
https://shell.duckdb.org
https://shell.duckdb.org


1497.2 Getting started with MotherDuck
NOTE When you connect to MotherDuck without specifying a database, you
connect to a default database called my_db. This is the current database. You
can then query any table in this database by specifying the table name. The
USE command allows you to switch the current database.

Let’s open the default database at MotherDuck for your account by running
.open md: in the CLI. Unless you’re already authenticated, it will prompt you with the
following message:

Attempting to automatically open the SSO authorization page in your

➥default browser.
1. Please open this link to login into your account:

➥https://auth.motherduck.com/activate
2. Enter the following code: XXXX-XXXX

If you follow through the auth flow to completion, you’ll see the following lines in the
terminal:

Token successfully retrieved [√]
You can store it as an environment variable to avoid having to log in again:

$ export motherduck_token='eyJhbGciOiJI..._Jfo'

Your browser will have opened with a device confirmation message similar to that
shown in figure 7.4.

Figure 7.4
MotherDuck confirmation message
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You’re now able to access databases on MotherDuck, and as the message says, if you
want to be automatically logged in during future sessions, you should add the Mother-
Duck token as an environment variable. Alternatively, you can use the token as a
parameter to the md: protocol like this:

D .open 'md:?motherduck_token=eyJhbGciOiJI..._Jfo'

This URL format is also applicable to the individual language bindings. Think back to
chapter 6, in which we discussed connection management from within the integration
with the Python ecosystem. To open a connection to MotherDuck from Python, you
would use

import duckdb

con = duckdb.connect('md:?motherduck_token=eyJhbGciOiJI..._Jfo')

Next, we will discuss how to perform various tasks in MotherDuck. Whether to use the
web UI or the CLI is ultimately up to you, but please make sure you set up your
MotherDuck account and can access it with either the UI or the CLI. 

7.3 Making the best possible use of MotherDuck
In this section, you will learn about the features added to DuckDB via the Mother-
Duck extension that let you interact with MotherDuck and use it to its fullest poten-
tial. We start by discussing all features helping you to get your data into the cloud and
potentially sharing your databases with colleagues and partners:

 Uploading databases from your local machine to the cloud
 Managing databases (creation, deletion, listing)
 Sharing databases via URL, refreshing the shares, and attaching them to your

local DuckDB instance
 Accessing data from S3 buckets

After that, we will discuss how to control whether a query runs on a database that is
completely remote, completely local, or partially remote and partially local.

 Last but not least, MotherDuck ships a couple of AI-related features, such as func-
tions that will automatically describe your schema and, based on that, generate or fix
SQL statements for you. Let’s have a look at these features, starting with uploading a
local DuckDB database.

7.3.1 Uploading databases to MotherDuck

Think back to chapter 6, in which we used the Python integration to build up a database
containing data about countries. We finished our work there, we cleaned up issues in
the dataset, and now we want to share that work with colleagues. One way to do this is
via the “spreadsheet way of life”: just take the countries.duckdb store, attach it to an
email or copy it to a network folder, and move on. A better, less-fragile way of sharing
is MotherDuck. To begin, start your DuckDB CLI, and open your database with the
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following command (if you don’t have that store, don’t worry—the command will cre-
ate it for you):

.open countries.duckdb

Let’s add a cities table to that database, especially if you created a fresh database:

CREATE TABLE cities AS
SELECT *
FROM (VALUES ('Amsterdam', 1), ('London', 2)) cities(Name, Id);

Before we share the database, we need to detach so that all the locks will be released.
 This can either be done by switching back to an in-memory database, using .open

without arguments followed by a LOAD motherduck; to load the extension, or in one
go by calling .open md:. The latter will attach the CLI to the MotherDuck default
database. We can then create the remote database with the CREATE DATABASE state-
ment as follows:

.open md:
CREATE DATABASE "countries" FROM 'countries.duckdb';

Depending on the size of your database and the speed of your internet connection,
the upload process can take some time. In our experiments, the upload of a 16 GB
database from a regular laptop accessing a 40 Mbps upstream home internet connec-
tion took about 40 minutes. At the time of writing, this is a topic MotherDuck is
actively working on, and the upload performance is expected to improve in the near
future. For now, it may be faster to export your database into Parquet files, upload
those to cloud storage, and then create a database in MotherDuck from those files.

 Once the database is uploaded, you can check whether you are able to use it. Your
session is still attached to the default database in MotherDuck. That means you’ll
need to either prefix your tables with the database name or switch to the new data-
base. FROM countries.cities uses the prefix. In the following snippet, we first switch
to the database by issuing a USE statement. That allows us to omit the prefix to any
table in that database, as we’ve done in all previous examples:

USE countries;
FROM cities;

If you happened to already leave the CLI, you can connect directly to the new data-
base via .open md:countries too. Either way, we can then run a query to check that
the data is there. So if we select everything from the cities table with FROM cities,
we should see everything we just created:

┌───────────┬───────┐
│ Name │ Id │
│ varchar │ int32 │
├───────────┼───────┤
│ Amsterdam │ 1 │
│ London │ 2 │
└───────────┴───────┘

The USE statement will look up the database 
name in the remote MotherDuck catalog.
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When uploading a local database to MotherDuck, the following rule is very important
to remember: the local and remote names must always be different. If you forget this rule
and give them the same name, you risk receiving the following error:

create database "countries" from 'countries' ;
Error: Catalog Error: Database 'countries' has already been

➥created and attached

And if you try to upload your current database, you get this error:

Error: Binder Error: Database "countries.duckdb" is already attached

➥with alias "countries"

We avoided these errors in our example by calling .open md:, which did two things
for us: it loaded the MotherDuck extension and connected to the default Mother-
Duck database. Another option is using .open, which will switch to an in-memory
database. 

7.3.2 Creating databases in MotherDuck

In the previous section, we uploaded an existing database to MotherDuck. Alterna-
tively, you can start building your schema from scratch directly in the cloud. If the
content of your schema depends largely on files stored in another public cloud, it
would be a waste of time and resources to download them first into a local DuckDB
instance and then upload that database to MotherDuck. In most cases, MotherDuck
will run closer to an S3 bucket than your local system, so an ingress from the cloud
directly into MotherDuck may save you time and money. 

 You create a new database in MotherDuck using the CREATE DATABASE command.
The database name can’t have any special characters—only alphanumeric characters
and underscores are allowed. 

 To create a database called my-test, run the following:

CREATE DATABASE "my-test";

You can confirm that the database has been created with the SHOW DATABASES
command:

SHOW DATABASES;

┌───────────────┐
│ database_name │
│ varchar │
├───────────────┤
│ my-test │
└───────────────┘

Alternatively, you can use the .databases CLI command. You can run either of these
commands from your local DuckDB CLI, or you can navigate to the MotherDuck UI
(https://app.motherduck.com/) and run them there. 

https://app.motherduck.com/
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 The CREATE DATABASE statement just creates the database—it doesn’t change your
session to it—so we need to run USE 'my-test'; first. We can then check that we’re
connected to this database using the current_database function:

SELECT current_database();

If everything worked as expected, you should see the correct database name:

┌────────────────────┐
│ current_database() │
│ varchar │
├────────────────────┤
│ my-test │
└────────────────────┘

Let’s now create a people table in our MotherDuck database and add a couple of rows:

CREATE TABLE people (name varchar, born date);
INSERT INTO people VALUES ('Mark', '1989-01-01'), ('Hannes', '1990-01-01');

We can then return a count of the records in the people table by running the follow-
ing query:

SELECT count(*)
FROM people;

┌──────────────┐
│ count_star() │
│ int64 │
├──────────────┤
│ 2 │
└──────────────┘

We can also run that same query with the database name prefixed to the table name:

SELECT count(*)
FROM "my-test".people;

And once we’re happy that we’ve gotten the hang of how MotherDuck works, we can
remove that test database. To do that, we’ll need to first switch to the default my_db
database before running the DROP DATABASE command. 

USE my_db;
DROP DATABASE "my-test";

The my-test test database should no longer appear in the output of SHOW DATABASES;. 

7.3.3 Sharing databases

MotherDuck offers the ability to share a read-only snapshot of your databases. This is
great not only for sharing the data but for collaborative analysis and shared function-
ality. The snapshot will not only contain your data but all views, and with them all the
effort you put into them during creation. Think of it as a “spreadsheet on steroids.”
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 To make your data available to others (https://mng.bz/NRW7), you can use the
CREATE SHARE statement. If you run it, you will get a shareable link that others can
connect to using the ATTACH command (https://mng.bz/Ddea). 

NOTE The following generated links will be different if you create the shares for
the country database based on your MotherDuck account and your database.

Assuming you followed our initial instructions to create the countries database, you
could share it like this:

CREATE SHARE shared_countries
FROM countries;

You will receive a link similar to the following:

┌──────────────────────────────────────────────────────────┐
│ share_url │
│ varchar │
├──────────────────────────────────────────────────────────┤
│ md:_share/countries/1acb80cf-d872-4fab-8077-64975cce0452 │
└──────────────────────────────────────────────────────────┘

The amount of time it takes to create a shared database currently depends on the size
of the source database. A 16 GB database took about a minute to share in our case.

 To attach this database, our friend or colleague will need to have a MotherDuck
account too. They can then run the following command on their DuckDB database:

ATTACH 'md:_share/countries/1acb80cf-d872-4fab-8077-64975cce0452'
AS shared_countries;

We can describe the contents of a shared database using the DESCRIBE SHARE command:

.mode line
DESCRIBE SHARE shared_countries;

This results in the following output, mirroring the source link and the original name
as well as the IDs of the database and the latest snapshot:

share_name = shared_countries
share_link = md:_share/countries/1acb80cf-d872-4fab-8077-64975cce0452

database_name = countries
database_id = 9d7586ac-add9-46dc-a4fb-def6b42f0f7c
snapshot_id = 041a5ba9-8cf4-471b-af13-1bec75a0b3ce

We can also list the shares that we’ve created:

LIST SHARES;

At the time of publication, shares are not automatically updated when you change the
content of your shared database. Changes to both schema and data must be explicitly
propagated through the UPDATE SHARE statement from the sharing site:

The name of the 
shared databaseThe name of the 

database to share

https://mng.bz/NRW7
https://mng.bz/Ddea
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UPDATE SHARE shared_countries;

To get rid of any share you are not interested in anymore, run the DETACH statement. If
you are connected to the share, you need to switch to a different database first:

USE my_db;
DETACH shared_countries;

We did actually prepare a couple of hopefully interesting shares for you, including the
complete database of chapters 3 and 4, containing all tables and views we created
throughout the chapters. Youc can access it with the following:

ATTACH
'md:_share/duckdb_in_action_ch3_4/d0c08584-1d33-491c-8db7-cf9c6910eceb'

AS duckdb_book_ch3_and_4;
USE duckdb_book_ch3_and_4;
SHOW tables;

We also ingested a complete dump from Stack Overflow, which provides a great data-
set to play along with:

ATTACH
'md:_share/stackoverflow/6c318917-6888-425a-bea1-5860c29947e5'

AS stackoverflow_analysis;
USE stackoverflow_analysis;
SELECT count(*) FROM posts;

The share contains a whopping number of 58,329,356 posts and answers—an interest-
ing corpus of data to play with. We collected some other interesting shares you can
load into a sample_data database via

ATTACH 'md:_share/share_sample_data/23b0d623-1361-421d-ae77-62d701d471e6'
AS sample_data;

The tables are prefixed, and you can access them via their fully qualified names (e.g.,
sample_data.nyc.yellow_cab_nyc_2022_11) (see table 7.1).

Table 7.1 List of tables in the sample database

Name Table name Rows Description

Hacker News hn.hacker_news 3.9M A sample of comments from Hacker 
News

NYC 311 
Complaint Data

nyc.service_requests 32.5M Requests to NYC’s 311 complaint 
hotline via phone and web

Air Quality who.ambient_air_quality 41k Historical air quality data from the 
World Health Organization

Taxi Rides nyc.taxi 3.3M NYC yellow cab trips data from 
November 2020

Rideshare nyc.rideshare 18.1M Rideshare trips (Lyft, Uber, etc.) in NYC
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These datasets provide many different topics, which you can use to train your SQL
skills or to explore the possibilities of DuckDB and MotherDuck. 

7.3.4 Managing S3 secrets and loading Data from S3 buckets

In previous chapters, we ingested data from files directly available over http:// or
https:// protocols. Oftentimes, people use Amazon S3 for storing files, accessible via
the s3:// protocol. 

 MotherDuck—and DuckDB—speak that protocol as well, but they need your
secrets to authenticate on your behalf against Amazon S3. When using MotherDuck,
you can store your secrets in their systems so that they are available in all sessions con-
nected to MotherDuck. You do this either via the web UI or a dedicated statement—
the CREATE OR REPLACE SECRET statement:

CREATE OR REPLACE SECRET (
TYPE S3,
KEY_ID 'access-key',
SECRET 'secret-key',
REGION 'us-east-1'

);

Once you’ve done that, you can query data in a secure S3 bucket, just like any CSV or
Parquet file we queried over http or the file system before:

CREATE OR REPLACE TABLE mytable AS
FROM 's3://...';

Once you’ve finished working with the bucket, you’ll want to remove the secret:

DROP SECRET (TYPE s3);

There are a couple of things to keep in mind when creating a secret:

 In versions of DuckDB prior to 0.10.0, you can only have one SECRET object.
 You can only use permanent S3 secrets—temporary S3 secrets, which are only

valid during a session, are currently not supported. 

7.3.5 Optimizing data ingestion and MotherDuck usage

Running a cloud-based solution incurs a variety of cost types, including, among oth-
ers, the costs of compute, storage, data ingress, and data egress. The MotherDuck
extension gives you close control over where a function is to be executed: in the cloud
or on your local machine. If you want to process a large Parquet file you already have
on your local machine, it’s pointless to upload it to S3 first and then run the process-
ing in MotherDuck, as you will pay for both the computational costs at MotherDuck
and the egress cost at S3. Given a fast internet connection, you are most likely better
off doing this locally and simply uploading from your machine to MotherDuck. The
extension enhances all functions starting with the read_ prefix—such as read_json
and read_csv_auto—to support the MD_RUN parameter. That parameter lets you con-
trol where the function will be executed, and it supports the following values:
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 MD_RUN=LOCAL—This executes the function in your local DuckDB environment.
 MD_RUN=REMOTE—This executes the function in MotherDuck-hosted DuckDB

runtimes in the cloud.
 MD_RUN=AUTO—This remotely executes all s3://, http://, and https:// requests,

except those to localhost/127.0.0.1. This is the default option.

For example, if you wanted to query the DuckDB IP’s dataset on the MotherDuck-
hosted DuckDB runtime, you could execute the following query. In the example, we
use .timer on to get the query execution time:

.timer on
SELECT count(*)
FROM read_csv_auto(

'https://github.com/duckdb/duckdb/raw/main/data/csv/ips.csv.gz',
MD_RUN=REMOTE

);

As of writing, the query took less than a second to run in the MotherDuck cloud.
Using MD_RUN=LOCAL instead, it took close to 2 seconds on the author’s slow internet
connection.

 Beyond its free tier, MotherDuck offers a Standard tier of its service for a base
price of $25 per month for 100 GB storage and 100 compute hours. In the event that
resources are needed beyond the standard usage allotments, users may purchase addi-
tional cold storage or compute time at rates of $0.08 per GB and $0.40 per hour,
respectively. However, keep in mind that this is only for cloud usage, not your local
execution (see https://motherduck.com/pricing/). 

 Cold storage refers to the persistent storage for your databases and files. Hot storage,
on the other hand, is used to execute your queries, equivalent to memory usage, and it
can be limited to a maximum value, fine-tuned to your needs. In DuckDB, hot storage
is automatically scaled up to the upper limit and metered per second and gigabyte.

 The separation actually makes a lot of sense, as studies show that a huge percentage
of the data that gets processed is less than 24 hours old. By the time data gets to be a
week old, it is about 20 times less likely to be queried than data from the most recent
day. Additionally, the workload sizes are often smaller than overall data sizes. For exam-
ple, dashboards are usually built from aggregated data: any data from the last hour can
be freshly aggregated so that you won’t miss out on the latest changes. Anything reach-
ing back later than a week can be stored pre-aggregated as an additional table. The
aggregate will usually have many fewer rows and consume much less storage.

 If you want to keep your costs under control, avoid storing superfluous data
directly in MotherDuck; instead, load or process it as needed, and set a reasonable
maximum amount of hot storage you’ll keep at one time. The amount of hot storage
available does affect the performance of your queries. 

7.3.6 Querying your data with AI

While SQL is somewhat similar to the English language, it’s not always easy to master.
And if you’re new to it, some SQL constructs might be downright intimidating. 

https://motherduck.com/pricing/
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NOTE An earlier name for SQL was SEQUEL (Structured English QUEry Lan-
guage), which was a pun on QUEL, another query language based on the
relational model. The name was eventually dropped due to trademark issues. 

Queries in a structured language can, however, be nicely generated, and you will be
delighted to hear that MotherDuck offers a generative AI feature (https://mng.bz/
lMjB) that allows you to query your data using natural language. It is able to describe
your data and will generate SQL statements for you or fix existing ones. The feature
works by sending the database schema along with a detailed prompt and your ques-
tion to a large language model (LLM) that then generates the requested SQL state-
ment and, optionally, executes it.

 From our experience, it works quite well, and you can try it out on any of the test
datasets. The following example uses the StackOverflow dataset, attached with the fol-
lowing statements:

ATTACH
'md:_share/stackoverflow/6c318917-6888-425a-bea1-5860c29947e5'

AS stackoverflow_analysis;
USE stackoverflow_analysis;

You can get a description of the database schema by calling the prompt_schema
procedure: 

.mode line
CALL prompt_schema();

The results of running this a couple of times are as follows:

summary = The database contains tables for storing data related to votes,

➥tags, posts, post links, badges, users, and comments.
Run Time (s): real 3.672 user 0.007355 sys 0.002674

It takes a couple seconds to run, and the result isn’t all that impressive—you could
have gotten the same output by looking at the table list. If you call the function a sec-
ond time, you will most likely get a different response:

summary = The data in the database is about votes, tags, posts, post links,

➥badges, users, and comments.
Run Time (s): real 3.054 user 0.007354 sys 0.003175

This may initially seem surprising until we consider that an LLM is a probabilistic
model that isn’t guaranteed to return the same response each time.

 Instead of using an SQL statement to query for the most popular tags, we will use
plain English in the next example: What are the most popular tags? This is, of course, not
a valid SQL statement, so we must indicate this via a special pragma called
prompt_query. A pragma is special directive that tells a compiler or query parser how it
should process its input. Here, the input should be process as a prompt:

.mode duckbox
pragma prompt_query('What are the most popular tags?');

https://mng.bz/lMjB
https://mng.bz/lMjB
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Without showing us how, we get 10 rows back, and they are actually meaningful:

┌────────────┬─────────┐
│ TagName │ Count │
│ varchar │ int64 │
├────────────┼─────────┤
│ javascript │ 2479947 │
│ python │ 2113196 │
│ java │ 1889767 │
│ c# │ 1583879 │
│ php │ 1456271 │
│ android │ 1400026 │
│ html │ 1167742 │
│ jquery │ 1033113 │
│ c++ │ 789699 │
│ css │ 787138 │
├────────────┴─────────┤
│ 10 rows 2 columns │
└──────────────────────┘
-- Run Time (s): real 3.763 user 0.124567 sys 0.001716

While this is a correct answer, you might be curious about which SQL query was used
to compute the answer. We can determine this (keeping in mind that probabilistically
it could have been slightly different) using the prompt_sql procedure:

.mode line
call prompt_sql('What are the most popular tags?');

query = SELECT TagName, Count
FROM tags
ORDER BY Count DESC;
Run Time (s): real 5.425 user 0.010331 sys 0.005074

Looks good—it’s even smart enough to use the table columns along with ordering and
limit to get the most popular tags. The run time for these AI prompts is between 2 and
10 seconds, with most of this time being spent inside the large language model (LLM).

 Let’s see how it deals with a more involved question: What are the titles and com-
ment counts of the five posts with the most comments?

.mode duckbox
pragma prompt_query("Which 5 questions have the most comments, what is the

post title and comment count");

┌──────────────────────────────────────────────────────────────┬───────────┐
│ Title │ comments │
│ varchar │ int64 │
├──────────────────────────────────────────────────────────────┼───────────┤
│ UIImageView Frame Doesnt Reflect Constraints │ 108 │
│ Is it possible to use adb commands to click on a view by find│ 102 │
│ How to create a new web character symbol recognizable by html│ 100 │
│ Why isnt my CSS3 animation smooth in Google Chrome (but very │ 89 │
│ Heap Gives Page Fault │ 89 │
└──────────────────────────────────────────────────────────────┴───────────┘
Run Time (s): real 19.695 user 2.406446 sys 0.018353
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And let’s check which query was used. It is interesting that it detects or knows that all
entries in the posts table with PostTypeId = 1 are questions and not answers. Per-
haps it knows that because it was trained on the StackOverflow dataset:

.mode line
call prompt_sql("Which 5 questions have the most comments, what is the

post title and comment count");

query = SELECT p.Title, COUNT(c.Id) AS comment_count
FROM posts p
JOIN comments c ON p.Id = c.PostId AND p.PostTypeId = 1
GROUP BY p.Title
ORDER BY comment_count DESC
LIMIT 5;
Run Time (s): real 4.795 user 0.002301 sys 0.001346

Figure 7.5 shows what this looks like in the MotherDuck UI.

Figure 7.5 MotherDuck UI with AI queries
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Since the comment count is a column in the posts table, the join with the comments
table isn’t needed. Let’s see if we can get it to generate a query using just the posts
table by tweaking our prompt:

call prompt_sql("System: No joins! User: Which 5 questions have the most
comments, what is the post title and comment count");

query = SELECT Title, CommentCount
FROM posts
WHERE PostTypeId = 1
ORDER BY CommentCount DESC
LIMIT 5;
Run Time (s): real 3.587 user 0.001733 sys 0.000865

Much better!
 You can also use call prompt_fixup() to fix an SQL code for a statement (e.g.,

the infamous, “I forgot GROUP BY”):

call prompt_fixup("select postTypeId, count(*) from posts");

query = SELECT postTypeId, COUNT(*) FROM posts GROUP BY postTypeId
Run Time (s): real 12.006 user 0.004266 sys 0.002980

Or you can use it to fix an incorrect join column name or two:

call prompt_fixup("select count(*) from posts join users on

➥posts.userId = users.userId");

query = SELECT COUNT(*) FROM posts JOIN users ON

➥posts.OwnerUserId = users.Id
Run Time (s): real 2.378 user 0.001770 sys 0.001067

We think there’s a lot of potential in using an LLM to generate queries for a database,
especially when the model can be augmented with the database schema. While it most
likely won’t replace queries that are written and tuned by specialists for reports and
applications, it will make database systems much more accessible to a broader audi-
ence. Notably, in early 2024, MotherDuck introduced FixIt—a fast SQL error fixer for
the UI, based on the same technology, which fixes syntactically incorrect SQL state-
ments or those that are directly inline in the UI (https://mng.bz/Bdar). 

7.3.7 Integrations

MotherDuck supports a wide variety of data transfer, business intelligence, and data
visualization tools, as shown in figure 7.6. Going from left to right, with optional trans-
formations in between, MotherDuck can sit in the middle of your pipeline. Sources
can either be ingested directly or via additional services and then put into storage at
MotherDuck before they are queried by either business intelligence use cases or with
specific data science tools. They can serve as a retrieval augmented generation (RAG)
information retrieval component for LLM models too. 

 Additionally, any existing DuckDB integrations and drivers also work with Mother-
Duck, so everywhere you can use DuckDB, you can use MotherDuck. All it takes is

https://mng.bz/Bdar
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inserting the md: prefix into the database connection string and appending the
?motherduck_token=<token> parameter. 

Summary
 MotherDuck is a serverless data analytics platform that makes it easy to query

and analyze data in cloud storage from the browser.
 It integrates seamlessly into the DuckDB CLI, the Python, and other language

integrations using the md: protocol, which automatically loads the MotherDuck
extension.

 MotherDuck enables you to store structured data, query that data with SQL,
and share it with others.

 One key principle of the service is ease of use; you don’t need to configure or
spin up instances, clusters, or warehouses. You simply write and submit SQL, in
the same tool or from within the same ecosystem, when working locally.

 In many cases, data can be ingested much faster at MotherDuck than locally
due to its closer proximity to data sources.

 Local, remote, and shared datasets can easily be joined by using the qualified
names of schema and relation.

 The MotherDuck platform also offers support for querying datasets in natural
language, allowing people who are not trained in SQL to benefit from the
analytical database too. 

Figure 7.6 MotherDuck integrations



Building data pipelines
with DuckDB
Having explored DuckDB’s seamless integration with prominent data processing
languages, such as Python, and libraries, such as pandas, Apache Arrow, and Polars,
in chapter 6, we know that DuckDB and its ecosystem are capable of tackling vari-
ous tasks that belong to data pipelines and can, therefore, be used within them.
The combination of a powerful SQL engine, well-integrated tooling, and the
potential of a cloud offering makes it more than just another database system.

 In this chapter, we’ll delve deeper into DuckDB’s role within the broader data
ecosystem, emphasizing its significance in building robust data pipelines and
enhancing workflows. For this, we will first take a step back and discuss the

This chapter covers 
 The meaning and relevance of data pipelines

 What roles DuckDB can have as part of a pipeline

 How DuckDB integrates with tools like the Python-
based data load tool for ingestion and the data 
build tool from dbt Labs for transformation

 Orchestrating pipelines with Dagster
163
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meaning and relevance of data pipelines. Then, we are going to evaluate a couple of
tools that we think are helpful when building robust pipelines. These tools cover
ingestion, transformation, and orchestration. Let’s start with the basics and have a
look at the problems we want to solve.

NOTE As we’re loading data from external live sources and repositories that
have been updated, the examples in this chapter might show different out-
puts of records or counts than the ones you see when you run the code.

8.1 Data pipelines and the role of DuckDB
A data pipeline is usually set up to retrieve and ingest data from various sources into a
data store, such as a database, a data lake stored as flat files in the cloud, or a data
warehouse. Prior to storing anything, data is usually processed and transformed in
many ways. These transformations include joining datasets together, filtering,
aggregating, or masking, with the goal of proper integration and standardization.
We’ve already spoken a lot about filtering and aggregations in chapters 3 and 4, but
masking is new. Masking is about anonymizing or distorting confidential or regulated
data. 

 It’s not enough to just store the data; pipelines are about creating value. Any use of
a data pipeline is eventually about creating a product, such as dashboards, APIs,
machine learning (ML) models, and more. Figure 8.1 shows a potential data pipeline
that demonstrates some actions taken on data and some of the directions it can take.

Figure 8.1 Flows in a data pipeline from data sources through transformation to storage and products

Ingest Catalog

Storage
Databases, data  warehouses, and data lakes

Transform

Products
APIs, dashboards, and 

models

2. Write data directly.

1. Load data from sources.

2. Store
metadata.

3. Use/update
metadata.

4. Products read/write from
storage.

4.Use/update
   metadata.

3. Read/write transformed
data.

Data sources:
Streams and databases



1658.2 Data ingestion with dlt
There are usually two main types of data pipelines to deal with: batch processing and
streaming data. We are looking at pipelines that deal with batch processing of data in
this chapter. Batch processing usually forms a workflow of sequences of commands,
where each output of one command becomes the input to the next. Processing will be
complete after the last transformation is completed and the data has been stored in
the desired repository. Batch processing is appropriate when there is no immediate
need to analyze each change or react to immediate changes. 

NOTE The flow of extract, transform, and load (ETL) is a subcategory of a data
pipeline. Not all pipelines follow that exact sequence. While extraction, in
most cases, is the first step, data can be loaded into a desired storage first and
then be transformed. This sequence is known as ELT. Whether you build an
ETL or an ELT pipeline is relevant when you use a cloud service like Mother-
Duck in which you want to make the best possible use of resources. Some-
times, it’s better to transform your data with local resources; at other times,
it’s more effective to transform data that is already stored in the cloud. 

So what is DuckDB’s role in this? While DuckDB can be used as a storage system in a
pipeline, it usually sits in the transformation and processing part of a pipeline due to
its simple yet powerful execution model: a single binary that is capable of dealing with
large datasets, using a plethora of sources and store formats as input, providing a com-
plete SQL engine to transform data in many different ways.

 The broad support for SQL provides the first shared language to integrate with rel-
evant processing tools like dbt, covered later in this chapter. The second shared lan-
guage oftentimes—especially when storing to data lakes—uses Parquet as the output
format.

 Let’s have a look at how a possible data pipeline with DuckDB might look. We start
by ingesting some data. 

8.2 Data ingestion with dlt
The data load tool (dlt; see https://dlthub.com/) is an open source Python library
that lets us load data from various, and often messy, data sources into a variety of desti-
nations. Why would you want to use dlt and not run your own Python scripts to build
ingestion pipelines? The main entry to dlt, the pipeline function, can infer a schema
from source data and load that data to the destination, creating a suitable schema
there. We can use this pipeline with JSON data, DataFrames, or other iterable objects,
such as generator functions, without changing any processing that comes afterward.
The engine takes care of versioning as well so that a data team can focus on using the
data and driving value, while ensuring effective governance through timely notifica-
tions of any changes. 

 dlt provides a set of predefined sources and destinations, including SQL databases,
GitHub, and other interesting APIs. One of the destinations supported out of the box
is DuckDB. Custom sources and destinations can be defined as well, but this topic is
not covered in this book.

https://dlthub.com/
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 An interesting built-in dlt source is http://chess.com. Their API provides informa-
tion about players and games. In this section, we’re going to use that source to build a
little chess database with DuckDB, as depicted in figure 8.2.

dlt is written in Python, and we assume you have a working Python environment with a
working pip command. pip is Python’s recommended package manager, and we use it
to install dlt by running the following command:

pip install dlt

If you skipped chapter 6, you probably didn’t install the DuckDB Python extension. It
must be installed for the pipeline to work:

pip install duckdb

The full source code for the pipeline we are going to build in an interactive fashion in
the following sections is also available in our examples repository on GitHub at
https://mng.bz/d6pv.

8.2.1 Installing a supported source

Next, we’re going to initialize our Chess.com pipeline (https://mng.bz/rVle). This is
done via dlt init, which takes two arguments: the source and the destination. The
source will be the built-in chess.com dlt source and the destination duckdb. As both
our desired source and destination are officially supported by the tool, we can run the
following command in our shell to create all necessary files and definitions for our
first pipeline:

dlt init chess duckdb

This command will create some files locally, including executable scripts, so we’ll need
to confirm that we’re happy to do that:

Looking up the init scripts in

➥https://github.com/dlt-hub/verified-sources.git...
Cloning and configuring a verified source chess (A source loading player➥
profiles and games from chess.com api)

Do you want to proceed? [Y/n]:

Once it’s completed, we’ll see the following output:

Verified source chess was added to your project!
* See the usage examples and code snippets to copy from chess_pipeline.py
* Add credentials for duckdb and other secrets in ./.dlt/secrets.toml

Chess.com

chess.

source

dltHub—chess_pipeline DuckDB

duckdb

destination
main

load "source"
from "player_profiles"

filter player & date-range Figure 8.2 Ingesting data 
from chess.com into DuckDB

http://chess.com
https://mng.bz/d6pv
https://mng.bz/rVle
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* requirements.txt was created. Install it with:
pip install -r requirements.txt
* Read https://dlthub.com/docs/walkthroughs/create-a-pipeline

➥for more information

We should now have a directory called chess that contains the helper functions and a
file called chess_pipeline.py that represents a working sample pipeline. You can either
use it as is, as inspiration for your own experiments, or build a pipeline from scratch
with us. We renamed the sample pipeline chess_pipeline.py.sample in our example
repository. 

8.2.2 Building a pipeline

dlt pipelines are written in Python too. You can enter the following Python snippets in
a new Python file, the Python REPL, or a Jupyter notebook. We’re going to use the
Python REPL, and the following experiments assume you entered the Python shell
from the directory into which you initialized the pipeline. 

 The first step is adding imports for dlt and the Chess.com source, as shown in the
following listing.

import dlt
from chess import source

Once we’ve done that, we’re going to initialize a pipeline. We’re going to call it
chess_pipeline, and we’ll also specify DuckDB as the destination. The whole defini-
tion will be stored in a variable named pipeline.

pipeline = dlt.pipeline(
pipeline_name="chess_pipeline",
destination="duckdb",
dataset_name="main"

)

The DuckDB database will be written to a file named <pipeline-name>.duckdb (e.g.,
chess_pipeline.duckdb, in our case).

 Next, we’re going to create a source for four of the most popular players and their
matches from November 2022.

data = source(
players=[

"magnuscarlsen", "vincentkeymer",
"dommarajugukesh", "rpragchess"

Listing 8.1 Importing the required libraries for the new dlt pipeline

Listing 8.2 Defining a dlt pipeline

Listing 8.3 Defining a dlt source

The name of the pipeline will be reflected 
in the name of the DuckDB file created.

The dataset name will be used as a schema 
name in DuckDB. We use main here, which 
is the name of DuckDB’s default schema.

This is a function loaded 
from the Chess source 
that dlt provides.

This and the following 
arguments are specific 
to the Chess.com API.
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],
start_month="2022/11",
end_month="2022/11",

)

This source contains a number of resources related to players, including profiles,
games, and online statuses. To import only the players’ profiles, we can write the fol-
lowing code.

players_profiles = data.with_resources("players_profiles")

Until now, we’ve only defined what the pipeline should look like. To finally run it,
we’ll pass the source defined as players_profile to the pipelines run method. 

info = pipeline.run(players_profiles)
print(info)

We should see something like the following output:

Pipeline chess_pipeline completed in 0.62 seconds
1 load package(s) were loaded to destination duckdb and into dataset main
The duckdb destination used

➥duckdb:////path/to/code/ch08/dlt_example/chess_pipeline.duckdb

➥location to store data
Load package 1696519035.883884 is LOADED and contains no failed jobs

That looks like it worked. Please don’t leave the Python shell yet; instead, open a sec-
ond terminal, and load the database into DuckDB:

duckdb chess_pipeline.duckdb

Then check which tables have been created with SHOW TABLES:

┌─────────────────────┐
│ name │
│ varchar │
├─────────────────────┤
│ _dlt_loads │
│ _dlt_pipeline_state │
│ _dlt_version │
│ players_profiles │
└─────────────────────┘

dlt has also created a bunch of tables to store its own metadata, and at the bottom, we
can see players_profiles, which presumably contains profiles for the players we
specified in our script. Let’s get one record from that table:

Listing 8.4 Picking an interesting dataset from the dlt source

Listing 8.5 Running a dlt pipeline
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.mode line
FROM players_profiles LIMIT 1;

avatar = https://images.chesscomfiles.com/uploads/v1/user/

➥138850604.80351cd5.200x200o.3129ed9b015d.jpeg
player_id = 138850604

aid = https://api.chess.com/pub/player/dommarajugukesh
url = https://www.chess.com/member/DommarajuGukesh

name = Gukesh Dommaraju
username = dommarajugukesh

followers = 3
country = https://api.chess.com/pub/country/IN

location = Chennai
last_online = 2022-07-16 19:18:02+01

joined = 2021-05-05 10:27:46+01
status = basic

is_streamer = false
verified = false

league = Wood
_dlt_load_id = 1696519035.883884

_dlt_id = kldRaeRA40OGBA
title =

That’s the profile for Gukesh Dommaraju, so the pipeline is working well so far.
 What if we now decide we’d like to load the games as well? Quit DuckDB and

return to the Python shell; rerun the pipeline with a slightly different source. Observe
how we don’t assign the resource like we did before but just pass it to the run method. 

info = pipeline.run(data.with_resources("players_profiles", "players_games"))
print(info)

The output should be similar to the following snipped, indicating it did load several
archives for the players we had been interested in. Also, it did use the same storage as
before:

Getting archive from https://api.chess.com/pub/player/

➥magnuscarlsen/games/2022/11
Getting archive from https://api.chess.com/pub/player/

➥vincentkeymer/games/2022/11
Getting archive from https://api.chess.com/pub/player/

➥rpragchess/games/2022/11
Pipeline chess_pipeline completed in 1.89 seconds
1 load package(s) were loaded to destination duckdb and into dataset main
The duckdb destination used duckdb:////path/to/code/ch08/dlt_example/

➥chess_pipeline.duckdb location to store data
Load package 1696519484.186974 is LOADED and contains no failed jobs

And again, let’s see what data’s been ingested into DuckDB. In a second terminal, run
the following:

Listing 8.6 Running the pipeline with another dataset
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duckdb chess_pipeline.duckdb 'SELECT count(*) FROM players_games'

┌──────────────┐
│ count_star() │
│ int64 │
├──────────────┤
│ 589 │
└──────────────┘

That looks good—the games have been ingested. What happens if we run the pipeline
again? dlt will discover that it already ingested everything available that we asked for
and won’t import anything new. This is actually quite impressive; picking up batched
imports where they have stopped is not an easy task. The information that dlt needs to
control this capability is stored inside the three other tables (_dlt_loads,_dlt_
pipeline_state, and _dlt_version) that appeared in our store. We can extract that
metadata either with DuckDB or SQL, or we can use the tools dlt offers. 

8.2.3 Exploring pipeline metadata

dlt offers the info command, which will inspect both the pipeline definition and the
metatables inside your store to retrieve a view on the state of the pipeline itself. The
command has to be invoked as follows:

dlt pipeline chess_pipeline info

Our output indicates that we’ve run the pipeline three times, and it describes the
names of the tables that have been created. Your output will differ in date and time—
and most likely in state as well:

Found pipeline chess_pipeline in /Home/.dlt/pipelines
Synchronized state:
_state_version: 2
_state_engine_version: 2
schema_names: ['chess']
pipeline_name: chess_pipeline
destination: dlt.destinations.duckdb
default_schema_name: chess
staging: None
dataset_name: main

sources:
Add -v option to see sources state. Note that it could be large.

Local state:
first_run: False
_last_extracted_at: 2023-11-04T19:16:35.873231+00:00

Resources in schema: chess
players_profiles with 1 table(s) and 0 resource state slot(s)
players_games with 1 table(s) and 1 resource state slot(s)

Working dir content:
Has 3 completed load packages with following load ids:
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1699125395.876516
1699125399.292224
1699125402.854308

Pipeline has last run trace. Use 'dlt pipeline chess_pipeline trace'

➥to inspect

If you are interested in exploring the content of the data loaded with SQL, that's fine,
of course. We will for now tackle transformations of datasets and put DuckDB to use
not only as a store but as an integral part of transformations. 

8.3 Data transformation and modeling with dbt
Data, in its raw form, often requires shaping, cleaning, and modeling to unlock its
true potential. The data build tool (dbt) is an SQL-centric transformation tool
designed to support the creation and management of data pipelines. It emphasizes
software engineering principles, allowing data teams to ensure modularity, portability,
and documentation. Integrating CI/CD within dbt facilitates the consistent and reli-
able deployment of data transformations. 

 So how do we use dbt with DuckDB? Enter the dbt-duckdb library, which acts as the
bridge that connects dbt to DuckDB. It enables users to combine the strengths of both
tools, making it possible to use DuckDB to apply transformations in dbt-powered data
pipelines. The common language that both dbt and DuckDB speak is, of course, SQL. 

 We’re going to use dbt-duckdb to build a straightforward data pipeline that takes
some CSV files stored on GitHub, applies cleanup and data transformation, and then
outputs a Parquet file with the cleaned data. Thus, DuckDB is not used as a store but
only as a means of transformation, which is close to what we described in 8.1. The dia-
gram in figure 8.3 shows what we’re going to build.

Figure 8.3 Transforming CSVs to Parquet

Let’s get to it! The first thing we need to do is install dbt-duckdb and dbt into our
Python environment by running the following command:

pip install dbt-duckdb dbt
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The example project we will build in the following sections is built in several iterative
steps. We provide a subfolder for each step in our example repository: https://mng.bz/
VxrW.

8.3.1 Setting up a dbt project

dbt thinks in projects and provides commands to create new ones. If the preceding
installation succeeded, you should be able to execute the following commands in your
shell, creating a new project and changing the working directory to it. If you run dbt
for the first time, it will set up your profile and ask you for the database you want to
use. Pick DuckDB here:

dbt init dbt_transformations
cd dbt_transformations

Let’s now have a look at the directory structure. We’re going to use the tree
command to do this, but you can also navigate through the directory structure
manually:

tree

.
├── README.md
├── analyses
├── dbt_project.yml
├── macros
├── models
│ └── example
│ ├── my_first_dbt_model.sql
│ ├── my_second_dbt_model.sql
│ └── schema.yml
├── seeds
├── snapshots
└── tests

We have folders for the main dbt concepts: macros, models, seeds, snapshots, and
tests. For our sample project, we’re going to create models and tests—we won’t be
using the other directories.

 The project contains a couple of examples but no usable profile yet. Let’s create
one via a file—profiles.yml—with the content in the following listing.

dbt_transformations:
target: dev
outputs:

dev:
type: duckdb
path: '/tmp/atp.db'
schema: 'main'

Listing 8.7 Defining a dbt profile that uses DuckDB for all output

This is the intermediate 
DuckDB store being used by 
dbt. It can have any location.

https://mng.bz/VxrW
https://mng.bz/VxrW
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NOTE YAML Ain’t Markup Language (YAML) is a data serialization language
designed for human readability and interaction with scripting languages. Its
syntax is relatively straightforward and utilizes indentation to represent hier-
archy. It exclusively uses spaces, not tabs, for this purpose. 

Next, let’s rename the example directory to atp and delete the existing model files:

mv models/example models/atp
rm models/atp/*.sql

Now, with the examples out of the way, we need to define new sources and models. 

8.3.2 Defining sources

dbt sources provide a standardized way to reference and document raw data in exter-
nal databases, data warehouses, or anywhere else. By defining sources, users ensure
consistency in how raw data is accessed, while also specifying metadata and quality
checks associated with the underlying datasets. We can define sources in a sources.yml
file inside the models directory. 

 The data we’re going to use is from Jeff Sackmann’s tennis dataset (https://
github.com/JeffSackmann/tennis_atp), which we first encountered in chapter 5. To
start with, we’re going to process just one of the CSV files. Create a file named
models/atp/sources.yml, which creates a source that points to the atp_matches_
2023.csv file on GitHub.

version:

sources:
- name: github #

meta:
external_location: 'https://raw.githubusercontent.com/

➥JeffSackmann/tennis_atp/master/atp_matches_2023.csv'
tables:

- name: matches_file #

We’ll be able to reference this source via the combination of the source name
(github) and table name (matches_file) in the model, which we’ll define next. 

8.3.3 Describing transformations with models

dbt models are a set of SQL queries or Python scripts that transform raw data into a
desired structure. By defining these models, data analysts and engineers can create,
test, and document their data transformation workflows in a consistent and version-
controlled manner. 

 Now we’re going to create our first transformation in a file named models/atp/
matches.sql. We’re going to pull all of the matches from the CSV file we defined in

Listing 8.8 Defining a dbt source that fetches data from a web location

The dbt version—this needs to be 2 to work 
with the version of dbt at the time of writing.

The name of our source—this 
can be whatever we like.

The name we’ll use to reference the 
CSV file—this can be we whatever we like.

https://github.com/JeffSackmann/tennis_atp
https://github.com/JeffSackmann/tennis_atp
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t

listing 8.8, but we’ll exclude all the columns that start with w_ or l_. These fields con-
tain fine-grained match data that we won’t need for our use case. We’ll then write the
output of the query to a Parquet file. The full code snippet is shown in the following
listing.

{{ config(
materialized='external',
location='output/matches.parquet',
format='parquet'

) }}

WITH noWinLoss AS (
SELECT COLUMNS(col ->

NOT regexp_matches(col, 'w_.*') AND
NOT regexp_matches(col, 'l_.*')

)
FROM {{ source('github', 'matches_file') }}

)

SELECT * REPLACE (
cast(strptime(tourney_date, '%Y%m%d') AS date) as tourney_date

)
FROM noWinLoss

Next, let’s create the output directory so that dbt will be able to write the Parquet file
there:

mkdir output

The pipeline we defined will run the following steps:

1 dbt will grab the CSV data from GitHub.
2 It will pass the content to DuckDB.
3 Run the transformations written in SQL.
4 Store the outcome as a Parquet.

Let’s run it with

dbt run

The process will print something along the following lines:

...
09:48:35 Found 1 model, 1 source, 0 exposures, 0 metrics, 351 macros,

➥0 groups, 0 semantic models
09:48:35
09:48:35 Concurrency: 1 threads (target='dev')
09:48:35
09:48:35 1 of 1 START sql external model main.matches_2023

➥.......................... [RUN]

Listing 8.9 Defining a dbt model using several queries for transforming data via DuckDB

Output a Parquet file 
in the output directory.

Filter columns that start 
with w_, using DuckDB’s 
regexp_matches function.

Filter columns that start 
with l_, using DuckDB’s 
regexp_matches function.

Query the
source we
defined in

he previous
section.

Coerce tourney_date
field to date type.
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09:48:37 1 of 1 OK created sql external model main.matches_2023

➥..................... [OK in 1.16s]
09:48:37
09:48:37 Finished running 1 external model in 0 hours 0 minutes

➥and 1.20 seconds (1.20s).
09:48:37
09:48:37 Completed successfully
09:48:37
09:48:37 Done. PASS=1 WARN=0 ERROR=0 SKIP=0 TOTAL=1
...

It looks like everything worked. We can look in the output directory for the generated
Parquet file using the du command-line tool:

du -h output/*

120K output/matches.parquet

We can then open up a DuckDB CLI session to inspect the contents of the file:

SELECT count(*) FROM 'output/matches.parquet';

┌──────────────┐
│ count_star() │
│ int64 │
├──────────────┤
│ 2986 │
└──────────────┘

.mode line
FROM 'output/matches.parquet' LIMIT 1;

tourney_id = 2023-9900
tourney_name = United Cup

surface = Hard
tourney_level = A
tourney_date = 2023-01-02

match_num = 300
winner_id = 126203

winner_seed = 3
winner_entry =
winner_name = Taylor Fritz
winner_hand = R

winner_ht = 193
winner_ioc = USA
winner_age = 25.1
loser_id = 126610

loser_seed = 5
loser_entry =
loser_name = Matteo Berrettini
loser_hand = R
loser_ht = 196
loser_ioc = ITA
loser_age = 26.7

At the time of writing, you’ll see 2,986 records, 
but more matches are added all the time, so 
it’s possible this number may be higher!
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score = 7-6(4) 7-6(6)
best_of = 3

round = F
minutes = 135

winner_rank = 9
winner_rank_points = 3355

loser_rank = 16
loser_rank_points = 2375

That looks pretty good—we’ve successfully written our first dbt pipeline. We’ve
extracted the data from the CSV file, removed some of the fields, and then written the
result out to a Parquet file. But how do we know if the data in the Parquet file is
correct?

8.3.4 Testing transformations and pipelines

dbt tests are assertions applied to data models to ensure data quality and consistency.
By defining these tests, we can validate our transformations, catching problems like
NULL values, duplicates, or violations of referential integrity. 

 One place we can define tests is in the schema.yml file, which lives in models/atp/
schema.yml, next to our model files. We’re going to create tests for just a few of the
columns, but in a production pipeline, you’d want to create tests for all the fields to
make sure the transformation worked as expected. 

 We’ll test the following assertions:

 tourney_id is not NULL.
 winner_id is not NULL.
 loser_id is not NULL.
 surface is not NULL and only contains one of the following values: Grass, Hard,

or Clay.

Create the file models/atp/schema.yml, and enter the contents of the following
listing.

version: 2

models:
- name: matches

description: "ATP tennis matches schema"
columns:

- name: tourney_id
description: "The ID of the tournament."
tests:
- not_null

- name: winner_id
description: "The ID of the winning player."
tests:

Listing 8.10 A dbt schema asserting various qualities of our dataset
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- not_null
- name: loser_id

description: "The ID of the losing player."
tests:
- not_null

- name: surface
description: "The surface of the court."
tests:
- not_null
- accepted_values:

values: ['Grass', 'Hard', 'Clay']

You don’t need to create a test for every field—only the ones that are necessary for
your use case. You don’t need to create tests for fields where the data might be dirty or
where it doesn’t matter if it’s dirty.

NOTE If you’re feeling adventurous, you can try to add assertions for some of
the other fields.

To run the tests, we can run the following command:

dbt test

...
10:57:39 Found 1 model, 5 tests, 1 source, 0 exposures, 0 metrics,

➥351 macros, 0 groups, 0 semantic models
10:57:39
10:57:39 Concurrency: 1 threads (target='dev')
10:57:39
10:57:39 1 of 5 START test accepted_values_matches_surface__Grass__Hard

➥Clay ....... [RUN]
10:57:39 1 of 5 PASS accepted_values_matches_surface__Grass__Hard__Clay

➥............. [PASS in 0.14s]
10:57:39 2 of 5 START test not_null_matches_loser_id

➥................................ [RUN]
10:57:39 2 of 5 PASS not_null_matches_loser_id

➥...................................... [PASS in 0.12s]
10:57:39 3 of 5 START test not_null_matches_surface

➥................................. [RUN]
10:57:39 3 of 5 PASS not_null_matches_surface

➥....................................... [PASS in 0.12s]
10:57:39 4 of 5 START test not_null_matches_tourney_id

➥.............................. [RUN]
10:57:39 4 of 5 PASS not_null_matches_tourney_id

➥.................................... [PASS in 0.12s]
10:57:39 5 of 5 START test not_null_matches_winner_id

➥............................... [RUN]
10:57:39 5 of 5 PASS not_null_matches_winner_id

➥..................................... [PASS in 0.12s]
10:57:39
10:57:39 Finished running 5 tests in 0 hours 0 minutes and 0.66

➥seconds (0.66s).
...

Everything looks good so far.
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 While dbt comes with several built-in assertions, we will sometimes want to do
finer-grained tests than this. For example, we might want to test the range of the val-
ues in the tourney_date column. 

 To do this, we’ll need to install a package, like dbt_expectations, that offers more
assertions. At the top level of the project, create the packages.yml file, and add the
following:

packages:
- package: calogica/dbt_expectations

version: 0.10.1

To install the package, we can run the following command:

dbt deps

We should see the following output:

19:30:56 Running with dbt=1.6.7
19:30:56 Installing calogica/dbt_expectations
19:30:56 Installed from version 0.10.1
19:30:56 Up to date!
19:30:56 Installing calogica/dbt_date
19:30:57 Installed from version 0.10.0
19:30:57 Up to date!

We can then update models/atp/schema.yml to add an assertion that checks that the
values for tourney_date are between January 1, 2023 and December 31, 2023, as
shown in the following listing.

models:
- name: matches

# Keep the original assertions, too
- name: tourney_date

description: "Verify that the tournament started in 2023"
tests:
- dbt_expectations.expect_column_values_to_be_of_type:

column_type: date
- dbt_expectations.expect_column_min_to_be_between:

min_value: "CAST('2023-01-01' AS DATE)"
max_value: "CAST('2023-12-31' AS DATE)"

If we rerun dbt test, this new assertion will be picked up, and we will see it in the test
output.

8.3.5 Transforming all CSV files

So far, we’ve only worked with the 2023 matches, but there is a list of other CSV files
going back to 1968 that we need to process. We started with only one file to keep our
waiting times low, getting immediate feedback regarding whether our schema and
models work or not. 

Listing 8.11 Adding tests to the schema defined in listing 8.10
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 Let’s change the sources for our pipeline first, starting with models/atp/
sources.yml. We’re going to change the external_location to return a function that
iterates over the years from 1968 to 2023, creates a list of all the CSV file URLs, and
reads them using the read_csv_auto function. This is a prime example of how
DuckDB is used as a processing tool in this pipeline, not as storage. 

version: 2

sources:
- name: github

meta:
external_location: >

(FROM read_csv_auto(
list_transform(

range(1968, 2023),
y -> 'https://raw.githubusercontent.com/JeffSackmann/

➥tennis_atp/master/atp_matches_' || y || '.csv'
),
types={'winner_seed': 'VARCHAR', 'loser_seed': 'VARCHAR'}

))
formatter: oldstyle

tables:
- name: matches_file

Once we’ve done that, we can run dbt run again to generate a new Parquet file. Let’s
quickly explore the contents of our new Parquet file:

SELECT count(*) FROM 'output/matches.parquet';

┌──────────────┐
│ count_star() │
│ int64 │
├──────────────┤
│ 188934 │
└──────────────┘

That’s a lot more rows than we had before, so we can assume that it worked. Let’s run
dbt test to see if our assertions still pass:

12:58:05 Finished running 7 tests in 0 hours 0 minutes and 1.49

➥seconds (1.49s).
12:58:05
12:58:05 Completed with 3 errors and 0 warnings:
12:58:05
12:58:05 Failure in test accepted_values_matches_surface__Grass__Hard

➥Clay (models/atp/schema.yml)
12:58:05 Got 1 result, configured to fail if != 0
12:58:05
12:58:05 compiled Code at target/compiled/dbt_transformations/models/

➥atp/schema.yml/accepted_values_matches_surface__Grass__Hard__Clay.sql

Listing 8.12 Computing a list of CSV files as sources for the pipeline

Generates a list of all the 
years from 1968 to 2023

Transforms each year into a
URL that ends with

atp_matches_<year>.csv

We need to use the oldstyle formatter so that 
we can use the {} characters in the query 
used by the external_location property.
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12:58:05
12:58:05 Failure in test dbt_expectations_expect_column_min_to_be

➥between_matches_tourney_date__CAST_2023_12_31_AS_DATE___CAST_2023

➥01_01_AS_DATE_ (models/atp/schema.yml)
12:58:05 Got 1 result, configured to fail if != 0
12:58:05
12:58:05 compiled Code at target/compiled/dbt_transformations/models/

➥atp/schema.yml/dbt_expectations_expect_column_3a4294205f95862ee31c

➥ce05b1e1ebf7.sql
12:58:05
12:58:05 Failure in test not_null_matches_surface (models/atp/schema.yml)
12:58:05 Got 2937 results, configured to fail if != 0
12:58:05
12:58:05 compiled Code at target/compiled/dbt_transformations/models/

➥atp/schema.yml/not_null_matches_surface.sql
12:58:05
12:58:05 Done. PASS=4 WARN=0 ERROR=3 SKIP=0 TOTAL=7

Hmm, not this time. We’ve got three broken tests:

 not_null_matches_surface—This means there are NULL surfaces.
 accepted_values_matches_surfaceGrassHard__Clay—This means there are

surfaces that aren’t Grass, Hard, or Clay.
 dbt_expectations_expect_column_min_to_be_between_matches_tourney_

dateCAST_2023_12_31_AS_DATECAST_2023_01_01_AS_DATE—This means some
matches have a date that isn’t in 2023.

Let’s debug them, starting with the surface field, which now has some NULL values,
although it was only supposed to have the values Grass, Hard, and Clay:

FROM 'output/matches.parquet' SELECT surface, count(*) GROUP BY ALL;

┌─────────┬──────────────┐
│ surface │ count_star() │
│ varchar │ int64 │
├─────────┼──────────────┤
│ Clay │ 67537 │
│ Carpet │ 20900 │
│ Hard │ 74814 │
│ Grass │ 22746 │
│ │ 2937 │
└─────────┴──────────────┘

Carpet looks like a valid value, but there are also almost 3,000 rows that don’t have a
surface. We’re going to update schema.yml to allow Carpet as a valid value and update
the matches.sql model to filter out the matches that have a NULL surface. 

 We also have a perhaps more predictable problem in the tourney_date field,
where we now have dates that aren’t necessarily in 2023. This has happened because
we’re now ingesting data from all years rather than just 2023. We’ll update
schema.yml to allow a range of dates from December 1967 to December 2023. Our
new models/atp/schema.yml file looks like the following listing.
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version: 2

models:
- name: matches

description: "ATP tennis matches schema"
columns:

- name: tourney_id
description: "The ID of the tournament."
tests:
- not_null

- name: winner_id
description: "The ID of the winning player."
tests:
- not_null

- name: loser_id
description: "The ID of the winning player."
tests:
- not_null

- name: surface
description: "The surface of the court."
tests:
- not_null
- accepted_values:

values: ['Grass', 'Hard', 'Clay', 'Carpet']
- name: tourney_date

description: "The date when the tournament started"
tests:
- dbt_expectations.expect_column_values_to_be_of_type:

column_type: date
- dbt_expectations.expect_column_min_to_be_between:

min_value: "CAST('1967-12-01' AS DATE)"
max_value: "CAST('2023-12-31' AS DATE)"

The transformation in models/atp/matches.sql now gets an additional WHERE clause
to exclude all matches without a surface, as shown in the following listing. 

{{ config(
materialized='external',
location='output/matches.parquet',
format='parquet'

) }}

WITH noWinLoss AS (
SELECT COLUMNS(col ->

NOT regexp_matches(col, 'w_.*')
AND NOT regexp_matches(col, 'l_.*')

)
FROM {{ source('github', 'matches_file') }}

)

Listing 8.13 Adding details to our schema

Listing 8.14 Updating our transformations to deal with oddities in some of the new files

Carpet is allowed 
now too.
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SELECT * REPLACE (
cast(strptime(tourney_date, '%Y%m%d') AS date) as tourney_date

)
FROM noWinLoss
WHERE surface IS NOT NULL

Due to the changes in the model, we must first run the pipeline again with dbt run
before running dbt test to make all tests pass, ensuring our pipeline is working end
to end. We started out with CSV files on GitHub and have successfully transformed
them into a single Parquet file and cleaned up the data as part of the process. 

NOTE The next step would be to set up a production pipeline to go along
with the dev one. It would be fairly similar, but perhaps, we’d write the Par-
quet file to an S3 bucket, rather than the local file system. We’ll leave that as
an exercise for the reader.

8.4 Orchestrating data pipelines with Dagster
So far in this chapter, we’ve learned about tools that can load data into DuckDB from
external sources or transform data between formats using DuckDB. These are import-
ant tasks, but we are still missing a piece of the data pipeline puzzle: How do we trig-
ger or orchestrate the transformation or ingestion code?

 In a world with no orchestration tools, we would need to write our own manual
scheduling and execution code. We’d need to set up cron jobs to run dbt commands
and write custom scripts to handle the sequencing and dependencies of dbt tasks.

 Luckily for us, tools like Airflow, Luigi, Kestra, Prefect, and Dagster (the tool we’ll
be using in this chapter) do exist. These tools control the orchestration of data pipe-
lines, which is what we’ll be exploring in this section. As in the previous section, we
provide the pipeline we are building here in our GitHub repository as several steps:
https://mng.bz/x2og.

 Dagster is a cloud-native tool built to manage and organize data flows in modular
pipelines. One of its core concepts is the (software-defined) asset, which is an object
in persistent storage, such as a table, file, or machine learning model. A software-
defined asset is a description, in code, of an asset that should exist and how to pro-
duce and update that asset. Assets form parts of data processing jobs, which can then
be scheduled.

 Like dlt and dbt, Dagster is written in Python. It aims to make it easier for develop-
ers to work with data throughout different stages, such as creating, deploying, and
monitoring data assets by using Python functions to describe the data assets. These
functions tell Dagster what data assets to create or update as well as which dependen-
cies an asset has. Describing assets with Python function lets us describe any depen-
dencies and interactions as verifiable code, which is a big advantage over
configuration-based tools, especially for developers. We will show how to create these
asset functions in the following sections with our concrete pipeline. Dagster offers

Filtering out NULL 
values for surface

https://mng.bz/x2og
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especially good support for data lineage and data provenance, as those are important
aspects of data pipelines for auditing, debugging, and tracing. It has an integration
with DuckDB, called dagster-duckdb, which we’ll be using in this section. 

 We’re going to use the same tennis dataset we used in the previous section, but this
time, we’re going to load the data into DuckDB, rather than create a Parquet file. In
addition to loading tennis matches, we’ll also import player profiles, and we’ll see how
to load static data from pandas DataFrames.

 Let’s start by installing the main dependencies required to use Dagster and
DuckDB:

pip install dagster dagster-duckdb

We’ll also install dagster-webserver, which is required to run the Dagster UI and can
be used to visualize pipelines:

pip install dagster-webserver

8.4.1 Defining assets

With those dependencies installed, we’re ready to create our pipeline. Let’s create a
directory called atp and add the following files:

 atp/__init__.py_—Orchestration code will go in here.
 atp/assets.py—Asset definition code will go in here.

We’re going to start by creating a Python function to define the asset in assets.py
called atp_matches_dataset, which loads the atp_matches_*.csv files into the
matches table in DuckDB. 

NOTE You can also copy the code for these two files from the GitHub reposi-
tory: https://mng.bz/AdMg.

Possible error when installing dagster-webserver
At the time of writing, you may see the following error, which results in the Dagster
server shutting down when trying to install the dagster-webserver package:

ImportError: cannot import name 'appengine' from

➥'requests.packages.urllib3.contrib'
....

raise Exception(
Exception: dagster-webserver process shut down unexpectedly

➥with return code 1

If you see this error, you’ll need to pin the dependencies urllib3 and requests-
toolbelt to the following versions:

pip install urllib3==1.26.15 requests-toolbelt==0.10.1

https://mng.bz/AdMg
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It constructs the list of CSV URLs based on the year range (1968 to 2024) in Python
code and then uses the DuckDB Python API to load the CSV files into DuckDB.
During loading, it also converts the tourney_date column into a date type.

from dagster_duckdb import DuckDBResource
from dagster import asset

@asset
def atp_matches_dataset(duckdb_resource: DuckDBResource) -> None:

base = "https://raw.githubusercontent.com/JeffSackmann/tennis_atp/master"
csv_files = [

f"{base}/atp_matches_{year}.csv"
for year in range(1968,2024)

]

create_query = """
CREATE OR REPLACE TABLE matches AS
SELECT * REPLACE(

cast(strptime(tourney_date, '%Y%m%d') AS date) as tourney_date
)
FROM read_csv_auto($1, types={

'winner_seed': 'VARCHAR',
'loser_seed': 'VARCHAR',
'tourney_date': 'STRING'

})
"""

with duckdb_resource.get_connection() as conn:
conn.execute(create_query, [csv_files])

Next, we’re going to update __init__.py to configure atp_matches_dataset as an asset
and specify the location where the DuckDB database should be created. This file
essentially controls the available libraries, determines when jobs should be run, and
uses information from the environment when necessary. We’re also going to create a
job that contains our assets and a schedule that will run the job once an hour. 

from dagster_duckdb import DuckDBResource

from dagster import (
AssetSelection,
ScheduleDefinition,
Definitions,
define_asset_job,
load_assets_from_modules,

)

from . import assets

atp_job = define_asset_job("atp_job", selection=AssetSelection.all())

Listing 8.15 Defining the first asset we want to process in our Dagster pipeline

Listing 8.16 Defining the Dagster job in __init__.py

Constructs the 
list of CSV files

Imports the CSV files
into DuckDB

$1 refers to the first parameter 
passed to the execute function, 
which is the list of CSV files.

Converts tourney_date
to date type

Passes in the list of CSV 
files as a parameter

The job
definition
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atp_schedule = ScheduleDefinition(
job=atp_job,
cron_schedule="0 * * * *",

)

all_assets = load_assets_from_modules([assets])
defs = Definitions(

assets=all_assets,
jobs=[atp_job],
resources={"duckdb": DuckDBResource(

database="atp.duckdb",
)},
schedules=[atp_schedule],

)

8.4.2 Running pipelines

We can then launch the Dagster UI by running the dagster dev command with the
-m flag pointing at the atp directory to find our definitions:

dagster dev -m atp

Then, navigate to http://localhost:3000 in your web browser, where you’ll see the dia-
gram in figure 8.4, which shows the job, schedule, and asset we defined.

Figure 8.4 The initial Dagster job and asset graph in the Dagster UI

We can manually run the pipeline by clicking on Materialize at the top of the screen.
It will take a few seconds to run, but if we click the Refresh button, we’ll see that our
asset has now materialized, as seen in figure 8.5.

This is a schedule that runs once an hour. 
See crontab.guru (https://crontab.guru) 
for a primer on the Cron syntax.

Dagster picks up all the functions 
that have the @asset annotation.

The definitions tie everything 
together—assets, jobs, 
resources, and schedules.

The location of the DuckDB 
database relative to the 
location where Dagster is run 
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We can check that the matches have been successfully loaded by querying the
DuckDB database. As Dagster does not keep the database open or locked after materi-
alizing a pipeline, we don’t have to stop any process prior to accessing the DuckDB
database:

duckdb atp.duckdb 'SELECT count(*) FROM matches'

┌──────────────┐
│ count_star() │
│ int64 │
├──────────────┤
│ 191920 │
└──────────────┘

NOTE At the time of writing, there are 191920 matches in the dataset, but this
number will likely have increased by the time you try out this code sample. As
long as it’s more than 0, the import has likely worked!

We’ve now successfully loaded the roughly 200,000 tennis matches into DuckDB using
Dagster. 

8.4.3 Managing dependencies in a pipeline

So far, we’ve only imported tennis match data. But applications that use the database
might also need other data on the tennis players that participated in matches, so we
need to import that data too. Loading the actual player information will be an addi-
tional part of our pipeline. We’ll then create a dependency between the players asset
and the matches asset we’ve already created. 

 To do this, we’ll add two more assets to assets.py, using Python functions. First up is
atp_players_dataset, which ingests the players. The player information is contained
in a file named atp_players.csv. 

 The values in the dob column are in the format yyyymmdd, but there are some rows
where the last four digits are 0000. Since 00 isn’t a valid month or day, we’re going to
default each to 01 instead so that we can coerce the values to a date type, using the
strptime function. The asset we are about to add not only queries the source but also
applies some transformation. It is defined as follows and must be added to assets.py, as
shown in the following listing. 

NOTE As with the first step, you can copy the code from the GitHub reposi-
tory: https://mng.bz/ZEn5.

Figure 8.5 The state of the dataset in Dagster will 
change from never materialized to materialized.

https://mng.bz/ZEn5
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@asset
def atp_players_dataset(duckdb: DuckDBResource) -> None:

base = "https://raw.githubusercontent.com/JeffSackmann/tennis_atp/master"
csv_file = f"{base}/atp_players.csv"

with duckdb.get_connection() as conn:
conn.execute("""
CREATE OR REPLACE TABLE players AS
SELECT * REPLACE(

CASE
WHEN dob IS NULL THEN NULL
WHEN SUBSTRING(CAST(dob AS VARCHAR), 5, 4) = '0000' THEN

CAST(strptime(
CONCAT(SUBSTRING(CAST(dob AS VARCHAR), 1, 4), '0101'),

'%Y%m%d'
) AS date)

ELSE
CAST(strptime(dob, '%Y%m%d') AS date)

END AS dob
)
FROM read_csv_auto($1, types = {

'dob': 'STRING'
});
""", [csv_file])

The atp_players.csv file contains columns for name_first and name_last, but for eas-
ier filtering by a user, we’d like the resulting players table to have an additional
name_full column that concatenates the other two fields. 

 To achieve that, we add another asset, atp_players_name_dataset, which has a
dependency on atp_players_dataset, which we just defined, and adds the name_
full column to the players table. The name_full column will be a result of concate-
nating name_first and name_last, separated by a space. 

@asset(deps=[atp_players_dataset])
def atp_players_name_dataset(duckdb: DuckDBResource) -> None:

concatenate_query = """
ALTER TABLE players ADD COLUMN name_full VARCHAR;
UPDATE players
SET name_full = name_first || ' ' || name_last
"""

with duckdb.get_connection() as conn:
conn.execute(concatenate_query, [])

Creating a dependency on the atp_players_dataset means that Dagster will give us a
warning if we try to materialize atp_players_name_dataset without first materializing
atp_players_dataset, and when running the pipeline, Dagster orders the execution

Listing 8.17 A Dagster asset that uses DuckDB to transform data from an external source

Listing 8.18 A Dagster asset that transforms existing data

Leaves the NULL 
dates as they are

Some dates have month and
day set to 00. This code sets
both to 01 so that strptime

can parse them.

Parses dates in 
the correct format 
with strptime

Passes in the CSV 
files as a parameter

Declares a dependency on
the atp_players_dataset

Concatenates the 
name_first and 
name_last columns
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of the assets accordingly. This makes sense, as we can’t update the players table to
add the name_full column if the players table doesn’t exist! This kind of dependent
asset operation can be used for many different use cases, such as data refactoring,
cleaning, or augmentation, where one or more assets are used as input to execute the
operation. 

 To see the new assets, we’ll need to stop and start the dagster dev command.
After we’ve done that, we’ll see the asset graph shown in figure 8.6.

Figure 8.6 Dagster asset graph with players included

We can then materialize all the assets via the UI, or we can do it from the terminal by
running the following command:

dagster job execute -m atp --job atp_job

A truncated version of the output from this command is as follows:

atp_matches_dataset - STEP_START - Started execution of step

➥"atp_matches_dataset".
atp_players_dataset - STEP_START - Started execution of step

➥"atp_players_dataset".
atp_matches_dataset - STEP_SUCCESS - Finished execution of step

➥"atp_matches_dataset" in 413ms.
atp_players_dataset - STEP_SUCCESS - Finished execution of step

➥"atp_players_dataset" in 1.51s.
atp_players_name_dataset - STEP_START - Started execution of step

➥"atp_players_name_dataset".
atp_players_name_dataset - STEP_SUCCESS - Finished execution of step

➥"atp_players_name_dataset" in 49ms.

We can see that atp_matches_dataset and atp_players_dataset both start
running immediately, but atp_players_name_dataset only starts running once
atp_players_dataset has completed, as it has a dependency on that asset. We can
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check that the players have loaded correctly by running the following query, which
only returns columns with the name_ prefix:

duckdb atp.duckdb \
'SELECT COLUMNS(col -> col LIKE "name_%") FROM players LIMIT 5'

We can see from the output that the name_full column has been successfully added
to each record:

┌────────────┬───────────┬──────────────────┐
│ name_first │ name_last │ name_full │
│ varchar │ varchar │ varchar │
├────────────┼───────────┼──────────────────┤
│ Gardnar │ Mulloy │ Gardnar Mulloy │
│ Pancho │ Segura │ Pancho Segura │
│ Frank │ Sedgman │ Frank Sedgman │
│ Giuseppe │ Merlo │ Giuseppe Merlo │
│ Richard │ Gonzalez │ Richard Gonzalez │
└────────────┴───────────┴──────────────────┘

You might have noticed that the asset named atp_players_name_dataset did not use
any external source data but transformed data that had already been ingested into the
store. Dagster enables many more transformations in assets. You can use all function-
ality and libraries that are available in Python, such as pandas. 

8.4.4 Advanced computation in assets

As we learned in chapter 6, DuckDB can query pandas DataFrames, and we can use
that functionality in Dagster as well. The following asset ingests a DataFrame that pro-
vides the tennis tournament levels metadata. 

NOTE Tennis tournaments are categorized by the amount of prize money
and the number of rankings points available. Grand Slam is the most valuable
tournament category, followed by Tour Finals, Masters 1000s, Other Tour
Level, Challengers, and ITFs. 

While this example is more of a demonstration, imagine an actual computation you
can do in Python with all the statistical and numerical features pandas has to offer. By
being able to integrate DuckDB and Dagster assets through Python and its capabili-
ties, even doing complex computations and operations as part of data pipelines
becomes possible and easy for Python developers.

 Let’s add the asset in the following listing to assets.py.

import pandas as pd

@asset
def atp_levels_dataset(duckdb: DuckDBResource) -> None:

levels_df = pd.DataFrame({
"short_name": [

Listing 8.19 Deriving new data by computing new values in a Dagster asset



190 CHAPTER 8 Building data pipelines with DuckDB
"G", "M", "A", "C", "S", "F"
],
"name": [

"Grand Slam", "Tour Finals", "Masters 1000s",
"Other Tour Level", "Challengers", "ITFs"

],
"rank": [

5, 4, 3, 2, 1, 0
]

})

with duckdb.get_connection() as conn:
conn.execute("""
CREATE TABLE IF NOT EXISTS levels AS
SELECT * FROM levels_df
""")

The updated asset graphs can be seen in the Dagster UI in figure 8.7.

We can then materialize these assets again via the command line:

dagster job execute -m atp --job atp_job

Taking a look at the levels with

duckdb atp.duckdb 'FROM levels'

confirms that our ingestion of the DataFrame worked correctly:

┌────────────┬──────────────────┬───────┐
│ short_name │ name │ rank │
│ varchar │ varchar │ int64 │
├────────────┼──────────────────┼───────┤
│ G │ Grand Slam │ 5 │
│ M │ Tour Finals │ 4 │
│ A │ Masters 1000s │ 3 │
│ C │ Other Tour Level │ 2 │
│ S │ Challengers │ 1 │
│ F │ ITFs │ 0 │
└────────────┴──────────────────┴───────┘

Figure 8.7 Dagster asset graph with metadata included
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Everything looks good, and our Dagster pipeline has successfully ingested all the data
required, but at the moment, the DuckDB database resides only on our machine. A
complete data pipeline would publish your data to the cloud so that your application
could use it from there. 

8.4.5 Uploading to MotherDuck

If we want to make the newly created tennis database available to an application, we
may choose to upload it to MotherDuck, a service we learned about in chapter 7. If
you want to try out this last step of orchestrating a pipeline with Dagster, make sure
you created a MotherDuck account and have your MotherDuck token set as an envi-
ronment variable in your shell. As discussed in chapter 7, we can take the local data-
base, publish and share it to MotherDuck, or transport the data directly into a cloud
instance. 

 To keep things concise, we’ll focus on the changes needed to publish the data to
MotherDuck directly instead of writing to a local DuckDB database. Let’s open atp/
__init__.py and go down to the defs variable, which should read as follows. 

defs = Definitions(
assets=all_assets,
jobs=[atp_job],
resources={"duckdb": DuckDBResource(

database="atp.duckdb",
)},
schedules=[atp_schedule],

)

To have the pipeline uploaded to MotherDuck, we need to change the database string
to use the MotherDuck syntax. We’ll also need to provide our MotherDuck token, as
shown in the following code listing.

import dotenv
import os
dotenv.load_dotenv()

mduck_token = os.getenv("motherduck_token")

defs = Definitions(
assets=all_assets,
jobs=[atp_job],
resources={"duckdb": DuckDBResource(

database=f"md:md_atp_db?motherduck_token={mduck_token}",
schema="main"

)},
schedules=[atp_schedule],

)

Listing 8.20 Adding a new definition to our Dagster job inside atp/__init__.py

Listing 8.21 Changing the location of the DuckDB store to point to MotherDuck

This is only necessary for running from the 
CLI. The Dagster UI automatically picks up 
properties defined in the .env file.

Connects to the md_atp_db 
database in MotherDuck
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If we now run the atp_job, the data will be uploaded
to MotherDuck into a database named md_atp_db.
Make sure you exported the necessary token to your
shell first:

dagster job execute -m atp --job atp_job

Once the job has finished, we can confirm the data-
base has been created from the MotherDuck UI at
https://app.motherduck.com. We should see some-
thing similar to figure 8.8.

 Dagster orchestrated data loading and transforma-
tion as well as computing additional information. As a
final step, it published the result to a cloud data store, ready to build a product upon,
which we’ll do in the next chapter. 

Summary
 Data pipelines let us load and transform data in an automated and consistent

way.
 DuckDB can be easily integrated into various data pipeline tools, like dlt, dbt,

and Dagster.
 DuckDB can play many roles in a data pipeline: data loading, transformation,

and storage.
 Data transformation and filtering can be done both with SQL and Python APIs.
 Data can be loaded remotely from a set of CSV files (and other sources and for-

mats) and pandas DataFrames.
 Using Python for data pipelines allows for powerful transformations and com-

putations.
 Declaring dependencies helps orchestrate the order of operations in a pipeline.
 MotherDuck is a suitable destination for DuckDB data in the cloud. 

Figure 8.8 The ATP dataset on 
MotherDuck

https://app.motherduck.com


Building and
deploying data apps
In section 8.4, we learned how to build a pipeline that ingested data into a local
DuckDB database and into one running on MotherDuck. While many data analysts
will be happy to interact with the data in DuckDB with SQL queries, other users will
prefer to have an interface that doesn’t require them to write code. To provide
value for those users, we want to create applications that retrieve the information
from DuckDB—either via SQL queries or by any of the other means we’ve learned
so far, such as the relational Python API. Of equal importance, we aim to present
this process in an accessible fashion and in a way that readers find meaningful.

This chapter covers 
 Building an interactive web application with Streamlit

 Deploying Streamlit applications with Streamlit 
Community Cloud

 Rendering interactive charts with Plot.ly

 Creating a dashboard for business intelligence with 
Apache Superset

 Creating charts from a custom SQL query with 
Apache Superset
193
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 Some datasets can be represented in a tabular fashion; more often, it is helpful to
visualize and summarize that data as charts. This also makes the data more accessible
and allows users to answer questions, offer insights, or support decisions, which is crit-
ical for most data-informed use cases. Creating ideal charts that don’t skew the mean-
ing of a dataset is a topic for another book, though. We are going to focus on the
technical side of things here and explore DuckDB’s integration with some of the exist-
ing tools for building accessible frontends. First, we create an end-user-facing applica-
tion with Streamlit and later a business intelligence (BI) dashboard with Apache
Superset. While interactive applications usually focus on ready-made reports and
restrict interactivity on filtering those reports, BI dashboards usually aggregate data
from many possible sources in such a way that they allow a holistic overview, usually
not based on raw numbers but dedicated charts. 

9.1 Building a custom data app with Streamlit
We already dealt with Association of Tennis Professionals (ATP) data in chapters 5 and
8. In chapter 5, we aggregated ATP rankings from several CSV sources into one table
and, eventually, only one Parquet file. Later, in chapter 8, we consumed player data
from web resources as part of a data pipeline. Eventually, we stored everything in a
DuckDB database, as you can see in figure 9.1. 

Figure 9.1 ATP database schema

matches

tourney_id: varchar
tourney_name: varchar

surface: varchar
draw_size: bigint

tourney_level: varchar
tourney_date: date

match_num: bigint
winner_id: bigint
loser_id: bigint

winner_rank: varchar
winner_rank_points: varchar

loser_rank: varchar
loser_rank_points: varchar

levels

name:varchar
short_name:varchar

rank:bigint

players

player_id: bigint
name_first: varchar
name_last: varchar

hand: varchar
dob: date
ioc: varchar

height: bigint
wikidata_id: varchar
name_full: varchar

rounds

name:varchar
order:bigint

to
ur
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y_
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l

loser_id

winner_id
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By now, you know how to use the database, but that is not necessarily true for your
users. They might not know SQL or have direct access to the database. An application
can help them navigate the data and structure, while combining interactive filters with
useful visualizations. Let’s build an application for that instead. Our goal is to provide
a platform where users can search for and analyze head-to-head player statistics. We
are going to use a tool called Streamlit for crafting an interactive web interface. And,
of course, we’ll use DuckDB to handle all database tasks. Through this exercise, you
will learn how to combine Streamlit and DuckDB to develop a data app with an
emphasis on simplicity and ease of deployment.

9.1.1 What is Streamlit?

Streamlit is a library that makes it possible to create interactive web apps using only
Python—no knowledge of JavaScript-based frontend libraries or frameworks is
required. For data engineers, data scientists, and backend developers, who are often
not full-stack engineers, this is a good way to prototype and build quick, data-driven
applications. Unlike other visualization tools in the data and BI space that are low-
code, visual builders, Streamlit is a code-first tool. You write your apps using Python
and the tools and libraries, such as pandas, scikit-learn, matplotlib, and DuckDB, that
you’re already familiar with. For all of these reasons, Streamlit is especially useful for
creating frontends for data or machine learning (ML) apps. In addition, Snowflake
Inc.—the company behind Streamlit—offers the Streamlit Community Cloud, a plat-
form where you can deploy and manage your apps for free.

9.1.2 Building our app

Streamlit comes as a Python package, so you need to install that first in your terminal:

pip install streamlit

We’ll also need to make sure we have the DuckDB Python package installed if we
haven’t already done that:

pip install duckdb

Streamlit does not generate a skeleton for your application. Instead, you create an
application, represented by a Python script, that will act as your canvas, on which
you’ll draw charts, text, widgets, tables, and more. Let’s start with that. Create a file
named app.py containing the following code, which will define a wide layout and ren-
der a title when run via Streamlit.

import streamlit as st

st.set_page_config(layout="wide")
st.title("ATP Head to Head")

Listing 9.1 Writing a minimal Streamlit app
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If we then go back to the terminal, we can run the following command to launch the
app. As soon as you run the script as shown, a local Streamlit server will spin up, and
your app will open in a new tab in your default web browser:

streamlit run app.py

In the terminal, you’ll see something like the following output:

You can now view your Streamlit app in your browser.

Local URL: http://localhost:8501
Network URL: http://192.168.86.207:8501

The initial page is shown in figure 9.2.

Figure 9.2 Initial Streamlit app

This is not all that interesting so far, but it’s a start!
 Next, we’re going to connect the Streamlit app to the atp.duckdb database we cre-

ated in section 8.4, which you can also find in the book’s GitHub repository under
https://mng.bz/RZDD. 

 The following snippet that will be part of our app.py script will bring in the
DuckDB Python package and connect to the database stored in atp.duckdb, as
described in chapter 6. We’re opening the database in read-only mode since we don’t
intend to change the data:

import duckdb

atp_duck = duckdb.connect('atp.duckdb', read_only=True)

Remember that this setup is different from a client–server-based database deployment.
The database runs embedded in the same process as the Streamlit application. As a
result, the frontend to be rendered will not require any remote database connection.

 Next, we create a function inside the application named search_players that will
search for the provided player name in the matches table. The function takes in a
search term and then uses it as part of a query string to find records from the matches
table we populated in chapter 8. The query is about finding all rows that contain the
search term either in the winner_name or loser_name columns. In both WHERE clauses,

https://mng.bz/RZDD
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we make use of the fact that we can refer to aliases given to a column later. As shown
in listing 9.2, we use prepared statements with parameterized queries (https://
mng.bz/2K29) to pass the search term as a named parameter to the query, avoiding
the possibility of an SQL injection (we spoke about how to avoid SQL injections in
more detail in chapter 6.2.3). 

def search_players(search_term):
query = '''
SELECT DISTINCT winner_name AS player
FROM matches
WHERE player ilike '%' || $search_term || '%'
UNION
SELECT DISTINCT loser_name AS player
FROM matches
WHERE player ilike '%' || $search_term || '%'
'''
values = atp_duck.execute(query, {"search_term":search_term}).fetchall()
return [value[0] for value in values]

Streamlit is all about writing out data in various
forms; it supports lists, maps, DataFrames, and
more. We use the st instance we imported
from the streamlit package, as shown in the
following code, to write out the result of the
search_players function, producing HTML
that looks as shown in figure 9.3: 

st.write(search_players("Novak"))

So far, we have created a simple, yet fully func-
tional page that displays a list of matches in
which a specific player appeared. This gives us
the groundwork to make things interactive for
the users. 

9.1.3 Using Streamlit components

The app would be pretty boring if it only displayed matches for a specific player. Let’s
create an input field for the search term. 

 Streamlit thinks in components. Instead of writing individual HTML fragments and
JavaScript code for client-side interactivity, you declare the use of a component,
parameterize it, and rely on the component to then render the necessary pieces onto
your web page. One such component is the streamlit-searchbox, published as a
library on GitHub under m-wrzr/streamlit-searchbox (https://github.com/m-wrzr/
streamlit-searchbox) and providing all the usual features users expect these things to
have, such as autocomplete. 

Listing 9.2 A function that uses a prepared statement

Figure 9.3 The result of calling 
search_players with Novak as 
parameter

https://mng.bz/2K29
https://mng.bz/2K29
https://github.com/m-wrzr/streamlit-searchbox
https://github.com/m-wrzr/streamlit-searchbox
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 We can install streamlit-searchbox by running the following command from the
terminal:

pip install streamlit-searchbox

Once we’ve done that, we’ll import st_searchbox in our Python code: 

from streamlit_searchbox import st_searchbox

Then, we’ll use that function to create a couple of search boxes, with the initial selec-
tion defaulted to Roger Federer and Rafael Nadal. We don’t have to think about how
to write HTML to create a two-column-wide layout; we can just ask Streamlit to do so.
How the components are positioned in that layout is also taken care of for us using
the Python keyword with. Having previously defined both the variables left and
right, we create two scopes in which the components will be positioned. The search
boxes created within these scopes will be labeled with Player 1 and Player 2, respec-
tively, and they will show different default values. 

 The most important part, however, is the first argument to st_searchbox, which is
the actual search_players function defined in the following listing. That function
will be called when the user modifies the content of the rendered search box. Add the
following code to app.py. 

left, right = st.columns(2)
with left:

player1 = st_searchbox(search_players,
label="Player 1",
key="player1_search",
default="Roger Federer",
placeholder="Roger Federer"

)
with right:

player2 = st_searchbox(search_players,
label="Player 2",
key="player2_search",
default="Rafael Nadal",
placeholder="Rafael Nadal"

)

Returning to the browser, our UI should now look like figure 9.4.

Figure 9.4 Streamlit components rendered as search boxes with default values

Listing 9.3 Parameterizing a Streamlit component with Python

Creates two columns 
on the page

Creates a searchbox 
component, using 
search_players as a 
data source
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The search box controls are already fully functional. The moment we type Murr to
search for Andy Murray, the underlying search_players will be called, and the results
will be passed back into the UI. This will eventually render as shown in figure 9.5. The
moment we click on a result, it will be assigned to the player1 variable, which rep-
resents both the component and the rendered search box. 

Figure 9.5 Searching for Andy Murray

So far, we can retrieve player names from the database and assign them to variables in
our script. While a list of players is nice, it is most likely not what the user is interested
in. They probably want to have a report containing all the matches between the
selected players, along with information about the level of tournament and round in
which the match was played.

 Streamlit is a great support for rendering pandas DataFrames as interactive tables,
without any further coding required. In chapter 6, we learned that DuckDB also has
native support for DataFrames. We can write a query that takes both player names as
parameters, queries the matches table again to retrieve the desired information, and
returns the result as a DataFrame via DuckDB’s fetchdf method, as shown in the
Python code in the following listing. 

matches_for_players = atp_duck.execute("""
SELECT

tourney_date,tourney_name, surface, round,
rounds.order AS roundOrder,
levels.name AS level, levels.rank AS levelRank,
winner_name, score

FROM matches
JOIN levels ON levels.short_name = matches.tourney_level
JOIN rounds ON rounds.name = matches.round
WHERE (loser_name = $player1 AND winner_name = $player2) OR

(loser_name = $player2 AND winner_name = $player1)

Listing 9.4 Querying the database and returning a DataFrame

Returns the match, tournament level, 
and round metadata for each match

Joins the levels table 
to get the level of 
the tournaments for 
the matches

Joins the rounds table 
to get round metadata 
for the matches
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ORDER BY tourney_date DESC
""", {"player1":player1, "player2":player2}).fetchdf()

Let’s first add a heading about the list of matches that shows the players’ names and
the number of wins they have. We can compute the number of wins by filtering
matches_for_player to find the rows where the winner_name matches each player’s
name. In the following code, we instruct Streamlit to define a set of three columns,
with the outer ones for displaying the names of the selected players outside the search
boxes and the middle one for the result:

left, middle, right = st.columns(3)
with left:

st.markdown(
f"<h2 style='text-align: left; '>{player1}</h1>",
unsafe_allow_html=True

)
with right:

st.markdown(
f"<h2 style='text-align: right; '>{player2}</h1>",
unsafe_allow_html=True

)

p1_wins = matches_for_players[
matches_for_players.winner_name == player1].shape[0]

p2_wins = matches_for_players[
matches_for_players.winner_name == player2].shape[0]

with middle:
st.markdown(

f"<h2 style='text-align: center; '>{p1_wins} vs {p2_wins}</h1>",
unsafe_allow_html=True

)

Let’s now render this DataFrame on the page. We’re going to drop the roundOrder,
level, and levelRank fields from the DataFrame we render to the page because they
create a bit too much clutter; those fields will come in handy later but aren’t required
just yet:

Markdown
Markdown is a lightweight markup language with plain-text formatting syntax,
designed to be easy to write and read. This markup is then converted into structurally
valid HTML. It is usually used to format the documentation of README files, but it is
also supported in Streamlit via the markdown function. 

In this case, we’re using it to render the player names and the number of wins in three
headings: left, right, and center aligned, with custom-styled HTML inside the Mark-
down. That’s why we also have to set unsafe_allow_html=True.

Passes in player1 and player2 as
parameters and returns a DataFrame

Creates a container 
with three columns

Renders 
the name 
of the first 
player

Renders the name of the second player

Computes the 
wins for player 1

Computes the 
wins for player 2

This renders the wins per player. We’re using 
custom Markdown, so it styles nicely!
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st.markdown(f'### Matches')
st.dataframe(

matches_for_players.drop(["roundOrder", "level", "levelRank"], axis=1)
)

The result of querying the database, asking for a DataFrame, and rendering that is
shown in figure 9.6. When the user selects a different pair of players, the content will
automatically be refreshed.

Figure 9.6 Matches between Andy Murray and Rafael Nadal

That all looks good, and now we can browse through the Murray–Nadal matches to
our heart’s content. While some people will be happy with a tabular representation of
the match data, others will prefer a more visual way to present that data. 

9.1.4 Visualizing data using plot.ly

Great charts are important in both data-centric applications and dashboards, but cre-
ating great charts is difficult both technically and content-wise. You don’t have to rein-
vent the wheel, though, as there are various ready-made solutions available for
rendering charts and diagrams, both under commercial and open source licenses. 

 One of our favorite libraries for creating interactive visualizations is plot.ly
(https://plotly.com/). plot.ly is a data visualization tool that lets users create visually

https://plotly.com/
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appealing charts and diagrams with an intuitive API. Streamlit provides direct support
for using plot.ly charts.

 We can install plot.ly by running the following in the terminal:

pip install plotly

Next, back in app.py, import plotly.express, which is a module that makes it easier
to quickly construct a chart:

import plotly.express as px

The visualization we have in mind will be a scatterplot that has the tournament names
(ordered by the month and day held) along the y axis and dates along the x axis. The
points on the chart will represent a match, and we’ll color them differently, depend-
ing on the winner.

 The first thing we need to do is create a new DataFrame that has the tournaments
ordered by the month and day held. We’ll sort the data using the strftime function
in DuckDB:

sorted_matches_for_players = atp_duck.sql("""
FROM matches_for_players
ORDER BY strftime(tourney_date, '%m-%d')
""").fetchdf()

We can then create a scatterplot based on sorted_matches_for_players, with the size
of the points based on the importance of the round in which the players played:

fig = px.scatter(sorted_matches_for_players,
x="tourney_date",
y="tourney_name",
color="winner_name",
size="roundOrder",
color_discrete_sequence=px.colors.qualitative.Plotly,
category_orders={

"tourney_name": (
sorted_matches_for_players['tourney_name']
.drop_duplicates()
.tolist()

)
},

)

We can then render the chart using Streamlit’s built-in support for rendering plot.ly
charts:

st.plotly_chart(fig, use_container_width=True)

NOTE Streamlit also has functions for rendering charts created by other data
visualization tools, such as Altair, Bokeh, PyDeck, and more.

The resulting chart is shown in figure 9.7.

Orders the matches 
by month and day

The color tones used for the points. The
default is two light blues, which we find

difficult to distinguish in print. See
https://plotly.com/python/discrete-

color for more options.

Ensures plot.ly 
doesn’t reorder the 
tournament names

https://plotly.com/python/discrete-color
https://plotly.com/python/discrete-color
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e

Figure 9.7 The timeline of matches between Murray and Nadal, visualized as a scatterplot by plot.ly

This looks pretty cool, but we need a grid that makes it easier to see the years in which
the matches took place. We can do this by computing the minimum and maximum
years and then drawing a vertical line for each year:

min_year = sorted_matches_for_players['tourney_date']
.dt.year.min()

max_year = sorted_matches_for_players['tourney_date']
.dt.year.max()

unique_years = list(range(min_year, max_year+2))

for year in unique_years:
fig.add_shape(

type="line",
x0=f"{year}-01-01", x1=f"{year}-01-01",
y0=0, y1=1,
yref="paper",
layer="below",
line=dict(color="#efefef", width=2)

)

Computes the minimum year from
the matches between the players

Computes the maximum 
year from the matches 
between the players

Constructs a list that 
contains all the years from 
the minimum year until one 
year after the maximum year

Iterates over 
each of the yearsAdds a

vertical
line for

ach year
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We can then return to the Streamlit app to see the new and improved version of the
chart in figure 9.8.

Figure 9.8 Murray vs. Nadal timeline with vertical lines

That makes it much easier to see when they’ve played each other over the last 15 years
or so. Most of their matches took place in 2008–2009 and 2010–2011, with the rest
scattered out. This was difficult to see when we looked at the table of results. We
already knew that Nadal dominated the rivalry, but that fact is emphasized even fur-
ther by this visualization.

 Whether we want to represent a DataFrame as a table or a chart does not change
the way that we retrieve said DataFrame from DuckDB. It’s a matter of choice to either
pass it directly to Streamlit for rendering a tabular representation or to plot.ly first,
creating a chart which then is passed to Streamlit. This is similar to the experience we
saw in chapter 6, where we switched from pandas to Apache Arrow to Polars Data-
Frame without changing the way we interacted with the database technology. 

9.1.5 Deploying our app on the Community Cloud

Deploying an application can be as simple as copying static files onto a web server or
as complicated as setting up containers, a service, and, in general, a lot of movable
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parts. Sometimes, there are good reasons for any of the extremes, but often, there’s
most likely a middle ground. Maybe someone else already set up the whole compli-
cated infrastructure and provided a “push-to-run” scenario for your application. The
Streamlit Community Cloud, which is backed by Snowflake Inc., provides exactly that. 

 If you agree to their terms, you can directly push your new application to produc-
tion, right from within the local Streamlit server, by clicking on the Deploy button in
the top-right-hand corner of the UI. You’ll then see the modal window shown in figure
9.9.

 You might need to add requirements.txt with the four dependencies to your repos-
itory if it doesn’t exist yet.

streamlit
duckdb
streamlit-searchbox
plotly

The tooling gives you a choice between the Community Cloud and a custom deploy-
ment (figure 9.9).

Figure 9.9 Choosing how to deploy your new application to production

You’ll need to have your project connected to a remote GitHub repository; otherwise,
you’ll see the error in figure 9.10.

Listing 9.5 requirements.txt



206 CHAPTER 9 Building and deploying data apps
Once we’ve got our app connected to a GitHub repository, if we click through the
deploy flow again, we’ll see the screen shown in figure 9.11.

Figure 9.11 Deploying our app

Figure 9.10 The error 
message received when 
trying to deploy an app not 
connected to a remote 
GitHub repository
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We can then choose a URL for the app and adjust the branch or main file path if
those need changing. We can also change the version of Python that will be used via
the Advanced Settings.

 As you can see from the screenshot, the completed version of this app lives in the
mneedham/atp-head-to-head repository (https://github.com/mneedham/atp-head
-to-head), and it’s been deployed to atp-head-to-head.streamlit.app (https://atp
-head-to-head.streamlit.app/). Without diving into the world of frontend frameworks,
we have been able to build an interactive web application by using a handful of Stream-
lit components—all in one language we already know (Python)—connecting to
DuckDB in a way we already understand and by passing data as DataFrames, a familiar
data format.

 But admittedly, we did still have to write some code to get all this working! In case
you’re not that comfortable with writing code, or you just want to get something up
and running quickly for yourself or your users, there are other options. If, rather than
an interactive application, you want to create a dashboard, you can achieve this with a
low-code or BI tool. We’ll still get interactivity in terms of zooming, panning, and oth-
erwise changing the representation of charts, but we won’t have to write any applica-
tion code. This is where a tool such as Apache Superset comes in. 

9.2 Building a BI dashboard with Apache Superset
While Streamlit gives us a lot of control over our application without requiring special-
ist frontend knowledge, sometimes we don’t want to spend so much time writing cus-
tom code for a frontend. DuckDB integrates with a variety of BI tools, including Hex,
Tableau, and the one that we’ll be using in this chapter: Apache Superset. 

9.2.1 What is Apache Superset?

Apache Superset is an open source data exploration and visualization platform devel-
oped by Maxime Beauchemin, who is best known for creating Apache Airflow. Super-
set has integrations with a large number of databases (including DuckDB!), and
everything can be configured through its UI. It has preinstalled visualization types,
which should cover most use cases, but you can also create custom visualizations in
JavaScript. 

 Superset has support for SQLAlchemy, a Python library that provides a high-level,
object-oriented interface for interacting with databases. It manages database connec-
tions, defines database schemas, and performs queries against these databases.

 While there are many BI tools, many of them are cloud services that require you to
register for an account. Superset, on the other hand, can be tried out on our
machine, and if we later decide to deploy to production, we have the option of using
the Preset (https://preset.io/) hosted service.

 There are a variety of ways to install Superset (https://mng.bz/1G2y), including
Docker Compose scripts and a Helm repository for deploying to Kubernetes. These
would be good options if we were deploying Superset to production, but to install

https://github.com/mneedham/atp-head-to-head
https://github.com/mneedham/atp-head-to-head
https://github.com/mneedham/atp-head-to-head
https://atp-head-to-head.streamlit.app/
https://atp-head-to-head.streamlit.app/
https://atp-head-to-head.streamlit.app/
https://mng.bz/1G2y
https://preset.io/
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Superset on our machine, we’re going to follow the instructions found on the “Install-
ing from PyPI” documentation page (https://mng.bz/PZEg).

 We start by installing the following library. All the following commands are exe-
cuted from your terminal:

pip install apache-superset==3.1.2

NOTE At the time of writing, Superset only works with Python 3.10.

Now we need a way to connect Superset to DuckDB. duckdb_engine (https://pypi
.org/project/duckdb-engine/) is DuckDB’s SQLAlchemy driver, and we’re going to
use it to get these two tools to play nicely together.

 We can install the driver by running the following command:

pip install duckdb-engine

Next, we need to configure some environment variables, without which Superset
won’t run. You need to set these variables whenever you have a new terminal session
before running any of the following commands. Superset contains a Flask application,
so we need to set the FLASK_APP variable to define the name of the file that Flask
should look for. We also need to specify a secret key (https://mng.bz/JZ0P), with a
random string of characters, for a more secure installation:

export SUPERSET_SECRET_KEY="sYBpNA2+bQHvmXcojOVp53b8xbmN3ZQ"
export FLASK_APP=superset

Next, we’re going to initialize Superset’s database. This stores all the metadata that
Superset uses, and it won’t work without it:

superset init
superset db upgrade

The next step is to create an admin user. We’re going to create a user called admin
with the same password, but you should use more secure credentials when you do this
yourself and your machine is exposed to the internet. Flask app builder (FAB) is the
framework Superset is built on top of. It provides authentication, user management,
permissions, and roles:

superset fab create-admin \
--username admin \
--firstname Superset \
--lastname Admin \
--email admin@example.com \
--password admin

We should see the following output:

logging was configured successfully
...
Recognized Database Authentications.
Admin User admin created.

https://mng.bz/PZEg
https://pypi.org/project/duckdb-engine/
https://pypi.org/project/duckdb-engine/
https://pypi.org/project/duckdb-engine/
https://mng.bz/JZ0P
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Now we can launch the Superset web server on port 8088 by running the following
command:

superset run -p 8088 \
--with-threads \
--reload \
--debugger

We can then navigate to the Superset UI at http://localhost:8088 and log in with the
admin/admin username and password we just created. 

9.2.2 Superset’s workflow

Before we create anything, it’s probably helpful to understand the terms Superset uses
and how they relate to each other. The following are important concepts to under-
stand:

 Database—The underlying data source (DuckDB, in our case)
 SQL Saved Query—A custom SQL query against one or more tables in the data-

base
 Dataset—A wrapper around an SQL-saved query or a database table
 Chart—A visualization based on a dataset
 Dashboard—A collection of charts

The tables that comprise a database aren’t one of Superset’s concepts, but they are
used by datasets.

 So when we’re using Superset, we’ll need to first create a database. It will then auto-
matically detect the schema, and therefore tables, that comprise that database. We can
then create datasets based on those tables or write SQL queries and turn those into
datasets. And finally, we create charts on top of those datasets, which are used in dash-
boards. Figure 9.12 contains a visual representation of the Superset workflow. 

Figure 9.12 Terms used by Superset and their relationships
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9.2.3 Creating our first dashboard

In this section, we’re going to learn how to create a dash-
board. Dashboards are used to help visualize important
business metrics so that we can quickly get a picture of the
state of things. We’ll also want to be able to interact with
the dashboard so that we can dig deeper into the data if
there are any problems. 

NOTE Any dashboard we create over a tennis dataset
won’t be as important as one over a business dataset, but
hopefully, you’ll see how to apply these techniques to
your own data.

Let’s create our first dashboard, starting by connecting
Superset to DuckDB. Click on the Settings button in the
top right, as shown in figure 9.13.

 Once you’ve done that, click on the + Database button, which will result in the
modal window shown in figure 9.14. 

Figure 9.13 Database 
connections

Figure 9.14 Connecting to a 
new database
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Click on DuckDB, and then in the SQL Alchemy URI field, enter the connection string,
which has the format of duckdb:///<your-database>. For us, that will be duckdb:///
atp.duckdb, as shown in figure 9.15. 

If your Streamlit application from the previous
section is still running, you need to close it first
to release the lock on the database file. Click
on the Test Connection button to confirm that
everything is wired up correctly.

NOTE You can also connect to a Mother-
Duck database using duckdb:///md:<my_
database>?motherduck_token=<my_token>.

Once you’ve done that, click on the Data link
at the top of the screen and then on the Create
Dataset button. We’ll then see the screen in fig-
ure 9.16, where we can select the database,
schema, and table that we want to use.

Figure 9.16 Choosing a table
to make up a dataset

Figure 9.15
Connecting to the ATP 
DuckDB database
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We’re going to select the matches table. Once we select that, we’ll see a UI that shows
all fields in that table, as shown in figure 9.17. 

Figure 9.17 A preview of the matches table
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If we’re happy with our selection, we can click on Create Dataset and Create Chart,
after which we’ll be asked which chart we’d like to create from the screen shown in fig-
ure 9.18.

Figure 9.18 Choosing a chart for a specific dataset

Let’s select Bar Chart; we’ll then create a chart that shows the number of matches
played per year from 1967 to 2023. It’s often said that there are a lot more tennis
matches played nowadays than there used to be, so it’ll be interesting to see what the
data shows us.

 To create this chart, we’ll need to configure the following sections:

 X-Axis is tourney_date.
 Time Grain is Year.
 Metrics is COUNT(*).
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You can see a screenshot of how to do this in figure 9.19.

If we create the chart, we’ll see a preview on the right-hand side. It should look like
figure 9.20.

Figure 9.20 A preview of the bar chart showing matches played per year

Figure 9.19 Configuring a bar chart 
showing matches played per year
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There doesn’t seem to be any evidence that more matches are being played nowadays.
If anything, there seems to be a slight downward trend in the number of matches
being played. There’s also an outlier in 2020, caused by the COVID-19 pandemic,
which resulted in the tennis season being paused from March to August 2020.

 If we’re happy with the chart, we can save it via the screen shown in figure 9.21.
We’ll be asked if we want to add the chart to an existing or new dashboard. Let’s add it
to a new dashboard called ATP Dashboard.

Figure 9.21 Saving the chart

NOTE If we don’t type anything into the dashboard field, the chart won’t
be assigned to a dashboard, but we can always add it to a dashboard
afterward.

If we click Save & Go to Dashboard, we should now see a dashboard containing our
chart, as shown in figure 9.22. Success! We’ve created our first dashboard.

 We can repeat the process described in this section if we want to add more charts
based on individual tables, but if we want to create a chart based on data from multi-
ple tables, we’ll need to do something slightly different. 
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Figure 9.22 A dashboard containing a chart of the total matches played

9.2.4 Creating a dataset from an SQL query

In addition to creating datasets from tables, we can also create them from SQL que-
ries. To do this, when we add a new dataset, we’ll need to click on the SQL Lab link
from the top menu. 

 Next, we need to add a new query tab, select the database and schema, and then
enter a query. For example, let’s say we want to work out whether grand slam winners
have been getting older over time. We need to get data from both the matches and
players tables to answer this question. The following query computes the cumulative
count of grand slam winners aged 30 and over:

SELECT
winner_name,
tourney_date,
(tourney_date - dob)/365 AS age,
COUNT(*) OVER (ORDER BY tourney_date) AS cumulative_count

FROM matches
JOIN players ON players.player_id = matches.winner_id
WHERE round='F'
AND tourney_level = 'G'

Computes the age 
of the winner

Computes the
cumulative count

of winners

Filters to only return the Final 
match in each tournament

Filters to only include 
Grand Slam events
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AND age >= 30
ORDER BY tourney_date;

Let’s paste that query, and then click on the Run button. We should see the output
shown in figure 9.23. Once we’re happy with our query, we can select the Save Dataset
option and click on the Save button to give the dataset a name.

Figure 9.23 Grand slam winners aged 30 and over

Filters to only return 
winners aged 30 or older
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Let’s now return to the Charts page; this time, we’ll choose Big Number with Trend-
line as our chart. We’ll also select our new dataset, as shown in figure 9.24.

Figure 9.24 Selecting a big number with trendline chart

To create this chart, we’ll need to configure the following sections:

 X-Axis is tourney_date.
 Time Grain is Day.
 Metrics is SUM(cumulative_count), which is a custom metric.

If we then click Update Chart, we should see the visualization shown in 9.25 on the
right-hand side.

Figure 9.25 The number of grand slam winners aged 30 and over
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Let’s save the chart and add it to the ATP Dashboard we created earlier. If we navigate
to the dashboard, we should see something that looks like figure 9.26.

Figure 9.26 A dashboard with the over 30 Grand Slam winners included

Hopefully, this has given you a good idea of how to construct a dashboard using Sup-
erset. We’ve added a few more charts to the dashboard following the approach
described in this section and the previous one. You can see the final result in figure 9.27.

Figure 9.27 The ATP Dashboard
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We’ve used a few different chart types to give you an idea of what you can do with Sup-
erset. In the next section, we’ll explain how you can import a copy of this dashboard
so you can explore the various elements. 

9.2.5 Exporting and importing dashboards

We generally configure databases, datasets, charts, and dashboards, using Superset’s
UI. But if we want to deploy those dashboards elsewhere (or, say, share them with the
readers of a book), we probably don’t want to have to go through the whole process
from scratch. This is where Superset’s export and import dashboard features come
into play. 

 We can export dashboards from the Dashboard page. If we hover over the Actions
column of the Dashboards row, we’ll see an export button, as shown in figure 9.28.

Figure 9.28 Exporting a dashboard

If we click on this button, Superset will generate a ZIP file that contains our databases,
datasets, charts, and dashboards. We’ve included the ZIP file in the book’s GitHub
repository (https://github.com/duckdb-in-action/examples), and if we navigate to
ch09, we can unzip that file:

unzip dashboard_export_20231203T162310.zip

In a Linux-based terminal, we can use the tree command (tree /f /a on Windows
or find dashboard_export_20231203T162310 on MacOS) to list all the included files:

tree dashboard_export_20231203T162310

dashboard_export_20231203T162310
├── charts
│ ├── Grand_Slam_Winners__30_11.yaml
│ ├── Grand_Slam_winners__25_9.yaml
│ ├── Lowest_Ranked_Grand_Slam_Winners_8.yaml
│ ├── Matches_Played_7.yaml
│ └── Multi_Title_Winners_6.yaml
├── dashboards

https://github.com/duckdb-in-action/examples
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│ └── ATP_Dashboard_1.yaml
├── databases
│ └── DuckDB.yaml
├── datasets
│ └── DuckDB
│ ├── Grand_Slam_Winners__30.yaml
│ ├── Multi_Title_Winners.yaml
│ ├── Young_Grand_Slam_Winners.yaml
│ └── matches.yaml
└── metadata.yaml

There’s a directory for each of the concepts we learned about at the start of this
section:

 The config to connect to the database is in databases/DuckDB.yaml.
 Datasets are defined in datasets/DuckDB.
 Charts are defined in charts.
 The config for the dashboard is in dashboards/ATP_Dashboard_1.yaml.

You can import this dashboard from the dashboard page by clicking on the down
arrow button in the top-right corner of the Dashboard page, as shown in figure 9.29.

Figure 9.29 Importing a dashboard

If we then select the ZIP file, it will import the setup into Superset, and we should see
the dashboard from figure 9.27. 

Summary
 Streamlit is a low-code environment that provides various ready-made and reus-

able components solving recurrent tasks when writing web applications.
 Streamlit is written in Python and thus integrates in various ways with DuckDB’s

Python API via the DB-API 2.0, the relational API, or DataFrames.
 In contrast to a no-code and purely declarative environment, you can write cus-

tom Python in your Streamlit application to enhance its capabilities.
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 plot.ly provides a similar low-code approach for creating visually appealing,
interactive visualizations that can be used seamlessly with Streamlit.

 Apache Superset is at the other end of the spectrum: it is basically a no-code,
drag-and-drop alternative for building a visually appealing dashboard.

 The only code you usually need to write using Apache Superset are custom SQL
queries that feed into the visualizations. 



Performance considerations
for large datasets
So far in this book, we’ve seen how to use DuckDB with a variety of datasets, but
most of them have been small or medium in size. This isn’t unusual, as those data-
sets are representative of many of those we’ll come across in our daily work.

 However, huge datasets do exist, and we wouldn’t want you to think that you
need to use another data processing tool when you encounter these! In this chap-
ter, we’re going to look at two datasets: the first contains data about Stack Overflow,

This chapter covers 
 Preparing large volumes of data to be imported 

into DuckDB

 Querying metadata and running exploratory data 
analysis (EDA) queries on large datasets

 Exporting full databases concurrently to Parquet

 Using aggregations on multiple columns to speed 
up statistical analysis

 Using EXPLAIN and EXPLAIN ANALYZE to 
understand query plans
223
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the popular coding question-and-answer website, and the second contains data about
taxi trips in New York City. With these two datasets, we can teach you tips and tricks
when working with bigger datasets in DuckDB.

 For each one, we’ll show how to prepare and then import it into DuckDB. Once
we’ve done that, we’ll run some queries on the data before exporting the database
into a portable format.

10.1 Loading and querying the full Stack Overflow database
Stack Overflow is an online, community-driven question-and-answer website designed
for developers and programmers to ask and answer technical questions. It was created
in 2008 and uses a reputation system, where users earn points and privileges by con-
tributing useful answers and content.

 If you’re like us, you’ve probably spent a lot of time on Stack Overflow looking for
the answers to technical questions. And if you’ve been a good citizen, perhaps you’ve
answered some questions as well! But have you ever stopped to consider the system
and data behind this useful site?

 If not, it’s time to change that by analyzing a dump of Stack Overflow data with
DuckDB. The dataset size is 11 GB in compressed CSV format and contains 58 million
posts, 20 million users, and 65 thousand tags. It’s not quite “Big Data” (see https://
motherduck.com/blog/big-data-is-dead/), but it’s big enough to put DuckDB
through its paces.

 In this section, we will explore the Stack Overflow dataset, using DuckDB both
locally and on MotherDuck. First, we’re going to download and transform the raw
data, and then we’ll load it into DuckDB and inspect it with some EDA queries before
exporting it to Parquet.

10.1.1 Data dump and extraction

If you want to do some basic exploratory analysis of the Stack Overflow data, the site
provides the Stack Exchange Data Explorer (https://mng.bz/wx6W), which is a web-
site for executing SQL queries on the Stack Overflow data. It is great for getting a feel
for the dataset, but it is limited in the number and complexity of queries you can run
so that usage doesn’t overload the service. 

 We want to have more control over the queries that we run though, so we want
access to the raw data. In this section, we’re going to show how to download and trans-
form the raw data, but we know this isn’t the most fun part of the process, so don’t feel
like you need to follow all the steps in the section.

NOTE If you just want to access the final tabular data, you can either down-
load the Parquet files from S3 (s3://us-prd-motherduck-open-datasets/stack-
overflow/parquet/2023-05/) or mount the MotherDuck share (md:_share/
stackoverflow/6c318917-6888-425a-bea1-5860c29947e5) to focus on querying
the data. Alternatively, you can pick one of the smaller stack exchange com-
munities, like math or biotechnology, if the Stack Overflow data is too big.

https://motherduck.com/blog/big-data-is-dead/
https://motherduck.com/blog/big-data-is-dead/
https://mng.bz/wx6W
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For the bravehearted among you, let’s get this dataset ready to load into DuckDB.
Stack Exchange publishes all their data publicly on the Internet Archive Stack
Exchange dump (https://archive.org/download/stackexchange) under a Creative
Commons license. We’re going to use the largest set of files for the Stack Overflow site
itself. We can use the curl command-line utility for that task as shown, which stores
the files under the same name that they have on the server:

curl -OL "https://archive.org/download/stackexchange/stackoverflow.com-\
{Comments,Posts,Votes,Users,Badges,PostLinks,Tags}.7z"

The Internet Archive’s bandwidth is limited, so downloading the data can be a frus-
trating and slow process, with frequent aborts of the connection likely. We will end up
with seven compressed XML files with a total size of 27 GB:

19G stackoverflow.com-Posts.7z
5.2G stackoverflow.com-Comments.7z
1.3G stackoverflow.com-Votes.7z
684M stackoverflow.com-Users.7z
343M stackoverflow.com-Badges.7z
117M stackoverflow.com-PostLinks.7z
903K stackoverflow.com-Tags.7z

After the download finishes, you will need to extract the files using 7-Zip (https://7
-zip.org/) or p7zip (https://p7zip.sourceforge.net/), as shown.

 The files are in the SQL Server export format, where each Row element has all col-
umns as attributes. Here is an example of the file contents:

<?xml version="1.0" encoding="utf-8"?>
<users>
...

<row Id="728812" Reputation="41063" CreationDate="2011-04-28T07:51:27.387"

➥DisplayName="Michael Hunger" LastAccessDate="2023-03-01T14:44:32.237"

➥WebsiteUrl="http://www.jexp.de" Location="Dresden, Germany" AboutMe=

➥"&lt;p&gt;&lt;a href=&quot;http://twitter.com/mesirii&quot; rel=&quot;

➥nofollow&quot;&gt;Michael Hunger&lt;/a&gt; has been passionate about

➥so?ware development for a long time. If you want him to speak at your

➥user group or conference, just drop him an email at michael at jexp.de"

➥Views="7046" UpVotes="4712" DownVotes="24" AccountId="376992" />
...

Unfortunately, DuckDB doesn’t support parsing XML yet, so we will have to use some
external tools to get this data into a format that DuckDB supports. While the process
is time-consuming, it is a reliable way of converting the XML to CSV.

 We are using xidel (https://www.videlibri.de/xidel.html), an XML processing
command-line tool that outputs JSON. We’ll then convert the JSON output to CSV,
using the jq (https://jqlang.github.io/jq/) command-line JSON processor. You can
find download and installation instructions for xidel and jq on their respective web-
sites. Finally, we’ll compress the CSV file with gzip to save space. 

 Let’s have a look at how to do this for the comments. First, we extract the contents
of the zip file before piping the output to xidel, as you can see in listing 10.1.

https://archive.org/download/stackexchange
https://7-zip.org/
https://7-zip.org/
https://7-zip.org/
https://p7zip.sourceforge.net/
https://www.videlibri.de/xidel.html
https://jqlang.github.io/jq/
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 The process is as follows:

1 Extract relevant fields from the XML, for instance, the post ID, score, text, cre-
ation date, and user ID.

2 Convert the XML to JSON.
3 Convert the JSON to CSV.
4 Output the header.
5 Compress the CSV to a file called Comments.csv.gz.

We could have also used the built-in functionality of DuckDB to load the JSON files
from xidel directly, but it can be useful to have the CSV around for other tools that
don’t support it. Additionally, the files are a bit smaller without the repeated key
names.

7z e -so stackoverflow.com-Comments.7z | \
xidel -se '//row/[(@Id|@PostId|@Score|@Text|@CreationDate|@UserId)]' - | \
(echo "Id,PostId,Score,Text,CreationDate,UserId" &&
jq -r '. | @csv') |
gzip -9 > Comments.csv.gz

Each file will be processed similarly, but for brevity’s sake, we won’t include all the
commands inline. If you want to see the code so that you can try it yourself, you can
find it in the book’s GitHub repository. 

 Once we’re done, we’ll have the following list of CSV files, with a total size of 11
GB:

5.0G Comments.csv.gz
3.2G Posts.csv.gz
1.6G Votes.csv.gz
613M Users.csv.gz
452M Badges.csv.gz
137M PostLinks.csv.gz
1.1M Tags.csv.gz

10.1.2 The data model

Before we start exploring, let’s look at the data model of the Stack Overflow dataset.
To remind ourselves of the UI, figure 10.1 shows a screenshot of the Stack Overflow
site with most information visible. 

 In the downloaded and converted files previously listed, we have the following
entities, which correspond also to the filenames:

 Questions (Post with postTypeId=1) with a title, body, creationDate,
ownerUserId, parentId, acceptedAnswerId, answerCount, tags, upvotes,
downvotes, views, and comments. The maximum of six Tags define the topics of
the question.

 User with displayName, aboutMe, reputation, last login date, and so on.

Listing 10.1 Converting the XML file via JSON to CSV
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Figure 10.1 The Stack Overflow UI showing a user question and an accepted answer

 Answers (Post with postTypeId=2) with their own ownerUserId, upvotes, down-
votes, and comments. One of the answers can be accepted as the correct answer.

 Questions and Answers can have comments with their own text, ownerUserId,
and score.

 Badges with class columns that users can earn for their contributions.
 Posts can be linked to other Posts (e.g., duplicates or related questions as

PostLinks).

The files don’t have any information about indexes or foreign keys; we need to recre-
ate those references manually. For that purpose, we drew the data mode shown in fig-
ure 10.2, which is a simplified version of the Stack Overflow data model with the most
important columns listed above as attributes and foreign keys as arrows.
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Figure 10.2 Stack Overflow data model

You can see how the Post (Question or Answer) connects to the User who has written
it via the ownerId. Comment, Vote, and Answer refer to the original Post via postId,
and the accepted Answer–Post is linked from the Question–Post via accepted-
AnswerId. The Badge connects to the User via userId, and the PostLink connects two
Post entities via postId and relatedPostId. 

10.1.3 Exploring the CSV file data

Now that we’ve got the data prepared, we’re back in familiar territory when it comes
to importing the data into DuckDB. As we covered in earlier chapters, DuckDB has
the read_csv function, which we can use to load data directly from the compressed
gzipped CSV files. read_csv will automatically try to infer column types, which we’ve
found works well for the Stack Overflow dataset. 

 Let’s look at the Tags file first and query it for structure and content. We’re going
to start with the following query, which counts the number of tags with

SELECT count(*) FROM read_csv('Tags.csv.gz')
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We’ve got just under 65,000 tags, which seems like a lot, but there are many different
technologies people can get stuck on, so it makes sense! Next, let’s have a look at the
structure of the data in the Tags file, using the DESCRIBE function, which gives us the
name and type of each column. 

DESCRIBE(FROM read_csv('Tags.csv.gz'));

The DESCRIBE command returns the metadata of the tags files, and we can see the
names and types of the available columns:

┌───────────────┬─────────────┐
│ column_name │ column_type │
│ varchar │ varchar │
├───────────────┼─────────────┤
│ Id │ BIGINT │
│ TagName │ VARCHAR │
│ Count │ BIGINT │
│ ExcerptPostId │ BIGINT │
│ WikiPostId │ BIGINT │
└───────────────┴─────────────┘

The TagName and Count fields are the ones we need to determine the most popular
tags. Let’s find the top five most popular tags with a query that just runs perfectly fast,
even on the compressed, large file. 

SELECT TagName, Count
FROM read_csv(

'Tags.csv.gz',
column_names=['Id', 'TagName', 'Count'])

ORDER BY Count DESC
LIMIT 5;

We can see that these are the usual suspects when it comes to programming languages
(i.e., the most popular ones):

┌────────────┬─────────┐
│ TagName │ Count │
│ varchar │ int64 │
├────────────┼─────────┤
│ javascript │ 2479947 │
│ python │ 2113196 │
│ java │ 1889767 │
│ c# │ 1583879 │
│ php │ 1456271 │
└────────────┴─────────┘

Listing 10.2 Describing the metadata of the Tags file

Listing 10.3 Selecting the top Tags from the CSV file
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G
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To see how tags distribute across their usage, we can bucket the counts into powers of
10 and then count the number of tags in each bucket, as shown in the following listing.

SELECT cast(pow(10,floor(log(Count)/log(10))) AS INT) AS bucket,
count(*)

FROM read_csv(
'Tags.csv.gz',
column_names=['Id', 'TagName', 'Count'])

WHERE Count > 0
GROUP BY bucket
ORDER BY bucket ASC;

To create our buckets, using the count of 112 as an example, we do the following:

1 We compute the logarithm of each count to the base of 10 (log(112)/log(10)
= 2.049).

2 This gives us the order of magnitude of the count.
3 We use this to get the base integer value and floor(2.049) = 2.0.
4 We use it again to recompute the power of 10 pow(10,2.0) = 100.0.
5 We get, as an end result, the original value in powers of 10.
6 We cast these to an integer for the grouping cast(100.0 as int) = 100.

We can see the result follows a power law distribution (i.e., the number of tags with
few uses is high, and fewer tags have a high count), tapering off to only 25 tags with
more than 1 million uses. The only exception is rare tags with one mention; there are
fewer of them, as expected. 

┌──────────┬──────────────┐
│ bucket │ count_star() │
│ int32 │ int64 │
├──────────┼──────────────┤
│ 1 │ 6238 │
│ 10 │ 23018 │
│ 100 │ 23842 │
│ 1000 │ 9126 │
│ 10000 │ 1963 │
│ 100000 │ 252 │
│ 1000000 │ 25 │
└──────────┴──────────────┘

10.1.4 Loading the data into DuckDB

To get the Stack Overflow data into DuckDB, we can either create a table first and
then ingest the data, or we can create the table on the fly as we read the data. The for-
mer approach is more explicit and allows us to define the column names and types,
but it requires us to know and spell out the schema of the data beforehand. Then, the

Listing 10.4 Query for bucketing Tag frequency

Computes buckets of Tag
count in powers of 10

Counts the entries
 in each bucket

Reads the Tags.csv.gz 
file with three columnsFilters columns 

with zero count

roups
y our
ucket

Orders by bucket scale 
ascending (smallest first)
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CREATE TABLE statements also need to be adjusted when the file structure or column
types change; otherwise, the load will fail. We use CREATE OR REPLACE TABLE so that we
can run the imports multiple times for testing without having to drop the table in
between. 

 The latter approach is used in listing 10.5. We choose the relevant column names,
with the data types being inferred while reading the CSV files, and we get “what’s
there.”

 Let’s have a look at the import statements for Users and Posts. You can find the
import statements for the other tables in the book’s GitHub repository.

CREATE OR REPLACE TABLE users AS
SELECT *
FROM read_csv(

'Users.csv.gz',
auto_detect=true,
column_names=[

'Id', 'Reputation', 'CreationDate', 'DisplayName',
'LastAccessDate', 'AboutMe', 'Views', 'UpVotes', 'DownVotes'

]
);

Now, in the following listing, we can check the number of rows in the users table with

SELECT count(*) FROM users;

We will see that we have roughly 20 million users.

CREATE OR REPLACE TABLE posts AS
FROM read_csv(

'Posts.csv.gz',
auto_detect=true,
column_names=[

'Id', 'PostTypeId', 'AcceptedAnswerId', 'ParentId', 'CreationDate',
'Score', 'ViewCount', 'Body', 'OwnerUserId', 'LastEditorUserId',
'LastEditorDisplayName', 'LastEditDate', 'LastActivityDate', 'Title',
'Tags', 'AnswerCount', 'CommentCount', 'FavoriteCount',
'CommunityOwnedDate', 'ContentLicense'

]
);

NOTE The Tags column is a text column that contains up to six Stack Over-
flow tags wrapped in angle brackets (e.g., —<sql><performance><duckdb>).

We can see the structure of the generated table with

`select column_name, column_type from (show table posts);`

Listing 10.5 Creating or replacing the Stack Overflow users table

Listing 10.6 Creating or replacing the Stack Overflow posts table
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Meanwhile, we will skip irrelevant fields, like null, key, default, and extra:

┌───────────────────────┬─────────────┐
│ column_name │ column_type │
│ varchar │ varchar │
├───────────────────────┼─────────────┤
│ Id │ BIGINT │
│ PostTypeId │ BIGINT │
│ AcceptedAnswerId │ BIGINT │
│ CreationDate │ TIMESTAMP │
│ Score │ BIGINT │
│ ViewCount │ BIGINT │
│ Body │ VARCHAR │
│ OwnerUserId │ BIGINT │
│ LastEditorUserId │ BIGINT │
│ LastEditorDisplayName │ VARCHAR │
│ LastEditDate │ TIMESTAMP │
│ LastActivityDate │ TIMESTAMP │
│ Title │ VARCHAR │
│ Tags │ VARCHAR │
│ AnswerCount │ BIGINT │
│ CommentCount │ BIGINT │
│ FavoriteCount │ BIGINT │
│ CommunityOwnedDate │ TIMESTAMP │
│ ContentLicense │ VARCHAR │
├───────────────────────┴─────────────┤
│ 19 rows 2 columns │
└─────────────────────────────────────┘

Now we have inserted 58 million posts, which we can check using

SELECT count(*) FROM posts;

From previous experience, we’ve found that a good approach for working with large
datasets is to first get an overview of the data values in our tables. In chapter 4, we
learned about the SUMMARIZE clause. Running it on all columns of the users and
posts tables will take a few seconds, and the output is huge, as the tables have a lot of
columns, and SUMMARIZE computes a lot of metrics. Let’s have a look at some of the
columns of the users table and check for the approximate number of unique users,
their creation date, and how often they interact with posts by upvoting and downvot-
ing them. You get these statistics without writing a complex query, as shown in the fol-
lowing listing. 

SUMMARIZE (
SELECT Id, Reputation, CreationDate, Views, UpVotes, DownVotes
FROM users

);

Here are the results of summarizing the most interesting user attributes:

Listing 10.7 Summarizing a subset of columns
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┌──────────────┬─────────────┬────────────┬───────────────┬──────────────┐
│ column_name │ column_type │ max │ approx_unique │ avg │
│ varchar │ varchar │ varchar │ varchar │ varchar │
├──────────────┼─────────────┼────────────┼───────────────┼──────────────┤
│ Id │ BIGINT │ 21334825 │ 20113337 │ 11027766.241 │
│ Reputation │ BIGINT │ 1389256 │ 26919 │ 94.752717160 │
│ CreationDate │ TIMESTAMP │ 2023-03-05 │ 19557978 │ │
│ Views │ BIGINT │ 2214048 │ 7452 │ 11.630429738 │
│ UpVotes │ BIGINT │ 591286 │ 6227 │ 8.7674283438 │
│ DownVotes │ BIGINT │ 1486341 │ 2930 │ 1.1697560125 │
└──────────────┴─────────────┴────────────┴───────────────┴──────────────┘

If you want to follow along without creating and ingesting the CSV files, use the
Stack Overflow example data from MotherDuck (see chapter 7) by running the
following:

ATTACH 'md:_share/stackoverflow/6c318917-6888-425a-bea1-5860c29947e5'
AS stackoverflow`;

10.1.5 Fast exploratory queries on large tables

Now that we have our tables loaded, we can run a few more queries to see what kind of
data is available and how quickly we can get results. Let’s say we’re a Stack Overflow
analyst and want to check to see who are top users and whether they’re still active.
And if they aren’t, perhaps we can come up with a way to persuade them to come back
to the platform! We can find the top users by reputation along with their last login
time by writing the following query. 

.timer on

SELECT DisplayName, Reputation, LastAccessDate
FROM users
ORDER BY Reputation DESC
LIMIT 5;

The query finishes in only 0.126 seconds for 20 million rows to analyze, which is quite
fast:

┌─────────────────┬────────────┬─────────────────────────┐
│ DisplayName │ Reputation │ LastAccessDate │
│ varchar │ int64 │ timestamp │
├─────────────────┼────────────┼─────────────────────────┤
│ Jon Skeet │ 1389256 │ 2023-03-04 19:54:19.74 │
│ Gordon Linoff │ 1228338 │ 2023-03-04 15:16:02.617 │
│ VonC │ 1194435 │ 2023-03-05 01:48:58.937 │
│ BalusC │ 1069162 │ 2023-03-04 12:49:24.637 │
│ Martijn Pieters │ 1016741 │ 2023-03-03 19:35:13.76 │
└─────────────────┴────────────┴─────────────────────────┘
Run Time (s): real 0.126 user 2.969485 sys 1.696962

Listing 10.8 Top users by reputation
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If you’re familiar with Stack Overflow, you won’t be surprised to find the legend that is
Jon Skeet in top place. However, Jon has been using Stack Overflow for a long time, so
he’s had ages to accrue that reputation.

 It will be difficult for anyone to exceed his total reputation score, but perhaps he
has more competition when it comes to the reputation rate. We can compute this by
working out the number of reputation points per day on the platform, which will help
us identify people who are gaining reputation points faster but don’t yet have a high
total reputation. We can compute this score by dividing reputation by the number of
days from today to createdAt so that our result gives us a reputation rate per day, as
shown in the following listing.

.timer on
SELECT DisplayName, reputation,

round(reputation/day(today()-CreationDate)) as rate,
day(today()-CreationDate) as days,
CreationDate

FROM users
WHERE reputation > 1_000_000
ORDER BY rate DESC;

Jon drops into second place on this measure, with Gordon Linoff taking the top place.
Reputation on Stack Overflow also accrues when people upvote your past answers,
and the more useful the answers you have given are, the more likely it is that people
will upvote them over time:

┌─────────────────┬────────────┬────────┬───────┬─────────────────────────┐
│ DisplayName │ reputation │ rate │ days │ CreationDate │
│ varchar │ int64 │ double │ int64 │ timestamp │
├─────────────────┼────────────┼────────┼───────┼─────────────────────────┤
│ Gordon Linoff │ 1228338 │ 294.0 │ 4181 │ 2012-01-11 19:53:57.59 │
│ Jon Skeet │ 1389256 │ 258.0 │ 5383 │ 2008-09-26 12:05:05.15 │
│ VonC │ 1194435 │ 221.0 │ 5396 │ 2008-09-13 22:22:33.173 │
│ BalusC │ 1069162 │ 211.0 │ 5058 │ 2009-08-17 16:42:02.403 │
│ T.J. Crowder │ 1010006 │ 200.0 │ 5059 │ 2009-08-16 11:00:22.497 │
│ Martijn Pieters │ 1016741 │ 197.0 │ 5164 │ 2009-05-03 14:53:57.543 │
│ Darin Dimitrov │ 1014014 │ 189.0 │ 5360 │ 2008-10-19 16:07:47.823 │
│ Marc Gravell │ 1009857 │ 188.0 │ 5380 │ 2008-09-29 05:46:02.697 │
└─────────────────┴────────────┴────────┴───────┴─────────────────────────┘
Run Time (s): real 0.006 user 0.007980 sys 0.001260

We can turn that result into a bar chart using the bar function, which takes a value, a
minimum and maximum value, and the width of the bar, returning a string with the
bar rendered as black blocks. To make the query more readable, we can turn our
existing query into a common table expression (CTE) using WITH and then use the
bar function in the outer query, as shown in the following listing. 

Listing 10.9 Top users by reputation rate per day

Computes reputation rate, dividing the
reputation by the number of days since

the user’s creation date

Computes the number of days 
since the user’s creation date

Only considers users with a 
reputation of more than 1 millionOrders by rate,

 in reverse order
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WITH top_users as (
SELECT

DisplayName,
Reputation,
round(reputation/day(today()-CreationDate)) as rate,
day(today()-CreationDate) as days,
CreationDate

FROM users
WHERE Reputation > 1_000_000

)
SELECT DisplayName, Reputation, rate, bar(rate,150,300,35) AS bar
FROM top_users
ORDER BY rate DESC;

As promised, the bar function will create an ASCII art chart for us:

┌─────────────────┬────────────┬────────┬──────────────────────────────────┐
│ DisplayName │ Reputation │ rate │ bar │
│ varchar │ int64 │ double │ varchar │
├─────────────────┼────────────┼────────┼──────────────────────────────────┤
│ Gordon Linoff │ 1228338 │ 294.0 │ █████████████████████████████████│
│ Jon Skeet │ 1389256 │ 258.0 │ █████████████████████████ │
│ VonC │ 1194435 │ 221.0 │ ████████████████ │
│ BalusC │ 1069162 │ 211.0 │ ██████████████ │
│ T.J. Crowder │ 1010006 │ 200.0 │ ███████████ │
│ Martijn Pieters │ 1016741 │ 197.0 │ ██████████ │
│ Darin Dimitrov │ 1014014 │ 189.0 │ ████████ │
│ Marc Gravell │ 1009857 │ 188.0 │ ████████ │
└─────────────────┴────────────┴────────┴──────────────────────────────────┘

So those are our top users. 
 Next, we want to get an understanding of how much activity there is on the plat-

form and whether it’s changing over time. We are going to do this by querying the
posts table, which has 58 million rows. In the following listing, we will compute the
total number of posts, the average view count, and the maximum number of answers
for each of the last 10 years by grouping the results accordingly.

SELECT
year(CreationDate) AS year,
round(count(*)/1000000,2) as postM,
round(count_if(postTypeId = 1)/1000000,2) as questionM,
round(count_if(postTypeId = 2)/1000000,2) as answerM,
round(count_if(postTypeId = 1)/count_if(postTypeId = 2),2) as ratio,
round(avg(ViewCount)) as avgViewCount,
max(AnswerCount) as maxAnswerCount

FROM posts
GROUP BY year

Listing 10.10 Computing bar charts of the top users by reputation rate per day

Listing 10.11 A query for yearly activity on Stack Overflow
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ORDER BY year DESC
LIMIT 10;

The statistics of the last 10 years on Stack Overflow look like this:

┌───────┬────────┬───────────┬─────────┬────────┬──────────────┬───────────┐
│ year │ postM │ questionM │ answerM │ ratio │ avgViewCount │maxAnswers │
│ int64 │ double │ double │ double │ double │ double │ int64 │
├───────┼────────┼───────────┼─────────┼────────┼──────────────┼───────────┤
│ 2023 │ 0.53 │ 0.27 │ 0.26 │ 1.03 │ 44.0 │ 15 │
│ 2022 │ 3.35 │ 1.61 │ 1.74 │ 0.93 │ 265.0 │ 44 │
│ 2021 │ 3.55 │ 1.55 │ 2.0 │ 0.78 │ 580.0 │ 65 │
│ 2020 │ 4.31 │ 1.87 │ 2.44 │ 0.77 │ 847.0 │ 59 │
│ 2019 │ 4.16 │ 1.77 │ 2.39 │ 0.74 │ 1190.0 │ 60 │
│ 2018 │ 4.44 │ 1.89 │ 2.55 │ 0.74 │ 1648.0 │ 121 │
│ 2017 │ 5.02 │ 2.11 │ 2.9 │ 0.73 │ 1994.0 │ 65 │
│ 2016 │ 5.28 │ 2.2 │ 3.07 │ 0.72 │ 2202.0 │ 74 │
│ 2015 │ 5.35 │ 2.2 │ 3.14 │ 0.7 │ 2349.0 │ 82 │
│ 2014 │ 5.34 │ 2.13 │ 3.19 │ 0.67 │ 2841.0 │ 92 │
├───────┴────────┴───────────┴─────────┴────────┴──────────────┴───────────┤
│ 10 rows 7 columns │
└──────────────────────────────────────────────────────────────────────────┘

Run Time (s): real 5.977 user 7.498157 sys 5.480121 (1st run)
Run Time (s): real 0.039 user 4.609049 sys 0.078694

Even when computing these statistics across 58 million rows, the query only takes a
few seconds to run for the first run and only 40 milliseconds for the subsequent run
after the data had been loaded from disk.

 We don’t have complete data for 2023 in this dataset, so we can’t compare the full
data for that year. The total number of posts (the sum of questions and answers) asked
has been falling steadily since 2014. The ratio of questions to answers has also gotten
worse, as there are more questions than answers as of the last 2 years. The view count
of newer posts is also smaller due to their relatively short existence. The maximum
number of answers per post is slightly decreasing over the years too, as older questions
had more time to collect answers.

10.1.6 Posting on weekdays

We’re curious when people use the platform. Do they only use it to answer questions
at work, or do they use it on the weekend as well?

 This question was also asked by Evalina Gabova in her Stack Overflow Analysis
(https://evelinag.com/exploring-stackoverflow/). Let’s see if we can reproduce Eva-
lina’s analysis.

 Here is a query that shows us the questions for the sql tag, grouped by day of the
week, with the frequency and a bar chart.

 

Sorting years in descending 
order (latest first)Showing the 

last 10 years

https://evelinag.com/exploring-stackoverflow/
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SELECT count(*) as freq,
dayname(CreationDate) AS day,
bar(freq, 0, 150000,20) AS plot

FROM posts WHERE posttypeid = 1
AND tags LIKE '%<sql>%'
GROUP BY all
ORDER BY freq DESC;

We see that most questions are posted on weekdays, especially during the middle of
the week, and the least on weekends. That could indicate that people mostly deal with
SQL for work and ask questions during their work time:

┌────────┬───────────┬──────────────────┐
│ freq │ day │ plot │
│ int64 │ varchar │ varchar │
├────────┼───────────┼──────────────────┤
│ 119825 │ Wednesday │ ███████████████ │
│ 119514 │ Thursday │ ███████████████ │
│ 115575 │ Tuesday │ ███████████████ │
│ 103937 │ Monday │ █████████████ │
│ 103445 │ Friday │ █████████████ │
│ 47390 │ Sunday │ ██████ │
│ 47139 │ Saturday │ ██████ │
└────────┴───────────┴──────────────────┘
Run Time (s): real 0.303 user 2.780285 sys 0.010856

Processing the 23.5 million questions took only 0.3 seconds before a result was com-
puted.

 But what if we look at a different tag? Rust is a relatively new programming lan-
guage that isn’t as ingrained in companies as SQL. When do people ask questions
about Rust?

SELECT count(*) as freq,
dayname(CreationDate) AS day,
bar(freq, 0, 10000,20) AS plot

FROM posts WHERE posttypeid = 1
AND tags LIKE '%<rust>%'
GROUP BY all
ORDER BY freq DESC;

The questions are evenly distributed throughout the week, with a slight drop on the
weekend:

 

Listing 10.12 Query for asking questions about SQL on weekdays

Listing 10.13 Query for asking questions about Rust on weekdays

Gets the day of the week 
from the CreationDate

Plots a bar chart for the 
number of questions
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Groups by the 
day of the weekOrders by the frequency

in descending order
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┌───────┬───────────┬─────────────┐
│ freq │ day │ plot │
│ int64 │ varchar │ varchar │
├───────┼───────────┼─────────────┤
│ 5205 │ Wednesday │ ██████████ │
│ 5167 │ Tuesday │ ██████████ │
│ 5160 │ Thursday │ ██████████ │
│ 5054 │ Monday │ ██████████ │
│ 5009 │ Friday │ ██████████ │
│ 4784 │ Sunday │ █████████ │
│ 4667 │ Saturday │ █████████ │
└───────┴───────────┴─────────────┘

We should also note that there are between 10 and 20 times fewer questions asked
about Rust than SQL!

10.1.7 Using enums for tags

When you’re using DuckDB with larger datasets, you might sometimes choose to do
optimizations that wouldn’t be necessary on a smaller dataset. An example of this in
the Stack Overflow dataset is the way that tag names assigned to posts are stored and
processed. 

 DuckDB has the concept of enum types, which represent a fixed set of named values
that are stored internally as integers. This is more efficient for storage and processing
than large amounts of string values. You can read more about it in the enum docu-
mentation (https://duckdb.org/docs/sql/data_types/enum.html). 

 You can create enums as a type based on a list of values like this.

CREATE TYPE weekday AS enum (
'monday', 'tuesday', 'wednesday',
'thursday', 'friday', 'saturday', 'sunday'

);

The values are accessible via their string representation (e.g., as 'saturday' or in a
typed way as saturday::weekday). The enum type itself can be referred to with the
NULL value (e.g., null::weekday). 

 There are several functions for operating on enums:

 enum_code(enum_str)—This returns the numeric code of the enum.
 enum_range(null:enum_type)—This returns all values of the enum type as a list.
 enum_first,enum_last, and enum_range_boundary—These are for the first, the

last, or a range of values.

DuckDB enums are automatically cast to string types whenever necessary. This allows
enum values to be used in any string function and comparisons between enum and
string values.

 Although we have a tags table, up to six tags can also be stored in a post. Each tag is
wrapped in angle brackets (e.g., <sql><duckdb><performance>), which means the

Listing 10.14 Example of creating an enum type

https://duckdb.org/docs/sql/data_types/enum.html
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post has the tags sql, duckdb, and performance. This isn’t particularly efficient for
analytical querying, and it makes it difficult to search posts for multiple tags. 

 That’s why we want to convert that column into a set of values that makes it easier
to handle. For instance, we can use a list of strings, or we can use an enum type, which
is more efficient, as previously mentioned, and also allows us to use the enum func-
tions built into DuckDB.

 To convert the tags column in our posts table into a list of enums, we need to fol-
low a series of intermediate steps. We’re going to start by creating an enum type from
the values in the tags table in the following listing.

CREATE TYPE tag AS enum (SELECT DISTINCT tagname FROM tags);

We can get a list of the enums by running the following query.

select enum_range(null::tag)[0:5];

This shows us a few known and lesser-known tags:

┌─────────────────────────────────────────────────┐
│ enum_range(CAST(NULL AS tag))[0:5] │
│ varchar[] │
├─────────────────────────────────────────────────┤
│ [textblock, idioms, haskell, flush, etl] │
└─────────────────────────────────────────────────┘

Now let’s see how we can use this enum in our posts table.
 We’re first going to add an intermediate column for a string array, which we can

also use to compare the performance of the enum array.

ALTER TABLE posts ADD tagNames VARCHAR[];

Next, we’ll split the tags string (e.g., '<sql><duckdb><python>') into an array of
strings by taking the substring after the first character < to before the last character >
to skip the leading and trailing angle brackets and then splitting on the >< separator
between two entries.

UPDATE posts
SET tagNames = split(tags[2:-2],'><')

Listing 10.15 Creating an enum type for tags from the tags table

Listing 10.16 Selecting a few of the enum values

Listing 10.17 Adding the tagNames column

Listing 10.18 Populating the tagNames column from the tags column

Updates the posts table

Splits the tags text (except for the first and 
last 1 character) on >< into an array



240 CHAPTER 10 Performance considerations for large datasets
WHERE posttypeid = 1;
-- Run Time (s): real 51.120 user 61.063576 sys 2.088018

As you can see from the run time, this update takes over a minute because we have a
lot of rows (23.5 million) to process. Now we’re ready to add our new enum type tag,
which we had populated by the values from the tags table.

 Let’s now add the tag enum array to the posts table.

ALTER TABLE posts ADD tagEnums tag[];

So our posts table now looks like this:

┌──────────────────────┬──────────────────────┐
│ column_name │ column_type │
│ varchar │ varchar │
├──────────────────────┼──────────────────────┤
│ Id │ BIGINT │
│ PostTypeId │ BIGINT │
│ AcceptedAnswerId │ BIGINT │
│ CreationDate │ TIMESTAMP │
│ Score │ BIGINT │
│ ViewCount │ BIGINT │
│ Body │ VARCHAR │
│ Title │ VARCHAR │
...
│ Tags │ VARCHAR │
│ tagNames │ VARCHAR[] │
│ tagEnums │ ENUM(tag)[] │
└─────────────────────────────────────────────┘

We can assign the string array to the enum array, and DuckDB will automatically cast
the values to the enum type, as shown in the following listing. That’s really helpful and
user friendly.

UPDATE posts SET tagEnums = tagNames
WHERE posttypeid = 1;

If we want additional transformations on the values (like capitalization or changing
hyphens to spaces in the tag names), we could use a list transform function to convert
the values of the string array to entries in an equivalent enum array. We can do that by
using a list_transform function on each element of the tagNames list and passing in
a lambda function that casts each element to the appropriate enum type:

SET tagEnums = list_transform(tagNames, x -> upper(x)::tag)

Listing 10.19 Adding the tagEnums column

Listing 10.20 Populating the tagEnums column from the tagNames column directly

Only considers questions 
(i.e., posttypeid is 1)
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By keeping the string array around, we can compare the behavior and performance of
a list of strings and a list of enums. For example, the following queries count the num-
ber of posts with the tag named java, which gives us 1.9 million rows.

SELECT count(*)
FROM posts
WHERE postTypeId = 1

AND tags LIKE '%<java>%';

Running this query on 28 million rows takes 0.3 seconds, which is already pretty good,
but let’s see if we can do better with the next approaches.

SELECT count(*)
FROM posts
WHERE postTypeId=1

AND list_contains(tagNames, 'java');

The list_contains operation has a runtime of 0.24 seconds, which is .06 seconds
(20%) faster than the string comparison.

select count(*)
from posts
where postTypeId=1 and list_contains(tagEnums, 'java');

With an execution time of 0.17s, we’ve achieved another 30% (0.07 second) speed
improvement by using the enums, which almost halves the total execution time. How-
ever, this is less relevant at these short run times. You should see similar small improve-
ments on your machine. So for these simple count operations, the difference is
negligible, but for more complex queries, the enum type can be more efficient and
easier to work with.

 Let’s have a look at one more query, which should be faster after this optimization.
To count the top-ranking tags along with their score, we can write the following query,
which uses the string-based tags column.

SELECT tag,
count(*), sum(score) AS score

FROM (
SELECT unnest(split(p.tags[2:-2],'><')) as tag,

Listing 10.21 Counting posts with the java tag, using string comparison

Listing 10.22 Counting posts with the java tag, using list_contains on the string list

Listing 10.23 Counting posts with the java tag, using list_contains on the enum list

Listing 10.24 Statistics query for the top 10 tags, using the tags column

This time, we use list_contains 
on the tagNames column.

Counts the number 
of posts and sums 
their score by tag
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p.score AS score
FROM posts p WHERE p.posttypeid = 1

)
GROUP BY ALL
ORDER BY score DESC LIMIT 10;

That query takes 6.7 seconds and returns the following results:

┌────────────┬──────────────┬─────────┐
│ tag │ count_star() │ score │
│ varchar │ int64 │ int128 │
├────────────┼──────────────┼─────────┤
│ javascript │ 2479793 │ 5214097 │
│ python │ 2112946 │ 5154237 │
│ java │ 1889685 │ 4280171 │
│ c# │ 1583813 │ 3790940 │
│ android │ 1399966 │ 3241732 │
│ c++ │ 789658 │ 2166603 │
│ html │ 1167672 │ 1995072 │
│ php │ 1456223 │ 1793966 │
│ jquery │ 1033102 │ 1684906 │
│ git │ 147408 │ 1662800 │
├────────────┴──────────────┴─────────┤
│ 10 rows 3 columns │
└─────────────────────────────────────┘
-- Run Time (s): real 6.698 user 60.197508 sys 0.197970

What is the performance if we use the enum field instead?

SELECT tag, count(*), sum(score) AS score
FROM (

SELECT unnest(p.tagEnums) as tag,
p.score AS score

FROM posts p
WHERE p.posttypeid = 1

)
GROUP BY ALL
ORDER BY score DESC LIMIT 10;
-- Run Time (s): real 3.546 user 31.661123 sys 0.072986

This one is almost twice as fast at 3.5 seconds.
 So we see that for more complex operations that operate on many values of the list

of values, the change in representation matters. With these kinds of optimizations, we
need to invest more effort upfront—both in terms of preparation and storage—to
achieve better performance later on. This is worthwhile when the analytics query is
run many times (e.g., for dashboards or reports) but less so if it’s a one-off operation.
The preparatory work also needs to be integrated into your data processing pipelines
to ensure the correct shape of data for your queries.

Listing 10.25 Statistics for the top 10 tags using the tagEnums column

Splits the tags text (except 
for the first and last 
character) on >< into an 
array and then unnests it 
into individual rows

Uses the score
column of each post

Only considers questions 
with the posttypeid of 1

Turns the tagEnums list 
into individual rows, 
with one per entry
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10.2 Query planning and execution
In the large datasets we are working with in this chapter, efficient query execution is
more crucial than ever. DuckDB’s query execution engine is designed to be fast and
efficient, using modern hardware and the latest database research and implementa-
tion techniques to achieve this goal. 

 Let’s look a bit at how DuckDB processes our queries internally and make use of
EXPLAIN and EXPLAIN ANALYZE to see which operations and operators our queries are
turned into and how we can optimize them. The steps of the execute process are
shown in figure 10.3.

Figure 10.3 Query processing pipeline

10.2.1 Planner and optimizer

Once DuckDB has parsed an SQL query using its flexible parser derived from Post-
gres, it transforms the resulting abstract syntax tree (AST) through several stages. In
the parse phase, the system can detect syntactic errors, like misspelled keywords or miss-
ing parentheses. 

 Initially, the binder resolves elements like tables, views, types, and column names.
Here, the processing checks to see if the used elements (tables, columns, and types)
exist in the database and whether they are correctly used. Following that, the plan gen-
erator converts this into a basic logical query plan consisting of logical query operators,
such as scans, filters, and projections.

 During the planning process, the database system uses statistics from stored data
and indexes, which assist in various operations, such as type transformations, join
order optimizations, and subquery flattening. After these optimizations, an optimized
logical query plan is created. Ultimately, the planner refines this logical plan into physi-
cal operations best tailored to the environment, considering statistics, caching, and
other factors. 

10.2.2 Runtime and vectorization

DuckDB’s runtime operates on a vectorized and parallelized architecture based on its
columnar storage nature. DuckDB’s storage format stores the data in row groups (i.e.,
horizontal partitions of the data). Horizontal partitioning of data is a strategy for
sharding data, in which each partition has the same schema and holds a specific sub-
set of the data. A row group in DuckDB’s database format consists of a maximum of
122,880 rows. Each row group contains the required information about each column. 

Parser

SQL Statement Unoptimized
logical plan

Optimized
logical plan

Physical
plan

Planner Optimizer Physical planner



244 CHAPTER 10 Performance considerations for large datasets
 This column-centric approach offers numerous advantages, especially when select-
ing columns or filtering, scanning, and sorting data. It also allows the CPU to keep the
processing of an operator in-memory, optimize CPU branch prediction, and have all
required data in CPU caches.

 A main difference compared to row-based engines lies in DuckDB’s fine-tuning for
efficient data operations, rather than disk storage or data transfer (I/O) optimiza-
tions. In the execution runtime, every data type is represented as a vector or compact
array of values. These typed vector implementations are optimized for various data
types and values (numbers, strings, and arrays), simplifying data selection and process-
ing by employing compression, metadata, and additional indexes.

 As data flows through the system, these vectors seamlessly transition between plan
operators in a push-based manner. The execution model is centered on a pipeline
design, wherein operators can act as sources, sinks, or both. DuckDB’s execution par-
allelizes batch processing through a “morsel” approach, which processes chunks of
values (batches of 2,048 values) through a number of parallel pipelines, with
parallelism-aware operators at the start and end of each pipeline. Figure 10.4 shows
different morsels passing through different pipelines of the runtime.

Figure 10.4 Morsel runtime

In addition, DuckDB also uses vectorized computation, which employs single instruc-
tion, multiple data (SIMD) to process multiple values in a single CPU instruction.
This is not to be confused with the data vectors. 
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10.2.3 Visualizing query plans with Explain and Explain Analyze

The query plan the optimizer and planner creates is also accessible to you. You can
prefix each SQL statement with EXPLAIN to see the tree of operators your original
query was transformed into:

EXPLAIN
SELECT year(CreationDate) AS year, count(*),

round(avg(ViewCount)), max(AnswerCount)
FROM posts
GROUP BY year
ORDER BY year DESC LIMIT 10;

A visualization of the resulting query plan is reproduced as follows. We can see that
our query has been turned into the following operators (as well as some internal oper-
ators that are used for data compression and decompression):

 ORDER BY and LIMIT → TOP_N
 SELECT → PROJECTION
 GROUP BY → Perfect_Hash_Group_By
 SELECT + FROM → SEQ_SCAN with estimated cardinality (EC)

The plan is executed bottom up; it starts with the SEQ_SCAN of the stored data and then
applies operators on the chunks of results from previous ones. When run, the physical
plan looks like this:

┌───────────────────────────┐
│ TOP_N │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ Top 10 │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ year(posts.CreationDate) │
│ DESC │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│ PROJECTION │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ 0 │
│ count_star() │
│ round(avg(ViewCount)) │
│ max(AnswerCount) │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│ PROJECTION │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│__internal_decompress_integ│
│ ral_bigint(#0, 2008) │
│ #1 │
│ #2 │
│ #3 │
└─────────────┬─────────────┘
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┌─────────────┴─────────────┐
│ PERFECT_HASH_GROUP_BY │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ #0 │
│ count_star() │
│ avg(#1) │
│ max(#2) │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│ PROJECTION │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│__internal_compress_integra│
│ l_utinyint(year │
│ (CreationDate), 2008) │
│ ViewCount │
│ AnswerCount │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│ SEQ_SCAN │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ posts │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ CreationDate │
│ ViewCount │
│ AnswerCount │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ EC: 81865857 │
└───────────────────────────┘
Run Time (s): real 0.003 user 0.001378 sys 0.001833

With EXPLAIN ANALYZE, our query is not just planned but executed as well so we can
see the actual time, resources, and number of rows that were processed:

EXPLAIN ANALYZE
SELECT year(CreationDate) AS year, count(*),

round(avg(ViewCount)), max(AnswerCount)
FROM posts
GROUP BY year
ORDER BY year DESC LIMIT 10;

┌───────────────────────────┐
│ EXPLAIN_ANALYZE │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ 0 │
│ (0.00s) │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│ TOP_N │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ Top 10 │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ year(posts.CreationDate) │
│ DESC │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ 10 │
│ (0.00s) │
└─────────────┬─────────────┘
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┌─────────────┴─────────────┐
│ PROJECTION │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ 0 │
│ count_star() │
│ round(avg(ViewCount)) │
│ max(AnswerCount) │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ 16 │
│ (0.00s) │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│ PROJECTION │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ _internal_decompress_integ│
│ ral_bigint(#0, 2008) │
│ #1 │
│ #2 │
│ #3 │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ 16 │
│ (0.00s) │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│ PERFECT_HASH_GROUP_BY │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ #0 │
│ count_star() │
│ avg(#1) │
│ max(#2) │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ 16 │
│ (0.55s) │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│ PROJECTION │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ _internal_compress_integra│
│ l_utinyint(year │
│ (CreationDate), 2008) │
│ ViewCount │
│ AnswerCount │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ 58329356 │
│ (0.39s) │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│ SEQ_SCAN │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ posts │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ CreationDate │
│ ViewCount │
│ AnswerCount │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ EC: 81865857 │
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│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ 58329356 │
│ (0.98s) │
└───────────────────────────┘
Run Time (s): real 0.199 user 1.367440 sys 0.379777

This helps us identify (especially for slow queries) which operators need the most
time as well as which ones return the most intermediate rows. We can use that infor-
mation to optimize our queries—for instance, by adding indexes, adding query hints,
using subqueries, or changing the order of operations. 

10.3 Exporting the Stack Overflow data to Parquet
We can export our tables to Parquet files for safekeeping, easier storage, and process-
ing in other ways. As we discussed before, Parquet as a columnar format compresses
better, includes the schema, and supports optimized reading with column selection
and predicate pushdown. We want to see here how long these exports take, what opti-
mizations we can apply, and how to export whole databases. 

 Supported compression formats for Parquet are UNCOMPRESSED, SNAPPY, and ZSTD.
To export the users table, we can run the following command, which takes about 10
seconds for the 28 million rows. 

COPY (FROM users)
TO 'users.parquet'
(FORMAT PARQUET, CODEC 'SNAPPY', ROW_GROUP_SIZE 100000);
-- Run Time (s): real 10.582 user 62.737265 sys 65.422181

And then for the posts table, the statement looks like the following code and takes
roughly 60 seconds for 58 million rows.

COPY (FROM posts)
TO 'posts.parquet'
(FORMAT PARQUET, CODEC 'SNAPPY', ROW_GROUP_SIZE 100000);
-- Run Time (s): real 57.314 user 409.517658 sys 334.606894

NOTE We saw that the serial export takes between 10 and 60 seconds for our
tables, which is a write output of about 70 MB/s on a single thread. To opti-
mize write performance, you can also choose to write the Parquet file in a
multithreaded fashion; DuckDB will then create one file per thread. This
improves the performance on our system with 10 CPUs from 10 to 1.7 sec-
onds for the user table and 57 to 11 seconds for the post table. We could also
choose to sort the data before exporting it, which could lead to faster query-
ing of sorted fields when the Parquet file is read, as you can see in the follow-
ing listing.

Listing 10.26 Exporting the users table to Parquet

Listing 10.27 Exporting the posts table to Parquet
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COPY (
SELECT *
FROM users
ORDER BY LastAccessDate DESC

) TO 'users.parquet'
(FORMAT PARQUET, CODEC 'SNAPPY', PER_THREAD_OUTPUT TRUE);

We also exported the other tables but won’t include the COPY commands here for
brevity’s sake. You can find those commands in the book’s GitHub repository. Once all
the exports are done, we’ll have the following files on our disk:

6.9G comments.parquet
4.0G posts.parquet
2.2G votes.parquet
734M users.parquet
518M badges.parquet
164M post_links.parquet
1.6M tags.parquet

NOTE These Parquet files are available on the S3 bucket (s3://us-prd-moth-
erduck-open-datasets/stackoverflow/parquet/2023-05/) and can be read
from there.

Out of curiosity, we’re going to compare the performance of reading the users’ data
from the CSV and Parquet files to see which is quicker. Let’s start with the Parquet file,
as shown in the following listing.

SELECT count(*) FROM read_parquet('users.parquet');

This gives us a result of 19942787 in subsecond (0.008s) time. Querying the CSV file,
on the other hand, takes considerably longer.

SELECT count(*) FROM read_csv_auto('Users.csv.gz');

The result is the same, but it takes about 7 seconds to get there. So reading the row
count from the Parquet file is almost 1,000 times faster than the CSV file!

 This isn’t a fair fight because the Parquet file can use its metadata to provide the
answer, rather than having to scan the whole file. Having that metadata is one of the
big benefits of the Parquet file format and is why we tend to prefer it to CSV files.

 You can also export your whole database as Parquet files into a target folder. This
saves you from calling the export commands individually and automatically adds files
for creating the table schema and loading the data back in with a single import
command. 

Listing 10.28 Exporting the users table to Parquet in multithreaded fashion

Listing 10.29 Reading the row count of users from a Parquet

Listing 10.30 Reading the row count of users from a CSV
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EXPORT DATABASE 'target_directory'
(FORMAT PARQUET);

In addition to the Parquet files, this will create two SQL files, schema.sql and
load.sql, which will be used for creating the database schema and executing the
load, when you import the data again with

IMPORT DATABASE 'source_directory';

In the schema.sql file tables, views and enums are created, as shown in the following
listing.

CREATE TABLE posts(Id BIGINT, PostTypeId BIGINT, AcceptedAnswerId BIGINT,
CreationDate TIMESTAMP, Score BIGINT, ViewCount BIGINT, Body VARCHAR,
OwnerUserId BIGINT, LastEditorUserId BIGINT, LastEditorDisplayName
VARCHAR, LastEditDate TIMESTAMP, LastActivityDate TIMESTAMP, Title
VARCHAR, Tags VARCHAR, AnswerCount BIGINT, CommentCount BIGINT,
FavoriteCount BIGINT, CommunityOwnedDate TIMESTAMP, ContentLicense
VARCHAR

);
CREATE TABLE "comments"(Id BIGINT, PostId BIGINT, Score BIGINT, "Text"

VARCHAR, CreationDate TIMESTAMP, UserId BIGINT, ContentLicense VARCHAR);
CREATE TABLE badges(Id BIGINT, UserId BIGINT, "Name" VARCHAR, Date
TIMESTAMP, "Class" BIGINT, TagBased BOOLEAN);

CREATE TABLE users(Id BIGINT, Reputation BIGINT, CreationDate TIMESTAMP,
DisplayName VARCHAR, LastAccessDate TIMESTAMP, AboutMe VARCHAR,
"Views" BIGINT, UpVotes BIGINT, DownVotes BIGINT);

CREATE TABLE tags(Id BIGINT, TagName VARCHAR, Count BIGINT,
ExcerptPostId BIGINT, WikiPostId BIGINT);

CREATE TABLE votes(Id BIGINT, PostId BIGINT, VoteTypeId BIGINT,
CreationDate TIMESTAMP);

And in the load.sql file, the data is loaded from the Parquet files, as shown in the fol-
lowing listing.

COPY posts FROM 'parquet/posts.parquet' (FORMAT 'parquet',
ROW_GROUP_SIZE 100000, CODEC 'SNAPPY');

COPY "comments" FROM 'parquet/comments.parquet' (FORMAT 'parquet',
ROW_GROUP_SIZE 100000, CODEC 'SNAPPY');

COPY badges FROM 'parquet/badges.parquet' (FORMAT 'parquet',
ROW_GROUP_SIZE 100000, CODEC 'SNAPPY');

COPY users FROM 'parquet/users.parquet' (FORMAT 'parquet',
ROW_GROUP_SIZE 100000, CODEC 'SNAPPY');

COPY tags FROM 'parquet/tags.parquet' (FORMAT 'parquet',
ROW_GROUP_SIZE 100000, CODEC 'SNAPPY');

Listing 10.31 Exporting the whole database to Parquet

Listing 10.32 The contents of schema.sql

Listing 10.33 The contents of load.sql
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COPY votes FROM 'parquet/votes.parquet' (FORMAT 'parquet',
ROW_GROUP_SIZE 100000, CODEC 'SNAPPY');

COPY post_links FROM 'parquet/post_links.parquet' (FORMAT 'parquet',
ROW_GROUP_SIZE 100000, CODEC 'SNAPPY');

As we can see in this Stack Overflow example, even medium-sized datasets are no
problem for DuckDB. We can import, query, process, and export them in very reason-
able times on a single machine with the memory and CPU resources of a modern lap-
top or desktop (e.g., 4–10 cores and 8–64 GB RAM). It doesn’t fail or abort with out-
of-memory errors, and it doesn’t take hours to process the data.

 But can we go bigger, say billions of records?! The New York City taxi dataset is the
go-to dataset for seeing whether new database systems can handle big data, and we’re
going to explore that in the next section. 

10.4 Exploring the New York Taxi dataset from Parquet files
The New York City taxi dataset we use in this example (https://mng.bz/qODE) is pub-
lished and maintained by the NYC Taxi & Limousine Commission. This dataset con-
tains taxi trip records and includes pickup and drop-off dates, times, and locations;
trip distances; itemized fares; rate types; payment types; and driver-reported passenger
counts. The data is published in Parquet format, with one Parquet file for each
month, starting in January 2009, and is continuously updated. 

 Over the years, many articles have been written explaining how to load and query
the dataset in R, Python, Spark, Redshift, SQLite, and other databases. Just search SQL
Analysis New York Taxis on your favorite search engine to find some of them.

 At the time of writing, the dataset contains over 1.7 billion rows, consisting of 175
Parquet files of 28 GB in size. We have collected all the Parquet files and put them in
an S3 bucket (s3://us-prd-md-duckdb-in-action/nyc-taxis/), kindly hosted by
MotherDuck.

 This section of the large data exploration will focus on using Parquet files as
sources for querying and show that DuckDB can use predicate and projection push-
down to optimize the queries on these files without actually populating a database.
You could use this approach when doing a one-off analysis of data stored on a cloud
storage bucket, such as S3 or Google Cloud Storage. For instance, you can use it to
analyze access or download logs of your website or application.

 For these amounts of data, it is beneficial to move the query computation to where
the data lives and only transfer the results over the network. If you have the files down-
loaded onto your local machine, you can execute DuckDB there. Otherwise, it is sensi-
ble to run DuckDB on a cloud instance that is as close to the data as possible. In our
case, with the Parquet files on S3, that can be an EC2 instance in the same region as
the S3 bucket or a hosted service, like MotherDuck. If not, you would have to pay both
the egress costs and network transfer time and latency for reading the files to your
local machine when executing queries that cannot be satisfied by the Parquet meta-
data alone.

https://mng.bz/qODE
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10.4.1 Configuring credentials for S3 access

The objects on the aforementioned bucket are publicly readable, so you can access
them directly from DuckDB without any extra setup. But if you want to try this out
with your own S3 bucket, which you probably don’t want to make accessible to the
world, you can configure your S3 credentials by creating a temporary or persistent
secret (available from duckdb version 0.1.0) of TYPE S3. 

 The REGION is the region of your bucket, while the KEY_ID and SECRET are the cre-
dentials for accessing the bucket, shown in the following listing.

CREATE [PERSISTENT] SECRET (
TYPE S3,
KEY_ID 'AKIA...',
SECRET ''Sr8VSfK...',
REGION 'us-east-1'

);

The httpfs extension is used to access files on S3, which is auto-loaded by DuckDB
when necessary. In case it is not automatically loaded for you, you can do so manually,
as shown in the following listing. 

INSTALL httpfs;
LOAD httpfs;

Now we can access the Parquet files directly without any extra setup just by specifying
the filename or URL in the FROM clause of a statement. 

10.4.2 Auto-inferring file types

To count the number of records in a Parquet file, you can write a query like the follow-
ing to compute the row count of a Parquet file:

SELECT count(*)
FROM
's3://us-prd-md-duckdb-in-action/nyc-taxis/yellow_tripdata_2022-06.parquet';
-- 3,558,124 rows in 600 ms

Despite reading a huge file, it finishes in 600 milliseconds because the query uses the
metadata of the file to compute the answer. Under the hood, this query is converted
to the following read_parquet function call:

SELECT count(*)
FROM read_parquet(
's3://us-prd-md-duckdb-in-action/nyc-taxis/yellow_tripdata_2022-06.parquet'
);
-- 3,558,124 rows

Listing 10.34 Creating the S3 secret

Listing 10.35 Installing and loading the httpfs extension
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Inference from filename extensions works automatically when we want to process data
from a single file or URL or from a glob-wildcard pattern that matches multiple files,
like this:

SELECT count(*)
FROM 's3://us-prd-md-duckdb-in-action/nyc-taxis/yellow_tripdata_*.parquet';

-- 1,721,158,822 rows in 11s

But if we want to load a more specific set of files, for example, to find trips in June
2021 and June 2022, we need to call the underlying read_parquet function ourselves:

SELECT count(*)
FROM read_parquet([
's3://us-prd-md-duckdb-in-action/nyc-taxis/yellow_tripdata_2021-06.parquet',
's3://us-prd-md-duckdb-in-action/nyc-taxis/yellow_tripdata_2022-06.parquet'
]);
-- 6,392,388

The queries we’ve seen so far have all been counting numbers of records, and they
return a result quickly because they’re able to use Parquet metadata to compute the
answer and don’t need to read the actual data.

 The metadata of a Parquet file, as already mentioned in chapter 5, contains infor-
mation about the number of rows, the schema (column names and types), and the
mininum values, maximum values, and nullability of each column. Let’s have a look at
that metadata. 

10.4.3 Exploring Parquet schema

Before we start querying the Parquet files, let’s have a quick look at the structure of
the data they contain. Throughout this book, we’ve learned about various functions
we can use to do this. We’re going to use the parquet_schema function here since this
gives us control over the fields rendered, and since we’re mostly interested in the
name and type, this is exactly what we need:

FROM parquet_schema(
's3://us-prd-md-duckdb-in-action/nyc-taxis/yellow_tripdata_2022-06.parquet')
SELECT name, type;

The output of this query is as follows:

┌───────────────────────┬────────────┐
│ name │ type │
│ varchar │ varchar │
├───────────────────────┼────────────┤
│ schema │ │
│ VendorID │ INT64 │
│ tpep_pickup_datetime │ INT64 │
│ tpep_dropoff_datetime │ INT64 │
│ passenger_count │ DOUBLE │
│ trip_distance │ DOUBLE │
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│ RatecodeID │ DOUBLE │
│ store_and_fwd_flag │ BYTE_ARRAY │
│ PULocationID │ INT64 │
│ DOLocationID │ INT64 │
│ payment_type │ INT64 │
│ fare_amount │ DOUBLE │
│ extra │ DOUBLE │
│ mta_tax │ DOUBLE │
│ tip_amount │ DOUBLE │
│ tolls_amount │ DOUBLE │
│ improvement_surcharge │ DOUBLE │
│ total_amount │ DOUBLE │
│ congestion_surcharge │ DOUBLE │
│ airport_fee │ DOUBLE │
├───────────────────────┴────────────┤
│ 20 rows 2 columns │
└────────────────────────────────────┘

We can see all the types of information relevant to a taxi trip and their data types, like
the passenger count, pickup and drop off locations, and, of course, the amount that
the trip costs!

NOTE If the Parquet files you’re reading from have different schemas, you
can use the union_by_name = true option of read_parquet to combine them
into a single result. Nonexistent or differently named columns will be filled
with NULL values. 

10.4.4 Creating views

We probably don’t want to type (or more likely copy–paste) that wildcard string of all
the Parquet files. If we’re planning to do a lot of analysis on the data, it probably
makes sense to create a DuckDB database that materializes the contents of the Par-
quet files into tables. If we want to do ad hoc analysis instead, we can create a view over
the Parquet files. 

 A view in DuckDB is not physically materialized but instead runs the underlying
query each time queries on the view are executed. It is integrated into the query plan-
ning and optimization of the outer query as a whole, much like with common table
expressions (CTE). The benefit of defining a view in this case is that it provides us a
shorthand for querying the data rather than having to write out the full location of
the files on S3 each time. Views also allow for stable interfaces to the data so that if the
underlying data changes, the view can be updated to reflect that change without hav-
ing to change the queries that use the view. 

 We can create a view by running the query shown in the following listing.

CREATE OR REPLACE VIEW allRidesView AS
FROM 's3://us-prd-md-duckdb-in-action/nyc-taxis/

yellow_tripdata_202*.parquet';

Listing 10.36 Creating a view across multiple files
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To keep the amount of data read from S3 reasonable, we only include the files from
2020 onward, which is still 118 million rows. But if you want to query all the data, feel
free to expand the wildcard to include more of the files.

 This should return immediately because it’s not reading any data—it’s only defin-
ing the view. The view covers roughly 118 million rows, so it’s not a small dataset, but
it’s also not huge. 

10.4.5 Analyzing the data

To get an overview of the data values and their distribution as well as test the read per-
formance of DuckDB while retrieving data from S3, we’ll use the following query,
using SUMMARIZE again. 

.timer on
SUMMARIZE allRidesView;

This query needs to read the actual data to get all the statistics information, so it will
take a bit for it to return a result. Even when running the query on an AWS EC2
instance close to the data, it took more than 30 seconds to produce the result from
the 118 million rows of data:

┌──────────────────────┬─────────────┬────────────┬────────────┬────────────┐
│ column_name │ column_type │ min │ max │approx_uniq │
│ varchar │ varchar │ varchar │ varchar │ varchar │
├──────────────────────┼─────────────┼────────────┼────────────┼────────────┤
│ VendorID │ BIGINT │ 1 │ 6 │ 4 │
│ tpep_pickup_datetime │ TIMESTAMP │ 2001-01-01 │ 2098-09-11 │ 59777057 │
│ tpep_dropoff_datetime│ TIMESTAMP │ 2001-01-01 │ 2098-09-11 │ 60115892 │
│ passenger_count │ DOUBLE │ 0.0 │ 112.0 │ 12 │
│ trip_distance │ DOUBLE │ -30.62 │ 389678.46 │ 14254 │
│ RatecodeID │ DOUBLE │ 1.0 │ 99.0 │ 7 │
│ store_and_fwd_flag │ VARCHAR │ N │ Y │ 2 │
│ PULocationID │ BIGINT │ 1 │ 265 │ 264 │
│ DOLocationID │ BIGINT │ 1 │ 265 │ 265 │
│ payment_type │ BIGINT │ 0 │ 5 │ 6 │
│ fare_amount │ DOUBLE │ -133391414 │ 998310.03 │ 17618 │
│ extra │ DOUBLE │ -27.0 │ 500000.8 │ 671 │
│ mta_tax │ DOUBLE │ -0.55 │ 500000.5 │ 82 │
│ tip_amount │ DOUBLE │ -493.22 │ 133391363 │ 9064 │
│ tolls_amount │ DOUBLE │ -99.99 │ 956.55 │ 3897 │
│ improvement_surcharge│ DOUBLE │ -1.0 │ 1.0 │ 5 │
│ total_amount │ DOUBLE │ -2567.8 │ 1000003.8 │ 36092 │
│ congestion_surcharge │ DOUBLE │ -2.5 │ 3.0 │ 16 │
│ airport_fee │ INTEGER │ -2 │ 2 │ 5 │
├──────────────────────┴─────────────┴────────────┴────────────┴────────────┤
│ 19 rows │
└───────────────────────────────────────────────────────────────────────────┘
Run Time (s): real 33.907 user 586.582679 sys 8.706259

Listing 10.37 The SUMMARIZE command
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As we can see, there are trips with negative distances, so it might make sense to filter
those out before doing any further analysis.

 Let’s redefine our base view to exclude trips with negative distances so our follow-
ing analysis and queries will not be skewed by those outliers.

CREATE OR REPLACE VIEW allRidesView AS
FROM 's3://us-prd-md-duckdb-in-action/nyc-taxis/yellow_tripdata_202*.parquet'
WHERE trip_distance > 0;

If we read only one column of the data, trip_distance, it will be faster, only taking
about 3 to 4 seconds, as shown in the following listing. 

.timer on

.mode line
SUMMARIZE (SELECT trip_distance FROM allRidesView);

The result in line mode now looks like this and gives us detailed information about
the column trip_distance, on which we are able to estimate whether we are dealing
with sane data or not as well as whether we should filter out outliers:

column_name = trip_distance
column_type = DOUBLE

min = 0.01
max = 389678.46

approx_unique = 13114
avg = 5.430654112761637
std = 536.0306563795983
q25 = 1.093394143132663
q50 = 1.8271836758492157
q75 = 3.389607008136687

count = 115976028
null_percentage = 0.0%
Run Time (s): real 3.033 user 49.924611 sys 1.228218

Aside from the more sensible aggregation results, we can see that about 2 million rows
have been filtered out because they had negative distances.

Listing 10.38 Creating a filtering view

Listing 10.39 Summarizing on a single column

Using SUMMARIZE
Since DuckDB version 0.10.0, SUMMARIZE has been capable of being used as a
source for a SELECT statement, so you can write

SELECT column_name, column_type, count, max FROM SUMMARIZE allRidesView;

if you’re only interested in a few of the columns. At the time of writing, it still com-
putes the rest of the column statistics, though, so there is no time saved.
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If we only execute certain aggregation operations that are available as metadata in
Parquet, we can get results even faster, taking less than a second.

SELECT min(trip_distance),
max(trip_distance),
avg(trip_distance),
stddev(trip_distance),
count(trip_distance) AS nonNull,
count(*) as total,
1-(nonNull/total) AS nullPercentage

FROM allRidesView;

We see the same results as before in the output but at a fraction of the time, as we
don’t need to read the actual data:

min(trip_distance) = 0.01
max(trip_distance) = 389678.46
avg(trip_distance) = 5.430654112761703

stddev(trip_distance) = 536.030656379596
nonNull = 115976028

total = 115976028
nullPercentage = 0.0

Run Time (s): real 0.747 user 7.789698 sys 0.682236

With the advanced SQL features in DuckDB that allow you to apply computation on
multiple columns, we can also compute the same aggregations on all columns at once,
as shown in listing 10.41.

 For the average and standard deviation, we only apply the aggregation to the
numeric columns that contain the words distance, amount, tax, surcharge, or fee,
once as a regular expression filter and once as a lambda function (for demonstration
purposes). We can even post-process the results, including rounding them as needed.
You can learn more about this feature at Star Expressions (https://duckdb.org/docs/
sql/expressions/star) in the documentation. 

.mode line
SELECT count(*),

min(columns(*)), max(columns(*)),
round(avg(columns('_(distance|amount|tax|surcharge|fee)')),2),
round(stddev(

columns(c ->
c SIMILAR TO '.+(distance|amount|tax|surcharge|fee)')),2)

FROM allRidesView;

Listing 10.40 Aggregations on single column

Listing 10.41 Aggregations on multiple columns

Uses various aggregate 
functions on the same column

Computes the percentage of NULL 
values by dividing the count of non-
null values by the total count of rows

Counts 
all rows Computes the minimum and 

maximum values of all columns

Computes the Average value of all
columns that contain the words distance,

amount, tax, surcharge, or fee
Uses a lambda function for each column name with the 
regular expression operator SIMILAR TO and computes 
the standard deviation for all matching columns

https://duckdb.org/docs/sql/expressions/star
https://duckdb.org/docs/sql/expressions/star
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You can see in the output that the aggregations are applied to all columns at once,
which is much faster than applying them individually; it only takes roughly 7 seconds:

count_star() = 115976028
min(allRidesView.VendorID) = 1

min(allRidesView.tpep_pickup_datetime) = 2001-01-01 00:03:14
min(allRidesView.tpep_dropoff_datetime) = 2001-01-01 00:16:31

min(allRidesView.passenger_count) = 0.0
min(allRidesView.trip_distance) = 0.01

min(allRidesView.RatecodeID) = 1.0
min(allRidesView.store_and_fwd_flag) = N

min(allRidesView.PULocationID) = 1
min(allRidesView.DOLocationID) = 1
min(allRidesView.payment_type) = 0
min(allRidesView.fare_amount) = -2564.0

min(allRidesView.extra) = -27.0
min(allRidesView.mta_tax) = -0.5

min(allRidesView.tip_amount) = -493.22
min(allRidesView.tolls_amount) = -91.3

min(allRidesView.improvement_surcharge) = -1.0
min(allRidesView.total_amount) = -2567.8

min(allRidesView.congestion_surcharge) = -2.5
min(allRidesView.airport_fee) = -2

max(allRidesView.VendorID) = 6
max(allRidesView.tpep_pickup_datetime) = 2098-09-11 02:23:31

max(allRidesView.tpep_dropoff_datetime) = 2098-09-11 02:52:04
max(allRidesView.passenger_count) = 112.0

max(allRidesView.trip_distance) = 389678.46
max(allRidesView.RatecodeID) = 99.0

max(allRidesView.store_and_fwd_flag) = Y
max(allRidesView.PULocationID) = 265
max(allRidesView.DOLocationID) = 265
max(allRidesView.payment_type) = 5
max(allRidesView.fare_amount) = 998310.03

max(allRidesView.extra) = 113.01
max(allRidesView.mta_tax) = 53.16

max(allRidesView.tip_amount) = 1400.16
max(allRidesView.tolls_amount) = 956.55

max(allRidesView.improvement_surcharge) = 1.0
max(allRidesView.total_amount) = 998325.61

max(allRidesView.congestion_surcharge) = 2.75
max(allRidesView.airport_fee) = 2

round(avg(allRidesView.trip_distance), 2) = 5.43
round(avg(allRidesView.fare_amount), 2) = 14.74

round(avg(allRidesView.mta_tax), 2) = 0.49
round(avg(allRidesView.tip_amount), 2) = 2.65

round(avg(allRidesView.tolls_amount), 2) = 0.45
round(avg(allRidesView.improvement_surcharge), 2) = 0.43

round(avg(allRidesView.total_amount), 2) = 21.58
round(avg(allRidesView.congestion_surcharge), 2) = 2.3

round(avg(allRidesView.airport_fee), 2) = 0.09
round(stddev(allRidesView.trip_distance), 2) = 536.03
round(stddev(allRidesView.fare_amount), 2) = 157.03

round(stddev(allRidesView.mta_tax), 2) = 0.08
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round(stddev(allRidesView.tip_amount), 2) = 3.18
round(stddev(allRidesView.tolls_amount), 2) = 1.9

round(stddev(allRidesView.improvement_surcharge), 2) = 0.29
round(stddev(allRidesView.total_amount), 2) = 157.38

round(stddev(allRidesView.congestion_surcharge), 2) = 0.72
round(stddev(allRidesView.airport_fee), 2) = 0.32

Run Time (s): real 6.813 user 82.841430 sys 7.124035

10.4.6 Making use of the taxi dataset

Now let’s imagine we’re a city planner in New York who wants to understand the way
that people are navigating the city. From our previous queries on trip distances, we’ve
learned that there’s quite a big difference in the types of journeys being taken. Some
of them look like road trips, while others are very short shuttle runs. We can drill
down into the data to see how it varies across the years by running the following query.
The query computes the average distance, the fare amount, and the fare amount per
distance per year between 2020 and 2024. The year is taken from the pickup time. 

SELECT year(tpep_pickup_datetime) AS year,
round(avg(trip_distance)) AS dist,
round(avg(fare_amount),2) AS fare,
round(AVG(fare_amount/trip_distance),2) AS rate,
count(*) AS trips

FROM allRidesView
GROUP BY year
HAVING year BETWEEN 2020 AND 2024
ORDER BY year;

We’ve restricted the years used in the query because some year’s entries had wrong
date values, notably 2098, 2028, 2001, and 2008. The results of running the query are
as follows:

┌───────┬────────┬────────┬────────┬──────────┐
│ year │ dist │ fare │ rate │ trips │
│ int64 │ double │ double │ double │ int64 │
├───────┼────────┼────────┼────────┼──────────┤
│ 2020 │ 4.0 │ 12.49 │ 7.57 │ 24316408 │
│ 2021 │ 7.0 │ 13.42 │ 7.09 │ 30496201 │
│ 2022 │ 6.0 │ 14.69 │ 8.47 │ 39081642 │
│ 2023 │ 4.0 │ 19.15 │ 9.82 │ 22080786 │
└───────┴────────┴────────┴────────┴──────────┘
Run Time (s): real 1.831 user 22.398789 sys 3.331710

We can see that the average fare is going up over time because the value of money
decreases due to inflation. We also notice a further dip in 2020, which most likely was
caused by the COVID-19 pandemic. In our full analysis of the dataset, a similar dip
could be observed in the mid-2010s when ride services like Uber and Lyft came onto
the scene. You can explore this period with the shared database.

Listing 10.42 Trip data yearly aggregation

Restricts the years used in the query to between 
2020 and 2024, which must be done in the 
HAVING clause, as the year is the grouping key
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 We can also look into the average passenger count over time. In the following list-
ing, we’ll focus on journeys longer than 10 miles with fewer than 10 passengers.

SELECT passenger_count, count(*)
FROM allRidesView
WHERE passenger_count <10
GROUP BY passenger_count
ORDER BY count(*) DESC;

The output of this query shows a power law distribution, with most trips having only a
single passenger:

┌─────────────────┬──────────────┐
│ passenger_count │ count_star() │
│ double │ int64 │
├─────────────────┼──────────────┤
│ 1.0 │ 5366688 │
│ 2.0 │ 1580495 │
│ 3.0 │ 370175 │
│ 4.0 │ 193333 │
│ 5.0 │ 149485 │
│ 0.0 │ 118751 │
│ 6.0 │ 102836 │
│ 8.0 │ 65 │
│ 7.0 │ 60 │
│ 9.0 │ 40 │
├─────────────────┴──────────────┤
│ 10 rows 2 columns │
└────────────────────────────────┘
Run Time (s): real 0.897 user 7.388453 sys 0.862978

This only scratches the surface of what kinds of queries can be run with these datasets,
but we wanted to focus more on examining the performance of queries on these data
volumes than on digging deeper into use cases. As you learned in previous chapters,
you can go ahead and build apps, APIs, or dashboards on top of those kinds of data-
sets and sources, or you can just analyze them in a notebook and output the results for
further processing. 

Summary
 Using the SUMMARIZE clause to get an overview of a dataset is a good way to start

exploring a dataset.
 Converting strings to enums is a useful technique for speeding up queries.
 DuckDB’s modern analytical architecture utilizes vector representations and

intra-query parallelism.
 During execution, SQL queries are turned into execution plans, which can be

inspected with EXPLAIN.

Listing 10.43 Taxi trips per passenger count
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 Datasets located in cloud buckets should be analyzed from machines close to
where they are stored to avoid network transfer costs and latency.

 DuckDB can use predicate and projection pushdown to optimize queries on
Parquet files without actually populating a database.

 DuckDB’s ability to use Parquet metadata when reading files is extremely useful
when working with large datasets, as it avoids reading data over the network
that is not needed for the query.

 Column expressions within the SELECT clause allow us to apply multiple aggre-
gations to many columns at once.

 DuckDB can comfortably query datasets that contain hundreds of millions, or
even billions, of records. 



Conclusion
Thank you for accompanying us on our journey through DuckDB in Action. We
hope you have learned a lot about DuckDB and how it can be used to make your
day-to-day data engineering life more productive and enjoyable. We’re glad we
could share our excitement and passion for the power and usefulness of DuckDB
and empower you to use it to solve your data engineering problems and to build
amazing data products. In this chapter, we will summarize what we have learned,
mention the areas we did not cover, and discuss the future of data engineering with
DuckDB. 

11.1 What we have learned in this book
We looked at how to get started with DuckDB, how to install it, and how to use the
CLI and the Python API. Next, we illustrated how easy it is to load data from CSV,
JSON, and Parquet files and then analyze it with DuckDB using SQL—even without
creating tables for the data. We also explored how to use DuckDB via the Python
APIs, both for SQL and fluent queries, and how tightly and efficiently it integrates
with pandas DataFrames. 

 We learned how to make the most out of DuckDB with SQL, from the basics to
more advanced features like window functions and CTEs. As part of our SQL explo-
rations, we highlighted all the goodies that DuckDB adds to the standard SQL lan-
guage, like support for JSON, nested data structures, advanced joins, and flexible
selection, grouping, and aggregation.

 To demonstrate how to integrate DuckDB into your data architectures, we built
data pipelines with dbt, dltHub, and Dagster. On the application side, we used
Streamlit and Apache Superset to visualize data from DuckDB directly.

 In the last chapter, we looked at the specifics of handling large datasets, includ-
ing performance considerations. 
262
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11.2 Upcoming stable versions of DuckDB
With the release of the book, you should soon have the first stable version in your
hands: DuckDB 1.0. Our work is based on 0.10.0, the latest prerelease version at the
time of writing, which is meant to stabilize all features, APIs, and formats as well as to
be compatible with version 1.0. These versions are meant to handle database version
format changes automatically and be backward compatible (and, in parts, even for-
ward compatible), which will also extend to the MotherDuck service. 

11.3 Aspects we did not cover
Even with the breadth of the book, we could not cover everything in the vast ecosys-
tem of DuckDB. Since the focus of the book is on being an introductory and practical
guide, we did not cover the internals of DuckDB, how it is implemented, and how it
works under the hood. There is much more to learn about the architecture, the query
execution engine, the indexing capabilities, the storage layer, and the vectorized exe-
cution model. 

 We touched a little bit on that in chapter 10, but there is much more to explore in
the DuckDB source code, blog posts, videos, and documentation. Hannes and Mark
have also been interviewed in several podcasts (see https://www.youtube.com/
watch?v=pZV9FvdKmLc and https://www.youtube.com/watch?v=f9QlkXW4H9A)
where they dive into the details of DuckDB, which you can listen to for more insight.

 We mostly used the CLI and the Python API throughout the book and cover access
from Java in the appendix. However, DuckDB also has APIs for C, R, Rust, Go, Java-
Script, and many other languages, so you can use DuckDB in your favorite environ-
ment. Please consult the documentation for more details: https://duckdb.org/docs/
api/overview.

 Another area we didn’t dive deeper into is performance optimizations and consid-
erations. Fortunately, DuckDB performs really well out of the box, so you rarely have to
worry about performance, but there are still many things you can do to optimize your
queries and your data to make the most out of DuckDB. Feel free to consult the docu-
mentation (https://mng.bz/7d2g) and additional blog posts, such as “Perf is not
Enough” (https://motherduck.com/blog/perf-is-not-enough/) by Jordan Tigani.

 The documentation also provides great content about DuckDB’s extension frame-
work. Extensions can be written in both C++ and Rust. Speaking of extensions, there
are already many useful extensions, including the spatial index (https://duckdb.org/
docs/extensions/spatial.html), which has a lot of capabilities, similar to PostGIS, and
can be used to build advanced geospatial applications.

 DuckDB provides an information schema, aligning with the classic SQL catalog, but
also provides various table functions for accessing current configurations and ways to
change it. These are covered on the “DuckDB_% Metadata Functions” documentation
page (https://mng.bz/maWM). DuckDB Labs and MotherDuck list over 50 partners

https://www.youtube.com/watch?v=pZV9FvdKmLc
https://www.youtube.com/watch?v=pZV9FvdKmLc
https://www.youtube.com/watch?v=f9QlkXW4H9A
https://duckdb.org/docs/api/overview
https://duckdb.org/docs/api/overview
https://mng.bz/7d2g
https://motherduck.com/blog/perf-is-not-enough/
https://duckdb.org/docs/extensions/spatial.html
https://duckdb.org/docs/extensions/spatial.html
https://mng.bz/maWM
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that integrate DuckDB into their products and services, so there is a lot for you to
explore, according to your needs. 

11.4 Where can you learn more?
The DuckDB docs (https://duckdb.org/docs) are a great place to start. They are very
comprehensive and cover all aspects of DuckDB in great detail. The same is true for
the MotherDuck documentation (https://motherduck.com/docs). 

 There are a few YouTube channels run by either MotherDuck and DuckDB people
or individuals, which have a number of tutorials, talks, and presentations on DuckDB
and MotherDuck. For quick answers from an active community, check out the
DuckDB Discord (https://discord.duckdb.org/) and the MotherDuck Community
Slack (https://slack.motherduck.com/). 

 If you want to contribute to DuckDB, you can find the source code on GitHub
(https://github.com/duckdb). There you can also raise bugs and feature requests. 

11.5 What is the future of data engineering with DuckDB?
We think DuckDB is a very promising technology that will play a prominent role in the
future of data engineering. DuckDB is a very versatile tool that can be used in many
different scenarios, from local analysis of medium-sized datasets to large-scale data
processing in the cloud close to where your data lives. With the growth of local data
from health monitoring, home automation, and other personal information systems,
efficient processing of private data on your own devices will become more relevant. 

 Given its similarity to SQLite, we think DuckDB will be used in many places SQLite
is used today. That includes applications, games, browser, phones, IoT and edge
devices for analytics, data aggregation, prefiltering, and serving data to other systems
and end users.

 An interesting business use case is the long tail of cloud data warehouses, like
BigQuery, Redshift, Snowflake, and so on. Most users of these systems don’t have peta-
bytes of data to analyze and process but, rather, gigabytes or terabytes, which can be
handled by DuckDB at a fraction of the cost and resource usage—and with much less
complexity.

 Some potential areas of innovation that will be interesting to watch include the
integration in generative AI use cases, like adding efficient embedding vector storage
and indexing and supporting streaming data processing. Given the DuckDB team’s
focus on usability, we’re also looking forward to their ideas on making SQL and data
processing even more flexible, accessible, and user friendly. As part of that work, we
would expect more composability so that every aspect of the system can be queried
and combined flexibly.

 And now it’s your turn to shape the future of data engineering with DuckDB!
Happy Quacking!

 

https://duckdb.org/docs
https://motherduck.com/docs
https://discord.duckdb.org/
https://slack.motherduck.com/
https://github.com/duckdb


appendix
Client APIs for DuckDB

So far, we’ve focused on either the DuckDB CLI or the Python integration. The for-
mer is not only the easiest and fastest way to bring up a DuckDB database and use it
but also the smoothest way of teaching DuckDB without having to install a lot of
things. The latter just follows naturally, as many of the analytics use cases of
DuckDB are rooted in the broader Python world.

 There is only so much you can put into one book, however, so the look we are
taking at integrations in this appendix will be more concise. If you’re interested in
other integrations, we assume you are familiar with concepts like the classpath for
Java and are aware of dependency management for both Java and R.

This appendix covers 
 Alternative client APIs for DuckDB

 When and where those APIs are useful

 A word on concurrency

 How to ingest large amounts of data through client APIs

 A showcase of the Java Database Connectivity 
integration 
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A.1 Officially supported languages
DuckDB provides support for the following languages:

 C—DuckDB implements a custom C API following the SQLite C API to a large
extent. The API is contained in the duckdb.h header. In addition, a full wrap-
per for the SQLite API is provided, which can be used to relink existing SQLite
programs against DuckDB. The C API is distributed as libduckdb.

 C++—DuckDB is written in C++, so an integration follows quite naturally. It is
distributed as libduckdb too. It’s worth mentioning that you want to use this
API for providing any user-defined functions (UDFs) that should be vectorized.

 Java—As explained in this appendix, DuckDB provides a JDBC driver
(org.duckdb:duckdb_jdbc) through Maven central, which bundles the
DuckDB binaries for each major operating system and can run as part of your
Java programs.

 Julia—This integration will run in the same process as the Julia client and fully
supports the DBInterface interface. DuckDB provides native Julia DataFrames,
which let you seamlessly continue your analytic work in a scientific language.
The integration is delivered as a DuckDB package.

 Python—As shown throughout the book, DuckDB integrates well with the
Python ecosystem, allowing you to run analytics directly in your Python pro-
grams and notebooks and even seamlessly interact with Pandas DataFrames.
The integration is delivered as the duckdb package.

 Node.js—An API modelled along the SQLite API is available. It’s noteworthy
that the API exposes Apache Arrow integration for zero-copy ingestion of data.

 R—The official duckdb package provides an implementation of R’s DBI Inter-
face and all of its methods. As with Julia, the package is optimized for efficient
data transfer. Any DuckDB table can be mapped directly onto an R DataFrame
and vice versa. The DuckDB R integration also works well with dbplyr and
dplyr, two packages that are somewhat similar to the relational API offered in
Python for the safe, programmatic query construction.

 Rust—The Rust API is an idiomatic and ergonomic wrapper for Rust around
the C-API and can be installed via crates.io.

 Swift—The Swift API enables developers on Swift platforms to harness the full
power of DuckDB using a native Swift interface. The API is not only available on
Apple platforms but on Linux too, opening up new opportunities for the grow-
ing Swift on server ecosystem.

 ODBC—The Open Database Connectivity (ODBC) is a C-style API that provides
access to different flavors of database management systems (DBMSs). The
ODBC API consists of the driver manager (DM) and the ODBC drivers.
DuckDB supports ODBC version 3.0.

Both the WebAssembly (WASM) and Arrow Database Connectivity (ADBC) integra-
tions are worth a special mention:
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 WASM is a binary instruction format for a stack-based virtual machine and ships with
all four major browsers: Firefox, Chrome, Safari, and Edge. DuckDB can be compiled
to WASM and will run natively in your browser. There, it can be used as an inter-
active Web shell or programmatically through JavaScript, which is also how Mot-
herDuck provides a web-based interface to their DuckDB backend.

 Arrow Database Connectivity (ADBC), similarly to ODBC and JDBC, is a C-style API
that enables code portability between different database systems. The main difference
between ADBC and ODBC/JDBC is that ADBC uses Apache Arrow as an effi-
cient columnar format to transfer data between the database system and the
application. DuckDB has an ADBC driver that takes advantage of the zero-copy
integration between DuckDB and Arrow to efficiently transfer data. The ADBC
driver is available for C++ and Python.

A.2 A word on concurrency
In this book, we focused on data processing and only briefly touched on application
development in chapter 9 with Streamlit. Most interactive applications will provide
concurrent access to themselves. This might be through multiple threads in a multi-
threaded environment, such as Java, or within event loops on a single thread. 

 DuckDB offers two configurable options for concurrency:

 A single process can both read and write to the database.
 Multiple processes can read from the database, but none of them can write, as

the database is in read-only mode for all of them.

This does not mean you can’t use DuckDB in concurrent, interactive applications; you
just need to be aware of the limitations. When using the first option, DuckDB supports
multiple writer threads using a combination of multiversion concurrency control
(MVCC) and optimistic concurrency control, but all within that single writer process. 

 If your application does not span multiple processes, it can safely access one
shared in-memory or file-based database under the following rules:

 As long as there are no write conflicts, multiple concurrent writes will succeed.
 Appends will never conflict, even on the same table.
 Multiple threads can also simultaneously update separate tables or separate sub-

sets of the same table.
 Optimistic concurrency control comes into play when two threads attempt to

edit (update or delete) the same row at the same time. In that situation, the one
thread attempting the update will fail with a conflict error.

What will not work without restriction is a typical microservices architecture, in which
your orchestrator will scale your application up and down by starting new processes or
stopping existing ones, while accessing the same underlying files. Such a scenario is
limited to using read-only access to the same DuckDB files or read–write access to dif-
ferent separate DuckDB files. 
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A.3 Use cases
Many applications we all use on a daily basis on our phones embed a relational data-
base: SQLite. 

 It can be found in

 Every Android device
 Every iPhone and iOS device
 Every Mac
 Many television sets and set-top cable boxes
 Many automotive multimedia systems

SQLite itself claims to be the “most widely deployed and used database engine,” with
an estimated 1 trillion SQLite databases in active use (see https://www.sqlite.org/
mostdeployed.html). DB-Engines, a website that regularly ranks databases for their
popularity, usually finds it in the top 10.

 With an API mostly compatible with SQLite, you can swap out SQLite for DuckDB
for your example in your next iOS application. By incorporating DuckDB into your
application, even in read-only mode, you can benefit from its data-ingestion capabili-
ties. Instead of using some arbitrary API to process CSV files, you can use DuckDB
consistently to query all supported formats and use the results directly in your applica-
tion through SQL, as explained in chapter 5. The same holds true for read-only
DuckDB databases, against which you can run hardcoded or dynamically generated
queries.

 Whether your typical online transaction processing (OLTP) application should
make use of DuckDB as a primary storage is debatable. While DuckDB supports trans-
actional semantics and several thousand writes per second, it’s not designed for typical
transactional workloads with many small operations. In guaranteed single-process
deployments, this will work similarly to other applications with this style, using SQLite
or H2, a Java-based, embedded, in-process database. DuckDB is explicitly designed for
online analytical processing (OLAP) and will definitely shine in those use cases.

 Maybe a hybrid approach better suits your needs. The following is a personal
example.

 I run a page tracking my sports activities. All tracking data is maintained and
inserted via a handful of scripts, and after updating, the website is statically regener-
ated using a Python Flask application. While this is a hobby project, this approach
scales for bigger setups. The source code can be found here: https://github.com/
michael-simons/biking3. 

A.4 Importing large amounts of data
Using prepared SQL statements, where data is bound to named or indexed parameters,
is the preferred method of inserting data into relational databases. This is not only
because using parameters prevents most cases of SQL injections but also for perfor-
mance reasons. These statements have the same shape and don’t require repeated

https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://github.com/michael-simons/biking3
https://github.com/michael-simons/biking3
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parsing and planning by the database, and their execution plans can be cached. Pre-
pared statements exist in all standardized client APIs, such as JDBC and the database
connectivity in C++, but they are not the best option for bulk loading data into DuckDB. 

 Your go-to approach should actually be ingesting data from inside DuckDB via the
methods we learned in chapters 3, 4, and 5: read_csv, read_json, and read_parquet
with direct inserts into tables as necessary. If this is not possible, both the JDBC driver
and the C++ client offer an appender, which directly writes into the corresponding
tables. The JDBC driver additionally offers import and export via Apache Arrow.

A.5 Using DuckDB from Java via the JDBC Driver
The Java Database Connectivity (JDBC) API is one of the oldest specifications on the
Java platform, and a client—or a driver, in JDBC lingo—exists for almost every data-
base. JDBC itself is closely tied to the SQL standardization efforts and relational data-
bases. So of course, DuckDB offers a JDBC driver too. 

 This section is not an introduction to Java, JDBC, or dependency management on
the JVM. We will have a look at the structure and the peculiarities of the DuckDB
JDBC driver, what it is capable of, and what it is not. If you want to use the JDBC driver
to ingest large amounts of data, we will cover that too.

 The Maven coordinates for the DuckDB JDBC driver are org.duckdb:duckdb_
jdbc:0.10.0. In a project based on the Maven build system, you would declare a
dependency on the driver as follows.

<dependency>
<groupId>org.duckdb</groupId>
<artifactId>duckdb_jdbc</artifactId>
<version>0.10.0</version>

</dependency>

NOTE We suggest including the driver in the compile scope, in contrast to
provided, so that you are able to explicitly unwrap a generic JDBC
Connection into a dedicated DuckDBConnection for accessing some of its spe-
cific methods. 

For Gradle, another build system for Java, the declaration also uses the compile scope:

dependencies {
compile 'org.duckdb:duckdb_jdbc:0.10.0'

}

To keep things as simple as possible, we are not using any build- or dependency-
management systems in the following examples. Our examples are all single-class pro-
grams that don’t require any dependencies apart from the JDBC driver.

 You can download duckdb_jdbc-0.10.0.jar directly from Maven central, using the
link in the listing. The listing utilizes cURL, a command-line tool for accessing web

Listing A.1 Maven dependency declaration for DuckDB JDBC
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resources, to download the JAR file. This needs to be done only once, and you can, of
course, use any other tool (or your browser) for that purpose.

 The filename of our first example is simple.java. The example requires Java 17 and
can be run with the following incantation directly from the source file, without
explicit compilation:

curl -OL https://repo1.maven.org/maven2/org/duckdb/duckdb_jdbc/\
0.10.0/duckdb_jdbc-0.10.0.jar
java -cp duckdb_jdbc-0.10.0.jar simple.java

All example source code is available in the book repository (https://github.com/
duckdb-in-action/examples/tree/main/a1). There is no need to manually enter the
code.

 On the outside, the DuckDB JDBC driver looks like any other JDBC driver. It pro-
vides an implementation of the java.sql.Driver, the java.sql.Statement, and
the java.sql.PreparedStatement. It does not support callable statements, the
retrieval of generated keys, or some other details of the JDBC spec. When in doubt,
you will need to read its sources to check if the API you want to use is supported, or
just try it out. 

 The JAR file is quite large—for version 0.10.0, it’s about 65 megabytes. The reason
for this is actually quite simple. Looking into the JAR file with unzip -l duckdb_jdbc-
0.10.0.jar reveals that the driver ships the DuckDB binaries for all major operating sys-
tems.

 The files beginning with libduckdb_java are the actual native DuckDB binaries:

Archive: duckdb_jdbc-0.10.0.jar
Length Date Time Name

--------- ---------- ----- ----
0 02-13-2024 13:20 META-INF/

64 02-13-2024 13:20 META-INF/MANIFEST.MF
24 02-13-2024 13:20 META-INF/services/java.sql.Driver

3297 02-13-2024 13:20 org/duckdb/DuckDBAppender.class
2581 02-13-2024 13:20 org/duckdb/DuckDBArray.class

20549 02-13-2024 13:20 org/duckdb/DuckDBArrayResultSet.class
2699 02-13-2024 13:20 org/duckdb/DuckDBColumnType.class
812 02-13-2024 13:20 org/duckdb/DuckDBColumnTypeMetaData.class

11017 02-13-2024 13:20 org/duckdb/DuckDBConnection.class
24447 02-13-2024 13:20 org/duckdb/DuckDBDatabaseMetaData.class

676 02-13-2024 13:20 org/duckdb/DuckDBDate.class
2289 02-13-2024 13:20 org/duckdb/DuckDBDriver.class
...

48822768 02-13-2024 13:26 libduckdb_java.so_linux_amd64
87819276 02-13-2024 14:54 libduckdb_java.so_osx_universal
24764928 02-13-2024 14:54 libduckdb_java.so_windows_amd64
44872680 02-13-2024 14:55 libduckdb_java.so_linux_arm64

--------- -------
206440213 33 files

The JDBC driver will load the native DuckDB library for your operating system into
the Java process, thus staying true to the fact that DuckDB is an embedded, in-process

https://github.com/duckdb-in-action/examples/tree/main/a1
https://github.com/duckdb-in-action/examples/tree/main/a1
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database. So what we said about concurrency in the beginning of this appendix
applies here as well. An instance of the DuckDB driver and database can safely be
accessed from several threads inside a Java program and several instances of a
java.sql.Connection at once. It is not possible for several Java processes to use the
same DuckDB database file in write mode at once. In that case, they would be limited
to read-only mode. 

A.5.1 Understanding the general usage pattern

The general usage pattern for the DuckDB JDBC driver is no different from other
JDBC drivers. The JDBC URL for DuckDB is jdbc:duckdb: for a pure in-memory
database that will not be saved to disk when the Java process ends. The following code
acquires a connection, creates a JDBC statement, executes a query returning all
DuckDB settings, prints them, and then exits. Just using an available database func-
tion here allows us to focus on the relevant parts for understanding how to use the
JDBC driver. 

 Asking the DriverManager to get a connection for a JDBC URL is the standard way
to acquire a JDBC connection. Of course, we are using a DuckDB URL.

import java.sql.DriverManager;
import java.sql.SQLException;

class simple {

public static void main(String... a) throws SQLException {

var query = "SELECT * FROM duckdb_settings() ORDER BY name";
try (

var con = DriverManager
.getConnection("jdbc:duckdb:");

var stmt = con.createStatement();
var resultSet = stmt.executeQuery(query)

) {
while (resultSet.next()) {

System.out.printf("%s %s%n",
resultSet.getString("name"),
resultSet.getString("value"));

}
}

}
}

The first few lines when running this Java program look like this on the author’s
machine. Remember, you need to run the program like this: java -cp duckdb_jdbc
-0.10.0.jar simple.java, from our example repository using at least Java 17:

Calendar gregorian
TimeZone Europe/Berlin

Listing A.2 simple.java

The connection is wrapped in a “try-
with-resources” block so that it will

be automatically closed.

You need a Statement
to execute queries,

which we acquire in
the same block to close

it after usage too.

Our query will be
executed here; a

ResultSet is a
resource and needs

to be closed too.

We iterate the
result set and

print its contents.
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access_mode automatic
allocator_flush_threshold 134.2MB
allow_unsigned_extensions false
arrow_large_buffer_size false
autoinstall_extension_repository
autoinstall_known_extensions true
autoload_known_extensions true
binary_as_string

A.5.2 Using multiple connections from several threads

Here we answer the following question: Could you safely use DuckDB inside one
instance of your Java application that might use multiple threads to respond to multi-
ple concurrent http requests? In short, yes, you totally can. We are, however, not build-
ing a backend for a web application here but demonstrating this by using a few
threads. In a proper application, you would most likely not create a new connection in
each thread but use a JDBC connection pool instead. Frameworks like Spring Boot or
Quarkus do this for you automatically. While not included in this book, we confirmed
successfully that DuckDB indeed works fine in any of those frameworks with the
respective connection pools. What we recreate in the following text is similar to how
multiple concurrent requests against a web application would eventually end up as
concurrent queries running in one DuckDB instance. 

 The following program will save the database to a file named readings.db; hence, it
uses the following JDBC URL to retrieve a connection: jdbc:duckdb:readings.db. It
will create a readings table on the main thread and then spawn 20 new threads that
insert readings with random values.

 This example shows that while only one process can open a DuckDB file, it is no
problem to use multiple threads in that process to access it for reading and writing. 

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Timestamp;
import java.time.LocalDateTime;
import java.util.concurrent.Executors;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;

import org.duckdb.DuckDBConnection;

class using_multiple_connections {

private static final AtomicInteger ID_GENERATOR = new AtomicInteger(0);
private static final String DUCKDB_URL

= "jdbc:duckdb:readings.db";

public static void main(String... a) throws Exception {

Listing A.3 using_multiple_connections.java

The DuckDB URL that will 
create a readings.db
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var createTableStatement = """
CREATE TABLE IF NOT EXISTS readings (

id INTEGER NOT NULL PRIMARY KEY,
created_on TIMESTAMP NOT NULL,
power DECIMAL(10,3) NOT NULL

)
""";

var executor = Executors.newWorkStealingPool();
try (

var con = DriverManager
.getConnection(DUCKDB_URL);

var stmt = con.createStatement()
) {

stmt.execute(createTableStatement);
var result = stmt

.executeQuery("SELECT max(id) + 1 FROM readings");
result.next();
ID_GENERATOR.compareAndSet(0, result.getInt(1));
result.close();

for (int i = 0; i < 20; ++i) {
executor.submit(() -> insertNewReading(con));

}
executor.shutdown();
executor

.awaitTermination(5, TimeUnit.MINUTES);
}

}
}

This program creates 20 tasks that are submitted to an executor, which uses a thread
pool with as many threads as available processors. Which task do they run? It turns out
they run the static method using_multiple_connections::insertNewReading, which
is shown in listing A.4. The method is called with the original connection. Inside the
method, we turn this connection into a DuckDBConnection, using the typesafe JDBC
approach by unwrapping the class. The DuckDBConnection now can be duplicated,
which is equivalent to calling DriverManager.getConnection("jdbc:duckdb:

readings.db") again, but much faster. The method then inserts a single row with a
random value and handles the resources correctly. Checked SQL exceptions are
caught and rethrown as runtime exceptions to be handled outside, which is a com-
mon pattern in Java. 

static void insertNewReading(Connection connection) {
var sql = "INSERT INTO readings VALUES (?, ?, ?)";
var readOn = Timestamp.valueOf(LocalDateTime.now());
var value = ThreadLocalRandom.current().nextDouble() * 100;

Listing A.4 using_multiple_connections::insertNewReading

This statement
ensures the target

table exists.

The connection is created on 
the main thread and closed 
when the try block ends.

A java.sql.Statement opened in 
the try block as well to get it 
cleaned up after usage.

Retrieves the
largest value of the

id column so far

Creates 20 tasks, each executing 
the given method in parallel

Makes sure the program does not 
terminate until all tasks are finished
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try (
var con = connection

.unwrap(DuckDBConnection.class)

.duplicate();
var stmt = con.prepareStatement(sql)

) {
stmt.setInt(1, ID_GENERATOR.getAndIncrement());
stmt.setTimestamp(2, readOn);
stmt.setDouble(3, value);
stmt.execute();

} catch (SQLException e) {
throw new RuntimeException(e);

}
}

Running this program with java -cp duckdb_jdbc-0.10.0.jar using_multiple_
connections.java will create readings.db in the same directory, populated with a
readings table and at least 20 rows. If you run a SELECT on the table, ordered by the
millisecond timestamp at which the records have been created, you can see that the
ID values do not have the same order. This indicates that the insert statement did
actually run asynchronously:

java -cp duckdb_jdbc-0.10.0.jar \
using_multiple_connections.java

duckdb readings.db -s ".maxrows 6" -s "FROM readings ORDER BY created_on"
┌───────┬────────────────────────────┬───────────────┐
│ id │ created_on │ power │
│ int32 │ timestamp │ decimal(10,3) │
├───────┼────────────────────────────┼───────────────┤
│ 0 │ 2024-02-10 18:15:58.457194 │ 73.185 │
│ 4 │ 2024-02-10 18:15:58.457272 │ 24.159 │
│ 2 │ 2024-02-10 18:15:58.457432 │ 46.807 │
│ · │ · │ · │
│ · │ · │ · │
│ · │ · │ · │
│ 16 │ 2024-02-10 18:15:58.462457 │ 55.934 │
│ 18 │ 2024-02-10 18:15:58.462785 │ 1.298 │
│ 19 │ 2024-02-10 18:15:58.46287 │ 55.559 │
├───────┴────────────────────────────┴───────────────┤
│ 20 rows (6 shown) 3 columns │
└────────────────────────────────────────────────────┘

You can use all SQL constructs supported by DuckDB over JDBC. The main APIs for
your SQL statements are java.sql.Statement and java.sql.PreparedStatement.
Use the latter if you want to parameterize your statements. If you find yourself looking
for a fluent query builder similar to the relational API in DuckDB’s Python package or
to what R offers, you can have a look at jOOQ (https://www.jooq.org), which is an
open source project that bridges SQL and the Java world. I’ve used it with great suc-
cess (and fun!) in many projects. 

Unwraps into a 
specialized connection

Duplicates

Gets a 
java.sql.PreparedStatement 
that can be parameterized

https://www.jooq.org
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A.5.3 Using DuckDB as a tool for data processing from Java

In chapter 5, we used DuckDB to explore data without using DuckDB’s persistent stor-
age. This is, of course, possible not only from the DuckDB CLI or the Python client
but also from Java. For some formats, such as Parquet, it’s a great solution: Java cannot
deal with Parquet files without using external libraries. The libraries that exist for
dealing with Parquet in Java oftentimes depend on Apache Hadoop, Apache Spark, or
Apache Avro—great products, but ones that come with a huge number of dependen-
cies. If you prefer a project without that many dependencies, you can simply use
DuckDB. 

 We have a list of Parquet files in the a1/weather folder of our example repository
that contain weather data scraped from Wikipedia (https://en.wikipedia.org/wiki/
List_of_cities_by_average_temperature). We want to list these weather stations in our
Java program by name and the yearly temperature value. Instead of writing a lot of
Java code to load and inspect the files one by one, we can just ask an embedded
DuckDB instance to do this for us. The method presented in the following listing
opens an in-memory connection, selects the data of interest, and creates our list. The
method itself is part of the using_the_appender.java file. The whole program will be
shown later.

 The query we are using here does a lot of things that normally would require a
considerable amount of code and at least one additional library. It reads all Parquet
files in the weather folder by using a glob in the FROM clause (weather/*.parquet) and
then extracts one value from the Year column per City (the source does contain the
temperature in Celsius and Fahrenheit). As with previous data sources, data quality
varies, and the query also makes sure the temperature value can actually be read as a
numeric value. The rest of the code then boils down to the ceremony Java requires for
JDBC, as shown in the following listing. 

private record WeatherStation(String id, double avgTemperature) {
}

static List<WeatherStation> weatherStations() throws SQLException {

var query = """
SELECT City AS id,

cast(replace(
trim(

regexp_extract(Year,'(.*)\\n.*', 1)
), '−', '-') AS double)

AS avgTemperature
FROM 'weather/*.parquet'

""";
var weatherStations = new ArrayList<WeatherStation>();
try (

var con = DriverManager

Listing A.5 using_the_appender::weatherStations

Keeps all the resources 
in the try block

https://en.wikipedia.org/wiki/List_of_cities_by_average_temperature
https://en.wikipedia.org/wiki/List_of_cities_by_average_temperature
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.getConnection("jdbc:duckdb:");
var stmt = con.createStatement();
var resultSet = stmt.executeQuery(query)

) {
while (resultSet.next()) {

var id = resultSet.getString("id");
var avgTemperature = resultSet.getDouble("avgTemperature");
weatherStations.add(new WeatherStation(id, avgTemperature));

}
}

return weatherStations;
}

A.5.4 Inserting large amounts of data

You already know by now how to ingest data with DuckDB “from the inside,” essen-
tially treating CSV, Parquet, or JSON files as tables and relying on DuckDB’s machin-
ery to insert batches of data efficiently. But what about data that was created as part of
another process and never written to a file? A Java-based service might run all kinds of
computations, maybe calling other services while doing so. It could be wasteful to
write large results first to a file and then ingest them. 

 Normally, you would use an instance of java.sql.PreparedStatement and its
batch processing capabilities to do so. We already used a prepared statement in listing
A.4 for a single insert, and the batch usage would look similar. While nothing prevents
you from using it as a batch insert, it would be slower than necessary with the DuckDB
JDBC driver. 

 For our example, we will use the list of weather stations created in the previous sec-
tion. In early 2024, a challenge had taken the hearts—but especially the minds—of
the Java community by storm: the One Billion Row Challenge, also known as 1BRC,
run by Gunnar Morling (see https://github.com/gunnarmorling/1brc). The task of
this challenge was to write a Java program that read a CSV file, calculated the mini-
mum, average, and maximum temperature values per weather station, and emitted
the results in a specific format.

 The original challenge was based on a CSV file with one billion rows, which can, of
course, read via DuckDB directly, but we want to have the data available in DuckDB’s
native table format for processing. So we tasked ourselves to create a DuckDB data-
base with a configurable number of rows in one table derived from the weather sta-
tions from the previous section.

 We will use the org.duckdb.DuckDBAppender to directly write data into the table.
To get a hold of an instance of that class, we must again unwrap the generic JDBC con-
nection into a DuckDBConnection, which will let you create an appender that writes
directly into a table. The following method is also part of the bigger program
using_the_appender.java. It creates one connection, persisting data into
weather.db, and unwraps the generic JDBC connection into DuckDBConnection to
access its specialized methods. The DuckDBConnection is used to create an appender
for the weather table, to which many rows are appended. 

Iterates the date and creates 
objects as desired from it

https://github.com/gunnarmorling/1brc


277A.5 Using DuckDB from Java via the JDBC Driver

 

import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.concurrent.ThreadLocalRandom;
import org.duckdb.DuckDBConnection;

static void generateData(int size) throws SQLException {

var stations = weatherStations();
var numStations = stations.size();

try (var con = DriverManager.getConnection("jdbc:duckdb:weather.db")
.unwrap(DuckDBConnection.class)

) {

var rand = ThreadLocalRandom.current();
long start = System.currentTimeMillis();
try (var appender = con.createAppender(

DuckDBConnection.DEFAULT_SCHEMA,
"weather")

) {
for (int i = 0; i < size; ++i) {

if (i > 0 && i % 50_000_000 == 0) {
appender.flush();

}
var station = stations.get(rand.nextInt(numStations));
appender.beginRow();
appender

.append(station.id());
appender

.append(station.measurement());
appender.endRow();

}
}

}
}

The program, executed with java -cp duckdb_jdbc-0.10.0.jar using_the_

appender.java 1000000000, takes about 10 minutes on my machine to create a 2.4
GB database file containing a billion randomized rows.

 DuckDB takes roughly 3 seconds to compute the answer to the One Billion Row
Challenge, as shown in the following listing.

.mode line
WITH src AS (

SELECT id AS station_name,
MIN(measurement) AS min,
CAST(AVG(measurement) AS DECIMAL(8,1)) AS mean,
MAX(measurement) AS max

FROM weather

Listing A.6 using_the_appender::generateData

Listing A.7 Solving the 1BRC with SQL

The generic connection must be 
unwrapped into a DuckDBConnection 
to access vendor-specific methods.

Appenders must be created 
specifically for one table—
here, for the weather table.

The beginning of a new
row must be indicated.

Columns must be appended 
in the order in which the 
table columns are defined.

The end of the row
 must be indicated.
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GROUP BY station_name
)
SELECT '{' || ARRAY_TO_STRING(

LIST(station_name || '=' || CONCAT_WS('/', min, mean, max)
ORDER BY station_name), ', ')

|| '}' AS "1BRC"
FROM src;

The abbreviated output looks like this:

1BRC = {Abha=-33.5/18.0/71.7, Abidjan=-22.1/26.0/75.0, .. }
Run Time (s): real 3.051 user 29.247171 sys 0.033100

A.6 Additional connection options
The DuckDB JDBC driver doesn’t support any URL parameters, but instead, it uses
connection options. In read_only.java, we demonstrate the available options. Here,
we’re using a read-only connection so that multiple processes can access the same
database and streaming JDBC result rows. The program uses a similar query to the
preceding one to solve the One Billion Row Challenge and formats the output in Java
code, as shown in the following listing. 

import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.Locale;
import java.util.Properties;

import org.duckdb.DuckDBDriver;

class read_only {

public static void main(String... args) throws SQLException {

var properties = new Properties();
properties.setProperty(

DuckDBDriver.DUCKDB_READONLY_PROPERTY, "true");
properties.setProperty(

DuckDBDriver.JDBC_STREAM_RESULTS, "true");

var query = """
SELECT id AS station_name,

MIN(measurement) AS min,
CAST(AVG(measurement) AS DECIMAL(8,1)) AS mean,
MAX(measurement) AS max

FROM weather
GROUP BY station_name
ORDER BY station_name
""";

var url = "jdbc:duckdb:weather.db";

try (
var con = DriverManager

Listing A.8 read_only.java

Options for JDBC are passed
via a Properties object.

Uses the available 
constants on the 
DuckDBDriver class and 
doesn’t hardcode the 
names as strings
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.getConnection(url, properties);
var stmt = con.createStatement();
var result = stmt.executeQuery(query)

) {
boolean first = true;
System.out.print("{");
while (result.next()) {

if(!first) {
System.out.print(", ");

}
var station = result.getString("station_name");
var min = result.getDouble("min");
var mean = result.getDouble("mean");
var max = result.getDouble("max");
System.out.printf(

Locale.ENGLISH, "%s=%3.2f/%3.2f/%3.2f",
station, min, mean, max);

first = false;
}

}
System.out.println("}");

}
}

While the pure DuckDB solution runs in about 3 seconds, the Java program takes
about 26 seconds, which is astonishingly good, as it includes the following:

 Compiling the Java program into byte code
 Loading the JDBC Driver and the native DuckDB code
 Loading the 2.4 GB database file
 Doing the aggregation
 Streaming and formatting the results

The baseline timing for the original One Billion Row Challenge setup was around 5
minutes. In 2024, the winning program solved the challenge in about 300 millisec-
onds—however, with beautiful, hand-optimized code.

 Nevertheless, the One Billion Row Challenge and our own experiments here
demonstrate one thing: Java is not slow, and neither is database interaction with Java.
If you are familiar with Java or have an existing codebase in which you need some ana-
lytics of medium to relatively large data volumes, using DuckDB from Java is a feasible
approach. 

Summary
 DuckDB can be used from a plethora of different languages.
 Most languages are supported by DuckDB or DuckDB Labs with official

extensions.
 There’s usually a mechanism to directly map a table into the host languages on

platforms that support DataFrames.

The properties object 
needs to be passed to 
the driver manager.
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 Prepared statements should only be used for handling parameterized queries,
not for batch loading.

 If possible, use an SQL-based import from the inside. Otherwise, look for a ded-
icated mechanism, such as an appender or the Arrow import, and export in the
language of your choice.

 A single DuckDB file can only be accessed from one process in write mode or
from many in read-only mode.

 A process can access a single DuckDB resource from many threads in both write
and read-only mode at once. 
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A list of useful extensions to the SQL standard

What Why How

FROM first in 
SELECT 
statements

When building a query, the first thing you need to 
know is where your data is coming FROM. DuckDB 
lets you put FROM before SELECT or even com-
pletely omit the SELECT clause in case of a 
SELECT *.

FROM my_table;

Fine-grained star-
selects

SELECT * selects all columns that are projected 
in the FROM clause. These might be (too) many 
columns. You can reshape the star using the 
EXCLUDE and REPLACE clauses.

Selecting all columns but full_text: 
SELECT * EXCLUDE (full_text) 
FROM article;
Selecting all columns and replacing 
population with population divided by 
1M: SELECT * REPLACE (population 
/ 10^6 AS population) FROM 
countries;

Fine-grained col-
umn selection

You can use regular expressions or lambda func-
tions to select sets of columns. And also apply 
functions to those.

Using regular expressions: SELECT 
COLUMNS('_(regional|sales?)') 
FROM sales;
Using lambda functions: SELECT 
COLUMNS(c -> c LIKE 
'%_regional_%') FROM sales;
Applying aggregation function on column 
set: SELECT 
AVG(COLUMNS('_sales')), 
MAX(COLUMNS('_sales')) FROM 
sales;

Simplified GROUP 
BY clause

Use GROUP BY ALL to GROUP BY all columns in 
the SELECT statement that are not wrapped in 
aggregate functions. This allows the columns list 
to be maintained in a single place, saves typing, 
and prevents bugs by keeping the SELECT granu-
larity aligned to the GROUP BY granularity.

SELECT town, street_name,
    avg(income)
FROM addresses
GROUP BY ALL;

Column aliases in 
WHERE, GROUP BY, 
and HAVING 
clauses

In many SQL dialects, it is not possible to use an 
alias defined in a SELECT clause anywhere but in 
the ORDER BY clause This commonly leads to 
queries that are much more verbose than neces-
sary, as you have to repeat the same expression 
multiple times. In DuckDB, a nonaggregate alias 
in the SELECT clause can be immediately used in 
the WHERE and GROUP BY clauses. Likewise, an 
aliased defined for an aggregate function can be 
used in a HAVING clause filtering the aggregate.

SELECT town AS city,
street_name AS street,

 avg(income)
    AS income_per_street
FROM addresses
WHERE city = 'Springfield'
GROUP BY city, street
HAVING income_per_street > 5000;



Mark Needham ●  Michael Hunger ●  Michael Simons
Foreword by Mark Raasveldt and Hannes Mühleisen 

D
uckDB makes data analytics fast and fun! You don’t need 
to set up a Spark or run a cloud data warehouse just to 
process a few hundred gigabytes of data. DuckDB is 

easily embeddable in any data analytics application, runs on a 
laptop, and processes data from almost any source, including 
JSON, CSV, Parquet, SQLite and Postgres.

DuckDB in Action guides you example-by-example from setup, 
through your fi rst SQL query, to advanced topics like building 
data pipelines and embedding DuckDB as a local data store 
for a Streamlit web app.  You’ll explore DuckDB’s handy SQL 
extensions, get to grips with aggregation, analysis, and data 
without persistence, and use Python to customize DuckDB. 
A hands-on project accompanies each new topic, so you can 
see DuckDB in action. 

What’s Inside
●  Prepare, ingest and query large datasets
●  Build cloud data pipelines
●  Extend DuckDB with custom functionality
●  Fast-paced SQL recap: From simple queries to 
   advanced analytics

For data pros comfortable with Python and CLI tools.

Mark Needham is a blogger and video creator at @LearnData-
WithMark. Michael Hunger leads product innovation for the 
Neo4j graph database. Michael Simons is a Java Champion, 
author, and Engineer at Neo4j.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

DuckDB IN ACTION

DATA

M A N N I N G

“I use DuckDB every day, 
and I still learned a lot about 
how DuckDB makes things 

that are hard in most 
  databases easy!” 

—Jordan Tigani
Founder, MotherDuck

“An excellent resource! 
Unlocks possibilities for 

storing, processing, analyzing, 
and summarizing data at the

 edge using DuckDB.”—Pramod Sadalage
Director, Th oughtworks 

“Clear and accessible. 
A comprehensive resource for 

harnessing the power of 
DuckDB for both novices and
 experienced professionals.” 

—Qiusheng Wu, Associate Professor
University of Tennessee

“Excellent! Th e book all 
we ducklings have been 

  waiting for!” 
—Gunnar Morling, Decodable

ISBN-13: 978-1-63343-725-8

See first page


	DuckDB in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the authors
	about the cover illustration
	1 An introduction to DuckDB
	1.1 What is DuckDB?
	1.2 Why should you care about DuckDB?
	1.3 When should you use DuckDB?
	1.4 When should you not use DuckDB?
	1.5 Use cases
	1.6 Where does DuckDB fit in?
	1.7 Steps of the data processing flow
	1.7.1 Data formats and sources
	1.7.2 Data structures
	1.7.3 Developing the SQL
	1.7.4 Using or processing the results

	Summary

	2 Getting started with DuckDB
	2.1 Supported environments
	2.2 Installing the DuckDB CLI
	2.2.1 macOS
	2.2.2 Linux and Windows

	2.3 Using the DuckDB CLI
	2.3.1 SQL statements
	2.3.2 Dot commands
	2.3.3 CLI arguments

	2.4 DuckDB’s extension system
	2.5 Analyzing a CSV file with the DuckDB CLI
	2.5.1 Result modes

	Summary

	3 Executing SQL queries
	3.1 A quick SQL recap
	3.2 Analyzing energy production
	3.2.1 Downloading the dataset
	3.2.2 The target schema

	3.3 Data definition language queries
	3.3.1 The CREATE TABLE statement
	3.3.2 The ALTER TABLE statement
	3.3.3 The CREATE VIEW statement
	3.3.4 The DESCRIBE statement

	3.4 Data manipulation language queries
	3.4.1 The INSERT statement
	3.4.2 Merging data
	3.4.3 The DELETE statement
	3.4.4 The SELECT statement

	3.5 DuckDB-specific SQL extensions
	3.5.1 Dealing with SELECT
	3.5.2 Inserting by name
	3.5.3 Accessing aliases everywhere
	3.5.4 Grouping and ordering by all relevant columns
	3.5.5 Sampling data
	3.5.6 Functions with optional parameters

	Summary

	4 Advanced aggregation and analysis of data
	4.1 Pre-aggregating data while ingesting
	4.2 Summarizing data
	4.3 On subqueries
	4.3.1 Subqueries as expressions

	4.4 Grouping sets
	4.5 Window functions
	4.5.1 Defining partitions
	4.5.2 Framing
	4.5.3 Named windows
	4.5.4 Accessing preceding or following rows in a partition

	4.6 Conditions and filtering outside the WHERE clause
	4.6.1 Using the HAVING clause
	4.6.2 Using the QUALIFY clause
	4.6.3 Using the FILTER clause

	4.7 The PIVOT statement
	4.8 Using the ASOF JOIN
	4.9 Using table functions
	4.10 Using LATERAL joins
	Summary

	5 Exploring data without persistence
	5.1 Why use a database without persisting any data?
	5.2 Inferring file type and schema
	5.2.1 A note on CSV parsing

	5.3 Shredding nested JSON
	5.4 Translating CSV to Parquet
	5.5 Analyzing and querying Parquet files
	5.6 Querying SQLite and other databases
	5.7 Working with Excel files
	Summary

	6 Integrating with the Python ecosystem
	6.1 Getting started
	6.1.1 Installing the Python package
	6.1.2 Opening up a database connection

	6.2 Using the relational API
	6.2.1 Ingesting CSV data with the Python API
	6.2.2 Composing queries
	6.2.3 SQL querying

	6.3 Querying pandas DataFrames
	6.4 User-defined functions
	6.5 Interoperability with Apache Arrow and Polars
	Summary

	7 DuckDB in the cloud with MotherDuck
	7.1 Introduction to MotherDuck
	7.1.1 How it works
	7.1.2 Why use MotherDuck?

	7.2 Getting started with MotherDuck
	7.2.1 Using MotherDuck through the UI
	7.2.2 Connecting to MotherDuck with DuckDB via token-based authentication

	7.3 Making the best possible use of MotherDuck
	7.3.1 Uploading databases to MotherDuck
	7.3.2 Creating databases in MotherDuck
	7.3.3 Sharing databases
	7.3.4 Managing S3 secrets and loading Data from S3 buckets
	7.3.5 Optimizing data ingestion and MotherDuck usage
	7.3.6 Querying your data with AI
	7.3.7 Integrations

	Summary

	8 Building data pipelines with DuckDB
	8.1 Data pipelines and the role of DuckDB
	8.2 Data ingestion with dlt
	8.2.1 Installing a supported source
	8.2.2 Building a pipeline
	8.2.3 Exploring pipeline metadata

	8.3 Data transformation and modeling with dbt
	8.3.1 Setting up a dbt project
	8.3.2 Defining sources
	8.3.3 Describing transformations with models
	8.3.4 Testing transformations and pipelines
	8.3.5 Transforming all CSV files

	8.4 Orchestrating data pipelines with Dagster
	8.4.1 Defining assets
	8.4.2 Running pipelines
	8.4.3 Managing dependencies in a pipeline
	8.4.4 Advanced computation in assets
	8.4.5 Uploading to MotherDuck

	Summary

	9 Building and deploying data apps
	9.1 Building a custom data app with Streamlit
	9.1.1 What is Streamlit?
	9.1.2 Building our app
	9.1.3 Using Streamlit components
	9.1.4 Visualizing data using plot.ly
	9.1.5 Deploying our app on the Community Cloud

	9.2 Building a BI dashboard with Apache Superset
	9.2.1 What is Apache Superset?
	9.2.2 Superset’s workflow
	9.2.3 Creating our first dashboard
	9.2.4 Creating a dataset from an SQL query
	9.2.5 Exporting and importing dashboards

	Summary

	10 Performance considerations for large datasets
	10.1 Loading and querying the full Stack Overflow database
	10.1.1 Data dump and extraction
	10.1.2 The data model
	10.1.3 Exploring the CSV file data
	10.1.4 Loading the data into DuckDB
	10.1.5 Fast exploratory queries on large tables
	10.1.6 Posting on weekdays
	10.1.7 Using enums for tags

	10.2 Query planning and execution
	10.2.1 Planner and optimizer
	10.2.2 Runtime and vectorization
	10.2.3 Visualizing query plans with Explain and Explain Analyze

	10.3 Exporting the Stack Overflow data to Parquet
	10.4 Exploring the New York Taxi dataset from Parquet files
	10.4.1 Configuring credentials for S3 access
	10.4.2 Auto-inferring file types
	10.4.3 Exploring Parquet schema
	10.4.4 Creating views
	10.4.5 Analyzing the data
	10.4.6 Making use of the taxi dataset

	Summary

	11 Conclusion
	11.1 What we have learned in this book
	11.2 Upcoming stable versions of DuckDB
	11.3 Aspects we did not cover
	11.4 Where can you learn more?
	11.5 What is the future of data engineering with DuckDB?

	appendix Client APIs for DuckDB
	A.1 Officially supported languages
	A.2 A word on concurrency
	A.3 Use cases
	A.4 Importing large amounts of data
	A.5 Using DuckDB from Java via the JDBC Driver
	A.5.1 Understanding the general usage pattern
	A.5.2 Using multiple connections from several threads
	A.5.3 Using DuckDB as a tool for data processing from Java
	A.5.4 Inserting large amounts of data

	A.6 Additional connection options
	Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	DuckDB in Action - back


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




