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1. INTRODUCTION3

siltsong is a code that takes in a scattering and absorbing medium and renders what it looks like against the mirrors4

of a telescope. It succeeds Project Bipolar, introducing Monte Carlo multiple scattering, physical units instead of5

intensity ratios, medium emissions, and many algorithmic optimizations. Among the optimizations is an improved6

peel-off method: at each scattering event, instead of peeling off a portion of the photon’s energy and directing it to7

the observer in situ, the simulation “deposits” the event’s pixel location and specific intensity, then performs a total8

to-observer radiative transfer at the end. As radiative transfer along the sight line of each pixel is only performed9

once1, siltsong is significantly faster than Project Bipolar.10

2. COORDINATE SYSTEMS AND THE SCATTERING MEDIUM11

siltsong inherits the coordinate systems of Project Bipolar:12

Coordinate System Description

(px: pixels, py: pixels, d: dw) A left-handed three-dimensional coordinate system in image
space with two axes for pixel location and one axis for depth.
The center of the image is aligned to the central source(s).
dw= view length/depth (see Table 2).

(u: cm, v: cm, w: cm) The observer’s Cartesian coordinates grounded in real
space, with the origin positioned at the central source(s)
of the object. The u and v axes are aligned parallel to px
and py defined in (px, py, d), while the w axis points from
the central source(s) to the observer.

(x: cm, y: cm, z: cm) The object’s Cartesian coordinates in real space. The origin
is positioned at the central source(s), the z-axis is in the
direction of the object’s axis of symmetry (if applicable),
and the y-axis is parallel to v and py respectively defined in
(u, v, w) and (px, py, d).

(r: cm, θ: radians, φ: radians) The spherical coordinate system also originating at the cen-
tral source(s). The z-axis is in the direction of the object’s
axis of symmetry, θ is the angle from the z-axis, and φ is
the angle from the x defined in (x, y, z).

Table 1. Descriptions of siltsong’s coordinate systems.

The scattering medium can be defined in any coordinate system, and coordinate transformations can be imported13

from the main siltsong package. To run the simulation, the medium must be transformed into both (x, y, z) and14

(r, θ, φ) before being passed to the siltsong.radiative transfer function.15

3. RADIATIVE TRANSFER16

Table 2 lists all the input parameters accepted by siltsong.radiative transfer. While the units in the table are17

expressed in the centimeter-gram-second (cgs) system, the siltsong.radiative transfer function operates correctly18

with any dimensionally consistent units (e.g., density spherical may be provided in units such as number of stars per19

1 In Project Bipolar, we calculate the optical depth for each sight line only once and store them in arrays; siltsong saves the array
reading time.
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cubic parsec). Importable functions such as siltsong.stars.blackbody return outputs in cgs units by default. A20

particularly convenient feature of siltsong is its ability to accept multiple components for the scattering medium. The21

six parameters that specify the medium in Table 2 (between rows density spherical and scattering phase function) can22

be passed as lists, allowing the specification of multiple components of the object’s medium with distinct properties.23

Table 2. Parameters of siltsong.radiative transfer.

Parameter Description

view length The physical distance represented by the side length of the
image in cm.

inclination degrees the angle between the object’s axis of symmetry and the
line of sight in degrees.

resolution the number of pixels along one side of the image.

central source the source function of the central source(s) in units of erg
s−1 sr−1 cm−2 cm−1.

density spherical a function or a list of functions specifying the density of the
medium with parameters r and θ. In the default convention,
the function outputs in units of g cm−3.

density cartesian a function or a list of functions specifying the density of
the medium with parameters x, y, and z. In the de-
fault convention, the function outputs in units of g cm−3.
density cartesian should describe the identical medium or
medium component as the corresponding density spherical.
Coordinate transformations can be imported from the main
siltsong package.

sca cm squared per g a value or a list of values representing the scattering
cross sectional area per quantity of scattering medium.
In the default convention accepted in units of cm2 g−1.
siltsong.dust contains functions that calculate this value
based on a given distribution (e.g. the MRN grain size
distribution).

ext cm squared per g a value or a list of values representing the extinction cross
sectional area per quantity of scattering medium. In the
default convention accepted in units of cm2 g−1.

source function a value or a list of values representing the source function
of the medium. In the default convention accepted in units
of erg s−1 sr−1 cm−2 cm−1.

scattering phase function a scattering phase function or a list of scattering phase
functions, with input parameter the angle in radians. The
Henyey-Greenstein scattering phase function can be im-
ported from siltsong.dust.

depth parameter specifying the number of grid units used by the
simulation in the direction of d.

depth substeps parameter specifying the number of steps used when inte-
grating within a grid unit in the direction of d. Radiative
transfer during multiple scattering uses the same step size.

distance steps parameter specifying the number of grid divisions the sim-
ulation uses to span a range of view length/2 in the r
direction.

distance substeps parameter specifying the number of steps used when inte-
grating within a grid unit in the direction of r.

theta steps parameter specifying the number of grid divisions the simu-
lation uses to span an angular range of π/2 in the θ direction.

phi steps parameter specifying the number of grid divisions the simu-
lation uses to span an angular range of π in the φ direction.

Continued on next page
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Table 2 – continued from previous page

Parameter Description

ms count parameter specifying the number of randomly sampled mul-
tiple scattering photons.

axisymmetry Default as “False”; if set as “True”, siltsong will enable
optimizations assuming the medium is axisymmetric with
respect to the z axis.

reflection symmetry Default as “False”; if set as “True”, siltsong will enable
optimizations assuming the medium is symmetric with re-
spect to the (x, y) plane.

include central source self Default as “True”; if set as “False”, the output image will
not contain direct emission from the central source(s).

3.1. Non-scattered central-originated photons24

siltsong considers emissions from both the medium and the central source(s). The specific intensity of the central25

source(s) is passed to siltsong.radiative transfer as the central source parameter. The simulation will first deposit26

an emission with specific intensity central source at p⃗0 = (px = int(resolution− 1)/2, py = int(resolution− 1)/2, d =27

int(depth− 1)/2) until peel-off is performed2:28

∆Iν, dep(px, py, d) = central source · δ3((px, py, d)− p⃗0) . (1)29

3.2. Singly-scattered central-originated photons30

For singly-scattered central-originated photons, we begin by considering directions with θ ranging from π/(2 ·31

theta steps) to π/2 sampled in uniform steps of ∆θ = π/(2 · theta steps). Given the axisymmetry and reflection symme-32

try of the object, we don’t sample in φ or where θ greater than π/2 here. With the initial specific intensity equal to the33

central source parameter, we perform radiative transfer using Eq. 2 along each of the sampled directions. This yields34

the central-originated (central source(s) + medium) specific intensity at locations within the medium sampled in uni-35

form steps of r from view length/(2·distance steps) to view length/2 with step size ∆r = view length/(2·distance steps).36

For this radiative transfer calculation we use Sν = source function, κν = ext cm squared per gmultiplied by the density,37

and ds = ∆r/distance substeps. κν, non-scattering is density multiplied by (ext cm squared per g− sca cm squared per g)38

since emission from scattered light is handled separately.39

dIν = −Iνκν ds+ Sνκν, non-scattering ds . (2)40

We now deposit the contributions of singly-scattered central-originated photons. For this step we have to consider41

the φ direction since the object’s axis of symmetry is tilted with respect to the line of sight. We sample in φ with from42

π/(2 ·phi steps) to π−π/(2 ·phi steps) with step size ∆φ = π/phi steps. Combined with the previously sampled θ, the43

differential specific flux intercepted by this area element is equal to the incoming specific intensity Iν, inc multiplied by44

the differential solid angle:45

dFν(r, θ, φ) = Iν,inc
(r sin θ dφ)(r dθ)

r2
= Iν,inc sin θ dθ dφ . (3)46

Intuitively, the sin θ factor compensates our non-isotropic sampling of directions: with uniform sampling in both θ47

and φ more photons are sampled near smaller θ. With the differential specific flux, the differential scattering optical48

depth between r to r + dr is given by ρκν, sca dr, where ρ is the density spherical function evaluated at the current49

location, and κν, sca = sca cm squared per g. Therefore, the fraction of scattered flux along a path of length ∂r is50

(1− e−ρκν, sca dr). The scattered specific flux contributed by the volume subtending ([r, r+dr], [θ, θ+dθ], [φ, φ+dφ])51

is thus given by:52

dFν,sca

dr dθ dφ
(r, θ, φ) = Iν,inc sin θ

1− e−ρ(r,θ,φ)κν,sca dr

dr
. (4)53

2 For computational convenience the actual deposit is done later in the code.
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The differential scattered specific intensity arises from the scattered flux multiplied by the scattering phase function.54

The scattering phase function is denoted as p(γ) in Eq. 5 with γ being the scattering angle toward the observer.55

dIν,sca
dr dθ dφ

(r, θ, φ) = Iν,inc sin θ · p(γ) · 1− e−ρ(r,θ,φ)κν,sca dr

dr
. (5)56

If we integrate this expression with respect to r, θ, and φ, we obtain the total in situ contributions of all the57

central-originated single-scattering trajectories:58

Iν, central-originated single-scattering =

∫∫∫
dIν,sca(r, θ, φ)

≃
Nr∑
i=1

Nθ∑
j=1

Nφ∑
k=1

dIν, sca
dr dθ dφ

(ri, θj , φk)∆r∆θ∆φ

=

Nr∑
i=1

Nθ∑
j=1

Nφ∑
k=1

Iν, inc(ri, θj , φk) · sin θj · p(γijk) ·
1− e−ρ(r,θ,φ)κν,sca dr

dr
∆r∆θ∆φ

≃
Nr∑
i=1

Nθ∑
j=1

Nφ∑
k=1

Iν, inc(ri, θj , φk) · sin θj · p(γijk) · (1− e−ρ(ri,θj ,φk)κν, sca ∆r)∆θ∆φ ,

(6)59

where Nr, Nθ, and Nφ are respectively distance steps, theta steps, and phi steps. Thus, for each of the (r, θ, φ)60

locations we simulate, we find the corresponding [px, px + 1 pixel], [py, py + 1 pixel], and [d, d + dw] region, and61

deposit at (px, py, d) an emission of62

∆Iν, dep(px, py, d) =

∫∫∫
Rpx,py,d

dIν, sca
dr dθ dφ

(r, θ, φ) dr dθ dφ

≃
∑

(r,θ,φ)∈Rpx,py,d

dIν, sca
dr dθ dφ

(r, θ, φ)∆r∆θ∆φ

≃
∑

(r,θ,φ)∈Rpx,py,d

Iν, inc(r, θ, φ) · sin θ · p(γ) ·
(
1− e−ρ(r,θ,φ)κν, sca ∆r

)
∆θ∆φ .

(7)63

For this expression in the simulation, the multiplicative factors are applied at separate locations to optimize com-64

putation time. The result after all deposits are completed is an array representing the specific intensity of emissions65

from first-scatterings, indexed by their pixel coordinates and depth.66

3.3. Medium-emitted photons and multiple scattering67

By now we have considered the contributions of non-scattered and singly-scattered photons with trajectories orig-68

inated from the central source(s). We have not accounted for multiple scattering trajectories originated from the69

central source(s), as well as any photons with trajectories not originated from the central source(s). These photons70

are computationally evaluated together in siltsong; they both involve randomly sampling locations and directions71

using the Monte Carlo method, and performing radiative transfer using Eq. 2 along those trajectories.72

Multiple scattering is performed in the (px, py, d) space: we denote the scattering points here as (pxi,j , pyi,j , di,j),73

where i is the ith sampled photon from 1 to ms count and j is the jth scattering from 1 to ∞. In the simulation, we first74

sample ms count points; for each of the sampled locations (pxi,1, pyi,1, di,1), we sample a random isotropic direction75

Ωi,1. We in turn sample a distance ri,1 to the succeeding scattering event uniformly between 0 and view length. This76

randomly sampled set of location, direction, and distance, acts both as a trajectory for the second (or third, fourth, ...)77

scattering of central-originated photons, and a trajectory for the first (second, third, ...) scattering of medium-emitted78

photons at the sampled location. Similar to Eq. 7, for the central-originated photons, we apply the scattering phase79

function to obtain the differential scattered specific intensity toward Ω from [pxi,1, pxi,1+1 pixel], [pyi,1, pyi,1+1 pixel],80

and [di,1, di,1 + dw]:81
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dIν, after preceding scattering

dpx dpy dd
(pxi,1, pyi,1, di,1) ≃

∑
r, θ, φ∈Rpxi,1,pyi,1,di,1

Iν, inc sin θ · p(α1) · (1− e−ρκν, sca ∆r)∆θ∆φ

1 pixel · 1 pixel · dw
,

(8)82

where α1 is the scattering angle. From here we numerically propagate the photons to the succeeding scattering event83

at (pxi,2, pyi,2, di,2) using Eq. 2 with ds = view length/(depth · depth substeps). This yields
dIν, before succeeding scattering

dpx dpy dd .84

At the succeeding scattering event, similarly to Eq. 5, we obtain the scattered specific intensity:85

dIν, sca
dpx dpy dd dΩ dr

(pxi,1, pyi,1, di,1, Ωi,1, ri,1) =
dIν, before succeeding scattering

dpx dpy dd
· (1− e−ρi,2κν, sca dr)

dr
· p(γi,1) , (9)86

with ρi,2 being the density evaluated at (pxi,2, pyi,2, di,2), and γi,1 being the scattering angle for the 2nd scattering87

event. Now, we estimate the total contributions for all photons that first scattered at (pxi,j , pyi,j , di,j) then scattered88

somewhere else by integrating Eq. 9:89

dIν, sca
dpx dpy dd

(pxi,1, pyi,1, di,1) =

∫∫
dIν, sca

dpx dpy dd dΩ dr
(pxi,1, pyi,1, di,1, Ω, r) dΩ dr

=

∫∫
dIν, before succeeding scattering

dpx dpy dd
· (1− e−ρκν, sca dr)

dr
· p(γ) dΩ dr

=
dIν, before succeeding scattering

dpx dpy dd

∫ 4π

0

∫ ∞

0

p(γ)
(1− e−ρ(pxi,1, pyi,1, di,1,Ω,r)κν, sca dr)

dr
dΩ dr

≃ dIν, before succeeding scattering

dpx dpy dd

(
p(γi,1)

∫ 4π

0

dΩ

)(
(1− e−ρi,2κν, sca ∆r)

∆r

∫ l

0

dr

)

≃ dIν, before succeeding scattering

dpx dpy dd
4πl · p(γi,1) ·

(1− e−ρi,2κν, sca ∆r)

∆r
,

(10)90

using ∆r = view length/(depth · depth substeps) and l = view length/2 to estimate the integral3. Now, the full in91

situ contributions from all the medium-originated trajectories and/or multiple scattering trajectories at all possible92

locations is given by:93

Iν, medium-originated and/or multiple scattering =

∫∫∫ ∞∑
jth scattering

dIν, sca
dpx dpy dd

(pxi,j , pyi,j , di,j) dpx dpy dd

≃
Nms∑
i=1

∆px∆py∆d

Nms

∞∑
j

dIν, sca
dpx dpy dd

(pxi,j , pyi,j , di,j) ,

(11)94

with Nms = ms count; ∆px = resolution, ∆py = resolution, and ∆d = depth have units pixels, pixels, and dw95

respectively. Therefore, for each sampled set of location (pxi,j , pyi,j , di,j), direction Ωi,j , and distance ri,j , we deposit96

at the location (pxi,j+1, pyi,j+1, di,j+1) an emission with97

∆Iν, dep =
∆px∆py∆d

Nms

dIν, before succeeding scattering

dpx dpy dd
4πl · p(γi,1) ·

(1− e−ρi,2κν, sca ∆r)

∆r
. (12)98

We repeat this process for ms count samples. For each sample we iterate through scattering count k until the next99

scattering event is more than view length away from the central source(s) (twice half side length of the bounding box).100

In that case we consider the photon has escaped the medium.101

3 A comment on the view length dependence here: in Eq. 10, the integral for the total scattering optical depth evaluates to infinity, and
we estimate it by sampling one differential scattering optical depth, and multiplying a distance. We use l = view length/2 because this is
the average randomly selected distance. Another choice could be to use l = 0.661707 ·view length, which is the average distance between
two randomly selected points within the bounding box. Any value that’s proportional to view length should be arguable, since the
scattering path length in general agrees to the size of the object, which in turn agrees to an appropriately chosen view length parameter.
However, this approximation can create bias depending on where the photon is scattered. If the photon is scattered at the edge of the
object and continues to travel out, the approximation drastically overestimates the path length. If the photon gets scattered inward
the path length is underestimated. With large numbers of photons sampled the bias should be linear and dependent on l and how well
view length represents the scattering path lengths within the object.
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3.4. Peel-off102

At this stage, siltsong has produced an array representing a set of sources (central source(s), singly- or multiply-103

scattered light) at each position p⃗ = (px, py, d) within the medium. Sources located at greater depth d lie behind104

those in the foreground. We perform radiative transfer along the direction defined by each pixel (px, py) in order to105

compute the specific intensity at depth d = 0 for each pixel. Starting from Eq. 2, we incorporate deposited scattered106

light sources when applicable:107

dIν(p⃗) = −Iνκν ds+ Sνκν, non-scattering ds+

Nms∑
i=1

∆Iν, dep, i δ
3(p⃗− p⃗ν, dep, i) . (13)108

This expression is integrated in the simulation from the maximum depth to depth zero with ds = view length/(depth ·109

depth substeps). The resulting Iν(px, py) at d = 0 represents the specific intensity observed in the direction of pixel110

(px, py) from a distant telescope. This final image can then be converted to units of photon flux or magnitudes, and/or111

convolved with a point spread function (PSF) as needed.112
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