1 Second Order Approximation

The following approximation is used when calculating integrals (secord order
Taylor expansion):
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Where for (x’, y’) being some point inside the region we will integrate over:
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2 General Polynomial Expansion

A general expression can be derived for the polynomial coefficients in the Taylor
expansion of the PSF function:
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Where: n =%+ j+k+ 1+ m and:
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Coo = S-D (14)
Cio = 2[(S+ D)z + Ky (15)
Cor = 2[(S—D)y+ Kz (16)

3 Imposing Limits on the Error in PSF Integrals

3.1 Constraining the Fractional Error in the Expansion

Let the difference between the approximation and the exact expression be de-
noted by As. Since a second order approximation is used, all terms satisfying
200+ 7+ k)+ 14+ m =< 2 from Equation ??7 are not present in Ay, while
everything else remains. The following splitting is useful:
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Considering each term separately:
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Where 6z and dy can be positive or negative. Similarly for the other terms,
getting:
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So finally we have:
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3.2 Subdividing Pixels in Order to Achieve a Desired Pre-
cision in the Integral

In order to figure out how finely to subdivide a pixel in order to achive a pre-
scribed precision, we will assume that the same number of subdividions (n) will
be performed in the x as in the y direction.

If the actual integral of the PSF over a pixel is denoted by I = [ PSFdA,
we wish to split a pixel into enough parts that the overall approximation of the
integral @) be within the less restrictive of some maximal fractional error €; and
some maximal absolute error ¢, of I.

Since:
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Imposing a fractional error limit just means v < €;. Imposing an absolute
error means that the sum of all absolute errors of each subdivision must be less
than ¢,. One simple and not terribly bad way of achieving this is simply to
require that the absolute error in each subdivision be no larger than e, /n?.

Letting v = max |PASF ’, we know
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So requiring that the absolute error in a particular subdivision be no larger than
€qa/n? translates to:
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Where @ is the approximated integral in a subdivision.
From Section 77, an upper limit as a function of the number of subdivisions
can be written as:
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Since subdividing a pixel into too many pieces at once will tend to severely
overestimate the error, it is better to limit the number of subdivisions to some
small number (n,,4,) and if more than that are required to consider each of
them separately as a pixel and estimate how much furth to subdivide.

This leads to a simple scheme of starting with n = 1 and incrementing n by
one until Eq. 7?7 produces an upper limit less than max {ef, (;2—“@) / (1 + né—‘bﬂ ,
Or Mypaz 1S reached. If the first condition is met, then the integral is directly
calculated on each subdivision, if the first condition is still not satisfied by
N = Nae the pixel is subdividid into 7,40 X Nmae pieces and each piece is
treated like a pixel, leading to further subdivisions.

3.3 Increasing the Expansion Order in order to Achieve a
Desired Precision in the Integral

From Equation 77 we have:
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If each of the terms above is split into some finite order polynomial approxima-
tion (S) and all remaining terms (A) we have:
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Since all the quantities approximated by the various S expansions are pos-
itive, with sufficiently high order approximation, all S expansions will also be
positive. From this it follows that that the error in the PSF approximation
(Arsix L) satisfies:
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So in order to derive an upper limit to the error in the PSF approximation
we need only derive upper limits to each A quantity.
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We will now require that the expansion be of high enough order to satisfy:
21 +2 > Cy022. Under this condition, the terms of the sum are monotonically
decreasing. This means that if we substitute (i + I + 1)! with (I + 1)k!, the
value of the sum will increase since even (positive) terms will be increased more
than the subsequent odd (negative) terms. So we end up with:
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The quantities Agg and Age due to the required minimum expansion order
are increasing functions of dx and Jy respectively. The rest clearly are also. So
a strict upper limit for the error in the integral can be found by using the largest
by absolute value dz and dy in the A quantities and integrating the remaining
S quantities in the expression for the error in the PSF estimation.

The expansion above is not a fixed order polynomial. Rather it indepen-
dently controls the order of each term in the expansion, which might be some-
what inefficient, but otherwise the A and S quantities couple and strict limits
to the integral are hard to derive in general.

4 The Following Most Probably Contains Many
Errors

By similar logic to Section the error in a polynomial expansion of order up to
N of the PSF satisfies:
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Actually a more stringent limit can be derived by writing directly the ex-
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pansion of the integral over the range x —dx < x < z+dzx, y—dy < y < y+dy:
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If we estimate the sum by only including i <=1, j <= J, k <= K, <= L and
m <= M, the following quantities can be used to calculate a strict upper limit
on the error made in the estimation:
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Above p is a vector of 5 values each of which can be either 0 or 1.
A strict upper limit to the error made by estimating the value of the integral
by only including the specified terms is given by:
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And the above sum with p = T is the estimate for I.
If instead of imposing independent limits on each index we wish to impose
a limit on the overall order (2N), the error in the integral satisfies:
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