
splicekit reference manual, November 2023

splicekit: a toolkit for splicing analysis from short-read RNA-seq
What is splicekit?
Installation
Quick start
splicekit.config

Core parameters
Sample annotation parameters
Genome specific parameters
scanRBP parameters
Processing parameters
Visualization and labeling parameters

Running splicekit
Annotation and comparisons: splicekit annotation (samples.tab)
Features count tables: splicekit features

What are features?
Feature data files

Running edgeR analysis on features: splicekit edgeR
Motif analysis: splicekit motifs
scanRBP
juDGE plots
JBrowse2 visualizations
Documentation and specifications

Genomic coordinates
File reference/junctions.tab
Files reference/donor_anchors.gtf and reference/acceptor_anchors.gtf
Files results/results_edgeR_{feature_type}.tab

General columns
Junction specific (additional) columns
Exon specific (additional) columns

Issues and Suggestions

splicekit: a toolkit for splicing analysis from short-read RNA-seq

An integrative platform for splicing analysis of RNA-seq short-read sequencing data. splicekit input are
read alignments in BAM format (look at datasets for details on how to run examples).

splicekit is a modular platform for splicing analysis of RNA-seq datasets. The platform also integrates an
JBrowse2 instance together with pybio for genomic operations and scanRBP for RNA-protein binding

splicekit Github: https://github.com/bedapub/splicekit

https://github.com/bedapub/splicekit/blob/main/datasets
https://github.com/grexor/pybio
https://github.com/grexor/scanRBP
https://github.com/bedapub/splicekit

Unset

Unset

splicekit reference manual, November 2023

studies. The whole analysis is self-contained (one single folder) and the platform is written in Python, in a
modular way.

What is splicekit?

From an initial config file (splicekit.config), sample annotation (samples.tab) and aligned reads in
BAM format, splicekit first defines comparisons (which test samples to compare to which controls). Next,
feature count tables are generated (exons, anchors, junctions, genes) based on defined comparisons.
Analysis incude edgeR alt-splice (differentially used features), motif analysis with DonJuAn
(junction-anchor) and DREME, RNA-protein binding enrichment analysis with scanRBP and clustering
analysis on expression of features. To facilitate result and data interpretation, splicekit also provides an
instance of JBrowse2.

Installation

The easiest way to install splicekit is to simply run:

pip install splicekit

Note that on some systems, pip is installing the executable scripts under ~/.local/bin. However this
folder is not in the PATH which will result in command not found if you try to run splicekit on the
command line. To fix this, please execute export PATH="$PATH:~/.local/bin" (and add this to your
~/.profile to make it run on every login). Another suggestion is to install inside a virtual environment
(using virtualenv).

To install splicekit directly from this repository:

pip install git+https://github.com/bedapub/splicekit.git@main

Quick start

To start the analysis with splicekit, you need the following:

1. install and process the reference genome of choice with pybio
a. if you installed splicekit with pip, then this will also install the pybio dependency
b. you can download and process your reference species genome with

i. example for Homo sapiens: pybio genome homo_sapiens
c. to search for other species, simply run pybio search species

2. aligned reads stored in BAM files (one file per sample)
a. you can simply align your FASTQ sequence files to the reference genome using the

provided example script for alignment; the scripts downloads the reference genome of
choice with pybio and aligns the reads with STAR

splicekit Github: https://github.com/bedapub/splicekit

https://virtualenv.pypa.io/en/latest/
https://github.com/bedapub/splicekit/blob/main/datasets/GSE221868/2_map.sh
https://github.com/bedapub/splicekit

splicekit reference manual, November 2023

3. samples.tab file: containing one line per sample; this file connects the BAM files to the
sample_id and also defines treatment; for an easier start, look at one of the provided samples.tab
in the datasets;

4. splicekit.config file: here you define basic splicekit parameters, like the reference genome,
the folder where BAM files are stored etc.; again you can start with one of the provided
splicekit.config files

There are four example folders in the dataset collection. Each of these folders contains a full set of scripts
to download and process publicly available RNA-seq datasets from scratch.

splicekit.config

Here we describe the parameters in the splicekit.config configuration file. We subset the parameters into
several tables, depending on their scope.

Core parameters

study_type, default = “my_study”
Descriptive short study name, arbitrary string describing the study.

library_type, default = “paired-end”
Possible values:

● “SECOND_READ_TRANSCRIPTION_STRAND"
● "FIRST_READ_TRANSCRIPTION_STRAND"
● "SINGLE_STRAND"
● "SINGLE_REVERSE"
● "NONE"

For unstranded data, we enter "NONE". For paired-end stranded data, the most common is
"SECOND_READ_TRANSCRIPTION_STRAND", which means the second read of the pair maps in the
transcript direction, and the first read maps in the reverse direction. For stranded single-end sequencing,
"SINGLE_STRAND" means the reads map in the transcript direction, and "SINGLE_REVERSE" means
the reads map on the opposite strand of the transcripts. Also for single-end unstranded we specify
"NONE".

Sample annotation parameters

sample_column, default = “sample_id”
This parameter tells splicekit which column to look for in the samples.tab file for sample IDs. BAM file
names are then constructed with sample_id.bam

treatment_column, default = “treatment_id”
Which column from samples.tab defines treatment (test and control labels).

control_name, default = “DMSO”
By which text control samples are identified in the treatment column in samples.tab. Non-control samples
are then compared to these marked controls.

splicekit Github: https://github.com/bedapub/splicekit

https://github.com/bedapub/splicekit/blob/main/datasets/GSE221868/samples.tab
https://github.com/bedapub/splicekit/blob/main/datasets/GSE221868/splicekit.config
https://github.com/bedapub/splicekit/blob/main/datasets/GSE221868/splicekit.config
https://github.com/bedapub/splicekit/tree/main/datasets
https://github.com/bedapub/splicekit

Unset

splicekit reference manual, November 2023

separate_column, default = “”
Separate comparisons by grouping samples on separate_column? Do not separate by default (empty
parameter ""). This is useful if, for example, you have samples from two different tissues (let’s say tissue
A and B), and you would only like to do comparisons inside each tissue (tissue A controls vs tissue A
treated samples, and another comparison with tissue B controls vs tissue B treated). By introducing a
column in samples.tab marking the tissue and providing the column name as the parameter for
separate_column, splicekit will only compare samples inside the same tissue in this example.

group_column, default = “”
Only include controls in the same “domain” with other samples. If, for example, the samples are coming
from sequencing on plate1, plate2 and plate3, then also only control samples from the same plates will be
considered for the comparison.

Genome specific parameters

species, default = None
Genome species, this is connected with pybio and Ensembl. In general, pybio knows about all the
genome species in Ensembl, however if you added your own custom species via pybio and a
FASTA+GFT file, this can also be specified here.

genome_version, default = “homo_sapiens”
Ensembl genome version or custom genome version, leaving None will take the latest Ensembl version.

bam_path, default = “bam”
The folder where BAM files are stored. These files will be used by splicekit and are expected to be named
with sample_id.bam. The folder location can be absolute or relative to the splicekit folder (the working
folder where you have your splicekit.config and samples.tab files).

scanRBP parameters

scanRBP, default = True
Should splicekit run the scanRBP part of the analysis? If True, it will be run, if False, it will be skipped.

protein, default = “TARDBP.K562.00”
This is the ID (name) of the protein PWM for scanning sequences identified as regulated by splicekit. To
see a list of proteins (and their PWM identifiers), you can run scanRBP search search_term. An
example for hnRNPA would be:

search for available protein PWM IDS for hnRNPA
scanRBP search hnRNPA

scan_id protein tissue description
HNRNPA1.HepG2.00 HNRNPA1 HepG2 heterogeneous nuclear ribonucleoprotein A1
HNRNPA1.HepG2.01 HNRNPA1 HepG2 heterogeneous nuclear ribonucleoprotein A1
HNRNPA1.HepG2.02 HNRNPA1 HepG2 heterogeneous nuclear ribonucleoprotein A1

splicekit Github: https://github.com/bedapub/splicekit

https://github.com/bedapub/splicekit

Unset

splicekit reference manual, November 2023

HNRNPA1.HepG2.03 HNRNPA1 HepG2 heterogeneous nuclear ribonucleoprotein A1
HNRNPA1.HepG2.04 HNRNPA1 HepG2 heterogeneous nuclear ribonucleoprotein A1
HNRNPA1.HepG2.05 HNRNPA1 HepG2 heterogeneous nuclear ribonucleoprotein A1
HNRNPA1.K562.00 HNRNPA1 K562 heterogeneous nuclear ribonucleoprotein A1
HNRNPA1.K562.01 HNRNPA1 K562 heterogeneous nuclear ribonucleoprotein A1
HNRNPA1.K562.02 HNRNPA1 K562 heterogeneous nuclear ribonucleoprotein A1
HNRNPA1.K562.03 HNRNPA1 K562 heterogeneous nuclear ribonucleoprotein A1
HNRNPA1.K562.04 HNRNPA1 K562 heterogeneous nuclear ribonucleoprotein A1

protein_label, default = “TDP43”
This is just a short descriptive label for the protein used. This label will be used in graphs, reports etc.

Processing parameters

platform, default = “desktop”
This parameter tells splicekit if to run jobs on a single computer (“desktop”) or to submit jobs to a LSF
cluster with bsub (“cluster”).

container, default = “”
Possible values:

● “” empty string, all software dependencies are expected to be installed on the machine / cluster
● “singularity run docker://ghcr.io/bedapub/splicekit:main”

If left empty, splicekit will assume you have all software dependencies installed on your machine or
cluster. An alternative is for you to have singularity available and you would then set the container
parameter to “singularity run docker://ghcr.io/bedapub/splicekit:main”. This will then
automatically download and import a Docker image that we provide and run all software (except pybio
and scanRBP, which are already installed as dependencies via pip) from this imported container.

Visualization and labeling parameters

short_names, default = “[]”
By default, no names are shortened or replaced in the results and processing steps of splicekit.
However, sometimes it is convenient to replace long strings with shorter identifiers. This is possible by
providing a list of triples which represent rules for replacing / shortening names.
Example: [("cell_line_A", "A", "complete")], this would only replace cell_line_A with A if
cell_line_A is the whole string, if you specify "partial", also strings like ...cell_line_A... would
be replaced with ...A...

example splicekit.config short_names parameter
replace cell_line_A with A

splicekit Github: https://github.com/bedapub/splicekit

https://github.com/bedapub/splicekit

Unset

splicekit reference manual, November 2023

replace cell_line_B with B
short_names = '[("cell_line_A", "A", "complete"), ("cell_line_B", "B",
"complete")'

After setting the basic parameters in your splicekit.config file, simply run splicekit process inside the folder
with your config file. This will run all available analysis on your dataset.

Running splicekit

For example files (splicekit.config and samples.tab) please look in the datasets folder.

If you have a folder with splicekit.config and samples.tab, a comprehensive run of all analysis is
incorporated in a single splicekit command: splicekit process. Each analysis step can be run
separately by a single splicekit command.

splicekit process # runs all analysis
splicekit setup # initializes folder structure
splicekit annotation # loads samples.tab annotation and creates comparisons
splicekit features # prepares count tables in data/* folders
splicekit edgeR # runs edgeR analysis on the cluster
splicekit motifs # runs motif analysis together with scanRBP
splicekit promisc # runs promisc analysis from edgeR results
splicekit judge # generates juDGE plots
splicekit clusterlogfc # generates cluster of pair-wise logFC comparisons
splicekit jbrowse2 # starts JBrowse2 visualization with local web server
splicekit report # creates html report in folder report
splicekit version # prints out current version

Annotation and comparisons: splicekit annotation (samples.tab)

This first step of the analysis (splicekit annotation) loads samples from the file samples.tab. It also
considers the treatment_column, control_name, group_column and separate_column to create
comparisons. Each treatment (can have several replicates / samples / readouts) is compared to the
controls. The comparisons are stored in the file annotation/comparisons.tab.

Note: the file samples.tab is TAB delimited.

sample_id treatment_id
sample1 control
sample2 control
sample3 test1
sample4 test1

splicekit Github: https://github.com/bedapub/splicekit

https://github.com/bedapub/splicekit/tree/main/datasets
https://github.com/bedapub/splicekit

Unset

splicekit reference manual, November 2023

sample5 test2
sample6 test2

splicekit would then expect BAM files with names sample_id.bam to be present (sample1.bam,
sample2.bam, etc.) in the folder bam_path parameter specified in the splicekit.config file.

The created comparisons will by default compare treated samples to control samples. The comparisons
are also stored in a tab delimited file (annotation/comparisons.tab), for the above example:

comparison compound_samples DMSO_samples
test1_control sample3_test1,sample4_test1 sample1_control,sample2_control
test2_control sample5_test2,sample6_test2 sample1_control,sample2_control

In addition, this step will also create processing shell scripts and cluster job files (jobs/*). An example
cluster job file:

#!/bin/bash

#BSUB -J edgeR_junctions_sample1 # job name

#BSUB -n 4 # number of tasks

#BSUB -R "span[hosts=1]" # 1 host

#BSUB -q short # select queue

#BSUB -o logs_edgeR_junctions/sample1_control.out # output file

#BSUB -e logs_edgeR_junctions/sample1_control.err # error file

ml R

R --no-save --args splicekit comparison_junctions_data junctions control test

... < comps_edgeR.R

Features count tables: splicekit features

Running splicekit features will create count tables for junctions, anchors, exons and genes.

What are features?

splicekit operates with 4 types of features: junctions, anchors, exons and genes. All feature IDs have
the same format: chrstrand_start_stop. An example would be chrX-_154371360_154374505. Please
check genomic coordinates for an explanation of how we report genomic coordinates across splicekit.

Feature data files

In the folders data/sample_{feature_type}_data, each individual file (table) contains the list of all
features and the count for the individual sample.

splicekit Github: https://github.com/bedapub/splicekit

https://github.com/bedapub/splicekit

splicekit reference manual, November 2023

Example file would be data/sample_exons_data/sample_99.tab:

GeneID Start End Length Symbol 1_test 2_test 3_control 4_control
1 58347029 58347353 325 A1BG 42 31 109 75
1 58347640 58350370 2731 A1BG 0 0 3 1
1 58350651 58351391 741 A1BG 0 0 10 1

Running edgeR analysis on features: splicekit edgeR

Running edgeR analysis on features (junctions, anchors, exons, genes) consist of simply running
splicekit edgeR.

Results are stored in the files results/results_edgeR_{feature_type}.tab where feature_type is one
of ["genes", "exons", "junctions", "donor_anochors", "acceptor_anchors"]. Only results with
FDR<splicekit.config.edgeR_FDR_thr are reported (sorted by FDR), linked to JBrowse2 with URL
links.

To explore all results (no FDR filters), look at files: results/results_edgeR_{feature_type}_all.tab.

Motif analysis: splicekit motifs

Motif analysis on donor site patterns (9nt sequences) is performed on the top 100 hits for each
comparison. The analysis is run by splicekit motifs. Html reports are generated at results/motifs. In
addition to computing motif logos, we run DREME on regulated sequences vs. controls.

scanRBP

The RNA-protein binding analysis is run as part of the motif analysis above: to identify potential
enrichment of RNA-protein binding at regulated sites (donor sites, acceptor sites, other areas), we
developed and integrated scanRBP with splicekit.

Once we identify sets of control and regulated sequences, we compute log-odds of the binding signal for
a specific protein of interest from its PWMs. Performing bootstraps on the sequence labels, we can
estimate the probability the binding at regulated sequences is different from the control binding (log-fc of
the binding signal).

scanRPB is integrated with splicekit and can also be used separately as an individual package (pip
install scanRBP).

juDGE plots

To determine the effect of a treatment (more involved in gene expression changes in general or more
involved in splicing changes) we can generate juDGE plots (junction logFC vs. gene logFC). These plots
are stored in results/judge/* and contain PNG images and also html interactive plotly reports (mouse
over shows data and gene name).

splicekit Github: https://github.com/bedapub/splicekit

https://github.com/grexor/scanRBP
https://github.com/bedapub/splicekit

Unset

splicekit reference manual, November 2023

In the plot above, the left panel represents a comparison where the compound causes mostly changes in
junctions of several genes (y axis) and junctions are much more perturbed compared to gene expression
in general (activity on the x axis). This compound would be characterized as a "splicing modifier".

In contrast, the comparison on the right panel shows more activity on changing gene expression in
general (x axis). The compound involved would be labeled as an "expression modifier".

JBrowse2 visualizations

To graphically explore results, splicekit provides an integrated JBrowse2 wrapper. There are two steps in
providing JBrowse2 visualizations:

process JBrowse2 files (genome, BAM, etc.)
splicekit jbrowse2 process

start local web server with created JBrowse2 config file
splicekit jbrowse2 start

note: running "splicekit jbrowse2" will run both steps above
note: running "splicekit process" also runs jbrowse2 steps

splicekit jbrowse2.

Documentation and specifications

Genomic coordinates

All genomic coordinates splicekit operates with are 0-based left+right inclusive. E.g. the range 100-103
would include coordinates 100, 101, 102 and 103. The first coordinate is 0. More specific details:

splicekit Github: https://github.com/bedapub/splicekit

https://github.com/bedapub/splicekit

splicekit reference manual, November 2023

● feature specific: all feature coordinates (junctions, anchors, exons) are given in a numeric sort
order regardless of strand (feature_start is always < feature_stop). Example chr1+_100_102
would represent a junction spanning coordinates [100,101,102]). Example chr1-_100_102 would
represent a junction spanning coordinates [102,101,100])

● junction specific: junction coordinates cover/overlap 1-nucleotide of adjoining exons. Example
1: chr1+_100_200 represents a junction on chromosome 1 (+ strand) from [100..200]. 100 is the
last nucleotide of the upstream exon and 200 is the first nucleotide of the downstream exon.
Example 2: chr1-_100_200 represents a junction on chromosome 1 (- strand) from [100..200].
200 is the last nucleotide of the upstream exon and 100 is the first nucleotide of the downstream
exon.

Important

Refseq and Ensembl GTF files are 1-indexed. When splicekit reads files from refseq/ensembl, it performs
coordinate -= 1 on all coordinates to keep this in line with other internal coordinate structures (which
are all 0-indexed).

File reference/junctions.tab

This file contains all the junctions detected from all the samples in the project. Only junctions that could be
annotated to genes are reported. However, "novel" junctions (that do not touch refseq/ensembl annotated
exons) are also reported, as long as the start and stop of the junction falls inside an annotated gene (see
annotated column).

junction_id, example = "chr1+_17741_17839"
Unique ID of the junction in format: chrstrand_start_stop.

donor_anchor_id, example = "chr1+_17725_17740"
Matching donor_anchor_id, by default 15nt region upstream of junction start.

acceptor_anchor_id, example = "chr1+_17840_17855"
Matching acceptor_anchor_id, by default 15nt region downstream of junction stop.

gene_id, example = "ENSG00000120948"
Ensembl or Refseq gene_id; note that a junction can be non-annotated (column annotated!="AA") but still
assigned to a gene, meaning its start and stop are inside the gene.

gene_name, example = "TARDBP"
Corresponding to gene_id.

chr, example = "1"
Chromosome of the junction and anchors.

strand, example = "+"
Strand of the junction and anchors. Either + (plus) or - (minus).

annotated, example = "AA"

splicekit Github: https://github.com/bedapub/splicekit

https://github.com/bedapub/splicekit

splicekit reference manual, November 2023

Two letter code: AA / AN / NA / NN; first letter related to donor site (5' of junction), second letter related to
acceptor site (3' of junction); A = annotated (touches annotated exon), N = not annotated

count, example = "553"
Integer raw count of all reads across all samples in the project that support the reported junction.

Files reference/donor_anchors.gtf and reference/acceptor_anchors.gtf

GTF files generated from all the donor/acceptor anchors in the reference/junctions.tab file. These
GTF files are then used by featureCounts to create tables of counts for anchors across project samples.

Files results/results_edgeR_{feature_type}.tab

The general structure of the edgeR results files for all features is the same, with specific columns added
for specific features (see below the table for further details). Results are filtered by
splicekit.config.edgeR_FDR_thr.

General columns

result_id, example = "r1"
r_int identifier of result, starts with 1

comparison, example = "test_control"
Name of the comparison, taken from annotation/comparisons.tab.

compound, example = "treatment1"
Name of the treatment / compound tested.

feature_id, example = "chr1+_17741_17839"
The ID of the reported feature. Could be: gene_id / exon_id / junction_id / [donor, acceptor]_anchor_id

chr, example = "1"
Chromosome of the feature.

strand, example = "+"
Strand of the feature. Either + (plus) or - (minus).

feature_start, example = "17741"
Start of feature (numerically, start always < stop), also see genomic coordinates.

feature_stop, example = "17839"
Stop of feature (numerically, stop always > start), also see genomic coordinates.

feature_length, example = "250"
Length of feature (feature_stop - feature_start + 1).

gene_id, example = "ENSG00000120948"
Ensembl or Refseq gene_id.

splicekit Github: https://github.com/bedapub/splicekit

https://github.com/bedapub/splicekit

splicekit reference manual, November 2023

gene_name, example = "TARDBP"
Corresponding to gene_id.

sum_feature_test, example = "1000"
Sum of counts for this feature across all test samples.

sum_feature_control, example = "1000"
Sum of counts for this feature across all control samples.

jbrowse_loc, example = "3:342321..351243"
Genomic region that will be displayed in JBrowse.

jbrowse_url, example = ""
Link to JBrowse view.

logFC, example = ""
log fold change, reported from edgeR.

exon.F, example = ""
exon.F, reported from edgeR.

p_value, example = ""
p_value, reported from edgeR.

fdr, example = ""
false discovery rate, reported from edgeR.

Adding to the above column table, there are additional columns present, depending on the feature.

Junction specific (additional) columns

annotated, example = "AA"
Two letter code: AA / AN / NA / NN; first letter related to donor site (5' of junction), second letter related to
acceptor site (3' of junction); A = annotated (touches annotated exon), N = not annotated.

donor_anchor_id, example = ""
ID of the donor_anchor, associated / linked to this junction.

acceptor_anchor_id, example = ""
ID of the acceptor_anchor, associated / linked to this junction.

UTR, example = ""
Contains text first_exon_{start_pos}, if the junction touches any first exon of any transcript of the gene.

Exon specific (additional) columns

delta_PSI, example = ""

splicekit Github: https://github.com/bedapub/splicekit

https://github.com/bedapub/splicekit

splicekit reference manual, November 2023

Value for test_PSI-control_PSI, percentage spliced-in.

Issues and Suggestions

Use the GitHub repository issues page to report issues and leave suggestions.

splicekit Github: https://github.com/bedapub/splicekit

https://github.com/grexor/pybio#issues-and-suggestions
https://github.com/grexor/pybio/issues
https://github.com/bedapub/splicekit

