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Abstract

Purpose Ecoinvent applies a method for estimation of default
standard deviations for flow data from characteristics of these
flows and the respective processes that are turned into uncer-
tainty factors in a pedigree matrix, starting from qualitative
assessments. The uncertainty factors are aggregated to the
standard deviation. This approach allows calculating uncer-
tainties for all flows in the ecoinvent database. In ecoinvent 2
the uncertainty factors were provided based on expert judg-
ment, without (documented) empirical foundation. This paper
presents (1) a procedure to obtain an empirical foundation for
the uncertainty factors that are used in the pedigree approach
and (2) a proposal for new uncertainty factors, received by
applying the developed procedure. Both the factors and the
procedure are a result of a first phase of an ecoinvent project to
refine the pedigree matrix approach. A separate paper in the
same edition, also the result of the aforementioned project,
deals with extending the developed approach to other proba-
bility distributions than lognormal (Muller et al.).
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Methods Uncertainty is defined here simply as geometric
standard deviation (GSD) of intermediate and elementary
exchanges at the unit process level. This fits to the lognormal
probability distribution that is assumed as default in ecoinvent
2, and helps to overcome scaling effects in the analysed data.
In order to provide the required empirical basis, a broad
portfolio of data sources is analysed; it is especially important
to consider sources outside of the ecoinvent database to avoid
circular reasoning. The ecoinvent pedigree matrix from ver-
sion 2 is taken as a starting point, skipping the indicator
“sample size” since it will not be used in ecoinvent 3. This
leads to a pedigree matrix with five data quality indicators,
each having five score values. The analysis is conducted as
follows: for each matrix indicator and for each data source,
indicator scores are set in relation to data sets, building groups
of data sets that represent the different data quality indicator
scores in the pedigree matrix. The uncertainty in each of the
groups is calculated. The uncertainty obtained for the group
with the ideal indicator score is set as a reference, and uncer-
tainties for the other groups are set in relation to this reference
uncertainty. The obtained ratio will be different from 1, it
represents the unexplained uncertainty, additional uncertainty
due to a lower data quality, and can be directly used as
uncertainty factor candidates.

Results and discussion The developed approach was able to
derive empirically based uncertainty factor candidates for the
pedigree matrix in ecoinvent. Uncertainty factors were obtain-
ed for all data quality indicators and for almost all indicator
scores in the matrix. The factors are the result of the first
analysis of several data sources, further analyses and discus-
sions should be used to strengthen their empirical basis. As a
consequence, the provided uncertainty factors can change in
future. Finally, a few of the qualitative score descriptions in
the pedigree matrix left room for interpretation, making their
application not ambiguous.
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Conclusions and perspectives An empirical foundation for
the uncertainty factors in the pedigree matrix overcomes
one main argument against their use, which in turn
strengthens the whole pedigree approach for quantitative
uncertainty assessment in ecoinvent. This paper provides
an approach to obtain an empirical basis for the uncer-
tainty factors, and it provides also empirically based
uncertainty factors, for indicator scores in the pedigree
matrix. Basic uncertainty factors are not provided, it is
recommended to use the factors from ecoinvent 2 for
the time being. In the developed procedure, using GSD
as the uncertainty measure is essential to overcome
scaling effects; it should therefore also be used if the
analysed data do not follow a lognormal distribution. As
a consequence, uncertainty factors obtained as GSD ratios
need to be translated to range estimators relevant for these
other distributions. Formulas for this step are provided in a
separate paper (Muller et al.). The work presented in this paper
could be the starting point for a much broader study to provide
a better basis for input uncertainty in LCA, not only in
ecoinvent.

Keywords Data quality - Ecoinvent database - Empirical -
Pedigree approach - Uncertainty - Uncertainty factors

1 Introduction

The pedigree matrix was introduced to uncertainty analyses
by Funtowicz and Ravetz in 1990, as a means to code qual-
itative expert judgement for a set of problem-specific “pedi-
gree criteria” into a numerical scale, incorporating criteria
such as columns of the table, the numerical codes as table
lines, and linguistic descriptions for each value in each cell of
the table. The basic aim originates from qualitative descrip-
tions of relevant aspects of an object of study with quantitative
figures assessing these aspects. The matrix thus is a tool for
“coding” qualitative assessment descriptions. Both rating
scale and criteria shall be selected according to the needs of
the object of study. There is no further formal requirement on
the structure of the matrix. For example, van der Sluijs
et al. (2003) present three different applications with
indicator scores from 0 to 4 and 0 to 2, and with 4, 39, and 7
criteria.

Weidema and Wesnas (1996) transferred the pedigree ma-
trix to Life Cycle Assessments; their matrix is square, with a
rating scale from 1 to 5 and with five criteria. In 1998
Weidema published a slightly modified version based on a
multi-user test of the initial matrix (Weidema 1998). It became
widely acknowledged and was modified by some authors (e.g.
Ciroth et al. 2002). One important application example is the
ecoinvent database (yet in a slightly modified form,
Frischknecht et al. 2005).

Table 1 shows the pedigree matrix that is proposed in
ecoinvent version 3.0, which largely reverts to the Weidema
(1998) version.'

In the original literature, the pedigree matrix “produces”
numerical codes from expert judgement (Funtowicz and
Ravetz 1990); in ecoinvent, the codes are numerical values,
as indicator scores, ranging from 1 to 5 for each of the
indicators in the matrix. For calculating the overall uncertain-
ty, the pedigree matrix results in ecoinvent are also not taken
directly, but after a transformation using the following
Table 2—the values in this transformation table never exceed
2, and are mostly below 1.5. For ecoinvent 3.0, the same
values are applied.

2 Methods
2.1 Uncertainty

Uncertainty in LCA can be defined in various ways. For our
paper, we are interested in “translating” uncertainty that is
specified on an ordinary scale, in the pedigree matrix, into
quantitative uncertainty. In this context, uncertainty will be
understood as follows:

Uncertainty means, basically, lack of certainty. The lack of
certainty depends on the level of detail that is taken into
account. Let us look at an LCA-related example, the amount
of fertiliser used by farmers. With data sets for several farmers,
and potentially also over a certain time interval, the amount
will vary, and the exact amount used in a specific farm will be
known precisely. The amount of fertiliser used is uncertain.
This uncertainty will be lower, if we know in addition:

 the time interval covered

+ the size of the farms

* the type of farm, their products

+ the geographical area where the farm is located

+ the (micro-)climate where the farm is located

» the management type of the farm (e.g. organic farming.)
+ the farming background and expertise of the farmers

e eftc.

The uncertainty in the amount of fertilizer thus can in part
be “explained” by those details (the parameters listed above).
This links directly to the concept of “explained variation” or
“explained variance” in statistics (Kent 1983). The more

! This version is different from the version that was in use in ecoinvent
2.0 and 2.1 (Frischknecht et al. 2004, p. 45)—in the old version, several
scores were not used, for example 2 for ‘technological correlation’, and
the properties of aspects (the entries in the cells) were sometimes worded
differently, and a sixth criteria “sample size” was introduced, which is
now removed again, with the argument that the influence of the sample
size is already included in the basic uncertainty.

@ Springer



Int J Life Cycle Assess (2016) 21:1338—1348

1340

'€ 10 7 9q P[nom 2100S

ay) ‘suondumnsse uo Aued paseq st uoHE[NOLEd 3y) J] “(SINdul PaINsesW “5'3) SUSLUAIMSLAU ST UOHEINI[ED 10§ SISEQ Sy UAYM “(ANABOE UE 0} sIdul WO P3Je[no[ed SUOISSIWS “5°3) BJep Paje[no[ed sapnjouf

SO0INOS JOYIO YA SHIIYD-SSOID JO SIOUB[Rq SSBW YSNOIY) ‘Uone[noesdr Aq ‘Surjooyo os-uo £q 'S0 ‘skem [e10Ads ur ooe[d oxe) Aewl UOEOILIOA ,

A3ojoutoa}
JUQIOPIP WO] L0
9[eds A1ojeroqe| uo
Sassa001d paje[al uo eje(
(1SS Jo peaysur
adomg-gDgo 9seqd
SIPPIA JO peajsul
BOLIOWTY [HON]) BOIR
JUQISQIP Apounsip
A0 UMOUNUN WOl Bl
josejep oy Jo porrod
ouI) 9y} 0} QOUISHIP
Jo s1eak G ueyy erow
IO umou[un eyep Jo a3y
sporrad 1910ys
woly pup SoYS Jo
JIoqUINU [[EWS & WOIJ
BJEp JO UMOwUN

S[eLIojeW 10
sassaoo1d pajefar uo eje(q

suonIpuod uononpoid IefruIs
APySI[s yim eare woiy eje(

josejep oy Jo porad owm oY) 0}
QOUDIQYIP JO SIBOA GT UBY) ST

spowad 13)10ys woxj
Jnq SIS QWOS .10 PIIIPISUOD
JONIBW O} JOJ JUBAJ[AI IS AUO

KSo1outo0) JULISHIP
woyj ApnJs Iopun S[eLIojew
pue sassado1d woIy el

suonipuod uononpoid
Je[IWIS (PIM BAIR WOL eI

j088IEp Y} JO
pouad awn 9y 0} SOULIIYIP
JO s189K (O] uBY SSOT
sporrad 1910ys
woy Ing sas Jo 9% 0S<
0 PAIOPISUOD JONIBW J} O]
JUBAJ[AI (9, (0S>) PANS dWOS

sosLdIo)U JUISYIP WOy Jng

(ASo1ouyo9) eONIUAPI "9°T) ApNys Jopun

S[eLIdjeW pue sassaoold woy eeq

papnout st Apnys
JIopun eaIe dy) YoIym Ul
BOIR I031B] WOIJ BJEp 9FRIOAY

joserep oy Jo pouad owm Ay Jo
QOULIQPIP JO SIBIA 9 UBY) SS9

SUOT)ENION[J [EULIOU JNO UAAD 0}
pouad ayenbape Ue J9A0 ‘PISPISUOD
JONIBW O JOJ JUBAJ[DI SIS AU} JO

Apnys 1opun
S[eLIdRW pue $3583001d UONR[ALI0d
‘sosudiojue woy ejeg [eda130[0Uy99) Iy

Apmjs 1opun eoIe wolj ele§  UoONe[aLI0d [edrydeioon

joserep oy Jo porad
au 9y} 0} AUAIIP

JO s1eaA ¢ ueY) SSOT uone[awod Jerodway,

suonenonyy
[ewIOU JNO UAD porad
ojenbope ue I9A0 ‘PaIoPISUOD
JONIBW O} JOJ JUBAJ[DI PAIS

ssouoAnBIuasaIday AJuo woy ejep oAneuasaIday  AJuo woy ejep dAnejuasadoy % 0S< WoIj ejep dAnejuasaidoy [[e woyy elep 2AneIuasaIday ssauajordwo))
S)USUAINSBIW UO Paseq elep
(312dxa TRINSnpur £q 3-9) sojewms? pagienb uo paseq PayLIRA-uoU 0 suondunsse GSluswamseau
arewmss payifenb-uoN drewnss payirend) Apied e1ep payJLISA-UON uo paseq Apired erep payyLIOA Uo paseq Blep PIYLIOA Anpiqery
(meyop) ¢ ¥ € 4 1 9109S JOJRIIPU]

Xuew 9131pad ()¢ JUSAUIOdT | J[qeL

pringer

Qs



Int J Life Cycle Assess (2016) 21:1338-1348

1341

Table 2 “Default uncertainty factors (contributing to the square of the
geometric standard deviation) applied together with the pedigree matrix”
(Frischknecht et al. 2004, p 46)

Indicator score 1 2 3 4 5

Reliability 1.00 1.05 1.10 120 1.50
Completeness 1.00 1.02 1.05 1.10 1.20
Temporal correlation 1.00 1.03 1.10 120 1.50
Geographical correlation 1.00 1.01 1.02 1.10
Further technological correlation  1.00 120 150 2.00
Sample size 1.00 1.02 1.05 1.10 1.20

parameters are precisely known, the lower the uncertainty
(Fig. 1).

This understanding of uncertainty is a bit broader than the
distinction into systematic and random uncertainty, or system-
atic and random errors, that is quite common in LCA (e.g.
Ciroth et al. 2004): Depending on the level of detail and
knowledge, a certain deviation from a true value is either
explained by additional parameters or not, and it is therefore
either a systematic deviation (if the parameters responsible for
the deviation are known) or not.

2.2 What does “empirical” mean?

Empirical is defined here as “derived from experiment and
observation rather than theory and expert guesses”, expanding
thereby a definition given by the Princeton Wordnet database.

Own experiments were not possible during this project; the
aim is therefore to compare data to measurements available
from literature or from own sources, where possible. Any
parameters used in these measurements will need to be con-
sidered in this comparison, as explained in the uncertainty
section, 2.1.

2.3 Analysed data sources

As a summary, the following sources were analysed, for the
different indicators in the pedigree matrix:

Reliability: the German GEMIS database (www.gemis.
de) and their investigation in a “validation” project
(Ciroth 2009a, b; Ciroth and Weidema 2009), non-LCA
sources (EPER 2010), measurement data (Lundie et al.
2004).

Completeness: sources about the representativeness of
LCA data (and of related data outside of the LCA do-
main), e.g. again, (Ciroth and Srocka 2008),

2 Wordnet defines empirical as “derived from experiment and observation
rather than theory”, http://wordnetweb.princeton.edu/perl/webwn?s=
empirical.

uncertainty

# of parameters

Fig. 1 General relation between uncertainty and the number of known
parameters: the more parameters are known, the lower the uncertainty

investigations about representative means of transport
and energy systems (TREMOD 2010; ZSE 2010).
Temporal correlation: Emission inventories, such as the
German ZSE system, eurostat and US statistics (Census
2010; Eurostat 2010), and also in part the PRTR system
(PRTR 2010), have data sets over several years that allow
time series analyses that were taken into account.” Several
national statistics, including the North American Trans-
port statistic, were also considered.

Geographical correlation: Comparison of transport
emissions of the same or very similar transportation ve-
hicles from different regions (Tremod database and again
the North American Transport database); differences in
electrical grids for different regions, in different
databases.

Further technological correlation : Solar cell comparison
from the GEMIS database as available in ProBas
(2010), for transport data sets from the Tremod data-
base and from the GREET model (GREET 2009).

Especially for geographical correlation, correlations (in the
statistical sense) with other attributes need to be considered;
the factor used for geographical correlation should only reflect
those aspects that are indeed caused by geographical differ-
ences. Little influence of geography is expected by specifical-
ly described technical processes (emissions of a car with
Euro4 emission category, for example, will barely depend on
where it is operated). Differences will rather occur due to
different technologies that are used and not specified, or a
different geographical background—sulphur content in
coal—that is not specified. Higher influence is therefore ex-
pected for average processes (average emissions for heavy
truck transport, etc.). The uncertainty is applied at the level of
individual exchanges, and therefore further uncertainty on
aggregated process levels e.g. can (and should) be left out
of consideration.

3 See, e.g. http://www.epa.gov/ttn/chief/conference/eil 1/datamgt/doring.
pdf for an analysis of German ZSE data in this respect.

@ Springer
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Figure 2 shows the different data sources that were used for
analysing the pedigree indicator scores.

2.4 Dealing with scaling effects in data

For the computation of data ranges and for characterising
the “spread” in data values, the standard deviation or
the variance are often used. The standard deviation is
the square root of the variance; it is the parameter in the
normal probability distribution that describes the spread in
underlying data, and it is commonly used in random error
analyses.

For the analysis of uncertainty, the standard deviation
seems therefore an ideal candidate. It has, however, the dis-
advantage of depending on the scale of data, in a linear
manner. Recall that for the variance Var(X) holds, with X
being a random variable, and ¢ and b being constants:

Var(aX + b) = a’Var(X).

For the standard deviation SD holds, respectively:
SD(aX + b) = aSD(X)

This means that a constant factor that is applied to
all analysed data values changes the standard deviation
by the same factor. This may happen if, for example,
data is given in gramme instead of kilogramme; all
values will be multiplied by a constant factor of
1,000, and the resulting standard deviation will also
increase by a factor of 1,000. This is of course unde-
sirable for the development of generic uncertainty fac-
tors by analyzing data from different sources, since data
may have different units; it is also undesirable for the
later application of the factors, which should as best as
possible be independent from the measurement units of
data. At best, the developed factors should represent
only the spread in data, independent from the scale of data
in one sample. The factors should therefore be independent
from scaling effects.

Indicator 1 2
score

4 5 (default)

Reliability

based on measure-
ments

e — _ _ ___lTornorverniea aata - |

Completeness | F

Temporal cor- :

» | Representativeness
unknown or data from
a small number of

)
1
]
1
1
| sites and from shorter
: periods

:

4

Further tech-
nological cor-
relation

relation | gumooocc e nn
Geographical ata from area under | Average data f m area with Data from area with
correlation larger area in wi ‘oduction con- | slightly similar produc-

. GREET Model

Data from unknown or

distinctly different area
ion conditions (North America in-
stead of Middle East,
OECD-Europe instead

of Russia)

Fig. 2 Data sources taken into account for the different pedigree matrix indicator scores
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Fig. 3 Data groups for a data set age of data

that is supposed to relate to 2010

pedigree score, analysed part of data

1995

pedigree score definitions

1 data less than 3 years difference to the time period of the data set

2 data less than 6 years difference to the time period of the data set

3 data less than 10 years difference to the time period of the data set

4 data less than 15 years difference to the time period of the data set

5 age of data unknown or more than 15 years difference to the time period of the data set

The current project investigated data sets that contain
amounts of input and output flows for technical processes,
similar or identical to data sets that are used for life cycle
inventories. There are three main reasons for scaling effects in
these data sets:

1. data may not be provided per quantitative reference, i.e.
not per product unit; this requires a transformation of the
data, for example from absolute emission figures of an
industrial plant to “per kilogramme product” emission
figures

2. if a quantitative reference is given, it may differ from one
data set to another (1,000 m” for one data source or group
of data; 1 m? for another)

3. data may simply be provided in different units
(kilogramme emissions vs. emissions in grams)

In order to overcome the scale dependency, the geometrical
standard deviation (GSD) is used as a measure for uncertainty.

It is defined as
: 2
()
n = xg

with X, = 4/ Il x;, the geometric mean of x

GSD(x) = exp

GSD has the convenient property that linear factors in data
“disappear”:

GSD (aX+b)=GSD (X) with a, b being two con-
stants. Therefore, by using GSD as an indicator for
uncertainty, many reasons for scaling effects in the data can
be overcome.

2.5 Building on the uncertainty factor concept in ecoinvent 2

Ecoinvent version 2 assumes a lognormal probability
distribution for all uncertain values. Default basic and

additional uncertainty factors are combined to an overall,
total uncertainty using the following formula (Frischknecht
et al. 2005):

Ur = exp <\/(1nU;,)2 + Z(I"Ui)2> (1)

where U, and U, are the basic and additional uncertainty
factors, respectively, and Uy (SDg,s following the
Frischknecht et al. notation (2005) is the total uncertainty, all
expressed as the square of a geometric standard deviation
(GSD?).

Since the geometric standard deviation is one of the
two parameters of the lognormal probability distribution,
the calculated GSD can, in ecoinvent 2, be directly used to
build the probability distribution and to calculate confidence
intervals.

The newly developed uncertainty factors build on this
concept, even though data does not need to follow a lognormal
distribution.

Also in the new approach, Eq. 1 will be used to determine
the total uncertainty of an uncertain flow, in order to overcome
scaling effects in the data as well as possible. If the underlying
data does not follow a lognormal distribution, range estimates
will be obtained by transforming the GSDs to the respective
range estimates for these other distributions. This will be
explained in more detail in the article by Muller et al. in the
same Journal issue.

Table 3 Values and respective scores for the indicator temporal correla-
tion in the pedigree matrix

Indicator value: years of <3 <6 <10 <15 Unknown
difference to desired time
Indicator score 1 2 3 4 5

@ Springer
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Fig. 4 Calculated GSD for all data sets in the GEMIS database with a product in energy units, over time. Each line represents one NACE code

2.6 Approach for obtaining the uncertainty factors

From the analysed data sources, the uncertainty factors are
obtained as follows:

Each uncertainty factor is analysed separately.

For each analysis, one or several data sources are consid-
ered. Each source is analysed independently. The geo-
metric standard deviation for the data sample is calculat-
ed, for several groups of data.

The data groups are formed according to the specification
in the pedigree matrix. An ideal data group is identified in
the data sample. This group satisfies all criteria for the
best indicator score 1 in the pedigree matrix. For example,
for the “reliability” indicator, data must be verified based
on measurements. Then, further groups are defined that
are less ideal, according to the pedigree matrix, and the
geometric standard deviation is calculated for each group.
The GSD of the ideal group will not necessarily be 1, due
to effects not related to the specific uncertainty factor
(think of the initial definition that uncertainty is
what is not known or ignored). It can even be

larger than the GSD for another indicator value.
The GSD for the other groups is then set in relation to
the ideal GSD of the ideal group, so that the resulting ratio
is equal or larger than 1. This ratio is the additional
uncertainty in the less ideal group:

GSD; ;
—7], GSD;; < GSD,‘j
GSD; ’ '
Ui=1 Gsb,, Uizl
- GSD; ;> GSD; ;

GSD, ;' A= R

with:

U, uncertainty factor for pedigree indicator i

GSD;;  GSD for pedigree indicator i for pedigree matrix
score j,j €[1; 5]

GSD;; GSD for pedigree indicator i for pedigree matrix
score 1 (ideal case)

Following this formula, the uncertainty factor for the ideal
data group with indicator score 1 always will be 1 even if the

Fig. 5 Calculated GSD for data 1.14

set groups and the pedigree 1.12

indicator values, in the NATS

database, by mode of transport /

and overall 1.08 e Ar
1.06 == General
1.04 e — e Marine
1.02 — Others

. e Rall
0.98 == Road
0.96 ====Qverall result
0.94
1 2 3 4 5
2008-2006| 2008-2003| 2008-1999| 2008-1995| 2008-1990
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Fig. 6 Calculated GSD for data 45
set groups and the pedigree

—Benzene

indicator values, in the TREMOD 4
database, by flow emission and

——CH4
——CO

overall 35

= CO2(rep.)
——CO2(total)

25

S02

2
2005-2010

2010 \

calculated ideal GSD might be different from 1. This ratio can
be seen as the uncertainty contribution of the less ideal indi-
cator value.

Let us illustrate this with an example, for the pedigree
indicator “temporal correlation”. Assume we want to have a
data set for the year 2010 and have a group of data sets from a
broad range of time periods, the newest from 2010, but
otherwise comparable. The ideal group is then formed by all
data sets younger than 2007 (score 1, “less than 3 years of
difference between the time periods of the data sets). The
second best group is formed by all data sets from 2004 until
2010 (less than 6 years difference between the time periods of
the data sets), and so forth (Fig. 3).

For the ideal group with score 1 and for the other groups,
the GSD values are calculated, and the ratio of group-GSD
GSDyemyp ; to ideal GSD ey 1 is the uncertainty factor for
temporal correlation and the respective indicator score. For
example, let’s say we obtain for score 4 a GSD of GSDyemyp 4=
3.2 and for score 1 a GSDyemp 1=1.3. Then, an “uncertainty
factor candidate” for temporal correlation of score 4 is
% = 2.46 . Different similar analyses from different data
sources provide different candidate values that are then used
to determine a final proposal for the uncertainty factor.

3 Results and discussion

Results will not be presented for all the analysed indicators nor
for all the analysed data sources. These can be found in the
project report (Ciroth et al. 2012). As an example, the indica-
tor temporal correlation will be looked at in more detail. At the
end of this section, the full list of the proposed uncertainty
factors will be provided.

‘ s ‘ . ‘ 5 ‘ e Overall result

| 20002010 | 19952010 | 19802010 |

3.1 The analysis of the indicator temporal correlation
as an example

As also shown in Table 1, the pedigree scores for the indicator
temporal correlation are as follows (Table 3):

For this indicator, different data sources were analysed, see
also section 2.3. Results for the following sources will be
shown here:

—  GEMIS, a German, free life cycle database that contains
prognostic data up until 2030 (GEMIS 2010)

— The North American Transport statistics (NATS) data-
base with annual data from 1990 until 2008 (NATS 2011)

— The TREMOD database, a European transport emission
database with transport data sets from 1990 until 2010
(TREMOD 2010).

GEMIS contains very few data sets older than 2000, there-
fore the analyses were performed with prognostic data only,
covering a time span from 2000 until 2030. Also these prog-
nostic data were not useful for the analysis. Differences in data
uncertainty were caused by other reasons than time; for a time
difference of 30 years, the GSD remains almost the same, if it
is calculated within one industrial sector. Figure 4 shows the
result of the calculated GSD per NACE code,” restricted to
processes with a product in energy units to narrow down the
side effects due to different technology and so forth.

*NACE is the Statistical Classification of Economic Activities in the
European Community coding system (in French: Nomenclature
statistique des activités économiques dans la Communauté européenne),
NACE (2010)

@ Springer
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Table 4 Tentative un-

certainty factors for the Indicator value

Uncertainty factor

Table 6 Summary of tentative uncertainty factors for all pedigree matrix
indicators, as GSD

indicator temporal corre-

lation in the pedigree 1 1

matrix, as GSD 2 1.03
3 1.10
4 1.19
5 1.29

A possible reason for the almost constant GSD from 2010
onwards is the forecast models that are used in GEMIS. They
do not seem to reflect true changes related to time. For this
reason, GEMIS is excluded from the further analyses
concerning the time indicator.

The NATS database can be grouped into five different
groups; since emissions have changed differently over recent
years per transport mode (ship, rail, road etc.), the analysis is
done per transport mode; a total value is calculated as well, for
all data sets.

Figure 5 shows the result, with the year 2008 as a reference.

The figure shows that rail and marine emissions have
changed less than road and air emissions over the years.

For the TREMOD database, a similar analysis is conduct-
ed. Figure 6 shows the results, again for five groups of data
sets; this time, results are provided per emission flow. While
many pollutants are more or less stable over time, two, lead
(Pb) and sulphur dioxide (SO,), show very high uncertainty
with a growing time span. This can be explained by regulatory
measures that took place from 2000 onwards in Europe for
leaded fuels (due to the emergence of catalysts) and regarding
the sulphur content in fuels (EU 1998).

For the overall results of the temporal correlation factor,
changes in technology should not be considered since these
will be dealt with by the technological correlation score.
Therefore, the TREMOD data are more meaningful than the
NATS database. This leads to the following results for the
indicator temporal correlation (Table 4):

Indicator score 1 2 3 4 5

Reliability
Completeness

154 161 169 (na)
103 104 108 (na)
103 110 119 129
104 108 111 (na)
118 165 208 280

Temporal correlation

Geographical correlation

— e = e

Further technological correlation

 Interim

3.2 Remarks on the analyses of other pedigree indicators

For the other indicators, similar analyses were performed.
Details can be found in the project report. Some specific
remarks about the analyses and about the indicators could also
be interesting here, however.

Reliability of the data source For this indicator, some sources
showed a decrease in uncertainty when moving from 3 to 4,
i.e. from non-verified data to qualified estimates. This even
seems reasonable, one would rather estimate a transport dis-
tance as 50 km than 69.4 km, therefore estimated samples
might have fewer spread. For the indicator score 5, unquali-
fied estimate, a very high uncertainty factor candidate was
obtained (higher than 50) which was excluded from the final
uncertainty factor result list.

The completeness indicator could be well analysed, based
on a fully empirical study. For the indicator score 5, however
(“representativity unknown”), no analysis data was available,
or, taking any other possibly not representative data, would
also lead to a very high uncertainty factor here.

Geographical correlation Also for this indicator, the worst
score of 5, “data from distinctly different area, could not
really be analysed, or would have led to an extremely high
uncertainty factor. For the analysis, sector specific databases
were used or databases were investigated per sector,

Table 5 Mapping of indicator scores for “technological correlation” to differences in data sets in the TREMOD database

Indicator score Meaning of the indicator score

Differences in data sets relevant for this indicator score

1 Data from enterprises, processes and materials under study Personal car, EURO 4 emission type, 1.4-2-1 capacity,
inner city use, diesel
2 Data from processes and materials under study For personal car: different use, inner city use vs. other use types

(i.e. identical technology) but from different enterprises

3 Data from processes and materials under study but
from different technology

4 Data on related processes or materials

Data on related processes on laboratory scale or
from different technology

For personal car: different size (0—1.4 1, 2-9 1), different
emission category (EURO 1, 2, 3 and 5 in addition to 4)

For personal car: also old cars (pre Euro 1)
For personal car: different fuel (gasoline)
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nevertheless some correlations with technology might exist
that deserve a further analysis in order to arrive at more
specific uncertainty factors, e.g. per industrial sector.

Further technological correlation For this indicator, the def-
inition of different indicator scores needed to be developed.
For example, for the (transport-related) TREMOD database,
the indicator scores were understood as shown in Table 5.
Ideal data set here is a Personal car, EURO 4 emission type,
1.4-2-1 capacity, for inner city use, with diesel fuel.

3.3 Summary of the proposed new uncertainty factors
for pedigree indicators

Overall, the following generic uncertainty factors are recom-
mended as a result of the analyses (Table 6).

For reliability, results for “measurements partly based on
assumptions” (score 2) were obtained from a rather small data
sample, therefore the uncertainty factor must be regarded as
interim. For several indicators, no (meaningful) analyses
could be performed for the worst data quality, score 5, or
obtained results showed extremely high uncertainty factors
which seem not really useful. Therefore for these scores, the
uncertainty factors are considered as unavailable.

4 Conclusions

It was indeed possible to obtain uncertainty factors based on
empirical data for the pedigree matrix concept in ecoinvent,
for the first time. With these factors, the whole generic uncer-
tainty assessment in ecoinvent is put on a better founded basis.
The identified factors are different, but not very different, to
ecoinvent factors previously used in ecoinvent 2. They can
already now be used for calculating generic uncertainty based
on a qualitative assessment of data quality.

However, several aspects deserve further attention. As they
are, the uncertainty factors represent a geometric standard
deviation which can be used to calculate confidence intervals
for data that follows a lognormal probability distribution. For
other distributions, however, the uncertainty factors need,
firstly, to be “migrated”. This is explained in more detail in
the paper by Muller et al. in this issue of the journal.

Not for all indicator scores are now factors available,
especially for some extreme values, factors are lacking. It is
recommended to decide about suitable uncertainty factors for
these cases on a case by case basis. More investigations would
obviously be useful here to determine suitable factors, and/or
to revise the pedigree matrix concept for these, since it will
probably always be difficult to obtain meaningful uncertainty
factors for, e.g. unqualified estimates. In the meantime, an
expert guess for the so far uncovered indicator scores should
be provided, in coordination with the specific database, i.e.

ecoinvent, in order to allow the application of the uncertainty
factors for the database.

The analyses show clearly that the uncertainty factors are
generic and should be used as default values, however they are
not suitable for the consideration of specific effects. For
example, for temporal correlation, two specific emissions,
lead and sulphur dioxide had a very different uncertainty
due to emission regulations over the years. In that sense, case
specific uncertainty analyses are preferable to using the ge-
neric factors.

A more detailed analysis therefore might make sense. Such
an analysis could recognize different types of processes and
industrial sectors, per pedigree indicator, to distinguish for
example marine transport from personal car transport, over
time, broadening the information basis used in this initial
project, identifying possibly also more, or less, representative
empirical data sources.

But finally, it is also worth applying these newly
developed factors, in combination with case specific uncer-
tainty factors.
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