Source code for Linear_prediction

#!/usr/bin/env python 
# encoding: utf-8

"""plugin for the Linear Prediction algos into NPKDATA

"""

from __future__ import print_function
import unittest
from spike import NPKError
from spike.NPKData import NPKData_plugin
from spike.Algo.Linpredic import burgr, burgc, predict

def lpext2d(npkd, final_size, lprank=10, algotype="burg"):
    """
    extends a 2D FID in F1 up to final_size, using lprank coefficients, and algotype mode
    """
    npkd.check2D()
    init_size = npkd.size1
    if lprank>init_size/2 or lprank<2:
        NPKError("error with lprank",data=npkd)
    if algotype=="burg":
        if npkd.axis1.itype == 1:
            method = burgc
        else:
            method = burgr
    else:
        raise Exception("Only burg algorithm implemented in lpext for the moment")
    k = npkd.axis1.itype+1   # 1 or 2
    npkd.chsize(sz1=k*final_size) # first extend
    for i,r in enumerate(npkd.xcol()):
        buf = r.get_buffer()[0:init_size]   # truncate
        coeffs = method(lprank,  buf)
        predicted = predict(buf, coeffs, final_size)  # and predict
        r.set_buffer(predicted)
        npkd.set_col(i,r)
    return npkd
def lpext1d(npkd, final_size, lprank=10, algotype="burg"):
    """
    extends the current FID up to final_size, using lprank coefficients, and algotype mode
    """
    npkd.check1D()
    if lprank>npkd.size1/2 or lprank<2:
        NPKError("error with lprank",data=npkd)
    if algotype=="burg":
        if npkd.axis1.itype == 1:
            method = burgc
        else:
            method = burgr
    else:
        raise Exception("Only burg algorithm implemented in lpext for the moment")
    coeffs = method(lprank,  npkd.get_buffer())
    predicted = predict(npkd.buffer, coeffs, final_size)
    npkd.set_buffer(predicted)
    npkd.adapt_size()
    return npkd
def lpext(npkd, final_size, lprank=10, algotype="burg"):
    """
    extends a 1D FID or 2D FID in F1 up to final_size, using lprank coefficients, and algotype mode
    """
    if npkd.dim == 1:
        return lpext1d(npkd, final_size, lprank=10, algotype="burg")
    elif npkd.dim == 2:
        return lpext2d(npkd, final_size, lprank=10, algotype="burg")
    else:
        raise Exception("Not implemented yet")
class LinpredicTests(unittest.TestCase):
    def setUp(self):
        self.verbose = 1    # verbose >0 switches on messages
    def announce(self):
        if self.verbose >0:
            print (self.shortDescription())
    def test_log(self):
        """testing log"""
        import math
        self.announce()
        x = 0.0
        y = math.log(1.0)
        self.assertAlmostEqual(x, y )

NPKData_plugin("lpext", lpext)