
User’s Guide for EnBiD

Sanjib Sharma ∗

March 7, 2007

Contents

1 Introduction 1

2 Compilation 2

3 Parameters 2

4 Input 6
4.1 ASCII input file format . 6
4.2 User defined file format . 6
4.3 GADGET input file format . 7

5 Output 9
5.1 EnBiD output file format . 9

6 Examples 10

7 General usage tips 11

1 Introduction

EnBiD (Entropy Based Binary Decomposition) is a code for calculation of den-
sities from a discrete set of data points distributed in a multi-dimensional space.
The code is completely metric free. The most important feature of EnBiD is its
ability to determine the appropriate metric at each point in space. It is based
upon the idea of binary space partioning tree (kd-tree). The algorithm EnBiD
was inspired by an earlier algorithm dubbed FiEstAS developed by Ascasibar &
Binney 2005 ,MNRAS,356,872. The main feature of EnBiD is its unique node
splitting criterion, which is based on Shannon Entropy and helps to extract
maximum information from the data. After the spatial decomposition has been
done the code offers a variety of methods for obtaining smoothed estimates of

∗E-mail:sanjib.sharma@gmail.com

1

density. The code determines the appropriate metric at each point in space from
the shape of the leaf nodes which are generated by the spatial decomposition.
The main method of density estimation is the kernel based density estimation.
Spherical kernels as well as kernels of the product form can be used. In addition
a variety of different kernel functions can also be used. FiEstAS style smooth-
ing as originally proposed by Ascasibar & Binney 2005 can also be done. The
algorithm and its test results are described in the paper astroph/0507550. The
code is distributed under the GNU general public license.

This guide provides the technical details which will help others to use the
code. Some routines in this code are derived from the code GADGET which is a
code for cosmological N-Body/SPH simulations, developed by Springel,Yoshida
& White 2001, New Astronomy,6,51, The algorithm for nearest neighbor search
is based on the algorithm of code SMOOTH
http://www-hpcc.astro.washington.edu/tools/smooth.html

2 Compilation

The code is written in C++. Unpacking the code using
tar -zxvf Enbid-2.0.tar.gz
generates a directory Enbid-2.0. The src directory contains .cpp and .h files
along with a Makefile. Typing make in the src directory should compile the
code on most Unix and linux based systems. Below are listed some options from
the Makefile which need to be specified during compilation time.

OPT1 = -DWARN # to put print statements for debugging

OPT2 = -DDIM3 # For doing calculations in 3 dimensions

OPT2 = -DDIM6 # For doing calculations in 6 dimensions

OPT2 = -DDIMO # For other spaces

OPT3 = -DMEDIAN #enables optimizations for faster kernel smoothing

OPT4 = -DPERIODIC #enables periodic boundary conditions

Option WARN should normally be kept enabled. In case of a problem it makes the
code print a warning and diverts it into an interactive mode asking the user for
an input. To run it in an un-interrupted fashion this option should be disabled.
The number of dimensions need to be specified during the compilation. 3 and 6
dimensional spaces can be invoked by selecting the appropriate OPT2. For other
spaces one has to use option DIMO and then alter the variable #define ND in
file allvars.h. When OPT3 is enabled special optimizations are enabled which
work with the median splitting criterion, this speeds up the neighbor search by
about 10% . Periodic boundary conditions are enabled by option OPT4. Any
change in the options in Makefile should generally be followed by a make clean
procedure before compiling it again.

Compiling the code generates the executable file enbid in the directory
Enbid-2.0 which can be run from command line along with a parameterfile.
./enbid parameterfile

2

3 Parameters

The main method for calculating densities is the tree based scheme followed
by Kernel smoothing. Other than this FiEstAS based smoothing option is also
available. The parameter file helps the user to choose the available options and
also provides various parameters to fine tune the efficiency and accuracy of the
code. A short description of these parameters is provided below.

InitCondFile Examples/hernquist1_small/snapshot_ici

This is the name of the input file which provides the data for density calculation.

SnapshotFileBase _ph

The output file name is derived from the input file name by adding the above
base name and a suffix .est. For the above choice of parameters the file gener-
ated is snapshot ici ph.est.

ICFormat 1

For a value of 1 the code reads files in GADGET format. For a value of 0 it
can read data written in ASCII format. Files of other formats can be made to
read in by writing ones own reading routine. A template function is provided
for this. This can be invoked by setting the above parameter to 2.

SpatialScale 1

This parameter is used to define global scaling relations between various co-
ordinates. This choice is useful when one wants to use normal SPH (isotropic
kernels and non-adaptive metric) otherwise the parameter should be set to 1.
For SpatialScale= 0 the scaling is done based on the global co-variance of the
data. If σi =

√

< x2

i
> is the standard deviation of the ith co-ordinate then the

code performs the following transformation xi → xi/σi. For phase space density
calculations (i.e. number of dimensions d = 6), if SpatialScale > 0, the co-
ordinates of real space (dimensions 1, 2 and 3) are scaled globally with respect
to velocity space (dimensions 4, 5 and 6) by the following transformation, for
i = 1 to 3 xi → xi/SpatialScale.

PartBoundary 7

During tree generation if the number of particles in a node is greater than
or equal to the above parameter a boundary correction is applied to its sur-
faces. Optimum choice of this paramater is d + 1, d being the dimensionality
of space under consideration. If the densities are found to be underestimated
then lower it or vice versa. If the value is too small this can give rise to Pois-
son errors, so irrespective of the number of dimensions a minimum value of
7 should be used. When the system is known to have well defined rectangu-
lar boundaries e.g. systems with periodic boundary conditions, the boundary
correction can be switched off by setting this parameter to zero. Read option
PeriodicBoundaryOn for more details. If this parameter has value 1 boundary
correction is applied to the leaf nodes only (as done originally in FiEstAS).

3

NodeSplittingCriterion 1

This parameter is used to alter the node splitting criteria used to generate the
tree. For a value of 1 Shannon Entropy is evaluated in each dimension and
the dimension with lowest entropy is chosen to be split. Setting this parameter
to 0 disables entropy based node splitting criterion and splits each dimension
alternately.

CubicCells 0

When this parameter has a value of 1 the
NodeSplittingCriteria is used to select the subspace (real or velocity) to
be split rather than the dimension. Then from this subspace the axis having
maximum variance (< x2

i
> − < xi >2) is selected to be split. For systems

whose subspaces are known to be Euclidean this gives better results. It results
in cubic cells in each sub-space. This option only works for 3 and 6 dimensional
spaces.

MedianSplittingOn 0

Ideally the position of splitting should be close to the median of the data points
so that there are equal number of data points on both sides of the split. For
building the tree it is computationally more efficient to instead choose the split-
ting position close to the mean of the data points. When the code is compiled
with the -DMEDIAN flag setting this parameter to 1 results in faster kernel density
estimates.

TypeOfSmoothing 3

This parameter helps to select various different smoothing options. For a value
of zero no smoothing is done this is useful to get fast estimates of density but
at the price of a large dispersion. For a value of 1 FiEstAS style smoothing
is done, for 2 normal spherical Kernel based scheme is used (having isotropic
metric same scale in all dimensions) and for 3 spherical Kernel based scheme
with an appropriate adaptive metric (estimated by the size and the shape of
the leaf node containing the data point) is used. For a value of 4 and 5 the
kernel used is of product form with the metric being isotropic for the former
and adaptive for the later. For FiEstAS style smoothing particles of a given
type should not have multiple masses.

DesNumNgb 40

This gives the number of smoothing neighbors that are used for density cal-
culation. For FiEstAS style smoothing optimum range of this parameter is 2
to 10. For SPH smoothing the optimum choice depends upon the number of
dimensions. For a Hernquist sphere in 6 dimensions DesNumNgb=40 was found
to give smoothing equivalent to FiEstAS smoothing with DesNumNgb=2.

4

VolCorr 1

During smoothing if the smoothing box extends outside the boundary of the
system density might be underestimated. Setting this parameter to 1 enables
this correction for both Kernel and FiEstAS smoothing.

TypeOfKernel 3

For Kernel based smoothing three different types of kernels can be used. For a
value of 0 the B-Spline kernel is used, for 1 top hat kernel is used, for 2 Bi-weight
kernel is used and for 3 Epanechnikov kernel is used. For 4 cloud in cell (CIC)
type of linear kernel is used and for 5 triangular shaped cloud (TSC) type of
kernel is used. In our tests Epanechnikov kernel was found to give best results.

KernelBiasCorrection 1

Normal Kernel based schemes have significant bias in their estimated densities
for irregularly distributed data. This bias arises when the densities are cal-
culated at the location of the data points and can be eliminated by suitably
displacing the central data point within the smoothing volume. This is enabled
by setting the parameter to 1. For regularly spaced data (e.g. glass or lattice
like systems) this option should be disabled by setting the value to 0.

AnisotropicKernel 0

This enables the use of Anisotropic kernels which can have both shear and rota-
tion. The kernel instead of being spherical is now an rotated ellipsoid in general.
The local co-variance matrix of the data is used to determine the orientation
and the smoothing lengths of the kernel. For this option the TypeOfSmoothing

should be either 2 or 3 (i.e spherical kernel smoothing).

Anisotropy 0

Depending upon the anisotropy of the problem, density estimation with anisotropic
kernels can be computationally very intensive. The parameter Anisotropy can
be used to set the minimum allowable minor to major axis ratio of the kernel
smoothing lengths. Maximum accuracy is achieved by setting the value to zero
while a value of 1 corresponds to an isotropic kernel.

DesNumNgbA 100

This is the number of neighbors used for estimation of the co-varaince matrix,
which is in turn used for calculating the anisotropic kernel. Its value should be
between 100−200. Setting this value to less than 100, results in poor estimation
of the co-variance matrix.

TypeListOn 0

5

It is possible to specify multiple species (types) of particles in the same initial
condition file. Each particle type is treated independently for the purpose of
density estimation and separate tree is constructed for each of them. For Gad-
get format initial condition files the number of particle types is limited to 6. To
overcome this limitation and to offer more flexibility the parameter TypeListOn
can be enabled by setting it to 1. This overrides the type of particles specified
in the initial condition file. If this parameter is set to 1 a typelist file in ascii
text, with the name InitCondFile + suffix _typelist, should be provided. If
a total of N particles are divided into l independent groups of different types
having particles n1, n2 ... nl respectively such that

∑

ni = N , then they can
be read in by specifying this list in an ascii format in the typelist file as follows

n1n2...nl

PeriodicBoundaryOn 0

Periodic boundary conditions can be enabled for Kernel based smoothing by set-
ting this parameter to 1 and compiling the code with option -DPERIODIC. Period-
icity of each dimension can be set independently. A file periodic_lenghts.txt
should be provided in the current working directory, which contains the peri-
odic lengths li, for each of the dimensions. Boundary correction to the tree
nodes as specified by parameter PartBound are not applied in the dimensions
that are periodic. If li is set to zero the code automatically determines the
appropriate periodic length from the range of the particles in that dimension
(l ∼ (xmax −xmin)). If it is set to less than zero then that dimension is not con-
sidered periodic. In the code this is achieved by setting l ∼ 10(xmax − xmin))
and enabling PartBound for that dimension. Periodic support is as such not
available for FiEstAS smoothing, enabling periodic boundaries in this case only
effects the tesselation process (i.e boundary correction to the tree nodes).

4 Input

The data can be read from either an ASCII file, GADGET format file or a user
defined file format these can be invoked by setting the parameter ICFormat to 0
, 1 and 2 respectively. For GADGET format files the code can read both little
and big endian format binary files. The endianness of the output file is the same
as that of input file.

4.1 ASCII input file format

In ASCII format the co-ordinates of the data points are arranged in rows as
follows.
x1y1z1

x2y2z2

6

........so on

4.2 User defined file format

The user can read in files of his own format by writing his own reading rou-
tine. A template function void read_ic2(char *fname) in file read_ic.cpp

is provided for this. The user should read his data and assign the co-ordinates
to a predefined structure. Make the following changes in the function read_ic2

/* SPECIFY TOTAL NUMBER OF PARTICLES*/

NumPart= specify total number of particles;

/* leave this unchanged */

//-------------------------------------

All.MaxPart = NumPart;

for(i=0;i<6;i++)

{

header1.npart[i]=0;

header1.npart[i]=0;

header1.mass[i]=0;

}

header1.npart[1]=NumPart;

header1.npartTotal[1]=NumPart;

allocate_memory();

//-------------------------------------

/* READ THE DATA HERE AND ASSIGN IT TO P[i].Pos */

for(i=1; i<=NumPart; i++)

for(k=0;k<ND;k++)

P[i].Pos[k]=assign positions;

for(i=1; i<=NumPart; i++)

P[i].Mass=assign mass or set it to 1;

4.3 GADGET input file format

In a GADGET format file the data is written in binary mode and consists of
a header followed by the main data containing position ,velocities and id’s of
particles. The data fields are separated by block-size fields so that it can be
read in with unformatted fortran format. A description of these fields is given
below. Read statements in fortran would be as follows.

read (1) npart,massarr,a,redshift,flag1,flag2,nall,unused

read (1) pos

read (1) vel

read (1) id

read (1) masses

7

The code can handle multiple species of particles and calculates the density of
each specie separately, but for a given specie all the particles must have same
mass or else the results might be erroneous. For 6 dimensional phase space
density estimation, each particle has 6 co-ordinates, the position of the particle
constitutes the first three co-ordinates and the three velocity components are
assigned co-ordinate numbers 4, 5 and 6.

8

Table 1: Header
Variable Type Bytes Description
npart(6) int 4 × 6 Array specifying number of particles of

various types
massarr(6) double 8 × 6 mass of different types of particles
a double 4 Time or expansion factor
redshift double 4 Redshift
flag1 int 4 unused here
flag2 int 4 unused here
nall(6) int 4 × 6 Number of particles of each type, same

as npart(6) here
flag3 int 4 unused here
numfiles int 4 number of files holding the data
boxsize double 4 size of periodic box
omega-0 double 4 Cosmological parameter specifying

matter density
omega-l double 4 Cosmological parameter specifying vac-

uum energy density
hubble-
param

double 4 Hubble parameter

unused used to fill the header to a total size of
256 bytes

Table 2: Particle Positions
Variable Type Bytes Description
Pos(3,N) float 4 × 3×N position of particles

Table 3: Particle Velocities
Variable Type Bytes Description
Vel(3,N) float 4 × 3×N velocities of particles

9

Table 4: Particle ID’s
Variable Type Bytes Description
id(N) int 4 × N id of particles used to uniquely iden-

tify them in case the order is not same
among different files.

Table 5: Particle Masses
Variable Type Bytes Description
mass(N) int 4 × N mass of those particles types which have

zero entries in massarr.

5 Output

The output file contains a list of densities at the location of the data points
(particles). The order is same as that specified in the input file. For ICFormat=1
, if the mass of the particles is specified the output density is mass density. For
ICFormat=0mass of each particle is assumed to be unity so the density evaluated
by the code is the number density instead of mass density. The output in this
case is written in ASCII format. One can also specify ones own output format a
template function void savepositions_ioformat2(int) is provided for this
in file io.cpp.

5.1 EnBiD output file format

For ICFormat=1 the output is written in a binary file with a GADGET format
header and a list of densities. Some extra flags are added in the header which
might be useful for reading the output densities. The data fields are separated
by block-size fields. A description of these fields is given below. Read statements
in fortran would be as follows.

read (1) npart,massarr,a,redshift,flag1,flag2,nall,unused1

,flag-dim,flag-density,unused

read (1) density

10

Table 1: Header
Variable Type Bytes Description
npart(6) int 4 × 6 Array specifying number of particles of

various types
massarr(6) double 8 × 6 mass of different types of particles
a double 4 Time or expansion factor
redshift double 4 Redshift
flag1 int 4 unused here
flag2 int 4 unused here
nall(6) int 4 × 6 Number of particles of each type, same

as npart(6) here
flag3 int 4 unused here
numfiles int 4 number of files holding the data
boxsize double 4 size of periodic box
omega-0 double 4 Cosmological parameter specifying

matter density
omega-l double 4 Cosmological parameter specifying vac-

uum energy density
hubble-
param

double 4 Hubble parameter

flag-id int 4 unused here
flag-dim int 4 number of dimensions used for density

calculations
flag-

density

int 4 indicates that it is a .est file containing
densities and not a GADGET format
file

unused used to fill the header to a total size of
256 bytes

Table 2: Particle Density

Variable Type Bytes Description
Density(N) float 4 × N Calculated Density of particles

6 Examples

Two example data files are provided in the directory Examples. The file
snapshot_ici in directory uniform_6d_box_4 is a GADGET format data of
104 particles distributed uniformly in a cubic box of length 100 units in both real
and velocity space. The file snapshot_ici.ascii is the corresponding ASCII
format file. The directory hernquist1_small contains the data for a Hernquist
sphere modelled with 104 particles.

11

7 General usage tips

The main method of density estimation is the kernel based method along with
adaptive metric which is shown as option 3 below, but the code also offers various
other options for calculating densities. More accurate estimates require more
CPU time. Below we list four main options in increasing order of accuracy and
CPU time. Parameterfiles for these can be found in the directory parameterfile.

1. Unsmoothed estimate:
For fast crude estimates of any general data use

NodeSplittingCriterion=1

CubicCells= either 1 or 0 % 1 for symmetric systems 0 for general

TypeOfSmoothing=0

2. FiEstAS smoothing:
For smooth densities with FiEstAS style smoothing

TypeOfSmoothing=1

DesNumNgb=2-10

All.VolCorr=1

3. Kernel smoothing with adaptive metric:
For kernel smoothed estimates set

TypeOfSmoothing=3

TypeOfKernel=3

KernelBiasCorrection=1

DesNumNgb=10-50

All.VolCorr=1

4. Anisotropic kernel smoothing:
If one has more time one can also use Anisotropic kernels with

TypeOfSmoothing= 3 or 2 % more faster with 2 but less accurate

AnisotropicKernel=1

Anisotropy=0

DesNumNgbA=100-200

12

The table below gives the CPU time in seconds required on an AMD 1666.7
MHz processor for calculating the density of a data of 1 million particles mod-
elled as a Hernquist sphere.

Table 3: Cpu Time
Type of Estimate 6 Dimensions

Unsmoothed 10-24 s
Fiestas smoothing 356 s
Kernel smoothing with adaptive metric 863 s

• For a hernquist sphere options 3 and 4 were found to give nearly same
results. This is because the anisotropy has already been corrected by
means of an adaptive metric.

• For real and phase space density calculation of systems with special sym-
metries e.g. spherical systems use CubicCells=1. Hernquist sphere and
galactic halos fall into this category.

• For kernel smoothing on regularly spaced data e.g. a lattice like system
disable the parameter KernelBiasCorrection by setting it to 0.

• For FiEstAS smoothing all the particles of a given type must have same
mass. For other types of density estimation multiple mass support is
available but the density estimates are most accurate if the particles have
same mass or if at least their distribution in space is smooth.

• The code has mostly been tested in 3 and 6 dimensions and on systems
having spherical symmetry in real and velocity sub-spaces. For other
situations it will be useful to first test the accuracy and efficiency of the
code by experimenting with the parameters and options provided here.

• Although the code can support arbitrary number of dimensions but for
kernel based smoothing, for dimensions greater than 20, one needs to spec-
ify appropriate normalization constants of the kernel in routine
set_sph_kernel (file begrun.cpp). For other schemes there is no restric-
tion.

• For FiEstAS smoothing of systems with periodic boundary conditions
or well defined rectangular boundaries use VolCorr=1 to avoid under-
estimation of densities in boundary regions. Periodic support is as such
not available for FiEstAS smoothing, enabling periodic boundaries in this
case only effects the tesselation process (i.e boundary correction to the
tree nodes).

• The mean splitting criterion gives better results as compared to median
criterion, for systems having substructures. But if one does not want

13

to use adaptive metric and instead wants to use isotropic kernels (i.e
TypeOfSmoothing=2 or 4) the code can be compiled with -DMEDIAN and
used with MedianSplittingOn=1, this results in faster density estimates.

14

