Chips Documentation
Release 0.1

Jonathan P Dawson

April 29, 2011

CONTENTS

1 What is Chips?

2 Features

3 A Quick Taster

4 Download

5 Documentation
5.1 Introduction e e e e e e e e e
5.2 Tutorial L e e e
5.3 Chips Language Reference Manual L
5.4 Automatic Code GENEration v v v v i e e e e e e e e e e e e
5.5 IPHbrary o e e e e e e e e e e e e e
5.6 Extending the Chips Library e

6 News

7 Links

8 Indices and tables

Module Index

Index

43

45

47

49

51

CHAPTER
ONE

WHAT IS CHIPS?

Chips is a Python library that provides a language for designing hardware devices.

Chips Documentation, Release 0.1

2 Chapter 1. What is Chips?

CHAPTER
TWO

FEATURES

Some of the key features include:

High level modeling language makes device design simpler and more powerful.
An open source hardware design environment.
Provides fast native simulations that integrate with Python.

Exploit Python extension modules such as Scipy, Numpy, Matplotlib and PIL provide a rich verification envi-
ronment.

Automatic generation of synthesizable VHDL.
Plugin mechanism also allows C++ and graphviz outputs to be generated.
Existing VHDL IP can be imported.

Seamless co-simulation of C++ and VHDL outputs.

Chips Documentation, Release 0.1

4 Chapter 2. Features

CHAPTER
THREE

>>>

>>>

>>>

>>>

>>>

>>>

A QUICK TASTER

#4 bit linear feedback shift register

from chips import =«

new_bit = Variable (0)

shift_register = Variable(l) #initialise to anything but 0

output_stream = Output ()

Process (5,
Loop (

#tap off bit 2 and 3
new_pbit.set ((shift_register >> 0) ~ (shift_register >> 1) ~ new_bit),

#implement shift register
shift_register.set (((new_bit & 1) << 3) | (shift_register >> 1)),

#4 bit mask
shift_register.set (shift_register & 0xf),

#write to stream
output_stream.write (shift_register)

)

Process (...

>>>
>>>
>>>
8
12
14
-

3

1

device = Chip (Console (Printer (output_stream)))
device.reset ()
device.execute (1000)

Chips Documentation, Release 0.1

6 Chapter 3. A Quick Taster

CHAPTER
FOUR

DOWNLOAD

You can download the source distribution or the windows installer from the GitHub homepage.

https://github.com/downloads/dawsonjon/chips/Chips-0.1.tar.gz
https://github.com/downloads/dawsonjon/chips/Chips-0.1.win32.exe
http://github.com/dawsonjon/chips/

Chips Documentation, Release 0.1

8 Chapter 4. Download

CHAPTER
FIVE

DOCUMENTATION

5.1 Introduction

The Chips library gives Python the ability to design, simulate and realise digital devices such as FPGAs. Chips
provides a simple yet powerful suite of primitive components, Streams, Processes and Sinks that can be succinctly
combined to form Chips. The Chips library can automatically convert Streams, Processes and Sinks into a Hardware
Description Language, which can be synthesised into real hardware.

Python programs cannot themselves be converted into real hardware, but it is possible to programmatically generate
which construct Chips, which can in-turn be converted into hardware. When combined with the extensive libraries
already supported by Python, such as NumPy and SciPy, Python and Chips make the ideal design and verification
environment.

5.1.1 A new approach to device design

Traditionally, the tool of choice for digital devices is a Hardware Description Language (HDL), the most common
being Verilog and VHDL. These languages provide a reasonably rich environment for modeling and simulating hard-
ware, but only a limited subset of the language can be realised in a digital device (synthesised).

While a software designer would typically implement a function in an imperative style using loops, branches and sub
procedures; a hardware model written in an imperative style cannot be synthesised.

Synthesizable designs require a different approach. Digital device designers must work at the Register Transfer Level
(RTL). The primitive elements of an RTL design are clocked memory elements (registers) and combinational logic
elements. A typical synthesis tool would be able to infer boolean logic, addition, subtraction, multiplexing and bit
manipulation from HDL code written in a very specific style.

An RTL designer has to work at a low level of abstraction. In practical terms this means that a designer has to do more
of the work themselves.

1. A designer is responsible for designing their own interfaces to the outside world.

2. The designer is responsible for clock to clock timing, manually balancing propagation delays between clocked
elements to achieve high performance.

3. A designer has to provide their own mechanism to synchronise and pass data between concurrent computational
elements (by implementing a bus with control and handshaking signals).

4. A designer has to provide their own mechanism to control the flow of execution within a computational element
(usually by manually coding a finite state machine).

5. The primitive elements are primitive. Synthesis tools provide limited support for multiplication, and division is
not usually supported at all.

Chips Documentation, Release 0.1

This is where Python Chips comes in. In Python Chips, there is no synthesizable subset, but a standalone synthesizable
language built on top of Python. Python Chips allows designers to work at a higher level of abstraction. It does a lot
more of the work for you.

1. Python Chips provides a suite of device interfaces including I/O ports and UART:.

2. Synthesizable RTL code is generated automatically by the tool. Clocks, resets, and clock to clock timing are all
taken care of behind the scenes.

3. Python Chips provides a simple method to synchronise concurrent elements, and to pass data between them -
streams. The tool automatically generates interconnect buses and handshaking signals behind the scenes.

4. Python Chips provides processes with imperative style sequences branches and loop. The tool automatically
generates state machines, or highly optimized soft-core processors behind the scenes.

5. The primitive elements are not so primitive. Common constructs such as counters, lookup tables, ROMS and
RAMS are invoked with a single keyword and a few parameters. Python Chips also provides a richer set of
arithmetic operators including fully synthesizable division and multiplication.

5.1.2 A language within a language

Python Chips is a python library, just an add-on to Python which is no more or less than a programming language. The
Python Chips library provides an Application Programmers Interface (API) to a suite of hardware design functions.

The Python Chips library can also be considered a language in its own right, The Python language itself provides
statements which are executed on your own computer. The Python Chips provides an alternative language, statements
which are executed on the target device.

5.2 Tutorial

5.2.1 Learn Python

In order to make any real use of the Chips library you will need to be familiar with the basics of Python. The Python
tutorial is a good place to start.

5.2.2 Install Chips

Windows
1. First install Python. You need Python 2.6 or later, but not Python 3.
2. Then install the Chips library from the windows installer.

Linux

1. First install Python. You need Python 2.6 or later, but not Python 3.
2. Then install the Chips library from the source distribution:
desktop:~$ tar -zxf chips-0.l.tar.gz

desktop:~$ cd chips-0.1
desktop:~$ python setup.py install #run as root

10 Chapter 5. Documentation

http://docs.python.org/tut
http://docs.python.org/tut
http://python.org/download
https://github.com/downloads/dawsonjon/chips/Chips-0.1.win32.exe
http://python.org/download
https://github.com/downloads/dawsonjon/chips/Chips-0.1.tar.gz

Chips Documentation, Release 0.1

5.2.3 First Simulations
Once you have Python and Chips all set up, you can start with some simple examples. This one counts to 10 repeatedly:

>>> from chips import =

>>> #create a chip model
. my_chip = Chip(
Console (
Printer (
Counter (0, 10, 1),
)I
)I

>>> #run a simulation
>>> my_chip.reset ()
>>> my_chip.execute (100)

O W o0 Joy Ul WDNEFE O

The example can be broken down as follows:
e from stream import = adds the basic features of the streams library to the local namespace.

* A Chip models a target device. You need to tell it what the outputs (sinks) are, but it will work out what the
inputs are by itself. In this case the only sink is the Console.

* A Console is a sink that outputs a stream of data to the console. The only argument it needs is the data stream,
Printer.

* A Printer is a stream object that represents a stream of data in decimal format as a string of ASCII characters.
A Printer is not a source of data in itself, it transforms a stream of data that you supply, the Counter.

e The Counter is a fundamental data stream. It accepts three arguments: start, stop and step. The Counter will
yield a stream of data counting from start to stop in step increments.

5.2.4 Hello World

No language would be complete without a “hello world” example:

>>> from chips import =

>>> my_chip = Chip(
Console (
Sequence (*map (ord, "hello world\n")),

5.2. Tutorial 11

Chips Documentation, Release 0.1

>>> #run a simulation
>>> my_chip.reset ()

>>> my_chip.execute (100)
hello world

hello world

hello world

In this example we have made only a few changes:

* map (ord, "hello world\n") creates a list containing the numeric values of the ASCII characters in a
string.

* This example introduces a new stream, the Sequence. The Sequence stream outputs each of its arguments in
turn, when the arguments are exhausted, the Process repeats.

* A Printer is stream is not needed in this example since the stream is already a sequence of ASCII values.

5.2.5 Generating VHDL

Now lets consider how the “hello world” example could be implemented in an actual device. A first step to imple-
menting a device would be to generate a VHDL model:

>>> from chips import =
>>> from chips.VHDL_plugin import Plugin

>>> my_chip = Chip(
Console (
Sequence (*map (ord, "hello_world\n")),

>>> #generate a VHDL model
>>> code_generator = Plugin(project_name="hello world")
>>> my_chip.write_code (code_generator)

The Chips library uses plugins to generate output code from models. This means that new code generators can be
added to Chips without having to change the way that hardware is designed and simulated. At present, Chips supports
C++ and VHDL code generation, but it is VHDL code that allows Chips to be synthesised.

The VHDL code generation plugin is found in chips.VHDL_plugin if you run this example you should find that
a VHDL file called hello_world.vhd has been generated.

Take a look through this file. you may find that it is difficult to understand what is going on. the file isn’t meant
to be read by humans, Chips treats VHDL as a compatibility layer. VHDL is pretty much universally supported by
synthesis tools. You can run this code in an external VHDL simulator, but you won’t be able to synthesise it into a
device because real hardware devices don’t have a concept of a Console.

To make this example synthesise, we need to write the characters to some realisable hardware interface. The Chips
library provides a SerialOut sink, this provides a simple way to direct the stream of characters to a serial port:

>>> from chips import =
>>> from chips.VHDL_plugin import Plugin

>>> my_chip = Chip(

12 Chapter 5. Documentation

Chips Documentation, Release 0.1

SerialOut (
Sequence (*map (ord, "hello_world\n")),
)
)

>>> #generate a vhdl model
>>> code_generator = Plugin(project_name="hello world")
>>> my_chip.write_code (code_generator)

Now you should have a hello_world.vhd file that you can synthesise in a real device. By default, SerialOut will assume
that you are using a 50 MHz clock and a baud rate of 115200. If you need something else you can use the clock_rate
and baud_rate arguments to specify what you need.

5.2.6 More Streams and Sinks

So far we have seen three types of streams, Counter, Sequence and Printer. Chips provides a range of streams. The
full documentation for streams is in the reference manual but a quick summary is included here:

Stream Description
Array() An indexable memory with an independent read and write port.
Counter() A versatile counter with min, max and step parameters
Decoupler() | A Decoupler removes stream handshaking.
Resizer() A Resizer changes the width, in bits, of the source stream.
Lookup() An indexable Read Only Memory with a single read port.
Fifo() Stores data items in a buffer.
Repeater() Yields the same data item repeatedly.
InPort() Yields the value of input port pins.
Serialln() Yields values from a serial UART.
Output() A stream that is fed by a Process (more on this later)
Printer() A decimal ASCII representation of the source stream.
HexPrinter() | A hexadecimal ASCII representation of the source stream.
Scanner() yields the value of the decimal ASCII source stream.

You can also combine streams using the operators : abs, ~, +, —, *, //, %, <<, >>, &, |, ~, ==,

!=, <, <=, >, >=onthe whole they have the same (or very similar) meaning as they do in Python except that
they operate on streams of data. It is also possible to form an expression from regular integers and streams, Chips will
automatically transform an integer into an appropriate Repeater stream. For example Counter (0, 9, 1)*2isa
shorthand for Counter (0, 9, 1) x*Repeater (2).

The following table summarises the available sinks:

Sink Description

Response() | A Response sink allows data to be transfered into Python.

OutPort() An OutPort sink outputs a stream of data to I/O port pins.

SerialOut() | A SerialOut outputs data to a serial UART port.

Asserter() | An Asserter causes an exception if any data in the source stream is zero.
Console() A Console outputs data to the simulation console.

5.2.7 Types and Bit Width

For convenience, the central numerical type in Chips is a signed integer with a fixed number of bits. This is in contrast
to Python, where integers have a potentially infinite width. Chips tries to simplify some of the design issues involved

5.2. Tutorial 13

http://dawsonjon.github.com/chips/language_reference/

Chips Documentation, Release 0.1

with limited width numbers by doing a lot of the work for you, but it is not always possible to completely hide these
details, so you need to how things are handled behind the scenes.

Chips will automatically determine the width of a stream whenever possible. In a Repeater, Counter or Lookup, Chips
will chose use the number of bits needed to hold the greatest possible value. This is not possible for InPort, or Array
streams because the maximum possible value is not known at compile time. When it is not possible to determine the
maximum value, the width must be specified using the bits parameter.

When streams are combined using operators, the width of the resulting stream will usually be chosen to handle the
maximum possible value in the resulting stream, though there are some exceptions. Adding two 8 bit streams will
result in a 9 bit stream, multiplying two 8 bit streams will result in a 16 bit stream. The precise handling of bit widths
is documented more fully in the reference manual.

You can manually change the width of a stream using the Resize stream. Making a streams smaller in width will result
in large values being truncated. Making a stream larger in width will result in sign extension.

5.2.8 Introducing Processes

We have seen how the Chips library provides quite a few ready made streams out of the box. Sometimes these streams
won’t suite our needs, sometimes we need to define new operations on streams. Suppose we wanted to double the value
of every data item within in an existing stream, a Counter say. Thats easy, just use the multiply operator Counter (0,
9, 1) 2. Now suppose that we wanted to square each data item instead. Not so simple, there is no squaring operator,
or even a power operator for that matter. Thats where the Process comes in:

>>> from chips import =

>>> counter = Counter (0, 9, 1)
>>> temp = Variable (0) #create a temporary variable and initialise it to 0.
>>> counter_squared_stream = Output ()

>>> p=Process (counter.get_bits()*2,
Loop (
counter.read (temp),
counter_squared_stream.write (tempxtemp),

>>> ¢ = Chip(Console (Printer (counter_squared_stream)))
>>> c.reset ()
>>> c.execute (1000)

This example demonstrates some of the key features of the Process:

e Put it simply, a Process is small computer program which can contain loops and if statements like any other
language.

* A Chip can contain any number of Process objects, they will all run in parallel.

14 Chapter 5. Documentation

http://dawsonjon.github.com/chips/language_reference/

Chips Documentation, Release 0.1

* Within a Process, you can use Variables to store data. Each variable can only be used within one Process, to
communicate with another Process you need to use streams.

* A Process can read from any type of stream, in this example the process is reading from a Counter stream. Only
Output streams can be written to.

* Streams can only be used for point to point communications. A stream cannot be read by more than one Process.
Likewise, an Output stream can only be written to by one Process.

5.2.9 Process Instructions

Instruction Description

Variable() A Variable is used within a Process to store data.

Value() The Value statement gives a value to the surrounding Evaluate construct.

Evaluate() An Evaluate expression allows a block of statements to be used as an expression.

Loop() The Loop statement executes instructions repeatedly.

If() The If statement conditionally executes instructions.

Break() The Break statement causes the flow of control to immediately exit the loop.

WaitUs() WaitUs causes execution to halt until the next tick of the microsecond timer.

Continue() The Continue statement causes the flow of control to immediately jump to the next iteration of
the containing loop.

Block() The Block statement allows instructions to be nested into a single statement.

Out- This method returns a write instruction that writes a single data item to the Output stream.

put.write()

<stream>.read()) This method returns a read instruction that reads a single data item from a stream.

Variable.set() | This method returns a set instruction that assigns the value of an expression to a variable.

5.2.10 Bit Width Within a Process

We have already seen how streams are usually sized automatically to handle the largest possible data value. Inside a
Process however things are handled differently. A Process has a fixed bit width. The width is the first argument given
to a Process. Inside a Process, the value of any expression will be resized the width of the Process. When a Process
reads from a stream, the value will be truncated or sign extended to the width of the Process. It is important to make
sure that the width of a Process is sufficiently large.

5.2.11 Hierarchical Design

You may be expecting Chips to provide some mechanism for hierarchical design. You might expect that Chips would
provide a means too group items together to form re-usable components or modules. A really good design tool would
allow you to parameterise components and modules using generics or templates. Chips does not provide any of these
things. It doesn’t have to.

The Python language itself already provides all these things and more. If you want to make a reusable component you

can simply write a Python function:

>>> from chips import =

>>> def double (input_stream) :
"""Tf you use Python functions to build components you can take

advantage of docstrings to document your design."""

return input_stream * 2

5.2. Tutorial 15

Chips Documentation, Release 0.1

>>> ¢ = Chip(
Console (
Printer (
double (
Sequence (1, 2, 3)

>>> c.reset ()
>>> c.execute (10)
2

4
6
2

5.2.12 Streams from Multiple Sources

Streams can only be have one source of data and one sink, but it is possible to combine data from more than one source
into a single stream using a Process. The simplest approach is to read a value from each source, and write it to the
destination thus:

>>> from chips import =

>>> def simple_arbiter (source_0, source_1):
"""Combine data from two streams into a single stream"""
temp = Variable (0)
dest = Output ()
Process (max ([source_0.get_bits (), source_l.get_bits()]),
Loop (
source_0.read (temp),
dest.write (temp),
source_l.read(temp),
dest.write (temp),
),
)

return dest

>>> ¢ = Chip(
Console (
Printer(
simple_arbiter (
Repeater (1), Repeater(2)

>>> c.reset ()
>>> c.execute (100)
1

2
1
2

16 Chapter 5. Documentation

Chips Documentation, Release 0.1

This type of arbiter will always take an equal number of items from source_0, and source_1. This may be fine in some
applications, but if data were not available on source_0, data from source_1 would also be blocked. One solution is to
use the available method of a stream to test whether data is available before committing to a blocking read:

>>> from chips import =

>>> def non_blocking_arbiter (source_0, source_1):
"""Combine data from two streams into a single stream"""
temp = Variable (0)
dest = Output ()
Process (max ([source_0.get_bits (), source_l.get_bits()]),
Loop (
If (source_0.available(),
source_0.read (temp),
dest.write (temp),
)V
If (source_1l.available(),
source_l.read(temp),
dest.write (temp),
)I
)I
)

return dest

>>> pblocked = Output ()

>>> p=Process (8,
#outputs one value then blocks
blocked.write (1),

>>> ¢ = Chip(
Console (
Printer (
non_blocking_arbiter (
blocked, Repeater (2)

>>> c.reset ()
>>> c.execute (100)

NN NN

5.2. Tutorial 17

Chips Documentation, Release 0.1

5.2.13 Streams with Multiple Sinks

Sometimes a stream will need to be used in more than one place. A simple solution is to make a splitter or tee using a
Process:

>>> from chips import =

>>> def tee(source):
"""split data into two streams"""
temp = Variable (0)
dest_0 = Output ()
dest_1 = Output ()
Process (source.get_bits(),
Loop (
source.read (temp),
dest_0.write (temp),
dest_1l.write (temp),
)I
)

return dest_0, dest_1
>>> dest_0, dest_1 = tee(Counter (0, 9, 1))

>>> ¢ = Chip(
Console (
Printer (dest_0),
)
Console (
Printer (dest_1),

>>> c.reset ()
>>> c.execute (100)

W wNhNDBE PO O

5.2.14 A Worked Example

TODO

5.2.15 Further Examples

The source distribution contains a number of more involved examples so that you can see for yourself how more
complex hardware designs can be formed from these simple components.

18 Chapter 5. Documentation

https://github.com/downloads/dawsonjon/chips/Chips-0.1.tar.gz

Chips Documentation, Release 0.1

5.3 Chips Language Reference Manual

5.3.1 Chip

class Chip (*args)
A Chip is device containing streams, sinks and processes.

Typically a Chip is used to describe a single device. You need to provide the Chip object with a list of all the
sinks (device outputs). You don’t need to include any process, variables or streams. By analysing the sinks, the

chip can work out which processes and streams need to be included in the device.

Example:

>>> from chips import =
>>> from chips.VHDL plugin import Plugin

>>> switches = InPort ("SWITCHES", 8)

>>> gerial_in = SerialIn("RX")
>>> leds = OutPort (switches, "LEDS")
>>> serial_out = SerialOut (serial_in, "TX")

>>> #We need to tell the Chip that leds and serial_out are part of
>>> #the device. The Chip can work out for itself that switches and

>>> #serial_in are part of the device.
>>> s = Chip(

leds,
serial_out,

>>> plugin = Plugin ()
>>> s.write_code (plugin)

5.3.2 Process

Processes are used to define the programs that will be executed in the target Chip. Each Process contains a single
program made up of instructions. When a Chip is simulated, or run in real hardware, the program within each process

will be run concurrently.

Process Inputs

Any Stream may be used as the input to a Process. Only one process may read from any particular stream. A Process
may read from a Stream using the read method. The read method accepts a Variable as its argument. A read from a
Stream will stall execution of the Process until data is available. Similarly, the stream will be stalled, until data is read
from it. This provides a handy way to synchronise processes together, and simplifies the design of concurrent systems.

Example:

>>> from chips import =«

>>> #sending process
>>> theoutput = Output ()
>>> count = Variable (0)
>>> Process (16,

5.3. Chips Language Reference Manual

19

Chips Documentation, Release 0.1

#wait for 1 second

count.set (1000),

While (count,
count.set (count-1),
WaitUs ()

) 14

#send some data

theoutput . .write (123),

)

Process (...

>>> #receiving process
>>> target_variable = Variable (100)
>>> Process (16,
#This instruction will stall the process until data is available
theoutput.read(target_variable),
#This instruction will not be run for 1 second
#..
)

Process (...

Process Outputs

An Output is a special Stream that can be written to by a Process. Only one Process may write to any particular stream.
Like any other Stream, an Output may be:

* Read by a Process.
* Consumed by a Sink.
* Modified to form another Stream.

A Process may write to an Output stream using the write method. The write method accepts an expression as its
argument. A wrife to an output will stall the process until the receiver is ready to receive data.

Example:

>>> #sending process
>>> theoutput = Output ()
>>> Process (16,
#This instruction will stall the process until data is available
theoutput.write (123),
#This instruction will not be run for 1 second
#..
)

Process (...

>>> #receiving process
>>> target_variable = Variable (0)
>>> count = Variable (0)
>>> Process (16,
#wait for 1 second
count.set (1000),
While (count,
count.set (count-1),
WaitUs (),
) 14

#get some data

20 Chapter 5. Documentation

Chips Documentation, Release 0.1

theoutput.read(target_variable),
)

Process (...

Variables

Data is stored and manipulated within a process using Variables. A Variable may only be accessed by one process.
When a Variable an initial value must be supplied. A variable will be reset to its initial value before any process
instructions are executed. A Variable may be assigned a value using the ser method. The set method accepts an
expression as its argument.

It is important to understand that a Variable object created like this:
a = Variable (12)

is different from a normal Python variable created like this:

a = 12

The key is to understand that a Variable will exist in the target Chip, and may be assigned and referenced as the Process
executes. A Python variable can exist only in the Python environment, and not in a Chip. While a Python variable may
be converted into a constant in the target Chip, a Process has no way to change its value when it executes.

Expressions

Variables and Constants are the most basic form of expressions. More complex expressions can be formed by com-
bining Constants, Variables and other expressions using following unary operators:

and the folowing binary operators:

The function Not evaluates to the logical negation of each data item equivalent to ==0. The function abs evaluates to
the magnitude of each data item.

If one of the operands of a binary operator is not an expression, the Chips library will attempt to convert this operand
into an integer. If the conversion is successful, a Constant object will be created using the integer value. The Constant
object will be used in place of the non-expression operand. This allows constructs suchasa = 47+Constant (10)

to be used as a shorthand fora = Constant (47) +Constant (10) or count.set (Constant (15) +3%2to
be used as a shorthand for count . set (Constant (15) +Constant (6). Of course a=1+1 still yields the integer
2 rather than an expression.

Note: The divide // operator in Chips works differently then the divide operator in Python. While a floor division
in Python rounds to -infinite, in Chips division rounds to 0. Thus -3/ /2 rounds to —2 in Python, it rounds to —1 in
Chips. This should be more familiar to users of C, C++ and VHDL. The same also applies to the modulo % operator.

An expression within a process will always inherit the data width in bits of the Process in which it is evaluated. A
Stream expression such as Repeater (255) + 1 will automatically yield a 10-bit Stream so that the value 256 can
be represented. A similar expression Constant(255)+1 will give an 9-bit result in a 9-bit process yielding the value -1.
If the same expression is evaluated in a 10-bit process, the result will be 256.

5.3. Chips Language Reference Manual 21

Chips Documentation, Release 0.1

Operator Precedence

The operator precedence is inherited from the Python language. The following table summarizes the operator prece-
dences, from lowest precedence (least binding) to highest precedence (most binding). Operators in the same row have
the same precedence.

Operator Description
==, |=, <, <=,>, >= | Comparisons
Bitwise OR
A Bitwise XOR
& Bitwise AND
<<, >> Shifts
+, - Addition and subtraction
* 1, % multiplication, division and modulo
~ bitwise NOT
Not, abs logical NOT, absolute

class Process (bits, *instructions)

class Variable (initial)

A Variable is used within a Process to store data. A Variable can be used in only one Process. If you need to
communicate with another Process you must use a stream.

A Variable accepts a single argument, the initial value. A Variable will be reset to the initial value when a
simulation, or actual device is reset.

A Variable can be assigned an expression using the set method.

class VariableArray (size)

A VariableArray is an array of variables that can be accessed from within a single Process.
When a VariableArray is created, it accepts a single argument, the size.

A VariableArray can be written to using the write method, the write method accepts two arguments, an expres-
sion indicating the address to write to, and an expression indicating the data to write.

A VariableArray can be read to using the read method, the read method accepts a single argument, an expression
indicating the address to read from. The read method returns an expression that evaluates to the value contained
at *address.

Example:

>>> from chips import =

>>> def reverse (stream, number_of_items):
"""Read number_of items from stream, and reverse them."""
temp = Variable (0)
index = Variable (0)
reversed_stream = Output ()
data_store = VariableArray (number_of_items)
Process (8,
index.set (0),
While (index < number_of_items,
stream.read (temp),
data_store.write (index, temp),
index.set (index+1),
) 14
index.set (number_of_items - 1),
While (index >= 0,
reversed_stream.write (data_store.read (index)),

22

Chapter 5. Documentation

Chips Documentation, Release 0.1

index.set (index-1),
)

return reversed_stream

>>> ¢ = Chip(
Console (
Printer(
reverse (Sequence (0, 1, 2, 3), 4)
)I
) s

>>> c.reset ()

>>> c.execute (1000)
3

2
1
0

5.3.3 Streams

Streams are a fundamental component of the Chips library.
A stream is used to represent a flow of data. A stream can act as a:
e An input to a Chip such as an InPort or a Serialln.
* A source of data in its own right such as a Repeater or a Counter.

* A means of performing some operation on a stream of data to form another stream such as a Printer or a
Lookup.

* A means of transferring data from one process to another, an Output.

Stream Expressions

A Stream Expression can be formed by combining Streams or Stream Expressions with the following unary operators:

and the folowing binary operators:

The function Not yields the logical negation of each data item equivalent to ==0. The function abs yields the magni-
tude of each data item.

Each data item in the resulting Stream Expression will be evaluated by removing a data item from each of the operand
streams, and applying the operator function to these data items.

Generally speaking a Stream Expression will have enough bits to contain any possible result without any arithmetic
overflow. The one exception to this is the left shift operator where the result is always truncated to the size of the left
hand operand. Stream expressions may be explicitly truncated or sign extended using the Resizer.

5.3. Chips Language Reference Manual 23

Chips Documentation, Release 0.1

If one of the operands of a binary operator is not a Stream, Python Streams will attempt to convert this operand into
an integer. If the conversion is successful, a Repeater stream will be created using the integer value. The repeater
stream will be used in place of the non-stream operand. This allows constructs such as a = 47+InPort (12,
8) to be used as a shorthand for a = Repeater (47)+InPort ("in", 8) orcount = Counter (1, 10,
1) +3*2 to be used as a shorthand for count = Counter (1, 10, 1)+Repeater (5). Ofcourse a=1+1 still
yields the integer 2 rather than a stream.

Note: The divide // operator in Chips works differently then the divide operator in Python. While a floor division
in Python rounds to -infinite, in Chips division rounds to 0. Thus -3/ /2 rounds to —2 in Python, it rounds to —1 in
Chips. This should be more familiar to users of C, C++ and VHDL. The same also applies to the modulo % operator.

The operators provided in the Python Streams library are summarised in the table below. The bit width field specifies
how many bits are used for the result based on the number of bits in the left and right hand operands.

Operator Function Data Width (bits)
abs Logical Not argument

Not Logical Not 1

~ Bitwise not right

+ Signed Add max(left, right) + 1
- Signed Subtract max(left, right) + 1
* Signed Multiply left + right
// Signed Floor Division max(left, right) + 1
% Signed Modulo max(left, right)

& Bitwise AND max(left, right)

| Bitwise OR max(left, right)

A Bitwise XOR max(left, right)

<< Arithmetic Left Shift left

>> Arithmetic Right Shift left

== Equality Comparison 1

1= Inequality Comparison 1

Signed Less Than Comparison 1

<= Signed Less Than or Equal Comparison | 1

> Signed Greater Than Comparison 1

>= Signed Greater Than Comparison 1

Operator Precedence

The operator precedence is inherited from the python language. The following table summarizes the operator prece-
dences, from lowest precedence (least binding) to highest precedence (most binding). Operators in the same row have
the same precedence.

Operator Description
==, |5, <, <=, >, >= | Comparisons
Bitwise OR
A Bitwise XOR
& Bitwise AND
<<, >> Shifts
+, - Addition and subtraction
* 1, % multiplication, division and modulo
~ bitwise NOT
Not, abs logical NOT, absolute

24 Chapter 5. Documentation

Chips Documentation, Release 0.1

Streams Reference
class Array (address_in, data_in, address_out, depth)
An Array is a stream yields values from a writeable lookup table.

Like a Lookup, an Array looks up each data item in the address_in stream, and yields the value in the lookup
table. In an Array, the lookup table is set up dynamically using data items from the address_in and data_in
streams. An Array is equivalent to a Random Access Memory (RAM) with independent read, and write ports.

A Lookup accepts address_in, data_in and address_out arguments as source streams. The depth argument
specifies the size of the lookup table.

Example:

>>> def video_raster_stream(width, height, row_stream, col_stream,
intensity) :

pixel_clock = Counter (0, widthxheight, 1)

pixstream = Array (

address_in = (row_stream » width) + col_stream,
data_in = intensity,
address_out = pixel_clock,

depth = width * height,

return pixstream

>>> pixstream = video_raster_stream(
64,
64,
Repeater (32),
Counter (0, 63, 1),
Repeater (255),
)

class Counter (start, stop, step)
A Stream which yields numbers from start to stop in step increments.

A Counter is a versatile, and commonly used construct in device design, they can be used to number samples,
index memories and so on.

Example:

>>> from chips import =

>>> c=Chip(
Console (
Printer(
Counter (0, 10, 2) #creates a 4 bit stream

>>> c.reset ()

>>> c.execute (100)
0

2

4

5.3. Chips Language Reference Manual 25

Chips Documentation, Release 0.1

>>> c=Chip (
Console (
Printer (
Counter (10, 0, -2) #creates a 4 bit stream

>>> c.reset ()

>>> c.execute (100)
10

8

O N B O

class Decoupler (source)

A Decoupler removes stream handshaking.

Usually, data is transfered though streams using blocking transfers. When a process writes to a stream, execution
will be halted until the receiving process reads the data. While this behaviour greatly simplifies the design of
parallel processes, sometimes Non-blocking transfers are needed. When a data item is written to a Decoupler,
it is stored. When a Decoupler is read from, the value of the last stored value is yielded. Neither the sending or
the receiving process ever blocks. This also means that the number of data items written into the Decoupler and
the number read out do not have to be the same.

A Decoupler accepts only one argument, the source stream.

Example:

>>> from chips import =
>>> def time_stamp_data (data_stream) :

us_time = Output ()
time = Variable (0)
Process (8,
Loop (
WaitUs (),
time.set (time + 1),
us_time.write (time),

)y

output_stream = Output ()
temp = Variable (0)
Process (8,
Loop (
data_stream.read (temp),

26

Chapter 5. Documentation

Chips Documentation, Release 0.1

output_stream.write (temp),

us_time.read (temp),

output_stream.write (temp),
) ’

return output_stream
>>> time_stamped_stream = time_stamp_data (Serialln())

class Fifo (data_in, depth)
A Fifo stores a buffer of data items.

A Fifo contains a fixed size buffer of objects obtained from the source stream. A Fifo yields the data items in
the same order in which they were stored.

The first argument to a Fifo, is the source stream, the depth argument determines the size of the Fifo buffer.

Example:

>>> from chips import =«

>>> def scope (ADC_stream, trigger_level, buffer_depth):
temp = Variable (0)
count = Variable (0)
buffer = Output ()

Process (16,
Loop (
ADC_stream.read (temp),
If (temp > trigger_level,
buffer.write (temp),
count.set (buffer_depth - 1),
While (count,
ADC_stream.read(temp),
buffer.write (temp),
count.set (count-1),

return Printer (Fifo(buffer, buffer_depth))

>>> test_signal = Sequence(0, 0, 0, 0, 0, O, 1, 2, 3, 4, 5, 5, 5, 5, 5)
>>> ¢ = Chip(Console (scope (test_signal, 0, 5)))

>>> c.reset ()

>>> c.execute (100)

g w N

class HexPrinter (source)
A HexPrinter turns data into hexadecimal ASCII characters.

Each each data item is turned into the ASCII representation of its hexadecimal value, terminated with a newline

5.3. Chips Language Reference Manual 27

Chips Documentation, Release 0.1

character. Each character then forms a data item in the HexPrinter stream.
A HexPrinter accepts a single argument, the source stream. A HexPrinter stream is always 8 bits wide.

Example:

>>> from chips import =

>>> #print the numbers 0x0-0x10 to the console repeatedly
>>> c=Chip(
Console (
HexPrinter (
Counter (0x0, 0x10, 1),
)I
)V

>>> c.reset ()
>>> c.execute (1000)

O W W -Jo U > WN R o

class InPort (name, bits)

A device input port stream.

An InPort allows a port pins of the target device to be used as a data stream. There is no handshaking on the
input port. The port pins are sampled at the point when data is transfered by the stream. When implemented in
VHDL, the InPort provides double registers on the port pins to synchronise data to the local clock domain.

Since it is not possible to determine the width of the stream in bits automatically, this must be specified using
the bits argument.

The name parameter allows a string to be associated with the input port. In a VHDL implementation, name will
be used as the port name in the top level entity.

Example:
>>> from chips import =

>>> dip_switches = InPort ("dip_switches", 8)
>>> s = Chip(SerialOut (Printer (dip_switches)))

class Lookup (source, *args)

A Lookup is a stream yields values from a read-only look up table.

For each data item in the source stream, a Lookup will yield the addressed value in the lookup table. A Lookup
is basically a Read Only Memory(ROM) with the source stream forming the address, and the Lookup itself
forming the data output.

Example:

28

Chapter 5. Documentation

Chips Documentation, Release 0.1

>>> from chips import =

>>> def binary_2_gray (input_stream) :
return Lookup (input_stream, 0, 1, 3, 2, 6, 7, 5, 4)

>>> ¢ = Chip(
Console (
Printer (binary_2_gray (Counter (0, 7, 1)))

>>> c.reset ()
>>> c.execute (100)

O b IO W o

The first argument to a Lookup is the source stream, all additional arguments form the lookup table. If you want
to use a Python sequence object such as a tuple or a list to form the lookup table use the following syntax:

>>> my_list = [0, 1, 3, 2, 6, 7, 5, 4]
my_sequence = Lookup (Counter (0, 7, 1), *my_list)

class Output ()

An Output is a stream that can be written to by a process.

Any stream can be read from by a process. Only an Output stream can be written to by a process. A process can
be written to by using the read method. The read method accepts one argument, an expression to write.

Example:

>>> from chips import =

>>> def tee(input_stream):

output_stream_1 = Output ()

output_stream_2 = Output ()

temp = Variable (0)

Process (input_stream.get_bits (),

Loop (

input_stream.read (temp),
output_stream_1l.write (temp),
output_stream_2.write (temp),

)

return output_stream_1, output_stream_ 2
>>> os_1, os_2 = tee(Counter(l, 3, 1))

>>> ¢ = Chip(
Console (

5.3.

Chips Language Reference Manual 29

Chips Documentation, Release 0.1

Printer (os_1),
) 14
Console (

Printer (os_2),

),

>>> c.reset ()
>>> c.execute (100)

w w NN

class Printer (source)
A Printer turns data into decimal ASCII characters.

Each each data item is turned into the ASCII representation of its decimal value, terminated with a newline
character. Each character then forms a data item in the Printer stream.

A Printer accepts a single argument, the source stream. A Printer stream is always 8 bits wide.

Example:

>>> from chips import =

>>> #print the numbers 0-10 to the console repeatedly
>>> c=Chip(
Console (
Printer (
Counter (0, 10, 1),
) 4
) 14

>>> c.reset ()
>>> c.execute (100)

Sw N PO

class Repeater (value)
A stream which repeatedly yields the specified value.

The Repeater stream is one of the most fundamental streams available.

The width of the stream in bits is calculated automatically. The smallest number of bits that can represent value
in twos-complement format will be used.

Examples:

>>> from chips import =

30 Chapter 5. Documentation

Chips Documentation, Release 0.1

>>> c=Chip (
Console (
Printer (
Repeater (5) #creates a 4 bit stream

>>> c.reset ()
>>> c.execute (100)

>>> c=Chip(
Console (
Printer (
Repeater (10) #creates a 5 bit stream

>>> c.reset ()

>>> c.execute (100)
10

10

10

>>> c=Chip (
Console (
Printer (
#This is shorthand for: Repeater (5) *Repeater (2)
Repeater (5) %2

>>> c.reset ()

>>> c.execute (100)
10

10

10

class Resizer (source, bits)
A Resizer changes the width, in bits, of the source stream.

The Resizer takes two arguments, the source stream, and the width in bits. The Resizer will truncate data if it is
reducing the width, ans sign extend if it is increasing the width.

Example:

>>> from chips import =

>>> a = InPort (name="din", bits=8) #a has a width of 8 bits
>>> a.get_lbits ()
8

5.3. Chips Language Reference Manual 31

Chips Documentation, Release 0.1

>>> b = a + 1 #b has a width of 9 bits
>>> b.get_bits ()

9

>>> ¢ = Resizer (b, 8) #c is truncated to 8 bits
>>> c.get_bits()

8

>>> Chip (OutPort (c, name="dout"))

Chip (...

Scanner (stream, bits)

A Scanner converts a stream of decimal ASCII into their integer value.

Numeric characters separated by non-numeric characters are interpreted as numbers. As it is not possible to
determine the maximum value of a Scanner stream at compile time, the width of the stream must be specified
using the bits parameter.

The Scanner stream accepts two inputs, the source stream and the number of bits.

Example:

>>> from chips import =

>>> #multiply by two and echo
>>> ¢ = Chip(
Console (
Printer (
Scanner (Sequence (xmap (ord, "10 20 30 ")), 8)=x2,
)I
)!

>>> c.reset ()

>>> c.execute (1000) # doctest: +ELLIPSIS
20

40

60

20

Sequence (*args)

A Sequence stream yields each of its arguments in turn repeatedly.

A Sequence accepts any number of arguments. The bit width of a sequence is determined automatically, using
the number of bits necessary to represent the argument with the largest magnitude. A Sequence allows Python
sequences to be used within a Chips simulation using the Sequence (xpython_sequence) syntax.

Example:

>>> from chips import =

>>> ¢ = Chip(
Console (
Sequence (*map (ord, "hello world\n")),

>>> c.reset ()
>>> c.execute (50)
hello world

32

Chapter 5. Documentation

Chips Documentation, Release 0.1

hello world
hello world

class SeriallIn (name="RX’, clock_rate=50000000, baud_rate=115200)
A Serialln yields data from a serial UART port.

Serialln yields one data item from the serial input port for each character read from the source stream. The
stream is always 8 bits wide.

A Serialln accepts an optional name argument which is used as the name for the serial RX line in generated
VHDL. The clock rate of the target device in MHz can be specified using the clock_rate argument. The baud
rate of the serial input can be specified using the baud_rate argument.

Example:
>>> from chips import =

>>> #echo typed characters
>>> ¢ = Chip(SerialOut (SeriallIn()))

class Sstimulus (bits)
A Stream that allows a Python iterable to be used as a stream.

A Stimulus stream allows a transparent method to pass data from the Python environment into the simulation
environment. The sequence object is set at run time using the set_simulation_data() method. The sequence
object can be any iterable Python sequence such as a list, tuple, or even a generator.

Example:

>>> from chips import =

>>> stimulus = Stimulus (8)
>>> ¢ = Chip(Console (Printer (stimulus)))

>>> def count () :
i=0
while True:
yield i
i+=1

>>> stimulus.set_simulation_data (count ())
>>> c.reset ()
>>> c.execute (100)

5.3.4 Sinks

Sinks are a fundamental component of the Chips library.
A sink is used to terminate a stream. A sink may act as:
* An output of a Chip such as an OutPort or SerialOut.

¢ A consumer of data in its own right such as an Asserter.

5.3. Chips Language Reference Manual 33

Chips Documentation, Release 0.1

Sinks Reference
class Asserter (a)
An Asserter causes an exception if any data in the source stream is zero.

An Asserter is particularly useful in automated tests, as it causes a simulation to fail is a condition is not met.
In generated VHDL code, an asserter is represented by a VHDL assert statement. In practice this means that an
Asserter will function correctly in a VHDL simulation, but will have no effect when synthesized.

The Asserter sink accepts a source stream argument, a.

Example:

>>> from chips import =

>>> a = Sequence(l, 2, 3, 4)

>>> ¢ = Chip(Asserter((at+l) == Sequence (2, 3, 4, 5)))

Look at the Chips test suite for more examples of the Asserter being used for automated testing.

class Console (a)
A Console outputs data to the simulation console.

Console stores characters for output to the console in a buffer. When an end of line character is seen, the buffer
is written to the console. A Console interprets a stream of numbers as ASCII characters. The source stream must
be 8 bits wide. The source stream could be truncated to 8 bits using a Resizer, but it is usually more convenient
to use a Printer as the source stream. The will allow a stream of any width to be represented as a decimal string.

A Console accepts a source stream argument 4.

Example:

>>> from chips import =

>>> #convert string into a sequence of characters
>>> hello_world = tuple((ord(i) for i in "hello world\n"))

>>> my_chip = Chip(
Console (
Sequence (xhello_world),

)

class OutPort (a, name)
An OutPort sink outputs a stream of data to I/O port pins.

No handshaking is performed on the output port, data will appear at the time when the source stream transfers
data.

An output port take two arguments, the source stream a and a string name. Name is used as the port name in
generated VHDL.

Example:

>>> from chips import =«

>>> dip_switches = InPort ("dip_switches", 8)
>>> led_array = OutPort (dip_switches, "led_array")
>>> s = Chip(led_array)

class Response (a)
A Response sink allows data to be transfered into Python.

34 Chapter 5. Documentation

Chips Documentation, Release 0.1

As a simulation is run, the Response sink accumulates data. After a simulation is run, you can retrieve a python
iterable using the get_simulation_data method. Using a Response sink allows you to seamlessly integrate your
Chips simulation into a wider Python simulation. This works for simulations using an external simulator as
well, in this case you also need to pass the code generation plugin to get_simulation_data.

A Response sink accepts a single stream argument as its source.

Example:

>>> from streams import =«
>>> import PIL.Image #You need the Python Imaging Library for this

>>> def image_processor():
#black —> white
return Counter (0, 63, 1)+*4

>>> response = Response (image_processor ())
>>> chip = Chip(response)

>>> chip.reset ()
>>> chip.execute (100000)

>>> image_data = list (response.get_simulation_data())
>>> image_data = image_datal[: (64%64)-1]

>>> im = PIL.Image.new("L", (64, 64))

>>> im.putdata (image_data)

>>> im.show ()

class SerialOut (a, name="TX’, clock_rate=50000000, baud_rate=115200)
A SerialOut outputs data to a serial UART port.

SerialOut outputs one character to the serial output port for each item of data in the source stream. At present
only 8 data bits are supported, so the source stream must be 8 bits wide. The source stream could be truncated
to 8 bits using a Resizer, but it is usually more convenient to use a Printer as the source stream. The will allow
a stream of any width to be represented as a decimal string.

A SerialOut accepts a source stream argument a. An optional name argument is used as the name for the serial
TX line in generated VHDL. The clock rate of the target device in MHz can be specified using the clock_rate
argument. The baud rate of the serial output can be specified using the baud_rate argument.

Example:

>>> from chips import =

>>> #convert string into a sequence of characters
>>> hello_world = map(ord, "hello world\n")

>>> my_chip = Chip(

Serialout (
Sequence (xhello_world),

5.3.5 Instructions

The instructions provided here form the basis of the software that can be run inside Processes.

5.3. Chips Language Reference Manual 35

Chips Documentation, Release 0.1

Instructions Reference

class Block (instructions)
The Block statement allows instructions to be nested into a single statement. Using a Block allows a group of
instructions to be stored as a single object. A block accepts a single argument, instructions, a Python Sequence
of instructions

Example:
>>> from chips import =
>>> a Variable (0)

>>> b = Variable (1)
>>> ¢ = Variable (2)

>>> initialise = Block((a.set(0), b.set(0), c.set(0)))
>>> Process (8,
initialise,
a.set(atl), b.set(b+1l), c.set(c+l),
)

Process (...

class Break ()
The Break statement causes the flow of control to immediately exit the loop.

Example:

#equivalent to a While loop
Loop (
If (Not (condition),
Break (),
)
#do stuff here
) 4

Example:

#equivalent to a DoWhile loop
Loop (
#do stuff here
If (Not (condition),
Break (),
)
)I

class Continue ()
The Continue statement causes the flow of control to immediately jump to the next iteration of the containing
loop.

Example:

>>> from chips import =

>>> in_stream = Counter (0, 100, 1)
>>> out_stream = Output ()

>>> a = Variable (0)

>>> #allow only even numbers

>>> Process (12,

36 Chapter 5. Documentation

Chips Documentation, Release 0.1

Loop (
in_stream.read(a),
If(as&l,
Continue (),
) ’
out_stream.write(a),
)y
)

Process (...

>>> ¢ = Chip(Console (Printer (out_stream)))
>>> c.reset ()
>>> c.execute (100)

0 o N O

DoUntil (condition, *instructions)

A loop in which one iteration will be executed each time the condition is false. The condition is tested after each
loop iteration.

Equivalent to:

Loop (
instructions,
If (condition, Break()),

)

DoWhile (condition, *instructions)

A loop in which one iteration will be executed each time the condition is true. The condition is tested after each
loop iteration.

Equivalent to:

Loop (
instructions,
If (Not (condition), Break()),

class Evaluate (*instructions)

class If (condition, *instructions)
The If statement conditionally executes instructions.

The condition of the If branch is evaluated, followed by the condition of each of the optional Elif branches.
If one of the conditions evaluates to non-zero then the corresponding instructions will be executed. If the If

condition, and all of the Elif conditions evaluate to zero, then the instructions in the optional Else branch will
be evaluated.

Example:

If(condition,
#do something
) .E1lif (condition,
#do something else

5.3. Chips Language Reference Manual 37

Chips Documentation, Release 0.1

) .Else(
#if all else fails do this

class Loop (*instructions)
The Loop statement executes instructions repeatedly.

A Loop can be exited using the Break instruction. A Continue instruction causes the remainder of instructions
in the loop to be skipped. Execution then repeats from the beginning of the Loop.

Example:

>>> from chips import =

>>> #filter values over 50 out of a stream
>>> in_stream = Sequence (10, 20, 30, 40, 50, 60, 70, 80, 90)
>>> out_stream = Output ()
>>> a = Variable (0)
>>> Process (8,
Loop (

in_stream.read(a),

If(a > 50, Continue()),

out_stream.write(a),

)

Process (...

>>> ¢ = Chip(
Console (
Printer (out_stream)

>>> c.reset ()

>>> c.execute (100)
10

20

30

40

50

10

Example:

>>> from chips import =

>>> #initialise an array
>>> myarray = VariableArray (100)
>>> index = Variable (0)
>>> Loop (

If(index == 100,

Break (),

),

myarray.write (index, 0),
e)
Loop (...

38 Chapter 5. Documentation

Chips Documentation, Release 0.1

class

class

Print (stream, exp, minimum_number_of_digits=None)
The Print instruction write an integer to a stream in decimal ASCII format.

Print will not add any white space or line ends (in contrast to the Printer) The Print instruction accepts two
arguments, the destination stream, which must be an Output stream, and a numeric expression, exp. An optional
third argument specifies the minimum number of digits to print (leading O characters are added).

Example:

>>> #multiply by 2 and echo
>>> temp = Variable (0)
>>> inp = Sequence (*map (ord, "1 2 3 "))
>>> out_stream = Output ()
>>> p=Process (8,
Loop (
Scan (inp, temp),
out_stream.write (temp=*2),

>>> ¢ = Chip(Console (Printer (out_stream)))
>>> c.reset ()

>>> c.execute (1000)

2

4
6
2

Scan (stream, variable)
The Scan instruction reads an integer value from a stream of decimal ASCII characters.

Numeric characters separated by non-numeric characters are interpreted as numbers. If Scan encounters a
number that is too large to represent in a process, the result is undefined.

The Scan accepts two arguments, the source stream and a destination variable.

Example:

>>> from chips import =

>>> #multiply by 2 and echo
>>> temp = Variable (0)
>>> inp = Sequence (xmap (ord, "1 2 3 "))
>>> out = Output ()
>>> p=Process (8,
Loop (
Scan (inp, temp),
out.write (tempx2),

>>> ¢ = Chip(Console (Printer (out)))

>>> c.reset ()

>>> c.execute(1000) # doctest: +ELLIPSIS
2

4

6

5.3.

Chips Language Reference Manual 39

Chips Documentation, Release 0.1

Until (condition, *instructions)

A loop in which one iteration will be executed each time the condition is false. The condition is tested before
each loop iteration.

Equivalent to:

Loop (
If (condition, Break()),
instructions,

)

class Value (expression)

The Value statement gives a value to the surrounding Evaluate construct.

An Evaluate expression allows a block of statements to be used as an expression. When a Value is encountered,
the supplied expression becomes the value of the whole evaluate statement.

Example:

>>> from chips import =

>>> #provide a And expression similar to Pythons and expression
>>> def LogicalAnd(a, b):
return Evaluate (
If(a,
Value (b),
) .Else(
Value (0),

>>> check = Output ()
>>> Process (8,
If (LogicalAnd (1, 4),
check.write (1), #true
) .Else(
check.write (0), #false

)

Process (...

>>> ¢ = Chip(Asserter (check))
>>> c.reset ()
>>> c.execute (100)

class WaitUs ()

WaitUs causes execution to halt until the next tick of the microsecond timer.

In practice, this means that the process is stalled for less than 1 microsecond. This behaviour is useful when
implementing a real-time counter function because the execution time of statements does not affect the time be-
tween WaitUs statements (Providing the statements do not take more than 1 microsecond to execute of course!).

Example:

>>> from chips import =

>>> seconds = Variable (0)
>>> count = Variable (0)
>>> out_stream = Output ()

40

Chapter 5. Documentation

Chips Documentation, Release 0.1

>>> Process (12,
seconds.set (0),
Loop (
count.set (1000),
While (count,
WaitUs (),
count.set (count-1),
)I
seconds.set (seconds + 1),
out_stream.write (seconds),
)I
)

Process (...

While (condition, *instructions)
A loop in which one iteration will be executed each time the condition is true. The condition is tested before
each loop iteration.

Equivalent to:

Loop (
If (Not (condition), Break()),
instructions,

5.4 Automatic Code Generation

5.4.1 VHDL Code Generation

VHDL Code Generation for streams library

5.4.2 C++ Code Generation

C++ code generator for streams library

5.4.3 Visualisation Code Generation

Visualisation for streams library

5.5 IP library

5.6 Extending the Chips Library

5.4. Automatic Code Generation 41

Chips Documentation, Release 0.1

42 Chapter 5. Documentation

CHAPTER
SIX

NEWS

* 2011-04-09 Chips Library Published on GitHub.
e 2011-04-29 Chips Library Published on Python Package Index.

43

Chips Documentation, Release 0.1

44 Chapter 6. News

CHAPTER
SEVEN

LINKS

SciPy Scientific Tools for Python.

matplotlib 2D plotting library for Python.

Python Imaging Library (PIL) Python Imaging Library adds image processing capabilities to Python.
MyHDL A Hardware description language based on Python.

45

http://scipy.org
http://matplotlib.sourceforge.net
http://www.pythonware.com/products/pil/
http://www.myhdl.org

Chips Documentation, Release 0.1

46 Chapter 7. Links

CHAPTER
EIGHT

INDICES AND TABLES

e Index
e Module Index
 Search Page

47

Chips Documentation, Release 0.1

48 Chapter 8. Indices and tables

chips

chips
chips

chips.
chips.
.VHDL_plugin, 4l

chips

chips.

.cpp_plugin, 41
chips.

instruction, 35

.ip, 41
.process, 19
sinks, 33
streams, 23

visual_plugin,4l

MODULE INDEX

49

Chips Documentation, Release 0.1

50 Module Index

A

Array (class in chips), 25
Asserter (class in chips), 34

B

Block (class in chips), 36
Break (class in chips), 36

C

Chip (class in chips), 19
chips.cpp_plugin (module), 41
chips.instruction (module), 35
chips.ip (module), 41
chips.process (module), 19
chips.sinks (module), 33
chips.streams (module), 23
chips.VHDL_plugin (module), 41
chips.visual_plugin (module), 41
Console (class in chips), 34
Continue (class in chips), 36
Counter (class in chips), 25

D

Decoupler (class in chips), 26
DoUntil() (in module chips), 37
DoWhile() (in module chips), 37

E

Evaluate (class in chips), 37

F

Fifo (class in chips), 27

H

HexPrinter (class in chips), 27

If (class in chips), 37
InPort (class in chips), 28

L

Lookup (class in chips), 28
Loop (class in chips), 38

O

OutPort (class in chips), 34
Output (class in chips), 29

P

Print (class in chips), 38
Printer (class in chips), 30
Process (class in chips), 22

R

Repeater (class in chips), 30
Resizer (class in chips), 31
Response (class in chips), 34

S

Scan (class in chips), 39
Scanner() (in module chips), 32
Sequence() (in module chips), 32
Serialln (class in chips), 33
SerialOut (class in chips), 35
Stimulus (class in chips), 33

U

Until() (in module chips), 39

Vv

Value (class in chips), 40
Variable (class in chips), 22
VariableArray (class in chips), 22

W

WaitUs (class in chips), 40
While() (in module chips), 41

INDEX

51

	What is Chips?
	Features
	A Quick Taster
	Download
	Documentation
	Introduction
	Tutorial
	Chips Language Reference Manual
	Automatic Code Generation
	IP library
	Extending the Chips Library

	News
	Links
	Indices and tables
	Module Index
	Index

