Decoding Reed-Solomon Codes

Bruce Maggs*

October 24", 2000

Contents
1 Overview of Reed-Solomon Codes 1
1.1 Reed-Solomon encoding L L e 2
1.2 Decoding: preliminaries L e e e e 2
2 Decoder Architecture 3
2.1 Stagesof thedecoder L 3
3 Syndrome Calculator 3
3.1 Syndromes e e e e e e e e 3
4 Berlekamp-Massey Algorithm 5
4.1 Error locator and evaluator polynomials 5
4.2 Two more polynomials e 7
5 Chien Search 9
5.1 Chien’s procedure e e e e e e 9
6 Forney’s Formula 10
6.1 Error magnitude computation Lo L o L 10

1 Overview of Reed-Solomon Codes

We begin by reviewing the basic elements of the Reed-Solomon system. We are working with
polynomials over the field GF(p"). We are examining an RS system which corrects up to s

*Lecture notes scribed by Amitabh Sinha

errors in a message which originally had length k. The transmitted codeword then has length
n=k+ 2s.

Definition 1.1 A message is a sequence mg,my, ..., mg—1 of elements from GF(p"). The
associated message polynomial is m(z) = mo+ mix + mex? + ...+ my_12*" 1. The length
of the message is k.

1.1 Reed-Solomon encoding

If avis a generator of GF(p"), we define a new polynomial g(z) = (z —a)(z —a?)(z—a?) ... (2 -
a?*) for some fixed s. Now define

b(z) = 2**m(x) mod g(z)

Definition 1.2 The Reed-Solomon codeword for the message m(z) is C'(z) = a*m(z) —

b(z).

We have chosen C'(2) so that every codeword is a multiple of g(z). Thus the codewords form
a k-dimensional subspace of the space of all polynomials of degree n = k 4 2s or less. We now
simply transmit the coefficients of C'(z).

In the previous lecture we showed that ¢(z) divides 2”—1, and that there is a unique polynomial
h(z) of degree n — 2s such that g(2)h(z) = 2™ — 1. Hence the following definition.

Definition 1.3 The check polynomial h(z) of an RS system is the unique polynomial such
that g(z)h(z) = 2™ — 1.

Let R(x) be the received message. In the previous lecture we showed that there is a simple
test to determine if whether R(2) is a codeword, i.e., whether there are no errors in the received
codeword. The test is given by the following lemma.

Lemma 1.1 R(z)h(z) =0 mod 2™ — 1 iff R(x) is a codeword.

Thus, when a message arrives we first multiply by the check polynomial h(z) and see if the
result is 0 mod 2™ — 1. If so, then there are no errors, and we can read the coefficients of m(z)
directly from the k high-order coefficients of C'(z). Otherwise, we have to undertake the more
elaborate decoding procedure described in the rest of this lecture.

1.2 Decoding: preliminaries

The received polynomial R(z) can be decomposed as:

R(x) = Cle) + E(x)
T T T
received codeword codeword error polynomial

Let F(z) = Fo+ Fix + ...+ E,_12""! be the expansion of the error polynomial. We will
assume that there are at most s errors. If there are more than s errors, all bets are off. Hence
at most s of the coefficients F; are non-zero. We will assume without loss of generality that
exactly s of the coefficients are non-zero. It is not difficult to modify the approach described
below to handle the case where there are fewer than s errors.

Let j1, J2, ..., Js denote the positions of the errors. Clearly each j; is a distinct integer between
0 and n — 1. We now define the error locations.

Definition 1.4 The error location X; is defined as X; = a’¢.

Since « is a generator of GF(p"), given any X, it is possible to determine the unique value
ji such that X; = o’ by taking the discrete logarithm of X; using base . Hence the error
locations Xy, X5,..., X, are just another way of representing the indices at which the errors
occur. In our lectures on cryptography you heard that taking discrete logarithms was believed
to be difficult. That’s true and there is no contradiction here. In the end we are not going
to take any discrete logarithms to compute the indices at which the errors occur. But we’ve
introduced the X; because they will prove to be more convenient computationally than using
the indices explicitly, and the discussion of the discrete logarithm is just meant to show that the
information content in the error locations is equivalent to that of the set of indices. Furthermore,
we are working with a small, fixed-size finite set here, typically on the order of 256 elements, so
that if we wanted we could easily implement the discrete logarithm using table lookup. In the
cryptographic applications, the size of the field is very large — the number of elements might be
greater than 101,

The error magnitudes are simply the non-zero coefficients of the error polynomial.
Definition 1.5 The error magnitude Y; is defined as F;.

Both X; and Y; are elements of GF(p").

2 Decoder Architecture

2.1 Stages of the decoder

Figure 1 illustrates the main stages of the decoder. It starts with the received codeword R(z),
and goes on to output the corrected codeword C'(z) assuming there were s or fewer errors. We
will now examine each of these layers in detail.

3 Syndrome Calculator

3.1 Syndromes

The first step in decoding a received message R(x) is to compute its syndromes. The syndromes
are given by the following definition.

l R(x):received codeword

Syndrome Calculator

syndromes

Berlekamp-Massey Algorithm

error locator polynomial

Chien Search

error locations

Forney’s Formula

error magnitudes

Correct Error

l C'(z): corrected codeword

Figure 1: Decoder architecture

Definition 3.1 The syndrome s;, for 1 <[< s, of the received message is the polynomial
R(z) evaluated at o', i.e., sy = R(a).

Since C'(a!) = 0, we have s; = R(a!) = E(a!) for 1 <1 < 2s. Hence the 2s syndromes give us
E(z) evaluated at 2s distinct points. Note that F/(z) is a polynomial with at most s non-zero
coefficients. We are going to solve for F/(z), given these evaluations.

We note the following relation:
s1=E(d) =) Yl =) Vx|
i=1 =1

We can now define the syndrome polynomial using the syndromes as:

i .
s(z) = Z 82
=1

Note that although s(z) has a countably infinite number of terms, the relationship that s; =
R(a!') = E(a!) only holds for the first 2s coefficients. It just turns out to be convenient to
encode these coefficients in a generator function s(z).

4 Berlekamp-Massey Algorithm

4.1 Error locator and evaluator polynomials

Having computed the syndromes, we will now solve for the the error locator and error evaluator
polynomials. Once we have these polynomials, we will be able to find the error locations and
the error magnitudes.

Definition 4.1 The error locator polynomial o(z) is defined as:

o(z) = H(l - Xi2)

=1

Notice that the roots of o(z) are precisely the reciprocals of the error locations, that is, the
roots are 1/Xy,1/Xq,...,1/X,.

Definition 4.2 The error evaluator polynomial w(z) is defined as:

w(z)=o0(z)+ ZZXZ-YZ- H(l - X;z)

e

The Berlekamp-Massey procedure essentially solves for these two polynomials. We first derive
an expression relating the three polynomials s(z),0(z) and w(z). This is called the key equation.

w(z) ~ X}V,
= 1
+ ; 1- Xz

= 1+ ZZXiYi ZX}ZZ using the expansion ﬁ =l+az+az2+a23+---
=1 =0

= 1+ Z Z Y;-Xz-lzl rearranging sums

=1 =1

= 1+ Z 512" by definition of s;
=1

= 1+4+s(2)
Definition 4.3 The key equation states that:

(14 s(z))o(z) = w(z) mod S25+1

Note that although s(z) may have more than 2s non-zero coefficients, the unknown polynomials
0(z) and w(z) have degree at most s, and so our solutions for o(z) and w(z) better also have
degree at most s.

Unfortunately, there does not seem to be any easy method to compute o(z) and w(z) directly.
The Berlekamp-Massey algorithm is an iterative procedure that generates a series of 2s pairs
of polynomials (¢ (z2),wM(2)), (¢ (2),wD(2)),..., (69 (2),w)(2)), where the last pair in
the series is actually (o(z),w(2)). At each iteration, we require that the key equation is satisfied:

(1+ S(Z))O'(l)(z) = w(l)(z) mod zt1

Suppose we have computed (0()(z),w)(2)) for some [. If we are lucky, the polynomials also
satisfy the next key equation:

(14 S(Z))U(l)(z) = w(l)(z) mod »+2

If this were the case, we could simply set (c(+1)(2),w+D(2)) = (6D (2),wD(2)). Unfortu-
nately, we are not always so lucky. We usually have the following situation.

(1+5(2)oeW(z) = wW(z) + Agl)zl"'l mod z'+?

As we will see, the degree of w(!)(2) is at most I, so that Agl) is the non-zero coefficient of z/+1
in

(1+5(2))0(2).

4.2 Two more polynomials

To get around this difficulty, we introduce two more polynomials 7()(z) and 4 (z). We require
that these polynomials also have degree no more than /. We also want them to satisfy the
following equation:

(14 5(2))7V(2) = y(2) + 2! mod 2!

We now have the following rules for deriving o1 (2) and w1 (2) from ¢®(2), w®(2),
70 (2), and vV (z):

ctD(z) = U(l)(z)—Agl)zr(l)(z)

W (z) = wO(z) - AP 0()

Note that to compute each of the new functions requires only a scalar multiplication (by

Agl)), a shift (multiplication by z), and a subtraction. It is easy to check that the new pair
(oD (2), w1 (2)) satisfies the key equation. Next we’ll see that it is also not computationally
difficult to compute T(l"'l)(z) and 7(1"'1)(2).

There are two natural and simple expressions for computing the pair of polynomials (T(l"'l)(z),
~+1)(2)) given the polynomials at iteration /.

(A) () = 270
Y0 = #0()

U(l)(z)
(B) 7z =
Al
(0 (2)
) () = Y
YH() =
Al

Notice either choice requires only a scalar multiplication or a shift. It can be easily checked
that whichever of these formulae we use, the following holds:

(14 s(2))7H I (2) = 4D (2) 4 21 mod 212

We will choose either (4) or (B) so as to minimize the degrees of 7(+1)(2) and 41 (z). The
exact choice of the formula to be used depends on a messy case analysis on the degrees of the
four polynomials o((z),wW(2), 70 (2),y(2). We will now briefly overview this “mess”. We
essentially need to be able to deal with accidental cancellations of the high order terms.

To achieve this, Berlekamp and Massey introduce an upper bound D(/) on the degrees of the
polynomials with the invariant that

degree o), degree w® < D(I)
degree 7, degree v < [— D(I)

This is a nice theoretical trick. When it is difficult to analyze the some quantity exactly,
introduce a bound on that quantity that can be carefully controlled.

We use rule (A) if Agl) =0or D(I) > &L and in this case we have D({+ 1) = D(I). We use
rule (B) if Agl) #0and D(I) < 5L, in which case we have D(I41) = [+1— D(l). These choices
guarantee that 0 < D(I41) < [+1, and that degrees of o("*1) and w(*1) are upper-bounded by
D(I+1), and the degrees of 701 (2) and 4"+ (2) are upper-bounded by [— D(l). It is easy to
see that 0 < D(I) < I. Note, however, that when we are all done the degree of ¢(?%)(z) = o (2)

must be at most s, as does the degree of w(*¥)(2). So we are going to have to tighten things up
a bit.

Notice that the above rules don’t tell us how to handle the case when Agl) #0and D(l) = l%l
It turns out that either of the choices (A) and (B) will ensure that degree ¢(t1), degree w1 <
D(I+1) and degree 701 degree vt < 141 — D(I +1). But we can do even better. In

this case we can ensure that one of the following strict inequalities hold.

degree w1 < D(I)
degree v+ < 1 — D(I)

To take advantage of this, we introduce one more parameter B([), which takes on only one of
the two values, either 0 or 1. We then use rule (A) if Agl) #0,D(l) = &L and B(l) = 0. We use
rule (B) if Agl) #0,D(l) = &L and B(l) = 1. When using rule (A), we update B({41) = B(l),
and when using rule (B) we update B({+ 1) =1 — B(l).

This keeps the degree inequalities satisfied:

degree W (2) < D(l) - B(l)
degree v(2) < 1 —D(l) — (1 — B(l))

We will not prove it here, but the rules given above ensure that the degrees of o((z) and
wD(2) do not grow to bee too large, as the following lemma shows.

Lemma 4.1

—

l 1
degree oV) l%
2

<
degree wl) <

This lemma ensures that the degree of ¢(z) = 0(2*)(2) is at most s, as is the degree of w(z).

We are now ready to define the initial conditions:

Il
SO O R = =

o~ o~ —
— e e S S e

This completes the Berlekamp-Massey algorithm to compute the polynomials o(z) and w(z).

5 Chien Search

Having solved for o(z), we want to compute the error locations X;. We recall the definition of
the error locator polynomial:

V)

o(z) = ﬁ(l - Xi2)

=1

We first notice that the roots of o(z) are in fact 1/X;. So it would seem natural to just
compute the roots and take reciprocals.

5.1 Chien’s procedure

However, computing the roots of the polynomial may be very inefficient. Chien’s idea begins
by recalling that we are working over a small finite field. So we can just enumerate all the
elements of the field, and test whether the polynomial evaluates to zero.

Chien’s algorithm

1. Let o be a generator of GF(p").
2. Initialise {X;} to the empty set.
3. Forl=1,2,...

If o(a!) = 0, add a~! to {X;}.

If o(a') = 0, then o' is a root of ¢(2), so that a~' is an error location. Note that Chien’s
algorithm gives us the indices in which the errors occur, ji, jo, ..., Js directly. When we add
a~! to {X;}, we can also add [to {j;}. Thus we don’t have to compute a discrete logarithm.
Also note that we don’t really have to bother computing a~!. Since we are working over a small
finite field we can simply do a table lookup.

It is also easy to compute o(a!*!) from o(a!) quickly, which makes this procedure efficient.
Notice that if
o(z) =1+ 012+ 092> + 032° + -+ -+ 0,2°,

then
a(ozl) =140 +030* + 030 + -+ asole,
and

o) =14 010! 4 09022 4+ 53052 4. f g 0P

Hence the ith term in o(a!*!) can be computed from the ith term in o(a') by multiplying that
term by o'.

6 Forney’s Formula

Now that we have found the error locations { X;}, we just need to compute the error magnitudes

{yi}.

6.1 Error magnitude computation

Forney’s formula tells us that if we evaluate w(z) at X; ', we get

WX = o+ XY [T - xx
=1 1=1
J#e

S

= Y H(l - Xle_l)
T

This is true because o(X; ') = 0 since X, ! is a root of o(z).

We can now compute Y.

Y, = — W(Xz_l)
H(l - Xle_l)
J=1
#1
_ Xfw(X[)
X || (X - X;)
7=1
I#L
_ @(X1)
X [- x5)
g

where we define @(z) = z°w(1/2).
Chien’s algorithm gave us the indices of the errors, and Forney’s formula gave us the error

magnitudes. Thus, we have a solution for the error polynomial F(z). We can now compute the
codeword C'(z) using the formula C'(z) = R(z) — E(z), and the decoding is complete.

10

