
Reed-Solomon Codes

1 Introduction

A Reed-Solomon (RS) code is an error-correcting code first described in a
paper by Reed and Solomon in 1960 [9]. Since that time they’ve been applied
in CD-ROMs, wireless communications, space communications, DSL, DVD,
and digital TV.

RS encoding data is relatively straightforward, but decoding is time-
consuming, despite major efficiency improvements made by Berlekamp and
other during the 1960’s [2, 5, 6, 8]. Only in the past few years has it become
computationally possible to send high-bandwidth data using RS.

RS differs from a Hamming code in that it encodes groups of bits instead
of one bit at a time. We will call these groups “digits” (also “symbols” or
“coefficients”). A digit is error-free if and only if all of its bits are error-free.
For instance, if a digit is an 8-bit character, and three bits of the same single
character are in error, we will count that as one corrupted digit. There are
two corrupted digits (but more than two corrupted bits) in the following
example.

Original : 10110001 11011111 01001011 01011100
Received : 10110101 11011111 01110001 01011100
Corrupted? yes no yes no

If we want to send a k digit plaintext message, RS will send n = k + 2s
digits, and guarantee that the correct message can be reconstructed at the
other end if there are fewer than s corrupted digits.

An example of commonly used parameters: k = 223, s = 16, n = k+2s =
255, giving the ability to correct 16 corrupted digits out of every 255 digit
packet. In general, the number of bits in a digit and the parameters n and s
are tuned to optimize for your application. A CD-ROM can correct a burst
of up to 4000 consecutive errors.

2 Outline of encoding

Now we’ll describe the RS encoding. If there are j distinct digit values (e.g.,
256 distinct 8-bit digit values), we’ll create a mapping between these values
and the elements of a field F with j elements. Our choice of F will be

1



described later, but for now just understand that this defines how the basic
arithmetic operations work for digits. For a k-digit message whose digits
are m0,m1, . . . ,mk−1, we define the corresponding message polynomial to
be m(x) = m0 + m1x + m2x

2 + · · · + mk−1x
k−1. The coefficients of this

polynomial are elements of F . We use F [x] to denote the set of polynomials
with coefficients in F ; so m(x) ∈ F [x].

Recall that there is exactly one polynomial of degree k − 1 that passes
through k points (x0, y0), . . . , (xk−1, yk−1) with all the xi distinct and non-
zero. If we weren’t interested in redundancy, we could send k evaluations of
a(x) as our message, and reconstruct a(x) from those evaluations. The
way we will get our redundancy is by evaluating a(x) at 2s additional
distinct non-zero points; so that what we send is n = k + 2s evaluations
(a(x0), . . . , a(xn−1)), where x0, . . . , xn−1 are distinct x-values agreed upon
before sending the message.

We will reconstruct a(x) in the following way: let (y0, . . . , yn−1) be the
evaluations received, with at most most s errors. Try to find a subset of
k + s (or more) points from ((x0, y0), . . . , (xn−1, yn−1)) such that a degree
k polynomial passes through the points. Such a subset must exist, since we
start with k + 2s points and at most s points are in error. Once we have
such a subset, we know that it matches evaluations of a(x) for at least k
distinct x-values, because at most s of the k+ s points are in error. Since k
evaluations uniquely determine a degree k−1 polynomial, we can reconstruct
the correct a(x).

The algorithm just described has the right flavor, but the step of finding
a subset of consistent points just takes too long. Later on we’ll improve this
algorithm and talk about modern RS coding implementation; but first let’s
flesh out the construction of the field over which we take our polynomial
m(x).

3 Constructing the field F

3.1 Refresher on fields

We introduce here the basic algebraic definitions which will be used in this
section.

Groups. A group is a tuple (G,×, 1), where G is a set of elements, × is a
binary operator on G, and 1 ∈ G is the identity. G must have the following
properties:

2



1. × is closed. For all a, b ∈ G, a× b ∈ G.

2. × is associative. For all a, b, c ∈ G, (a× b)× c = a× (b× c).

3. For all a ∈ G, a× 1 = 1× a = a.

4. For each a ∈ G there is an element a−1 ∈ G such that a × a−1 =
a−1× a = 1 (a−1 is called an inverse of a).

We will often abbreviate a× b as ab when it’s obvious what the operator is.

Fields. A field is a tuple (F,+,×, 0, 1), where F is the set of elements,
+ is the addition operator, × is the multiplication operator, 0 ∈ F is the
additive identity, and 1 ∈ F is the multiplicative identity. F must have the
following properties:

1. (F,+, 0) forms a group.

2. × is associative and distributes over +.

3. (F \ {0},×, 1) forms a group.

Note we will often say “the field F” when we mean “the field whose set is
F , with the standard operators for that set”.

Fields that we commonly work with include the real, complex, and ra-
tional numders. The set of integers is not a field. It satisfies the first two
properties, but fails the third property because not all integers have multi-
plicative inverses. A set like the integers which satisfies the first two field
properties is called a “ring”.

3.2 Galois fields

We now turn to the question of constructing the field F from which the
coefficients of a(x) are drawn. A basic result from number theory is that if
p is prime, then the set of integers modulo p (denoted Zp) is a field. So if
there are a prime number p of possible digits, we can use Zp as our field.
However, that is true if and only if p is prime. Unfortunately, in computer
applications we are likely to want digits which we can encode with r > 1
bits; for instance, 8-bit characters. This means we have a non-prime number
2r of possible digits.

Fortunately, it can be proven that for any prime p and any natual number
r there exists a finite field with pr numbers (in fact the reverse is also true—
every finite field has pr numbers, where p is prime). There is a way to

3



generate such a field. It is called a Galois field, and it can be shown that
any finite field of size pr is isomorphic to a Galois field.

Galois fields are constructed with the help of Zp[x], the set of polynomials
with coefficients in Zp.

We’re used to dealing with polynomials with real coefficients (polyno-
mials in R[x]), so the arithmetic of polynomials in Zp[x] may seem counter-
intuitive. Take F = Z2, for instance.

A refresher on how arithmetic modulo 2 works:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

Now for example, let a, b ∈ Z2[x], a(x) = x2 + x, b(x) = x. Then we can do
the addition

a(x) = 1x2 + 1x
b(x) = 0x2 + 1x

a(x) + b(x) = 1x2 + 0x = x2

which is of course a different result than we would have gotten if a(x), b(x) ∈
R[x]; in that case we would have had (x2 + x) + (x) = x2 + 2x.

Now to define modulo arithmetic for polynomials: a(x) modulo g(x) is
another polynomial r(x) with degree strictly less than g(x), and satisfying
a(x) = g(x)q(x)+r(x) for some polynomial q(x). Exercise: Prove that the
polynomial r(x) with those properties exists, is unique, and is the same as
the remainder of polynomial long division when dividing a(x) by g(x).

Consider the set Zp[x] of polynomials over the field Zp and an irreducible
polynomial g(x) of degree r. An irreducible polynomial is one that cannot
be factored into a product of lower-degree polynomials over Zp.

Now let F be the set of all polynomials in Zp[x] with degree at most
r − 1. Obviously there are pr such polynomials (each of r coefficients can
take one of p possible values). Zp[x] can be mapped to F—we will divide
each f(x) ∈ Zp[x] by g(x) and take the remainder as the image of f(x). That
mapping is not bijective, since an infinite number of different polynomials
can have the same remainder modulo g(x).

We will call the set of polynomials with the same remainder as f(x) the
class of f(x). When we talk about the class of c(x), we’ll prefer to choose
c(x) to be the unique polynomial in the class which is a member of F (has

4



degree strictly less than g(x)). In this case, instead of saying “the class
of c(x)” we may just say “c(x)”. Thus we uniquely identify classes with
members of F .

The set of classes for an arbitrary g(x) is called a quotient ring and is
denoted Zp[x]

g(x) . It is easy to show that such a set really forms a ring. However,

when g(x) is irreducible, Zp[x]
g(x) becomes a field. That is why irreducibility of

g(x) is important.
A Galois field is precisely such a field—Zp[x]

g(x) . We will denote it GF(pr)
(recall that r is the degree of polynomial g(x)). Thus we have now a method
of constructing finite fields with pr elements. Actually, we don’t even need
g(x) to enumerate the elements of GF(pr)—the elements are polynomials
with degree at most r − 1. However, we need g(x) to define operations in
this field (i.e., the multiplication of the fields’ elements will be taken modulo
g(x)).

Unfortunately, there is no simple method of obtaining an irreducible
polynomial (there are complicated probabilistic algorithms that can do that,
but we won’t describe them here). However, irreducible polynomials for
most common finite fields have been found and published. Also, it can be
proven that an irreducible polynomial of degree r over Zp exists for every
positive integer r.

Let us consider an example of the Galois field—GF(23). As stated
above we can construct such a field by enumerating the possible polyno-
mial residues modulo some irreducible polynomial of degree 3 over Z2. It
can be shown that 1 + x+ x3 is irreducible over Z2.

Therefore the field we seek is {0, 1, x, 1 +x, x2, 1 +x2, x+x2, 1 +x+x2}.
That is a simple example. The most commonly used Galois field is GF(28),
since we are usually interested in bytes as information units.

Finite fields (recall that any finite field of size pr is isomorphic to a Galois
field) have some nice properties. One of them is that the multiplicative group
of a finite field F is cyclic. It means that a group contains an element α
such that every a ∈ G equals αi for some integer i. α is called a generator
(or a primitive element) of the group. The finite order of α is the smallest
integer k > 0 such that αk = 1 (where 1 is the identity of the group). It is
easy to show that the finite order of the generator of GF(pr) is pr − 1.

3.3 Implementing Reed-Solomon coding

Our initial intention was to view a message as a polynomial over some fi-
nite field, where message digits (e.g., bytes) are coefficients. Message units

5



m0, . . . ,mk−1 are mapped to the elements of some GF(pr).
Recall that our method of encoding was to evaluate a message polynomial

m(x) = m0 +m1x+ ...mk − 1xk − 1 at n = k + 2s distinct non-zero points
and send those values. Again, if there are at most s errors, then there will
be a set of k + s error-free points, which will be consistent with the degree
k−1 polynomial m(x). Any set of k+s points consistent with a degree k−1
polynomial will have at most s points in error, so there will be k error-free
points, enough to guarantee that the polynomial they are consistent with is
m(x).

Note that n should be at most pr − 1, the number of non-zero elements
in the group, since otherwise we will simply not have enough different points
to evaluate m(x).

Before passing to the details of the real implementation, let us explain
how the polynomial interpolation works. To avoid confusion forget for a
moment that the coefficients are drawn from GF(pr) and think of them as
elements of any abstract field, for instance the real numbers R (the next
paragraph is not specific to finite fields).

Suppose we are given only k polynomial evaluations, m(x0) = y0, . . . ,m(xk−1) =
yk−1, and we want to reconstruct a degree k polynomial, fitting those points.
Probably the simplest way to do that would be to use the Lagrange method:

m(x) =
k−1∑
i=0

yi

k−1∏
j=0

x− xj

xi − xj
.

Note that
k−1∏
j=0

x− xj

xi
=

{
1, if x = xi,
0, if x = xj , where j 6= i.

It is easy to check that this polynomial really fits y0, . . . , yk−1.
There exists another (more straightforward) approach to find the poly-

nomial coefficients—interpolation can be viewed as a problem of solving the
system of k linear equations with k unknowns (m0,m1, . . . ,mk−1):

m0 +m1 · x0 + . . .+mk−1 · xk−1
0 = y0

m0 +m1 · x1 + . . .+mk−1 · xk−1
1 = y1

...
m0 +m1 · xk−1 + . . .+mk−1 · xk−1

k−1 = yk−1

6



This setting provides us with at least one way to deal with decoding
problem: given a set of n evaluations y0, . . . , yn we can simply enumerate
all the possible (k + s)-subsets of this set and find k + s consistent values.
Of course that is not a realistic method due to computational difficulties.

The real methods also differ in what is sent as a codeword. They use
what is called systematic form encoding. Instead of n evaluations of m(x) we
send k coefficients of m(x) (that is, the original k-digit message in plaintext)
together with a parity section of 2s symbols. The motivation is improved
efficiency in the common case that there are no errors: in that case, we
would like to limit our work to a computationally easy procedure that verifies
the lack of errors, and then just read off the original message without any
decoding.

Let’s imagine that the 2s parity check digits are evaluations of m(x)
at 2s distinct non-zero points x0, . . . , x2s−1. How could we reconstruct the
polynomial m(x), given k coefficients and 2s evaluations, with a total of s
possible errors? We can write 2s linear equations

m0 +m1 · x0 + . . .+mk−1 · xk−1
0 = y0

m0 +m1 · x1 + . . .+mk−1 · xk−1
1 = y1

...
m0 +m1 · x2s−1 + . . .+mk−1 · xk−1

2s−1 = y2s−1

If a set of k digits (coefficients and evaluations) from the variables above
contains k− l coefficients and l evaluations, we have l useful equations (one
for each evaluation) and l unknowns on the left. Therefore any such set of
k digits is sufficient to determine all of them. As before, there must be a
consistent set of k+ s digits, and any consistent set of k+ s digits will have
k error-free digits, implying it must be consistent with m(x).

However, real implementations of RS-coding don’t send evaluations of
m(x) in the parity section. They use a different approach, again because we
want to make the common case, in which we only need to verify that there
are no errors, computationally easy.

Recall that coefficients of m(x) are elements of the finite field GF(pr)
and that finite fields are cyclic. Take α, a primitive element of GF(pr), and
define a generator polynomial

g(x) = (x− α) · (x− α2) · . . . · (x− α2s−1)

We’ll use g(x) to map k-digit messages to a k-dimensional subspace of the

7



n-dimensional space of length n digit strings. Every codeword will be a
multiple of g(x).

Define

b(x) = x2s ·m(x) (mod g(x))

So, for some polynomial q(x), x2sm(x) = q(x)g(x) + b(x). Now define the
final codeword c(x) to be

c(x) = x2s ·m(x)− b(x)

That means that our codeword will look like mk−1, ...,m0,−b2s−1, ..,−b0 .
We’ve constructed c(x) so that

c(x) = x2s ·m(x)− b(x)
= [q(x)g(x) + b(x)]− b(x)
= q(x)g(x)

and c(x) is therefore a multiple of g(x).
To check if the received codeword r(x) is correct we can check its divisi-

bility by g(x), and if the answer is affirmative we can simply extract the first
k elements of r(x) to decode a message without any additional computation.

Before going into more detail we need to prove that the numbers we
transmit really suffice to restore the original message:

Lemma 3.3.1 For any root β of g(x), βn−k ·m(β) = b(β).

Proof. xn−k ·m(x) = g(x) · d(x) + b(x), for some d(x). Substituting β we
obtain

βn−k ·m(β) = g(β) · d(β) + b(β) = b(β)

The latter is true, since β is a root of g(x). Note also that since g(x) =
(x−α)(x−α2) · · · (x−α2s), αj are the roots of g(x) and αj·2s ·m(αj) = b(αj)
for 1 ≤ j ≤ 2s. Q.E.D.

Lemma 3.3.2 Given any collection of k coefficients from the polynomials
m(x) and b(x), it is possible to reconstruct the remaining coefficients of m(x)
and b(x).

8



Proof. Since g(x) has degree 2s, b(x) has degree at most 2s− 1. So b(x)
has 2s = n− k coefficients. Hence c(x) (i.e., m(x) and b(x) together) has n
coefficients. We are given k of them, so 2s are unknown. We also have 2s
equations following from the previous lemma:

α2s ·m(α) = b(α)
α4s ·m(α2) = b(α2)
α6s ·m(α3) = b(α3)

...
α(2s)2s ·m(α2s) = b(α2s)

Note that we have exactly 2s unknowns and 2s equations. The linear inde-
pendence of the equations can be derived from the fact that α is a generator
of GF(pr) with a finite order pr − 1. Q.E.D.

We should also prove that the algorithm will still be able to recover from
at most s errors:

Lemma 3.3.3 If at most s of the coefficients of m(x) and b(x) are incorrect,
it is possible to reconstruct all of the coefficients of m(x) correctly.

Proof. As before, if there are s or fewer errors, then at least k + s of the
coefficients are correct. This means that there is at least one set of k + s
or more coefficients that are consistent with each other, and these are from
the original set of n coefficients (before errors were introduced).

Furthermore, suppose we find any set of k + s or more coefficients that
are consistent with each other. At least k of these are correct and are from
the original set of n. By the previous lemma, we can use these k to find all
n of the original coefficients of m(x) and b(x), and the original coefficients
are the only ones consistent with these k. Hence all of the k + s or more
coefficients in the set must be from the original n coefficients.

Combining these two statements, it must be that there is a unique max-
imal set of k + s or more coefficients that are consistent with each other,
none of these coefficients are in error, and they can be used to reconstruct
m(x) and b(x). Q.E.D.

Checking the divisibility of c(x) by the generator polynomial could be
difficult. To simplify the calculations we can multiply c(x) by some polyno-
mial d(x) and check if g(x) · d(x) divides the result (hoping that g(x) · d(x)
is simple).

9



In fact it is easy to show that g(x) divides xpr−1− 1. The proof is given
in the following lemma:

Lemma 3.3.4 g(x) divides xpr−1.

Proof. Since pr−1 is a finite order of α, αpr−1 = 1, therefore αpr−1−1 = 0
and α is a root of xpr − 1. The same is true for α2, . . . α2s−1. Also 2s− 1 <
n < pr (recall, that we need n < pr to be able to evaluate m(x) in n different
points). Therefore all αl, where l ∈ {1, . . . , 2s− 1}, are different and x− αl

are independent. Since xpr − 1 is divisible by any x − αl, it is divisible by
their product, which is g(x). Q.E.D.

For the purposes of RS algorithms n is chosen equal to pr − 1 (i.e. the
popular RS-code—RS(255, 223) has n = 28 − 1, and the Galois field it uses
is GF(28)). So, instead of checking divisibility of r(x) by g(x), we will check
if r(x) = d(x) · g(x) ≡ 0 (mod xn − 1).

Below we give a formal proof of the correctness of our approach. Denote
xpr−1
g(x) as h(x).

Lemma 3.3.5 r(x)·h(x) ≡ 0 (mod xn−1) if and only if r(x) is a codeword.

Proof. First, suppose that r(x) is a codeword. Since all codewords are
multiples of g(x) (mod xn − 1),

r(x) = d(x) · g(x) (mod xn − 1),

Also

g(x) · h(x) ≡ xn − 1 ≡ 0 (mod xn − 1).

Hence,

r(x) · h(x) ≡ d(x) · g(x) · h(x) (mod xn − 1) ≡ 0 (mod xn − 1)

Now suppose that r(x) ·h(x) ≡ 0 (mod xn−1). Let r(x) = d(x) ·g(x)+f(x)
(mod xn − 1), for some d(x) and f(x), where f(x) is the remainder of r(x)
after dividing by g(x). Then we have

(d(x) · g(x) + f(x)) · h(x) = 0 (mod xn − 1)
d(x) · g(x) · h(x) + f(x) · h(x) = 0 (mod xn − 1)

f(x) · h(x) = 0 (mod xn − 1)
f(x) = 0

10



Figure 1: Decoder architecture1

The third line follows from the second because g(x) ·h(x) = 0 (mod xn−
1). The fourth line follows from the third because h(x) is non-zero, f(x)
has degree at most 2s − 1, and h(x) has degree n − k. Since f(x) is 0,
r(x) ≡ d(x) · g(x) (mod xn − 1), and hence r(x) is a multiple of g(x). Thus
r(x) is a codeword. Q.E.D.

3.4 Decoder architecture

Now, although we’ve proven that it’s possible to reconstruct the message
polynomial m(x) from the message with parity (and at most s errors), we
haven’t said how to do this efficiently. Going into detail on the implementa-
tion is beyond the scope of this document. However, we can describe what
the major components of the decoder do, if not how they do it.

Figure 1 shows the five major components of the architecture. Let r(x) =
c(x) + e(x) be the received data, where c(x) is the transmitted codeword
and e(x) is the error polynomial.

Syndrome calculator. Calculates si = r(αi), 1 ≤ i ≤ 2s. These si values
are called syndromes.

Berlekamp’s algorithm. Finds the error locator polynomial L(x), and
the number of errors v. This involves solving simultaneous equations
with s unknowns.

Chien search. Given L(x) and v, finds the roots xi of L(x).

Forney’s algorithm. Given the syndromes and the roots of L(x), finds
the symbol error values yi. Again, this involves solving simultaneous
equations with s unknowns.

1Figure from http://www.4i2i.com/reed solomon codes.htm.

11



Error corrector. Combines all of the pieces calculated above and recon-
structs the original message.

4 A guide to the references

The following seem to be the textbooks on error correcting codes that ev-
eryone cites: [1], [4], [7].

There are also several newer books that describe applications of Reed-
Solomon codes: [10]. [11],

The following research papers describe Reed-Solomon codes, including
the architecture that I outlined at the end of the last lecture. The first in
this list is the specific section in Berlekamp’s textbook that describes the
(now called) “Berlekamp-Massey” algorithm: [2], [5]. [6], [8], [9],

All of these research papers, and many other important papers on coding
theory are included in the following volume: [3].

References

[1] E. R. Berlekamp. Algebraic Coding Theory. McGraw Hill, New York,
NY, 1968.

[2] E. R. Berlekamp. Section on the Berlekamp-Massey algorithm. In
Algebraic Coding Theory, pages 145–148. McGraw Hill, New York, NY,
1968.

[3] E. R. Berlekamp, editor. Key Papers in the Development of Coding
Theory. IEEE, New York, NY, 1974.

[4] R. E. Blahut. Theory and Pratice of Error Control Codes. Addison-
Wesley, Reading, MA, 1983.

[5] R. T. Chien. Cyclic decoding procedures for Bose-Chaudhuri-
Hocquenghem codes. IEEE Transactions on Information Theory, IT-
10:357–363, October 1964.

[6] G. D. Forney, Jr. On decoding BCH codes. IEEE Transactions on
Information Theory, IT-11:549–557, 1965.

[7] S. Liu and Jr. D. J. Costello. Error Control Coding: Fundamentals and
Applications. Prentice-Hall, Englewood Cliffs, NJ, 1983.

12



[8] J. L. Massey. Shift register synthesis and BCH decoding. IEEE Trans-
actions on Information Theory, pages 122–127, January 1969.

[9] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial and Applied Mathematics, 8:300–
304, 1960.

[10] S. B. Wicker and V. K. Bhargava, editors. Reed-Solomon Codes and
Their Applications. IEEE Press, Piscataway, NJ, 1994.

[11] S.B. Wicker. Error Control Systems for Digital Communication and
Storage. Prentice-Hall, Englewood Cliffs, NJ, 1995.

13


