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1. Introduction 

This document describes CRC and Reed Solomon ECC processes and implementation. CRC is 

an acronym for Cyclic-Redundancy Code. ECC is an acronym for Error Correction Code. Reed 

Solomon ECC is the focus of this document. 

 

CRC and ECC are used in error detection and correction  algorithms to improve the reliability of 

transmitted data. This is accomplished by adding information to data before transmission, and 

using that extra information to check and correct any errors when that data is received. 

 

2. Terminology and Basics 

2.1 Terminology 

This document uses expressions as defined in the following: 

 

Raw Data - The original data to be transmitted. 

Redundant Data - The additional data appended to original data before transmission. 

Parities - Redundant Data created by ECC encode process. 

Syndromes - The primary values generated and used by ECC decode process. 

Encoded Data - Raw data and redundant data combined. 

Encode - The process of generating redundant data and appending it to original data. 

Decode - The process of  detecting and/or correcting errors in encoded data. 

Transmit - The process of sending or writing data. 

Receive - The process of receiving or reading data. 

Offset - The offset within a string, from 0 through string size -1. 

Location - Reverse of offset, (string size -1) - offset. 

Locator - Field primitive raised to a multiple of  “location” power. 

 

2.2 CRC and ECC Process 

CRC and ECC use the same basic process. Raw data is encoded. The encoded data is transmitted. 

The encoded data is received. The received data is decoded, and the original data, if error free, or 

corrected, is obtained. An error detection scheme requires the retransmission of data if an error 

occurs. An error correction scheme can detect and correct errors, avoiding the need for 

retransmission. 

 

2.3 Field Math 

CRC and Reed Solomon ECC are based on field math. A field is a mathematical model where 

linear algebra works. A mathematical model redefines the operators add and multiply. The 

operators subtract and divide are defined as the inverse of add and multiply operations, 

respectively. A mathematical model also defines its domain, the set of numbers that exist in the 

model. A mathematical model is a field if it meets the requirements to make linear algebra work. 

One requirement is that all operations (except divide by zero) produce numbers within the 



domain of the model. Other requirements include these properties: associative [(a+b)+c=a+(b+c), 

(ab)c=a(bc)], communative [a+b = b+a, ab = ba], and distributive [(a+b)c=ac+bc]. 

 

3. Binary Field Math 

3.1 Binary Field Numbers 

Binary field math numbers are single bit numbers. The binary field math domain is  the set {0,1}. 

 

3.2 Binary Field Operators 

The add operator is defined as exclusive or. Since exclusive or is its own inverse, the subtract 

operator is also exclusive or. The multiply operator is defined to be multiply. The divide operator 

is defined as divide. The following is all math operations possible with binary field math: 

 
 Add:   0+0=0 0+1=1 1+0=1 1+1=0 

 Subtract:  0-0=0 0-1=1 1-0=1 1-1=0 

 Multiply:  0*0=0 0*1=0 1*0=0 1*1=1 

 Divide:    0/1=0   1/1=1 

 

Since subtraction is the same operation as addition, the "+" symbol could be used for both 

addition and subtraction. 

 

3.3 Binary Field Polynomials 

Binary polynomials have one bit coefficients. These polynomials can be represented in several 

ways: in polynomial notation, as a string of binary (0 or 1) digits, or as a string of hexadecimal 

digits. Example: 

 
 x

5
+x

3
+x+1 = 1x

5
 + 0x

4
 + 1x

3
 + 0x

2
 + 1x + 1 = 101011 = 2B 

 

3.4 Binary Field Polynomial Operators 

Binary polynomials are added by "adding" (exclusive or'ing) like term coefficients. Subtraction is 

defined as the inverse, which is the same as addition. Polynomials represented in string notation 

can simply be exclusive or'ed. 

 
 1 x

3
 + 0 x

2
 + 1 x + 0  1010 

 1 x
3
 + 1 x

2
 + 0 x + 0  1100 

 ---------------------  ---- 

 0 x
3
 + 1 x

2
 + 1 x + 0  0110 

 

The multiply operator is defined as polynomial multiplication, where coefficients of like terms 

are combined by exclusive or'ing. A long hand style technique can be used to implement 

multiply. 

 
 (x

2
+x+1)(x

2
+1) = x

4
+x

3
+ x

2
+x

2 
+x+1 = x

4
+x

3
+x+1 



 

 Note that   x
2
 + x

2
 = 0  since exclusive or used to combine terms. 

 
         1x

2
+1x+1     111 

         1x
2
+0x+1     101 

 ---------------   ----- 

         1   1  1     111 

     0   0   0     000 

 1   1   1              111 

 ---------------   ----- 

 1x
4
+1x

3
+0x

2
+1x+1   11011 

 

The divide operator is defined as the inverse of multiplication. Either polynomial or long hand 

techniques may be used to implement division. Note that in the long hand example, the divisor 

“111” goes into the first 3 bits of the dividend “110”. In binary math division, only the leading bit 

of the divisor determines if the divisor "goes into" the leading bits of the dividend. 

 
 (x

4
+x

3
+x+1)/(x

2
+x+1)= x

2
+1 

 

 1x
4
+1x

3
+0x

2
+1x+1 = 11011 = dividend 

 1x
2
+1x+1   =   111 = divisor 

 

        101 

 111 |11011 

      111 

       011 

       000 

        111 

        111 

        000 

 

3.5 Binary Field Polynomial Properties 

The definition of a binary prime polynomial is a polynomial not exactly divisible by any other 

polynomial except for itself and 1. Some examples of binary prime polynomials in hexadecimal 

notation are: 2, 3, 7, B, D, 13, 19, 1F, 11D, 187, F01F, 1002D, 1000000AF. 

 

An n-bit polynomial multiplied by an m-bit polynomial will always produce an (n+m-1)-bit 

product.  An n-bit divisor divided into an m-bit dividend will always produce an (m+1-n)-bit 

quotient and (at most) an (n-1)-bit remainder. 

 

4. CRC 

CRC is a simple means of implementing error detection in transmitted data. The redundant data 

is the remainder produced by binary math division. A simple description of the process follows: 

 

Define m as the number of bits of raw data, and  n as the number of bits of redundant data. Select 

an n+1 bit divisor (for example, any n+1 bit binary prime polynomial) as a basis for the encode 



and decode processes. To encode, add n zero bits to the raw data string, divide this m+n bit long 

dividend by the n+1 bit divisor, and replace the n zero bits with the remainder of the division. To 

decode, divide the m+n bit encoded data string by the same divisor, and check the remainder. If 

the remainder is not zero, an error exists in the encoded data, otherwise assume that the data is 

error free.  

 

There is some chance that CRC will fail to detect an error. A simple approximation for this 

probability would be the odds of an error in the encoded data divided by  2
n
. 

 

Most floppy controllers implement CRC using the 17 bit  binary polynomial 

10001000000100001 (11021 hex) to produce 16 bits of redundant data. 11021 hex is the product 

of two primes, 3 and F01F. The 3 acts as an “odd” parity check, and the F01F handles general 

errors. The following example demonstrates this using hex notation on 2 bytes of raw data: 

 

 m        16   16 bits of raw data 

 n        16   16 bits of redundant data 

 Divisor  11021   17 bit divisor 

 

 Encode:   

 Raw Data    9d71 

 Dividend    9d710000 

 Remainder            0001  (9d710000)/(11021) = 9421, rem=0001 

 Encoded Data     9d710001 

 

 Decode:  (9d710001)/(11021) = 9421, rem = 0000   therefore no error. 

 

5. Finite Field Math 

A finite field is any field (linear algebra works) with a finite (fixed size) domain. This document 

is only concerned with finite fields based on binary polynomials, since Reed Solomon ECC is 

based on these type of finite fields 

 

5.1 Finite Field Numbers 

Finite field math numbers are fixed size, multiple bit numbers. To compose a field with a domain 

made up of n-bit numbers, an n+1 bit binary prime polynomial is chosen. All math operations are 

implemented as binary polynomial operations, modulo the chosen polynomial. The domain of 

such a model will have 2n numbers in its set, {0, 1, ...}. This model will have all the properties 

required to make it a field (linear algebra works with this model). In addition, a logarithm 

mapping exists for any finite field domain, which can optimize software implementation.  Finite 

field math numbers are usually represented as hexadecimal strings. 

 

Here is a list of a few binary prime polynomials and the bit size of the field numbers they define: 

7 = 2-bit field, 19 = 4 bit field, 187 = 8 bit field, 1002d = 16 bit field, 1000000af = 32 bit field. 

There are many alternatives to these numbers, for example there are 30 different polynomials that 

can define an 8-bit field. 



 

5.2 Finite Field Operators 

Add and subtract operate the same as binary polynomial addition; exclusive or is used to add or 

subtract finite field math numbers. Since no size change occurs due to addition or subtraction, no 

modulo operation is required. 

 

Multiplying can be defined as a two step process. First, the two finite field numbers are 

multiplied according to the rules of binary polynomial multiplication. This product will contain 

2n-1 bits. Second, this product is divided by the n+1 bit polynomial chosen for the field. The 

remainder of this division is considered to be the finite field math product; it will contain n bits. 

Hardware multiplication can be implemented as defined, in a single step using and’s and xor’s, 

since sub-product and modulo operations are independent.  Software multiplication is usually 

implemented using log tables. 

 

Division is defined as the inverse of multiplication. Dividing the variable a by b can thought of 

as trying to solve the equation: c = a / b. There is never a remainder, since this is a field. 

Hardware division is usually implemented by inverting the divisor, and then multiplying the 

dividend by the inverted divisor. Hardware inversion can be implemented several ways. The 

simplest is to use a lookup table. Exponentiating b to the 2n-2 power through repeated 

multiplication results in 1/b. Another is a repetitive process based on binary polynomial math 

(see section 7.3.1). Depending on the field, a single step process using less logic than a lookup 

table can be used that involves mapping into a special field, doing some math, and mapping back 

(see section 7.3.2). Software division is usually implemented using log tables. 

 

Using the 3 bit number 7, to create a 2 bit field leads to the following facts and math tables: 

 
 2*2 mod 7  = 4 mod 7  = 3 

 2*3 mod 7  = 6 mod 7  = 1 

 3*3 mod 7  = 5 mod 7  = 2 

 (3*3 in binary = 11*11 = 101) 

 

 Add (Subtract)  Multiply   Divide 

 

     0  1  2  3      0  1  2  3      0  1  2  3 

 0 | 0  1  2  3  0 | 0  0  0  0  0 | x  x  x  x 

 1 | 1  0  3  2  1 | 0  1  2  3  1 | 0  1  2  3 

 2 | 2  3  0  1  2 | 0  2  3  1  2 | 0  3  1  2 

 3 | 3  2  1  0  3 | 0  3  1  2  3 | 0  2  3  1 

 

5.3 Finite Field Primitives 

In any n-bit finite field, there exists a primitive. A primitive is a binary prime polynomial, that 

when raised to any power from 0 to 2n-2 modulo the chosen n+1 bit binary prime polynomial, 

will generate all of the numbers in the field except 0. A log table can be created based on this 

primitive to implement multiply and divide. 

 



The primitive for the 2 bit field defined by the 3 bit number 7,  is 2. 

 
 20  = 1 mod 7 = 1 

 21  = 2 mod 7 = 2 

 22  = 4 mod 7 = 3 

 

There are three 5-bit binary primes, 13, 19, and 1F. These primes can be used to create three 

different 4-bit finite fields. The primitive for 13 and 19 is 2. The primitive for 1F is 3. The 

following tables list the field domains in primitive power order. 

 

Poly Primitive  Field Domain in primitive power order 

 
   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 exponent 

13 02 01 02 04 08 03 06 0c 0b 05 0a 07 0e 0f 0d 09 

19 02 01 02 04 08 09 0b 0f 07 0e 05 0a 0d 03 06 0c 

1f 03 01 03 05 0f 0e 0d 08 07 09 04 0c 0b 02 06 0a 

 

5.4 Finite Field Logarithms 

Logarithms are normal decimal numbers, but operated on modulo 2n-1. Adding and subtracting 

logarithms (modulo 2n-1) can be used to multiply and divide. Multiplication of logarithms 

(modulo 2n-1) can be used for exponentiation. Logarithm tables can be built from primitive 

power order tables like the ones listed in the previous section; the exponent above is the 

logarithm for the number below. For example, in the field based on 19, log 0F = 6, and log 03 = 

12. 

 

Using the 4-bit field based on 19, multiply 0F times 03 using defined way and then using logs: 

 
 03*0F mod 19 = 11 mod 19 = 08 

 

 log 0f = 6, log 03 = 12 

 (log 0F + log 03) mod 15 = (6+12) mod 15 = 18 mod 15 = 3 

 antilog 3 = 08 

 

5.5 Finite Field Polynomials 

Finite field polynomials have n-bit finite field numbers as coefficients, where n is any integer 

value. These polynomials can also be represented as strings of hexadecimal digits, with spaces 

separating the coefficients (and zeroes used as place holders).  

 

  c  x3  +  2  x2  + 8  x  + 5 = c   2   8  5 

 

5.6 Finite Field Polynomial Operators 

Finite field polynomial operators follow the same rules as binary polynomial operators. The only 

difference is the size of their coefficients. Finite field polynomials are added by "adding" 

(exclusive or'ing) like term coefficients. Subtraction is defined as the inverse, which is the same 



as addition. The multiply operator is defined as polynomial multiplication, where coefficients of 

like terms are combined by exclusive or'ing. Division is defined as the inverse of multiplication. 

 

Here are some sample math operations using the 4-bit field defined by hex 19. 

 

 Add: (c  x3  +  2  x2  + 8  x  + 5 ) +  (7  x2  + 3  x  + a) 
 

   c 2 8 5 

 +   7 3 a 

   c 5 b f  = c  x3  +  5  x2  + b  x  + f 

 

 Multiply: (c  x3  +  2  x2  + 8  x  + 5 ) *  (7  x2  + 3  x  + a) 
 

      c 2 8 5 

    *   7 3 a 

      5 d 6 9 

    d 4 1 f 

  f e a 2     

  f 3 b e 9 9 

 

 Divide: (c  x3  +  2  x2  + 8  x  + 5 ) /  (7  x2  + 3  x  + a) 

 
              7 6  = 7x + 6 

 7 3 a  | c 2 8 5 

          c 9 4 

            b c 5 

            b a e 

              6 b  = 6x + b (remainder) 

 

5.7 Finite Field Polynomial Properties 

Similar to binary polynomials, an n-term polynomial multiplied by an m-term polynomial will 

always produce an (n+m-1)-term product.  An n-term divisor divided into an m-term dividend 

will always produce an (m+1-n)-term quotient and (at most) an (n-1)-term remainder. 

 

6. Reed Solomon ECC 

Reed Solomon ECC is an error detection and correction process based on finite field polynomial 

math. Similar to CRC, the redundant data is the remainder produced by division. Unlike a simple 

CRC scheme, the ECC algorithm can detect, locate, and correct errors. Creating an ECC involves 

choosing a field and a generator polynomial, and implementing encode and decode processes. 

 

6.1 Choosing a Field 

A field is chosen so that its numbers are big enough (have enough bits) to contain all the 

variables needed to perform a correction, mainly error values and location values. If the largest 

variable fits in f bits, then an f+1 bit polynomial is chosen for the basis of the field. Many tape 



devices use 8-bit fields, since they are correcting 8-bit bytes, and their tape formats designed so 

that location values never require more than 8 bits. Some disk devices use larger fields, such as 

11 bits, to handle a larger range of location values. 

 

Another criteria for choosing a field is its primitive, which should be 2. A field with a primitive 

of 2 is easier to implement than other fields. 

 

6.2 Choosing a Generator Polynomial 

A generator polynomial is an n+1 term polynomial with n successive powers of its field primitive 

as roots. A generator polynomial can be calculated by multiplying (x+root) for each of its roots. 

For example, using the 4-bit field based on hex 19, here are two polynomials that would produce 

a 4 term remainder, the first using the powers 0 through 3, the second using powers 6 through 9. 

 
 (x+1

 
)(x+2

 
)(x+2

2
)(x+2

3
) = 1x

4
 + fx

3
 + 4x

2
 + 5x + f 

 

 (x+2
6
)(x+2

7
)(x+2

8
)(x+2

9
) = 1x

4
 + 3x

3
 + cx

2
 + 3x + 1 

 

The number of terms required is determined by the correction process. Error correction involves 

determining error location and value. Two redundancy terms are required for each potential error 

to be located and corrected. If error locations are determined through an independent process 

(such as CRC on some tape devices), then only one term per error is required. 

 

The second example polynomial listed above is self-reciprocating; reversing the order of its 

coefficients results in the same polynomial. Self-reciprocating generator polynomials are used to 

optimize the encode process. To create a self-reciprocating polynomial with an even number of 

n-bit  roots, choose powers around (2n-1)/2. In the example, n is 4, (2n-1)/2 = 7½. 

 

To create a self-reciprocating polynomial with an odd number of n-bit  roots, choose powers 

around 0 (modulo 2n-1). Using the 4-bit field based on hex 19, a three term remainder could be 

produced using powers -1, 0, and 1. Note that -1 mod 15 = 14. 

 
   (x+2

-1
)(x+2

0
)(x+2

1
) = (x+c)(x+1)(x+2) = 1x

3
 + fx

2
 + fx + 1 

 

6.3 Encoding 

ECC encoding is based on division. Data to be encoded is treated as a large m-term finite field 

polynomial. This m-term polynomial is appended with n zeroes (equivalent to multiplying by xn), 

and divided by the n+1 term generator polynomial, producing an n-term remainder. The encoded 

data string is the m-term raw data string appended with the n-term remainder. The remainder 

terms are referred to as parities. The encoded string is a multiple of the generator polynomial, and 

dividing an encoded string by its generator polynomial produces a remainder of zero. 

 

For example, choose the 4-bit field based on hex 19, and the 5-term generator polynomial: 

 



  (x+1)(x+2)(x+4)(x+8) = x
4
 + fx

3
 + 4x

2
 + 5x + f = 1 f 4 5 f 

 

This produces a 4-term remainder. Then encode the 6-term string  "f 3 a 7 5 e": 

 
                       ? ? ? ? ? ? 

 1 f 4 5 f  |  f 3 a 7 5 e 0 0 0 0 

                       . . . . . 

                                   

                           c f b 2 

 

Append the 4-term remainder to get the 10-term encoded string  "f 3 a 7 5 e c f b 2". If this 10-

term string is divided by “1 f 4 5 f”, the remainder is zero. If an encoded string remainder is not 

zero, then an error has been detected. 

 

6.4 Decoding 

Decoding is the complex part of ECC, since it is used to detect, locate, and correct errors. To 

correct each erroneous term of an encoded string, ECC decoding needs to determine 2 things: 

error location and error value. Each error is corrected by adding (exclusive-or) the determined 

error value to the term at the determined location. If data is encoded with n terms of redundancy, 

then n/2 errors can be located and corrected. (e.g. 4 redundancy terms are needed to fix 2 errors.) 

 

Some encoding schemes use additional redundancy to locate errors independently of ECC (such 

as CRC, or a multi-level ECC). When error locations are pre-determined, ECC decoding only 

needs to determine an error value for each error, and can fix n errors with n parities. 

 

Other schemes may involve a combination of  known and unknown error locations. This happens 

when the additional redundancy doesn’t adequately detect  (or mis-corrects) errors. 

 

Detection and correction are done in six basic steps: 

 

1. Generate syndromes, if all zeroes, then no error is detected. 

2. Modify syndromes if some error locations are pre-determined. 

3. Generate unknown locator polynomial from (modified) syndromes. 

4. Compute unknown locators by solving unknown location polynomial. 

5. Compute error values from locator and syndrome values. 

6. Correct errors in data. 

 

If all error locations are pre-determined, only steps 1, 5, and 6 are used. If no errors are pre-

determined, step 2 is skipped. A detection only scheme can stop after step 1. An modified encode 

can also be used for error detection. The m+n term encoded string can be divided by the 

generator polynomial and the remainder checked to be all zero. Hardware schemes usually 

append the m+n term string with an additional n zeroes, and then divide the m+n+n term string 

producing a new set of parities; this is called extended encoding or re-encoding. If the parities are 

non-zero, an error has been detected. 

 



6.4.1 Decoding Naming Conventions 

 Symbol Meaning 

 O  The original value for a term in the encoded string (original). 

 D  The actual value for a term in the encoded string (data). 

 d  Number of terms in the encoded string. 

 E  Error value (xor of O and D ) 

 e  Number of errors in encoded string 

 P  Field primitive, usually P=2 

 R  A root of generator polynomial 

 ofs  offset = index into string 

 loc  location = reverse of offset = (d-1)-offset 

 kloc  known location 

 uloc  unknown location 

 k  number of known locations 

 u  number of unknown locations 

 S  Syndrome 

 s  number of syndromes (same as number of roots) 

 L  Locator = primitive raised to some multiple of location 

 K  Known locator 

 U  Uknown locator 

 

6.4.2 Generating Syndromes 

Syndrome generation is based on division. The string to be decoded is made up of m data terms, 

and n parity terms. This string is treated as an m+n term polynomial, and is divided by each 

factor (x+root) of the generator polynomial. The remainder of each division is a syndrome. Since 

the encoded data string is a multiple of the generator polynomial, the string is also a multiple of 

each factor of the generator polynomial and all syndromes will be zero if there are no errors. 

Non-zero syndromes indicate the presence of an error. 

 

Using the encode example, assume an error occurred in the 10 term string at offset 3, changing 

the value 7 to d, resulting in the string “f 3 a d 5 e c f b 2” instead of "f 3 a 7 5 e c f b 2". To 

generate the syndromes, divide the 10-term string by each of the factors of the generator 

polynomial:  (x+1), (x+2), (x+4), and (x+8) and keep the remainders (“%” means modulo): 

 
 S0 = syndrome 0 = f 3 a d 5 e c f b 2 % 1 1 = a 

 S1 = syndrome 1 = f 3 a d 5 e c f b 2 % 1 2 = 2 

 S2 = syndrome 2 = f 3 a d 5 e c f b 2 % 1 4 = 7 

 S3 = syndrome 3 = f 3 a d 5 e c f b 2 % 1 8 = 6 

 

6.4.3 Syndrome Equations 

For each generator polynomial root, the division steps used to calculate a syndrome can be 

written in equation form: 

 



 S = D1 Rloc1 + D2 Rloc2 + ... + Dd Rlocd 

 

If there are no errors,  the D’s can be replaced with O’s and the syndrome is zero. If one error was 

present in the data at location z: 

 
 S = O1 Rloc1 + ... + (Oz + E)Rlocz + ... + Od Rlocd  

   = O1 Rloc1 + ... + Oz Rlocz + ... + Od Rlocd + E Rlocz 

   = 0 + E Rlocz  

   = E Rlocz 

 

Multiple errors can be separated out in a similar way, and the general form for a syndrome 

equation based on generator polynomial factor (x + Ri)  becomes: 

 
 Sj = E1 Pj loc1 + E2 Pj loc2 + ... + Ee Pj loce 

 Where j = log(Ri) or  Pj = Ri. 

 

j ties in the relationship between a generator polynomial factor (x+Ri) and a specific syndrome, 

Sj. Normally  j = i  except when a reciprocal generator polynomial is used. 

 

In the example, P = 2,  j = i,  and the error occurs at offset 3, or location 6 ([string size -1] - offset 

= [10-1] - 3 = 9-3 = 6), and the error value is 7+d = a: 

 
 S0 = a * 20 * 6 = a 

 S1 = a * 21 * 6 = 2 

 S2 = a * 22 * 6 = 7 

 S3 = a * 23 * 6 = 6 

 

6.4.4 Syndrome to Locator Conversion 

Given a set of  e error values {E1 , E2 , ... Ee }, and e locators, { Ploc1 , Ploc2 , ... Ploce } (P is the 

field primitive), generate a locator polynomial that will be zero whenever X is one of the e 

locators and let Ai represent the coefficients of the locator polynomial: 

 
 (X+Ploc1) (X+Ploc2) ... (X+Ploce)  = 0 

 Xe + A1 Xe-1 + A2 Xe-2 + ... + Ae  = 0 

 

Generate e equations by substituting Ploc i for the X’s and multiplying by Ei , for i = 1 to e : 

 
 E1 P(e)loc1 + A1 E1 P(e-1)loc1 + ... + Ae E1 = 0 

 E2 P(e)loc2 + A1 E2 P(e-1)loc2 + ... + Ae E2 = 0 

       ... 

 Ee P(e)loce + A1 Ee P(e-1)loce + ... + Ae Ee = 0 

 

Noting that the sum of  the E and P components of each vertical column is a syndrome equation, 

sum up the above equations (by column): 

 
 Se       + A1 Se-1       + ... + Ae S0 = 0 



 

Which can be re-written as: 

 
            A1 Se-1       + ... + Ae S0 = Se 

 

This process converts the locator polynomial equation into a syndrome equation. Do this process 

e times, substituting Ploc i for the X’s, and multiplying by Ei P
 (z) loc i for z = j to j+e-1. This will 

generate enough equations to calculate the A’s given the syndromes: 

 
 A1 Sj+e-1        + ... + Ae Sj     = Sj+e   
 A1 Sj+e          + ... + Ae Sj+1   = Sj+e+1 

 A1 Sj+e+1        + ... + Ae Sj+2   = Sj+e+2 

                    ... 

 A1 Sj+2e-2       + ... + Ae Sj+e-1 = Sj+2e-1 

 

Converting syndromes into locators, requires ( s  2 e ) syndromes to determine e locators. Given 

sufficient syndromes, arrange the syndromes into the equation format listed above, and solve the 

simultaneous equations for the A’s. Once the A’s are calculated, solve the locator polynomial 

using the A’s as coefficients to calculate the locators. 

 

In the example,  there is one error occurs at offset 3, or location 6 and the error value is 7+d = a, 

and  S0 = a, S1 = 2, S2 = 7, S3 = 6. If A1 represents the one coefficient in this case, then: 

 
 A1 S0 = S1 

 A1 S1 = S2 

 A1 S2 = S3 

 

 A1 = S1/S0 = S2/S1 = S3/S2 = 2/a = 7/2 = 6/7 = f 

 

 X + A1  = 0 

 X + f   = 0 

 X       = f = locator of error. 

 log(X)  = log(f) = 6 = location of error. 

 

6.4.5 Modifying Syndromes 

This process is used when there is a mixture of known and unknown locations. It takes advantage 

of the relationship between locators and syndromes explained in section 6.4.4. Given a set of  k 

known error values {E1 , E2 , ... Ek }, and u unknown error values {F1 , F2 , ... , Fu }, a syndrome 

equation can be written as: 

 
 Sj = E1 Pj kloc1 + ... + Ek Pj klock + F1 Pj uloc1 + ... + Fu Pj ulocu 

 



Use Tj to represent the known part of syndrome, and Uj to represent unknown part: 

 
 Tj = E1 Pj kloc1 + ... + Ek Pj klock  

 Uj = F1 Pj uloc1 + ... + Fu Pj ulocu 

 Sj = Tj + Uj 

 

Calculate the coefficients Bi to a locator polynomial based on the known locators, P (kloc i) ‘s: 

 
 (X+Pkloc1) (X+Pkloc2) ... (X+Pklock) = 0 

 Xe + B1 Xe-1 + B2 Xe-2 + ... + Bk  = 0 

 

Based on the relationship explained in section 6.4.4, the following holds for any j : 

 
 Tj+k + B1 Tj+k-1 + B2 Tj+k-2 + ... + Bk Tj = 0 

 

Define the modified syndrome Mj using the B’s: 

 
 Mj   = Sj+k   + B1 Sj+k-1 + B2 Sj+k-2 + ... + Bk Sj  

 

Substitute (Tj + Uj ) for Sj , note that the T’s will drop out due to relationship with the B’s: 

 
 Mj   = (Tj+k   + Uj+k   ) + B1 ... + Bk (Tj     + Uj     ) 

      =  Tj+k   + B1 ... + Bk Tj   + Uj+k   + B1 ... + Bk Uj 

      =               0            + Uj+k   + B1 ... + Bk Uj 

 Mj   =  Uj+k   + B1 Uj+k-1 + ... + Bk Uj 

 

Expand this last equation into a vertical format; and define Ni as the sum of each column: 

 
 Bk   F1 P(j  ) uloc1 + Bk   F2 P(j  ) uloc2 + ... + Bk   Fu P(j  ) ulocu 

 Bk-1 F1 P(j+1) uloc1 + Bk-1 F2 P(j+1) uloc2 + ... + Bk-1 Fu P(j+1) ulocu 

        ... 

      F1 P(j+k) uloc1 +      F2 P(j+k) uloc2 + ... +      Fu P(j+k) ulocu 

 ----------------------------------------------------- 

      N1              +      N2              + ... +      Nu 

 

Define:  Gi = Ni / P(j ) uloc i 

 

Then:  Mj = N1             + N2             + ... + Nu 

  Mj = G1 P(j ) uloc1 + G2 P(j ) uloc2 + ... + Gu P(j ) ulocu 

 

Interpreting the G’s as “error” values, this last equation has the same form as the standard 

syndrome equation in section 6.4.3. This means that unknown locations can be determined  by 

using the conversion process described in section 6.4.4. 

 

The  maximum number of unknown locators u, that can be determined from a set of s syndromes 

and k known locators is u = (s - k) / 2. Calculate the B’s from the known locators, and then 

generate 2 u modified syndromes: 



 
 Mj   = Sj+k   + B1 Sj+k-1 + B2 Sj+k-2 + ... + Bk Sj  

 Mj+1 = Sj+1+k + B1 Sj+k   + B2 Sj+k-1 + ... + Bk Sj+1 

 Mj+2 = Sj+2+k + B1 Sj+k+1 + B2 Sj+k   + ... + Bk Sj+2 

 ... = ... 

 

Follow the process described in section 6.4.4 to determine the u locators. If this process fails 

(can’t solve the simultaneous equations, or bad locators are calculated), then decrement u and 

repeat the process. If u decrements to zero, then quit, there are no unknown errors. 

 

6.4.6 Computing Error Values 

Sections 6.4.2, 6.4.4, and 6.4.5 describe the process of generating syndromes, modifying the 

syndromes if any error locators are pre-determined, using this information to determine the 

coefficients to an unknown locator polynomial, and solving the polynomial to compute the 

unknown locators. After these steps, all syndromes and locators are calculated. Error locations 

can be calculated by taking the log of the locators. 

 

From section 6.4.3, the general form for a syndrome equation can be written as: 

 
 E1 Pj loc1 + E2 Pj loc2 + ... + Ee Pj loce = Sj 

 Where j = log(Ri) or  Pj = Ri. 

 

Error values can be calculated by solving e simultaneous syndrome equations: 

 
 E1 P(j    ) loc1 + E2 P(j    ) loc2 + ... + Ee P(j    ) loce = Sj 

 E1 P(j+1  ) loc1 + E2 P(j+1  ) loc2 + ... + Ee P(j+1  ) loce = Sj+1 

                                       ... 

 E1 P(j+e-1) loc1 + E2 P(j+e-1) loc2 + ... + Ee P(j+e-1) loce = Sj+e-1 

 

These equations can be re-written using the generator polynomial roots, Ri : 

 
 E1 R0loc1   + E2 R0loc2   + ... + Ee R0 loce   = Sj 

 E1 R1loc1   + E2 R1loc2   + ... + Ee R1 loce   = Sj+1 

                         ... 

 E1 Re-1loc1 + E2 Re-1loc2 + ... + Ee Re-1 loce = Sj+e-1 

 

6.4.7 Correcting Errors 

After computing the error values as described in section 6.4.6, data is ready to be corrected. The 

offsets into the data string can be calculated from the formulas: 
 location = log(locator) 
 offset   = (d-1) - location 
 

Where d is the number of bytes in the string. Then use xor to correct the data: 
 original[offseti] = data[offseti] xor error value[i] 
 



7. Implementation Techniques 

7.1 Solving Polynomials 

A simple technique for solving finite field polynomials is to repeatedly calculate the polynomial 

using all possible values and creating a list of the ones that produce zeroes. 

 

7.1.1 Solving a Quadratic Equation 

The following algorithm can be used to solve a quadratic locator polynomial. Note that double 

roots (a = 0) or zero root (b = 0) indicate that the polynomial does not represent a valid two error 

case. Given two coefficients, a and b, find the two roots R and S. 

 

 X2 + a X + b = 0     (a  0) (b  0) 
 c = root of X2 + X + b/a2    (use table) 

 R = ac 

 S = R+a 

 

7.1.2 Solving a Qubic Equation 

The following algorithm can be used to solve a cubic locator polynomial. Note that double root, 

triple root, or root = 0 indicate that the polynomial does not represent a valid three error case. 

Given three coefficients, a, b, and c, find the three roots R, S, and T. 
 

     X3 + a X2 + b X + c = 0 

     if(c == 0){     (root == 0) 

          d = a 

          goto xx} 

     e=a2 + b 

     f = ab+c 

     if(f == 0){     (double or triple root) 

          R = a 

          S = b(1/2)     (use table) 

          T = S 

          stop} 

     g = root of X2 + X + e3/f2  (use table) 

 if(g == 0){ g = 1 }    (fix in table) 

 h = (fg)(1/3)     (use table) 

     d = h + e/h 

xx: R = d + a 

 if(R == 0){ e = b } 

     else  { e = c/R } 

     f = root of X2 + X + e/d2   (use table) 

     S = df 

     T = S + d 

     stop 

 



7.2 Software Based Math 

Software based math usually makes use of logarithm tables. See sections 5.2 and 5.4. 

 

7.3 Hardware Based Math 

Multiplication can be implemented in a straightforward method. Division is usually implemented 

by inverting the divisor (not so easy) and then multiplying. 

 

7.3.1 GCD Finite Field Inversion Algorithm 

An algorithm similar to Euclid's GCD (greatest common divisor) algorithm can be used to 

implement inversion. The goal is to solve for b in the equation a b mod m = 1, where a and b are 

finite field numbers, and m is the polynomial defining the field. This problem can be restated in 

binary polynomial math instead of finite field math as a b + c m = 1 = d, where a and m are 

given, d is 1, and b and c are unknown. Given a and m, the algorithm determines b, c, and d, 

where d is the GCD. The fact m is a prime number, means that the GCD of b and m is 1, and 

allows the following algorithm to be used to find b: 

 
 b[-2]   = 0 

 b[-1]   = 1 

 f[-2]   = m 

 f[-1]   = a 

 i       = -1 

 

 i       = i+1 

 quot    = f[i-2]/f[i-1]                 ;quotient 

 f[i]    = f[i-2]-quot*f[i-1]            ;remainder 

 b[i]    = b[i-2]+quot*b[i-1]            ;reciprocal term 

 repeat above 4 lines until f[i]=0 

 reciprocal = b[i-1] 

 

Using the 4-bit field based on 19, find the inverse of 0B, using the same technique: 

 
 1 = a b + c m 

 1 = 0B b + c 19 find GCD of 0B and 19 

 

 19/0B=03, 19-03*0B=19-1D=04=f[0] : 19 = 03 * 0B + 04 

 0B/04=02, 0B-02*04=0B-08=03=f[1] : 0B = 02 * 04 + 03 

 04/03=03, 04-03*03=04-05=01=f[2] : 04 = 03 * 03 + 01 

 03/01=03, 03-03*01=03-03=00=f[3] : 03 = 03 * 01 + 00 

 

 b[0] = 00+03*01 = 00+03 = 03 

 b[1] = 01+02*03 = 01+06 = 07 

 b[2] = 03+03*07 = 03+09 = 0A 

 

 b = 0A 

 



7.3.2 Mapping to Sub-Field Inversion Algorithm 

This algorithm relies on mapping a number into a field based on double sub-field to find the 

inverse. A lookup table is still needed, but the table size is the square root of the size of a 

standard lookup table. The algorithm operations are mapping into the field, calculating the two 

sub-field values, and mapping back. Although this is complicated, all these operations can be 

implemented in a single step, with less logic than a full lookup table, but with more propagation 

delays. 
 


