AC Optimal Power Flow (Jabr relaxation)

This formulation employs rectangular coordinates to represent voltages, where the voltage at node \(n\) is expressed as:

\[\mathcal{V}_n = e_n + j f_n\]

Here, \(e_n\) and \(f_n\) denote the real and imaginary components of the voltage, respectively. The formulation relaxes the rectangular definitions and incorporates a rotated cone valid inequality, resulting in a convex quadratically constrained quadratic program (QCQP).

Objective Function

The objective is to minimize the total generation cost:

\[\text{Minimize: } \sum_{g} \left( a_{g} \cdot p_g^2 + b_{g} \cdot p_g + c_{g} \right)\]

Constraints

  1. Power Balance Equations:

    \[\sum_{g\in\mathcal{G}_n} p_g - p^d_n = G^{sh}_n v_n^{(2)} + \sum_{l} \left( F_{ln} \cdot p^f_l + T_{ln} \cdot p^t_l \right), \quad \forall n\]
    \[\sum_{g\in\mathcal{G}_n} q_g - q^d_n = -B^{sh}_n v_n^{(2)} + \sum_{l} \left( F_{ln} \cdot q^f_l + T_{ln} \cdot q^t_l \right), \quad \forall n\]
  2. Line Flow Equations:

    \[p^f_l = G^{ff}_l v_n^{(2)} + G^{ft}_l c^{ft}_l + B^{ft}_l s^{ft}_l, \quad \forall (l, n, m): F_{ln} = 1, T_{lm} = 1\]
    \[q^f_l = -B^{ff}_l v_n^{(2)} + G^{ft}_l s^{ft}_l - B^{ft}_l c^{ft}_l, \quad \forall (l, n, m): F_{ln} = 1, T_{lm} = 1\]
    \[p^t_l = G^{tt}_l v_m^{(2)} + G^{tf}_l c^{ft}_l + B^{tf}_l s^{ft}_l, \quad \forall (l, n, m): F_{ln} = 1, T_{lm} = 1\]
    \[q^t_l = -B^{tt}_l v_m^{(2)} + G^{tf}_l s^{ft}_l - B^{tf}_l c^{ft}_l, \quad \forall (l, n, m): F_{ln} = 1, T_{lm} = 1\]
  3. Jabr Relaxation:

    \[(c^{ft}_l)^2 + (s^{ft}_l)^2 \leq v_{n}^{(2)} v_{m}^{(2)}, \quad \forall (l,n,m): F_{ln} = 1, T_{lm} = 1\]
  4. Generator Limits:

    \[\underline{p}_g \leq p_g \leq \overline{p}_g, \quad \forall g\]
    \[\underline{q}_g \leq q_g \leq \overline{q}_g, \quad \forall g\]
  5. Line Flow Limits:

    \[(p^f_l)^2 + (q^f_l)^2 \leq (\overline{s}_l)^2, \quad \forall l\]
    \[(p^t_l)^2 + (q^t_l)^2 \leq (\overline{s}_l)^2, \quad \forall l\]
  6. Voltage Magnitude Limits:

    \[(\underline{v}_n)^2 \leq v_n^{(2)} \leq (\overline{v}_n)^2, \quad \forall n\]