Coverage for /home/caleb/Documents/University/CHE2703/fluids/fluids/packed_bed.py : 100%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
# -*- coding: utf-8 -*- Copyright (C) 2016, Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.'''
'Brauer', 'KTA', 'Erdim_Akgiray_Demir', 'Fahien_Schriver', 'Idelchik', 'Harrison_Brunner_Hecker', 'Montillet_Akkari_Comiti', 'voidage_Benyahia_Oneil', 'voidage_Benyahia_Oneil_spherical', 'voidage_Benyahia_Oneil_cylindrical']
r'''Calculates pressure drop across a packed bed of spheres using a correlation developed in [1]_, as shown in [2]_ and [3]_. Eighteenth most accurate correlation overall in the review of [2]_.
Most often presented in the following form:
.. math:: \Delta P = \frac{150\mu (1-\epsilon)^2 v_s L}{\epsilon^3 d_p^2} + \frac{1.75 (1-\epsilon) \rho v_s^2 L}{\epsilon^3 d_p}
It is also often presented with a term for sphericity, which is multiplied by particle diameter everywhere in the equation. However, this is highly emperical and better correlations for beds of differently-shaped particles exist. To use sphericity in this model, multiple the input particle diameter by the spericity separately.
In the review of [2]_, it is expressed in terms of a parameter `fp`, shown below. This is a convenient means of expressing all forms of pressure drop in packed beds correlations in a way that allows for easy comparison.
.. math:: f_p = \left(150 + 1.75\left(\frac{Re}{1-\epsilon}\right)\right) \frac{(1-\epsilon)^2}{\epsilon^3 Re}
f_p = \frac{\Delta P d_p}{\rho v_s^2 L}
Re = \frac{\rho v_s d_p}{\mu}
Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid [m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*S] L : float, optional Length the fluid flows in the packed bed [m]
Returns ------- dP : float Pressure drop across the bed [Pa]
Notes ----- The first term in this equation represents laminar loses, and the second, turbulent loses. Developed with data from spheres, sand, and pulverized coke. Fluids tested were carbon dioxide, nitrogen, methane, and hydrogen.
Validity range shown in [3]_ is :math:`1 < Re_{Erg} < 2300`. Overpredicts pressure drop for :math:`Re_{Erg} > 700`.
Examples -------- >>> Ergun(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3) 1338.8671874999995
References ---------- .. [1] Ergun, S. (1952) "Fluid flow through packed columns", Chem. Eng. Prog., 48, 89-94. .. [2] Erdim, Esra, Ömer Akgiray, and İbrahim Demir. "A Revisit of Pressure Drop-Flow Rate Correlations for Packed Beds of Spheres." Powder Technology 283 (October 2015): 488-504. doi:10.1016/j.powtec.2015.06.017. .. [3] Jones, D. P., and H. Krier. "Gas Flow Resistance Measurements Through Packed Beds at High Reynolds Numbers." Journal of Fluids Engineering 105, no. 2 (June 1, 1983): 168-172. doi:10.1115/1.3240959. '''
r'''Calculates pressure drop across a packed bed of spheres using a correlation developed in [1]_, as shown in [2]_ and [3]. Thirty-eighth most accurate correlation overall in the review of [2]_.
.. math:: f_p = \left(276.23 + 5.05\left(\frac{Re}{1-\epsilon}\right)^{0.87} \right)\frac{(1-\epsilon)^2}{\epsilon^3 Re}
f_p = \frac{\Delta P d_p}{\rho v_s^2 L}
Re = \frac{\rho v_s d_p}{\mu}
Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid [m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*S] L : float, optional Length the fluid flows in the packed bed [m]
Returns ------- dP : float Pressure drop across the bed [Pa]
Notes ----- Validity range shown in [2]_ as for a range of :math:`460 < Re < 14600`. :math:`0.3760 < \epsilon < 0.3901`. Developed with data from rough granular ball propellants beds, with air.
Examples -------- >>> Kuo_Nydegger(dp=8E-1, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3) 0.025651460973648624
References ---------- .. [1] Kuo, K. K. and Nydegger, C., "Flow Resistance Measurement and Correlation in Packed Beds of WC 870 Ball Propellants," Journal of Ballistics , Vol. 2, No. 1, pp. 1-26, 1978. .. [2] Erdim, Esra, Ömer Akgiray, and İbrahim Demir. "A Revisit of Pressure Drop-Flow Rate Correlations for Packed Beds of Spheres." Powder Technology 283 (October 2015): 488-504. doi:10.1016/j.powtec.2015.06.017. .. [3] Jones, D. P., and H. Krier. "Gas Flow Resistance Measurements Through Packed Beds at High Reynolds Numbers." Journal of Fluids Engineering 105, no. 2 (June 1, 1983): 168-172. doi:10.1115/1.3240959. '''
r'''Calculates pressure drop across a packed bed of spheres using a correlation developed in [1]_, also shown in [2]_. Tenth most accurate correlation overall in the review of [2]_.
.. math:: f_p = \left(150 + 3.89\left(\frac{Re}{1-\epsilon}\right)^{0.87}\right) \frac{(1-\epsilon)^2}{\epsilon^3 Re}
f_p = \frac{\Delta P d_p}{\rho v_s^2 L}
Re = \frac{\rho v_s d_p}{\mu}
Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid [m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*S] L : float, optional Length the fluid flows in the packed bed [m]
Returns ------- dP : float Pressure drop across the bed [Pa]
Notes ----- Validity range shown in [1]_ as for a range of :math:`733 < Re < 126,670`. :math:`0.3804 < \epsilon < 0.4304`. Developed from data of spherical glass beads.
Examples -------- >>> Jones_Krier(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3) 1362.2719449873746
References ---------- .. [1] Jones, D. P., and H. Krier. "Gas Flow Resistance Measurements Through Packed Beds at High Reynolds Numbers." Journal of Fluids Engineering 105, no. 2 (June 1, 1983): 168-172. doi:10.1115/1.3240959. .. [2] Erdim, Esra, Ömer Akgiray, and İbrahim Demir. "A Revisit of Pressure Drop-Flow Rate Correlations for Packed Beds of Spheres." Powder Technology 283 (October 2015): 488-504. doi:10.1016/j.powtec.2015.06.017. '''
r'''Calculates pressure drop across a packed bed of spheres using a correlation developed in [1]_, as shown in [2]_. Fifth most accurate correlation overall in the review of [2]_. Also shown in [3]_.
.. math:: f_p = \left(180 + 2.871\left(\frac{Re}{1-\epsilon}\right)^{0.9}\right) \frac{(1-\epsilon)^2}{\epsilon^3 Re}
f_p = \frac{\Delta P d_p}{\rho v_s^2 L}
Re = \frac{\rho v_s d_p}{\mu}
Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid [m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*S] L : float, optional Length the fluid flows in the packed bed [m]
Returns ------- dP : float Pressure drop across the bed [Pa]
Notes ----- Valid in [1]_, [2]_, and [3]_ for a range of :math:`300 < Re_{Erg} < 60,000`.
Examples -------- >>> Carman(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3) 1614.721678121775
References ---------- .. [1] P.C. Carman, Fluid flow through granular beds, Transactions of the London Institute of Chemical Engineers 15 (1937) 150-166. .. [2] Erdim, Esra, Ömer Akgiray, and İbrahim Demir. "A Revisit of Pressure Drop-Flow Rate Correlations for Packed Beds of Spheres." Powder Technology 283 (October 2015): 488-504. doi:10.1016/j.powtec.2015.06.017. .. [2] Allen, K. G., T. W. von Backstrom, and D. G. Kroger. "Packed Bed Pressure Drop Dependence on Particle Shape, Size Distribution, Packing Arrangement and Roughness." Powder Technology 246 (September 2013): 590-600. doi:10.1016/j.powtec.2013.06.022. '''
r'''Calculates pressure drop across a packed bed of spheres using a correlation developed in [1]_, as shown in [2]_. Twenty-third most accurate correlation overall in the review of [2]_. Also shown in [3]_.
.. math:: f_p = 6.8 \frac{(1-\epsilon)^{1.2}}{Re^{0.2}\epsilon^3}
f_p = \frac{\Delta P d_p}{\rho v_s^2 L}
Re = \frac{\rho v_s d_p}{\mu}
Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid [m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*S] L : float, optional Length the fluid flows in the packed bed [m]
Returns ------- dP : float Pressure drop across the bed [Pa]
Notes ----- Valid in [1]_, [2]_, and [3]_ for a range of :math:`300 < Re_{Erg} < 60,000`.
Examples -------- >>> Hicks(dp=0.01, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3) 3.631703956680737
References ---------- .. [1] Hicks, R. E. "Pressure Drop in Packed Beds of Spheres." Industrial Engineering Chemistry Fundamentals 9, no. 3 (August 1, 1970): 500-502. doi:10.1021/i160035a032. .. [2] Erdim, Esra, Ömer Akgiray, and İbrahim Demir. "A Revisit of Pressure Drop-Flow Rate Correlations for Packed Beds of Spheres." Powder Technology 283 (October 2015): 488-504. doi:10.1016/j.powtec.2015.06.017. .. [2] Allen, K. G., T. W. von Backstrom, and D. G. Kroger. "Packed Bed Pressure Drop Dependence on Particle Shape, Size Distribution, Packing Arrangement and Roughness." Powder Technology 246 (September 2013): 590-600. doi:10.1016/j.powtec.2013.06.022. '''
r'''Calculates pressure drop across a packed bed of spheres using a correlation developed in [1]_, as shown in [2]_. Seventh most accurate correlation overall in the review of [2]_. Also shown in [3]_.
.. math:: f_p = \left(160 + 3\left(\frac{Re}{1-\epsilon}\right)^{0.9}\right) \frac{(1-\epsilon)^2}{\epsilon^3 Re}
f_p = \frac{\Delta P d_p}{\rho v_s^2 L}
Re = \frac{\rho v_s d_p}{\mu}
Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid [m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*S] L : float, optional Length the fluid flows in the packed bed [m]
Returns ------- dP : float Pressure drop across the bed [Pa]
Notes ----- Original has not been reviewed. In [2]_, is stated as for a range of :math:`2 < Re_{Erg} < 20,000`. In [3]_, is stated as for a range of :math:`0.01 < Re_{Erg} < 40,000`.
Examples -------- >>> Brauer(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3) 1441.5479196020563
References ---------- .. [1] H. Brauer, Grundlagen der Einphasen -und Mehrphasenstromungen, Sauerlander AG, Aarau, 1971. .. [2] Erdim, Esra, Ömer Akgiray, and İbrahim Demir. "A Revisit of Pressure Drop-Flow Rate Correlations for Packed Beds of Spheres." Powder Technology 283 (October 2015): 488-504. doi:10.1016/j.powtec.2015.06.017. .. [2] Allen, K. G., T. W. von Backstrom, and D. G. Kroger. "Packed Bed Pressure Drop Dependence on Particle Shape, Size Distribution, Packing Arrangement and Roughness." Powder Technology 246 (September 2013): 590-600. doi:10.1016/j.powtec.2013.06.022. '''
r'''Calculates pressure drop across a packed bed of spheres using a correlation developed in [1]_, as shown in [2]_. Third most accurate correlation overall in the review of [2]_.
.. math:: f_p = \left(160 + 3\left(\frac{Re}{1-\epsilon}\right)^{0.9}\right) \frac{(1-\epsilon)^2}{\epsilon^3 Re}
f_p = \frac{\Delta P d_p}{\rho v_s^2 L}
Re= \frac{\rho v_s d_p}{\mu}
Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid [m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*S] L : float, optional Length the fluid flows in the packed bed [m]
Returns ------- dP : float Pressure drop across the bed [Pa]
Notes ----- Developed for gas flow through pebbles. In [2]_, stated as for a range of :math:`1 < RE_{Erg} <100,000`. In [1]_, a limit on porosity is stated as :math:`0.36 < \epsilon < 0.42`.
Examples -------- >>> KTA(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3) 1440.409277034248
References ---------- .. [1] KTA. KTA 3102.3 Reactor Core Design of High-Temperature Gas-Cooled Reactors Part 3: Loss of Pressure through Friction in Pebble Bed Cores. Germany, 1981. .. [2] Erdim, Esra, Ömer Akgiray, and İbrahim Demir. "A Revisit of Pressure Drop-Flow Rate Correlations for Packed Beds of Spheres." Powder Technology 283 (October 2015): 488-504. doi:10.1016/j.powtec.2015.06.017. '''
r'''Calculates pressure drop across a packed bed of spheres using a correlation developed in [1]_, claiming to be the best model to date.
.. math:: f_v = 160 + 2.81Re_{Erg}^{0.904}
f_v = \frac{\Delta P d_p^2}{\mu v_s L}\frac{\epsilon^3}{(1-\epsilon)^2}
Re_{Erg} = \frac{\rho v_s d_p}{\mu(1-\epsilon)}
Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid [m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*S] L : float, optional Length the fluid flows in the packed bed [m]
Returns ------- dP : float Pressure drop across the bed [Pa]
Notes ----- Developed with data in the range of:
.. math:: 2 < Re_{Erg} <3582\\ 4 < d_t/d_p < 34.1\\ 0.377 < \epsilon <0.470
Examples -------- >>> Erdim_Akgiray_Demir(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3) 1438.2826958844414
References ---------- .. [1] Erdim, Esra, Ömer Akgiray, and İbrahim Demir. "A Revisit of Pressure Drop-Flow Rate Correlations for Packed Beds of Spheres." Powder Technology 283 (October 2015): 488-504. doi:10.1016/j.powtec.2015.06.017. '''
r'''Calculates pressure drop across a packed bed of spheres using a correlation developed in [1]_, as shown in [2]_. Second most accurate correlation overall in the review of [2]_.
.. math:: f_p = \left(q\frac{f_{1L}}{Re_{Erg}} + (1-q)\left(f_2 + \frac{f_{1T}} {Re_{Erg}}\right)\right)\frac{1-\epsilon}{\epsilon^3}
q = \exp\left(-\frac{\epsilon^2(1-\epsilon)}{12.6}Re_{Erg}\right)
f_{1L}=\frac{136}{(1-\epsilon)^{0.38}}
f_{1T} = \frac{29}{(1-\epsilon)^{1.45}\epsilon^2}
f_2 = \frac{1.87\epsilon^{0.75}}{(1-\epsilon)^{0.26}}
f_p = \frac{\Delta P d_p}{\rho v_s^2 L}
Re_{Erg} = \frac{\rho v_s d_p}{\mu(1-\epsilon)}
Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid [m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*S] L : float, optional Length the fluid flows in the packed bed [m]
Returns ------- dP : float Pressure drop across the bed [Pa]
Notes ----- No range of validity available.
Examples -------- >>> Fahien_Schriver(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3) 1470.6175541844711
References ---------- .. [1] R.W. Fahien, C.B. Schriver, Paper presented at the 1961 Denver meeting of AIChE, in: R.W. Fahien, Fundamentals of Transport Phenomena, McGraw-Hill, New York, 1983. .. [2] Erdim, Esra, Ömer Akgiray, and İbrahim Demir. "A Revisit of Pressure Drop-Flow Rate Correlations for Packed Beds of Spheres." Powder Technology 283 (October 2015): 488-504. doi:10.1016/j.powtec.2015.06.017. '''
r'''Calculates pressure drop across a packed bed of spheres as in [2]_, originally in [1]_.
.. math:: \frac{\Delta P}{L\rho v_s^2} d_p = \frac{0.765}{\epsilon^{4.2}} \left(\frac{30}{Re_l} + \frac{3}{Re_l^{0.7}} + 0.3\right)
Re_l = (0.45/\epsilon^{0.5})Re_{Erg}
Re_{Erg} = \frac{\rho v_s D_p}{\mu(1-\epsilon)}
Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid [m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*S] L : float, optional Length the fluid flows in the packed bed [m]
Returns ------- dP : float Pressure drop across the bed [Pa]
Notes ----- :math:`0.001 < Re_{Erg} <1000` This equation is valid for void fractions between 0.3 and 0.8. Cited as by Bernshtein.
Examples -------- >>> Idelchik(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3) 1571.909125999067
References ---------- .. [1] Idelchik, I. E. Flow Resistance: A Design Guide for Engineers. Hemisphere Publishing Corporation, New York, 1989. .. [2] Allen, K. G., T. W. von Backstrom, and D. G. Kroger. "Packed Bed Pressure Drop Dependence on Particle Shape, Size Distribution, Packing Arrangement and Roughness." Powder Technology 246 (September 2013): 590-600. doi:10.1016/j.powtec.2013.06.022. '''
r'''Calculates pressure drop across a packed bed of spheres using a correlation developed in [1]_, also shown in [2]_. Fourth most accurate correlation overall in the review of [2]_. Applies a wall correction if diameter of tube is provided.
.. math:: f_p = \left(119.8A + 4.63B\left(\frac{Re}{1-\epsilon}\right)^{5/6} \right)\frac{(1-\epsilon)^2}{\epsilon^3 Re}
A = \left(1 + \pi \frac{d_p}{6(1-\epsilon)D_t}\right)^2
B = 1 - \frac{\pi^2 d_p}{24D_t}\left(1 - \frac{0.5d_p}{D_t}\right)
f_p = \frac{\Delta P d_p}{\rho v_s^2 L}
Re = \frac{\rho v_s d_p}{\mu}
Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid [m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*S] L : float, optional Length the fluid flows in the packed bed [m] Dt : float, optional Diameter of the tube, [m]
Returns ------- dP : float Pressure drop across the bed [Pa]
Notes ----- Uses data from other sources only. Correlation will underestimate pressure drop if tube diameter is not provided. Limits are specified in [1]_ as: .. math:: 0.72 < Re < 7700 \\ 8.3 < d_t/d_p < 50 \\ 0.33 < \epsilon < 0.88
Examples -------- >>> Harrison_Brunner_Hecker(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3, Dt=1E-2) 1255.1625662548427
References ---------- .. [1] KTA. KTA 3102.3 Reactor Core Design of High-Temperature Gas-Cooled Reactors Part 3: Loss of Pressure through Friction in Pebble Bed Cores. Germany, 1981. .. [2] Erdim, Esra, Ömer Akgiray, and İbrahim Demir. "A Revisit of Pressure Drop-Flow Rate Correlations for Packed Beds of Spheres." Powder Technology 283 (October 2015): 488-504. doi:10.1016/j.powtec.2015.06.017. ''' else:
r'''Calculates pressure drop across a packed bed of spheres as in [2]_, originally in [1]_. Wall effect adjustment is used if `Dt` is provided.
.. math:: \frac{\Delta P}{L\rho V_s^2} D_p \frac{\epsilon^3}{(1-\epsilon)} = a\left(\frac{D_c}{D_p}\right)^{0.20} \left(\frac{1000}{Re_{p}} + \frac{60}{Re_{p}^{0.5}} + 12 \right)
Re_{p} = \frac{\rho v_s D_p}{\mu}
Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid [m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*S] L : float, optional Length the fluid flows in the packed bed [m] Dt : float, optional Diameter of the tube, [m]
Returns ------- dP : float Pressure drop across bed [Pa]
Notes ----- :math:`10 < REp <2500` if Dc/D > 50, set to 2.2. a = 0.061 for epsilon < 0.4, 0.050 for > 0.4.
Examples -------- Custom example:
>>> Montillet_Akkari_Comiti(dp=0.0008, voidage=0.4, L=0.5, vs=0.00132629120, rho=1000., mu=1.00E-003) 1148.1905244077548
References ---------- .. [1] Montillet, A., E. Akkari, and J. Comiti. "About a Correlating Equation for Predicting Pressure Drops through Packed Beds of Spheres in a Large Range of Reynolds Numbers." Chemical Engineering and Processing: Process Intensification 46, no. 4 (April 2007): 329-33. doi:10.1016/j.cep.2006.07.002. .. [2] Allen, K. G., T. W. von Backstrom, and D. G. Kroger. "Packed Bed Pressure Drop Dependence on Particle Shape, Size Distribution, Packing Arrangement and Roughness." Powder Technology 246 (September 2013): 590-600. doi:10.1016/j.powtec.2013.06.022. ''' else: else:
# Format: Nice nane : (formula, uses_dt) 'Ergun': (Ergun, False), 'Kuo & Nydegger': (Kuo_Nydegger, False), 'Jones & Krier': (Jones_Krier, False), 'Carman': (Carman, False), 'Hicks': (Hicks, False), 'Brauer': (Brauer, False), 'KTA': (KTA, False), 'Erdim, Akgiray & Demir': (Erdim_Akgiray_Demir, False), 'Fahien & Schriver': (Fahien_Schriver, False), 'Idelchik': (Idelchik, False), 'Harrison, Brunner & Hecker': (Harrison_Brunner_Hecker, True), 'Montillet, Akkari & Comiti': (Montillet_Akkari_Comiti, True) }
AvailableMethods=False, Method=None): r'''This function handles choosing which pressure drop in a packed bed correlation is used. Automatically select which correlation to use if none is provided. Returns None if insufficient information is provided.
Prefered correlations are 'Erdim, Akgiray & Demir' when tube diameter is not provided, and 'Harrison, Brunner & Hecker' when tube diameter is provided.
Examples -------- >>> dP_packed_bed(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3) 1438.2826958844414 >>> dP_packed_bed(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3, Dt=0.01) 1255.1625662548427
Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid [m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*S] L : float, optional Length the fluid flows in the packed bed [m] Dt : float, optional Diameter of the tube, [m] sphericity : float, optional Sphericity of the particles [-]
Returns ------- dP : float Pressure drop across the bed [Pa] methods : list, only returned if AvailableMethods == True List of methods which can be used to calculate `dP` with the given inputs
Other Parameters ---------------- Method : string, optional A string of the function name to use, as in the dictionary packed_beds_correlations AvailableMethods : bool, optional If True, function will consider which methods which can be used to calculate `dP` with the given inputs and return them as a list '''
else: else:
#import matplotlib.pyplot as plt #import numpy as np # #voidage = 0.4 #rho = 1000. #mu = 1E-3 #vs = 0.1 #dp = 0.0001 #methods = dP_packed_bed(dp, voidage, vs, rho, mu, L=1, AvailableMethods=True) #dps = np.logspace(-4, -1, 100) # #for method in methods: # dPs = [dP_packed_bed(dp, voidage, vs, rho, mu, Method=method) for dp in dps] # plt.semilogx(dps, dPs, label=method) #plt.legend() #plt.show()
### Voidage correlations
r'''Calculates voidage of a bed of arbitraryily shaped uniform particles packed into a bed or tube of diameter `Dt`, with equivalent sphere diameter `Dp`. Shown in [1]_, and cited by various authors. Correlations exist also for spheres, solid cylinders, hollow cylinders, and 4-hole cylinders. Based on a series of physical measurements.
.. math:: \epsilon = 0.1504 + \frac{0.2024}{\phi} + \frac{1.0814} {\left(\frac{d_{t}}{d_{pe}}+0.1226\right)^2}
Parameters ---------- Dpe : float Equivalent spherical particle diameter, [m] Dt : float Diameter of the tube, [m] sphericity : float Sphericity of particles in bed []
Returns ------- voidage : float Void fraction of bed packing []
Notes ----- Average error of 5.2%; valid 1.5 < dtube/dp < 50 and 0.42 < sphericity < 1
Examples -------- >>> voidage_Benyahia_Oneil(1E-3, 1E-2, .8) 0.41395363849210065
References ---------- .. [1] Benyahia, F., and K. E. O’Neill. "Enhanced Voidage Correlations for Packed Beds of Various Particle Shapes and Sizes." Particulate Science and Technology 23, no. 2 (April 1, 2005): 169-77. doi:10.1080/02726350590922242. '''
r'''Calculates voidage of a bed of spheres packed into a bed or tube of diameter `Dt`, with sphere diameters `Dp`. Shown in [1]_, and cited by various authors. Correlations exist also for solid cylinders, hollow cylinders, and 4-hole cylinders. Based on a series of physical measurements.
.. math:: \epsilon = 0.390+\frac{1.740}{\left(\frac{d_{cyl}}{d_p}+1.140\right)^2}
Parameters ---------- Dp : float Spherical particle diameter, [m] Dt : float Diameter of the tube, [m]
Returns ------- voidage : float Void fraction of bed packing []
Notes ----- Average error 1.5%, 1.5 < ratio < 50.
Examples -------- >>> voidage_Benyahia_Oneil_spherical(.001, .05) 0.3906653157443224
References ---------- .. [1] Benyahia, F., and K. E. O’Neill. "Enhanced Voidage Correlations for Packed Beds of Various Particle Shapes and Sizes." Particulate Science and Technology 23, no. 2 (April 1, 2005): 169-77. doi:10.1080/02726350590922242. '''
r'''Calculates voidage of a bed of cylindrical uniform particles packed into a bed or tube of diameter `Dt`, with equivalent sphere diameter `Dpe`. Shown in [1]_, and cited by various authors. Correlations exist also for spheres, solid cylinders, hollow cylinders, and 4-hole cylinders. Based on a series of physical measurements.
.. math:: \epsilon = 0.373+\frac{1.703}{\left(\frac{d_{cyl}}{d_p}+0.611\right)^2}
Parameters ---------- Dpe : float Equivalent spherical particle diameter, [m] Dt : float Diameter of the tube, [m] sphericity : float Sphericity of particles in bed []
Returns ------- voidage : float Void fraction of bed packing []
Notes ----- Average error 0.016%; 1.7 < ratio < 26.3.
Examples -------- >>> voidage_Benyahia_Oneil_cylindrical(.01, .1, .6) 0.38812523109607894
References ---------- .. [1] Benyahia, F., and K. E. O’Neill. "Enhanced Voidage Correlations for Packed Beds of Various Particle Shapes and Sizes." Particulate Science and Technology 23, no. 2 (April 1, 2005): 169-77. doi:10.1080/02726350590922242. ''' |