Scaling AI Agent Productivity through a Single
Smart MCP Proxy

1 Motivation and facts

Large-language-model agents thrive on rich toolsets, yet practical and provider-
imposed ceilings cap how many function schemas we can feed them at once. The
numbers below illustrate why naively loading all tools is a dead-end and set the
stage for a smarter gateway.

¢ Practical ceilings: Cursor IDE is limited to 40 simultaneously loaded
tools in real coding sessions.

e Hard API caps: Leading providers enforce a 128-function limit per call
(e.g., OpenAl Function Calling).

¢ Growing public registries: 4 400 + Model Context Protocol (MCP)
servers on mcp.so (April 2025) already outpace fixed context windows
(ScaleMCP paper).

e Token cost of schemas: Injecting thousands of function schemas bloats
prompts—blank conditioning with 2 134 tokens yielded just 13.62 %
correct selections on MCPBench tasks (see RAG-MCP paper).

2 Smart MCP Proxy Benefits

The Smart MCP Proxy collapses entire tool catalogs behind a single intelli-
gent endpoint, letting agents pull in only what they need, when they need it.
This section highlights how that design translates to leaner prompts and higher
success rates.

¢ One tool, many endpoints: The proxy exposes a single retrieve_tools
function; sub-tool name & args travel inside the payload, eliminating
schema clutter.

e« Token savings: Hiding 450 + OpenAPI endpoints behind one proxy
removes ~99 % of schema tokens (see RAG-MCP paper).

e Accuracy retention: When combined with RAG-MCP retrieval, the
proxy maintains the 43 % accuracy edge while staying within minimal
prompt size.

3 Solution Design

At a glance, the proxy is a thin federating gateway that hides thousands of
upstream MCP tools behind one smart entry-point.

1. Startup pipeline
o Load JSON/YAML config — spin up FastMCP clients for every listed
server (URL or local command).
e Fetch each server’s tools/list, hash & persist metadata in SQLite,
embed descriptions with the selected backend (BM25 / HuggingFace /


https://platform.openai.com/docs/guides/function-calling
https://arxiv.org/abs/2505.06416
https://arxiv.org/abs/2505.03275
https://arxiv.org/abs/2505.03275

OpenAl) and store vectors in Faiss.
e Nothing is exposed to the agent yet—only the single retrieve_tools
function.

2. Query-time flow (retrieve_tools)
e The agent passes its natural-language intent.
o The proxy scores the corpus, picks the top K matches (default 5).
e Depending on the routing mode:
- CALL_TOOL (default) — returns metadata and lets the agent call
the tool through the proxy’s universal call_tool(name, args) method.
-DYNAMIC - auto-registers lightweight wrappers for each match, fires a
tools/list_changed notification, and the agent can invoke them directly.

3. Execution path
e A wrapper simply forwards the call to the relevant upstream server via
FastMCP as-proxy, streams the response back, and (optionally) trun-
cates large payloads.
e A bounded tool pool (env MCPPROXY_TOOLS_LIMIT, default 15) evicts
the coldest+lowest-scoring wrappers to keep memory lean.

4. Observability & Safety
e Built-in logging, per-origin rate limits, and optional OAuth tokens per
server.
e Optional MCPPROXY_LIST_CHANGED_EXEC hook executes any shell com-
mand (e.g., touch ~/.cursor/mcp. json) after tool list changes to refresh
clients that ignore standard notifications.

This architecture trades a small, constant prompt footprint for on-demand dis-
covery, keeping accuracy high while staying well below provider function-
schema limits.

4 Client Compatibility

Smart MCP Proxy speaks pure MCP; any compliant client can call it unmodi-
fied.

Client /

Framework Status Observation

Cursor IDE Tested Proxy registers as one function, bypassing
(v1.0.0) 40-tool soft limit

Anthropic Tested Desktop agent consumes proxy through

Claude Desktop (2025-05) standard MCP URI

Google ADK Tested Registered as canonical MCP server;

Framework (v1.3) end-to-end calls succeed




5 References (for more details)

« RAG-MCP - T. Gan & Q. Sun, “Mitigating Prompt Bloat in LLM Tool
Selection via Retrieval-Augmented Generation” (arXiv:2505.03275)

e ScaleMCP — E. Lumer et al., “Dynamic and Auto-Synchronizing MCP
Tools” (arXiv:2505.06416)

o OpenAlI — Docs (OpenAl Function Calling))


https://arxiv.org/abs/2505.03275
https://arxiv.org/abs/2505.06416
https://platform.openai.com/docs/guides/function-calling

	Scaling AI Agent Productivity through a Single Smart MCP Proxy
	1 Motivation and facts
	2 Smart MCP Proxy Benefits
	3 Solution Design
	4 Client Compatibility
	5 References (for more details)


