Note to readers:

Please ignore these
sidenotes; they’re just
hints to myself for
preparing the index,
and they’re often flaky!

KNUTH

THE ART OF
COMPUTER PROGRAMMING

VOLUME 4 PRE-FASCICLE 7A

CONSTRAINT
SATISFACTION
(preliminary draft)

DONALD E. KNUTH Stanford University

A
ADDISON-WESLEY \A4

January 13, 2024

Internet page https://www-cs—faculty.stanford.edu/"knuth/taocp.html contains
current information about this book and related books.

See also https://www-cs-faculty.stanford.edu/ knuth/sgb.html for information
about The Stanford GraphBase, including downloadable software for dealing with
the graphs used in many of the examples in Chapter 7.

See also https://www-cs-faculty.stanford.edu/ knuth/mmixware.html for down-
loadable software to simulate the MMIX computer.

See also https://www-cs-faculty.stanford.edu/ knuth/programs.html for various
experimental programs that I wrote while writing this material (and some data files).
Copyright © 2023 by Addison—-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher, except
that the official electronic file may be used to print single copies for personal (not
commercial) use.

Zeroth printing (revision -25), 10 January 2024

January 13, 2024

Internet
Stanford GraphBase
downloadable software

MMIX

PREFACE

But that is not my point.
| have no point.

— DAVE BARRY (2002)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, 3, 4A,
and 4B were at the time of their first printings. And alas, those carefully-checked
volumes were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make the text both interesting and authoritative, as far as it goes.
But the field is vast; I cannot hope to have surrounded it enough to corral it
completely. So I beg you to let me know about any deficiencies that you discover.

To put the material in context, this portion of fascicle 7 previews Section
7.2.2.3 of The Art of Computer Programming, entitled “Constraint satisfaction.”
It will be the first section of Volume 4C. As usual, it covers many topics that are
of independent interest and that have close ties to other sections. I haven’t had
time yet to write a more detailed preface to the subject, but I encourage curious
readers to browse the pages and take a look at the illustrations and exercises
that I’ve accumulated so far. Especially the exercises.

The explosion of research in combinatorial algorithms since the 1970s has
meant that I cannot hope to be aware of all the important ideas in this field.
I've tried my best to get the story right, yet I fear that in many respects I'm
woefully ignorant. So I beg expert readers to steer me in appropriate directions.

Please look, for example, at the exercises that I've classed as research
problems (rated with difficulty level 46 or higher), namely exercises 52, 66, 87,
105, 108, 121, 131, 150, 187, 200, 319, 384, ...; I’ve also implicitly mentioned or

January 13, 2024 1

BARRY
Internet

iv PREFACE

posed additional unsolved questions in the answers to exercises 51, 83, 115, 118,
119, 123(d), 129(e), 150, 180, 197, 211, 290, 313, 321, 383(b), 389, 417, 430(e, f),
493, 502, 594, Are those intriguing problems still open? Please inform me
if you know of a solution to any of them. And of course if no solution is known
today but you do make progress on any of them in the future, I hope you’ll let
me know.

I urgently need your help also with respect to some exercises that I made
up as I was preparing this material. I certainly don’t like to receive credit for
things that have already been published by others, and most of these results are
quite natural “fruits” that were just waiting to be “plucked.” Therefore please
tell me if you know who deserves to be credited, with respect to the ideas found
in exercises 12, 40, 41, 42, 43, 44, 45, 47, 50, 51, 52, 55, 64, 65, 67, 68, 69, 70, 71,
72,73,74, 76, 78, 79, 80, 81, 91, 99, 112, 115, 116, 117, 118, 119, 120, 121, 122,
123, 124, 132, 133, 137, 145, 146, 148, 149, 160, 165, 168, 169, 172, 177, 185(c),
187,194, 199, 211, 214, 221, 222, 224, 229, 235, 255, 259, 260, 274, 283, 291, 297,
298, 304, 306, 311, 333, 341, 352, 353, 354, 356, 364, 383, 388, 400, 401, 402, 403,
404, 411, 412, 430, 463, 493, 504, 590, 591, 592, 593, 594, ..., and their answers.
Furthermore I've credited exercises 36, 148, and ... to unpublished work of Ira
Gessel, Nikolai Beluhov, and Have any of those results ever appeared in
print, to your knowledge?

Can anybody help me identify the source of the crystal maze puzzle? (The
answer to exercise 20 tells what I know so far.)

* * *

Special thanks are due to Christian Bessiere, Daniel Horsley, Peter Jeavons,
Ciaran McCreesh, Patrick Prosser, George Sicherman, Christine Solnon, Filip
Stappers, Peter Stuckey, Kokichi Sugihara, James Trimble, Udo Wermuth, and
... for their detailed comments on my early attempts at exposition, as well as
to numerous other correspondents who have contributed crucial corrections. I
also thank my wife for help with Fig. 100.

* * *

I happily offer a “finder’s fee” of $2.56 for each error in this draft when it is first
reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I'll actually do my best to give you
immortal glory, by publishing your name in the eventual book:—)

The answers to several of the exercises refer to programs that I wrote while
preparing this material. If you want to see a program called FOO, look for FOO on
the webpage https://cs.stanford.edu/ knuth/programs.html. (Many other
example programs can also be found there.)

January 13, 2024

Gessel
Beluhov
Bessiere
Horsley
Jeavons
McCreesh
Prosser
Sicherman
Solnon
Stappers
Stuckey
Sugihara
Trimble
Wermuth
Knuth, Jill
internet
downloadable programs and data—

PREFACE A

As in Volume 4B, I've posted prototypes of the algorithms presented here
on that same webpage. In particular, you can download the programs SSXCCO,
SSXCC, SSXCC-BINARY, SSMCC, and XCCDC; those experimental versions of
Algorithms C, C*, B, M, and S were my constant companions while writing the
later portions of Section 7.2.2.3.

Data files for the benchmark examples mentioned in that section can also
be found online at

https://cs.stanford.edu/ "knuth/programs/xcc-benchmarks.tgz
https://cs.stanford.edu/ "knuth/programs/mcc-benchmarks. tgz

so that interested readers can do their own experiments.
Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
99 Umbruary 2019

P.S.: A note on notations. Some formulas in this booklet use the notation ‘vz’
for the “sideways sum” or “population count” function, as well as the notation
‘px’ for the “ruler” function. Those functions, and other bitwise notations, are
discussed extensively in Section 7.1.3 of Volume 4A.

Other formulas use the notation (zyz) for the median function, which is
discussed extensively in Section 7.1.1.

Hexadecimal constants are preceded by a number sign or hash mark: #123
means (123)6.

If you run across other notations that appear strange, please look at the
Index to Notations (Appendix B) at the end of Volume 4A or 4B. Volume 4C
will, of course, have its own Appendix B some day.

The field of combinatorial algorithms is too vast

to cover in a single paper or even in a single book.
— ROBERT ENDRE TARJAN, SIAM Review (1978)

January 13, 2024

online

Knuth

notation ‘V T
sideways sum
population count
notation ‘P T
notation G:yz)
median function

Hexadecimal constants
TARJAN

Chapter 7 — Combinatorial Searching

7.2. Generating All Possibilities .
7.2.1. Generating Basic Combmatorlal Patterns
7.2.2. Backtrack Programming .

7.2.2.1. Dancing links
7.2.2.2. Satisfiability .
7.2.2.3. Constraint Satisfaction
Related models .
*Statistical mechanics
A simple example .
Automating automobiles .
Line labeling in computer vision
Graph labeling
*Graceful digraphs .
Graph embedding . . .
*Supplemental labels and graphs .

Special cases of subgraph isomorphism .

Solving a CSP .
Translating CSP to SAT .
SAT encodings of general relations
Consistency
Efficiency .
Representing the domalns
*Dancing cells . . .
*Dynamic variable orderlng heurlst1cs
*Maintaining XCC supports .
Performance on benchmarks

*Sparse-set methods for MCC problems .

Tractable families of CSPs
A brief history
Exercises

Answers to Exercises

Appendix E, Answers to Puzzles in the Answers .

Index and Glossary

vi
January 13, 2024

CONTENTS

DO NOOkRR N, OO O ©

Q0 Q0 ~J =1 =~ O OO U Ut sWWwWWwN N
B O OO WO UL Ok 0O © 00~ Ut 0

122
206
207

THE HOPCROFT-KARP ALGORITHM vii

A foretaste of Section 7.5.1. Section 7.2.2.3 refers forward to the Hopcroft—
Karp algorithm, which will be discussed at the beginning of Section 7.5.1 (“Bi-
partite matching”), according to present plans. That algorithm is copied here
for reference. (Further details and exposition can be found in prefascicle 14a, on
the Internet at https://cs.stanford.edu/ knuth/fascl4a.ps.gz.)

We're given a bipartite graph. The vertices of one part are called “girls” and
the vertices of the other part are called “boys,” so that we can conveniently use
the English language to distinguish the parts. The problem is to find a maximum
matching, namely a set of disjoint edges that is as large as possible.

Hopcroft and Karp’s algorithm constructs dags (directed acyclic graphs)
of SAPs (shortest augmenting paths), as explained in that prefascicle. The
following implementation uses an interesting combination of data structures.
First there are “mate tables” to represent the current matching, with GMATE [¢]
for 1 < g < M and BMATE[b] for 1 < b < N to indicate the partners of girl g
and boy b, or 0 if they’re currently free.

The breadth-first construction of a dag is controlled by an array QUEUE [k]
for 0 < k < M, which records the girls currently present. If f girls are free, they
appear in the first f positions of QUEUE. There’s also a partial inverse, IQUEUE [¢]
for1 < g< M: If 0 <k < f and QUEUE[k] = g, then IQUEUE[g] = k. Yet
another array, MARK [b] for 1 < b < N, equals | if b € By; otherwise MARK[b] = 0.
There’s also MARKED [¢], for 0 < t < NV; it lists the boys for which MARK[b] # 0.

The algorithm also involves a depth-first process, to remove SAPs after the
dag has been built. Those steps use the array STACK[I], for 0 < I < M, to
remember the boy of B; who is currently being visited.

The bipartite graph that underlies everything is represented sparsely as a
collection of edge nodes, each of which contains four fields GTIP, BTIP, GNEXT,
BNEXT. An edge between girl g and boy b is represented by an edge node e for
which GTIP(e) = g and BTIP(e) = b; here 1 < e < E, where E is the total
number of edges. The first edge involving g, for 1 < g < M, is GLINK[g]; the
next one is GNEXT (GLINK [¢]); and so on, until 0 terminates the list. The values
of GTIP, BTIP, and GNEXT remain fixed throughout the computation.

A similar convention is used to represent the dag, which is constructed
dynamically: The first arc from boy b in the dag is BLINK[b], for 1 < b < N,
and the next is BNEXT(BLINK[b]), etc. The contents of BLINK and BNEXT are
therefore not fixed. Every girl g in the dag is the source of exactly one arc, which
leads to GMATE[g]. If GMATE [¢] = 0, that arc leads to L.

Algorithm H (Mazimum bipartite matching). Given a bipartite graph with
M girls, N boys, and E edges, represented as explained above, this algorithm
computes a maximum cardinality matching, which will appear in the GMATE and
BMATE arrays. It also uses the auxiliary arrays QUEUE, IQUEUE, MARK, MARKED,
and STACK, defined above. The MARK array must be initially zero.

H1. [Prime the pump.] Set GMATE and BMATE to a maximal (not necessarily
maximum) matching; also set f to the number of unmatched girls, and
list them in the first f slots of QUEUE.

January 13, 2024

Hopcroft

Karp

Internet

matching

dags

data structures

mate tables

depth-first process

sparse graph representation
edge nodes

maximum cardinality matching

viii

H2

H3.

H4.

H5.
He6.

H7.
HS.

H9.

H10.

H11.

H12.
H13.

H14.

H15.

H16.

H17.

This

PREFACE: A FORETASTE OF SECTION 7.5.1

. [Start building the dag.] Set t <~ i <l < r «+ 0, ¢ < f, and L + 0.

[Begin level I +1.] (At this point the girls of G; are listed in QUEUE[k] for
i < k < g, and the dag contains ¢ boys.) Set ¢’ < g.

[Process a g € G;.] Go to H10 if i« = ¢/. Otherwise set g < QUEUE[:],
i+ i+ 1, and e < GLINK[g].

[Let b be a suitor for g.] If e = 0, return to H4; otherwise set b - BTIP(e).

[Is b new?] If MARK[b] = 0, go to H8. Otherwise if MARK[b] > I, set
BNEXT (e) <~ BLINK[b], BLINK[b] ¢ e.

[Loop on b.] Set e - GNEXT(e) and return to H5.

[Enter b into By41.] If L > 0 and BMATE[b] # 0, go to H7. Otherwise set
MARK[b] < [+ 1, MARKED[¢] < b, t < t+1, BLINK[b] < e, BNEXT(e) < O.
[Is b free?] If BMATE[b] # 0, set QUEUE[q] « BMATE[b], ¢ + ¢ + 1.
Otherwise if L =0,set L+ [+ 1, r < 1, ¢ + ¢' (we’ve reached the final
level). Otherwise set r <— r+1 (there are r free boys on level L). Go to H7.

[Is the dag complete?] If ¢ # ¢', set | - I+ 1 and return to H3. (Otherwise
the dag is complete, and the last r elements of MARKED are the free boys
in By,.) Terminate the algorithm if L = 0 (there are no augmenting paths).
[Start to find a SAP.] If r = 0, set MARK[MARKED[k]] < 0 for 0 < k < ¢
and return to H2. Otherwise set b <~ MARKED [t —r], r < r — 1,1 < L.
[Enter level [.] Set STACK[I] < b.

[Advance.] Set e < BLINK[b], and go to H15 if e = 0. Otherwise set
BLINK[b] « BNEXT(e), g < GTIP(e). If MARK[GMATE[g]] < 0, repeat this
step (g has been deleted). Otherwise set b <— GMATE [g].

[SAP complete?] If b = 0 (g is free), go to H16. Otherwise set [<~ 1 —1
and return to H12.

[Resume higher level.] Set I < I+ 1. Then go to H11 if [> L; otherwise
set b <— STACK[!/] and go back to H13. (This is like “backtracking,” except
that we never retrace a step because we're destroying the dag as we go.)
[Prepare to augment.] (At this point | = 1; g = go and STACK[1] = b; in
a SAP. The other boys are STACK[2], ..., STACK[L].) Set f « f —1,
k + IQUEUE[g], i + QUEUE[f], QUEUE[k] <« i, and IQUEUE[{] « k.
(Those operations removed g from the list of free girls.) Set b - STACK[1].
[Augment.] Set MARK[b] < —1, ¢’ < BMATE[b], BMATE[b] ¢ g, and
GMATE[g] < b. Then if ¢’ #0, set g <~ ¢', 1 <~ 1 + 1, b < STACK[I], and
repeat this step. Otherwise go back to H11. |

algorithm has many steps, but it’s not frighteningly complicated. It es-

sentially consists of two separate-but-cooperating subalgorithms, namely the
breadth-first dag construction in H2-H10 and the depth-first dag deconstruction
in H11-H17.

Algorithm H comes with an important free bonus: After it has found a

supp

Janua

osedly maximum matching, its data structures contain enough information

ry 13, 2024

backtracking
breadth-first
depth-first

THE HOPCROFT-KARP ALGORITHM ix

to convince any skeptic that the matching is indeed as large as possible. Indeed,
if no girl is free, the matching is perfect and obviously optimum. Otherwise the
girls in QUEUE [k] for 0 < k < ¢ are adjacent to only ¢ boys in the graph, namely
the boys in MARKED[k] for 0 < k < t. And it’s easy to verify that ¢ = t+ f; hence
any matching must leave at least f girls without a partner. Indeed, Algorithm H
provides us with a maximum independent set,

I ={g|gis agirl in the final dag} U {b| b is a boy not in the final dag},

which is certified by the maximum matching and vice versa!*

Algorithm H’s main claim to fame, however, is that it runs remarkably fast.
Give it a graph, and it churns out a maximum matching, lickety-split. The
reason is that SAPs are extremely good augmenters:

Theorem H. Let s be the size of a maximum matching. When r = 0 in step
H11, the size of the current matching is at least LLHS.

Proof. If the current matching has s’ edges, we’ve observed that at least s — s’
vertex-disjoint augmenting paths exist. We also know that each of those paths
contains at least L+ 1 edges of a maximum matching. So s > (L+1)(s—s'). 1

Corollary K. The running time for Algorithm H to find a maximum matching
of size s is O((M + N + E)\/s).

Proof. Every time a dag is constructed, the value of L increases. Each round of
construction and deconstruction clearly involves O(M + N + E) steps. If the al-
gorithm hasn’t terminated before the value of L exceeds /s, a matching of size >

%s = s —+/s has been found, and /s more rounds will complete the task. |

* The complement of I is a vertex cover containing C vertices, where C is the size of the
matching found. No vertex cover can contain fewer than C' vertices; hence I is maximum.

January 13, 2024

certificate of correctness
maximum independent set in bipartite graph

7.2.2.3 CONSTRAINT SATISFACTION 1

His Lady sad to see his sore constraint,
Cride out, Now now Sir knight, shew what ye bee.

— EDMUND SPENSER, The Faerie Queene (1590)

The work under our labour grows, luxurious by restraint.
— JOHN MILTON, Paradise Lost (1667)

Liberty exists in proportion to wholesome restraint.
— DANIEL WEBSTER (1847)

It is impossible to be an artist and not care for laws and limits.
Art is limitation; the essence of every picture is the frame.

— GILBERT K. CHESTERTON, Orthodoxy (1908)

| surround myself with obstacles.

Whatever diminishes my discomfort diminishes my strength.
The more constraints one imposes, the more one

frees one’s self of the chains that shackle the spirit.

— IGOR STRAVINSKY, Poétique musicale sous forme de six lecons (1939)

7.2.2.3. Constraint satisfaction. In Section 7.2.2.1 we solved numerous ex-
amples of XCC problems —exact covering with colors— which featured “items”
and “options.” Then in Section 7.2.2.2 we resolved lots of SAT problems—
Boolean satisfiability —which featured “literals” and “clauses.” All of these,
and more, are instances of a combinatorial challenge that’s more general yet, the
constraint satisfaction problem — often called the CSP for short — which we will
see is based on “variables,” “domains,” and “constraints.”

The idea is simple: We're given a finite list of variables (z1,z2,...,z,), to
which we can assign values that belong to given finite domains (D1, D, ..., D,,).
And we’re also given a set of constraints { Ry, Ra, . .., Ry}, each of which specifies
that a certain subset of the values (z1, 2, ..., z,) must be mutually compatible.
Some combinations of values are “good”; the others are “nogood.”

For example, let n = 5, and suppose that each domain is a set of letters:

D, = {B,S}, D, = {C,L}, D;3 = {A;I;U}a Dy = {an}a Ds5 = {DaN}' (1)

Thus there are 2 x 2 x 3 x 2 x 2 = 48 possible settings of &1 xsx3x4x5, from BCAED
to SLUON. Let’s also impose three constraints:

R1($1,$3,$5) = ‘1'111731175 S {BAN, BUD, SIN}’;
Ry(z1,24) = ‘z124 € {BE, SE, S0}’; (2)
R3 (.’L‘g, T4, .’L‘5) = ‘ToxqTs € {CDD, CON, LED}’.
This CSP has two solutions, easily found by hand (see exercise 1).
Every SAT problem is obviously a CSP in which all the domains are {0,1}.
For example, problem F = {12,23,13,123} in 7.2.2.2—(3) has four constraints,
T1T9 € {00,10,11}; zz3 € {01,10,11}; =25 € {00,01,10};
z1asxs € {000,001,010,011,100,101, 111}, (3)

January 13, 2024

Knight of Holinesse
SPENSER

MILTON

WEBSTER
CHESTERTON
STRAVINSKY

constraint satisfaction problem—
CSP: The constraint sat prob
XCC problems

exact covering with colors
items

options

SAT problems

Boolean satisfiability
satisfiability

literals

clauses

variables

domains

constraints

nogood

SAT as CSP

2 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 @ 1203) 7.2.2.3

Conversely, every CSP can be formalized as an equivalent SAT problem,
by using several SAT variables to represent each CSP variable whose domain
size d exceeds 2. For example, if the domain is {0, 1,...,d — 1}, Section 7.2.2.2
discussed the “log encoding,” with [= [lgd] Boolean variables meaning that
x = (zj_1...2120)2. There’s also the “direct encoding,” with d variables z; =
[z =k], as well as the “order encoding,” which has d — 1 variables 7 = [z > j].
We also discussed a variety of ways to represent arbitrary constraints, in the
form of one or more clauses involving such Boolean variables. Each of those
encodings has its own virtues and weaknesses, depending on the application.

Every XCC problem can, similarly, be regarded as a CSP. One way is to
have a variable z; for every primary item ¢, with domain D; equal to the set of
options that contain ¢. The constraints are that z; and z; cannot be options
that conflict: If «; = 0; and x; = 0;, where 0; # 0;, then o; and o; cannot have
a common primary item, nor can they have a common secondary item that’s
colored differently in o; and o;. Conversely, exercise 7.2.2.1-100 presented one
way to encode any CSP as an XCC problem.

Thus XCC, SAT, and CSP can each be reduced to the other two.

We’ve already learned how to construct excellent XCC solvers and excellent
SAT solvers, so we might be tempted to stop there, regarding CSP as a problem
that’s already been well solved. But we shall see that careful consideration of the
CSP not only clarifies XCC and SAT, it also teaches us important new methods.

Related models. Many groups of researchers have independently adopted
conceptual frameworks that are identical to or very similar to the notions of
variables, domains, and constraints. For example, a theory of relational struc-
tures has been developed as part of the branch of mathematics called “universal
algebra.” A relational structure is a set U together with a set {R;, Ra, ...} of
relations or “predicates” defined on the elements of U. Each relation R; depends
on k elements, for some k = k;, and it defines the k-tuples of elements for which
that predicate is true. [See P. M. Cohn, Universal Algebra (1965), Chapter V.|

Let’s be a little more precise. The Cartesian product of sets (D1, ..., Dy),
denoted by Dy X - - X D,,, is the set of all n-tuples (z1,...,z,) such that x; € D;
for 1 < i <n. Thus, D; x --- x D, is the set of all solutions to a CSP with
domains (Dy,...,D,), in the case when there are no constraints. An n-tuple
such as (z1,...,z,) is often written simply as z ...z,, when commas aren’t
necessary. We also write D X --- x D = D™ when the n domains are all identical.

A k-ary relation on sets (Dy,...,Dy) is a subset of Dy X --- x Dj. We
write either R(xy,...,xg) or 1 ...z € R when we want to say that the k-
tuple (x1,...,xy) satisfies relation R. The relation is called binary when k = 2,
ternary when k = 3, quaternary when k = 4, and so on; it’s unary when k = 1.
(Strictly speaking, there also are nullary relations; see exercise 5.)

The simplest nontrivial relational structures arise where there’s just a single
binary relation. In fact, this case is so simple, we hardly ever think of it as a
“relation structure” at all: We call it a directed graph. Indeed, we know well
that a directed graph is a set V' of wvertices, together with a set A C V x V of

January 13, 2024

CSP as SAT

log encoding
Boolean variables
direct encoding
order encoding
XCC as CSP
primary item
options
secondary item
CSP as XCC
relational structures
universal algebra
predicates

Cohn

Cartesian product
tuples

commas

relation

binary

ternary
quaternary
unary

nullary

directed graph
vertices

7.2.2.3 CONSTRAINT SATISFACTION: RELATED MODELS 3
arcs; and that’s exactly what it means to be a relational structure with a single
binary relation. This case is so common, we usually use the special notation
u—rv, instead of writing A(u,v) or uv € A.

Furthermore, if the lone binary relation is symmetrical (meaning that u — v
implies v — u) and irreflexive (meaning that v -/~ v), we usually call it E instead
of A; and we write u — v instead of writing E(u,v) or uv € E. In such cases,
of course, we have an ordinary (undirected) graph, and E is its set of edges.

Now let’s consider two graphs, G = (V,E) and G' = (V',E'). Suppose
we attach a label h(v) to every vertex v € V, where h(v) belongs to V'. This
mapping h : V — V' is called a homomorphism if E(u,v) implies E'(h(u), h(v));
in other words, it’s a homomorphism if we have

h(u) —h(v) in G’

whenever u—wv in G. (4)

For example, if G’ is the complete graph Ky on vertices V' = {1,2,...,d},
we have j — k in G’ if and only if j # k. So h is a homomorphism from G to
K, if and only if it’s a way to color the vertices of G properly with d colors.

Going the other way, suppose G (not G’) is the complete graph K4. It’s
easy to see that h is a homomorphism from Ky to G' if and only if the vertices
{h(1),...,h(d)} form a d-clique in G'.

Things get even more interesting when there’s more than one relation. If
S =(U,Ry,...,R;) and S' = (U', R},..., R}) are relational structures, we say
that S and S’ are similar if R; and R} both have the same “arity,” for 1 < i < t.
(In other words, R; and R} are both k;-ary.) In such cases we define a homo-
morphism A from S to S’ to be a mapping from U to U’ such that

© h/(xkz))7

For example, consider the augmented graph structure G* = (V, E, #) whose
relations include the nonequality relation ‘£’ as well as the ordinary edge rela-
tion E. A homomorphism from G# to G'# now has two properties:

h(u) # h(v) whenever u # v. (6)

Ri(x1,...,x,) implies Ri(h(z1),.. for1 <i<t. (5)

h(u) — h(v) in G’ whenever u—wv in G;

Consequently G is embedded in G': The vertices {h(v) | v € V} and edges
{h(u) — h(v) | u—wv in G} form a subgraph of G' that’s essentially a copy
of G. If, for instance, G is the n-cycle C,, h proves that G' contains an n-cycle.

Sometimes a k-ary relation is constant, meaning that it is satisfied by only a
single k-tuple. One interesting example is the structure S = (V, A, {ab}), where
(V,A) is a digraph with special vertices a and b. Then a homomorphism A from
S to the relational structure S’ = ({0,1},=,#) will tell us that « — v implies
h(u) = h(v), and also that h(a) # h(b). Hence every vertex v reachable from a
will have h(v) = h(a), and we can conclude that b is unreachable. Conversely, if
b isn’t reachable from a, such a homomorphism can easily be found.

The evident versatility of homomorphisms has led Peter Jeavons to define
the general combinatorial problem (GCP) as follows: “Given a pair of similar re-
lational structures S and S’, is there a homomorphism from S to S'?” [See Theo-

January 13, 2024

arcs
symmetrical

irreflexive

graph

edges

homomorphism

complete graph

clique

similar

arity

nonequality relation

disequality, see nonequality

embedded

subgraph isomorphism, see embedded graphs
subgraph

copy

constant

reachable

Jeavons

general combinatorial problem

GCP

4 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3
retical Computer Science 200 (1998), 185-204; see also T. Feder and M. Y. Vardi,
SICOMP 28 (1998), 57-104.] Exercises 10 and 11 provide further examples.

In particular, Jeavons observed that the CSP is indeed a special case of the
GCP. To cast (1) and (2) in this framework, for example, we let

S =({1,2,3,4,5}, {1}, {2}, {3}, {4}, {5}, {135}, {14}, {245}); (7)
S = ({A,...,Z},Dl,Dg,Dg,D4,D5,R1,R2,R3); (8)

here D; through Ds are the domains in (1), and R; through Rs3 are the tuples
in (2). The general idea is to have only constant relations in S, and to put the
domains and constraints into S’. A homomorphism A from S to S" will then give
us the values (h(1),...,h(5)) = (x1,...,25) that simultaneously belong to the
domains and satisfy the constraints.

Conversely, every GCP is readily seen to be a CSP. (See exercise 15.)

The CSP framework is also intimately connected with the theory of relational
databases. Individual facts in such a database are sets of tuples, involving the
values of variables called “attributes.” For example, we might have five attributes
called ‘location’, ‘employee’, ‘manager’, ‘job’, ‘language’, and three relations:

Departments — Layout — Personnel
location manager language location job employee job language
basement Alice norsk basement test Chris code deutsch
basement Udo deutsch solarium test Chris code norsk
solarium Iris norsk solarium code Logan test deutsch

What combinations of (location, employee, manager, job, language) exist in this
peculiar institution? They correspond precisely to the solutions to the CSP in
(1) and (2)! Database theorists call this the natural join of the three relations.
[See E. F. Codd, CACM 13 (1970), 377-387; H. Garcia-Molina, J. D. Ullman,
and J. Widom, Database Systems: The Complete Book (Prentice-Hall, 2002).]

*Statistical mechanics. Similar ideas arise also when physicists conceive of the
universe as a gigantic collection of discrete particles, each of which has its own
“spin.” If there are N particles, the overall state is then an N-tuple ¥’ = 01 ...0n
called a configuration, where o; is the jth spin. Different particles can have
different kinds of quantized spins, belonging to a given finite space of possible
values, exactly analogous to the domains in a CSP.

Every configuration X' has an associated energy E(X'), which is usually the
sum of contributions from particles that interact locally. For example, the “one-
dimensional Ising model,” formulated by W. Lenz and analyzed by his student
E. Ising [Zeitschrift fiir Physik 31 (1925), 253-258], has the energy function

N—-1 N
E(Y)=-) 00541 -B> o, (9)
j=1 j=1

where each spin o; is &1, and where the constant B represents the strength of an
external magnetic field. If o;_; = 041 = —0; and Boj < 2, particle j will tend
to change its spin to match its neighbors, because that would reduce the energy.

January 13, 2024

Feder

Vardi

Jeavons

relational databases
attributes

natural join

join

Codd
Garcia-Molina
Ullman

Widom

Statistical mechanics
physics—

spin

configuration
energy

Ising model

Lenz

Ising

7.2.2.3 CONSTRAINT SATISFACTION: RELATED MODELS b)

Any set of k-ary relations between particles can be used to define energy generating function
functions. So, in particular, we can cast the CSP of (1) and (2) into this mold, temperature
o X R X R partition function
obtaining configurations in D; X --- x D5 whose energy function is probability
Boltzmann
E(0'1(720'30'4(75) = —[R1(01,03,(75)] — [R2((71,(74)] — [R3((72,(74,0’5)]. (10) yg:Z;lélgTswtes
Here are the 48 possibilities, together with their associated energy levels: ’ﬁg;;r‘g satisfiability
Y EX ¥ EX ¥ EX) ¥ EX ¥ EX X E>) Montanari

BCAED —1 BCUED —2 BLIED —2 SCAED —1 SCUED —1 SLIED —2
BCAEN —2 BCUEN —1 BLIEN —1 SCAEN —1 SCUEN —1 SLIEN —2
BCAOD —1 BCUOD —2 BLIOD O SCAOD —2 SCUOD —2 SLIOD —1
BCAON —2 BCUON —1 BLION 0 SCAON —2 SCUON —2 SLION —2
BCIED —1 BLAED —2 BLUED -3 SCIED —1 SLAED —2 SLUED —2
BCIEN —1 BLAEN —2 BLUEN —1 SCIEN —2 SLAEN —1 SLUEN —1
BCIOD —1 BLAOD 0 BLUOD —1 SCIOD —2 SLAOD —1 SLUOD —1
BCION —1 BLAON —1 BLUON O SCION —3 SLAON —1 SLUON —1

To analyze such models, physicists essentially calculate the generating func-
tion G(z) = Y. 2P, summed over all configurations ¥. In our case, for
example, G(z) = 2272 + 18272 + 24271 + 4. But because physicists understand
physics, they do this in an idiosyncratic way by setting z = e #, where f is
the reciprocal of the “temperature.” In other words, they calculate > e PE()
which they call the partition function; and they usually denote that sum by Z(f).

Since the partition function is always a sum of positive terms, physicists con-
sider the ratio e=#F(*)/Z () to be the probability of configuration X. [Such prob-
ability distributions were introduced in the 19th century by Ludwig Boltzmann;
see, for example, the Sitzungsberichte der Mathematisch-Naturwissenschaftlichen
Classe der Kaiserlichen Akademie der Wissenschaften 76 (Wien, 1877), 373-435.]

At high temperatures, 5 is near 0; hence all configurations are almost equally
likely. But at low temperatures, 8 approaches co; then only the configurations
with smallest possible energy, the so-called “ground states,” are significant,
because they are exponentially more probable than any other state. In our 48-
state example, each of the configurations with energy —3 occurs with probability
%—}—%B#—O(ﬁ% when 8 — 0, but probability %—%e‘ﬁ—l—O(e_w) when — oo.

Thus, in general, the solutions to a satisfiable CSP correspond to the ground
states of the associated physical problem. And when the CSP is unsatisfiable,
the ground states satisfy as many of the constraints as possible.

Considerations such as these account for the fact that physicists have con-
tributed significantly to the understanding of random satisfiability problems, in
particular by introducing Algorithm 7.2.2.2S. Further discussion of statistical
mechanics is, of course, beyond the scope of a book on computer programming;
but readers hungry for more may consult Information, Physics, and Computation
by Marc Mézard and Andrea Montanari (Oxford University Press, 2009).

The takeway message from all these examples is obvious: There has to be
something good about the CSP notions of variables, domains, and constraints,
when we want to model real-world problems, because so many people have
independently come up with essentially the same approach.

January 13, 2024

6 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

A simple example. To warm up, let’s look at a little puzzle that appeared
on a British TV show called The Crystal Maze in 1994. The task is simple—
but you’ve got only two minutes to do it: “Place eight large disks, marked with
the letters A through H, onto the eight circles shown; consecutive letters can’t be
adjacent.”

WOOOeE®O® = - ()

We're actually facing two challenges here, namely (i) solve the puzzle; and
(ii) express it as a constraint satisfaction problem, so that a computer can solve
it for us. We’ll tackle (ii), so as not to spoil the fun of (i). And we’ll allow
ourselves ten minutes, say, to accomplish goal (ii).

What are appropriate variables, domains, and constraints? We’d ()

R

better label the vertices of the graph, so that we can readily describe 9(9’,9'0

what we want to define. One approach, based on the labeling shown, is 75y
to have eight variables {1, 2, ...,23}, one for each vertex, each with domain
{A,B,...,H}. Then there are seventeen constraints, one for each edge of the
graph; for example, the constraint for edge 1 —2 is

x125 € {AC,AD,AE, AF,AG, AH, BD, BE, BF,BG,BH, CA, CE, CF, CG, CH, DA, DB, DF, DG, DH, EA,
EB,EC,EG,EH,FA,FB,FC,FD,FH,GA,GB,GC,GD, GE,HA, HB, HC, HD, HE, HF }, (12)

and the same relation is used for all of the other edges. It can be written much
more succinctly, if we assume that the letters are represented by integer codes:

|z1 — 22 > 1. (13)

OK, that took three minutes. Are we done? Well, no, actually; the seventeen
constraints we’ve specified do not obviously rule out the possibility that z; = zg.
We’re not allowed to put a disk on two different circles.

We could add eleven further constraints, namely x; # x; for each of the
yet-unconstrained pairs. But seasoned CSP solvers generally prefer to append a
single global constraint instead, involving all of the variables at once:

Ty, T, T3, T4, Ts, Tg, L7, g are all different. (14)

Indeed, special methods have been devised for the “all-different” constraint,
because it arises in so many different problems. With (14), we’ve satisfied (ii).
Five minutes to go. Is there a better way? Another possibility is to let the
variables be {A,B, ..., H}, one for each disk, each with domain {1,2,...,8}. Then
only seven constraints are needed, one for each pair of consecutive letters; e.g.,

AB € {16,17,18,23,27,28,32,35,36,38,46,53,61,63,64,67,71,72,76,81,82,83}. (15)

And each of these constraints has only 22 tuples, compared to 42 in (12). It’s a
win! Of course we also need the global all-different constraint. (See exercise 20.)

If we only had more time, we could have discovered a completely different
way to model problem (11) as a CSP, such as the approach in exercise 23.

January 13, 2024

hello world

crystal maze puzzle—
global

all-different

7.2.2.3 CONSTRAINT SATISFACTION: EXAMPLE APPLICATIONS 7

Automating automobiles. We’ve already seen dozens and dozens of significant car sequencing problem
examples of constraint-based problems when we studied exact covering and SAT. Efiﬁﬂzrks

But we certainly haven’t exhausted all of the major applications, and several Gent

problems on our yet-unexamined list have been historically associated with the XZELSC};OH

CSP. One of them, known as the car sequencing problem, is especially appropriate mirror images

for us to study next, not only because its initials are “CSP” but also because symmetry breaking

it is problem 001 in CSPLIB—a noteworthy collection of benchmarks that was
launched by I. P. Gent and T. Walsh in 1999 (see LNCS 1713 (1999), 480-481).

Consider the portion of an automobile assembly line where optional features
are being installed on newly made vehicles. Some of the cars will be made with
moonroofs; some will have heated seats; and so on. The assembly line is divided
into work areas, one for each special feature. Work area 7 has space for g; cars,
where ¢; is the number of time slots needed to install feature ¢ as the conveyor belt
moves the cars along. If at most p;/g; of the cars need that feature, p; installers
are on duty, one of whom will commence work when a car enters the area and
walk with it until the installation is done. The car sequencing problem is the
task of arranging a given set of cars into a sequence so that no subsequence of
q; consecutive cars will include more than p; that need feature i.

A B A B A C D C E F
60603690606 00693 0300636063
roofﬁ(—LED lightsj&premium audio—¢————heated seats————¢——sport

Fig. 100. Cars of models A, B, ... enter this assembly line at the far right, receiving
optional features when they’re in an appropriate work area. If this sequence has
specifications (16), the final car (F) will be delayed in the LED area, because three
cars in a row want that feature. The car sequencing problem tries to avoid such delays.

For example, there might be six models using the following subsets of five

features: Model A B C D E F vopi g
premium audio? [] L] [0 1 2
LED lights? [] [] 1 2 3 (16)
heated seats? O OO L] 21 3
moonroof? [] L] [] 3 2 5
sport suspension? [] [] [] [] L] 4 1 5

Suppose ten cars of models {A, A, A,B,B,C,C,D,E,F} are to be made. The se-
quence ABABACDCEF is almost correct, but it fails on the final car (see Fig.100).
Can you find a delay-free sequence? Notice that the left-right reflection of any so-
lution is also a solution; we can rule out mirror images by requiring that model F,
say, appears among the first five cars. Exercise 26 has the (unique) answer.
The car sequencing problem has boundary effects at the left and right that
make it somewhat unrealistic. (Industrial assembly lines don’t really start out
empty every day!) Still, it’s a nice clean problem, instructive to chew on.

January 13, 2024

8 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

One way to formulate the car sequencing problem in terms of variables,
domains, and constraints is to have one variable z; for every “time slot” in the
assembly line sequence. The domain of each x; is the set of model types, for
0 < i < t, where t is the total number of cars to be produced. We can also
introduce t inverse variables, one for each vehicle, telling which slot it occupies;
those variables have the domain {0,1,...,¢t — 1}.

Our example of the 10 cars in Fig. 100 and (16) would therefore have 10
variables {xo,...,x9} with the 6-element domain {A,...,F}, plus 10 variables
{ap,a1,as,bo,b1,co,c1,d,e, f} with the 10-element domain {0,...,9}. These
variables are related to each other by so-called “channelling constraints”: For
example, we can’t have a; = j unless x; = A; and in general the slot occupied
by each vehicle must have the corresponding model type. We also constrain
ap < a1 < az, bp < b1, and ¢y < c1, so that vehicles of the same type are properly
ordered in the overall sequence. (Notice that the number of ways to satisfy the
stated constraints between these 20 variables is exactly 10!/(3!2!2!111!11!) =
151200, which is the number of permutations of the multiset {A, A, A, B,B, C,C,
D,E,F}. We could cut that number in half by requiring f < 5; see exercise 27.)

We also need constraints to rule out bad situations, like the subsequence
r7rgrg = CEF that delays the lineup in Fig.100. For this purpose it’s convenient
to introduce Boolean variables f; for 0 < i < t and 0 < k < m, where m is the
number of optional features and f;;, = 1 if and only if the car in slot ¢ has fea-
ture k. There are channelling constraints between z; and f;i; for example, z; = B
implies that fiofi1 fiz fizfia = 10010. The assembly-line constraints are then

fit + farve + -+ flrge-ve <pk, for 0<i<t—gpand 0 <k <m. (17)

For example, z7xszrg = CEF causes fr1 fs1 for = 111, violating f71 + fs1 + fo1 < 2.

OK, it looks like we’re done. Given any car sequencing problem with ¢ cars
and m features, we’ve now defined ¢(2 + m) variables, and devised sufficient
constraints to characterize all the solutions. It turns out, however, that we could
actually find those solutions much faster by adding additional constraints: If ry,
is the total number of cars that will receive feature k, we must also have

fortfiet -+ fe—1g—1y)k > re—lpr, for 0 <1 <[ry/pg] and 0 <k <m. (18)

The reason is that the final lg; cars in the sequence cannot account for more
than [p;, of the total. (In our example, r; = 7; hence (18) gives fo; when [= 3;
the first car cannot therefore be of type B or D.) The constraints in (18) are
redundant, yet a computer might not be able to think of them, and they can
significantly reduce the size of the search tree. (See exercise 31.)

Of course the car sequencing problem can also be formulated as a CSP in
many other ways, which will suggest themselves as we gain further experience.

Historical notes: Successful experiments with the car sequencing problem
were first carried out by M. Dincbas, H. Simonis, and P. Van Hentenryck [ECAI
8 (1988), 290-295]. They were able to solve randomly generated problems with
t =200, m =5, (Po/qo,---,pa/qa) = (1/2,2/3,1/3,2/5,1/5), and with overall
utilization 7y, ~ .9tp/qk, by introducing the redundant constraints (18).

January 13, 2024

variables

domains

slot

inverse variables
channelling constraints
permutations of the multiset
multiset

Boolean variables
redundant

Historical notes
Dincbas

Simonis

Van Hentenryck

7.2.2.3 CONSTRAINT SATISFACTION: LINE LABELING 9

An international competition was held in 2005, based on actual industrial
data. It included additional constraints, such as the colors of paint to be used and
the initial contents of the assembly line, and it inspired many creative solutions.
[See C. Solnon, V. D. Cung, A. Nguyen, and C. Artigues, EJOR 191 (2008),
912-927.] The winning programs were based on local search methods analogous
to WalkSAT, using “greedy” heuristics.

Line labeling in computer vision. Speaking of history, let’s turn now to
some fascinating aspects of computer vision that influenced much of the early
work on constraint processing. When a camera photographs a scene, it makes
a two-dimensional image of three-dimensional reality; interesting problems arise
when we try to reconstruct the reality from the image.

We’ll work with an extremely simplified yet powerful model, as the original
researchers did: Our “reality” will be a world of special polyhedral objects, where
exactly three faces meet at each of the vertices. For example, an ordinary cube or
tetrahedron or 7 will qualify. But an octahedron will not, nor will an Egyptian-
style pyramid, nor @3, because a vertex where four faces meet isn’t allowed.
These three-faced concepts can be generalized, of course, but it’s helpful to start
with a thorough understanding of the comparatively simple trihedral world.

More precisely, the 3D objects we shall deal with have no curved surfaces.
They are defined by vertices, edges, and faces, where the vertices are “corners”
at which edges and faces come together. All of the faces are “flat,” meaning that
their points all lie on some plane. Each face is bounded by an exterior polygon,
possibly with one or more interior polygons delimiting “holes” in the face. Each
edge runs between two vertices and is part of the (infinite) line where the planes of
two adjacent faces meet; it’s a segment of the polygonal boundaries of those faces.
And significantly, each vertex is the endpoint of exactly three edges. We shall call
such an object a three-valent polyhedral object, or 3VP for short. (See Fig.101.)

Fig. 101. Examples of 3VPs (three-valent
polyhedra): (a) A stylized sphinx. [68 ver-
tices, 102 edges, 38 faces.] (b) The Szilassi
polyhedron, defined in exercise 39. Each of
its seven faces is adjacent to all of the other
six(!). [14 vertices, 21 edges, 7 faces.] (c) A
clasp formed from two identical, interlocked
objects, each of which is a tetrahedron from
which a large triangular wedge has been hol-
lowed out. [20 vertices, 30 edges, 14 faces.] (d)
(d) The histoscape for the matrix (13), as

defined in exercise 40. [20 vertices, 30 edges,

12 faces.] Many of the vertices, edges, and
faces of these examples are invisible because
they lie behind the parts that we can see.

The two-dimensional images shown here make sense to us, somehow, al-

though significant depth information has been lost. In some mysterious way

we’ve learned to rely on visual cues in order to understand what’s really present.

January 13, 2024

T

competition
contest
real-world data
Solnon

Cung

Nguyen
Artigues
WalkSAT
greedy
computer vision
vision
photographs
scene

faces
octahedron
pyramid
three-faced
trihedral world
3D objects
vertices

edges

faces

three-valent polyhedral object
Szilassi polyhedron

histoscape

10 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

(all of these 3D images are orthographic projections)

Fig. 102. If the objects in Fig. 101 were transparent, except for the edges, none of the
edges would have been hidden. Each edge is a segment of a straight line, on the bound-
ary between two adjacent faces. Exactly three of them meet at each vertex of a 3VP.

(b) % (©) f (d) ﬂ

Fig. 103. “The other sides” of the images in Fig. 101,
after rotation by 180°, reveal vertices, edges, and faces that were
previously invisible, while concealing many of the others. (Szilassi’s poly-

hedron (b) looks the same as before, because it has 180° rotational symmetry:
The horizontal face is symmetrical, but the other three were visible only from behind.)

What are those visual cues? Working independently, D. A. Huffman and
M. B. Clowes were able to decipher them successfully, in a pair of influential
papers that were published at almost the same time [Machine Intelligence 6
(1971), 295-323; Artificial Intelligence 2 (1971), 79-116]. Given a 2D image
that represents a 3VP X in a 3D scene, their first key idea was to classify each
line segment by giving it one of four labels, according to its context:

e a convez edge (+), where points between the adjacent faces belong to X;

e a concave edge (=), where points between adjacent faces aren’t part of X;

e a half edge (> or <), where only one of its adjacent faces can be seen.
(A half edge in the 2D image is actually a convex edge in X itself. But one of
the two faces joined by this edge is invisible, because that face lies behind what
we can see.) The label of a half edge is chosen so that the visible adjacent face
appears to our right as we walk toward the point of the arrow.

For example, Fig. 104 is a marked-up version of Fig. 101, with all lines
properly labeled. Convex edges are identified by tick marks, suggesting + signs.
Concave edges are shown as dashed lines, like the “valley folds” in standard
origami diagrams. The half edges are decorated with arrows in the proper
directions. Notice that the outer boundary in each case is a polygon that consists
entirely of half edges, traversed clockwise.

Let’s say that an HC picture is a list of distinct 2D points j = (z,y), called
“junctions,” together with lines j — j' between designated junctions, for which
(i) every junction has degree 2 or 3; (ii) two lines intersect only at junctions;

January 13, 2024

Huffman
Clowes
half edge
valley folds
origami
HC picture
junctions

7.2.2.3 CONSTRAINT SATISFACTION: LINE LABELING 11

(b) ()

Fig. 104. Convex (=), concave (---), and half edges (—).

(iii) the two lines at a junction of degree 2 aren’t collinear. Property (ii) means
that the associated graph is planar. Property (iii) means that we can “see” all
the junctions just by looking at the lines. (The “HC” in this definition stands
for Huffman and Clowes.)

Given any 3VP X, suppose we project its vertices v = (z,y,2) and edges
v — v orthographically onto the (x,y) plane, eliminating hidden points and
lines by assuming that (x,y, z) is in front of (z,y,z’) whenever z < z'. We shall
also assume that X is in general position, meaning that a slight rotation of X
won’t change the number of lines we see or the ways they relate to each other.
(This assumption rules out exceptional cases that might occur accidentally, but
with probability zero; exercise 57 has a formal definition.)

The resulting projection is always an HC picture, to which labels might be
attached. For example, Figs. 101 and 103 are HC pictures, and Fig. 104 is a
labeled HC picture. Every visible vertex of X appears as a junction in the HC
picture. Furthermore, additional junctions are often present at the left of half
edges, as artifacts of the projection process: We see them wherever an edge of X
is partly hidden, but they aren’t really intrinsic to X itself. (One such junction
is below the middle of Fig. 104(d); Fig. 104(c) has 15 of them.)

The junctions of an HC picture can be classified into four types, based on
their degrees and the angles between their neighboring lines:

Type T Type V Type W Type Y

B ol e,

o+ B = 180° 9 < 180° a+B<180° a,B,y < 180°

(Type T junctions are the artifacts of projection, mentioned above.)

And now we get to the punch line, noticed independently by Huffman and
Clowes: When the lines of an HC picture are labeled with + or - or > or <, in
order to distinguish between convex edges, concave edges, and half edges, only
a small number of cases are actually possible, for each type of junction. In fact,

e A T junction can be labeled in only four ways (not 43 = 64);
e A V junction can be labeled in only six ways (not 42 = 16);

e A W junction can be labeled in only three ways (not 43 = 64);
e A Y junction can be labeled in only five ways (not 43 = 64).

That’s part of the reason why we’re able to perceive depth rather easily.

January 13, 2024

planar

Huffman

Clowes
orthographically
general position
projection

12 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

Table 1
LEGAL LABELS FOR EACH JUNCTION TYPE

R o
N

Exercise 58 works out the complete list of possibilities, exhibited in Table 1.
And there’s also more good news, a second punch line: Every line appears in
two junctions, but has only one label; hence it’s constrained at both ends!

Let’s convert these geometric concepts to a purely combinatorial problem,
by abstracting away the coordinates and considering only the underlying graph.
We shall say that an HC network is a list of named junctions, where each junction
is either T'(l,m,r), V(,r), W(l,m,r), or Y(a,b,c); here I, m, r, a, b, and c are
the names of other junctions, and junction j' appears in the definition of j if and
only if j appears in the definition of j'.

For example, here’s the HC network that corresponds to Fig. 101(d):

a=V(b,c); k = W(i,1,n);
b =W(e,d,a); 1=Y(j,s,k);
¢ = W(a,d,m); m:Y(c,I; 05'
d=Y(b,g,c); n:T(k,H; pS'
e=Y(b,f,g); o = W (m,p,r); (20)
f =W(q,h,e); = ;

_ p=V(o,n);
g_W(d,eah)’ q:V(S f)
h=Y(f,j,2); rZV(O, S)y'
}:V(J:l?)’ s =W(r,1,q).
j=W(Q,i,h);

(Every HC picture has a unique HC network, except that the parameters of
Y junctions can be permuted cyclically. For example, we could have written
‘d =Y (g,c,b) or ‘d =Y(c,b,g) instead of ‘d = Y(b,g,c)’ in (20); and there
also are three equivalent ways to define each of the other Y junctions {e,h,1, m}.
But ‘d = Y'(b,c,g)’ would be incorrect, because it doesn’t match the HC picture.
The branches of a Y must be listed in clockwise order.)

Given an HC network, the line labeling problem is to classify each of the
lines between adjacent junctions as either convex (+), concave (=), or a properly

January 13, 2024

HC network
line labeling problem

7.2.2.3 CONSTRAINT SATISFACTION: LINE LABELING 13

oriented half edge (< or >), in such a way that every junction conforms to one of

the patterns in Table 1; a half edge ab that points from a to b is labeled >. This

is, of course, a constraint satisfaction problem: The variables are the lines; the

domains are the symbols {+, -, <,>}; and the constraints are given by Table 1.
For example, the line labeling problem for (20) has the 26 variables

{ab, ac, bd, be, cd, cm, dg, ef, eg, th, fq, gh, hj,
ij, ik, jl, k1, kn, Is, mn, mo, np, op, or, gs, rs} (21)
and the following 19 constraints:
(ab,ac) € {<+, <>, +>,>-,><, <};

(be, bd, ab) € {>+>, ~+-, +- +} (ik,kl, kn) € {<+<, —+=, +-+};
(ac,cd,cm) € {<+<, —+-, +- +}7 (31,15, Jd) € {<=>, =<, >>, oo, bt
(bd, g, cd) € {<->, << >>=, T gy (cm, mn, mo) € {<-<, -<>, >>= ——— +++};
(be,ef, eg) € {<-<,-<>,>>— ——— +++}; (kn,np) € {<<};
(f fh ef) c {>+> —4m 4 +} (IIIO op, O I‘) € {<+<7_+_7+_+}; (22)
& (0D, mp) € {>+,><, +<, <=, <>, =>};
(dg, eg, gh) € {<#<, —+=, +=+};
(ﬂl hj gh) e {< >, =<, >>-, ——= +++} (qs fq) € {<+)<<)+<7>_:>>)_>};
(1‘]7 ik) € {<+, <>, +>,>- ><, <} 7 (or,15) € {>+,>>, 4>, <, <<, ~<};
(i, lj,h‘]) € [>4>, 4= +} (rs,ls, gs) € {<+>, —+-, +-+}.

(Here ‘<+’ stands for the ordered pair (<, +); ‘>+>’ stands for (>,+,>); and so on.)

Notice that the constraint for junction b was not written ‘(be,bd,ba) €
{>+<,—+=,+=+}’, because ‘ba’ isn’t one of the variables: The line between junc-
tions b and a is represented by ‘ab’ in (21). We could have had 52 variables
{ab, ac,ba,bc, ..., sr} instead of 26, by introducing 26 further constraints such
as (ab,ba) € {++,--,<> ><}. But that would have wasted time and space.

Notice also that the constraint for junction n was not written ‘(kn, mn, np) €
{<#<,<=<,<<<,<><}’. The simpler and more direct statement in (22) is more
efficient, and in fact it’s the best way to understand the top row of Table 1.

The CSP in (22) is readily expressed as an XCC problem (see exercise 61),
and it turns out to have just four solutions. The labeled picture in Fig. 104(d)
represents the histoscape “floating in air”; the other three solutions

represent it “attached to the ground,” or “attached to a wall” at the left or back.

Every connected HC picture has a unique boundary cycle, consisting of the
junctions that touch the “outside” region, in clockwise order. For example, the
boundary cycle of (20) is (abefgsromc). A line labeling is called standard if every
line between consecutive junctions of the boundary cycle has been labeled as a
half edge pointing clockwise. That makes sense, because it means that the object
lies entirely inside the boundary — unattached to any unbounded background
environment. All four of the labelings in Fig. 104 are standard.

January 13, 2024

boundary cycle
standard

14 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

The sphinx of Fig. 101(a) has only two standard labelings, in spite of its
numerous junctions and lines. The other possibility, besides Fig. 104(a), simply
changes two of the labels so that the head isn’t necessarily attached to the body.

The Szilassi polyhedron, Fig. 101(b), likewise has exactly two standard
labelings. (See exercise 62.) But Fig. 101(c) is far more ambiguous: It has
256 standard labelings. Indeed, three of its lines are completely unconstrained,
because they’re the stems between two T junctions.

A surprising thing happens when we ask for all valid labelings of Fig. 101,
standard or not: The possibilities for the interior lines — the lines not between
adjacent junctions of the boundary cycle —remain the same! More precisely, the
number of ways to satisfy the constraints only at the boundary junctions turns
out to be (720, 3, 6, 4), for Figs.101(a), (b), (c), (d), respectively, while the total
number of valid labelings is (720-2, 3-2, 6-256, 4 - 1). In other words, all of the
consistent boundary labelings are mutually interchangeable; hence the boundary
can essentially be “factored out.” When this happens we say that the HC picture
has a free boundary. Not every picture has a free boundary, but exceptions seem
to be rare in practice. Exercises 6774 explore this curious phenomenon.

It’s not difficult to construct HC pictures that cannot be labeled. For
example, any picture that contains a subpicture of the forms

—>—_—(I1) or <__— (VIT) or —<__ (YIT) or ~—=—— (WIVI) (24)

will fail because each T junction forces two labels. Other impossible subpictures

<<—wn or =< wwn or (N wwn or < (WY (25)

involve only one T; and exercise 76 has a small T-less example. The Swedish
artist Oscar Reutersvird has devised many amusing unlabelable pictures such as

(26)

that fool our eyes when plausible side patterns are contradictory in the middle.

On the other hand, some HC pictures can be labeled perfectly, yet they
don’t correspond to any actual 3VP. Consider, for example, the pictures

A

or N (27)
A B ; B
which look locally right although they’re globally wrong. They “fail to compute”
because each of them has two plane regions (‘A’ and ‘B’) that intersect in two
different lines, contradicting a well-known principle of geometry.

A somewhat subtle distinction arises here, noted by Huffman in his original
paper of 1971: There are locally consistent pictures that are globally inconsistent

January 13, 2024

sphinx

Szilassi polyhedron
free boundary
Reutersvird
intersection of planes+
Huffman

7.2.2.3 CONSTRAINT SATISFACTION: LINE LABELING 15

by virtue of the two-planes-determine-one-line principle, such as

| -

yet certain globally consistent pictures have exactly the same HC networks:

l.’l{:\l | »

Let’s say that an HC picture H is strongly realizable if H is the projection
of at least one 3VP X in general position. It is weakly realizable if there’s an HC
picture H' with the same HC network as H for which H' is strongly realizable.
It is impossible if it’s not weakly realizable. Thus, the pictures in (29) are
strongly realizable; the pictures in (28) are weakly realizable; the picture in (26) is
impossible. (The picture in (26) is not only impossible, it can’t even be labeled.)

Huffman observed that a truncated tetrahedron gives another instructive
example: Consider

The left picture is strongly realizable, but the right picture is not! In this case
three planes are involved (‘A’, ‘B’, ‘C’); three of the lines show the intersections
of planes AB, BC, and CA. Those three planes always intersect in a single point,
ABC, because no two of them are parallel. The relevant lines at the left of (30)
do indeed share an invisible common point; but the lines at the right do not:

Thus we see that the notion of strong realizability is quite delicate—not at
all robust: A tiny rounding error in one of the (z,y) coordinates can change a
strongly realizable picture into one that can be realized only weakly.

The most famous impossible HC picture is probably the “Penrose triangle”

B

(31)

A

C

introduced by L. S. Penrose and R. Penrose in the British Journal of Psychology
49 (1958), 31-33. (Their version was slightly different: It was equilateral, and it
included a few spurious “crack” lines.) Huffman’s argument about nonconcurrent
lines AB, BC, CA proves that (31) isn’t even weakly realizable; and exercise 77
gives another proof of impossibility.

January 13, 2024

strongly realizable
weakly realizable
impossible

Huffman

truncated tetrahedron
rounding error
Penrose triangle
Penrose

Penrose

16 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

Oscar Reutersvird, who is now known as the “father” of impossible pictures,
discovered a paradoxical pattern akin to the Penrose triangle already in 1934:

This HC picture appears to be made of nine separate boxes that overlap in an
impossible fashion. Surprisingly, however, it actually turns out to be strongly
realizable! (See exercise 78.)

In fact, the theory of realizable objects is still far from complete, even when
restricted to the 3VP world, and many fascinating problems remain to be solved.

| plead guilty to the charge that | deal with pictures of impossible objects
because it is fun. It is, and that is reason enough.

However, in addition to this | believe that much can be learned in the study
of any language by asking ‘Is that a nonsense sentence?’

and ‘Why is that a nonsense sentence?’.

— D. A. HUFFMAN (1971)

Graph labeling. Let’s turn now to a completely different but equally fascinating
way to attach labels to the vertices and edges of a graph. Our new goal is to give
an identifying number to each vertex while simultaneously identifying each edge.
Counsider, for example, Fig. 105(a), which is a graph of the 13 colonies that
combined to form the original United States of America in 1776. Two vertices
are adjacent if the corresponding colonies have a common boundary. Figure
105(b) shows that each colony can be represented by a cleverly chosen number,
so that every edge is identified uniquely by the difference between the numbers
of its endpoints:
14-13=1 10-6=4 12-5=7 13-3=10 18-5=13 17-1=16
17-15=2 10-5=5 18-10=8 14-3=11 15-1=14 17-0=17. (33)
6—-3=3 18-12=6 17-8=9 12-0=12 15-0=15 18-0=18
Numberings with this property are called “graceful.” Formally speaking, if
G is a graph with m edges, a graceful labeling of G is a function that assigns an
integer I(v) to each vertex v, in the range 0 < [(v) < m, with the property that
no two vertices have the same value of [(v), and no two edges have the same value
of [l(v) — I(w)|. We say that [(v) is the label of vertex v, and |I(v) — l(w)] is the
label of edge v — w. Notice that |I(v) —(w)] is always positive, and it’s at most
|m—0| = m; therefore there’s exactly one edge labeled d, for each din {1,...,m}.
Every graceful labeling has a “complement,” obtained by setting [(v) < m—
I(v) for all v. (See Fig.105(c).) Complementation doesn’t change the label of any
edge. A labeling and its complement are considered to be essentially identical.

January 13, 2024

Reutersvird

fun

HUFFMAN
Graph labeling
graceful labeling
complement

CONSTRAINT SATISFACTION: GRACEFUL GRAPHS 17

symmetry
automorphism
permutation
13-colonies graph
essentially different
puzzle

sudoku

data structure
isolated vertices

Fig. 105. (a) A famous graph G, which has 13 vertices and 18 edges. (b) One of the
many graceful labelings of G. (c) The same labeling as (b), but complemented. (d) A
puzzle: Complete this labeling to make it graceful. (The solution is unique.)

Every symmetry of a graph also preserves gracefulness. In other words, if
a is an automorphism (a permutation of the vertices for which v — w implies
va—wa), and if [is a graceful labeling, then the labeling I'(v) = I(va) is also
graceful. For example, Fig. 105(a) is symmetrical if we swap GA <> SC; hence we
could also swap the labels 13 <> 14 in Fig. 105(b) and/or the labels 5 <+ 4 in
Fig.105(c). In this way every graceful labeling of the 13-colonies graph yields a
set of four labelings that are mutually equivalent. (See exercise 91.)

That graph actually has hundreds of thousands of graceful labelings: 641952
altogether! Dividing by 4 gives us 160488 that are essentially different. They can
be found quickly, using for example the XCC model of exercise 93. Each of the
18 edges can be the “longest,” namely the edge that’s labeled 18. That edge con-
nects NY to PA, as it does in Fig. 105(b, c), in 22782 of those 160488 solutions; and
it connects NY to MA in even more of them (24896). On the other hand only 24 of
the 160488 have the longest edge between GA and SC, as in Fig.105(d). (The latter
labeling has been left as a puzzle; it’s roughly as difficult as a “hard” sudoku.)

A nice data structure can be used to represent a gracefully labeled graph
inside a computer, using a few arrays of size m + 1. First, by including isolated
vertices if necessary, we can assume that the vertices are named 0, 1, ..., m,
and that I(v) = v for 0 < v < m. (In other words, a vertex’s label is also
its name.) Then, if edge d connects vertices v and v + d, we set LO[d] <« wv.
Consequently two arbitrary vertices v and w with v < w are adjacent if and only
if LO[w — v] = v. With three further arrays, FIRST, NEXTL, and NEXTH, we can
also visit all neighbors w of any given vertex v using a simple loop:

. NEXTL[v — w], if w <wv;
Set w < FIRST[v]. While w > 0, Setw{_{NEXTH[w—U], Fw> o (34)
For example, the arrays might look like this in the case of Fig.105(b):
=01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18
Lol =—1315 3 6 5125108 3 3 0 5 10100
FIRST[I]=1215-16 —-110 3 —117-1 6 —118 14 13 17 -1 15 12 (35)
NEXTL[l]=— 3 8 10 5 1810 0 5 1 -1-1-10 0 -10 —-1-1
NEXTH[l]=— 3 1 13-112 5 18 -1-114-115-117 17 -118 -1

NAME[/] =NY RI — NC — DE VA — NH — MD — NJ GA SC CT — MA PA

(The NAME array shown here gives an optional ezternal name for printouts.
Entries marked ‘—’ in these example arrays are unused.)

January 13, 2024

18 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

When a graph has at least one graceful labeling it’s called “graceful”; in
that sense, the 13-colonies graph can be considered quite graceful indeed. Not
all graphs are graceful, of course. For example, a disconnected graph with more
than m + 1 vertices can’t possibly be graceful; there aren’t enough labels to go

Cs

contiguous USA graph
USA graph
randomized algorithm
miracle

. . ™
around. And one can easily check that Cs, the 5-cycle, has no graceful labeling. Rokicki
The 13-colonies graph is merely an induced subgraph of a much larger
graph, which we’ve been exploring in lots of examples in previous sections. The
contiguous USA graph, introduced in 7—(17) and last seen in exercises 7.2.2.2-35
and 37, has 49 vertices and 107 edges. Could that graph possibly be graceful?
The answer is yes; and exercise 127 discusses a randomized algorithm that is
able to label it gracefully without a great deal of work. In fact, an inspired use of
that algorithm has revealed what can only be described as a graceful miracle: A
solution can actually be achieved by stipulating that the 15 states on the western
and northern borders, from California to Maine, should be labeled respectively
with the numbers 31, 41, 59, ..., 83, 27—the first 30 digits of «!! This has to
be seen to be believed (see Fig. 106).
Fig. 106. A graceful miracle,
found by Tomas G. Rokicki in October 2020.
98-86=12 33-0=24 02-56=36 G4—16=48 86—-26=60 98-26=72 05— 11=84 101—5=096
107-106=1 101-88=13 25-0=25 48—11=37 07—48=49 84—23=61 92—19=73 88—3=85 100—3=07
64—62=2 19-5-=14 90—64=26 62—24=38 83—33=50 78—16=62 83—9=74 86-0=86 101—3=08
107-104=3 41-26=15 53-26=27 97—58=39 56—5=51 66-3=63 82—-7=75 92—5=87 101—2=099
97—93=4 31-15=16 90—62=28 95—55=40 58—6=52 G66—2=064 05—19=76 103—15=88 106—6 =100
58—53=5 25-8=17 84-55=20 66—25=41 106—53=53 84—19=65 82—-5=77 96—7=89 107—6=101
101-95=6 59-41=18 92-62=30 48-6=42 82-28=54 90—24=66 103—25=78 95—5=00 104 —2 =102
16-9=7 101-82=10 64-33=31 62—19=43 64—9=55 08—31=67 104—25=79 97—6=91 103—0=103
96—88=8 1068 =20 55-23=132 55—11=44 83—27=56 92—24=68 106—26—80 100—8=92 104—0 =104
1M—2=9 28-7=21 59-26=233 93-48=45 98—41=57 78-9=69 88—7=81 95—2=03 107—2=105
41-31=10 84-62=22 100—66=34 48-2=46 6(6-8=58 93—23=70 03—11=82 101—7=94 106—0 =106
95-84=11 25-2=23 101-66=135 53—6=47 107T—48=59 86—15=71 98—15—83 103—8=95 107—0 =107

The problem of labeling a given graph G of size m gracefully can be formal-

ized as a CSP in many ways. For example, we can render the definition directly,
by saying that the variables of the CSP are the vertices and edges of G; the
domain of each vertex is {0, ..., m} and the domain of each edge is {1,...,m};
the constraints are that [(e) = |I(v)—I(w)| when e is the edge v — w; furthermore
the vertex labels should all be different and the edge labels should all be different.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: GRACEFUL GRAPHS 19

That direct model lets us solve small problems, of course. But experience
shows that it doesn’t scale up well. A much better method can be based on the
L0 and NAME arrays of the data structure in (35), where we take the attitude
that vertex and edge labels are already given; our job is to attach them to the
graph! More precisely, there’s a variable for each vertex label in {0, ..., m}; and
they all have the domain V' U {7}, meaning that each label I should be assigned
a NAME[/], which is either a vertex of G or undefined. The defined labels should
all be different. Furthermore, there’s a variable for each edge label in {1,...,m};
and its value LO[/] has the domain {0,...,m —[}. The constraint is that

NAME[LO[I]] —NAME[LO[/] +1] is an edge of G, for 1<l <m. (36)

Let’s call this the “reverse model.”

The reverse model has a big advantage, because LO[/] has a very small
domain when [is large. Indeed, LO[m] must be 0; and LO[m — 1] must be either
0 or 1. We can in fact assume that LO[m — 1] = 0, because complementation
changes LO[m — 1] to 1 — LO[m — 1]. (See exercise 94.)

For example, the reverse model makes it easy to discover all of the grace-
ful labelings when G is the complete graph K,. In this case there are m =
(%) edges; and the constraint (36) is satisfied if and only if NAME[LO[I1] and
NAME[LO[/] 4] are both defined, meaning that LO[l] and LO[I] + [are both
among the n “real” vertices that belong to K.

If n =1, we're done: K, is graceful, with vertex 0.

Otherwise m > 0 and LO[m] = 0. Hence 0 and m are real vertices, and
we’re done if n = 2.

Otherwise m > 1, and we may assume that LO[m — 1] = 0 as stated above.
That means m — 1 is also real. So if n = 3, we know that the three real vertices
are {0,2,3}; hence LO[2] = 0 and LO[1] = 2. That settles K.

If m > 2, edge m — 2 is always either 0— (m —2) or 1 — (m —1) or 2—m,
and each case gives us a new real vertex. Consequently the four vertices when
n = 4 are either {0,4, 5,6}, {0,1,5,6}, or {0,2,5,6}. Only the third alternative
allows us to define LO[3] without introducing a fifth real vertex. That settles Kjy.

Finally, if n > 4, we get stuck (see exercise 95). So we’ve discovered that
K, has a unique graceful labeling when n < 4, but K,, is ungraceful when n > 5.

The star graph K , is another instructive example. It consists of a central
vertex that’s joined to each of n other vertices; so it has lots of symmetry, like
K, but it has only m = n edges.

We might as well assume that n > 1, because K;,; = K,. So we know that
LO[n] = 0, and also LO[n — 1] = 0. But that means 0 must be the central
vertex, because no other vertex has more than one neighbor. Consequently
LO[n —2] =0, L0[n — 3] =0, and so on; K, , has a unique graceful labeling.

That was easy. But what happens if G is the path graph P,? A graceful
labeling of P, is called a graceful permutation, because P, has m = n — 1
edges, and the sequence pop; ...p,—1 of labels on the path is a permutation
of {0,1,...,n — 1}. The permutation pop; ...p,—1 is graceful if and only if

|po — p1|lp1 — p2| - .. [Pn—2 — Pn—1]| is a permutation of {1,...,n—1}. (37)

January 13, 2024

domain

reverse model
complementation
unitque graceful labeling
star graph

unique graceful labeling
path graph

graceful permutation

20 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

We know that P; has a unique graceful labeling, because P3 = K; ». That
fact can be confusing, because the six permutations pop1p2 of {0, 1,2} are

012, 021, 102, 120, 201, 210

and four of them satisty (37)! Everything becomes clear, however, once we realize
that the permutations pop; ...Pn—1, Pn—1...-P1Po, (n—1=pg)...(n—1—p,_1),
and (n—1—p,,—1) ... (n—1—pp) are considered to be essentially the same, because
each of them is obtainable from the others by reversal and complementation.
Similarly, the graceful labelings of P, and Ps reduce to 1203 and either 21304 or
30421, which each represent four permutations. There are four times as many
graceful permutations as there are ways to label P, gracefully, when n > 2.

Let’s take a look at FP5. We can assume that edges 5 and 4 will be 0 — 5
and 0 —4, which we can abbreviate to 05 and 04, respectively. Thus pop; .. .ps
will contain the substring 405 or 504, and we can assume that it’s 405. Edge 3
must be 03 or 14 or 25; but 03 is impossible because 0 already has two neighbors.
Two cases remain, 1405 and 4052. The tree of possibilities is, in fact,

[
(231405) (140532) (214053) (134052) (405213) (40523D)

as we choose edge 3, edge 2, then edge 1, leading to six solutions altogether.
Notice that this procedure chooses the values of LO[5], LO[4], LO[3], ...
sequentially. But it does not choose any values for the NAME array until the very
last step. For instance, at one point in (38) we know that 4052 and 13, or their
reflections, should be substrings of the final permutation; but we don’t commit
ourselves prematurely to exactly where those substrings will appear. Exercise 96
discusses a convenient data structure for dealing with such partial permutations.
The number of graceful permutations grows exponentially with n. For exam-
ple, Py can be labeled gracefully in 258,002,411,935,989,500 ways! Exercise 97
explains how a ZDD with fewer than 25 million nodes can represent them all.

Some dazzling patterns arise when we consider “KP graphs” of the form
K,,0P,, which consist of r > 1 cliques in a row, each of size n > 2. For example,
here are two of the many graceful labelings of K40 Pyg and K5O Pr:

10 56 99 0 100 13 93
3366 7 77 12 87 59
8195 1 41 3 94 8 [. (39)
8 2 97 15 70 26 71
89 6 79 52 69 45 24

Each of the 10 columns on the left has six differences; in the first column they are
{|0—1|,]0 —91],|0 — 95],]1 — 91],|1 — 95|, |91 — 95|} = {1,91,95,90,94,4}. And
each row also has nine differences between adjacent columns; in the first row they
are {|0 — 961,196 —4],...,|22 — 84|} = {96,92,89,88,85,79,77,66,62}. Those
60+ 36 differences are all distinct! And so are the 70+ 30 differences on the right!!

0 96 4 93 5 90 11 88 22 84
1 3 136589 14 62 25 81 58 |
91 9 87 7 77 50 18 72 51 69 |’
95 28 73 12 55 17 82 33 68 27

January 13, 2024

unique graceful labeling
reversal
complementation

data structure

ZDD

KP graphs

cliques

7.2.2.3 CONSTRAINT SATISFACTION: GRACEFUL GRAPHS 21

In general K, O P, has rn vertices and m = r(}) + (r — 1)n edges; that’s
exactly n? edges when r = 2. It has 2n! symmetries (aka automorphisms),
because we can permute the rows of the matrix and/or reflect it left <> right.

Every graceful labeling of a KP graph can be represented as an n x r matrix
(x5), for 1 < i <nand 1 < j <r, asin (39). When complementation is
taken into acount, every suitable matrix is therefore equivalent to a set of 4n!
such solutions. The usual way to break this symmetry, in order to generate only
inequivalent solutions, is to add additional constraints so that the matrix is in
a “canonical form.” For example, we can insist as above that 0 is adjacent to
m—1, or that 0 and m—1 occupy the same column, and also that

T < X21 < < Tpt; T11 < Tip- (40)

(See exercise 100.) The matrices in (39) are canonical in this sense. Constraints
like (40), which significantly prune the search tree, are supposedly helpful.

But in this case a far more efficient approach is possible, based on the label-
oriented philosophy suggested by the reverse model and exemplified by the way
we’ve already handled K, and P,. Figure 107 illustrates the smallest KP graph:

|

LT

3
00O ©

—

l

[ms%Hmsmh
R N e R B

Fig.107. The
search tree for
all graceful label-
ings of K30 P».
“Edges” labeled
9,...,9—1 have
been specified in

59 39 79 09 all possible ways
70 80 80 84
28 47 14 17 at level [+ 1.

This problem has four solutions, which appear at the bottom of the tree (level 9).
The key idea here is that we construct a “home-grown” canonical representation
on the fly, by filling the 3 x 2 matrix with the labels of vertices that we’ve chosen
to be the endpoints of edges m, m — 1, m — 2, Sometimes the placement of
a single new vertex will create more than one necessary edge (see exercise 101).

January 13, 2024

symmetries
automorphisms
complementation
break this symmetry
canonical form

22 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

Search trees analogous to Fig. 107 can be constructed for all n > 2, and proof, computer-generated
it turns out that the trees for n = 3, 4, 5, ... have respectively 49, 446, 2094, %rgqg‘;‘r‘;gficeful labeling
5545, 8103, 8825, 8907, 8910, 8910, 8910, 8910, ... nodes. Also, the number of wraparound edges
solutions for those n turns out to be respectively 4, 15, 1, 0, 0, 0,0, 0,0, 0,0, %?)Zi;l{

Hmmm —guess what? The algorithm runs through precisely the same cycle graphs
calculations for all n > 10, except that the number m of edges keeps getting larger 82

and larger. It never is able to get past row 10 of its partially filled matrix. This
amounts to a computer-generated proof that the graphs K, 0 P, are ungraceful
for all n > 5. (See exercise 103.) Furthermore, the maximum running time over
all n, which is also the time needed to generate that proof, is only 1.6 megamems.

Of course the graphs K,, 0 P; can be analyzed too, by filling n x 3 matrices
in a similar way. The calculations are harder, yet the running time is still quite
reasonable: Only (700 Ku, 80 Mu, 3.6 Gu, 60 Gu, 360 Gu) are needed for n = (3,
4, 5, 6, 7) to show that they have respectively (284, 704, 101, 1, 0) graceful
labelings. Furthermore, 1.9 Ty suffice to prove that K,,0P; is ungraceful for all
n > 6, by constructing a tree of 5,463,149,994 nodes.

Fig.108. Some 0 56 1 0 78 4 76
graceful gems: The g ;;L 5 36 9 16 37 67 25 g (1;525 669 (1;3 ;g
unique labelings of 7 19 12 6 52 40 69 17 53 41 70 23 59 20
K50 P; and K¢ O Ps. 33 55 26 62 3 72 70

21 11 73 9 43 24 51
Also a (less rare) 95 9 44 2 49 73 2 60 6 74 2 71 14 8
Ke¢O Py and K500C5. 57 20 11 77 51 7 45

There’s another intriguing family of graphs, the “KC graphs” K, o, for
n > 2 and r > 2, which add wraparound edges to the KP graphs. These graphs
have even more symmetry: Every vertex has degree n+1, so there are rn vertices
and m = r(n+1)n/2 edges. An example appears at the right of Fig. 108, where
one can check that the 50 column differences |z;; — 21;| together with the 25 row
differences |zi; — ;((j—1) moa r)| are precisely {1,2,...,75}.

A new phenomenon now appears. Experiments show that K3 o C, is un-
graceful whenever r is odd; yet the number of graceful labelings for the even
values r = 4, 6, ... grows very rapidly: 3809, 41928684, There’s a very
simple mathematical reason for failure in the odd-r case:

Lemma O. In any graceful labeling of a graph with 4k + 1 or 4k + 2 edges, the
number of vertices with an odd degree and an odd label is always odd.

Proof. We have Zu_v|l(u) —l(v)| =142+ +m= (mg'l) when there are m
edges; and a given vertex v appears exactly deg(v) times in this sum. Working
modulo 2, we also have |l(u) - l(v)| = l(u) +l(v). Therefore) deg(v)l(v) =
(m2+1) But (mgrl) =lwhenm=4k+1lorm=4k+2. 1

Corollary E (J. Bosak). If all vertices of a graceful graph have even degree,
the graph has 4k or 4k + 3 edges for some integer k. |

In particular, K5 0C, is ungraceful when r is odd, because it has 6r edges.
Furthermore, the simple cycle graphs C5, Cs, Cy, C19, C13, ... can’t be graceful.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: GRACEFUL GRAPHS 23

The reverse model tells us another basic fact about gracefulness in general:
Theorem S. There are exactly m! graceful labelings with m edges.

Proof. There are exactly k+1 ways to make 0 < LO[m—k] < k,for 0 < k< m. |

More precisely, if we insist that LO[m — 1] = 0 in order to rule out comple-
mentary solutions, there are exactly m!/2 essentially distinct graceful labelings
with m edges, for all m > 2. [D. A. Sheppard, Discr. Math. 15 (1976), 379-388.]

Here, for example, are the 4!/2 = 12 labelings when m = 4:

0000 0001 0002 0003 0010 0011 0012 0013 0020 0021 0022 0023
o o Lo o I Ip U o Lo do Lo ¢o
® O ®© ©20) ® O ©fO)] ©f0) ©20) O ®w® ®® E® ®®

Each instance is accompanied by its four-digit LO string, LO[4]L0[31L0[2]L0[1].
There are m + 1 vertices in general, namely {0, 1,...,m}; but some of them may
be isolated —not participating in any edge. We can think of each isolated vertex
in two ways: It’s either present in the graph, representing its label; or it’s absent,
representing an unused label.

One of the nice things about this listing of m!/2 labelings is that symmetry
is automatically handled as it should be. A highly symmetrical graph will appear
only as often as it has truly distinct labelings, because labelings that differ only
because of an automorphism are seen just once. For example, we observed earlier
that K 4 has a unique graceful labeling, while P5 has two; sure enough, we obtain
K 4 only in case 0000, but Ps in cases 0011 and 0021. Notice that C, also has
a unique labeling (case 0022). The tree <, which is often called the “fork,”
has three distinct labelings (cases 0001, 0012, 0020). The “paw” -, otherwise
known as K; — (K; @ K»), has the most (cases 0002, 0003, 0010, 0013, 0023).

We can see gracefulness in action by looking at all m!/2 cases, when m
isn’t too large, and we’re immediately faced with a host of interesting unsolved
questions: How many of those cases yield graphs that are connected? planar?
bipartite? triangle-free? When we omit the isolated vertices, how many of the
resulting graphs are connected? cubic? And so on. (See exercises 116-122.)

In particular, how many of those graceful labelings yield a free tree on the
vertices {0,1,...,m}? Equivalently, how many of those m!/2 sets of m edges
have no cycles? In such cases no vertex is isolated. (See Theorem 2.3.4.1A.) The
free trees shown above when m = 4 are 0000, 0001, 0011, 0012, 0020, and 0021.

Experimentation now reveals a striking phenomenon: The number of grace-
ful labelings of free trees grows superexponentially, as m increases, while the
number of free trees grows only exponentially. (There are nice ways to compute
both numbers, without explicitly generating labelings or trees; see exercise 130
and 2.3.4.4—(g). Furthermore, according to R. Otter in Annals of Mathematics
(2) 49 (1948), 583-599, the number of free trees with n vertices is propor-
tional to a”/n®/?, where a ~ 2.955765.) For example, when m = 30, there
are 902,745,276,529,593,126,158,482,120 essentially different labelings, but only
40,330,829,030 free trees with 31 vertices. That’s an average of more than 2 x 10%°
labelings per tree!

January 13, 2024

Sheppard

isolated vertex
symmetry

unique graceful labeling
fork

paw

free tree
superexponentially
Otter

24 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

Anton Kotzig conjectured in 1965 that every tree is graceful, and his con-
jecture soon became famous, even infamous —because nobody could figure out
how to prove it, yet all other questions about trees have generally been fairly
easy to resolve. Indeed, there are hundreds of people for whom the initials GTC
now mean only one thing: Not Green Templeton College, not Girls’ Training
Corps, not GPU Technology Conference, but Graceful Tree Conjecture.

The GTC is almost certainly true. For example, Alexander Rosa, who
invented the concept of graceful graphs while completing his dissertation under
Kotzig’s direction, proved it already in 1965 for all trees of at most 16 vertices,
and for many infinite families of trees. A careful study of the case m = 16 by
David Anick [Discrete Applied Mathematics 198 (2016), 65-81] showed that only
a handful of the 48629 free trees with 17 vertices have fewer than 50 labelings; and
those few turned out to be obviously graceful, because they all are “caterpillars”
(see exercise 145) except for this one of diameter 4:

. (41)

At the other extreme, the champion tree has 10,399,350 different labelings. Here
it is, with each edge showing the number of times it can be the edge of length 16:

321336 353690
.~ e 767530 s1s7es 41053
86047 537012 1948518 1926341 785907 (42)
1299404 1328781 183052 155394

49736 299785

(Long edges seem to prefer vertices of high degree.) Anick’s analysis suggests
strongly that all trees of larger sizes will also be easy to label.

*Graceful digraphs. There’s also a nice way to define the concept of a graceful
directed graph. Suppose D is a simple, loopfree digraph with m arcs. As before
we want to assign distinct integers [(v) to its vertices, with 0 < I(v) < m.
But now we say that each directed arc v — w implicitly receives the label
(I(w) —1(v)) mod (m+1), respecting the orientation of the arc; and D is graceful
if those arc labels are distinct. It follows that gracefulness gives us exactly one
arc labeled k, for each k between 1 and m.

For example, Fig. 109 shows a digraph that represents set inclusion in a 3-
element universe, together with several of its graceful labelings. We can check
labeling (b) for gracefulness, just as we did in (33) for the undirected graph in
Fig. 105, but this time using the operator y © ¢ = (y —) mod 13:

160=1 906=3 803=5 700=7 307=9 406=11 (43)
301=2 804=4 600=6 961=8 467=10 809=12" 43

January 13, 2024

Kotzig

GTC

Rosa

Anick
caterpillars
diameter 4
Graceful digraphs
digraphs, graceful
set inclusion
Boolean lattice

7.2.2.3 CONSTRAINT SATISFACTION: GRACEFUL DIGRAPHS 25

Fig. 109. This directed graph (a) can be gracefully labeled in many ways, some of
which are readily derivable from each other. For example, (c) arises from (b) when
every vertex label is doubled, modulo 13. (We work mod 13 in this digraph because it
has 12 arcs.) Can you see how (d), (e), and (f) were obtained from the others?

Let ¢ = m + 1. Cyclic labels mod ¢ are much more versatile mathematically
than the absolute-difference labels that we considered before, because (for exam-
ple) we can add a constant to every vertex label without changing the implied
label of any arc. This means we can arbitrarily choose any vertex v and look
only for labelings with I(v) = 0, when we’re trying to decide whether or not a
given digraph is graceful. Any graceful labeling with I(v) = b yields one with
[(v) = 0 after b is subtracted from each label.

Furthermore, when ¢ is a prime number as it is in Fig. 109, we can arbitrarily
choose any two vertices v and w, and look only for labelings with /(v) = 0 and
[(w) = 1: Given any labeling with [(v) = 0, we can multiply all the vertex labels
by the number a for which a - I(w) = 1 (modulo q). This operation preserves
gracefulness, because it implicitly multiplies every arc label by a (modulo ¢). For
example, multiplying Fig. 109(b) by 2 changes the label of vertex 100 from 7 to 1.

Symmetries of the digraph give us yet another way to derive one labeling
from another, just as the symmetry GA <> SC did in Fig. 105. For example,
labeling (d) arises from (c) when the label currently assigned to vertex z;wzsas
is moved to vertex wowswy, for each binary vector zizows.

Digraphs also bring a new notion into the picture, because they can have
antiautomorphisms (antisymmetries), which are permutations a of the vertices
for which v — w implies va +— wa. In general, every digraph D has a con-
verse DT whose arcs all go the other way. A digraph is self-converse if and only if
it has an antiautomorphism. For example, the mapping z1z2x30 = T1T2T3 is an
antiautomorphism of the digraph in Fig. 109; hence the labeling in (e), obtained
from (d) when each [(v) is replaced by [(va), gracefully negates each arc label.

Two labelings of a digraph are regarded as essentially the same if we can get
one from the other by (i) subtracting b mod g, or (ii) multiplying by a mod ¢ when
a is relatively prime to g, or (iii) using an automorphism or antiautomorphism
to permute the vertex labels, or (iv) using any combination of transformations
(1), (ii), (iii). In this sense, 156 different labelings are essentially equivalent to
Fig. 109(b) —including Fig. 109(f). (See exercises 156 and 157.)

Exercise 160 explains how to find all graceful labelings of a given digraph D,
by finding representatives of each of its equivalence classes. The first step is to
solve an appropriate CSP, using methods adapted from those that work for
undirected graphs. Some instructive case studies appear in exercises 161 and 168.

January 13, 2024

Symmetries
antiautomorphisms
antisymmetries
self-converse

26 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

We saw above in (35) that any graceful graph can be represented conve-
niently within a computer by a set of five compact arrays. Directed graphs turn
out to be even more attractive in this respect, because only four arrays suffice;
a single array NEXT replaces the former NEXTL and NEXTH. For example, here’s a
compact representation of Fig.109(a) that corresponds to Fig. 109(b):

=0 1 2 3 4 5 6 7 8 9 10 11 12

wigl]=— 0 1 6 4 3 0 0 1 7 7 6 9
FIRST[l]=7 9 -1 8 8 -1 4 4 -1 8 -1 -1 -1 (44)
NEXTH]=— -1 -1 -1-1-11 6 3 -1 3 9 -1
NAME[l] = o000 001 — 101 110 — 010 100 111 011 — — —

As before, the general idea is to include isolated vertices if necessary so that the
vertices of the graceful digraph D are {0,1,...,m}, the same as their labels. The
NAME array connects these internal numbers with D’s external representation, if
those vertex names are needed for communication with users.

The LO array is crucial. For 1 <[< m, we have LO[I] = v if and only if
the arc labeled [goes from v to (v 4+ [) mod ¢, where ¢ = m + 1. Consequently
it’s easy to test whether or not v — w is an arc of D, given v and w, by
inspecting a single element of the LO array: That arc is present if and only if
LO[(w — v) mod q] = v.

The FIRST and NEXT arrays are set up so that we can easily visit every
successor of a given vertex v, using the following efficient algorithm:

Set w < FIRST[v];

while w > 0, visit w, then set w « NEXT[(w — v) mod ¢]. (45)

Exercise 164 explains one way to derive FIRST and NEXT from LO.

Every array LO with 0 < LO[] < m for 1 < [< m defines a graceful
digraph with m arcs on the vertices {0, ..., m}. Thus the total number of m-arc
graceful labelings is exactly (m + 1)™. That’s much larger than the m! graceful
labelings with m edges (see Theorem S); exercise 172 shows, however, that we
can decrease it by a factor of approximately 2m? when equivalent labelings are
lumped together. Thus the complete set of graceful digraphs can be explored
without difficulty when m isn’t too large.

Digraphs often do turn out to be graceful; for example, 844161 of the 1540944
nonisomorphic digraphs on six vertices can be labeled successfully. But of course
there are many exceptions —including half of the “most basic” ones:

Theorem H. The oriented path P, and the oriented cycle Cy are both graceful
when n is even, but they’re both ungraceful when n is odd.

Proof. The arcs are vg — vy — -+ — Uy, where m =n — 1 for P, and m =n
(and vy, = vo) for Cy;. Suitable labels exist when n is even (see exercise 175).

But there’s an unsurmountable problem when n is odd, because the sum
(modulo g) of all arc labels, (I(vy) —I(vo)) mod g+ - - -+ (I(vsm) — (V1)) mod g,
is congruent to /(v,,) — {(vg). This sum should not be congruent to zero in the
case of the path, but it should be congruent to zero in the cycle.

January 13, 2024

data structures
digraph representation
compact representation

7.2.2.3 CONSTRAINT SATISFACTION: GRACEFUL DIGRAPHS 27

In a graceful digraph the sum of all the arc labels must be 1 +2 + -+ - +m,
which is ¢(¢ — 1)/2. Hence it’s congruent to 0 when ¢ is odd, and it’s an odd
multiple of ¢/2 when ¢ is even. Contradiction. |

An undirected graph is called digraceful if there’s at least one way to convert
it to a graceful digraph by orienting each of its edges. There are 2™ possible
orientations of m edges, so this gives us lots of flexibility.

A graceful graph is obviously digraceful as well, because we can orient each
edge towards its endpoint whose label is largest. Furthermore, the ungraceful
graphs Cy, 1o are digraceful, because Cjy,42 is graceful by Theorem H. On the
other hand, exercise 182 proves that the graphs Cy,4+1 are not digraceful.

Is the complete graph K, digraceful? This is probably the most interesting
unsolved question about digracefulness, because every orientation of K, is called
a tournament. Graceful tournaments have been studied in other disguises, and
they are known to exist for n =1, 2, 3, 4, 5, and 9. (See exercise 185.)

There is, however, a much nicer and more natural way to regard an undi-
rected graph G as a digraph, namely to treat it as the symmetric digraph G,
in which every edge u — v has been replaced by two arcs u — v and v — u.
Indeed, as discussed just before 7—(26), G and G* have essentially the same
properties, so we represent them both in the same way inside a computer.

If G has m edges, G* has 2m arcs. Thus the vertex labels of G should
be chosen modulo ¢ = 2m + 1. The labels of v — v and v — u are then
negatives of each other, modulo ¢; and there are just m possibilities, namely
{£1,£2,...,£m}. Consequently we define the label of edge u—wv in G* to be

dr (I(u),1(v)) = min(({(v) —(v)) mod g, (I(v) — I(u)) mod q)
min(|l(u)—l(v)|,q—|l(u)—l(v)|). (46)

(This is the Lee distance between the points I(u) and I(v) on a g-cycle; see
exercise 7.2.1.1-18.) And now a pleasant thing happens: When we draw Ka,,,41
with its vertices in a circle, it has exactly 2m + 1 edges of Lee distance 1, exactly
2m + 1 edges of Lee distance 2, ..., and exactly 2m + 1 edges of Lee distance m.
Therefore if G is a graceful digraph with m edges, we can pack 2m + 1 copies
of G perfectly into Koy,11. (Figure 110 illustrates the case m = 5.)

]

ISR

D 2

A DA ALY

[> “g"}.>‘.
AN

AN

i
N

DS
%
(X
£
V4

o

NN
NS

N

o
n
[\

<

7

]

(a) (b)
Fig. 110. K, has eleven edges of distance 1, ..., and eleven of distance 5. A 5-cycle
can be drawn with one edge of each distance. Hence eleven 5-cycles exactly cover Ki;.
“Eleven people can form eleven rings of five, where everybody meets everybody else.”

January 13, 2024

digraceful
orientations
tournament
symmetric digraph

representation of graphs and digraphs

Lee distance

28 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

Let’s say that a graph G with m edges is rainbow graceful if the correspond-
ing digraph G* is graceful. This means that we can assign a label [(v) to each
vertex v, with —m < I(v) < m, in such a way that the edge labels dr (I(u),(v))
defined in (46) are distinct for all m edges u—uw.

A graceful graph is automatically rainbow graceful, because d, (I(u),l(v)) =
|l(u) - l(v)| when [(u) and I(v) are nonnegative. Furthermore Fig.110(b) shows
that C5 is rainbow graceful, although it is neither graceful nor digraceful. In
fact —see exercise 190 —there’s an astonishingly simple way to prove that every
cycle C), is rainbow graceful, for n > 3, because of the elegant labeling

(k) = (_1)k+[2k<”]k, for1 <k <mn. (47)

A great many graphs are in fact known to be rainbow graceful, and more
are being discovered every day. For example, according to the systematic study
in exercise 193, every graph on at most 6 vertices is rainbow graceful, except for
K \ K> (the 14-edge graph obtained by deleting one of the edges of Kg).

We’ve seen that graphs with lots of edges are often impossible to label
gracefully, because so many labels have to avoid interfering with each other.
Yet rainbow labeling is different, because the complete graphs K; and Kg—
which have the mazimum number of edges—do turn out to be labelable! In
fact, exercise 197 shows that K, is rainbow graceful whenever n is prime or
a power of a prime. It’s remarkable, but true, that Kg, K9, K19, and K5 are
rainbow graceful. (On the other hand, K7, K1, and K3 are not.)

The first major steps towards proving the Graceful Tree Conjecture were
taken by R. Montgomery, A. Pokrovskiy, and B. Sudakov, who developed new
methods in order to prove an asymptotic form of a weaker conjecture:

Theorem M. All sufficiently large trees are rainbow graceful.

Proof. See Geometric and Functional Analysis 31 (2021), 663-720. |

Numerous unresolved questions about gracefulness remain under active in-
vestigation, because the number of interesting graphs and digraphs is essentially
boundless. Joseph A. Gallian has been actively maintaining a dynamic survey
of what is currently known. His annual reports [Electronic Journal of Combina-
torics, #DS6] began in 1998 with a 46-page review containing 306 references; its
23rd edition (2020) had 553 pages (with an 18-page index) and 2922 references.

Graph embedding. Graph G is said* to be embedded in graph H if it is
isomorphic to a subgraph of H. Informally, this means that H contains a “copy”
of G. Formally, it means that there’s a function f from the vertices of G to the
vertices of H such that two conditions are satisfied:

i) if v # w then f(v) # f(w);

ii) if v—w in G then f(v) — f(w) in H.
When that happens, we say that “H contains GG,” and the set of all vertices
{f(v) | v is a vertex of G} is called the image of G in H.

* People also talk about a graph “embedded in a surface”; that’s an entirely different topic.

January 13, 2024

rainbow graceful
Graceful Tree Conjecture
Montgomery

Pokrovskiy

Sudakov

Gallian

embedding

subgraph

image

7.2.2.3 CONSTRAINT SATISFACTION: SUBGRAPH ISOMORPHISM 29

Embeddings actually come in three flavors. An ordinary vanilla-flavored
embedding simply satisfies (i) and (ii); but a stronger version, called a strict
embedding, also satisfies a third condition:

ili) if v—w in G then f(v) -+ f(w) in H.

Stronger yet is an isometric embedding, which satisfies even more:

iv) dg(v,w) = dg(f(v), f(w)), where d denotes the shortest distance.
Notice that condition (iv) by itself implies (i), (ii), and (iii).

For example, suppose G is the five-cycle C5, and suppose H is WORDS(1000),
the Stanford GraphBase graph that represents the thousand most common five-
letter words of English. One of the zillions of five-cycles in H is

share — spare — stare— store — shore — share. (48)

Formally we could say that the vertices of G are {0, 1,2, 3,4}, and that G’s edges
are v — ((v 4+ 1) mod 5) for 0 < v < 5; then f(0) = share, ..., f(4) = shore.
But such formalities are needlessly complicated when we’re talking about graphs
as simple as Cj; the embedding is immediately clear just from (48).

Example (48) is not a strict embedding of Cj, because we have share —
stare in H but 0 - 2 in G. We could in fact have come up with a five-cycle
such as

share — shape — shade — shake — shame — share, (49)

in which all five words are mutually adjacent in H; but that seems like cheating,
because any graph is trivially isomorphic to a subgraph of a complete graph.
(This graph WORDS(1000) actually contains the 8-clique {right, might, night,
light, sight, fight, tight, eight}; hence it contains a copy of every G with
up to eight vertices!) The essence of a five-cycle is present in (48), at least
partly, but it has been drowned out in (49). A strict embedding retains the full
structure, because (ii) and (iii) say that G appears as an induced subgraph of H.
There’s no way to embed Cj strictly into WORDS(1000), because WORDS(1000)
is a subgraph of Kys0 Ko 0 Ko O Kog0 Kog; and that graph has no induced C
(see exercise 207(f)). Thus a weak embedding like (48) is the best we can get.
Surprisingly, however, there is a strict embedding of the next odd cycle, C7:

likes — lakes — cakes — caves
—waves —wives — lives — likes. (50)
This one even turns out to be isometric, in the target graph WORDS(1000).
But — surprise, surprise— the induced cycle (50) is not isometric in the
larger graph WORDS(5757) —because that graph contains the somewhat unusual
word laves. The distance from lakes to waves in the larger graph is therefore 2,

not 3; and the same is true for the distance from caves to lives.
Notice that if we add the word laves to (50), we get an isometric embedding

of the graph
%

into K26 DK26 EIK26 EIK26 EIK26.

January 13, 2024

strict embedding

isometric embedding
shortest distance
WORDS(1000)

Stanford GraphBase
five-letter words

clique

snake path: an induced path
induced

Cartesian product of graphs

30 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

Evidently isometric embeddings are somewhat tricky. Some of their basic
properties are explored in exercises 208-216, but we shall concentrate on embed-
dings of the other two kinds.

Given a pattern graph G and a target graph H, the problem of visiting
all embeddings of the pattern in the target is called the subgraph isomorphism
problem (SIP), and the problem of visiting all of the strict embeddings is called
the induced subgraph isomorphism problem (ISIP). These should be distinguished
from the graph isomorphism problem (GIP), which is to test whether or not G
and H are essentially the same. The GIP is obviously equivalent to testing SIP
or ISIP in both directions; but it’s much simpler, and it can be attacked by many
methods that don’t work for the SIP or ISIP. We'll study the GIP in Section 7.2.3.

Let’s write G C H if the SIP for pattern G and target H is solvable, and
G C H if the ISIP is solvable. (This is a slight abuse of notation; the relation
G C H really means that G = H' for some H' C H, and G C H really means
that G = H | U for some vertices U of H. But we think of the embedded graph
as actually present inside its host.)

The SIP is easily seen to be a CSP, with variables, domains, and constraints:
The variables are the vertices of G, the domains are the vertices of H, and
the constraints are conditions (i) and (ii). Indeed, we’ve already noted this
characterization of embedding in (6) above. The SIP is, in essence, the CSP
that’s constrained to be a homomorphism of a given binary relation, together
with the all-different constraint.

To fix the ideas, it will be helpful to consider an “organic” example. Fig-
ure 111 shows the principal interconnections of a typical human brain, together
with two of the subgraphs obtained when only the strongest links are considered.*

Clearly BRAIN83(250) is embedded in BRAIN83; but a moment’s thought
shows that it would be pointless to use a subgraph-isomorphism test to verify
that fact: The big graph is so rich and twisted, almost any not-too-big graph can
probably be found within it, in zillions of ways. The interesting question is rather
whether a smaller graph with nice structure can be found within BRAIN83(250).

Consider, for example, the attractive 4-regular graph called Chvatal’s graph.
We looked at it long ago in Figure 2(f), near the beginning of Chapter 7; here it
is again, with convenient names given to the vertices:

Can this graph be embedded in the somewhat sparse graph BRAIN83(250)7

* See https://cs.stanford.edu/ knuth/brain83.html for complete details about this
graph, which was constructed from data compiled and simplified by Alain Goriely.

January 13, 2024

subgraph isomorphism problem

induced subgraph isomorphism problem
ISIP

graph isomorphism problem
GIP

CSp

homomorphism

all-different constraint

brain graph

connectome, see brain graph
Goriely

internet

BRAIN83+

4-regular graph

Chvdétal’s graph

7.2.2.3 CONSTRAINT SATISFACTION: SUBGRAPH ISOMORPHISM 31

(@ > 1
N2 I 7 S ﬂf) 2\
G N ORIR S oL Sty e N
Ha\TH “;"7‘%«9 HeNP— 5 o
VAWAY SN S\ AWA)
\%.-@ By~ I DR (== s gV D2
B AR ST
oy Goxs
,/74 it
9| </
BRAIN83, 1654 edges BRAIN83(250), 170 edges BRAIN83(300), 242 edges
(a) (b) (c)

Fig. 111. The graph BRAIN83, based on hundreds of high-resolution brain scans per-
formed by the Human Connectome Project, shows the “wiring diagram” of a healthy
human brain. The full graph (a) has 83 vertices (representing the major regions of
interest) and 1654 edges (representing channels between them). Vertex 00 is the brain
stem; vertices 01-41 form the right brain; and vertices 42-82 form the left brain, with
v + 41 on the left corresponding to v on the right.

Each edge is labeled with an integer [> 0, which is a logarithmic measure of its
importance: The strength of an interconnection is proportional to g 1/1000, (However,
[is depicted linearly here, with a line that’s shaded {/1350 of the way from black to
white.) The subgraph BRAIN83(250) in (b), which retains only the edges with [< 250,
illustrates some of the strongest interconnections. For example, vertices 77 and 36 are
the left and right caudate nuclei, and they are connected by an edge with { = 33.

One way to decide this is to set it up as an exact cover problem, following
the lead of exercise 7.2.2.1-77, which considered the special case where G and H
have the same number of vertices. In general, let there be a primary item v for
each vertex v of GG, and a secondary item V for each vertex V of H. Let there
also be secondary items e - E for every edge e of G and every non-edge E of H.
The exact cover problem then has one option for each pair (v, V'), representing
the potential mapping v — V, namely

‘v V U{e-E|e=(u—v)and E = (U—V) for some wand U}". (53)

The solutions to this exact cover problem are precisely the embeddings we want,
because (i) every vertex v of G is paired with a distinct vertex V of H; and
(ii) we cannot pair v with U and v with V' in cases where u—wv and U -+ V.

For example, when G is Chvétal’s graph (52) and H is BRAIN83(250), G has
12 vertices and 24 edges; H has 68 non-isolated vertices, with (628) — 170 = 2108
nonedges between them. Our exact cover problem therefore has 12 primary
items, 68 + 24 - 2108 = 50660 secondary items, and 12 - 68 = 816 options.

The options are long: Graph H has 65 nonedges involving vertex 00, so every
option that pairs v with 00 contains 2+4-65 = 262 items. The 816 options there-
fore have more than 200,000 entries altogether, and Algorithm 7.2.2.1X takes 6
gigamems just to input them before getting started! But then it needs only 2
gigamems to solve the problem — and the result is no solutions (no embeddings).

January 13, 2024

exact cover problem
Human Connectome Project

32 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

We can discover the lack of solutions by being a little smarter when we
set up the problem. In the first place, there’s no point in considering 00 as a
potential target vertex, because that vertex has degree 2; every target vertex
will clearly have degree 4 in the image of G, so it must have degree > 4 in H.
We can therefore eliminate from BRAIN83(250) not only the 15 isolated vertices,
but also the 28 vertices of degrees 1, 2, and 3.

Furthermore, after those vertices go away, other vertices no longer have
degree > 4. If we keep pruning vertices of low valency from the graph, we finally
reach a graph H that has only 22 vertices, all of degree > 4. This reduced target
graph has only (%) — 63 = 168 nonedges; and the reduced exact cover problem
has fewer than 17000 entries in its 264 options. Algorithm 7.2.2.1X needs just
40 megamems to input them, and 90 megamems to prove them unsolvable.

In fact, exercise 235 shows that there’s a sneaky way to see that G € H
without even running the algorithm.

OK, BRAIN83(250) is too sparse to contain Chvéatal’s graph G. But what
about BRAIN83(300)7 That graph H has 70 nonisolated vertices, and we can
prune it down to a min-degree-4 graph H with only 58 vertices and 211 edges.
Now we get an exact cover problem that Algorithm 7.2.2.1X can input in 3 Gu
and solve in 8 Gu; there are 72 solutions. Therefore G is indeed embeddable
into the graph of Fig. 111(c), in 72 ways. (That fact has little or no biological
significance, of course; but somehow it’s comforting to know that we all have
Chvatal’s graph rather firmly embedded in our brains.)

All 72 solutions turn out, in fact, to lie entirely within the left brain. But
the right brain will contain (52) too, if we add a few more edges of the full graph.

It’s significant that 72 is a multiple of 8, because Chvétal’s graph has 8
automorphisms (see exercise 7-44). If G is any graph with exactly r automor-
phisms, the number of functions f that embed G into H is always a multiple
of r, because we obtain r distinct embedding functions f(va) when « ranges over
all the automorphisms. Thus there really are only 9 essentially different ways to
embed (52) into BRAIN83(300). One of them takes 0 — 48 0+ +— 49, 1— — 51,
1 =47, 1+ — 77, 2— — 53, 2 — 78, 2+ — 55, 3— — 58, 3 — 75, 3+ — 50,
0— +— 54; it’s essentially the same as the embedding 1 — 48, 14+ +— 49, 2— +— 51,
2+ 47, ..., 1— — 54, and to six others. (This solution does not belong to
BRAIN83(298), because the edge 48 — 54 has the label | = 299. There are 2 -8
embeddings into BRAIN83(293), but none into BRAIN83(292).)

That was fun. Let’s try another example, this time with a smaller target
so that we can see more closely what is going on. Here’s a question about the
United States that has perhaps never been asked before:

Is

January 13, 2024

automorphisms
essentially different solutions
United States

7.2.2.3 CONSTRAINT SATISFACTION: SUBGRAPH ISOMORPHISM 33

On the left is PyO0Ps, a4 x 5 grid. On the right is the 49-vertex, 107-edge graph
of the continental USA that we saw most recently in Fig. 106. At first glance,
smallish grids are visible within the right-hand graph, but a 4 x 5 seems unlikely.

There are, in fact, three different ways to solve the embedding problem
of (54) —that is, 4 - 3 actual embedding functions, because the grid has four
automorphisms. The reader is encouraged to find at least one of them now, by
hand, before turning the page to peek at the answer.

Meanwhile let’s look at how a computer might attack this problem intelli-
gently. Call the graphs G and H. In the first place, the six interior vertices of G
have degree 4; so their domains cannot include any of the 15 states {CA, CT, DC,
DE, FL, LA, ME, MI, ND, NH, NJ, RI, SC, VT, WA} of smaller degree.

We can shrink the domains even further by looking at the degrees of neigh-
bors. For example, the neighbors of 11 in G have degrees {3, 3,4, 4}, while the
neighbors of GA in H have degrees {2,2,4,4,8}. Therefore no embedding of G
into H can map 11 — GA. (See exercise 242.) In a similar way we can remove AL,
GA, MA, NC, OR from the domains of 11, 12, 13, 21, 22, and 23. Furthermore the
neighbors of NY in H have degrees {3,3,3,5,6}; this doesn’t rule out 11 — NY,
but it does show that we can’t map 12 +— NY or 22 +— NY. That leaves just 28
possibilities in the initial domains of G’s “middle” vertices 12 and 22.

An even closer look shows that we can’t take 12 — MS. For if we did, there
would be a matching of size 4 in the bipartite graph

The left part here shows the neighbors of 12; they must each match a vertex in
their domain that also happens to be a neighbor of MS. There’s no such matching.
Similar analyses rule out the mappings 11 — OR, 02 — MA, and so on. This tech-
nique for domain reduction was introduced by C. Solnon [Artificial Intelligence
174 (2010), 850-864], who called it LAD filtering (for “Locally All Different”).
We now begin to form a search tree, with 27 possibilities to try for the image
of 12. The first of these, alphabetically, is AZ, so let’s tentatively map 12 +— AZ.
This means we remove AZ from every other domain, and restrict the domains of
02, 11, 13, and 22 to neighbors of AZ. Hmm; we soon reach an impasse, because
21 has no place to go: It must map to a neighbor of the domains of 11 and 22,
namely a neighbor of {NM, NV, UT}; but LAD filtering proves that impossible.
The next thing to try is 12 — AR. This option is somewhat more plausible;
LAD filtering whittles the domains down quite a bit, but not too far. They are

' _ a = {AR}, d =bU {LA,MNS, TX},

leded b = {MO, 0K, TN}, e =bUcU {AL,MS,NM, TX},

Z; ‘C’ z ‘C’ Z; ;¢ ={KS,KY,M0}, f=DbUcUJ{CO,IA, IL NE,VA}, (56)
Sgfei g=fU{IN,WV}, i=eUgUhU {GA},

h=fU{NC,NM}, j=gUhU {MD,0H,SD,WI,WY}.

January 13, 2024

grid

continental USA
automorphisms

initial domains

maximum bipartite matching
matching

bipartite graph

Solnon

LAD filtering—

34 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

For example, the domain of 11, 13, and 22 is {MO, 0K, TN}; the domain of 02 is
{LA,M0,MS, 0K, TN, TX}; and the domain of 32 has 10 elements.

At this point we turn to a complementary technique, known as GAD filtering
(for “Globally All Different”). The idea is again to solve a bipartite matching
problem; but our goal this time is to match every pattern vertex with some
element of its current domain. (Because if no such matching exists, the current
domains are too small and we must backtrack.)

The domains in (56) readily yield such a matching. For example, here’s one:

VA NM TX MS AL
NC TN AR OK CO
IA KY MO KS Wv |- (57)
SD NE IL IN WY

Of course this doesn’t solve our subgraph isomorphism problem — Virginia is
nowhere near New Mexico, and there are many other faults. But VA does belong
to the current domain of 00, according to (56), and NM does belong to the domain
of 01. The advantage of (57) is that the theory of bipartite matching gives us an
efficient way to trim off all the “excess fat” from the domains of variables that
are required to be all-different. Indeed, the algorithm of exercise 253 uses (57)
to reduce (56) substantially, so that only the following domains are left:

. a={m}, d = {LA,MS, TX},

feaony b fwhm, o2 fwsem

g c : cg |t c={KS,KY}, £ ={CO,IA, IL,NE, VA}, (58)
DN g=fU{IN, W}, i=eUgUhU {GA},

h=fU{NC,NM}, j=gUhU {MD,0H,SD,WI,WY}.

Notice, for example, that (56) had MO in 19 of the 20 domains; the only
exception was ‘a’, the domain of the pattern vertex 12 that we’ve tentatively
mapped to AR. But in (58), MO belongs only to ‘b’, which is the domain of
pattern vertices 11, 13, and 22.

Sudoku experts will see why M0 can be dropped from 16 of the 19 domains
where it was formerly present: Any all-different assignment using (56) must map
{11, 13,22} into {MO, 0K, TN}. Hence those three values can’t be used elsewhere.

Similarly, we now know that 21 and 23 can’t be mapped to MO; so they must
map to {KS,KY}. We can therefore eliminate KS and KY from all domains but c.

GAD filtering, which reduces (56) to (58), is not specific to the subgraph
isomorphism problem; it applies to any CSP with an all-different constraint. No
further reduction from (58) is possible, from that global standpoint.

But the smaller domains in (58) now let us make further progress on our
SIP, (54), by going back to LAD filtering, because the local bipartite graphs have
gotten significantly smaller. Indeed, exercise 243 shows that a contradiction soon
arises. Thus we learn that the tentative mapping 12 — AR is impossible.

So we try 12 — CO next. LAD filtering is now able to remove 300 elements
from the other 19 domains; that’s good, yet it’s significantly fewer than the 379

January 13, 2024

GAD filtering
all-different
Sudoku

7.2.2.3 CONSTRAINT SATISFACTION: SUBGRAPH ISOMORPHISM 35

LAD deletions that we had in the previous case. So our new LAD-consistent
domains are not as constrained as those in (56) above:

a = {C0}, ¢ = x U {AZ, ID, MO, SD, TX},
iedei b=4d, d = x U {KS,NM, UT},
hbabh f=h, e = c U {KS},
gcbcg| g=i, h = e U {AR, IA,MT, NV, UT}, (59)
jefg] x = {NE,0K,WY}, i=h)\{AZ}UyU {IL,LA, MN, ND, TN},

y = {CA,NM,0R}, j = iU {AZ,KY,MS, WA, WI}.

In this situation GAD filtering makes no change. So we need to branch again;
let’s try 11 — OK. Hurray! LAD filtering now reduces most of the domains to
singletons:

{La} {Tx} {NM} {Az} {CA,NV}
{aR} {OK} {co} {uT} {ID,NV} (60)
{Tn} {mMo} {nE} {wy} {ID,MT} |
{ky} {1L} {1A} {sSp} {MT,ND}
So we’re almost done. Branching on 04 — CA gives us Fig. 112; and the other
branch gives a second solution (see exercise 244).

@D @ @ @
W @
@ €D ®D

Fig.112. One

of the three ways
to embed Py O Ps
into the graph USA.

@88 ee
86 868

*Supplemental labels and graphs. We’ve now seen how to solve problem (54),
using a mixture of LAD and GAD filtering to keep the backtrack tree reasonably
small. And there’s another important technique that we could also have used,
based on the fact that subgraph isomorphism is quite a strong property. [See C.
McCreesh and P. Prosser, LNCS 9255 (2015), 295-312; C. McCreesh, P. Prosser,
and J. Trimble, LNCS 12150 (2020), 316-324.] Notice, for example, that one
subgraph isomorphism always implies another:

If G C H, then GS2 C H=?, with the same embedding. (61)

Here G<? denotes the graph whose vertices are the same as those of G, but
whose edges u — v exist if and only if there’s a path of length < 2 between u
and v in G. If the function f embeds G into H, and if there’s such a path in G,
then there’s clearly also a path of length < 2 between f(u) and f(v) in H.

With (61) we can improve on what we did before. For example, suppose G is
Chvéatal’s graph (52). Then G<? = K- and every vertex has degree 11, since the
diameter is 2. But if H is BRAIN83(300), its vertices 30, 70, and 71 have degree
only 9 in H<?. Therefore we can omit those three vertices from all domains, and
it turns out that the SIP computation will take only 83% as long as before.

January 13, 2024

GAD filtering
Supplemental
McCreesh
Prosser
Trimble
Chvétal

36 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

We didn’t actually need the full strength of (61) in this particular case; all
we used was the degrees of vertices in G=2 and H=?. In general, a supplemental
label for a vertex is any function dg for which the following property holds:

If G C H via embedding function f, then dg(v) < dy(f(v)) for all v € G. (62)

The degree of v in G=? is just one example of a supplemental label.

Suppose S is an arbitrary graph, with a designated vertex s, and let d2(v)
be the number of embeddings of S into G that map v to s. Then dé is a sup-
plemental label, because those embeddings of S into G will also be embeddings
of S into the image f(G) within H. We can think of S as a local “motif.”

If we can somehow discover a motif S that occurs frequently in the pattern G
but less often in the target H, the labels d2. and df, will help reduce the size of
initial domains when we try to embed G into H. (See also exercise 242.)

Supplemental labels can be combined in numerous ways. If d, and di, are
any two supplemental labels, so are min(d, di;), max(dg, dy;), and adg + fdy;
whenever «, f > 0; indeed, so is any monotone combination of d, and di;.

Furthermore, supplemental labels can be derived for edges as well as vertices.
A supplemental edge label is a function £ for which we can prove the following;:

If G C H via embedding function f, (63)
then £ (u,v) < Ly (f(u), f(v)) whenever u—wv in G. 3

(It’s possible to have €2, (u,v) # €2,(v,u).) For example, let S be a motif graph in
which two adjacent vertices, s —t, have been designated; and let £2,(u, v) be the
number of ways we can embed S into G with u — s and v — t. Then £2, is a sup-
plemental edge label, by the same reasoning we used for dg above. And supple-
mental edge labels can be combined monotonically as before. Notice that, when
S is the cycle CY, Zg is the number of k-cycles in G that contain a given edge.

A well-chosen supplemental edge label can significantly enhance LAD filter-
ing. Let’s go back to the USA problem of (54) and label each edge u — v by the
number ¢ (u,v) of 4-cycles that it supports. Then ¢ equals 2 on every internal
edge of G = P40OP;s; and £y has interesting diversity on the edges of H = USA. We
can now, for example, prove that 11 — NY is impossible: The neighbors of 11 are
01, 10, 12, and 21, all linked by edges with g = 2; the neighbors of NY are CT, MA,
NJ, PA, VT, whose ¢f labels are respectively 2, 2, 1, 1, 2. LAD filtering rules this
out, because the bipartite problem requires the four pattern vertices to match
only three target vertices {CT,MA,VT}. Similar reasoning shows that 11 +4 AZ,
NM, WI, and 17 other targets that non-supplemental arguments had previously
ruled out. The same pruning applies also, of course, to the domain of 12.

More generally, a supplemental pair label £g satisfies a stronger condition:

If G C H via embedding function f, (64)
then £ (u,v) < €y (f(uw), f(v)) for all vertices u and v in G. 4

One way to get such a function is to designate two non-adjacent vertices s and
t in a motif graph, and to define Zg just as we did above. A supplemental pair
label obtained in this way might turn out to be nonzero when v —wv.

January 13, 2024

supplemental label
motif

initial domains
monotone

supplemental edge label
cycle Ug

LAD filtering

supplemental pair label

7.2.2.3 CONSTRAINT SATISFACTION: SUBGRAPH ISOMORPHISM 37

Finally there’s an even more powerful notion, a supplemental graph, which
is a (possibly directed) graph on the same vertices but usually with a different
adjacency relation. Suppose the following statement is true:

If G C H, then G¥ C H*, with the same embedding. (65)

Then we say that G* and H* are a pair of supplemental graphs. (We began
this discussion with such a pair, in (61).)

For example, if ¢ is a supplemental pair label, we get a supplemental graph
by letting v — v if and only if g (u,v) > k, for any threshold k. (And we
conventionally write v — v if and only if we have both u — v and v — w.)
Let’s say that G°* is the supplemental graph we obtain in this way from the
supplemental pair label ¢2.. (Examples can be found in exercises 268 and 270.)
The union and intersection of supplemental graphs is a supplemental graph.

And once we have a supplemental graph, we can use it to define further
supplemental labels and graphs, based on its motifs!

We're clearly faced here with an embarrassment of riches. Innumerable
supplemental labels and graphs can potentially be computed, perhaps turning a
huge search tree into a mere shrub. On the other hand, supplemental data based
on motifs that don’t occur anywhere in the pattern is totally useless. A delicate
balancing act is required when solving a SIP, and indeed when solving any CSP:
It’s great to reduce the number of search nodes by a factor of 10, but not when
the computation time per node increases by a factor of 100, and not when there
aren’t extremely many nodes in the first place.

Thus a well-engineered SIP solver does its best to concentrate on supple-
mental data that justifies the time and space needed to compute it. We can
judiciously relax our standards of LAD and GAD filtering, if our data structures
allow us to do a pretty-good-but-incomplete job at high speed, as long as we
don’t change the set of solutions. Maximum bipartite matching problems are
solved quickly by the Hopcroft—Karp algorithm (Algorithm 7.5.1H on page vii);
but the existence of a suitably large matching can often be ruled out even more
quickly by rudimentary tests. (See exercises 277-280.)

When C. Solnon surveyed the state of the art of SIP solving [LNCS 11510
(2019), 1-13], she observed that it’s wise to feed your problem first to a com-
paratively simple solver that polishes off easy instances quickly. You can solve
more problems in a given amount of time if you start in that way, but switch to
heavier artillery if that solver doesn’t finish in, say, 0.1 seconds.

Some SIP problems are extremely difficult indeed. So we can expect contin-
ued progress towards methods that ameliorate their solution —perhaps by un-
derstanding more about how to find fruitful motifs in a given pattern and target.

Special cases of subgraph isomorphism. The general SIP has many special
cases that are well known by other names. For example, when the pattern graph
is a path or a cycle having the same number of vertices as the target graph, the
problem is to find a Hamiltonian path or Hamiltonian cycle. Special techniques
apply to that problem, and we shall discuss them at length in Section 7.2.2.4.
Similarly, when the pattern graph is a clique, the special methods discussed in

January 13, 2024

supplemental graph
LAD
GAD

Maximum bipartite matching
Hopcroft-Karp algorithm
Solnon

Hamiltonian

clique

38 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

Section 7.2.2.5 become available. And when the pattern graph is the same as
the target graph, the solutions to the SIP are the automorphisms of that graph.

An n-vertex graph G is three-colorable if and only if G C K, . It has
bandwidth < k if and only if G C P¥, where P* is the graph on {0,1,...,n—1}
with u —w if and only if |u — v| < k.

The special case when both pattern and target are free trees is perhaps the
nicest of all, for in that case the SIP can be solved with a beautiful algorithm
published by David W. Matula in 1978. His algorithm (see exercise 293) has a
running time of O(m!'-5n) in the worst case, when the pattern size is m and the
target size is n; and its running time in practice is typically of order mn.

The fact that subtree isomorphism can be handled so efficiently might lead
us to suspect that “subdag isomorphism” — when both pattern and target are
directed acyclic graphs—might also be fairly easy. All such hopes are dashed,
however, by the simple construction in exercise 228, which shows that every SIP
can be regarded as a special case of subdag isomorphism.

The special case of trees cannot even be extended to forests: If the pattern
graph G consists of disconnected trees, the problem of deciding whether or not
G C H turns out to be NP-hard, even when H is a free tree and G has an
extremely simple form. (See exercise 220.)

On the other hand, if the pattern G is simply a collection of disjoint edges,
P, & & P, an embedding of G is the same thing as a matching, and again we
can test G C H efficiently. The Hopcroft—-Karp algorithm does this well when
H is bipartite, and other methods work for arbitrary H (see Section 7.5.5).

Solving a CSP. So far we’ve been looking at lots of different kinds of constraint
satisfaction problems; and an endless variety of further applications beckons. But
it’s time now to think systematically about general approaches that we might
take when we’re faced with a new CSP.

In the first place, we can always basically start from scratch, and write a
standalone program that’s specifically tailored to whatever special problem we
have in mind. In fact, Algorithm 7.2.2B, the basic backtrack algorithm, is still
the method of choice for sufficiently simple tasks,* as well as for comparatively
unstructured tasks like those in exercises 7.2.2-71 and 79. The CSP frame-
work of variables, domains, and constraints has also suggested refinements of
backtracking, such as backmarking (see exercise 430).

In the second place, we can formulate any CSP as an XCC problem —exact
coloring with colors— and use the versatile methods of Section 7.2.2.1. Exercise 4
is a simple example of this general principle, and further examples can be found in
exercises 61 (line labeling) and 93 (graceful labeling). Similarly, exercise 30 solves
the car sequencing problem as an MCC, using Algorithm 7.2.2.1M for nonexact
covering. The notions of items and options often turn out to be more directly
related to a problem than the notions of variables, domains, and constraints; for
example, we saw in (53) that subgraph isomorphism is conveniently expressed

* The author still finds himself turning back to that algorithm about once a month, since
customizations of 7.2.2B continue to be useful and fun, even after 60 years of experience!

January 13, 2024

automorphisms

three-colorable

bandwidth

free trees

trees

Matula

subtree isomorphism

subdag isomorphism

directed acyclic graphs

forests

NP-hard

matching

Hopcroft

Karp

bipartite

author

backtracking

backmarking

XCC

line labeling

graceful labeling

car sequencing problem
CC

subgraph isomorphism

7.2.2.3 CONSTRAINT SATISFACTION: TRANSLATING CSP TO SAT 39

as an XC problem — exact covering without colors. Another instructive example
is the “rainbow path problem” in the answer to exercise 291.

In the third place, we can formulate any CSP as a satisfiability problem, and
use the extremely well-developed SAT solvers discussed in Section 7.2.2.2. This
approach is often the way to go, especially if we want to find only one solution
instead of the complete set, and we’ll soon examine it in greater detail.

In the fourth place, we can choose from many well-designed computer pro-
grams that have been developed specifically for problems that conform explicitly
to the CSP model. The task of designing a complete, general-purpose CSP solver
is beyond the scope of this book; however, we shall study several of the important
techniques that have been devised for such systems. A large community of
researchers in constraint processing has developed new methods that enhance
what we’ve already seen in Sections 7.2.2.1 and 7.2.2.2.

Translating CSP to SAT. The most obvious difference between the satisfiabil-
ity problem that we considered in Section 7.2.2.2 and the more general CSP is the
fact that satisfiability is based on Boolean variables, while the variables of a CSP
usually have domains with more than two values. Large domains can, however,
be represented with small domains, if we increase the number of variables.

Let’s look first at the simplest non-binary case, where all CSP variables
have the ternary domain {0,1,2}. (We could consider the “balanced” domain
{-1,0,+1} instead; and indeed, {—1,0,+1} is the domain of choice in many
applications. But all ternary domains are essentially equivalent to {0, 1,2}; and
we’ll soon be studying domains {0,1,...,d — 1} for d > 3.)

One natural way to represent a ternary variable v SATwise is to encode it as
three binary variables, {vg, v1, v2}, where v; = [v=j]. The three possible triplets
vou1 v are then {100,010,001}; and the other five triplets, {000, 011, 101, 110,
111} can be excluded by introducing four clauses into our SAT problem:

(vo V 1 V v2); (66)
(170 \Y 171) AN (ﬁo V 52) A (51 \Y 52). (67)

Clause (66) says that v has at least one value, namely that vy + vy + vy > 1;
clauses (67) say that v has at most one value, namely that vg+v,+vy < 1. We've
often seen this so-called direct encoding before, for instance in Eq. 7.2.2.2—(13).

A closer look shows that vg is really unnecessary here, because the three
allowable pairs v;v, = {00, 10,01} are distinct. In fact, if we read those pairs in
the opposite order, vyv;, we get 00, 01, and 10, which are the values 0, 1, and 2
in binary notation! When vy is dropped, we need only one constraint to ensure
uniqueness of v’s value,

(51 \Y 52), (68)
instead of the four in (66) and (67). This method is called the log encoding,
because it generalizes to a representation of d values with only [lgd] binary
variables. (At least [lgd] of them are needed, to distinguish between d cases.)

Many other encodings are also possible. Indeed, we’ve already made an
extensive study of the mappings « — x;z, by which a ternary variable = can

January 13, 2024

XC problem
rainbow path problem
satisfiability

SAT solvers

CSP solver
satisfiability problem
ternary domain
balanced

clauses

at least one

at most one

direct encoding
binary notation

log encoding

40 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

Table 2
ENCODING ‘u # v WITH TERNARY DOMAINS

Name Clauses for u Clauses for v Clauses for u and v
(ug Vu1 Vuz) (vo V01 Vv2) o V To
. uo V U1 Vo V U1 - -
Direct hy — ~ ~ up Vi
g V U2 T V U2 do VT
a1 V Gy 01 V Ty 2V
ug V Vo
Multivalued (uo V u1 V uz) (vo Vv1 Vv2) a1 V 01
u2 V U2

Log

(17,1 \ ﬁz)

(51 \ 52)

(ug\/ul \/UzV’Ul)

uy VU1
u2 V U2

u2 Vui Ve Vo
u2 Vuy Ve Vo
U2 Vuy Vo2 Vo
us Vuy Vo2V
us Va1 Ve Vo
U2 Vuy Vo2 Vo

Binary

g Vv V vz

Support

(uo VurV U2)
uo V w1
g V U2
w1 V us

w1 Vvg Vv
u2 Vvg V ur
ug V ui V U2
ug V ug VU1

u1 V ug V Uy

(ﬁo\/ul \/qu’l_}o\/Ul\/Uz)
(ﬁl Vus V U1 \/’Ug)
(ﬂ2 Vﬁ2)

Weakened (uo V u1 V uz) (vo Vv1 Vv2)

(u1 Vus V vy \/’Ug)
Reduced a1 VU1
u2 V U2

u2 Vur Ve Vo
u2 Vuy Ve Vo
(’ELQ\/’T}Q)

Prefix

(ul vol)
Order (@® v ul) (92 v ol) (@' vu?vaolve?)
(@% v 2)

be represented by a pair of binary variables, as part of our study of Boolean
techniques: Equations 7.1.3—(110) through 7.1.3—(131) showed that the best such
mapping depends heavily on the context in which the representation is used.

The context of a SAT encoding within a CSP is, of course, the set of
constraints that involve the encoded variable. So let’s consider how to express a
given relation between two ternary variables v and v, when u and v have both
been suitably encoded. We might as well begin with the simplest such relation
that arises frequently in applications, namely inequality: ‘u # v’.

Table 2 shows nine ways to represent ternary inequality via SAT clauses.
Some clauses are usually needed for u by itself and for v by itself; then there are
clauses that involve both u and v. In the direct encoding, for example, Table 2
lists (66) and (67) for both variables, followed by three clauses (@;V ;) to ensure
that we don’t simultaneously have v = j and v = j.

January 13, 2024

inequality relation: T 75 y
disequality, see inequality relation
not equality, see inequality rel
direct encoding

7.2.2.3 CONSTRAINT SATISFACTION: TRANSLATING CSP TO SAT 41

The multivalued encoding is like the direct encoding, except that it omits
the at-most-one clauses (67). If, say, there’s a solution with up = u; = 1, we
can obtain two other solutions by changing either ug or u; to zero; in either case
u will remain unequal to v, because ug = u; = 1 implies that vg = v; = 0.

The three clauses of the log encoding that forbid v = v in Table 2 are the
ones that don’t allow the quadruple usu;v,v; to be 0000, *x1x1, or 1x1x.

The binary encoding is similar to the log encoding, but it allows both 11 and
00 as acceptable encodings of the domain value 0. Therefore we must forbid not
only 0000, 0101, and 1010, but also 0011, 1100, and 1111.

The support encoding (see exercise 7.2.2.2-399) starts out like the direct
encoding; but its clauses that make u # v are quite different. For example, the
clause ‘(g V v1 V v2)’ says that u = 0 implies v = 1 or v = 2.

Exercise 300 explains the weakened encoding and the prefiz encoding.

The reduced encoding is the most economical of all. Eight values of the
quadruple uguivou; are permissible, each of which forces u # v (see exercise 301).

Finally, Table 2 concludes with the order encoding, also called the unary
encoding, which is another important idea that we’ve studied earlier. In this
case vJ = [v>j] (see Eq. 7.2.2.2-(163)). However, order encoding is not a really
new alternative when d = 3, because the possible values v'v? = 00, 10, 11 are
equivalent to the log-encoded values vov; = 10, 00, 01, if v! < Dy and v? < v;.

It’s a nice theory. How well do these encodings work in practice? Notice that
the CSP with domains {0,1,...,d — 1} and constraints v # v between certain
pairs of variables is precisely the problem of coloring a graph with d colors. So
we can apply any of the nine encodings to the vertices and edges of any given
graph G, and use a SAT solver to see whether or not G is 3-colorable. [In fact
the first seven encodings of Table 2, generalized to d colors for arbitrary d, were
used to test the colorability of dozens of graphs by S. Prestwich in LNCS 2919
(2004), 105-119, using Algorithm 7.2.2.2W (WalkSAT) as the solver.]

Fig. 113. The Sierpiniski gasket graph S,(Lg), R 0000

shown here for n = 4, is created by pasting
together the corners of 37! triangles in an
interesting way. Each triangle has a ternary
label @« = ai1...an—1, and its corners are
labeled a0 (top), al (lower left), a2 (lower
right). Every vertex whose label has the form

Q@ = a1...Qk—1GkAn ---Gn, SO that ap #
Qk4+1 = -+ = Gn, 1s pasted together with the
vertex labeled o = ai...ar_10n0k...a%.

This rule gives two labels to all vertices,
except for {0...0,1...1,2...2}; hence there
are (3"+ 3)/2 distinct vertices altogether.

Figure 113 illustrates a family of graphs for which 3-coloring is particularly
instructive. The reader will have no trouble coloring the vertices of 543 with
three colors; but the interesting thing is that this coloring is essentially unique!

January 13, 2024

multivalued encoding
log encoding

binary encoding
support encoding
weakened encoding
prefix encoding

order encoding
unary encoding
coloring a graph
Prestwich

WalkSAT

Sierpinski gasket graph—
3-coloring

unique

42 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

Indeed, vertices u and v must have the same color whenever v and v lie on the
same vertical line, or on any diagonal whose slope is £30° (see exercise 303).

Computer programmers have little difficulty verifying the uniqueness, in
their heads; but it’s a different story for computers themselves. Suppose, for
example, that the machine has found a way to color the lower-right third of
Fig.113. Then there are two legal colors for vertices 0202 and 0212 (whose other
names are 0220 and 0221). One of those colors is correct; but the other one leads
to a dead end, which the machine might not discover for a long, long time. If a
conventional backtrack search is used, the running time needed to color S, +)1
will actually be about 3 + v/5 ~ 5.24 times as long as the time that’s needed
for S . (In fact, exercise 311 shows that Fibonacci numbers have a surprising
connection to this problem.)

The corners of a Sierpiniski gasket graph have different colors 1n any 3-
coloring. Let’ s therefore define the pinched Sierpinski gasket graph Sn to be
the same as S) but with the corner vertices 0...0 and 1...1 pasted together.
This graph cannot be 3-colored. (Notice that Sn ® has [3"/2] vertices, each of
which has degree 4 except for the remaining corner vertex 2...2; see page x.)

One way to compare the encodings of Table 2 is to see how long it | takes for
a SAT solver to prove the unsatisfiability of the clauses produced from Sn), with
each encoding. We might save a factor of six if we introduce clauses to force the
colors of the top three vertices 0...00, 0...01 and 0...02 (see exercise 307).

Detailed statistics are reported in exercise 309, and the bottom line is that

Log =~ Reduced < Prefix &~ Direct & Multi &~ Support < Weakened < Binary,

at least with respect to this 3-coloring problem. For example, the running tlmes
in gigamems, when Algorithm 7.2.2.2C was applied to the clauses for S

were Log (8.1), Reduced (8.6), Prefix (11.2), Direct (12.0), Multivalued (13. 1)
Support (13.3), Weakened (27.0), Binary (338.0), showing the median of nine
runs in each case. (The binary encoding is terrible; we won’t discuss it further.)

We can actually do better, however, because the graph §7(L3) contains lots of
triangles (3-cliques); and that means we can give cligue hints to the SAT solver.
For example, whenever u — v — w — w is a 3-clique in a graph that we want
to 3-color, we can include the clauses

(UoVUova) N (U1V’U1 le) N (UQV’U2V1.U2) (69)

when we’re using the direct encoding, multivalued encoding, or support encoding,
because each color must appear on one of those vertices. The other encodings also
have appropriate clique hints (see exercise 315). So the running times for S
go down: Prefix (4.8), Log (5.8), Reduced (6.5), Multivalued (7.5), Direct (7. 9)
Support (9.6), Weakened (39.2). The prefix encoding has jumped into the lead!
Let’s take a look under the hood, in order to understand a bit of what’s going
on. The SAT solver used in these experiments, Algorithm 7.2.2.2C, gets much of
its prowess from its ability to learn new clauses, as it tries random possibilities
and notices the reasons for contradictions. For example, in one attempt when

January 13, 2024

Fibonacci numbers
pinched Sierpinski gasket graph
triangles

7.2.2.3 CONSTRAINT SATISFACTION: TRANSLATING CSP TO SAT 43

given the small example §£3) of Fig. 113 (but pinched), the first thing that it
learned after inputting the prefix-encoded clauses was

(0202, v 0122). (70)

It means, “if vertex 0202 has color 2, so does vertex 0122.” Can you guess why?
The machine tried to assume the truth of 0202,; and that implies both 0212,
and 0201,; but the clique hint (02125 V 01225 V 02015) then implies 0122,.
Exercise 316 discusses the machine’s next discovery, which was the clause
(02023 Vv 0222;)°. Its eighth major deduction was ‘(0112),’; and after learning
21 clauses it was ready to deduce the empty clause, namely unsatisfiability.
Thus the magic of Boolean algebra allows a SAT solver to pursue lines
of reasoning that go well beyond anything that a conventional backtracking
approach would ever contemplate. But when we look at the running times by
which the prefix encoding verifies uncolorability, our hopes are actually dashed:

S I U
1.36 Kp 27.6 Ku 345K 2.98 My 23.0 My 299 My 4.77 Gu 72.9 Gp 1460 Gp

This is the best of our SAT-oriented methods for §7(L3); yet when n increases by 1,
its running time eventually grows by a factor exceeding 15. That’s much worse
than the factor of 3 + v/5 &~ 5.236, which we know from exercise 311 is achievable
by simple backtracking! Indeed, Algorithm 7.2.2.1X is able to handle the case
n = 11 in only 2.34 Gu (see exercise 318), more than 600 times faster.

All is not lost, however. Algorithm 7.2.2.2C has ten tunable parameters,
and the running times above were all obtained with the default settings shown in
7.2.2.2—(194). But a quite different set of parameters, 7.2.2.2—(196), is known to
work much better with problems of the form waerden (3, k;n). Filip Stappers has
discovered that a similar phenomenon occurs for the pinched gasket benchmarks:
He used ParamlILS on small cases to obtain the somewhat eccentric settings

a=0.6, p=06, 0=0.99, A, =10000, J, = 5000,
7=20, w=1, p=0.02, P=0, ¢ =0.15. (71)

Those parameters make the algorithm run dramatically faster as n grows:
s s 6] s s G s 6] G)
I I -
1.84Kp 49.0Kp 583Ky 2.84 My 18.0Mp 90.8 My 521 Mp 2.27Gp 13.2Gp

And indeed the ratio for §,(1321/§7(13) is now close to 3+ \/5; as when backtracking.

The fact that 5'\8) can be proved 3-uncolorable in only 13 Gu is quite
impressive, considering that it’s a problem with 3'! + 1 = 177148 Boolean
variables and 4 - 3! + 6 = 708594 clauses! As the author was conducting
these experiments in 2022, he considered also Armin Biere’s “Kissat,” one of
the world’s best contemporary solvers. Kissat, which is the fruit of a decade’s
further research since Section 7.2.2.2 was written, is more than twice as fast as
the best solvers of 2012, on a majority of difficult problems. Kissat tunes its

January 13, 2024

empty clause
Boolean algebra
parameters, tuning
waerden
Stappers
ParamILS

author

Biere

Kissat

44 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

own internal parameters; and its running time when applied to §7(L3) turns out to
have the same order of growth, (3 + v/5)". (See exercise 338). It appears that
this kind of machine learning cannot break through that asymptotic barrier.
Recall that we did see, way back in Fig. 92 when Algorithm 7.2.2.2C was
originally defined, that SAT technology does dramatically speed up similar proofs
with respect to another family of graphs. In that problem, which deals with the
“flower snark line graphs” L(J,), the graphs in question have only 6g vertices
and 12¢ edges, so they lead to far fewer Boolean variables. Those graphs aren’t
3-colorable when ¢ is odd; so they give us lots more cases on which we can
compare the effectiveness of different SAT encodings. Let’s therefore pursue the
exploration of flower snarks by extending the results reported in Fig. 92.
Exercise 7.2.2.2-176(c) defines clauses called fsnark (¢), which represent the
multivalued encoding for the problem of 3-coloring the graph L(J,;). We know
now, however, that we can improve those clauses by also including clique hints.
(Indeed, the 12¢ edges of L(J,) arise from 4¢g 3-cliques, because J; is a cubic
graph.) Furthermore we can of course consider the same problem with respect
to the other encodings in Table 2. Exercise 320 shows that when ¢ = 99 the
respective running times, in megamems, are Log (240), Reduced (305), Prefix
(339), Weakened (402), Direct (448), Multivalued (520), Support (1091).
Surprise: Those aren’t the rankings that our experience with pinched gaskets
has led us to expect, although both coloring problems seem to be quite similar.
A second surprise awaits us when we study the running times for larger and
larger q. According to Fig. 92, those times grow linearly for ¢ < 99; thus if we
change ¢ to 2¢ + 1 we should expect the proof of unsatisfiability to take about
twice as long. That’s not what happens, however. Considering only the log
encoding, which appears to be best for these graphs, we find

L(JQQ) L(J199) L(J399) L(J799) L(J1599) L(J3199) L(J6399)
249Myp 1.10Gu 4.66Gu 21.2Gu 482Gu 171.7Gu 630Gu

which is roughly quadratic behavior. The reasons are by no means clear, nor
is much known about the effect of adapting Algorithm 7.2.2.2C’s parameters
(a, p,0,...,%) to the various encodings. SAT solvers are full of surprises!

So far we’ve been looking only at ternary domains. Domains of size 4 or more
lead of course to many further questions, with seemingly endless possibilities to
explore. The encodings for d = 3 in Table 2 can be extended to arbitrary d in
interesting ways (see exercise 332). And the graphs S{*) can also be extended
to Sierpiriski simplex graphs 57(;1) for arbitrary d; the case d = 4 and n = 3 is
illustrated in Fig.114. When d = 4, S,(Ld) is called the Sierpinski tetrahedron graph
of order n. It was actually invented by Alexander Graham Bell [National Geo-
graphic Magazine 14,6 (June 1903), 219-251], in connection with kite designs!

Notice that Sy(ld) is essentially a (d — 1)-dimensional object. That makes it
a bit of a challenge (but fun) to imagine when d > 4.

We can obtain a pinched version §7(ld) by pasting vertices 0...0 and 1...1
together as we did before. Exercise 330 points out that the graph §,§d) cannot be

January 13, 2024

flower snark line graphs

line graphs

fsnark (q)

cubic graph

log encoding

parameters

Sierpinski simplex graphs
simplex graphs

cliques

pure vertices

pasting graphs together
Sierpinski tetrahedron graph
Bell

kite designs

Sierpinski [sub] triangle graph see gasket
pinched

7.2.2.3 CONSTRAINT SATISFACTION: TRANSLATING CSP TO SAT 45

Fig. 114. The graph 54 is obtained by pasting to-
gether d" ! cliques of size d, using the same rules that
were specified for d = 3 in Fig.113: Each d-clique has
a d-ary label « = a1 ...an—1, and its “corner vertices”
are labeled aj for 0 < j < d. Each vertex has two d-
ary labels o and o' as before, except for the d “pure”
vertices labeled j...7; exercise 323 gives examples.
Therefore there are (d"+ d)/2 vertices altogether.

d-colored, when d is odd; but the situation is quite different when d is even. For

example, it’s easy to 4-color the graph in Fig. 114 by putting the same color at

each of the four corners. Yet we can’t 4-color it with all-different corner colors.
Let’s therefore define the augmented Sierpinski simplex graph to be

g,gd) = S,sd) plusd—1edges 0...0—j...j for 0 <j<d. (72)

This graph cannot be d-colored when n > 1 and d is even.

As we saw when d = 3, instructive results are obtained When we experiment
with various SAT encodlngs to verify the d-uncolorability of Sn for odd domain
sizes d, and of S) for even domain sizes. The principal contenders when d = 4
are the direct, multivalued, log, support, weakened, reduced, and order encod-
ings. (See Table 2 and exercise 332; prefix encoding is the same as log encoding
when d = 4, and order encoding becomes distinct from the others when d > 3.)
Hints for d-cliques, discussed in exercise 333, prove to be enormously beneficial.

Detailed statistics for d = 4 and n < 7 show that for these problems we have

Direct ~ Multi & Ordered < Reduced < Support < Log <« Weakened,

roughly speaking, as reported in exercise 336. The best results overall, obtained
with the direct encoding, make those relative rankings quantitative:

§§4) §i4) §é4) §é4) §'§4)
57.8 Kp 1.99 My 23.8 My 1.16 Gu 135Gpu

(possibly indicating superexponential growth in the running time as n increases).

That’s great news Those running times are a huge win for SAT-based meth-
ods—because the S problem has a much, much larger search space than the
Sr(b problem does. For example, its backtrack tree appears to have about 103
nodes already when n = 4, and more than 10°° when n = 5. The methods that
we used to beat SAT in the two-dimensional case are now hopelessly inadequate.

Moving on to domains of size d = 5, again there are surprises (see exercise
337). The log encoding now becomes totally outclassed, and the new champion
is the reduced encoding! Typical running times for the latter are

30 59 g0 5e)

6
156 My 1.78 Gu 17.9Gu 172Gp

although the backtrack tree for 3}5) has ~ 107 nodes. These are tough problems.

January 13, 2024

augmented Sierpinski simplex gr
prefix encoding

order encoding

Hints for d—cliques

46 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

SAT encodings of general relations. We’ve now seen a variety of Boolean
representations of d-ary domains; but we’ve looked at only one constraint, ‘#’.

The next most important way to constrain two variables v and v is probably
the relation ‘u < v’— or perhaps ‘u < v’, which is the same as ‘u <wv —1’. The
order encoding is particularly good for constraints such as this. Indeed, in the
d-ary domain {0,1,...,d— 1}, with the Boolean variable u’ standing for [u > j],
the relation ‘u < v — ¢’ for any fixed ¢ is equivalent to the clauses

N @ vt it >0 N\ @ vt ifr<o. (73)
0<j<dt —t<j<d

(We omit @° or v? if they are present.) In the case t = 1, for example, we get

w<v = WHA@ VA @EVEH) A A @2V A@th). (74)
And we can even go much further: Exercises 7.2.2.2-405 and 406 give encodings
for ‘au + bv < ¢’ as well as ‘uv < @’ and ‘uv > a’, for any constants a, b, ¢, using
only clauses that belong to 2SAT. Exercise 7.2.2.2-407 gives a 3SAT equivalent
of the ternary relation ‘u + v < w’, when all three variables are order-encoded.

There’s also a good way to translate the relation ‘v < v’ into SAT clauses
when v and v have the log encoding, thanks to Eq. 7.2.2.2—(169). For example,
suppose d = 16, u = (ugususuy)2, and v = (vgvsv2v1)2, using four bits to
represent each variable. Then we have u < v if and only if

(ﬂgV’Ug) N (aSVal) A (UgVal) N (d1V’a4V’U4) N (61Vﬁ4vaz) N (61VU4V02) A
(dQVﬂQV'UQ) AN (62\/712\/0/3) A (flgV’UzVag) N (d3Vﬂ1V’U1). (75)

Notice that these clauses introduce auziliary variables ay; such variables must
not be used in the encoding of any other constraint. (For instance, if we also
require v < w, we’d need to introduce auxiliaries called a4, as, and ag, say.)
Exercise 341 shows that a similar scheme can encode ‘u < v — t’ for any ¢.

In general, however, a CSP can involve arbitrary constraints that don’t have
nice properties like the relation ‘u < v — ¢’. A so-called “table constraint” is
specified by tabulating the pairs (u,v) that satisfy it. (Or by listing the pairs
that don’t satisfy it, if the bad pairs are easier to specify than the good ones.) If
we can deal with any table constraint, we can handle any constraint whatsoever.

Table constraints are usually translated into SAT by letting the Boolean
variable v, represent [v=a], for each value a in the domain of each variable v,
as we’ve done in most of the examples above. Here are the most popular schemes:

e Direct encoding. Start with the at-least-one and at-most-one clauses for each
variable, as in (66) and (67). Then, for each pair of values (a, b) such that the
assignments u = a and v = b do not satisfy the given relation —a so-called
nogood — add the “preclusion clause” (4,V0p), also called a “conflict clause.”

(Thus Table 2, which encodes ‘u # v’ in ternary domains, has three nogoods.)

Notice that the direct encoding works naturally for k-ary constraints as well
as for binary constraints: If the values (a1, .., a) don’t satisfy a given relation
on the variables (vy,...,v;), the preclusion clause is (T1q, V -+ V Ukq,)-

January 13, 2024

order encoding
2SAT

3SAT

log encoding
auxiliary variables
table constraint
Direct encoding
at-least-one
at-most-one
nogood

preclusion clause
conflict clause, see preclusion

7.2.2.3 CONSTRAINT SATISFACTION: TRANSLATING CSP TO SAT 47

e Support encoding. Given a binary relation R(u,v), start with the at-least-
one and at-most-one clauses as above. Then add the “support clauses”

/\ (aa v Vv | ab 6R(u,v)}) A /\ (171, v V{ua | ab ER(U,U)}). (76)

a€D, beD,
(The domains are D,, and D,.. In Table 2, D,, = D,, = [0..3), R(u,v) = [u#v].)
The support encoding can also be defined for k-ary relations R(vq, ..., vg).

But in this case we use a trick by which any k-ary relation can be regarded as a
set of k binary relations R;(vj, R); here R; relates the original variable v; to a
new “hidden variable” R, whose domain Dpg is the set {a; ...ay | R(a1,...,ax)}
of all tuples that satisfy R. If a € D,; and ay ...ay € Dg, then we have

Rj(a,a1...ax) <= a=uqa;, for1<j<k. (77)

(The idea concealed in this daunting notation is basically an elaboration of the

way in which we represented a hypergraph as a bipartite graph in 7—(57).)
Let’s study a simple example, by considering the case where R = R(u, v, w) is

the following more-or-less random ternary relation on ternary variables {u, v, w}:

R(u,v,w) < uvw € {000,001,010,012,020,121,211}. (78)

The direct encoding for R has 3% — 7 = 20 nogoods, because R has seven tuples;
s0 it consists of the at-least-one and at-most-one clauses together with

A (GoV O V1) A (GoV T2V) A (GgVT2Vwa) A (1 VT Vi) A
A (G VToVs) A (G VT Vg) A (G VT VW) A (G VT Vi) A
A (G VT2Va) A (G2VToV o) A (G2VToVwy) A (G2VToViws) A
A (GeVOLVW2) A (U2V T2V W) A (G2V T2V) A (12VU2VWs). (79)

(o V ToV 1Dy
(1 V To Vb,
(1 VT2 Vo
(V71 Vo

— — — ~—

The support encoding for R is obtained by combining the support encodings for
the three binary relations Ry (u, R), R, (v, R), and R, (w, R), namely

(RoooV Roo1V Ro10V Ro12V Ro2oV Ri21V Ra11); (80)
_ _ _ (@oV RoooV Roo1V Ro10V Ro12V Ro20),
(RoooVuo) A (RoooVvo) A (RovoVwo), (@1V Ry21),
(Roo1Vuo) A (Roo1Vuo) A (RootVwr), — (aV Rorr);
(RowoVuo) A (RotoV1) A (RotoVwo), (ToV RoooV Roo1),
(Ro12Vuo) A (Ro12Vor) A (Ro12Vws), (01V Ro1oV Ro12V Ro1),
(Ro20Vuo) A (RogoVuz) A (RozoVwe), (D2V RozoV Rio1);
(Ri21Vur) A (Ri21V2) A (Ry21 V), (@WoV RoooV Ro10V Ro2o),
(Ra11Vu2) A (Ra11Vor) A (RopiVwy); (@01V Roo1V Ri21V Ro11),

(w2V Ro12); (81)

(UOVU1VU2) N (17/0\/17/1) N (ﬂoVﬂg) N (17,1Vﬂ2);
(’1)0\/’1)1\/1)2) N ('l_)o\/'l_)l) N ('l_)o\/'l_)z) N (1_)1\/1_)2);
(wOVw1Vw2) N (u‘;OVu")l) N (’u_)o\/'u_lg) N (’11_11\/11_]2). (82)

At-most-one clauses for R, such as (RgooV Roo1), aren’t needed (see exercise 347).

January 13, 2024

Support encoding
k—ary to binary
hidden variable
hypergraph
bipartite graph
direct encoding
support encoding

48 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

e FEncoded projections. A k-ary relation can be “projected” onto any subset
of its variables, obtaining a weaker relation that must also be true. The

conjunction of these weaker relations is an approximation to the overall one.
For example, the ternary relation (78) has three projections onto binary relations:

wo € {00,01,02,12,21}; (83)
ww € {00,01,02,11,21}; (84)
vw € {00,01,10,11,12,20,21}. (85)

We need 3 + 3 + 1 preclusion clauses to rule out their inadmissible pairs. That
leaves the seven tuples of R, and also 011; so one more preclusion clause,

(o V01 V1), (86)
will give us the equivalent of (79) in the direct encoding.

(In database theory, a relation that’s equal to the intersection of some of its
projections is said to have a lossless join dependency on those projections.)

Exercise 353 shows that about 1.2% of all ternary relations on ternary do-
mains can be decomposed losslessly into their binary projections. The remaining
98.8% are inherently ternary; but nearly half of them are almost decomposable,
needing only five or fewer additional preclusions such as (86). (See exercise 354.)

Notice that the direct encoding is smallest when there are comparatively
few nogood tuples, as we saw in the relation ‘u # v’; contrariwise, the support
encoding is smallest when there are comparatively few good ones. The tradeoff
is often tricky. When trying to place n queens, for example, exercise 7.2.2.2-400
concludes that the direct encoding is preferable when trying to find just one solu-
tion to that problem, but the support encoding is better for finding all solutions.

We needn’t choose a single encoding scheme; the best solution for some
applications might be to use two different encodings simultaneously.

Recall from Eq. 7.2.2.2-(180) that some encodings are forcing, in the sense
that every implied consequence with respect to the individual (nonauxiliary)
literals can be found efficiently by a SAT solver using only unit propagations.
Furthermore, exercise 7.2.2.2-433 showed that the log encoding in (75) is forcing
for the relation ‘u < v’. Thus, for example, if uy = u; =1 and vy = v; = 0, then
unit propagation in (75) will force vg = 1 and ug = 0.

Forcing clauses are obviously desirable, if they don’t take up too much space.
The direct encoding usually doesn’t have the forcing property; for instance, if
we assert ug = 0 in (779), unit propagation does nothing. By contrast, however,
asserting up = 0 in (81) immediately implies Rooo, Roo1, Ro10, Roi2, Roz2o, Do,
W, W2; hence wy, by (82). The good news is that the support encoding is always
forcing. (See exercise 358; we can regard variables Rooo, Roo1, --- as auxiliary.)

Counsistency. Let’s shift gears now and turn to CSP-solving techniques that
go beyond what we’ve previously learned about XCC-solving and SAT-solving.
One of the key concepts is the notion of “consistency,” championed by Alan K.
Mackworth in Artificial Intelligence 8 (1977), 99-118, and extended by many
others. In general, we want to avoid or ameliorate the need to backtrack, by
recognizing as early as possible when our current line of search is doomed to fail.

January 13, 2024

projections

lossless join dependency
join dependency

TV queens

queens

forcing

unit propagations
consistency—
Mackworth

7.2.2.3 CONSTRAINT SATISFACTION: CONSISTENCY 49

A set of constraints is “inconsistent” if and only if it has no solution; and
that’s a coNP-complete problem. So we can’t expect to solve it efficiently. Yet it
makes sense to strive for subproblems that are not easily proved to be inconsis-
tent. We can in fact distinguish many degrees of consistency, increasingly difficult
to check but more and more effective in pruning the search tree. Interesting and
important tradeoffs arise as we try to balance the cost of consistency testing with
the number of cases to be examined.

Consider, for example, the CSP that has four variables {w, z,y, z}, each with
the ternary domain {0, 1,2}, subject to the following six constraints:

wx #22; wy & {10,20}; wz #02; zy & {11,12,22};
zz ¢ {00,02}; yz ¢ {00,01,10,11,21}. (87)

Instead of trying the 81 possibilities for wzyz, we can start by observing that
z # 1, by propagating the yz constraint. Therefore x # 0, by propagating
the zz constraint. Hence y # 2, by propagating the zy constraint. The yz
constraint now tells us that z # 0; hence z = 2. Therefore w # 0; and the wy
constraint tells us that y # 0. Consequently x # 1, w # 2; the unique solution
is wryz = 1212! This process is called domain filtering.

One way to understand such propagations is to set up a system of definite
Horn clauses from the given constraints (87):

Wy N\ Wy = I w1, N\ Wy = Z _ _ _ Yo = Z
Yo A Wy U2 1 U2 72 Fo ATz = 01 Y2 20
To \NT1 = Wy 2o\ Z1 = Wy _ ~ = Z1
_ _ _ _ _ To = Y2 _ _
Wo = Yo T1 NT2 = 2o Jo = T 22 = Yo (88)
_ _ _ _ _ _ 0 1 _ _
Y1 N\ Y2 = wy T1 N\NTo = 2o _ _ _ 22 = Y1
- — = - Yo NYy1 = T2 S = _
Y1 N Y2 = Wy Z1 = Zo 20N\ Z2 = Yo

(Well, these are actually dual Horn clauses, because every variable is comple-
mented.) For example, if w # 0 and w # 1, then = # 2, because wz # 22. In
these terms, the filtering process is identical to Algorithm 7.1.1C, the computa-
tion of the “Horn core”; and we know from that algorithm that the computation
can be done efficiently, using simple data structures.

The rule to get from (87) to (88) is that, when R(u,v) is a relation between
variables u and v whose domains are D,, and D,, we have |D,| + |D,| clauses,

A{vp | ab € R(u,v)} = 44, a € Dy; A{tGs | ab € R(u,v)} = v, b€ D,; (89)

however, the clauses for @, and 7, are omitted when the premises are false; such
clauses are trivially true. (For example, (88) doesn’t include ‘@ Aw; AWy = Ty,
because we can’t have wo A @w; A wz. The wax relation needs only two clauses.)

A wide-awake reader might be thinking at this point that (89) looks familiar.
And indeed, (89) describes precisely the support clauses that were defined above
in (76). For instance, ‘wg A w1 = o’ is the same as the support clause ‘T2 V
woV w1’, when it’s written in CNF. The only difference is that we omit a support
clause such as ‘Tg VwoVw; Vws’, because it’s subsumed by the at-least-one clause
‘wo V wy V wy’. The fact that support clauses are dual Horn clauses explains why
SAT solvers handle them efficiently.

January 13, 2024

coNP-complete
domain filtering—
Horn clauses

dual Horn clauses
Horn core

support clauses

50 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

The process of solving a CSP can be viewed recursively as a sequence of
steps in which we narrow the domains by propagating constraints. Each node «
of the search tree corresponds to a set Do = {Dq,, | v is a variable}, where D, ,
is the “current domain” of v when we’re working on subproblem «. At the root
node, o, each domain D, , is simply v’s initially given domain. If some v has
D, , =0, subproblem « has no solution; recursion stops. Otherwise, when node
o' is a child of node «, the elements D, , of Dy all satisfy Dos , C Dy .

A new level is entered when we break a problem into subproblems, each
of which is a “branch” in the search tree. Two main branching strategies are
used, in order to ensure that we find every solution exactly once; both of those
strategies involve a variable called the branch variable, v, whose domain is being
split: (i) A d-way branch can be made when v’s domain D, , has d elements,
{a1,...,aq}. Then node a has d children, a; for 1 < j < d, and we have
Dy, » = {a;}. We say that v has been assigned the value a; in branch «;. (ii) A
binary branch on v=a can be made whenever a € D, ,. Then node o has two
children, a= and ax, and we have D,_ , = {a}, Do, v = Da,v \ a. In branch a-
of a binary branch we say, as in (i), that v has been assigned the value a.

If an assignment to one variable somehow forces other variables to have
domain size 1, we can optionally regard those variables as all being assigned
simultaneously. Similarly, if one or more variables in the right child a. of a bi-
nary branch happen to have domain size 1, we can optionally call them assigned.
However, there’s an important restriction: Whenever values have been assigned
to all of the variables in a constraint, those values must satisfy the constraint.

A variable that has been assigned a value in node « or in any ancestor of
that node is said to be inactive, because we’ve already decided its fate. All other
variables are active; they’re the variables of subproblem « that we still need to
deal with. A branch variable must always be active in its node.

The restriction that we’ve imposed on assigned variables makes it clear when
we’ve found a solution: Node « solves the given CSP if and only if it has no active
variables, that is, if and only if a value from its original domain has been assigned
to every variable. After reaching a solution node, we backtrack and try for more.

Any pair 8 = (v,a), where v is a variable and a belongs to v’s domain, is
called a binding. If the value a also happens to have been “assigned” to v, in the
sense just described, S is also called an assignment.

Definition V. The binding (v,a) is said to be “viable” in subproblem « when
every constraint involving v contains at least one tuple T such that (i) v=ainT,
and (ii) every other variable v' in that constraint has a value v' = a' in 7 for
which a' belongs to the current domain Dy, of v'. It’s “weakly viable” when it
is viable with respect to the constraints in which v is the only active variable.

Notice that if the binding (v, a) is not viable, no solution to subproblem « can
have v = a. Hence we can safely remove a from v’s current domain in such a case.

Armed with these definitions, we’re now ready to discuss the two most
important kinds of consistency, namely “forward consistency” (FC) and “domain
consistency” (DC).

January 13, 2024

recursively

current domain
branch variable
assigned

binary branch
instantiation, see assignment
inactive

active

binding

viable

weakly viable
forward consistency—
domain consistency—

7.2.2.3 CONSTRAINT SATISFACTION: CONSISTENCY 51

e Forward consistency holds at node « if and only if every active binding wipe out
is weakly viable. In other words, whenever a constraint contains only one ;“gf:;ﬁ;“grf)‘éﬁ’;fn
active variable, the domain of that variable is limited to values that satisfy that
constraint, together with the values already assigned to the other variables.
e Domain consistency holds at node « if and only if every active binding is
viable. In other words, no active variable v has a value a in its domain for which
the assignment v = a would “wipe out” (reduce to @) the domain of any other
active variable. In other words, every binding (v,a) of an active variable v has
a supporting tuple in every constraint that involves v. In other words, domain
filtering as in (88) doesn’t change any domains. (See exercise 362.)

N

WK~ W= ST R WEF
2 2 P WA

1 W I W]) W
iy iy iy iy Wy

W Ay
3 2 2 7>1 0
3 3 1 N PH 1
5 4 3 TNY 3
32 324 3 2 2 4 2 2 2 2 0 1

1 2
(a) (b) (c) (d) (e)
Fig. 115. If we try to extend placement (a) of three queens to eight nonattacking
queens, using forward consistency, the task is found to be impossible after we’ve
branched to subproblems (b), (c), (d), (e). (Row and column domain sizes are shown.)

Figures 115 and 116 illustrate the difference between FC and DC in a special
case of the 8 queens problem, which we consider to be a CSP with 16 variables
{ri,...,rs,c1,...,cs}. A queen that has been placed in row i and column j corre-
sponds to having r; = j and ¢; = i, as in 7.2.2.1—-(23). In position (a), the active
variables are {rs,rs,r¢,77,rs,C2,C3,Cs5,Cs,¢7} and their forward-consistent do-
main sizes are respectively {2, 1,3,3,5,3,2,3,2,4}. We're forced to place a queen
in row 3, column 5, giving (b); then we branch on two ways to occupy row 2, etc.

i W W

2 2 r6 1
E ||t ! Fig. 116. When domain consis-

; e W v i W tency is applied to the problem of
3 -3 2 1l | 37| | [0 Fig.115, impossibility is detected
3 r2 r2 1 r2 r2 1 . .
5 S Ta s ‘1T, before any branching is needed.

3 2 3 2 4 2 2 122 21 110

(a) (b) (c)

On the other hand, domain consistency takes another tack: Subproblem (a)
of Fig. 116 isn’t domain consistent, because (for example) the binding (rg,5)
would wipe out 3. Also (rs,7) would wipe out c¢g, etc. This domain filtering
takes us to (c), which filters out four more bindings and wipes out ¢z, etc.

It’s easy to maintain forward consistency at every node of a search tree,
because an assignment ‘v=a’ asks us to look only at constraints of the special

form R(v,vy,...,v,w), for k > 0, where w is currently active but we’ve already
assigned v1 =ay, - .., vy =ar. Whenever R is such a constraint, we simply restrict
the domain of w to values for which aa; ...apw € R(v,v1,..., 0%, w).

January 13, 2024

52 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

Domain consistency is harder to maintain, because constraints that don’t
directly involve a newly assigned variable can also come into play. Whenever
an active variable w loses an element b from its domain, there may be one or
more active bindings (w',b") that were supported in some constraint by a tuple
with w = b. All such supports must be replaced by tuples that have w # b; and
if no such tuples exist, we must remove b’ from the domain of w'. And so on.

Let’s return, for example, to the CSP of (21) and (22), the line labeling
problem for the histoscape of Fig.101(d). It has 26 variables, each with domain
{+,-,>,<}; hence it begins with 26 - 4 = 104 active bindings, namely (ab,+)
through (rs,<). And those variables are subject to 6 binary constraints and 13
ternary constraints.

Forward consistency holds trivially, when we start, because no assignments
have yet been made. But domain consistency fails spectacularly; for example, the
no-brainer constraint ‘(kn,np) € {<<}’ supports only one value in the domains
of variables kn and np. Thus we can immediately shrink Dy, and Dy, to {<}.

Furthermore the ternary constraint ‘(be, bd, ab) € {>+>, -+-,+-+}" allows us
to shrink Dyq to {+,-}, while Dy and D,y become {+,-,>}. Similar reductions
occur for every constraint that arose from a W junction in (20).

Constraints related to V and Y junctions don’t help us immediately. But
once we know that ab cannot be <, the constraint on (ab,ac) tells us that ac
cannot be +. There are propagations galore! This is worth investigating further.

The scope of a constraint is defined to be the set of variables that it con-
strains. Domain reduction relies on a basic operation that can be formalized as
follows, when ¢ is a constraint and v is a variable in ¢’s scope:

For each a € D,,
if ¢ contains no tuple having v = a, and having
all other variables in their current domains,
set D, < Dy \ a.

(90)

revise (¢,v) =

Thus we remove values from v’s domain if they aren’t viable with respect to c.

We can reach domain consistency if we keep applying revise(c,v) to all
possible combinations of ¢ and v, until no more changes occur. But such blind
meandering will repeat a lot of unnecessary tests, so we’d like to be a bit more
clever. Algorithm D below is one fairly simple yet general way to proceed.

Besides the notation D, for the domain of variable v, we shall write S for the
scope of constraint ¢. Algorithm D gives “time stamps” STAMP (v) and STAMP (¢)
to each variable and each constraint. Variables also have a field INQ(v), to tell
whether or not they’re in the queue Q.

Algorithm D (Domain filtering). Given a CSP, this algorithm attempts to
reduce the domains of variables without reducing the number of solutions. It
terminates with wipeout if some domain becomes empty; otherwise it terminates
with domain consistency. Values may already have been assigned to some of the
variables, in which case we assume that all constraints without active variables
have been satisfied. An auxiliary queue, @), holds a set of active variables that
need to be examined or reexamined.

January 13, 2024

line labeling problem
histoscape

scope

notation 1y

Se

time stamps

stamps

7.2.2.3 CONSTRAINT SATISFACTION: CONSISTENCY 53

D1. [Initialize.] Set STAMP (c) < O for each constraint ¢; STAMP (v) < INQ(v)
[v is active] for each variable v; t «— 1. Put all the active variables into).

D2. [Queue empty?] Terminate successfully if) is empty. Otherwise set v < Q
(deleting the front of @) and INQ(v) <« 0.

D3. [Loop over constraints.] Do steps D4-D5 for every constraint ¢ for which
v € S, and STAMP(v) > STAMP (¢). Then return to D2.

D4. [Loop over variables.] Do step D6 for every active variable w € S., including
w = v (see exercise 368).

D5. [Certify c.] Set STAMP(¢) < ¢ and t < ¢t + 1, then return to D3.

D6. [Revise w.] Do revise(c,w) (see (90)). If that routine doesn’t change D,
do nothing more. Otherwise, if D,, = (), terminate with wipeout. Otherwise
set STAMP (w) < t; and if INQ(w) = 0, also set) <= w and INQ(w) < 1. |

The elements v €) whose domain has changed since ¢ was certified are precisely
those with STAMP (v) > STAMP(c). The time stamps therefore help us to avoid
calling revise unnecessarily.

But a more fine-grained analysis shows that Algorithm D might still make
many redundant tests. Exercises 369 and 370 show how to achieve domain con-
sistency with a near-minimum amount of work, using the Horn core algorithm.

In any case, after the dust has settled, the domains for the histoscape
constraints (22) will have been reduced to the following, regardless of what
algorithm was used to achieve domain consistency:

eg=i=mn=-; ik=kn=np=x; (91)
ab = be = ef = fq = gs = {-,>}; ac = cm = mo = or = rs = {-, <}.

All of the “interior” lines now have a fixed label, while the “boundary” lines
each have only two possible labels. Thus the four possible solutions, shown in
Fig. 104 and (23), have essentially been discovered by domain filtering alone.

On the other hand, forward consistency does not work well on the CSP
of (21) and (22), because of the ternary constraints. Those constraints can,
however, be converted to binary, by using “hidden variables”; and FC handles
those binary constraints very nicely. (See exercises 377 and 378.)

Many other kinds of consistency have been explored by CSP researchers. For
example, one fairly easy way to strengthen DC is to require that the hidden vari-
ables be domain consistent with respect to each other (see exercise 373). Another
straightforward way to prune domains is called singleton domain consistency:
We can remove a from D, if the assignment v=a gives a subproblem that can’t
be made DC without emptying another variable’s domain (see exercise 379).

Path consistency goes even further and takes propagation to a new level: It
introduces new binary constraints, whereas domain filtering simply introduces
new unary constraints. If u, v, w are any variables for which the constraint R,
between v and v includes the pair ab, we can legitimately remove that pair if
there’s no value c such that ac € Ry, and bc € R,,,. (See exercise 380.)

January 13, 2024

time stamps

ternary constraints

hidden variables

singleton domain consistency
binary constraints

unary constraints

54 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

Efficiency. The search tree for a CSP can become significantly smaller when we
use consistency to filter the domains. For example, we noted in Section 7.2.2 that
the backtrack tree for all 14772512 solutions to the 16 queens problem —anal-
ogous to the tree for 8 queens, which was shown in its entirety in Fig. 68 —has
1,141,190,303 nodes. By contrast, when that same problem is regarded as an ex-
act cover problem, and solved via Algorithm 7.2.2.1X using 162 options analogous
to 7.2.2.1—(23), the search tree has only 193,021,021 nodes: a 6-fold reduction.
Algorithm 7.2.2.1X essentially uses forward consistency, together with the MRV
heuristic to choose variables for branching. And if we prune the tree further,
by maintaining full domain consistency before every branch, the total number
of nodes goes down to 139,562,927: fewer than 10 nodes per solution. Careful
use of symmetry, as explained in exercise 593, can be combined with domain
consistency to reduce the search tree size for 16 queens to about 5 million nodes.

Of course search tree size isn’t the whole story. We must multiply the number
of nodes by the average time spent per node, in order to get the total running
time. The average time per node, when the basic backtrack Algorithm 7.2.2B
was specialized to the 16 queens problem, came to only about 98 mems; and we
reduced that to 30 mems per node with Algorithm 7.2.2B*. Furthermore, we saw
that bitwise operations and Algorithm 7.2.2W gave a further reduction to only
8u/v, hence a total running time of 9 G to find all solutions. That was a winner
over Algorithm 7.2.2.1X, which needed 40 G to find those solutions, even though
its search tree was only 1/6th the size. Furthermore, even the sophisticated
method of exercise 593, with its “tiny” 5-meganode search tree, needs 26 Gu to
find all solutions, when it maintains domain consistency with the state-of-the-art
algorithm AC6 devised by C. Bessiere, Artificial Intelligence 65 (1994), 179-190.

Let’s pause a minute to understand why it makes sense to say that “Algo-
rithm 7.2.2.1X essentially uses forward consistency.” The same is actually true
also for Algorithm 7.2.2.1C,; with respect to any XCC problem. Indeed, any XCC
problem can be regarded as a CSP, whose variables are the primary items and
whose domains are the options. Option o belongs to the domain of item i if and
only if 7 € 0. The task is to choose nonconflicting options so that every primary
item is covered by some option of its domain. In other words, whenever ¢ and '
are distinct variables, we’re allowed to assign o to i and o' to i’ if and only if o
and o' are compatible, where compatibility (written ‘o || 0’’) is defined as follows:

oo <= either o =0 or oNo’ = {colored items}, (92)

where ‘{colored items}’ means the explicitly colored secondary items of o U ¢o'.
Using the language of Definition V, the bindings (v,a) of an XCC are the
pairs (i,0) where i € 0. When step C5 of Algorithm 7.2.2.1C covers item ¢ with
the option o that’s specified by z;, it means that option o is assigned to variable i,
as well as to any other primary items ¢’ that happen to be contained in 0. Those
variables become inactive; so the “cover” operation 7.2.2.1-(12) removes them
from the “active list” of not-yet-covered items i1, ..., i; that are accessible from
RLINK(0) in step C3. And it’s not difficult to verify that the effect of the “hide”
and “purify” operations in 7.2.2.1-(13) and 7.2.2.1-(55) is to remove from the

January 13, 2024

efficiency—
backtrack tree

16 queens problem
forward consistency
MRYV heuristic
symmetry

running time
bitwise operations

Bessiere
XCC problem
XCC as CSP
primary items
options
compatible
assigned
inactive

cover

active list

7.2.2.3 CONSTRAINT SATISFACTION: EFFICIENCY 59
system precisely the options o' that are incompatible with o. In other words, the
algorithm reduces the domains so that every remaining active binding (i’,0') is
weakly viable; and that, by definition, is forward consistency! Notice that the
current number of active bindings (¢, 0) for i is what the algorithm calls LEN (7).

In order to maintain forward consistency throughout the search process,
Algorithm 7.2.2.1C needed some elaborate data structures, which it based on
the technique of “dancing links.” Extensive computational experience with a
wide variety of XCC problems has shown that this extra work often pays off
handsomely in practice, because it substantially reduces the search tree without
costing a great deal per node.

In other words, FC is usually a big win when constraints are propagated. But
there are exceptions, such as the algorithm recommended for the graceful labeling
problem in the answer to exercise 125. That problem doesn’t benefit much from
forward consistency, at the most important levels of search, in comparison with
less expensive heuristics that are custom-tailored for gracefulness.

While writing the present book, the author was surprised to find that FC
also worked faster than DC, in most of the problems that he studied. We did
observe in Section 7.2.2.1 that many XCC problems are solved more quickly if
we start by preprocessing them with Algorithm 7.2.2.1P; that’s like applying
DC once, at the beginning. But problems that benefit from “inprocessing” as
well as preprocessing are much more rare, as we noticed in Section 7.2.2.2. Data
structures that maintain full domain consistency through the search necessarily
add a level of complexity that will pay for itself only in situations where the
search tree is substantially scaled down.

Of course there do exist problems where DC inprocessing is dramatically
better than the maintenance of FC together with preprocessing. For example,
D. Sabin and E. Freuder showed in LNCS 874 (1994), 10-20, that random CSPs
with suitably chosen parameters are best handled with DC. On the other hand,
we know from experience with SAT solving in Section 7.2.2.2 that the study of
random problems can be misleading, because random problems tend to have
quite different behavior from “real” applications, with respect to backtracking.

The simplest nonrandom CSPs for which DC inprocessing can be definitely
recommended are probably special cases of the “(d,n)-modstep problem,” which
is to find all d-ary sequences zoz ...T,_1 such that we have

for 0 <k < n. (93)

This problem has n variables zj, each with domain Dy = {0,1,...,d — 1}, and
n binary constraints (93). The solutions when d = 3 and n = 4 are 0000, 0012,
0112, 0120, 0122, 1111, 1120, 1200, 1201, 1220, 2001, 2011, 2012, 2201, and 2222.

Consider the case d = 4, n = 5. If we assign z¢ < 0, FC will hold if we reduce
D, to {0,1} and D4 to {0, 3}; domains D, and D3 are still {0,1,2,3,4}. But DC
would reduce D to {0,1,2} and D3 to {0,2,3}. After subsequent assignments
x1 ¢ 0, x5 « 1, the FC-only method won’t know that z3 < 1 is doomed to fail.

The behavior of the (n—1,n)-modstep problem for all values of n is not
difficult to discover, with respect to both FC and DC. Exercise 392 proves that

T(k41) modn € {Tk, (xx + 1) modd},

January 13, 2024

weakly viable
data structures
dancing links
graceful labeling
author
preprocessing
inprocessing
Sabin

Freuder

random CSPs

modstep problem
d—ary sequence: Sequence consisting of digits {0

56 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

the associated search tree has approximately 2"n nodes, when the domains are
maintained with forward consistency only; but the size goes down to only about
n?/2 when full domain consistency is maintained.

Later in this section we’ll discuss Algorithm S, which solves XCC problems
by maintaining full DC instead of just FC. When the XCC formulation of the
(23,24)-modstep problem is fed to Algorithm 7.2.2.1C, the 575 solutions are
found after 267 gigamems of computation; but Algorithm S polishes them off
after just 29 megamems. Thus the (n—1,n)-modstep problem is a slam dunk for
DC over FC.

Another simple CSP for which DC shines is the problem of listing all “slow
growth permutations” of order n: These are the permutations pips...p, of
{1,2,...,n} for which we have

peyr < pr+1 for1<k<n. (94)

For example, they’re 1234, 2341, 3412, 3421, 4123, 4231, 4312, and 4321 when
n = 4. It turns out that there are 2"~! such permutations in general, and they
can be obtained as the solutions to a nice little XCC problem (see exercise 403).

When that problem for n = 24 is solved by Algorithm 7.2.2.1C, its 223 =
8388608 solutions are found in 3 teramems, while traversing a 3.5-giganode search
tree. By contrast, Algorithm S needs only 96 gigamems and 42 meganodes.
Algorithm S beats Algorithm 7.2.2.1C on the (n—1,n)-modstep problem for all
n > 8, and on the slow growth problem for all n > 12.

But there’s a surprise: With an improved model for slow growth permuta-
tions (see exercise 404), Algorithm 7.2.2.1C comes back into the lead! Indeed,
that new formulation of the problem, based on the theory in exercise 402, is able
to find the 223 solutions in just 17.4 gigamems (and 33.6 meganodes), using FC
propagation only! And the new model makes Algorithm S slower (132 Gu).

We looked at hundreds of XCC problems in Section 7.2.2.1: Langford pairs,
polyomino packings, edge matchings, sudoku automorphisms, kenken, masyu,
etc., etc.; it’s natural to hope that Algorithm S will improve on the results
reported there, because of its ability to look further ahead and thereby to
reduce branching. Alas, it usually turns out to be worse than the best FC-only
methods — although there are exceptions, such as double word squares (exercise
7.2.2.1-87) and “alphabet blocks” (exercise 7.2.2.1-113). Algorithm S also wins
big on certain problems beyond the scope of this book, such as the radio link
frequency assignment problem (RLFAP); see B. Cabon, S. de Givry, L. Lobjois,
T. Schiex, and J. P. Warners, Constraints 4 (1999), 79-89, and the numer-
ous benchmarks at https://xcsp.org/assets/instances/Rlfap.tgz. Fur-
thermore it’s a winner on fillomino puzzles (exercises 410-417), which weren’t
mentioned in Section 7.2.2.1.

The moral of this story seems to be that a CSP solver should usually try to
maintain FC (forward consistency) throughout a search. But one should think
twice before going to the extra expense of maintaining DC (domain consistency).

Representing the domains. The current domains of the active variables
change frequently from level to level of the search tree. So we need efficient

January 13, 2024

slow growth permutations
word squares

alphabet blocks

radio link frequency assignment problem
RLFAP

Cabon

de Givry

Lobjois

Schiex

Warners

benchmarks

fillomino puzzles

domains, representation of—
data structures—

7.2.2.3 CONSTRAINT SATISFACTION: REPRESENTING THE DOMAINS 57

mechanisms to update them when we make assignments, and to downdate them
when we backtrack.

The simplest expedient is to push a fresh copy of all current domains onto a
stack, whenever we enter a new level of recursion. But that’s usually not a great
idea when efficiency is important, especially not when many domains are large.

One of the most common approaches is therefore to use Floyd’s idea of
reversible memory, as discussed in Eq. 7.2.2—(24) and (25), possibly also refined
with “stamps” as in Eq. 7.2.2—(26). An auxiliary stack called the trail contains
pairs (variable, value) that can be used to restore the previous values of state
variables when backtracking. Figure 117 illustrates a typical example.

zy Trail o w2 yy Trail
01 [begin o 00 | 1 00 00 |
02 z 4+ 1 10 | 1 1,1 00 |}
03 YT 11 |§¥ 1 1,1 1,1 gy
04 T 2 21 584 1 21 1,1 5%
05 [begin a1 21 |5¥751 2 21 1,1 |§¥]
06 y<w 22 |o87lY 2 2,1 22 |gblY
07 T3 32 [581lY3 2 32 22 |g8lY3
08 L back to o 21 |§8% 322 1,2 |3
09 Ty 11 |387% 3 13 1,2 |85
10 [begin a2 11 |87l 4 1,3 1,2 |§¥35]
11 Y4 14 |58751Y 4 13 44 |gh5lY
12 y 11 |oeislyd 4 13 14 |g83lf
13 begin a1 11 |o¢T5[1 4] 5 1,3 14 |gg5li]
14 T+ 5 51 [g813l14l7 5 55 14 |gb3lilT
15 back toaz 11 |3875]1YY 6 15 14 |3835]Y
16 Y2 12 |o875l74y 6 15 26 58517
17 y<a 11 |ggialiits 6 15 1,6 |gf5liy
18 L back to o 11 |5875 715 16 |585
19 T8 81 |§¥757 7 87 16 |5857
20 [begin o3 81 |o813%7] 8 87 1,6 5857
21 Yy 88 [56131l1 8 87 88 |gb5ilY
22 T3 38 |o6157l1% 8 38 88 |pbailis
23 Yy« 5 35 |ob157118d 8 38 58 |gb5ili%
24 begin a1 35 |58 i571Y5 %l 9 38 58 |g851li%l
25 y<4 34 |ooioTliskld 9 38 49 |gb57lisld
26 back toas 35 |o8157]754 10 38 59 [g637lis
27 Ty 55 |obi27lisds 10 510 59 [5857|1%3
28 begin azz 55 |go757| 5835 11 510 59 [g6571%3]
29 y—4 54 [o8157115831% 11 510 4,11 |g85711531%
30 back toas 55 |o8757[1545 12510 511 [g57|{%3
31 T+ 6 65 [06121115835 12612 511 [g857|{58355
32 y<a 66 |obT27118855% 126,12 6,12 [gh51[1555 %
33 L back to « 81 |g85157 13 8,12 1,12 |§5857
34 Y7 87 |58757Y 13 8,12 7,13 |g857Y
35 L back out 00 14 0,12 0,13

Fig. 117. Reversible storage is implemented by keeping a trail of changes that need
to be undone. An entry like ‘7’ means “reset x to 0.” The variation at the right saves
space by trailing changes to x only when 2’ doesn’t match the current stamp o.

January 13, 2024

stack

Floyd

reversible memory

stamps

trail

State variable: A variable that helps to govern a

58 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

In Fig. 117, node « of a search tree has three children oy, s, and ag; a; is
a “leaf” (either a solution or a contradiction), while s has a child «s; and as
has two children {as1, a2}, all leaves. The illustration shows the current states
of variables x and y as the computation proceeds; at the end, x and y once
again have their original values. The right-hand version uses STAMP (z) = z' and
STAMP (y) =y’ to avoid placing some redundant entries on the trail; the current
stamp ¢ increases by 1 whenever we enter a new node or backtrack to a parent.

Notice that stamping doesn’t really help much in this particular example;
at line 34 the trail has five entries whose net effect is simply to reset = < 0 and
y < 0. Exercise 420 explains how we might be able to do better.

When the original domain of variable v has d elements, it’s usually best to
represent it internally as the set {0,1,...,d — 1}. So we shall assume in the
following discussion that the current domain D, is always contained in that set.

We typically need to do four basic things with D,,:

Determine whether or not a € D,,, given a value 0 < a < d;
Delete a given value a from D,, if it is present;

Determine the size, |D,|;

Visit (“iterate through”) all elements of D,,.

Elements that are deleted will have to be undeleted later.
Three kinds of data structures suggest themselves for operations such as
these: Bit vectors; doubly linked lists; “sparse-sets.” Let’s consider them in turn.
First, when d < 64, it’s attractive to work with the binary number

BITS(v) = » {2°|a€ Dy}, (95)
and to take advantage of a computer’s bitwise operations. Indeed,
a €D, < BITS(v) & (1 K a) #0; (96)
D, + D, \{a} < BITS(v) < BITS(v) & ~(1 < a); (97)
|Dy| <1 <= BITS(v) & (BITS(v) — 1) =0. (98)

To compute |D,| = vBITS(v), we can use a built-in instruction like MMIX’s SADD,
or a trick like 7.1.3—(62). And to iterate through D,, we can do this:

Set t <~ BITS(v); while ¢ # 0, visit p(t & ~t) and set t < t — (t & ~t). (99)

In a CSP with only binary constraints, we can maintain forward consistency
after making the assignment v <— a by simply setting

BITS(w) < BITS(w) & Cy,q,w, for all w related to v, (100)

where C, 4. is an appropriate constant (namely, row a of the Boolean matrix
for the constraint between v and w).

Second, our old standby from Section 2.2.5, the doubly linked list, is another
natural choice. If d < 232 we can, for instance, work with an array of d + 1
octabytes, for every variable v, where every octabyte for 0 < a < d contains
two tetrabytes called PREV,(a) and NEXT,(a) that link to the neighbors of a in
v’s list. For simplicity we’ll write PREV and NEXT instead of PREV, and NEXT,.

January 13, 2024

stamping
Bit vectors
bitwise operations

MMIX

SADD

sideways addition
ruler function P
binary constraints
forward consistency
assignment
Boolean matrix

7.2.2.3 CONSTRAINT SATISFACTION: REPRESENTING THE DOMAINS 59

The special value a = d serves as the list head. If the current domain D, is
{ai,...,as}, where 0 < a1 < az < -+ < as; < d and s > 0, we’ll have

NEXT(d) = a1, NEXT(a;) =aj41 for 1 <j<s, NEXT(as) =d; (101)
PREV(d) = as, PREV(a;) =aj_1 for 1 < j <s, PREV(a1) =d; (102)

and if s = 0 we’ll have NEXT (d) = PREV(d) = d. Notice that we always have
NEXT(PREV(a)) = PREV(NEXT(a)) =a, ifa€ D, ora=d. (103)
Let’s also add a Boolean array
INy[a]l =[a€D,], for0<a<d; IN,[d]=0. (104)

(If d < 231, these bits will fit with the octabytes containing PREV and NEXT.)

The four basic operations are obviously easy with this representation. Fur-
thermore, the “dancing links” protocol, 7.2.2.1-(1) and 7.2.2.1-(2), tells us how
to preserve historical information so that the undeletion operation is simple:

NEXT(PREV(a)) < a and PREV (NEXT (a)) <+ a. (105)

Exercise 421 proves that the dancing links protocol also has an interesting
property that was not mentioned in Section 7.2.2.1.

Third, the sequential sparse-set representation, which we discussed in 7.2.2—
(16) through 7.2.2—(23), can be adapted to domain representation in a very nice
way. Each variable v is now represented by two arrays DOM,[k] and IDOM,[k]
for 0 < k < d, together with another variable SIZE(v). Both DOM, and IDOM,
are permutations of {0,1,...,d — 1}; and IDOM, is the inverse of DOM,:

DOM, [IDOM,[a]] = IDOM,[DOM,[a]l] =a, for 0 <a < d. (106)
Furthermore, the current value of v’s domain is simply
D, = {DOM,[k]1 | 0 < k < SIZE(v)}, (107)
and these elements can appear in any order. For example, if d = 7 and D, =
{1,3,4,5}, we might have

k=0123456
DOM,[k] =3145260 and SIZE(v) =4 (108)
IDOM,[k]1 =6140235
(That particular domain can in fact be represented in 4! 3! different ways.) Notice
that
a €D, < IDOM,[a] < SIZE(v). (109)
The main point of interest for this representation is the deletion operation:
Set k < IDOM,[a].
If k < SIZE(v), set SIZE(v) < SIZE(v) — 1, a’ < DOM,[SIZE(v)], (110)
DOM,[SIZE(v)] < a, IDOM,[a] < SIZE(v), DOM,[k] < a', IDOM,[a’] < k.
It’s interesting because undeletion is “free”: We just set SIZE(v) < SIZE(v) +1.

In fact, a whole round of deletions can be undone by just restoring the
previous value of SIZE(v); only SIZE(v) needs to be placed in the trail.

January 13, 2024

list head

head of list: see List head
dancing links

undeletion

sparse-set representation
permutations

inverse

pi, random

60 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

The sparse-set representation has an important property that’s often useful:
The elements DOM,[d — 1], DOM,[d — 2], ..., DOM,[SIZE(v)] are the values not
present in the current domain D,,, in the exact order in which they were deleted.
In other words, the most recent changes to the domain appear together, in
positions SIZE (v), SIZE(v) + 1, ... of DOM,.

Another advantage is the fact that the sequentially accessed array DOM, is
more cache-friendly than a doubly linked list. On the other hand, the order of
domain elements is not preserved; that might be a handicap (see exercise 424).

Sparse-set technology can also be applied in a rather different way, which
sometimes makes bit vectors attractive even when the domain size d is very large.
This combination of ideas gives us a fourth candidate for representing domains,
a new type of data structure called a “reversible sparse bitset.”

In general, suppose we want to represent a set D of d elements within a
computer that has e-bit words, using ¢ = [d/e] of those words to store bit
vectors b, for 0 < k < g. The natural way to do this is to represent the element
a of D as bit a — ke of word b|,/); more precisely,

b, = 2{2“_’“6 | a€ D and ke <a< (k+1)e}. (111)

This scheme is called the bitset representation of D.

When the set D continually gets smaller and smaller as a computation
proceeds, many of the individual words b, will be zero, and we won’t want
to look at them again. That’s where sparse-set principles come into play: We
can maintain an array of ¢ elements, D[j] for 0 < j < ¢, and an integer S, with

bp;jp #0 = Jj <5, for 0 <j<gq. (112)

Thus D and S play the roles of DOM, and SIZE(v) in (107); the inverse permutation
IDOM, isn’t needed. Figure 118 shows how it works.

bo b1 b2 bs ba bs bg D S

Initial set {0,1,...,19}: 111111111111111111110 0123456 7

AND with 011001 001 000011111 10: 011001001000011111100 0126453 6
AND with 010001 000010 110 100 01: 010 001 000 000 010 100 000 0154623 4
AND with 101 001 100 010 011 000 11: 000 001 000 000 010 000 000 4150623 2

Fig. 118. The sparse bitset representation of a set with d elements, using ¢ = [d/e]
words of e bits each, illustrated here for d = 20 and e = 3, hence ¢ = 7. (Of course
e would be much larger in an actual computer; with MMIX we’d choose e = 64. Notice
that if the bits are numbered 0 to 19 from left to right, word be initially contains the
binary number (011)2, not (110)2, according to Eq. (111).) The first S elements of D
tell us where to find all of the words b, that are still nonzero. Exercise 426 explains
how to perform the AND operations in O(S) steps, while changing D as little as possible.

A sparse bitset such as this becomes reversible if we make all of the individual
words by, reversible, by recording their changes in the trail, together with the
value of S before those changes were made.

January 13, 2024

cache-friendly

bit vectors

reversible sparse bitset
sparse bitset

bitset

pi, as random

trail

7.2.2.3 CONSTRAINT SATISFACTION: DANCING CELLS 61

*Dancing cells. We've just seen that sparse-set arrays can perform many of the
functions of doubly linked lists, without needing any more space. How far can
we push this idea? Could a sparse-set representation possibly compete with the
dancingly linked lists in the core of Algorithm 7.2.2.1C, which has been the most
popular XCC solver for many years?

That question was posed to the author in 2020 by Christine Solnon, and the
answer turns out to be “yes”(!). She has suggested that the newfangled XCC
solver be known as “dancing cells,” because exquisite choreography once again
governs the computations. Algorithm C below includes many of her ideas.

The easiest way to understand dancing cells is to look again at the toy prob-
lem 7.2.2.1-(49), with which we introduced the original algorithm. That problem
has three primary items {p,q,r}, two secondary items {x,y}, and five options:

‘pqxy:A; ‘prx:Ay’ ; ‘px:B; ‘qgx:A’; ‘ry:B . (113)

Table 7.2.2.1-2 illustrated the previous data structures for (113). There were
doubly linked lists of primary and secondary items, using LLINK and RLINK fields;
each item also had a doubly linked list of its options, using ULINK and DLINK.
Table 3 shows a convenient way to represent those same lists in sparse-set
style. There are three arrays, called ITEM, SET, and NODE; the elements of NODE
have three fields, called ITM, LOC, and CLR. Items have internal numbers, which
are listed in ITEM; for example, ITEM[1] = 11 is the internal number for ‘q’.
Suppose ITEM[k] = i. Then the SET array, beginning at SET[:], lists the
places where item ¢ appears in options; and the NODE array shows the options
themselves. For example, when £ = 1, we have SET[11] = 2, and SET[12] = 14;
NODE[2] and NODE[14] are the two nodes whose ITM field is 11. Furthermore,
LOC(2) = 11 and LOC(14) = 12; these are cross-references back to the SET array.
Notice also that SET[i — 1], also called SIZE(i), is the length of i’s option list;
SET[7 — 2], also called P0S(%), is k; and item #’s name appears before its POS.
Options in the NODE array are separated by “spacers” as before; the spacer
before an option of length [has LOC = [, and the spacer after it has ITM = —|.

Table 3
THE INITIAL CONTENTS OF MEMORY CORRESPONDING TO (113)

i SET[i] i SET[i] k: 0 1 2 3 4
LNAME 0 p o 17 7 ITEM[k]: 4 11 17 23 31
RNAME 1 18 17
POS 2 0 LNAME 19 x T 0 1 2 3 4 5 6
SIZE 3 3 RNAME 20 ITM(z): 0 4 11 23 31 -4 4
o 4 1 POS 21 3 LOC(x): 4 4 11 23 31 4 5
5 6 SIZE 22 4 CLR(z): — 0 0 0 4 — 0
6 11 e23 3
LNAME 7 q 24 8 T: 7 8 9 10 11 12 13
RNAME 8 25 12 ITM(x): 17 23 31 -4 4 23 =2
51;2: 18 é AE 3? 15 LOC(z): 17 24 32 2 6 25 2
o1l 2 RHAME 28 CLR(x): 0 A O v B
12 14 POS 29 4 T: 14 15 16 17 18 19
LNAME 13 r SIZE 30 3 ITM(z): 11 23 -2 17 31 -2
RN?SE 1‘;) . g; 3 LOC(z): 12 26 2 18 33 —
SIZE 16 2 33 18 CLR(2): o & — 0o B —

January 13, 2024

dancing cells—
author

Solnon

internal numbers
option list
spacers

62 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

Dear reader, please study Table 3 carefully, until you understand exactly
how it was obtained from (113). Notice that the SET array is heterogeneous:
Some of its entries are parts of names, some of its entries are integers, some of
its entries point into NODE. You should have no trouble figuring out the meaning
of CLR(x) —see exercise 434. More importantly, you should understand how
ITEM and POS play the roles of DOM and IDOM in the discussion above (see (108)),
with respect to the list of items, except that POS appears in scattered entries of
SET instead of having an array of its own. Similarly, SET and LOC play those roles
with respect to the option lists. In particular, when ¢, k£, and 2 have appropriate
values, the following relations are invariant, analogous to (106):

POS(ITEM[k]) =k and ITEM[POS(i)] =1; (114)
LOC(SET[i]1) =¢ and SET[LOC(z)] = . (115)

Table 3 shows the initial setup, when problem (113) has been input but not
yet solved. The algorithm will permute the values of ITEM and POS as it runs, so
that the currently active items all appear at the beginning of ITEM. It will also
permute SET and LOC entries, so that the elements of i’s current option list are
the nodes

D; = {SET[i+j1]0<j <SIZE()}. (116)

(It’s appropriate to call this set D;, because— as remarked earlier — the domain
of variable i is the set of all options that contain item ¢ and are consistent with
previous choices, when an XCC problem is regarded as a CSP.)

On the other hand, the algorithm never changes the ITM or CLR fields.

ITEM[k] is a primary item if and only if ITEM[k] < SECOND. It is currently
active if and only if £k < ACTIVE, where ACTIVE is initially the total number
of items. (Thus, ACTIVE = 5 and SECOND = 23 in Table 3.) As the algorithm
proceeds, an item is active if and only if it hasn’t yet appeared in a chosen option.

If NODE [«] is not a spacer, it represents an item in some option. We say that
the siblings of = are the nodes for the other items in that option; for example,
the siblings of 2 are 1, 3, and 4. Here’s a simple way to visit all the siblings of x:

Set ' «— x + 1, and repeat the following while z' # z:
If ITM(z') > 0, visit 2’ and set o’ < =’ + 1; (117)
otherwise set ' < x' + ITM(z').

Algorithm C relies on a technical subroutine called ‘hide’, which takes the
place of routines in Section 7.2.2.1 that were called ‘cover’, ‘hide’, ‘commit’, ‘pu-
rify’, etc. With sparse-set technology, we won’t need to write an ‘unhide’ routine.

The purpose of ‘hide(i,c)’ is to remove all options of item i’s current list
from every other option list to which they belong, except when i is secondary
and ¢ # 0. In the latter case, we don’t discard an option that gives i the specified
color ¢. (More precisely, an option is retained if it includes ‘i:¢’.) For example, if
we hide 7 = 11 in Table 3, the options in nodes 2 and 14 will be removed. (Node
2 is the ‘q’ part of the option ‘p q x y:A’; hence that option will disappear from
the option lists of p, x, and y.) If we hide i = 23 with ¢ = A, we’ll remove the
options in nodes 3 and 12, but not 8 or 15, because they color x with A.

January 13, 2024

option lists
invariant
active items
ITEM-

XCC as CSP
primary item
ACTIVE
SECOND
spacer
siblings
hide(i,c,p)

7.2.2.3 CONSTRAINT SATISFACTION: DANCING CELLS 63

If some primary item is about to lose its last remaining option, the hide
routine stops what it was doing and sets FLAG < 1, where FLAG is a global
variable. This will allow backtracking to occur immediately. (See exercises 441
and 447. Sparse-set principles win here, because the hide routine of 7.2.2.1-(13)
had no way to catch the condition LEN (z) = 0 without greatly complicating the
unhiding process, when traversing doubly linked lists.) This feature ensures that
no primary item’s option list will ever become empty.

The hide routine also relies on global variables ACTIVE and OACTIVE, where
OACTIVE is the value that ACTIVE had just before items of the current option
were being deactivated. It uses local variables j, x, ', ', ', i", and s':

(For 0 < j < SIZE(%), set © < SET[i + 5] and
do the following if ¢ = 0 or ¢ # CLR(z):
For all siblings ' of x, set i’ + ITM(z') and
do the following if P0S(i') < DACTIVE:
Set s’ « SIZE(i') — 1.
If s/ =0 and FLAG = 0 and i’ < SECOND and
POS(i') < ACTIVE, set FLAG < 1 and return.
Otherwise set ©'" < SET[i’ + s'], SIZE(i') < &',
SET[i' + s'] < o', i" <~ LOC(a'), LOC(z") + ' + ¢,
\ SET[i"] < 2", LOC(z") « i".

hide(i, c) = (118)

Algorithm C (Ezact covering with colors). This algorithm visits all solutions
to a given XCC problem, using the same conventions as Algorithm 7.2.2.1C; but
it’s based on sparse-set structures (“dancing cells”) instead of doubly linked lists.
It maintains sequential lists xox; . ..o and yoy; - - . yr for backtracking, where
T is large enough to accommodate one entry for each option in a partial solution,
as well as a sequential stack called TRAIL[0], TRAIL[1], ..., containing pairs.
C1. [Initialize.] Set the problem up in memory, as in Table 3; but terminate
if there’s any primary item with no options. (See exercise 439.) Also
set ACTIVE to the number of items, SECOND to the internal number of the
smallest secondary item (or oo if there are none), and [« yo <t « 0.
C2. [Choose i.] Set i < ITEM[k] for some k with 0 < k < ACTIVE and
ITEM[k] < SECOND and minimum SIZE(Z). But if no such k exists, go to
C9. (The tie-breaking rule in exercise 440 often works well for this step.)
C3. [Deactivate i.] Set k' <— ACTIVE — 1, ACTIVE <« k', i’ < ITEM[K'], k «+
POS(¢), ITEM[%'] < 4, ITEM[k] < ¢, POS(i') + k, POS(4) + k'.
C4. [Hide i.] Set DACTIVE ¢ ACTIVE, FLAG —1; hide(i,0) and set j « .
C5. [Trail the sizes.] Terminate with trail overflow if ¢ + ACTIVE exceeds the
maximum available TRAIL size. Otherwise set TRAIL[t + k] + (ITEM [k,
SIZE(ITEM[K])) for 0 < k < ACTIVE; then set y;41 <t < t + ACTIVE.
C6. [Try SET[j1.] Set ; < SET[j] and k < OACTIVE « ACTIVE. For all
siblings x' of x;, set i’ < ITM(z'), k' + POS(i'), andif &' < kset k + k—1,
i'"" < ITEM[K], ITEM[k] < ¢, ITEM[K'] < ¢, POS(i") « k', POS(3') « k.
Then set ACTIVE «+ k. (We've deactivated the other items of option z;.)

January 13, 2024

FLAG

global variables

0ACTIVE

secondary item

MRV: Minimum remaining values

64 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

C7. [Hide SET[j].] Set FLAG < 0. For all siblings a' of x;, set i’ < ITM(a'); “extreme” XC problem
and if 4’ < SECOND or POS (') < OACTIVE, hide(i’,CLR(z")), and go to C11 ;n:(’;;e
if FLAG = 1. (See exercise 447.) bizarre
C8. [Advance to the next level.] Set I < + 1 and return to C2. ﬁggﬁii‘ﬁ?m”ks
C9. [Visit a solution.] Visit the solution that’s specified by nodes zpxy ... 2 1. Eﬁ’;;l;/[ahon
C10. [Leave level [.] Terminate if [= 0. Otherwise set [<[— 1, i < ITM(xz), Dudeney
j — LOC(I[). pentominoes
C11. [Try again?] If j4+1 > i+SIZE(%), go to C10. Otherwise, fory; < k < yi41, gf:lzamhuk

set SIZE(i') <« s' if TRAIL[k] = (¢',s'). Then set t < y;1, ACTIVE ¢ windmill dominoes
t—y;, j+ j+1, and return to C6. | queen graph

graph coloring
Exercise 442 presents a play-by-play account of the sequel to Table 3.

How well does this new algorithm compete with its predecessor? Hundreds
of tests on a wide variety of nontrivial examples from Section 7.2.2.1 give it
an excellent scorecard indeed! For example, when we try the “extreme” XC
problem with all 2” — 1 possible options on n primary items, for n = 15 (see
7.2.2.1-(82)), it finds all w5 = 1,382,958,545 solutions in just 432 gigamems,
compared to 611 gigamems for Algorithm 7.2.2.1C. That’s just 313 mems per
solution (and 10.8 mems per update), for dancing cells, compared to 442 mems
per solution (and 15.2 mems per update) for dancing links.

Similarly, when we look for all 108,056,025 matchings of the “bizarre” graph
7.2.2.1-(89) for ¢ = r = 6, the new data structures find them in just 15.2 Gpu
(141 mems/sol, 14 p/v), beating the old 19.4 Gu (179 mems/sol, 17.8 u/v).

Here are a baker’s dozen typical XCC benchmarks, for further insights:

code (options, items, dancing cells dancing links .+

name solutions) runtime runtime
C (4320, 30+61, 1566720) 42.2 Gu 51.9 Gu 0.813
D (2327, 77+1, 16146) 12.5 Gu 20.3 Gu 0.614
H (1416, 196493, 5224) 623.4 Gu 613.4Gu 1.016
K (343, 494288, 110968) 9.6 Gu 3.1 Gpu 3.089
L (352, 48+0, 326721800) 881.2 Gu 1123.3 Gu 0.784
M (1514, 49+42, 987816) 21.6 Gu 25.3 Gu 0.854
o (6966, 180+0, 16928) 71054 Gu 12732.0 G 0.558 (119)
Q (256, 32+58, 14772512) 58.9 Gu 402 Gu 1467
R (121, 114741, 401800) 4.8 Gu 0.8 Gu 5.816
S (3858, 342+90, 30258432) 211.4 Gu 170.5 Gp 1.240
U (2440, 72+0, 31520) 119.7 Gu 194.5 Gpu 0.615
W (1212, 12436, 352) 74 Gu 10.5 Gp 0.702
Y* (949, 205+ 276, 16) 26.3 Gu 23.2 Gu 1.132

You win some, you lose some; it’s not clear why.

Problem C in this list comes from MacMahon’s 30 colored cubes, exercise
7.2.2.1-146. Problem D is based on Dudeney’s original dissection of a chessboard
into pentominoes and a square tetromino, exercise 7.2.2.1-274. Problem H comes
from the 5x7 subcase of Grabarchuk’s double-snake puzzle for windmill dominoes
(exercise 7.2.2.1-306). Problem K colors the 7 x 7 queen graph with 8 colors,

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: DYNAMIC VARIABLE ORDERING 65

using the clique encoding of exercise 7.2.2.1-117(b). Problem L finds all possible
Langford pairs for n = 16 (exercise 7.2.2.1-15). Problem M makes a hexagon
from MacMahon’s 24 colored triangles, fixing the position of tile aaa (exercise
7.2.2.1-126). Problem O solves another packing problem, called “chunky-octs”;
see exercise 418 below. The asterisk in ‘O*’ means that Algorithm 7.2.2.1P
has been used to preprocess the XCC data, removing unnecessary options and
items. Problem @ is the classical 16 queens problem, as in 7.2.2.1-(23), using
organ-pipe order for the primary items. Problem R finds all ways to radio-
color Mycielski’s graph My with 11 colors (exercises 7.2.2.1-116 and 7.2.2.2-36).
Problem S enumerates sudoku solutions that are symmetric under transposition
(exercise 7.2.2.1-114). Problem U packs the twelve solid pentominoes into a
3x4x5 box (exercise 7.2.2.1-340(b)). Problem W makes 6 x6 word search puzzles
for the words ONE to TWELVE (exercise 7.2.2.1-105, but not requiring ‘.’). And
Problem Y comes from Fig.73, considering H-equivalence of Y pentominoes. (See
the remarks preceding 7.2.2.1-(97); restrict the central cell to 40/8 = 5 options.)

A closer look at Algorithm C shows that we can often speed it up by stream-
lining the cases where an item has only one option left (the “forced moves”).
Exercise 450 presents this improvement, which we shall call Algorithm CT.
Algorithm C* has an even better scorecard than (119):

code (options, items, dancing cells dancing links

; s : ratio
name solutlons) runtime runtime

C (4320, 30461, 1566720) 41.6 Gu 51.9 Gu 0.802
D (2327, T7T+1, 16146) 124 Gu 20.3 Gu 0.612
H (1416, 196+93, 5224) 407.4 Gpu 613.4 Gu 0.664
K (343, 494288, 110968) 4.1 Gp 3.1 Gpu 1.313
L (352, 4840, 326721800) 814.7 Gu 1123.3 Gu 0.725
M (1514, 49442, 987816) 20.6 Gu 25.3 Gpu 0.814
o* (6966, 180+0, 16928) 7090.2 Gu 12732.0 G 0.557 (120)
Q (256, 32458, 14772512) 43.9 Gu 40.2 Gu 1.093
R (121, 114741, 401800) 2.9 Gu 0.8 Gu 3.515
S (3858, 342+90, 30258432) 125.9 Gu 170.5 Gp 0.738
U (2440, 7240, 31520) 119.1 Gu 194.5 Gpu 0.613
W (1212, 12+ 36, 352) 74 Gu 10.5 Gu 0.702
Y* (949, 2054276, 16) 23.6 Gu 23.2 Gp 1.018

*Dynamic variable ordering heuristics. All of the timings reported in (120)
were obtained by using the “minimum remaining values” heuristic, aka MRV, to
choose the item on which branching will occur. (This is the choice of 4 in step C2%
of Algorithm C*, or in step C3 of Algorithm 7.2.2.1C using exercise 7.2.2.1-9.)

At every node of the search tree, the MRV heuristic requires us to run
through all of the active primary items, in order to find one for which SIZE(:)
is as small as possible.* That might seem unattractive, because the traditional
goal of backtrack search is to minimize the amount of computation per node.
However, a good choice of ¢ often dramatically decreases the number of nodes.

* More precisely, step C2 of Algorithm C can terminate the loop early if it finds an item
with SIZE(4) = 1. Step C3 of Algorithm 7.2.2.1C can terminate early if it finds SIZE(:) = 0.

January 13, 2024

clique

Langford pairs
hexagon
MacMahon
triangles
chunky-octs
preprocess

16 queens problem
organ-pipe order
radio-color
Mycielski

sudoku solutions
transposition

solid pentominoes
pentacubes

word search puzzles
Y pentominoes
pentominoes+
symmetry breaking
forced moves
variable ordering heuristics—
minimum remaining values
MRV

backtrack search

66 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

In fact, the amount of time devoted to the MRV heuristic in (120) is compar-
atively small; it’s at most 8%, except in Problem R. In Problem L, for example,
only about 33 Gpu of the 814.7 Gu total running time is spent in step C2. In
Problems C, O*, U, and W the MRV time is completely negligible.

Thus it’s natural to wonder whether or not we should devote even more time
to the choice of an item on which to branch, by somehow improving on MRV.
Similarly, in a general CSP, it might be wise to have a better strategy than MRV
for choosing the variable on which to branch at each node of the search.

When MRV is not used, a binary branching strategy might well be more
appropriate than the d-ary branching that’s done by Algorithm C. Indeed, after
we’ve explored the subproblem in which item ¢ is covered by option o, our new
heuristic might well want to branch next on another item i’ # i, instead of
exploring all of the ways to cover 7 at this stage of the search. (See exercise 452.)

The binary branching strategy requires a reformulation of Algorithm C. Step
C4 of that algorithm hides item %, once and for all, before branching on any of
1’s options, because it knows that ¢ would have been hidden repeatedly later on
when each of those options was actually tried. Unfortunately, that optimization
is no longer legitimate. (Incidentally, we made the same optimization in step C4
of Algorithm 7.2.2.1C; but we couldn’t do it in Algorithm 7.2.2.1M.)

When we do binary branching it’s best to view the search tree from a slightly
different angle than before, with subtree pointers going south and east instead
of southwest and southeast:

7 : 7 V3 :as i
(31 : 0431)7&—@32 : as@i:] (121)

2

(This tree has basically the same structure as the computation in Fig.117; node «
of Fig. 117 corresponds to the root of (121), namely the node labeled ‘vy : a;’.)
Every branch that we take while solving a CSP is represented visually by a
node labeled ‘v : a’, where v is a variable whose domain contains the value a.
A downward branch leads to the subproblem for which v = a in the solution; a
rightward branch leads to the subproblem for which v # a. A contradiction, or
a solution, is represented by an unlabeled external node.

(If the CSP is actually an XCC problem, a label such as ‘i : 0’ would be more
appropriate than ‘v : @’, where i is an item for which o is an option.)

It’s convenient to speak of both “stages” and “levels” in the search tree that
arises during binary branching: A node is at stage s and level [if the path to that
node from the root involves exactly s downward branches and [total branches.
For example, node ‘vs : a3’ in (121) is at stage 0 and level 2. The child node
directly below a branch at stage s and level [has stage s + 1 and level [+ 1; the
other child of that node has stage s and level [+ 1. Stages are significant because
we always backtrack upward to the right child of a node in the previous stage;
after finishing a subtree we never backtrack leftward to a node in the same stage.

January 13, 2024

branching variable, choice of
binary branching

d—ary branching

stages

levels

7.2.2.3 CONSTRAINT SATISFACTION: DYNAMIC VARIABLE ORDERING 67

Of course the search tree doesn’t really appear inside a computer! It exists
only in our minds, as a mental model by which we try to understand the steps
that a computer takes while solving a CSP. However, when the computer is
currently operating in stage s, its data structures do physically record enough
information to resume work on each of the s subproblems in prior stages.

A detailed reformulation of Algorithm C*, using the framework of binary
branching rather than d-way branching, appears in the answer to exercise 455,
where it is presented as Algorithm B. When no forced moves are present, Al-
gorithm B chooses an item for branching by using an arbitrary user-supplied
heuristic function h, which returns a floating point value. The idea is to find the
active primary item for which A(7) is minimum, breaking ties if necessary by using
i’s internal code number (its position in SET). The special case h(i) = SIZE (i)
gives us MRV; but sometimes we can do much better, by gathering statistics
on the fly with respect to combinations of values that have proved to be good or
bad. If necessary we can allocate space in the SET array to gather such statistics,
just as we’ve already made room for LNAME, RNAME, POS, and SIZE in Table 3.

An ideal heuristic function will be relatively easy to compute, while keeping
the search tree as small as possible. Delicate tradeoffs are involved; hence it’s
not surprising that dozens of heuristics for dynamic variable ordering have been
proposed. We shall consider two that are particularly appealing because of their
simplicity and their effectiveness in a variety of situations.

The first significant alternative to MRV was introduced in 2004 by F. Bousse-
mart, F. Hemery, C. Lecoutre, and L. Sais [European Conf. on Artificial Intel-
ligence 16 (2004), 146-150], who called it a “conflict-directed heuristic.” When
stated in XCC terminology, their idea is to maintain a dynamic weight, WT(7), for
each primary item . We start with WT(¢) < 1; then we set WT(2) < WT(2) +1
whenever we’re forced to backtrack when ¢ has lost its last remaining option. In
this way the items that are most difficult to handle will tend to get the highest
weight, and the following heuristic function suggests itself:

h(i) = SIZE(i) /WT(). (122)

Boussemart and his coauthors explained their heuristic by considering an
academic yet instructive problem that involves queens and knights: “Place eight
queens and five knights on a chessboard in such a way that (a) no two queens
are in the same row, column, or diagonal; and (b) the knights are connected by
a cycle of knight moves.” In other words, the queens must satisfy the conditions
of the classical 8 queens problem, and the knights must form a 5-cycle.

This queens-and-knights problem clearly has no solution, because knight
moves cannot form a cycle whose length is odd. But the MRV heuristic is a
terrible way to establish unsatisfiability! Each queen has at most 8 options, while
each knight has more than 50; the algorithm will therefore place all of the queens
before trying to do anything with the knights. Laborious trials will show that
five knights cannot coexist properly with the existing queens, and the algorithm
will go back to reposition the queens. Eventually the fact that five knights can’t
make a cycle will be re-proved 92 times, once for every valid queen placement.

January 13, 2024

search tree

forced moves

heuristic function A
internal code number
MRV

tradeoffs

Boussemart

Hemery

Lecoutre

Sais

conflict-directed heuristic
weight

cycle

8 queens problem
queens-and-knights problem

68 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

When Algorithm B is applied to the queens-and-knights problem using
heuristic (122), it soon gives high weights to knight placement. Consequently
it needs to discover the 5-cycle failure ounly five times instead of 92 (see exer-
cise 460), and it’s able to prove unsatisfiability after about 759 megamems of
computation. By contrast, the MRV-based Algorithm C* needs 7.9 gigamems.

We shall call the heuristic (122) ‘WTD’, meaning “weighted,” in order to
have a convenient three-letter counterpart to the name ‘MRV’.

Of course the queens-and-knights problem has been specially contrived so as
to make WTD look good. But WTD often handles “real” instances very nicely
too. For example, MRV takes 23.6 Gpu to solve Problem Y* of (120), but WID
needs only 6.6 Gu. Even better is Problem H, where WTD makes a spectacular
improvement from 407.4 Gu to 19.6 Gu! It makes small gains also in Problems
K and M. But WTD is slower than MRV in the other nine problems considered
in (120); for example, it needs 1080.5 Gu, not 814.7 Gu, to solve Problem L.

Boussemart, Hemery, Lecoutre, and Sais originally defined their heuristic
for general CSPs, not for the special case of XCC problems. They associated
a weight with each constraint; then the weight of a variable v was the sum of
the weights of all constraints that contain v and at least one other unassigned
variable. For technical reasons they called their heuristic “dom/wdeg.”

The second heuristic we shall consider is called ‘FRB’, meaning “failure rate
based.” It’s sort of dual to WTD: When a trial assignment to item ¢ causes the
option list of another item i’ to be wiped out, WTD increases the weight of i’; but
FRB increases the failure rate of i. This idea was pioneered by H. Li, M. Yin,
and Z. Li [LIPIcs 210 (2021), 9:1-9:10], whose paper also introduced several
other methods and gave a historical survey of variable ordering heuristics.

To implement FRB, we maintain two new quantities FR(z) and TRY(z) for
each primary item 4, where FR(7) is initially 0.5 and TRY(¢) is initially 1. After
trying to cover item i with one of its options o, we set TRY (i) <— TRY (i) + 1 and

FR(4) — FR(:) /TRY (é), if nonfailure;

FRG) = {FR(i) + (1.0 — FR(3))/TRY (i), if failure; (123)

here “failure” means that some primary item i’ not in o has lost its last option,
causing us to backtrack. The FRB heuristic function for branching is then

h(i) = SIZE(i)/FR(i). (124)

(Like MRV, it tends to help us “fail early” in a search, rather than later.)

By definition, we have TRY (i) = 2 just after the first time we try to branch
on ¢; and the failure rate FR(7) is either 0.25 or 0.75. Later, after the second
try, we’ll have TRY (i) = 3 and FR(4) € {0.1666...,0.5,0.8333...}. In general,
after the mth attempt to branch on i, TRY (i) will be m + 1 and FR(7) will be
in the set {2ml+2, 2nf+2, cee gzi; , an odd multiple of ﬁ Formula (123) is
designed to preserve accuracy in the floating point calculations.

It’s a bit of a surprise that FRB does not do well on the queens-and-knights
problem: It needs 11.0 Gy, compared to 7.9 Gu with Algorithm C*. (See also
exercise 465.)

January 13, 2024

WTD

weighted
Boussemart
Hemery

Lecoutre

Sais

dom/wdey
failure rate based
Li

Yin

Li

historical survey
failure

fail early

floating point calculations

7.2.2.3 CONSTRAINT SATISFACTION: MAINTAINING XCC SUPPORTS 69

But FRB really shines on quite a few “real” problems. For example, it solves
problem Y* of (120) in only 2.6 Gy; that’s much better than the 6.6 Gu achieved
by WTD, which was already a big improvement on MRV. Here are the complete
scores, on all thirteen of the benchmark problems that we’ve been considering;:
code (options, items, MRV WTD FRB winner

name solutions) runtime runtime runtime

C (4320, 30+61, 1566720) 41.6 Gu 543 Gu 45.6 Gu MRV

D (2327, 77+1, 16146) 124 Gp 213 Gp 128 Gy MRV

H (1416, 196+93, 5224) 4074 Gu 196 Gu 348 Gu WTD

J (264, 144+0, 1) 50.3 G 0.8 Mp 1.9 My WTD

K (343, 494288, 110968) 4.1 Gp 2.7 Gpu 28 G WTD

L (352, 4840, 326721800) 814.7 Gu 1080.5 Gp 1126.1 G MRV

M (1514, 49+42,987816) 206 Gu 19.1Gu 81 Gu FRB

O* (6966, 180+0, 16928) 7090.2 Gu 8363.8 Gu 6104.5 G FRB (125)
Q (256, 32+58, 14772512) 439 Gu 66.6 Gu 656 Gu MRV

R (121, 114741, 401800) 29 Gu 3.3 Gu 3.5Gu MRV

S (3858, 342+90, 30258432) 125.9 G 149.9 G 147.5 Gu MRV

U (2440, 7240, 31520) 119.1 Gp 189.1 Gp 124.8 G MRV

W (1212, 12+ 36, 352) 774Gy 103Gp 92 Gp MRV

Y* (949, 205+ 276, 16) 236 Gu 6.6 Gu 26 Gu FRB
Here MRV means Algorithm C*; WTD and FRB are variants of Algorithm B.

This list includes also a fourteenth problem, Problem J, which isn’t really
real: Problem J is the toy problem that we get by taking 24 independent copies
of the options 7.2.2.1-(92), for which MRV has “bad focus.” (The corresponding
runtime for dancing links is 27.4 Gu.) It illustrates the fact that WTD and FRB
both help to maintain a good focus.

*Maintaining XCC supports. All of the results of (125) were obtained by using
forward consistency to prune the search: Whenever an option o was included in a
partial solution, all options o’ that were incompatible with o were excluded from
the remaining subproblem. Some of those problem instances could have been
solved with a much smaller search tree, if full domain consistency had been used
to look ahead further at each step. For example, the 461-meganode tree that’s
implicitly traversed by the FRB solution of Problem O* could have been reduced
to only 7.2 meganodes — a 64-fold reduction! But the extra time needed per node
to maintain DC in that problem would have more than canceled the advantage
of fewer nodes; the total runtime would have risen from 6.1 Ty to 7.3 Tp.

There are, of course, classes of difficult problems for which DC maintenance
does give a winning strategy, and we naturally want to solve those problems as
efficiently as we can. Algorithm S below achieves that goal, by adding further
data structures and mechanisms to the dancing cells technology.

Recall from (g2) that we write o || o' when options o and o' of an XCC
problem are compatible. It means that o and o' are either equal or they have no
items in common, except for secondary items with identical nonnull colors.

In order to maintain DC, we must remove an option o from consideration
whenever the addition of o to the current partial solution would cause some
active item ¢ ¢ o to lose all of its current options.

January 13, 2024

benchmark problems
dancing links

focus

forward consistency
incompatible
domain consistency
compatible

70 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

A nice way to understand the task at hand is to imagine a giant “support
matrix” S[o,], which has one row for every active option o and one column for
every active primary item ¢. If o is one of i’s options (that is, if i € 0), we set
Slo, 1] to the special symbol #. Otherwise S[o,i] should be some option o' such
that o || o' and i € o'. Such an option is a support for o and ¢, namely a witness
to the fact that option o can appear in a solution without wiping out the domain
of item ¢, which is the set of ¢’s available options. It’s easy to see that a set of
XCC options is domain consistent if and only if there exists a support matrix S
for which all of the non-# entries S|o,] are appropriate options o'.

For example, let’s consider again the small XCC problem (113), with its
primary items {p, q,r} and secondary items {x,y}. To make it more interesting,
we shall add an additional option ‘r y:A’. Then we can almost — but not quite —
construct a support matrix for the resulting six options:

p q r
00 ‘pgqxy:d # # 19 ‘ry:A’
05 ‘prx:Ay # 13 ‘qx: & #
10 ‘p x:B’ # 16 ‘r y:B’
(126)
13 ‘qx:& 05 ‘prx:Ay’ # 05 ‘prx:Ay
16 ‘r y:B’ 10 ‘p x:PB’ 13 ‘qx: & #
19 ‘ry: & 10 ‘p x:PB’ 13 ‘g x:& #

(Each option has been given a two-digit identifying number, for convenience,
based on its position in Table 3. Thus we can speak of options {00, 05, 10, 13,
16,19} instead of spelling them out.) We have, for instance, S[05,q] = 13; and
13 is indeed a support for (05,q) because 05 || 13 and q € 13.

Unfortunately, (126) contains an unavoidable “hole” in position S[10,q].
There is no option compatible with 10 that contains q. Therefore the options
aren’t domain consistent; we must delete option 10 from the domain of p.

Deleting an option is called “purging”; it makes that option inactive.

After 10 has been purged, we cannot use it in the support matrix. So S[19, p]
has to be changed. No problem: We can set S[19, p] < 00.

But S[16,p] must also be changed; and that’s impossible. Hence option 16
must also be purged. This leaves us with a valid S, establishing DC:

p q r
00 ‘pgqxy:¥d # # 19 ‘ry:A’
05 ‘prx:Ay # 13 ‘qx:& #
13 ‘g x: & 05 ‘prx:Ay’ # 05 ‘prx:Ay (27)
19 ‘ry: & 00 ‘pgxy:A 13 ‘qx:& #

January 13, 2024

support matrix
domain
purging

7.2.2.3 CONSTRAINT SATISFACTION: MAINTAINING XCC SUPPORTS 71

Algorithm S doesn’t actually represent the support matrix directly; it repre-
sents the inverse function instead: For each option o', we maintain a list of all the
pairs (0, 14) for which S[o,i] = o'. This list is called the trigger stack of o', because
we use it to maintain the support conditions. If option o' becomes inactive for
any reason, thereby leaving one or more holes in S, its loss will trigger a series
of events that will refill those holes, one by one.

Each option o also has a fizit stack, containing all pairs (¢o',) for which the
event (o,7) has been triggered by o’ and the corresponding hole is still unfilled.

There’s also a queue @, containing all options whose fixit stack is nonempty.

In (127), for example, the trigger stack of 13 is (05,q) (19, q); all fixit stacks
are empty, and so is). At this point the algorithm might want to consider the
subproblem in which option 13 is removed; that would push (13, q) onto the fixit
stacks of 05 and 19, also inserting 05 and 19 into). The hole in 05 can’t be
filled; therefore we’ll have to purge option 05. (Its trigger stack (13,p) (13,r)
won’t trigger any new events, because option 13 is no longer active.) To fill the
hole in 19, we implicitly set S[19,q] « 00, by pushing (19,q) onto 00’s trigger
stack. The queue is now empty; hence we’ve established DC for {00, 19}.

The support matrix is huge. But fewer and fewer portions of it are relevant
as we get into deeper and deeper levels of the search, because we need supports
only for the active options and the active items.

Suppose we’re currently operating in stage s, having chosen mutually com-
patible options ¢, ..., ¢s to be part of a solution. Then the set I of currently
active items is the set of all items that don’t appear in ¢; U---Uc¢s. (And that’s
the same as the set {ITEM[k] | 0 < k < ACTIVE}.)

The set Oy of currently active options is a bit trickier to characterize. Let
O_1 be the set of all options that were present in the original problem. Algo-
rithm S will begin by reducing them, if necessary, to O, which is the largest
subset of O_; that is domain consistent, and it will enter stage 0. And O, for
r > 0, will be the set of all options that were active when we most recently chose
¢r and entered stage r. As we continue to work in stage r without backtracking
to a previous stage, the set O, begins as O"'* and gradually shrinks as we return
from exploring fresh choices of ¢,.4.1. This leads to an interesting dynamic nested
structure when we’re currently in stage s:

O_1 D208 D0y D0M D0, >---D0M D 0. (128)

Here every set 0" and O, is domain consistent, for 0 < r < s.

An option can become inactive in four different ways: It can be (i) chosen,
that is, ¢, for some r; or (ii) blocked, that is, incompatible with ¢, when ¢, was
chosen; or (iii) removed, that is, no longer ¢,11 when backtracking to stage r; or
(iv) purged, that is, taken out of consideration because it has no active support.
(Forward consistency deactivates options only in the first three ways.)

Every option is assigned an “age” whenever it is deactivated. Option ¢, and
any options that it blocks get age 2r—1; when ¢,y is removed after backtracking,
its age decreases from 2r + 1 to 2r; and purged options inherit the age of the
most recently deactivated option. Options of O_; \ OiPi*) which were purged at

January 13, 2024

trigger stack

fixit stack

queue

active items and options
domain consistent
chosen

blocked

removed

purged

Forward consistency
age

72 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

the beginning before entering stage 0, have age —1. Consequently
Or—1 = {o | AGE(0) > 2r — 1},

- for 0< 7 <s,
O = {o | AGE(0) > 2r}, R (120)

if we regard AGE (0) as infinite when o is currently active. (See exercise 472. The
ages of active options are not actually stored in memory.)

Most of the work of Algorithm S is done by two subroutines, opt_out(o)
and empty_q(), which are presented in exercises 476 and 477 as Algorithms O
and E, respectively. The task of opt_out(o) is to deactivate a given option,
possibly leaving holes in the support matrix; if holes do appear, their locations
are recorded in @ and the fixit stacks. The task of empty_q() is to fill all
of the remaining holes. Algorithm E might call Algorithm O as a subroutine,
but Algorithm O never calls Algorithm E. Either algorithm might fail, if a
contradiction is detected; in such a case it will terminate unsuccessfully, after
repairing any inconsistencies that may have arisen in the data structures.

The main point of interest, with respect to these subroutines, is that a naive
approach to Algorithm O turns out to be much too slow, because the trigger
stacks are full of irrelevant information about inactive items and options. (The
support matrix for a problem with M options and N items has nearly M N
non-# entries; hence the average length of each trigger stack is nearly N.) The
remedy is to sort the trigger stacks by age of their entries, thereby making it
possible to avoid looking at unimportant data about various supports that are
known to be OK. This requires a rather elaborate mechanism, because partial
re-sorting is constantly necessary as options change their age. The good news is
that we don’t have to worry about undoing changes that were made to S; any
support, S|o, i], remains a support when we backtrack. The resulting improved
procedure, Algorithm OT, is a marvel to behold (exercise 482).

Here now is the chef-d’ceuvre for which we’ve been preparing ourselves:

Algorithm S (XCC with supports). This algorithm solves the same problems as
Algorithm C; but it “looks ahead” by purging unsupported options that cannot
be part of a solution. It uses auxiliary arrays zoz1 ... T, Yol - - - Y13, dods ... dr,
TRAIL, and LS as in Algorithm B, as well as linked lists for the special data
structures described in exercise 476. Also SS[s] for 0 < s < Ty. Variable A
denotes the current age.

S1. [Initialize.] Perform step C1 of Algorithm C, ensuring also that the first
item of every option is primary. Set LAST to the final value of z in Algo-
rithm I (exercise 439). Set TRIG(0) < FIX(0) « 0 for every option o; also
STAMP ¢ SSTAMP < 0, s « [+ —1. Perform Algorithm A (exercise 478)
to establish domain consistency. Terminate if it detects inconsistent input;
otherwise use exercise 479 to tidy up the trigger stacks.

S2. [Enter new stage.] Set s < s+ 1; increase SSTAMP (see exercise 484); and
set SS[s] < SSTAMP.

S3. [Enter new level] Set ! < [+ 1 and LS[s] < [. Terminate with level
overflow if [> T' (there’s no room to store ;).

January 13, 2024

sort

undoing

To

first item of every option
stamping

domain consistency

7.2.2.3 CONSTRAINT SATISFACTION: BENCHMARK SCORES 73

S4. [Choose i.] Set i < ITEM[k] for some k with 0 < k < ACTIVE and
ITEM[kK] < SECOND. But if no such k exists, go to S8. The chosen i
need not minimize SIZE(7); however, if SIZE(¢) > 1, there must be no
forced move, that is, no active primary item with SIZE(7) = 1.

S5. [Trail the sizes.] Set ys < t and d; «+ SIZE(i). If d; = 1, go to S6.
Otherwise terminate with trail overflow if ¢ + ACTIVE exceeds the max-
imum available TRAIL size. Otherwise set TRAIL[t+ k] < (ITEM [k,
SIZE(ITEM[K])) for 0 < k < ACTIVE; then set ¢t < ¢t + ACTIVE.

S6. [Iry SET[i].] Set z; « SET[i] and A < 2s + 1. Use the algorithm
of exercise 486 to block all options incompatible with x; and to choose
option z;. Then call empty_q() (exercise 477), and return to S2 if successful.

S7. [Try again.] Go to S9 if d; = 1, otherwise to S10.

S8. [Visit a solution.] Visit the solution specified by nodes xygr;; for 0 < j <'s.

S9. [Back up.] Terminate if s = 0. Otherwise set s + s — 1, [« LS[s], and
repeat step S9 if d; = 1.

S10. [Untrail the sizes.] For y; < k < t, set SIZE(:") < s’ if TRAIL[k] = (', s").
Then set ACTIVE <t — ys, t < ys.

S11. [Remove z;.] Set A < 2s and 0ACTIVE < ACTIVE. Call opt_out(z;); go to
S9 if it fails. Call empty_q(); go to S9 if it fails. Otherwise go back to S3. 1|

The opt_out subroutine called in step S11 should use the improved Algorithm O™

that is described in exercise 482. (That’s the reason for SS and SSTAMP.)

Performance on benchmarks. “The proof of the pudding is in the eating,”
according to an ancient proverb. How well does Algorithm S work in practice?
Well, we can look first at the problems already considered in (119) and (125):

name best FC DC-MRV DC-WTD DC-FRB

C MRV,41.6 Gu,5.4Mv 109.2Gu,6.7Mv 126.6Gu,7.1 My 130.2Gpu,8.2Mv
D MRV,12.4Gpu,1.6 Mv 19.9Gp,0.2Mv 23.5Gu,0.3Mv 27.0Gu,0.3Mv
H wrTD,19.6Gp,32.5Mrv 137.4Gup,4.3Mv 312.6Gu,7.1Mv 397.4Gpu,7.3Mv
K MRVT,3.1G/,L,].0.6MI/ 28.1Gpu,3.1Mv 20.7Gpu,2.2Mv 96.8Gu,6.6 Mv
L MRV,814.7Gu,4.0Gr 7.0Tw,2.8Gr 8.0Tw,3.0Gv 12.5Tw,3.7Gv
M FRB,8.1Gu,15.7Mv 73.5Gp,10.4Mv 67.5Gu,10.3Mr 333.6Gp,19.3Mv
O FRB*6.1Tw461.5My 82Tu.7.1My 85Tw.9.6My 10.5Tp,10.1My (130)
Q MRV 40.2Gpu,193.0Mv 208.5Gu,121.0Mv 307.7Gp,137.8 My 384.7 G, 158.7 My
R MRV,2.9Gpu,1.6 Mv 4.4Gp,1.9Mv 4.6Gp,2.0Mv 49Gp,2.0Mv
S MRYV,125.9Gu,548.0Mv 2.7Tu,568.5Mv 7.5Tw,691.7Mrv 3.2Tu,667.8 Mv
U MRV,119.1Gu,17.1Mr 210.6Gu,1.7TMv 255.9Gu,2.2Mv 393.4Gp,2.8 Mv
W MRV,7.4Gpu,1.7Mv 12.0Gp,0.8Mv 18.5Gu,1.2Mv 27.0Gu,1.7TMv
Y FRB*2.6Gu,1.3Mv 7.7Gu,54.9Kv 4.5Gp,40.1Kv 5.8Gu,42.0Kv

Here ‘Gp’ stands for gigamems, as usual, while ‘Mv’ stands for meganodes —
one million nodes in the search tree. The number of nodes is the total number
of times that step S3 is executed (or an analogous step such as C3T or B10).
The first main column of (130) shows the shortest runtimes obtained with
algorithms that use only forward consistency checks;* the other columns show
various flavors of Algorithm S, using different heuristic functions in step S4.

* MRV refers to dancing links, Algorithm 7.2.2.1C, while MRV refers to dancing cells,
Algorithm C*; WTD and FRB refer to the corresponding heuristics in Algorithm B (see (120)).

January 13, 2024

MRV

forced move
stamping

GH

gigamems

Mv

meganodes

nodes

heuristic functions
forward consistency

74 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

Preprocessing by Algorithm 7.2.2.1P has been used for the FC versions of Prob-
lems O and Y, but not for any of the DC versions. (There are occasional instances
where preprocessing does turn out to be mildly helpful to Algorithm S, due to
quirks of fate when branching. However, they’re too rare to matter.)

One of the chief surprises in (130) is that FC sometimes gives a smaller search
tree than DC does (Problems C, R, S). Again, quirks of fate are responsible:
DC isn’t always helpful, and FC can make lucky choices. On the other hand,
DC makes an order of magnitude improvement in Problems H, O, U, and Y —
most notably in Problem O, where there’s a 65-fold reduction.

These statistics give us another reminder that there’s tremendous variability
between problems. The various ratios of mems per node in (130) are “all over
the map,” ranging from about 200 in the FC versions of Problems L, M, S to
more than 100,000 in the DC versions of Problems U and Y, and a million in
Problem O! The p/v ratios are roughly comparable for FC and DC in Problems
C, R, W; but DC expends more than 60 times as many mems per node as FC
does on Problems H, O, Y.

There seems to be only one thing consistently true about all thirteen of
the experiments reported in (130), namely that FC was always better than DC.
Sometimes it was marginally better (Problems D, O, R, Y); sometimes it was
spectacularly better (Problems L, S); and it always was the method of choice.

Of course that’s not the whole story! There also are tough problems that are
challenging for FC but amenable to DC, and it’s high time to look at them now:

code (options, items, best FC DC-MRV DC-WTD DC-FRB

name solutions) runtime runtime runtime runtime
A (18486, 30+110, 8) FRB'* 59.1 Gu 54.5 Gu 13.0 G 22.6 Gu
E (2536, 54+14, 89328) FRB*, 33.2 Gu 28.1 Gpu 55.6 Gu 62.3 Gu
F (7800, 814594, 1) WTD*, 10.5 Gu 158.3 Mp 139.1 My 149.5 My
G (576, 484506, 8388608) FRB, 41.7 Gu 96.3 Gpu 87.6 Gu 70.3 Gu
1 (20088, 81+72, 16) MRV™, 28.9 Gu 999.5 Mpu 1.1 Gu 1.0 Gu (131)
b ((545147697 1270—1(;66180,0433)) gk 717.4;1"[C‘}ﬂ 330§’TGﬂ 5133i 57 ((;}# 342 .37 TGﬂ
P 1 s +100, FRB* 1.4 Tu 0 Tu . m B3 Tu
T (2658, 29+338, 416) FRBY, 4.9 Tp 12.4 Ty 5.8 Tu 4.1 Tu
\"% (22000, 9420, 32620) FRBT* 112.9 Gu 65.7 Gu 73.8 Gu 81.0 Gu
Z (1104, 24+24, 575) MRV, 203.7 G 29.4 My 29.9 Mu 30.1 Mu

Here Problem A is part of the “alphabet blocks” challenge in exercise 7.2.2.1-
113, after all but one of the options for FIRST have been removed. Problem E
finds the all-interval 14-tone rows, using the XCC model of exercise 7.2.2.1-
103(b). Problem F solves the “fillomino 7” puzzle of exercise 413(b). Problem G
visits the slow growth permutations of order 24, using the options defined in
exercise 403. Problem I fits nine different small-and-slim nonominoes into a 9 x 9
box (exercise 7.2.2.1-302). Problem N solves Nick Baxter’s Square Dissection
puzzle (exercise 7.2.2.1-359). Problem P is a 10 x 10 case of the “prime queen
attacking” problem, discussed further below. Problem T comes from ‘Torto’
(exercise 7.2.2.1-112). Problem V finds all 4 x 5 word rectangles, using the 2000
most common 4-letter words of English together with WORDS (3000). And finally,
Problem Z is an artificial benchmark discussed earlier, the (23,24)-modstep
problem, which was designed specifically to make DC look good.

January 13, 2024

Preprocessing

mems per node
alphabet blocks
all-interval

tone rows

music

T-tone rows

rows of musical tones
fillomino

m

slow growth permutations
small-and-slim nonominoes
slim nonominoes
nonominoes

Baxter

Square Dissection
prime queen attacking
queen attacking

Torto

word rectangles
4-letter words

WORDS (3000)
5-letter words
modstep problem

7.2.2.3 CONSTRAINT SATISFACTION: BENCHMARK SCORES 75
Twelve FC experiments lie behind each row of (131), namely the appli-
cation of algorithms that we may call MRV, MRV, WID, FRB, WTD' FRBT;
MRV MRV* WTD* FRB*, WTD!* FRB™. The dagger after MRV indicates
dancing links, and the dagger after WTD or FRB indicates the d-ary variants in
exercise 466; an asterisk indicates preprocessing. (However, only six experiments
were needed for Problems G and Z, because preprocessing has no effect on the
options of those cases.) For example, the twelve scores for Problem A were

(202.1,168.8,98.9, 1653.7, 77.6, 94.6; 202.0+10.2, 168.8+10.2,
94.5+10.2,1729.3+10.2, 77.6+10.2, 48.9+10.2) G,

where 10.2 Gu was the preprocessing time. In this problem, FRB'* was a clear
winner and FRB* was a clear loser; WID! was a close second.
The biggest surprise in (131) was the result of Problem G, whose six scores

(2999.1, 5405.7, 918.2, 41.7, 1129.1, 539.9) Gu

testified to a tremendous victory for the FRB heuristic, placing it ahead of all
three variants of Algorithm S. Previous experiences with MRV methods had
suggested that FC couldn’t possibly do well with the options of Problem G.

DC was the champion, in all other cases of (131)— convincingly so, in
Problems A, F, I, N, P, and of course Z. However, method FRB* unexpectedly
turned out to be second best in Problems E and P.

Of all these instances, the most instructive is probably Problem P, which
is based on the “prime queen attacking problem,” proposed in 1998 by G. L.
Honaker, Jr., and solved for n < 8 by M. Keith that same year. [See Virginia
Chess Newsletter 1999 #1 (February 1999), 4-6.] The goal is to construct an
n x n knight’s tour, labeling the kth move with k for 1 < k < n2, and also to
place a queen on some cell of the board, in such a way that the queen attacks
as many prime numbers as possible. Here, for example, are solutions for n = 10

15283330130609509700 47104978670865767370 59645768716291087396
34311469104998050851 50794609047768716475 56676063 066972979209
27162932711207529996 45481180076603746972 65580370619007 1095 74
38357011684148950493 54514413420584994063 36556689020544 759893
17263740457203925356 19125306816041029700 19223704451411944376
36394467024742559491 52552043148398856239 54352017880146151299
25182346436673825754 21182382593261940196 21182338471613007742
22612001748558799081 56895815249386293835 34533287503928798481
19246386597665888378 17229188312633369528 31245148292685824178
62216075648784778089 90571625928730273437 52333025864940278083

in which a queen near the center attacks all 25 of the primes < 100. (Prime
numbers are shown in bold; 00 is equivalent to 100.) The first of these was
found by Jacques Tramu in 2004; the other two were found by the author in
2022 as he was writing the present section. The middle one adds a further
constraint, namely that the tour should be closed: cells 00 and 01 should be a
knight move apart. The rightmost one adds yet another constraint, suggested by
George Jelliss: Every odd-numbered cell attacked by the queen must be either

January 13, 2024

preprocessing

FC versus DC+
slow growth perms
prime queen attacking problem
Honaker

Keith

knight’s tour
queen

prime numbers+
Tramu

the author

reentrant knight’s tour, see closed

closed
Jelliss

76 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3
prime or 01. Both of these solutions were obtained with Algorithm S, using the
straightforward XCC formulation that’s discussed in exercise 490.*

(It’s fun to watch the knight as it springs from 01 to 02 to --- to 99 to 00
in these tours, because it must get perked up whenever it comes into prime-rich
territory, yet stay out of contact during a run of composite numbers.)

For Problem P we add further constraints, thus making the knight’s task
almost impossible: First, we require that every power of 2, as well as the primes,
must be attacked by the queen. (Thus, not only 02, but also 01, 04, 08, 16, 32,
and 64 must be hit.) Second, we require that 00 appears in cell (1,4), near the
top middle. Third, we require that the first eight digits of 7 appear in fixed
positions that make a nice pattern: 31, 41, 59, 26 must be in the respective cells
(4,2), (5,3), (6,4), and (7,4). Amazingly, this problem turns out to be solvable,
and it has exactly three solutions:

11349996710675947382 11349996710685947378 11349996797277946770
98371033009572837693 98371033009572798693 98371033009568717493
35129770071805748184 35129770071805847774 3512978005 7873766966
38093617320180859277 38093617320180759287 38093617320106659275
13163108690419788986 13163108690419888376 13163108810419026164
30391441027958872091 30391441028958812091 30391441180760632091
15424768596603905788 15424768596603905782 15424782598403905762
48294045266360235421 48294045266360235421 48294045268758235421
43462750672465526156 43462750672465526156 43462750832485528956
28494425645162552253 28494425645162552253 28494425865188552253

The options defined in exercise 490 aren’t actually good enough to carry
out an exhaustive search for all solutions to Problem P in a reasonable time,
even though this extension of the prime queen attacking problem is very highly
constrained. Fortunately, however, Peter Weigel has discovered a way to exploit
the fact that the graph of knight moves is bipartite, leading to a refined XCC
formulation that works considerably faster. Problem P therefore incorporates
his improved options, which are explained in exercise 491.

Incidentally, the surprising performance of method FRB* on Problem P can
be appreciated from the twelve scores that lie behind the result reported in (131):

(422.3,295.0,73.7,10.8, 50.4, 11.0;
29.8+.005, 21.2+.005, 2.7+.005, 1.4+.005, 2.2+.005, 2.0+.005) Tp.

We have, of course, only scratched the surface with respect to possible
heuristics; further developments are likely to lead to even better results.

*Sparse-set methods for MCC problems. Section 7.2.2.1 introduced a wide-
ranging generalization of XCC problems called multiple covering with colors, or
MCC for short. In an MCC problem we can, for example, insist that a particular
primary item must appear in exactly five of the chosen options, not in exactly one
option as in XCC. Each primary item ¢ has in fact a designated interval [u; . .v;]
of multiplicities, governing the number of times it must appear in a solution.

* Indeed, the middle one, obtained after 6.4 Tu of computation, was sort of “epic” for me:
It was the first time I’d ever solved a problem with DC methods that I couldn’t solve with FC!

January 13, 2024

composite numbers

Weigel

bipartite

MCC-

multiple covering with colors

XCC

7.2.2.3 CONSTRAINT SATISFACTION: BENCHMARK SCORES 77

Of course MCC problems can be enormously difficult, even harder than XCC
problems. But we learned in Algorithm 7.2.2.1M that dancing links technology
can solve lots of important examples. That algorithm incorporates an additional
dance step called “tweaking,” 7.2.2.1-(69), which can be viewed as a way to
switch from the d-way branching of Algorithm 7.2.2.1C to binary branching.

Filip Stappers demonstrated in 2023 that MCC problems are amenable also
to dancing cells technology. In fact, he extended Algorithm B to Algorithm M
(see exercise 495), which usually outperforms the algorithm of Section 7.2.2.1(!).

Let’s pause a moment to define MCC problems more formally. We’re given
a set O of options, each of which is a set of items. Items are either primary or
secondary; secondary items have colors. An interval [u; . .v;] is specified for every
primary item ¢, where u; < v; and v; > 0. Two options are compatible if their
secondary items are colored in the same way. A solution is a subset S C O of
mutually compatible options, for which each primary item ¢ occurs in at least u;
and at most v; of S’s options. Every option must include at least one primary
item. An XCC problem is the special case where u; = v; = 1 for all i.

(It often happens that a particular color occurs only once with a particular
item, in the entire set O. Such unmatchable colors are conventionally left blank,
instead of being given an explicit name. Thus, if secondary item ¢ is blank in
two different options, those options aren’t compatible.)

The design of Algorithm M, like its precursor Algorithm 7.2.2.1M, is es-
sentially recursive. We choose, in some fashion, an option o € O, and make a
two-way branch: Either o € S or o ¢ S. Each branch reduces our job to an
MCC subproblem that’s simpler than the original one. Eventually we get to a
subproblem that is obviously solvable (because O = () and all items are properly
covered), or a subproblem that obviously has no solution (because some primary
item ¢ has fewer than u; remaining options).

As in Algorithm C above, we let SIZE (i) denote the number of options that
contain item ¢ in the current subproblem. And as in 7.2.2.1-(72), we maintain
auxiliary quantities SLACK (i) and BOUND(z), where

SLACK(Z) = v; — u; and BOUND (z) = v;. (132)

The value of SLACK(¢) remains unchanged throughout the computation; but
BOUND (2) decreases by 1 whenever we’ve included an option containing ¢ into the
partial solution S. (This policy means that we’ll be working on subproblems for
which u; < 0, whenever the current upper bound v; = BOUND (i) has become less
than SLACK (7). But a negative lower bound doesn’t cause any trouble.)

The input to Algorithm M is a list of the given problem’s items and their mul-
tiplicities, followed by the problem’s options. It might turn out that SIZE(:) =0
for some item ¢, namely that ¢ doesn’t show up in any of the options; that makes
the specifications unsatisfiable if ¢ is primary and u; > 0. But otherwise such a
scenario is perfectly legitimate, and we simply make ¢ inactive, hence invisible,
in such cases. Algorithm M is careful to ensure that SIZE(4) remains nonzero
for all other items ¢, throughout the rest of the computation.

January 13, 2024

dancing links
tweaking

d—way branching
binary branching
Stappers
dancing cells
options

items

primary
secondary

colors
compatible
XCC problem
recursive
branching—

SLACK field+

78 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

How do we choose an option o on which to branch? Algorithm M follows the
lead of Algorithm B, and chooses a primary item, i, on which to branch. Then
o is SET[i], the first option in ¢’s current list of options.

OK then, how do we choose a primary itemn ¢ on which to branch? Suppose,
for example, that i currently appears in SIZE(i) = 5 options {01, 02, 03,04, 05},
and that SLACK(z) = 1, BOUND(¢) = 4; the problem requires us to include either
three or four of those five options in the eventual solution S. The first option to
be included must therefore be either o or 0y or oz; we'll fail if we omit all three.
Hence we're faced with a 3-way decision about how to select the first option.

In general, as observed in exercise 7.2.2.1-166(a), we’re faced with a d;-way
decision, where

d; = SIZE(i) +1 — (BOUND (i) = SLACK(3)) (133)

and ‘=’ is the “monus operation,” ¢ ~y = max(z — y,0). Algorithm M takes
care to ensure not only that SIZE(¢) > 0, as mentioned above, but also that
d; > 0. One way to choose i is to adopt the MRV strategy, which selects an item
for which the branching degree d; is a small as possible.

Notice that a “forced move” arises when d; = 1, namely when SIZE(i) =
BOUND(z) — SLACK(¢), because SIZE(¢) > 0. This means that all SIZE(:) of
©’s current options must be included in S; otherwise we wouldn’t satisfy the
lower bound u; = BOUND (i) — SLACK(¢). (This analysis generalizes the forced-
move condition of XCC problems, where BOUND (i) = 1 and SLACK(i) = 0; in
Algorithms B and C, a move for ¢ was forced if and only if SIZE(:i) = 1.)

Full implementation details are in exercise 495. So let’s look at some results:

dancing dancing dancing dancing
code (options, items, links cells cells cells
name solutions) (MRV) (MRV) (WTD) (FRB)
A (811, 20240, 60568) 58.6 Gu 49.2 Gu 26.1 Gu 61.5 Gu
B (77, 9740, 1) 222.8 Gu 99.9 Gu 379 Gu 133.0 Gu
ct (4068, 132+0, 5347) 4607.2 Gu 4080.2 Gu 6774.6 Gu 2646.0 Gp
Dt (64, 6540, 4860) 4.2 Gp 174 Gu 17.7 Gu 17.7 Gu
& (1393, 6140, 10343858) 2267.3 Gu 2168.5 Gu 2344.3 Gu 2055.7 Gu
Ht (1335, 15461 720) 6.9 Gu 6.2 Gu 7.8 Gu 8.5 G

M (1504, 884102, 696) 199.4 G 159.0 G 200.9 Gu 120.9 Gu (134)
N (256, 2700+58, 71486) 1786.8 Gu 87.4 Gu 1345 G 140.6 Gp

P (2436, 173040, 112) 438.7 G 354.4 Gu 991.1 G 379.9 Gpu

Qf (3940, 65+126, 512) 284.0 Gu 138.0 Gu 138.7 Gu 138.7 Gpu

R (13052, 36+46, 6) 28.1 G 20.8Gu 206 Gu 17.3 Gu
S (4038, 13240, 98) 281.0 Gu 2974 Gu 408.7 Gu 183.9 Gpu
T (1740, 280+400, 8) 1081.4 G 1256.4 Gu 504.2 Gp 283.0 Gu
w (2071, 44740, 0) 6.0 Gu 47 Gp 30484 Gu 104 Gu
Xt (576, 115+128, 4) 550.2 Gu 361.3 Gu 158.9 Gu 411.0 Gu

Here Problem A is the “authentic” partridge puzzle (exercise 7.2.2.1-155) with
n = 6. Problem B covers an 8 x 12 grid with 10 two-dimensional balls of diam-
eter 4 (see exercise 498). Problem C covers the diagonals of a 10 x 10 grid
with the twelve pentominoes, in a nicely balanced fashion (exercise 7.2.2.1-
300(b)). Problem D is the classic 5-queens domination problem: 7.2.2.1-(64)
with (m,n) = (5,8). Problem & piles all twelve pentominoes on a 7 x 7 board,

January 13, 2024

monus operation
MRV

forced move
partridge puzzle
balls

disks
pentominoes
balanced
5-queens
domination
piles

7.2.2.3 CONSTRAINT SATISFACTION: TRACTABLE CSPS 79
allowing multiplicities [1..2] at the edges (see exercise 499). Problem # packs
eleven hypersolid pentominoes—all but the V—into a 2 x 2 x 3 x 5 hyper-
cube (exercise 7.2.2.1-352). Problem M enumerates the motley dissections of a
6 x 12 rectangle (exercise 7.2.2.1-369). Problem N solves the 16 queens problem
with no-three-in-a-line (see exercise 502). Problem P solves the Perfect Pack-
ing puzzle (exercise 7.2.2.1-350). Problem Q fits five Qg configurations into a
Q3o (exercise 7.2.2.1-162(i)). Problem R finds the 4 x 5 word rectangles with
fewest distinct letters, 7.2.2.1-(66). Problem S achieves central symmetry in the
blank regions of a balanced 10 x 10 pentomino pattern (exercise 7.2.2.1-300(c)).
Problem 7 discovers Tullis’s remarkable tapestry (see exercise 506). Problem W
is Wainwright’s original partridge puzzle (exercise 7.2.2.1-157) with n = 6. And
Problem X finds all ways to put exactly (12,12,4) words of lengths (3,4, 5) into
an 8 x 8 crossword diagram (exercise 7.2.2.1-111(a)).

The notation ‘D* means that Problem D was solved with the “sharp prefer-
ence heuristic” of exercise 7.2.2.1-10. (A primary item whose name begins with
is chosen for branching, unless some other primary item has a forced move.)
Similarly, ‘C™* calls for the analogous “nonsharp preference heuristic.” In each
problem we’ve used the preference heuristic that wins for dancing links.

The results exhibited in (134) are, of course, just the “tip of an iceberg,”
because many other strategies for choosing an option on which to branch are
clearly possible, and because many different flavors of problems exist. We can
expect that a portfolio of complementary techniques will continue to evolve, as
more and more people discover the wondrous world of MCC-solving.

Tractable families of CSPs.

* * *

Who knows what I might eventually say next?
i

* * *

January 13, 2024

hypersolid pentominoes
motley dissections

16 queens problem
no-three-in-a-line
Perfect Packing puzzle
word rectangles
balanced

pentomino

Tullis

tapestry

Wainwright

partridge puzzle
crossword diagram
sharp preference heuristic

nonsharp preference heuristic

80 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

A brief history. The notion of “constraint satisfaction problems” was intro-
duced and named by Richard E. Fikes in Artificial Intelligence 1 (1970), 27-120,
299. He implemented an elaborate system that generated a sequence of CSPs
from a given nondeterministic program in a fairly general language; the goal was
to solve one or more of the resulting CSPs. His system included more than a
dozen constraint manipulation methods by which it was possible to eliminate
variables and/or to reduce their domains and/or to discover contradictions.

Before the 1970s, a search for combinatorial patterns was generally specified
by prescribing one or more global constraints that the variables of a problem were
supposed to satisfy. A more nuanced understanding, by which such objectives
could often best be regarded as networks of local constraints, was then formulated
by Ugo Montanari in Information Sciences 7 (1974), 95-132.

Montanari limited his discussion to the special case in which all constraints
are binary. In other words, he considered n-tuples (z1,...,,) such that z; € D;
for 1 < j <n, and such that (z;,z;) € R;; for certain ordered pairs (4, j), where
each D; was a given finite set and each R;; C D; x D; was a given binary relation.
He’d been working with digitized pictures, containing n ~ 1000 pixel values z;,
where each domain D; had roughly 20 values. In such problems he expected
most of the constraints to involve geometrically adjacent pixels z; and z;, so
that only O(n) or O(nlogn) relations would need to be specified. His goal was
to reduce the search space by doing some sort of preprocessing to simplify them.

He required each relation R;; between a variable and itself to be a subset of
the identity relation « = y; but (curiously and unnecessarily) he allowed R;; and
Rj; to be independent of each other. His main contribution was the following
algorithm to refine the given network of relations:

For 1 <k <mn,set R;; < Rijj N Riyp R Ryj for 1 <i,j < n. (200)

Here each R;; is regarded as a |D;| x |D;| matrix of Os and 1s, and the matrix
multiplication is Boolean (namely ORs of ANDs, not sums of products). If any
R;; is changed by this process, the entire computation (200) is supposed to be
repeated, until no further changes occur. Finally a form of path consistency will
have been achieved (see exercise 602).

Algorithm (200) was inspired by an algorithm for all shortest paths due to
R. W. Floyd [CACM 5 (1962), 345], which in turn was related to the solution
of simultaneous linear equations by Gaussian elimination. It’s not very efficient;
notice, for example, that it may well constrain variables that were initially
unconstrained, because R;; might change from |D;| x |D;| to something smaller.
But it was a start, and it encouraged other researchers to find improvements.

Meanwhile, as we have seen, D. A. Huffman and M. B. Clowes had in-
dependently come up with an interesting system of constraints, both binary
and ternary, between adjacent lines in digitized images. Their ideas about line
labeling were considerably extended by D. L. Waltz, who showed how to deal not
only with the edges of polyhedra but also with the complex shadows that are cast
by such objects. [See his Ph.D. thesis (MIT report TR-271, November 1972),
349 pages; partially summarized in The Psychology of Computer Vision, edited

January 13, 2024

historical remarks—
Fikes

Montanari

pixel

identity relation

Os and 1s

Boolean matrix multiplication
path consistency

all shortest paths
shortest paths

Floyd

Gaussian elimination
Huffman

Clowes

line labeling

Waltz

shadows

7.2.2.3 CONSTRAINT SATISFACTION: A BRIEF HISTORY 81

by P. Winston (McGraw-Hill, 1975), 19-91.] He found that the propagation of
such local constraints led to enormous speedups in the recognition of scenes, and
his approach became known as the “Waltz filter.”

But let’s backtrack. Several years before computer scientists had been
attaching interesting symbolic labels to lines in scenes, combinatorial mathe-
maticians had been attaching interesting numbers to the vertices of graphs.
Alexander Rosa published an influential paper [in Theory of Graphs (Paris:
Dunod, 1967), 349-355], based on his dissertation written in 1965, that intro-
duced four kinds of labelings called a-valuations, #-valuations, o-valuations, and
p-valuations. Every a-valuation was a [-valuation; every (-valuation was a o-
valuation; every o-valuation was a p-valuation; and every p-valuation was enough
to show that the m edges of the underlying graph could cover all edges of the com-
plete graph Ky, +1 in rainbow fashion, when rotated cyclically as in Fig. 110(c).

S. W. Golomb began to think about graph labels independently, because he
wanted a convenient way to identify the terminals of communication networks
and the interconnections between them. He decided to call a graph “graceful”
if it had an ideal labeling by his criterion; and of course he told his good friend
Martin Gardner about these ideas. Martin wrote about “The graceful graphs
of Solomon Golomb, or how to number a graph parsimoniously” in Scientific
American 226,3 (March 1972), 108-112; Golomb’s own publication appeared at
about the same time in Graph Theory and Computing (Academic Press, 1972),
23-37. People soon discovered that Rosa’s f-valuations were exactly the same
as Golomb’s graceful labelings, and interest in the subject began to take off.

Rosa’s p-valuations eventually became known as “rainbow graceful” —a nice
coincidence, because “p” stands for both “rainbow” and “Rosa.”

The first significant algorithm for subgraph isomorphism was developed by
E. H. Sussenguth, Jr., motivated by queries to databases of chemical compounds
[J. Chemical Documentation 5 (1965), 36-43]. He considered induced subgraphs
of labeled structures, and based his method on supplemental labels that he called
“properties,” such as the length of a shortest cycle (if any) from a vertex to itself.
His implementation used bitwise operations to represent the sets of pattern and
target vertices that have various combinations of label values. Several years
later, J. R. Ullmann independently described bitwise techniques for finding non-
induced copies of a given pattern in a given target [JACM 23 (1976), 31-42].

Ullmann obtained domain consistency for binary constraints by repeatedly

usiig For each a € D;,

revise(R;j,x;) = ¢ if Dj & (row a of R;;) =0, (201)
set D; < D; \ a,

where D; and the rows of R;; are bit vectors. (Compare with (9o) and (200).)
Then J. J. McGregor, in Information Sciences 19 (1979), 229-250, observed that
another procedure is faster when |D;| < |D;l:

Set z < 0 and, for each b € Dy,
revise (R;j, x;) = { set z + z | (column b of R;;); (202)
then set D; + D; & .

January 13, 2024

Winston
propagation

Waltz filter

Rosa

Golomb

networks

Gardner

rainbow graceful
subgraph isomorphism
Sussenguth
chemical compounds
induced subgraphs
supplemental labels
bitwise operations
Ullmann

domain consistency
binary constraints
McGregor

82 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

The reduction of domains via forward consistency was called “preclusion” by
Golomb and Baumert in their classic paper on backtracking [JACM 12 (1965),
516-524]. It eventually became prominent under the name “forward checking,”
following an influential study by Robert M. Haralick and Gordon L. Elliott
[Artificial Intelligence 14 (1980), 263-313].

The more powerful notion of domain consistency was first formulated in gen-
eral by John Gaschnig [Proceedings of the Annual Allerton Conference on Circuit
and System Theory 12 (1974), 866-874], inspired by the work of Fikes and Waltz.
Gaschnig focused on binary constraints; Alan K. Mackworth extended the theory
to k-ary constraints in IJCAI 5 (1977), 598-606. (For technical reasons he called
it “arc consistency.”) Gaschnig made extensive tests, as part of his thesis work
at Carnegie-Mellon University [Report CMU-CS-79-124 (1979), Chapter 4], and
was disappointed to learn that the n queens problem was not solved faster when
domain consistency was maintained.

Dozens of algorithms for achieving and maintaining domain consistency
have been proposed since then. An excellent survey of those developments,
including also a discussion of many stronger notions of consistency, has been
prepared by Christian Bessiere, in Handbook of Constraint Programming (2006),
29-83. Algorithm D, which features time stamps and a queue of variables to
check, is based on a procedure by Christophe Lecoutre [Constraint Networks
(2009), §4.1.2]. Algorithm S incorporates ideas from Bessiere’s AC6 algorithm
[Artificial Intelligence 65 (1994), 179-190] and an algorithm that C. Lecoutre
and F. Hemery called AC3rm [IJCAI 20 (2007), 125-130].

All of the early programs for CSP solving were essentially based on back-
tracking with d-way branching. If it became necessary to backtrack after ex-
ploring the possibility that v = a, for some element a in the current domain
of a variable v, the only reasonable next step seemed to be to look at the case
v = a', for some other element of v’s domain, and so on, until all possible values
for v had been tried. The first person to realize that ‘v # a’ might lead to a
situation where it’s better to branch next on a variable w that’s different from v,
because ‘v = a’ had been supporting elements of w’s domain in a crucial way, was
apparently Daniel Sabin, who mentioned it at a computer conference in 1994 and
incorporated it into the design of ILOG Solver. [See page 147 of Jean-Charles
Régin’s Ph.D. thesis (Université Montpellier II, 1995), vii + 389 pages.]

Two conference papers by Daniel Sabin and Eugene C. Freuder [European
Conference on Artificial Intelligence 11 (1994), 125-129; LNCS 1330 (1997),
167-181], promoting the idea that domain consistency should be maintained
throughout the search for solutions, significantly influenced subsequent practice.

The effectiveness of a sparse-set representation for current domains was
pointed out in a 12-page note by V. le Clément de Saint-Marcq, P. Schaus,
C. Solnon, and C. Lecoutre, presented at a workshop on “Techniques for imple-
menting constraint programming systems” (TRICS) in 2013.

Reversible sparse bitsets were introduced by J. Demeulenaere, R. Hartert,
C. Lecoutre, G. Perez, L. Perron, J.-C. Régin, and P. Schaus in LNCS 9892

January 13, 2024

forward consistency
preclusion
Golomb
Baumert
forward checking
Haralick
Elliott
domain consistency
Gaschnig
Fikes
Waltz
binary constraints
Mackworth

-ary constraints
arc consistency
Tl queens problem
consistency
Bessiere
time stamps
Lecoutre
AC6
Hemery
AC3rm
backtracking
d—way branching
Sabin
ILOG Solver
Régin
Freuder
maintaining domain consistency
sparse-set
le Clément de Saint-Marcq
Schaus
Solnon
Lecoutre
Reversible sparse bitsets
Demeulenaere
Hartert
Lecoutre
Perez
Perron
Régin
Schaus

7.2.2.3 CONSTRAINT SATISFACTION: A BRIEF HISTORY 83

(2016), 207-223, as an important component of the Compact-Table data struc-
ture that’s discussed in exercise 427.

* * *

(more history to come, when more subsections are written)
I

* * *

Many other historical notes appear with the answers to particular exercises.
They can be located by consulting “Historical notes” in the index.

January 13, 2024

Compact-Table
data structure

84 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

EXERCISES 3SAT
. i i SAT as CSP
1. [01] Find all solutions to the CSP in (1) and (2). CSP represented as SAT
. . SAT tati f CSP

2. [21] Every 3SAT problem with m clauses on n Boolean variables can be regarded CSP iﬁ‘;ﬁgiiﬁtid“;’; ;cc
as a CSP with n variables, binary domains, and m ternary constraints. (See (3).) XCC representation of CSP

a) Instead, represent it with m variables, ternary domains, and binary constraints. g_irut;ls;a“ product

b) What CSP does your method construct from the 3SAT problem R’ in 7.2.2.2—(7)? nullary relations

¢) Reduce the number of binary constraints to 3m, by adding n binary variables. i:;nzm

d) What CSP do you get from 7.2.2.2—(7) now? honimorphism

cyclic graph
independent set
vertex cover
isomorphic
bandwidth
Eulerian trail

3. [18] Express the CSP of (1) and (2) as a SAT problem.
4. [15] Express the CSP of (1) and (2) as an XCC problem.
5. [M05] The Cartesian product D° of 0 copies of a set D consists of a single element,

the 0-tuple, denoted by e. Describe all of the possible nullary relations. Jeavons

» 6. [M16] When f is a function from a set A to a set B, textbooks of mathematics ;I;ltlzfions: I
traditionally say that A is the “domain” and B is the “range.” But when h is the general combinatorial problem
function in a CSP that takes i to x;, the literature of constraint processing traditionally GCP

generating function
Ising configurations
partition function
asymptotically

says that z; lies in the domain — not the range! Discuss.

8. [15] True or false: If there’s a homomorphism from the cyclic graph Cy to a given

graph G, that graph must contain either a 3-cycle or a 9-cycle. magnetization
. o . . ll-different traint
> 9. [M25] Is it hard to decide if there’s a homomorphism from a given graph to Cs? iryst‘aleijg‘zeci’,ﬁszzﬁi‘“

» 10. [25] Explain why the following problems are special cases of the GCP.

a) Does graph G = (V, E) have an independent set of size k? (Can we choose k
distinct vertices in G without selecting any neighbors?)

b) Does graph G = (V, E) have a vertex cover of size k7 (Are there k vertices that
“hit” every edge of G at least once?)

c) Are graphs G = (V,E) and G' = (V',E’) isomorphic? (Is there a one-to-one
correspondence between their vertices so that u—vin G <= h(u) —h(v) in G'?)

d) Does graph G = (V, E) have bandwidth k? (Can its vertices be given distinct
integer labels so that w — v implies |h(u) — h(v)| < k7)

e) Does the directed graph G = (V, A) have an Eulerian trail? (Can we “walk”
through it, traversing every arc exactly once?)

11. [20] (P. Jeavonms.) The k-tuple z1 ...z is said to be unlike the k-tuple z ...z} if
x; # «f for 1 < j < k. It’s convenient to write ‘@; ...z, || «1 ...} " when this is true.

Let R be a k-ary relation on a set V. What’s a “natural” way to understand the
significance of a homomorphism from (V,#) to (R, ||)?

» 15. [M12] Why is the general combinatorial problem (GCP) a special case of the CSP?

18. [HM34] Let G(z) = Gn(z) = Y. 2"™ be the generating function for energy,
summed over all 2"V one-dimensional Ising configurations ¥, as defined in (g).

a) Find a “closed-form” expression for G(z), when B is (i) 0; (ii) arbitrary.

b) What is the average energy per particle, 2G’(z)/(NG(z)), when z = ¢=%?

c) Express those quantities asymptotically as N — oo.

d) Also evaluate Gi(z) =3 012zF(¥), and the “average magnetization” %EQ’ZI %’“((zz)).

» 20. [20] Is the all-different constraint really necessary, when the crystal maze puzzle
(11) already has seventeen constraints like (12)? How about when there are just seven
constraints like (15)?

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 85

21. [21] Since the graph in (11) is symmetric, every essentially different solution to
the CSP models in the text will be found four times. Explain how to exploit symmetry.

22. [20] Express (11) as an exact cover problem with primary items {1,...,8,A,... ,H}.
23. [22] Express (11) as a CSP with only 7 variables. Hint: Use edges, not vertices.

26. [20] Solve the car sequencing problem of Fig. 100 and (16).

27. [15] Why can the solution to exercise 26 assume f < 5, in the text’s formulation?

28. [M25] The redundant constraints in (18) are asymmetrical: They all apply at the
left of the sequence, because they involve for. We could generalize them, and require

fwar + fagervr + -+ fo—vrge—ve 2 e — ([+1")pr
in the “middle” of the sequence, where I’ + 1" < [ry/pr]. Would that be a good idea?
30. [21] Express the car sequencing problem as an MCC problem without using colors.
31. [21] Lmprove the previous answer by incorporating the redundant constraints (18).

32. [20] Extend (16) to two new types of car: Model G has premium audio and heated
seats only; Model H is “loaded” with every feature ercept heated seats. Then the 30
cars {7-A,2-B,5-C,4-D,4-E,2-F,4-G,2-H} have overall requirements (ro,...,rs) =
(15,20, 10,12, 6), which are the maximum that could conceivably be installed in 30 cars.

Does that “tight” car sequencing problem have a solution? Answer this question
by applying Algorithm 7.2.2.1M to the MCC encoding of (a) exercise 30; (b) exercise 31.

33. [21] If we double all the requirements of exercise 32, we get a 60-car problem.
Unfortunately that problem has no solution. Is there, however, a solution to the 61-car
problem in which we manufacture one extra “Model 0” car (with no optional features)?

35. [M25] Inspired by the car sequencing problem, let’s say that a “(p/q)-string” is a
binary string in which no ¢ consecutive bits contain more than p 1s.
a) How many strings of length 10 are (1/2)-strings? (1/3)-strings? (2/3)-strings?
b) What is the maximum number of 1s in a (p/g)-string of length n?
c) Find the generating functions G,q(2) = >, 5 Cpgnz™ for 0 < p < ¢ < 5, where
Chpgn is the number of (p/q)-strings of length n.

36. [M35] A (p/q)-string with the maximum number of 1s is called eztreme.

a) Let epq(m) be the number of (p/q)-strings of length gm that contain exactly pm 1s.
Prove that epq(m) is the number of plane partitions that fit in a p X (g — p) x m
box (see answer 7.2.2.1-262). Hint: Find a one-to-one correspondence.

b) Let cpgn be the number of extreme (p/g)-sequences of length n. Express cpgn in
terms of the numbers in part (a).

39. [M21] (L. Szilassi, 1986.) Regard each of the following 14 triples ijk of digits
023, 134, 245, 356, 460, 501, 612, 054, 165, 206, 310, 421, 532, 643

as a cycle that contains the pairs ij, jk, and ki. Then every pair of distinct digits
i # j with 0 < 4,7 < 7 occurs exactly once. Show that those triples can be assigned
to points (z,y, z) in such a way that every triple containing digit j belongs to plane j,
where plane 0 is ‘z = 0’; plane 1 is ‘4y 4+ 2z = 200’; plane 2 is ‘2z +z = —280’; plane 3 is
‘b — by + Tz = —700’; plane 4 is ‘=5z + 5y + 7z = —700’; plane 5 is ‘—2x + z = —280’;
plane 6 is ‘—4y+z = 200’. Furthermore, the six triples containing j form the boundary
of a polygon that defines the face of a polyhedron, for 0 < 7 < 7.

January 13, 2024

symmetry
car sequencing problem

MCC problem
(p/q)-string
generating functions
extreme

plane partitions
Szilassi

polyhedron

86 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

» 40. [M28] Three-dimensional space can be discretized into little “cubies,” where cubie cubies
(i, j, k) consists of all points (z,y,z) withi <z <i+1,j <y <j+1,andk <z < k+1. i‘;sn"“;i‘;gf satisfaction sroblem
(Each cubie therefore shares a common face with 6 adjacent cubies, a common edge with uniformly random solufion
12 diagonally adjacent cubies, and a common vertex with 8 corner-adjacent cubies.) Whirlpool permutations
Given an m X n matrix (a;;) for 0 <¢ < mand 0 < j < n, its histoscape is the set VDoﬁr:::
of cubies (i, j, k) for 0 < k < a;;. (For example, Fig. 101(d) is the histoscape for (]3).) lexicographically smallest

up-up-or-down-down permutation
exponential generating function

» 41. [M27] Continuing exercise 40, how many of the 10°* 8 x 8 matrices whose entries ge}i}elratirllg functitor;.
satisfy 0 < a;; < 10 for 0 < 4,j < 8 have a histoscape that’s a 3VP? Hint: Formulate WHirpook permutations
this question as a constraint satisfaction problem.

42. [24] Extend the algorithm of the previous exercise so that it will find the kth
m x n histoscape whose entries satisfy 0 < a;; < ¢, given k, m, n, and ¢, when those
histoscapes are listed in some convenient order. Then, by choosing k at random, use
your method to find a uniformly random solution to the 8 x 8 problem.

How many 2 x 2 matrices with 0 < a;; < 10 have a histoscape that’s a 3VP?

> 43. [M26] Given an m xn matrix whose histoscape is a 3VP, what are its vertices, and
what polygons define its faces? (Design an algorithm that answers these questions.)

> 44. [M21] (Whirlpool permutations.) An m X n matrix has (m —1)(n—1) submatrices
of size 2 x 2. An m x n “whirlpool permutation” is an m X n matrix containing
mn distinct numbers, in which the relative order of the elements in each of those
submatrices is a “vortex” —that is, it travels a cyclic path from smallest to largest,
either clockwise or counterclockwise.
Thus there are eight 2 x 2 whirlpool permutations of {1,2,3,4}:

() Go) Go) (D) (D)) (o) ()

a) The 4 x 4 matrix at the right is not quite a whirlpool permutation. ,16 3 2 13
Fix the problem by interchanging two rookwise adjacent elements. 9 7 810
b) Prove that if any two rookwise adjacent elements of a whirlpool per- i 164 ig 111

mutation are interchanged, the result is not a whirlpool.

c) What is the lexicographically smallest m xn whirlpool permutation of {1, ..., mn}?

d) True or false: The histoscape of an m x n matrix with distinct elements is a 3VP
if and only if that matrix is a whirlpool permutation. (See Fig.101(d).)

e) If M exceeds the difference between the largest and smallest elements of a whirlpool
permutation, and if z is any number, prove that the matrix obtained after replacing
each element a;; by (a;; +) mod M is also a whirlpool permutation.

» 45. [M30] How many 5 X 5 matrices are whirlpool permutations of {0,1,...,24}?
Hint: An algorithm similar to that of exercise 41 can be used to count them.

> 46. [HM35] An up-up-or-down-down permutation of 2n —1 elements is a permutation
a1a32 . . . azn—1 for which asi—1 < a9k if and only if asr < ask+1, for 0 < k < n. Let U,
be the number of such permutations; for example, (Ui, ...,Us) = (1,2, 14,204, 5104).
a) Prove that Unt1 =Y, (3F) QrQn—r, where Qi = (k = 07 1: kUy).
) Find the exponential generating function U(z) = Ui z/1!+ Us2/3! + Us2®/5! +- - -.
c) What is the asymptotic behavior of U, correct to relative error (1 + O(1/4™))?
) The number of 2 x n whirlpool permutations is 2nU,. Prove this by establishing a
one-to-one correspondence between up-up-or-down-down permutations and 2 X n
whirlpool permutations of {0,...,2n — 1} with first element 0.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES

87

47. [21] Which of the following partially filled 5 x 5 matrices can be completed to a

whirlpool permutation of {1,2,...,25} in exactly one way?
113|579 3 (14{15|9| 2 3 14|15 3 14| |15
17 6 5 926 9 2 6
(1) 25 ;0 (i) ;0 (i) |5 ;0 (iv) 5 .
1125|22 1 21| |25
21416810 11]21|19 4 18| |22

» 50. [M25] The skeleton of a polyhedron is the graph formed by its vertices and edges.
Hence the skeleton of a 3VP is a cubic graph. Make sketches of four 3VPs, each of which
has the same skeleton as the 3-cube, but they differ in the number of concave edges.

51. [M20] The signed skeleton of a polyhedron is like its skeleton, but each edge is
also identified as being either concave or convex. In illustrations we can indicate a
convex edge by a solid line and a concave edge by a dashed line; for example, the

signed skeletons of the objects in answer 50 are

What is the signed skeleton of the Szilassi polyhedron?

52. [HM/6] Is there an algorithm to decide whether or not a given signed cubic graph

can be realized as the signed skeleton of some 3VP?

54. [HM20] Let vo be a vertex of X, where X is a 3VP. Let the three neighbors of vo in
the skeleton of X be {v1,v2,vs}, and let each v; have Cartesian coordinates (i, yi, z;).

a) Show that we can always choose the subscripts in such a way that

To Yo
T1 Y1
T2 Y2
T3 Y3

D(vo,v1,v2,v3) > 0, where D(vo,v1,v2,v3) = det

20
z1
z2
Z3

=

b) Let pi2 be the plane that contains vg, v1, and ve. What equation defines the set

of all vectors v = (z,y, z) that lie in p12?

c) What inequality characterizes all v = (z,y, z) that lie on the same side of p12 as v3?
d) Define p23 and p31 by analogy with pi12. Then the three planes pi2, p2s, ps1 divide
three-dimensional space into eight “octants”: Every point v lies on one side or the
other of each plane, unless it belongs to that plane. Devise a computer-friendly

way to number the octants 0 to 7 in octal notation.

e) Using your numbering scheme, what octant contains the “three-famous-constants”

point (7T7¢7’7) when vo = (0707 0)) U1 = (17 0)0)) V2 = (0) 1)0)7 v3 = (0)07 1)?

f) Same as (e), but vo = (0,0,0), v1 = (1,1,0), v2 = (0,1,1), vs = (1,0, 1).

» 55. [HM25] Continuing exercise 54, let € > 0 be smaller than the distance from vo to
any other vertex of X, and let X, be the interior of the closed set X N Sc(vg), where

Se(vo) = {v | v = woll < e} = {(z,,2) | (x = w0)” + (y = 90)* + (2 — 20)* < € }.

a) Explain how to decide precisely which of the edges from vo to v1, vz, and vs are
concave and which are convex, if told which of the octants are intersected by Xe.
b) Explain how to compute the angles between the pairs of planes that meet at vo.

January 13, 2024

pi as random
puzzle

skeleton

3-cube

concave edges
signed skeleton
convex edge
Szilassi polyhedron
realized
coordinates
octants

octal notation

pi as source

phi as source
gamma as source

88 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

57. [HM25] Using Cartesian coordinates (z,y, z), state quantitative conditions for the
notion of “general position,” under which we can be sure that a given 3VP X has a
well-defined HC picture after projection to the (z,y)-plane.

58. [M29] Derive Table 1 by considering the 2° = 256 different ways that up to eight
cubies can be placed into a 2 x 2 x 2 box.
a) Show that exactly 64 of those placements make a 3VP in which the center of the
box is a vertex.
b) Furthermore, if that 3VP is in general position, we’ll be able to see its central
vertex in exactly 32 cases.
c) Draw those 32 pictures, and verify that the different possibilities for V, W, and Y
junctions are precisely those shown in Table 1.
d) Also explain why Table 1 is correct for T junctions.

59. [10] If an HC network has respectively (¢,v,w,y) junctions of types T, V, W,
and Y, how many variables does the corresponding CSP have? How many constraints?

60. [18] The line labeling problem has also been modeled as a CSP in quite a different
way from (21) and (22): Instead of having one variable for each line, let there be
one variable for each junction. The domain of variable j is then either {1,2,3,4} or
{1,2,3,4,5,6} or {1,2,3} or {1,2,3,4,5}, depending on whether j has type T, V, W,
or Y; and j’s value represents the index of the legal labeling in Table 1. There’s one
constraint for each line between junctions.

a) What is the constraint for line ab of (20) in this scheme?

b)

c) What’s the answer to exercise 59, with respect to this model?

d) Which model do you think is better?

61. [15] Translate the line labeling problem (22) into an XCC problem.
62. [15] What standard labeling of Szilassi’s polyhedron differs from Fig. 104(b)?

How about the lines np and op?

64. [M20] If H is the HC network that corresponds to an HC picture, explain how to
construct the HC network HF that corresponds to the mirror image of that picture,
when H and H® both have the same junctions and the same oriented lines. Find a
simple relation between the line labeling problems for H and H%.

65. [M25] An HC network is called realizable if it corresponds to at least one actual
HC picture. Furthermore, that HC picture must not have a T junction whose collinear
lines both lie on the outer boundary. (Such a T cannot be the image of a 3VP in
general position. Notice that the line labeling problem for H is well defined regardless
of whether or not H can be physically realized.)
a) What is the smallest unrealizable HC network? Hint: It has three junctions.
b) Characterize all realizable HC networks whose junctions all have type V.
c) Find an HC network, consisting entirely of type W junctions, that is unrealizable
because it doesn’t define a planar graph.
d) Prove that every realizable HC network contains at least three junctions of type
V or W. Hint: Consider the boundary cycle of any connected component.
e) True or false: If the junction T'(a, b, c) in a realizable network is changed to either
W(c,b,a) or Y(a,b,c), the resulting network is still realizable.

66. [M/46] Is there an algorithm to decide whether a given HC network is realizable?

January 13, 2024

general position

HC picture
projection

HC network

XCC problem
Szilassi

mirror image
reflection of an HC network
realizable

planar graph
boundary cycle
connected component
decision problem

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 89

67. [22] Cover up the boundary of the HC picture

and watch the disconnected interior images as they jump in and out, before your eyes.
a) Show that this picture has only one standard labeling.
b) In how many ways can the boundary junctions be labeled consistently, without
regard to any of the interior junctions?
c) How many labelings are possible altogether, standard or not?

» 68. [M30] Let (joji---Jjq—1) be the boundary cycle of a realizable HC network.
a) For 0 < k < g, show that there are only six possible ways to define jy:

e ji = T(jr+1,Jk—1,7%), called case L; I o R
o ji =T (j, jr+1, k1), called case R; =’
® ji = V(Jjr+1,Jr—1), called case V;
® ji = V(jk-1, jr+1), called case A; Ve Ae
e ji = W(jk+1, 5%, Jk—1), called case W

: : g W & Y &
® ji =Y (Jet1,Jk, Je—1), called case Y. ’

(The subscripts in ‘jr+;” are to be understood mod g. The line j, — j;, in cases

L, R, W, and Y is called an “inner line,” although j; might lie on the boundary.)
b) What combinations of line labels for ji_1jk, jkjk+1, jxjr can occur in each case?
c) Design an efficient way to test whether any inner line label can be assigned more

than one value, when only the ¢ constraints of the boundary cycle are imposed.

69. [M23] The “smile of order n” is a realizable HC network S,, with 3n+2 junctions:

Sl:v, S2:v’ 83:M,

How many line labelings does S, have? How many of them are standard?
70. [16] In how many ways can the “bow tie” [>—<] be labeled?
71. [M22] Does a biconnected realizable HC network have a unique boundary cycle?

72. [22] Construct a realizable HC network that has a unique line labeling, although
it doesn’t have a standard labeling.

73. [HM39] Suppose each junction ji of a boundary cycle (joji ... jq—1) is V or A.
a) Let My = Aif jy =V and My = B if jy = A, where A= (}})and B= (', ')
are 2 X 2 matrices. Prove that the number of ways to label the boundary cycle
(joj1---Jq—1) is trace(MoM; ... My_1) + Lg, where L, is a Lucas number.
b) Show that 2F, < trace(APBY"P)+ Ly < 2L, for 0 < p < q. What p gives equality?

c) In fact, the number of labelings is between 2F; and 2L, in all cases.

74. [HM21] The twindragon fractal (see Fig. 1 in Chapter 4) can be approximated by
a sequence of polygonal paths T}, for n > 2, where T}, has 2" junctions:

T2:D’T3:87T4:E:§’TSZ%’T%:%’T%:%’TS:%,

January 13, 2024

standard labeling
smile of order
standard

bow tie
biconnected
standard

Lucas number
Fibonacci numbers
twindragon fractal
fractal

90 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

The clockwise path T}, turns left or right at step k and at step k 4+ 2" ! according as Jacobi symbol
the Jacobi symbol (52) is = —1 or +1, for 1 < k < 2"7'. (See exercise 4.5.4-23.) Penrose n-gon
; N squashed
In how many ways can T, be labeled? Hint: Use exercise 73. Reutersvird

76. [20] Combine a V junction, a W junction, and a Y junction in such a way that hexagonal grid . . -
linear equations and linear inequalities

the resulting subpicture cannot be labeled. (See (24) and (25).) impossible
Kirousis
Papadimitriou

.., are NP-complete
& @ @ @ decision problem
)))) R

a) What is the HC network for the Penrose n-gon?
b) In how many ways can the Penrose n-gon be labeled consistently?
c) Is the Penrose n-gon weakly realizable for any n > 37

77. [M25] The Penrose triangle, Penrose square, Penrose pentagon, Penrose hexagon,

78. [20] Explain how to obtain (32) as the projection of nine “squashed” cubes.
79. [M22] In how many ways can Reutersvard’s (32) be labeled (standard or not)?
80. [24] We can extend the idea in (32) to larger arrays of partially overlapping boxes:

(i) 52>
G
NASRSINST RN NY

.fv\'v AR \’
A
RE

(This is essentially a hexagonal grid, because each box can potentially overlap with six
neighbors.) How many standard labelings are possible for (i), (ii), (iii), and (iv)?

81. [23] The 36 boxes in the 6 x 6 hexagonal arrays of exercise 80 involve 85 pairs
(A, B) of adjacent boxes: 30 = 6-5 pairs in direction .1; 30 = 5-6 pairs in direction <;
and 25 = 5-5 pairs in direction 7. In every case we're allowed to specify either A < B
or A > B, meaning that A lies behind or in front of B in the image. Example (iv)
illustrates the fact that this relation need not be transitive.

Thus those 36 boxes might be depicted in 2%° different ways. However, it turns out
that the boxes are too close together to allow all possibilities: When boxes A, B, and C
are mutually adjacent, we cannot simultaneously specify A < B, B < C, and C < A.

a) In how many ways can those 85 relations be specified, without any such non-
transitive triplets? Hint: This is a CSP.
b) Generalize to m x n hexagonal arrays of boxes, for 1 < m < n < 10.

83. [M30] Let H be a labeled HC picture, whose junctions have known (z,y) coor-
dinates. Explain how to construct a system of linear equations and linear inequalities
that have a solution whenever H is the projection of some 3VP X in general position.

85. [22] Is the following HC picture impossible? (It uses the right half of (26), twice.)

86. [M25] (L. Kirousis and C. Papadimitriou, 1988.) Prove that it’s NP-complete to
decide whether or not a realizable HC picture can be labeled.

87. [HM/6] Is it decidable whether or not a given HC network is weakly realizable?

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 91

90. [15] If we change 6 to 7 in Fig.105(b), we get another graceful labeling, since the
edge labels 10—6 = 4 and 6 —3 = 3 become 10—7 = 3 and 7—3 = 4. Show that further
graceful labelings can be obtained by changing only the labels of vertices 13 and 14.
91. [M21] True or false: If graph G has k automorphisms, every graceful labeling of G
is equivalent to 2k — 1 others, under symmetry and complementation.

93. [21] To model the graceful labeling problem of Fig. 105 as an XCC problem,
we can introduce 18 primary items {1,...,18} for the edge labels, 18 primary items
{NH-MA, ..., GA-SC} for the edges, 13 secondary items {NH,...,SC} for the colonies, and

19 secondary items {ho,...,his} for the holders of vertex labels. These items are to
be governed by 18 - 19 - 18 = 6156 options, such as

‘6 PA-DE PA:3 DE:9 hs:PA ho:DE’,

namely one for each edge label d, each edge, and each way to assign labels j and k with
0 <j<k=j+d <18 to the endpoints of that edge. (The example shown covers edge
label 6 and edge PA-DE when PA is labeled 3 and DE is labeled 9.) Given those options,
Algorithm 7.2.2.1C needs about 90 gigamems to find the 641952 solutions.
a) Modify the model so that only the 160488 essentially different solutions are found.
b) Modify the model so that it solves the puzzle of Fig. 105(d).

94. [M21] The arrays L0, FIRST, NEXTL, NEXTH, NAME in (35) correspond to the labeling
in Fig.105(b). What arrays L0, ..., NAME' correspond to its complement, Fig. 105(c)?
95. [M20] (S. Golomb, 1972.) Complete the proof that K, is ungraceful when n > 5.
96. [25] Design a backtrack algorithm to find all the graceful labelings of P, as in (38).
97. [26] The search tree for graceful labelings of P, analogous to (38), contains 206
nodes, two of which are labeled 1738092 and 1809372. Those two nodes have identical
subtrees, because they both represent a partial path between 1 and 2 that lacks the
elements {4,5,6}. Modify the algorithm of exercise 96 so that it avoids such redundant
computations, by identifying nodes that are obviously equivalent. (Think of ZDDs.)
98. [M25] (M. Adamaszek, 2013.) Consider n points that all lie on a straight line L.

a) What’s the length of the longest path within L that doesn’t hit any point twice?

b) Prove that if p; ... p2m is a graceful permutation of {1, ..., 2m} with p2m = p1+m,

then por, > m for 1 <k <m.

c) Conversely, if p1 ... p2m is graceful and poy, > m for 1 < k < m, then p2m = p1+m.

99. [M30] Determine all of the essentially different graceful labelings of K11 ».

100. [M16] Prove that exactly one of the 4n! equivalent matrices (z;) that gracefully
label a KP graph K, 0P, has 0— (m — 1) and satisfies (40).

101. [16] Study Fig. 107. Why doesn’t appear in level 3 of that tree?

102. [21] Ifn > b, one of the branches in the search tree analogous to Fig. 107 will set
x12 = m and 22 = 0 at level 1, 30 = m — 1 at level 2, 242 = 2 at level 4 (and level 3),
and rs52 = m — 4 at level 5. What are the immediate descendants of that level-5 node,
if (a) r =27 (b) r =37

103. [M25] Explain why the exhaustive search for graceful labelings of K, O P,
illustrated for n = 3 in Fig. 107, performs essentially identical calculations for all
sufficiently large values of n, never finding a solution.

104. [20] Draw levels 0, 1, and 2 of the search tree for K30 Ps, analogous to Fig. 107.

January 13, 2024

graceful labeling
automorphisms
symmetry
complementation
XCC problem
symmetry breaking
puzzle
complement
Golomb

n
ZDDs
Adamaszek
longest path
graceful permutation
KP

92 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3
105. [46] Determine the number of graceful labelings of K, O Py for all n.
106. [20] Is it possible to prove that K3 O Pi7 is graceful by constructing a 3 x 17
matrix whose first row contains the first 34 digits of =7
107. [M24] Prove that K3OP, is graceful for all > 1, by constructing an appropriate
3 X r matrix whose top row is (0,m —2,4,m —6,8,...).
108. [46] Is K4OP, graceful for all r > 17
109. [M11] How many symmetries does a KC graph have?
110. [M18] For what n > 2 and r > 2 does Lemma O prove that K,0C, isn’t graceful?
111. [20] Does Lemma O tell us anything useful about KP graphs?
112. [20] A graceful square: Show that K40 Ky is graceful(!).
113. [12] Is every graph with four edges graceful?
115. [M24] A “random graceful graph” G}, can be based on m using the factorial
series o

W=3+;ﬁ, where 0 < ar < k.

The vertices are {0, ...,m}; the edges are 0 —m and ar —ar+m—k, for 1 <k < m.
a) Show that these integers ar are unique, and compute them for k < 20.
b) How many isolated vertices does G}, have, for m < 20?7 How many components?
c) Determine the chromatic numbers x(G7), ..., x(G%).

116. [22] Among the 16! graceful labelings with 16 edges, how many of them define an

n-vertex graph, for each n, after removing isolated vertices? How many are connected?

117. [22] Repeat exercise 116, but restrict the counts to bipartite graphs.

118. [22] Explain how to compute all possible graceful labelings of r-regular graphs
with m edges, given m and . What are the smallest such labelings when 2 < r < 87

119. [22] Continuing exercise 118, make a complete survey of all graceful labelings of
2-regular graphs with < 16 edges. How many such graphs are graceful?

120. [32] Continuing exercise 118, make a complete survey of all graceful labelings of
3-regular graphs (cubic graphs) with < 14 vertices. How many such graphs are graceful?

121. [46] Is every connected cubic graph graceful?
122. [40] Funfact: Exactly 12345 different graphs have at most 8 nonisolated vertices.

Study their gracefulness: How many of them are graceful? Which of them are uniquely
graceful? Which of them are mazimally graceful —graceful in the most different ways?

123. [28] A graceful labeling is called rooted if every edge has a vertex in common with
a longer edge, except edge m itself. For example, the first three graceful permutations
in (38) are rooted; but the other three are not, because edge 1 — 3 doesn’t touch any
of the longer edges 2—5, 0—4, 0—5.

a) Is the 13-colonies labeling in Fig. 105(b) rooted?
b) How many of the 160488 graceful labelings of that graph are rooted?
c) How many of the 16! labelings in exercise 116 are rooted?
d) Compute the number of rooted graceful labelings of P,, for n < 16.

124. [30] Find a connected graceful graph that has no rooted graceful labeling.

125. [35] Design an algorithm that finds all of the ways to label a given graph grace-
fully. Try to choose data structures that are as efficient as possible.

126. [29] (S. Golomb, 1972.) In how many essentially different ways can the vertices
and edges of (a) an icosahedron or (b) a dodecahedron be labeled gracefully?

January 13, 2024

™
KC graph
random graceful graph
m
™
factorial series
isolated vertices
components
chromatic numbers
isolated vertices
bipartite
r-regular graphs
2-regular graphs
3-regular graphs
cubic graphs
trivalent graphs
Fun fact
graphs, small
uniquely graceful
rooted
graceful permutations
13-colonies
n
data structures
efficient
Golomb
icosahedron
dodecahedron

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 93

» 127. [28] Design a randomized algorithm that’s able (with a little bit of luck) to
discover “miraculous” graceful labelings of a largish graph, such as the one in Fig. 106.

128. [24] Find all of the essentially distinct graceful labelings of (41).

129. [M30] (D. Anick, 2016.) To backtrack through all graceful labelings of free trees
on the vertices {0,...,m}, we can successively choose LO[k] for k=m, m —1, ..., 1,
in such a way that the edge LO[k] —LO[k] + k£ doesn’t produce a cycle in the graph-
so-far. We shall prove that the number of choices is superexponential, by showing that
there always are at least t;, choices for LO[k], where ¢, is suitably large.

At the moment we choose LO[k], the current graph has exactly k + 1 connected
components (possibly singletons). Let’s write x < y if vertices x and y belong to the
same component; also x = y if t modk = ymodk. Call r a “residue” if 0 <r <k,
and call it “bad” if x = y = r implies z < y. Say also that z is bad if x mod k is bad;
a component is bad if all its vertices are bad. Furthermore, “good” means “not bad.”

a) Show that there’s always at least one good residue.
) If there are g good residues, then ¢t > g.
) If there are G good components, then t;, > G — g.
) If K < m/2, a bad component contains at least two different bad residues.
)
)

o Ao T

Hence we may let ¢, = |(k +4)/3] when k < m/2.
When k > m/2 we may let t, =2+ |(m —k)/2|. Hint: Prove that if v < « + &,
there are vertices y < « and z > x + k such that y <z and z <z + k.

» 130. [HM25] (N. Elkies, 2002.) In the complete graph on z3

vertices {1,...,n}, assign the weight z4 to edge k — (k+d), (ﬂ

for 1 <k <n-—dand 1l <d < n, as illustrated here for Z1 {2@”}1
n = 4. This graph has n"~? spanning trees in general, by x2

exercise 2.3.4.4-22; and we can form the sum S(z1,...,zn—1) of the products of all
edge weights, over each of those trees. For example, when n = 4 we have

las)

3 2 2 2 2
S(w1,x2,w3) = @] +4xiw2 + 3T1705 + 3v1T3 + dT1 X203 + THT3,

because there’s one spanning tree that uses all three z1’s, and four that use two z’s and
an x», etc. Notice that [x1z2w3] S(x1,x2,23) = 4 is twice the total number of graceful
labelings of 4-vertex trees, since a labeling and its complement are both counted.

a) Express S(z1,...,Zn—1) as a determinant. Hint: See exercise 2.3.4.2-20.

b) Explain how to compute 7(n—1) = [21...Tn_1] S(Z1,...,To_1) in O(2"n®) steps.
131. [HM46] Determine the asymptotic value of the function 7(n) in exercise 130.

132. [21] The binomial tree T, has 2™ nodes {0,1,...,2" — 1}, rooted at 0, where the
parent of node z # 0 is node x & (x — 1). (See 7.2.1.3—(21).) If x = (xp-1...T1T0)2, let
l(x) = (ln=1...l1lo)2, where l;, = xo®- - -Dx. Show that these labels make T}, graceful.

v

133. [24] Continuing exercise 132, determine the exact number of essentially different
graceful labelings of T3 and T4. Also estimate that number for 75 and Ts.

136. [M23] Prove that the n-cube is graceful by means of the following labeling based
on Gray code and an auxiliary sequence 0 = a9 < a1 < a2 < ---: Let g(2k) and
g(2k + 1) be labeled ay and m — k — ay, respectively, where m = n2" 1. For example,

v = 000 001 011 010 110 111 101 100
I(v) ap 12—ag a1 1ll—a1 a2 10—az a3 9—as

when n = 3. (See 7.2.1.1—(4).) Assume that aznyr = azn +a, for 0 <r < 2",

January 13, 2024

randomized algorithm
miraculous

Anick

free trees
superexponential
components
Elkies

complete graph
spanning trees
complement
determinant
binomial tree
N-cube

Gray code

binary recurrence

94 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

a) Let V; be the vertices of the form ja, and let L; be the labels of the edges in G |V}, parallomino graph
for 0 < j < 1. (For example, when n = 3 we have V, = {000, 001,010,011} and grid
K skeleton
Lo = {12 — 2a0,12 —ao — a1,11 — 2a1,11 — a1 —ao}.) Express L; in terms of Lo. Q-graceful
b) What values of a1, a2, a4, as, ... make the labeling graceful? bipartg,’e
1
» 137. [M25] A parallomino graph (see exercise 7.2.2.1-303) has vertices (z,y) for inte- gz;;erﬁent
gers 0 <z <rands;, <y <t where 0 =59 <51 << 5,80 <t1 <---<tp, and ordered graceful labeling

near (v-labeling, see ordered graceful labeling

Sp+1 <t for 0 < k < r; edges go from (z,y) to (z+1,y) and (z,y + 1) when possible.

For example, the parallomino graph with r = 6, (so,t0) = (s1,t1) = (0,3),
(52:t2) = (1:4): (537t3) = (547t4) = (2:4)7 and (55:t5) = (SG:tG) = (474) can be
decorated with labels in two closely related ways:

Dlustration (ii) is in fact a remarkable graceful labeling, where the edges whose labels
are 1, 2, ..., 28 appear in strict order, from right to left and top to bottom!

a) How many vertices and edges does a parallomino graph have, in general?

b) Decipher the rule that connects illustration (i) with illustration (ii).

¢) Reverse-engineer the rule by which illustration (i) was labeled.

d) Can every parallomino be gracefully labeled, using these rules?

» 138. [M25] Let 1 denote m —I. A graph is a-graceful if its edges can be written

U0 — V0, U1 —V1,...,Um—1—Vm—1,

where uy +vp =k, 0 < up <1, and 0 < vy < m+1—1, for some [.
Here uj, and vy are labels of vertices in the graph. For example, the labels
PPOPPOT
@O EEHEE®®
show that K»oOPr is a-graceful; and a similar construction works for K,OP, in general.
a) Prove that an a-graceful graph is graceful and bipartite.
b) For which n is the cycle C,, a-graceful?
c) Prove that every a-graceful labeling has an “edge complement” in which edge k

becomes edge m+ 1 —k, for 1 <k < m.
d) Find a tree with seven nodes that’s not a-graceful.

139. [23] A bipartite graph with parts U and V has an ordered graceful labeling if it
has a graceful labeling such that [(u) < I(v) for every edge u—v withu e U, v € V.
a) Show that every a-graceful graph has an ordered graceful labeling.
b) Show that the non-a-graceful tree of answer 138(d) also has such a labeling.
c) Let G have m edges and an ordered graceful labeling. Prove that m copies of G
can be perfectly packed into the complete bipartite graph Ky, .-
d) A bipartite graph G with m edges u — v between parts U and V leads naturally
to a bipartite graph G with tm edges u —v; between parts U and V1, U---UV;.
If G has an ordered graceful labeling, show that G does too.

140. [M21] Continuing exercises 138 and 139, how many (a) a-graceful labelings
(b) ordered graceful labelings have m edges? (Compare with Theorem S.)

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 95

142. [M20] The direct product of bipartite graphs always has at least two components. direct product

tensor product, see direct product

a) Prove this, by determining the components of K, ® K. 4.

b) When G and H are bipartite with parts (U, V) and (X,Y), let (G® H)' and (G®
H)" be G ® H restricted respectively to parts (U x X,V xY) and (U xY,V x X).
Describe (i) (Pom ® Poy)" and (Pan @ P2,)"; (i) (Pom @ Popt1)' and (Por ®
Pon11)"; (iil) (Pemt1 ® Pant1) and (Pemt1 ® Panga)”; (iv) (Com ® Coyn)' and
(Cam ® C20)"; (v) (Qm ® Qr) and (Qm ® @), where @Q,, is the n-cube.

c) If G and H each have an ordered graceful labeling, prove that (G ® H) and
(G® H)" do too.

> 145. [M28] (Caterpillar nets.) A “caterpillar” is a graph with at least two vertices
that becomes a path (or empty) when you remove all of its vertices of degree 1. More
precisely, an (s,t)-caterpillar is a bipartite graph with vertices {uwo,...,us;vo,...,v¢}
and edges defined by a binary vector e = e; ...es4¢ that has s Os and ¢ 1s:

Us; —vg; for 0 << s+t¢, wheres; =e1+---+e;andt; =er +---+e;.

i

For example, here’s the (9, 11)-caterpillar whose edge vector is 11001001000011111101:

uQ Ul u2 u3 U4 us ue U7 U8 ug

Vo V1 V2 U3 V4 Vs Ve U7 U8 V9 V10 v11

a) Draw the eight (s,t)-caterpillars for which s +¢ = 3.
b) Prove that every (s, t)-caterpillar is a-graceful.
c) Given an (s, t)-caterpillar, a “caterpillar net” is a graph
obtained when we replace the vertices u; and vy by
disjoint sets of vertices U; = {ujo,...,u;jp, } and Vx =
{vko, ..., Ukq }, for 0 < j < sand 0 < k < ¢. The edges
are (ps;, ge;)-caterpillars between Us; and Vi, for 0 <
t < s+t. For example, a caterpillar net with e = 1001,
po=p2=2,p1 =qo=¢q2 =1, and ¢ = 3 is illustrated
here. How many edges does a caterpillar net have?
) Prove that every caterpillar net is a-graceful.
e) Prove that the complete bipartite graph K, , is a caterpillar net.
)
)

Prove that the grid P, O P, is a caterpillar net.
Are either of the following graphs caterpillar nets? %

146. [23] The grid graph P>0OP; is the “skeleton” of a pentomino (showing the outlines
of its five cells). Prove that the skeletons of all twelve pentominoes are a-graceful.

148. [HM36] Exercise 145(e) proved that K, , is a-graceful. Let A(n,r) be the exact
number of different a-labelings that K, , has, times 2 if n = r > 1. (We know that
K> > = C4 has a unique graceful labeling; but A(2,2) = 2 because the edges can be
written either as 0—0,1—0,0—2,1—20or 0—0, 0—1, 2—0, 2— 1 in the
notation of exercise 138.)

a) Prove that A(n,r) is the number of ways to write the polynomial Fy,,(z) =1 +
T+ -+ z™ " as a product G(z)H (), where m = nr, G(1) = n, H(1) = r,
and all coefficients of G and H are either 0 or 1. (For example, A(2,2) 2

because Fy(z) = (14 z)(1 + %) = (1 +2*)(1 + z); A(6,2) = 4 because Flg(w:)

January 13, 2024

vk =[ki]

N-cube
grid
torus
Path P,
cycle Cn
ordered graceful labeling
Caterpillar nets
(s, t)-caterpillar
bipartite graph
pi, as random example
complete bipartite graph
n,r
grid
grid graph
skeleton
pentominoes
n,r
complete bigraph
polynomial

96 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3
Q+z+a?+28+2'+2°)(1+2% = L+a+2+2° +2" + 251 +2%) =
A+z+a* +2®+2*+2°)1+2%) =1+ +2* + 2%+ 2% +2'°) (1 +2).)

b) Prove that if F),(z) = G(x) H(x) and the coefficients of G and H are real, both
G and H are palindromials (palindromic polynomials): Their coeflicients are the
same when read in either direction. (That is, G(z) = €@ G(1/x).)

c) Furthermore if all coefficients of G and H are between 0 and 1, they're all 0 or 1.

d) Furthermore, if n > 1 and r > 1, either G(z) or H(z) has the special form

F(z)T(x), where 1 < k < m and all coefficients of T" are 0 or 1.

Furthermore, G(x) = Fj(x)T(x) implies that H and T are polynomials in z*.

Conclude that A(p,q) = 2 whenever p and ¢ are prime. What is A(p®,¢’)?

What is A(pip2,q192), when p1, p2, q1, g2 are prime and p1 # p2, q1 # q27

Use trace theory (Theorem 7.2.2.2F) to prove that A(pS'...p,qf*...q/") =

e g/ =p) . (A =p) (L —q) . (1=) — 1)
i) In particular, A(pe,q{1 ...q{‘) = (etfl) (etft).

149. [M22] Show that K, , sometimes has graceful labelings that are not a-graceful:

a) If r =2 and 2n+ 1 = pq with p,q > 1, use labels {2n,2n — p} in the second part,
with labels ,Eq:/gJ_l[%p ..2kp + p) and |p/2] others in the first part.
b) If n =3k + 1, use labels [0..2k] U [nr — k..nr — 1] in the first part.

150. [M46] Does K, , have graceful labelings besides those of exercises 148 and 1497

155. [20] Given a simple digraph D without loops, construct an XCC problem whose
solutions are the graceful labelings of D. Hint: Modify the construction in exercise 93.

156. [13] For what a and b does « — (az +b) mod 13 take Fig.109(e) into Fig.109(f)?
157. [22] Find all of the essentially different graceful labelings of Fig. 109(a).

160. [M28] Two graceful labelings [and I’ of a digraph D with ¢ — 1 arcs are called
affinely equivalent if I'(v) = (a(I(v) —b)) mod g for all vertices v, where a and b are inte-
gers with a L g. (This notion matches transformations (i) and (ii) discussed in the text.)
a) Let v and w be distinct vertices of D. Show that every graceful labeling [is affinely
equivalent to a graceful labeling I’ for which I'(v) = 0 and ' (w) = d for some d\q.
b) Exactly how many such labelings I’ exist, given d and ¢?
c) Now explain how to take the labelings found in (a) and find all of the “essentially
different” omnes, by taking account of D’s symmetries and antisymmetries.

161. [19] What are the essentially different ways to label these digraphs gracefully?

(0)
(a) e?a (b) @O+O<@<~>®.

164. [16] Design an algorithm to create the FIRST and NEXT arrays of a graceful
digraph, given its LO array.
165. [M25] Let | be a graceful labeling of D, and let LO, FIRST, NEXT, and NAME
be the corresponding representation as in (44). A labeling I’ equivalent to [will then
correspond to certain arrays L0', FIRST', NEXT’, and NAME'. (Compare with exercise 94.)

a) Compute them when I'(v) = (a(l(v) — b)) mod g, given a and b with a L q.

b) Compute them when I'(v) = I(va), given an automorphism « of D.

¢) Compute them when I'(v) = I(va), given an antiautomorphism « of D.

168. [M24] The digraph D in Fig. 109 doesn’t fully represent set inclusion in a 3-
element universe because it isn’t transitive. Let D* be the digraph obtained when

January 13, 2024

real

palindromials

trace theory

digraph

XCC problem
essentially different graceful labelings
affinely equivalent
essentially different
symmetries
antisymmetries
FIRST

NEXT

LO

digraph representation
automorphism
antiautomorphism

set inclusion
transitive

Boolean lattice

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 97

the arcs 000 — 011, 000 — 101, 000 — 110, 000 — 111, 001 — 111, 010 — 111,
100 — 111 are added to D. What are its classes of equivalent graceful labelings?
169. [22] When the digraph in Fig. 109 is extended to a 4-element universe, it has 16
vertices and 32 arcs. Is it still graceful?
172. [HM35] Let D, be the set of m-tuples ¢ = z1...2m with 0 < z; < m for
1<l <m. If x € Dy, the digraph aD(z) +b has m+1 vertices {0, ...,m} and m arcs,
(az; +b) mod g — (ax; +al +b) mod ¢, where ¢ = m + 1. Furthermore, say that * = =’
in D, if aD(x) + b equals D(z') or its converse D(z')T, for some a and b with a L q.
a) What are the equivalence classes of D2 and D3?
b) What’s a good way to visit each equivalence class of D,,, when m isn’t too large?
c) What’s a good way to count the number of equivalence classes, when m is larger?
175. [25] Let lp = [(vx) be the kth vertex label in a path or cycle vg—+ -+ —vp,.
a) Show that lop, = r—1—k and lax4+1 = r+k gracefully label the oriented path Ps;.
b) Find a somewhat similar pattern of graceful labels for C5;.. Hint: Use vertex labels
< r and arc labels = r — 1 (modulo 2) in the first half of the cycle.
176. [20] (G.S. Bloom and D. F. Hsu.) If D is a graceful digraph with m arcs and m+1
vertices, prove that D — K, is also graceful. (It has mn+m-+n arcs, m+n+1 vertices.)
177. [22] Find an ungraceful digraph D with 2 arcs and 3 vertices such that D — K,
is graceful for all n > 0.

178. [16] TIs the oriented complete bipartite graph K., = K, — K, graceful?

180. [41] Investigate all of the graceful digraphs that have at most 6 nonisolated
vertices. (Compare with exercise 122; the number rises from 12345 to 1540943.)

182. [M20] (C. Delorme.) Let D be a digraph with m arcs for which the total degree
d* (v)+d~ (v) is even at every vertex v. Prove that D cannot be graceful if m mod 4 = 1.

183. [20] (G. S. Bloom and D. F. Hsu.) Show that the m edges of a digraceful graph
can always be oriented in at least 2L™/2] graceful ways.

185. [M30] A tournament is a digraph in which either v — v or v — u for every pair of
vertices u and v (see exercise 7-59). There are twelve unlabeled tournaments of order 5:

A B C D E F G H I J K L

a) What are the converses of A, B, ..., L? (For example, AT = A.)

b) How many essentially distinct graceful labelings does each of them have?

¢) What are the graceful tournaments of orders 3 and 47

d) A cyclic (v, k, X)-difference set is a set {a1,...,ar} C {0,1,...,v — 1} such that

the k(k — 1) differences (aj — ax) mod v for j # k contain each nonzero residue
exactly A times. For example, {0, 1,3} is a cyclic (4, 3, 2)-difference set because

061=3,003=1,160=1,163=2,3560=3, 361 =2,

writing ‘z © y’ for (x — y) modv. Prove that there exists a graceful n-vertex
tournament if and only if there exists a cyclic ((}) + 1, n, 2)-difference set.

e) Show that {1,7,7> mod 37,...,7% mod 37} is a cyclic (37,9, 2)-difference set.

January 13, 2024

Boolean lattice

set inclusion

converse

affine equivalence

oriented path

Bloom

Hsu

oriented complete bipartite graph
graphs, small

digraphs, small

Delorme

parity

d+(’l)) (out-degree)

Bloom

Hsu

digraceful graph

tournament

converses

essentially distinct

cyclic (U, k,)\)—difference set

98 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

187. [46] An undirected graph with m edges can be converted to a directed graph in
3™ ways, because each edge u — v can become u— v or u<—wv or both. Is every graph
“weakly digraceful,” in the sense that at least one of those 3™ possibilities is graceful?

190. [20] (M. Buratti and A. Del Fra.) Show that (47) gracefully labels C,”.

191. [23] (R. Montgomery, A. Pokrovskiy, and B. Sudakov.) Prove that every tree T'
with m edges and a vertex v adjacent to at least 2m/3 leaves is rainbow graceful.

192. [24] Find rainbow graceful labelings of (i) K1 @ 3K>; (ii) 4K @ Cs; (iii) 2C4.
193. [30] Which of the 12345 graphs of exercise 122 are rainbow graceful?
194. [23] Is every digraceful graph also rainbow graceful?

196. [HM20] A projective plane of order n has n® +n+ 1 points and n® +n + 1 lines,
where every line contains exactly n + 1 points and every point belongs to exactly n+1
lines. Furthermore, every two points belong to exactly one line, and every two lines
intersect in exactly one point. The following construction defines such a plane whenever
F is a finite field of n elements (see exercise 4.6.2-16): Each point is a nonzero triple
(a1, az2,as), and each line is a nonzero triple [b1, b2, bs], where the a’s and b’s belong
to F'. Two triples are considered equal if one is a multiple of the other; for example,
(a1,a2,a3) = (2a1,2a2,2a3) in the field of three elements. Point (a1, a2, as) lies on line
[bl, b2, b3] if and only if a1by + asbs +azbz =01in F.

a) Explain why this construction gives n? +n + 1 points and n? +n + 1 lines.

b) Which points belong to the line [1,0, 2] when n = 37

c) Why do two lines intersect in a unique point?

» 197. [HM27] (J. Singer, 1938.) Suppose K, 11 has graceful rainbow labels {lo, ..., I.}.

a) Show that they’re a cyclic (n” +n+1,n+1,1)-difference set (see exercise 185(d)).

b) If n = p is prime, let f(xr) = 2® — c12® — caz — c3 be a primitive polynomial
modulo p for the field F' of p3 elements (see 3.2.2—(g)). Consequently the nonzero
elements of F are {1,m, 72, ..., 72°~2}, where 7 is a root of f in F. What are the
other two roots of f? Hint: (x + y)? = 2P + y® (modulo p).

c¢) Continuing (b), find a transformation (a1,as,as)a = (a},a,as) of triples with
the property that 7* = a172 + aom + a3 implies 7° 7! = a\ 7% + abm + a}.

d) Find a transformation [b1, b2, bs]a = [b], b5, bs] of triples, to go with the transfor-
mation in (c), with the property that a1b:1 + asbs + asbs = a'ib} + abbl, + a%bl.

e) As a consequence of (c), there are triples (ak1,ak2,ar3) of integers mod p for
which we have 7% = ag172 + agam + ars, for 0 < k < p® — 1. List those triples in
the special case when p =5 and f(z) = z® — 42® — 3. (You can stop at k = 31.)

f) Construct a projective plane of order p as in exercise 196, and show that we may
take the points to be (a1, ar2,ars) for 0 < k < p? + p + 1. Furthermore, L =
{k|arr =0and 0 <k < p2+p+ 1} is a set of graceful rainbow labels for K.

g) Extend the ideas of (b)—(f) to the case when n = p° is an arbitrary power of the
prime p, and work out the details when n = 8.

199. [HMS33] Let R, be the set of m-tuples ¢ = w1 ...2m with 0 < 2y < 2m for
1<1<m Ifz € R, the graph aG(x) + b has 2m + 1 vertices {0,...,2m} and
m edges, (ax; +b) mod g— (ax; + al + b) mod q, where ¢ = 2m + 1. Furthermore, say
that = 2’ in R, if aG(z) + b equals G(z'), for some a and b with a L q.
a) What are the equivalence classes of R» and R3? (Compare with exercise 172.)
b) What’s a good way to visit each equivalence class of R,,, when m isn’t too large?
c) What’s a good way to count the number of equivalence classes, when m is larger?

January 13, 2024

weakly digraceful

Buratti

Del Fra

Montgomery

Pokrovskiy

Sudakov

rainbow graceful labelings
projective plane

uniform hypergraph

finite field

Singer

primitive polynomial modulo p
projective plane

affine equivalence

v

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 99

200. [46] Is every forest rainbow graceful?

203. [15] True or false: A subgraph of H is any graph that we obtain from H by
removing zero or more edges, then removing zero or more isolated vertices. An induced
subgraph of H is any graph that we obtain from H by removing zero or more vertices,
then removing every edge that touched at least one of those vertices.

204. [16] Find, by hand, an induced C7 of common English words, including chord.

205. [17] Is cords — colds — colts — costs — casts — carts — cards —
cords an isometric embedding of C7 into WORDS(5757)7

207. [M21] A Hamming graph is a graph of the form K, 0 K,,O---0K,,. Thus
it has n1...n, vertices x1x2...x,, where 0 < xr < ng for 1 < k < r; and we have
T1Z2 ... Tr —Y1y2 ... yr if and only if z;, # y; for exactly one index k.
a) How many edges does K, O0K,,0---0K,, have?
b) How many automorphisms does K,, 0K, O---0K,, have?
c) Compute the distance between 141421 and 271828 in a Hamming graph.
d) If a clique G is embedded in K,, 0K,,0- - -0K,,, prove that its image is constant
in all but one of the constituents Ky, .
e) What 4-vertex graph G can’t be strictly embedded in a Hamming graph?
f) Prove that the five-cycle Cs can’t be strictly embedded into a Hamming graph.

208. [27] Exactly how many induced seven-cycles are present in WORDS(5757)7 How
many of them are isometrically embedded?

209. [22] A strict embedding into a Hamming graph is called a Hamming embedding.
More precisely, if G is a graph with vertices {vo, v1,...,vn-1}, a Hamming embedding
of G is a function f(v;) = i1 ...z with the property that, for 0 <1 < j < n, we have
Zil...Tir —Tj1... %5 in a Hamming graph if and only if v; —wv; in G.

a) Assume that G is connected, and that each vertex v; for ¢ > 0 has a “parent
vertex” vy with i < ¢ and vy — v;. Show that every Hamming embedding of G
can be “normalized” so that (i) ToxTik -..Tn—1)x 13 a restricted growth string,
as defined in 7.2.1.5(4), for 1 < k < r; and (ii) #;(k41) > 0 for ¢ > 0 implies that
zjr > 0 for some j < ¢. (Condition (ii) means that we don’t “invade” coordinate
k + 1 until coordinate k has been used. In particular, a normalized embedding
always has zo1zo2 ... zor =00...0 and z11212... 21, =10...0.)

b) Design an algorithm that visits every normalized Hamming embedding of G.

210. [18] A graph G is called minimal non-Hamming (MNH) when its induced sub-
graphs G’ are Hamming embeddable if and only if G' # G.
a) Is G Hamming embeddable if and only if it has no induced MNH subgraph?
b) Prove that an MNH subgraph is connected.
c) True or false: If G is connected and not Hamming embeddable and not MNH,
one of its subgraphs G \ v is connected and not Hamming embeddable.

211. [24] Find all MNH graphs that have at most nine vertices.

» 212. [25] (P. M. Winkler, 1984.) If graph G satisfies the conditions of exercise 209(a),

prove that it has at most one normalized tsometric embedding into a Hamming graph.
Also design a polynomial-time algorithm that discovers the embedding, if it exists.
213. [M25] (P. M. Winkler, 1984.) Let (u —v) < (u' —v') be the relation
d(u,u') — d(u,v") # d(v,u') — d(v,v"), when u—wv and u' — v’ are edges of
a graph and d(u,v) denotes shortest distance in that graph.

a) Determine the < relation between the 18 edges of the graph shown.

January 13, 2024

A,

subgraph

induced subgraph
isometric embedding
WORDS (5757)

Hamming graph
Cartesian product
automorphisms
isometrically embedded
strict embedding
Hamming embedding
parent vertex
restricted growth string
minimal non-Hamming
MNH

induced subgraphs
Winkler

isometric

Winkler

relation

v

100 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

b) True or false: In a complete graph, (u —v) > (v’ —v") <= {u,v}N{',v'} #0.
c) A ternary Hamming graph is a graph of the form K3 O---0 K3, “a Cartesian
product of triangles.” If G can be isometrically embedded in a ternary Hamming
graph, prove that the i< relation in G is transitive (so it’s an equivalence relation).
d) Conversely, if > is transitive in G, there’s an isometric ternary embedding of G.

214. [24] Find the smallest graph that (i) can be embedded as an induced subgraph,
but not isometrically; (ii) can be embedded isometrically, but has an induced subgraph
that cannot. How many graphs of n vertices, for 1 < n < 9, can be isometrically
embedded in a Hamming graph? (See exercise 211.)

216. [M37] (Subcube labels.) A string of Os, 1s, and *s conventionally represents a
subcube of a cube, where each # is a “wild card” that stands for either 0 or 1. For
example, 0x1x represents {0010, 0011,0110,0111}, which is a subcube of #xxx.

It’s easy to work with subcubes inside a computer, using the asterisks-and-
bits representation of exercise 7.1.1-30. For example, 0%1x is represented by the two
bitstrings @ = 0101 and b = 0010, showing respectively the #s and the 1s.

The vertices of a connected graph can always be labeled with subcubes in such a
way that the distance between any two vertices is exactly equal to the distance between
their labels(!). One such labeling of the five-cycle 0 —1—2—3—4—0 is

1(0) = 0000, I(1) = 1000, 1(2) = 11x0, I(3) = **11, I(4) = 0%01;

for example, the distance d(1,4) from 1 to 4 is 2; so is the distance from 1000 to 0%01.
a) Give a formula for the distance between subcubes represented by (a,b) and (a’,b’).
b) Find all of the subcube representations of C5 that have 4 coordinates per label.
c) Show that the eight-vertex graph illustrated here has a subcube

representation, with 4 coordinates per label, in which the vertices @
of the induced five-cycle have the same labels as shown above.

d) Let T be a tree with n vertices, rooted at r. Assign labels with n —1 coordinates
to each vertex v of T', with one coordinate v,, for each w # r, defined by the rule

vy = [w is an inclusive ancestor of v] = [d(v,w) + d(w,r)=d(v,r)].

Exactly d(v, r) coordinates of [(v) are 1. Show that these are valid subcube labels.
e) Given any graph G on n vertices, let 7' be a spanning tree rooted at r, with
every vertex v at level d(r,v) of that tree. Construct labels as in (d), with
vy =1 if w is an inclusive ancestor of v; but otherwise v, = (0,7, %) if d(v,w) —
d(v,w') = (1,0, —1), respectively. Here ‘?" is a special value that contributes %
to the distance when matched with 1, but 0 when matched with 0 or * or 7. For
example, if G = C5 and r = 0, and if T has all edges but 2—3, we get

1(0) = 0000; I(1) = 1070; 1(2) = 11x7; 1(3) = 7+11; I(4) = 0701.

Now the “distance” between, say, [(2) and [(4) is 1 + 3 +0+ £ = 2. Prove that,
in general, the “distance” between [(u) and [(v) is d(u, v), for any graph G. Also
exhibit the labels when G is the Petersen graph, subsets(2,1,—4,0,0,0,#1,0).
f) In order to obtain a subcube labeling, we need to find a rule that changes each ‘7’
to either ‘0’ or ‘*’, like flipping a coin but smarter. Show that there is such a rule.
Hint: Thinking of T as an ordered tree, v, can depend on whether v precedes or
follows w in preorder, as well as on the parity of the distances of v and w from r.

217. [M15] Which of the following potential “transitive laws” are true in general?
i) G C G C G" implies G C G". v) GCE G C G" implies G C G".

January 13, 2024

ternary Hamming graph
Cartesian product
transitive

equivalence relation
Subcube labels

cube

a-code, see Asterisk codes for subcubes
Asterisk codes for subcubes
tree

ancestor

inclusive ancestor

subsets graphs (SGB)
Petersen graph

preorder

transitive laws

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 101

ii) G C G' C G" implies G C G". vi) GC G C G implies G C G".

iii) G C G' C G” implies G C G". vii) G C G' C G" implies G C G".

iv) G CG' C G" implies G C G". viii) G E G' E G” implies G C G".
218. [M16] Suppose G1, G2, Hi, and H; are connected graphs, with G; & G2 C
H; ® Hs. True or false: Either G; C Hy; and G2 C Hy or G1 C Hy and G2 C H;.

219. [M17] True or false: If G C H, G is connected, and H is a forest, then G C H.

220. [20] Let G be the pattern graph Ky, ® Py, ®- - & P,,, where A = {a1,...,a:} is
a multiset of positive integers. Let T" be the tree with root and mn+m additional ver-
tices zjx, for 1 < j <m, 0 < k < n, whose edges are r —z;0 and ;5 — T;(x+1). Prove
that G C T if and only if A can be partitioned into m multisets whose sums are each
< n. (And special cases of this partitioning problem are known to be NP-complete.)

221. [M23] If G is a graph on vertices V, let ¢(G) be the graph whose vertices are
pairs (v, k) with v € V and 0 < k < 5, and whose edges (v,k) — (v', k') are of three
kinds: (i) v = o' and {k,k'} € {{0,1},{1,2},{2,3},{3,4},{4,0}, {2,4}}; (ii) v — o'
and {k,k'} = {0,1}; (iii) v # v', v—1', and {k,k'} = {0, 3}.
a) If G has n vertices, how many vertices does q(G) have? How many edges?
b) Prove that G can be strictly embedded in H if and only if ¢(G) can be embedded
in g(H). (Thus unlabeled ISIP is a special case of unlabeled SIP.)

222. [M25] Continuing exercise 221, reduce the unlabeled SIP to the unlabeled ISIP.

224. [M20] (Labeled graph embedding.) A SIP often has side constraints in practice.
For example, when graphs represent molecules, each vertex might represent a particular
kind of atom (carbon, hydrogen, etc.), and each edge might be labeled strong or weak.
In general, a labeled subgraph isomophism problem is defined by a pattern graph G
and a target graph H, where every vertex has zero or more labels /; and every edge has
zero or more labels L;. Relations of compatibility are also defined between the pattern
and target labels. The problem is to find every function f from the vertices of G to
the vertices of H that satisfies four conditions: (i) If v # w then f(v) # f(w). (ii) If
v—w in G then f(v) — f(w) in H. (iii) l;(v) is compatible with I;(f(v)), for all .
(iv) If v—w in G then L;(v,w) is compatible with L;(f(v), f(w)), for all j.
a) Prove that every ISIP, possibly labeled, is a labeled SIP.
b) Given a labeled SIP, a vertex u of G, and a vertex 4 of H, show that the problem
of finding all solutions with f(u) = @ is a labeled SIP on the graphs G\u and H \ .

226. [M30] Show that the problem of testing G C H is NP-complete, even when G is
a (free) tree and all vertices of G and H have degree <3. Hint: Reduce from 3SAT.

228. [20] If G is a graph with n vertices and m edges, let G be the directed acyclic
graph with m + n vertices and 2m arcs obtained by replacing each edge u — v by
u—uv<—wv. Prove or disprove: (a) GCH < GCH; (b)GCH <= GLCH.

229. [21] Given an integer M > 3 and a graph H, is it hard to test if Cay C H?

231. [20] A suitably small SIP problem can be solved as an exact cover problem using
the options (53). Can an ISIP problem be solved in a similar way?

232. [20] Encode SIP and ISIP problems for directed graphs as exact cover problems.

233. [HM30] (S. Chatterjee and P. Diaconis, 2021.) Let Gy be a random graph on N
vertices; each of the (];) potential edges is independently present with probability 1/2.
a) Prove that G314 n42+5] £ Gn a.s., for fixed § > 0 as n — oo.
b) Prove that Gra15n—s7 C Gn a.s., for fixed § > 0 as n — oo.

January 13, 2024

connected graphs
forest

partitioned
NP-complete
strictly embedded
Labeled graph embedding
chemistry
molecules

atom
compatibility
bounded degree
NP-complete

tree

3SAT

directed acyclic graph
exact cover

ISIP problem
directed graphs
Chatterjee
Diaconis

random graph

a.s.: Asymptotically almost surely

102 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

235. [21] The reduced target graph H obtained from BRAIN83(250) has 11 vertices in
the left brain and 11 vertices in the right brain, with only two edges between them.
Why does that make G C H impossible, when G is Chvatal’s graph (52)7

236. [23] Embed Chvétal’s graph (52) into BRAIN83 with 6 vertices in each half-brain.

237. [24] When k > 12 is a multiple of 6, Chvétal’s graph of order k has k vertices
{0:0+7 1_7 17 1+: RN ((k/?)) - 1)+70_} and 2k edges] - (] + 1)7 .7_.7+7 j_j_7
j+— G +1)—, j+— (G +k/6)+, j+ — (j + k/6)— (modulo k) for 0 < j < k/3.
(Thus (52) is the case of order 12.) Can his 18-vertex graph be embedded in BRAIN83?
238. [23] Is the flower snark graph Js (exercise 7.2.2.2-176) embeddable into BRAIN83?

239. [20] Constrain the embeddings of (52) so that only the essentially different
solutions are found (thus only 1/8 of the total number).

242. [M22] If A and B are multisets of integers, say that A surpasses B if A’s kth
largest element is greater than or equal to B’s kth largest element, for 1 < k < |B| < |A].
a) Given a vertex v of a graph G, let s(v) = {deg(u) | u— v} be the multiset of its
neighbors’ degrees. Prove that, whenever G C H with an embedding function f,

the multiset s(f(v)) surpasses s(v), for all vertices v of G.

b) The obvious way to test whether or not s(w) surpasses s(v) is to sort the neighbors
of w and v by their degrees, then to do a pairwise comparison of the sorted
elements. But sorting might introduce a logarithmic factor into the running
time. Explain how to perform that test in only O(p + deg(w)) steps, where p is
the maximum degree of any pattern vertex.

243. [21] Explain why LAD filtering from (58) forces 02 — LA, after which further
assignments to 01 and 03 and their neighbors get into trouble.

244. [28] What two solutions to the embedding problem (54) differ from Fig. 1127
245. [24] What’s the largest n for which (a) P,o P, C USA? (b) Pso P, C USA?
246. [15] Do exercise 245 with C in place of C.

247. [20] If possible, embed half of a dodecahedron (namely, a pentagon surrounded
by five other pentagons) into the USA graph.

250. [21] Explore the embedding of simplex graphs (triangular grids) into USA.

253. [M25] (Globally All Different filtering.) When variables x1, ..., &m are subject
to an all-different constraint, the domains Dy, ..., D, C {1,...,n} are said to be
feasible if there’s a matching of size m in the bipartite graph on vertices {z1,...,Zm}

and {y1,...,yn} whose edges are x; — y; when j € D;. A value j € D; is said to be
removable if ©; —y; isn’t in any feasible matching.

Let 1 — vj;, -.-» Tm — Yj,. be a matching, and construct the following
tripartite digraph 7" on {z1,...,&m}, {y1,...,yn}, and {L}: ;i —y;, and y;; — L, for
1<i<myzi+—uy;,if je€D;and j#ji, for 1 <i<m;yj+— L, ifj¢ {j1,-..,0m}
Prove that j # j; is removable from D; if and only if z;, y;, and L belong to different
strong components of 7.

254. [M26] Continuing exercise 253, further theory elucidates the situation.
a) If IC{1,...,m}, let D(I) = J{D;|i € I}. Prove that the domains are feasible
if and only if |D(I)| > |I| for all subsets I. Hint: Use Algorithm 7.5.1H (see
page vii).
b) A subset I for which |D(I)| = |I| is called a “Hall set.” Prove that if a feasible
family of domains has no nonempty Hall sets, it has no removable values.

January 13, 2024

BRAIN83

Chvétal’s graph
Chvétal’s graph

flower snark

essentially different solutions
multisets

comparison of multisets
sorting

LAD filtering
dodecahedron

stmplex graphs
triangular grids

Globally All Different filtering
GAD

all-different

matching

bipartite graph
removable

tripartite digraph

strong components
Hopcroft-Karp algorithm
Hall set

critical block, see Hall set

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 103

In particular, nothing is removable if |D;| > m for 1 <i < m.

If I is a Hall set, explain why we can remove D(I) from all domains D; for j ¢ I.
Prove that Hall sets of feasible domains are closed under union and intersection.
Prove that a feasible family of domains has no removable elements if and only
if there’s a partition of {1,...,m} into disjoint sets Io, I1, ..., I, with disjoint
domains D(Iy), D(I1), ..., D(I,) such that the Hall sets are precisely the 2" sets
obtainable by unions of {I1,...,I,}. (GAD filtering always yields such a family.)
g) Relate the partition of (f) to the tripartite digraph 7" of exercise 253.

» 255. [21] When m = n in exercise 253, every solution z ...z, will be a permutation
of {1,...,n}. Improve the GAD filtering algorithm in that case. @ ®—©
256. [29] Find all (a) embeddings (b) strict embeddings of the digraph @«® 9‘@
into Agatha Christie’s “Orient Express digraph” (Fig. 3 near the beginning of Chap-
ter 7). As in the text’s solution of (54), determine the initial domains; then repeatedly
branch on a variable with smallest domain, using LAD and GAD filtering.

259. [22] Is the Petersen graph, minus two edges, embeddable in Chvétal’s graph?

260. [25] Which of the following graphs are strictly embeddable in Chvétal’s graph?

s it] 2]) () (6

263. [15] True or false: G C H implies GS? C HS?.

264. [20] Compute the vertex degrees of G=% and HS? when G = Py0P; and H = USA.
What do those statistics imply about the domain of G’s “middle vertex” 127

265. [M18] Explain informally the meaning of the supplemental label d2 when S is
the path P41 of length k, placing the designated vertex s at one end. Show that the
degree of vertex v in G=? can be expressed in terms of di? (v) and de? (v).

266. [23] Consider the following motif graphs S, with designated vertex s = ‘o’

(i) (i1) (iii) (iv) (v) (vi) (vii) (viii) (ix)
Compute the supplemental vertex labels d2:(v), for each v € G = M

267. [21] Compute supplemental edge labels for each edge u — v of that same graph,
using each of the motifs S = e—a—o, o800 o—e—w—o. (Hereo =35, n=1¢.)

268. [20] Draw the supplemental graphs G5, for the graph G of exercise 266, when
(i) S=emoand k=1, (ii) S=ewo—oand k=2.

269. [20] Consider supplemental pair labels based on the motif S = C4, with s and ¢
at distance 2. Show that, in problem (54) of embedding P, O Ps into USA, such labels
tell us that we can’t map both 00 — MN and 11 — MO.

v

270. [24] Using the supplemental graph G*?, where S = P, 0 P3 and its vertices of
degree 3 are s and t, show that the initial domains for all six interior vertices of P40 Ps
in the USA problem can be reduced to size 13 —less than half of what we had without it!

v

273. [20] Restate the rules for LAD filtering in the presence of supplemental edge
labels, pair labels, and graphs: Precisely what bipartite graph is required to have a
matching of size deg(u) when we’re trying to ascertain whether u — v is locally feasible?

January 13, 2024

permutation

GAD filtering

strict embeddings
Christie

initial domains

LAD

GAD

Petersen graph
Chvétal’s graph
supplemental label
supplemental vertex labels
supplemental edge labels
supplemental graphs
supplemental pair labels

LAD filtering
bipartite graph

v

104 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

274. [20] Extend the concept of supplemental labels and graphs to strict embeddings:
Show that it’s possible to construct functions dg(v), (v, w), and digraphs G* such
that G C H implies dg(v) < du(f(v)), ba(v,w) < € (f(v), f(w)), and G¥ C HZ, by
analogy with (62), (64), and (65).

277. [22] Many graph embedding problems are simple enough to be solved efficiently
without maintaining a separate domain for each pattern variable. Instead, it suffices to
keep track of the vertices adjacent to the ones already assigned. Say that an unassigned
vertex is near if it has at least one assigned neighbor; otherwise it’s far.

a) Show that the pattern vertices can be prearranged into a fixed (static) order
P1p2 - - - pm SO that, at level [of the search, vertices {p1, ..., p;} have been assigned
and {pi+1,...,pr, } are near, for some r; > I. Furthermore r; > [for 0 <! < m if
and only if the pattern is connected.

b) Explain how to maintain a permutation ti¢2...t, of the target vertices (dynam-
ically) so that, at level [of the search, the current assignments are t; = f(p;) for
1 < j <1, and the vertices {t;41,...,ts; } are near, for some s; > r;.

c) If pj+1 has g near neighbors, must f(p;+1) have at least g near neighbors?

d) If p;+1 has g far neighbors, must f(p;+1) have at least g far neighbors?

278. [20] Let Dy, ..., Dy be domains C {1,...,n}, with |[D1| < -+ < [Dp|. In
practice, much of the benefit of GAD filtering (exercise 253) can be achieved more
cheaply: “Set H < U < 0, and do the following for 1 < j < m: Set D; < D; \ H and
U < UUDj; thenif D;j =) or |U| < j, the domains aren’t feasible; otherwise if |U| = j,
set H <~ H U U.” Show that all values removed from D; were indeed removable.

279. [25] One of the main subtasks of a SIP solver is to assign a target value v’ to a
pattern vertex v, and to update all domains appropriately. Suggest appropriate data
structures for making such assignments, when GAD filtering is relaxed as in exercise 278.
Consider also the use of supplemental graphs. How can your structures efficiently
propagate the constraints until all remaining domains have size 2 or more?

280. [22] Write an MMIX program for the algorithm of exercise 278, assuming that
n < 64 and that each domain is represented bitwise. Process the domains in order of
increasing size, without assuming that |D:1| < -+ < |Dy,|, and show that the running
time for the entire computation is only O(m). Hint: Sort into m + 1 buckets.

283. [22] (Knight’s grids.) The graphs P,0P; and P30OP; can be seen as knight moves

<7 7
L LD LA
LT 5 and N T
Nas N4
N/ N/

within a 5 x 5 board; in other words, P,0OP; C N5 and P30 P; C N5, where N, is the
n x n knight graph. (This scenario generalizes the classic notion of a “knight’s tour.”)
) Find the largest n with P, 0P, C Ng when m =2, 3, 4, 5, 6.

) Find the largest n with P, 0P, C Ns when m =2, 3, 4, 5, 6.

) Find the largest n with P,OC,, C Ns.
)
)

&

b
¢

o

Find the largest n with P,oC,, C Ns.
Find the largest n with P30C,, C Ns.
) Find the largest n with Ps0P;0P, C Ns.

284. [4g] Continuing exercise 283, let f(t) be the largest n such that Pm_D P, C Ny,
and let f, (t) be the largest n such that P, 0P, C N;. Compute f,(¢) and f,, (¢) for as

= D

January 13, 2024

strict embeddings
domain

near vertices

far vertices
connected

GAD filtering
approximate GAD filtering
supplemental graphs
MMIX

bitwise

Sort

buckets

Knight’s grids
knight moves
chessboard

knight graph

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 105

many values of ¢ > 3 as you can, when m = 2, 3, and 4. [These problems make inter-
esting benchmark tests for SIP and ISIP solvers —and the results are attractive too.]

285. [30] (Knights and queens.) Hundreds of benchmarks for use in comparing and
improving SIP and ISIP solvers have been proposed by J. Larrosa and G. Valiente
[Math. Structures in Comp. Sci. 12 (2002), 403-422], who selected a wide variety of
graphs from the Stanford GraphBase and proceeded to test all pairs. The smallest SIP
instance that couldn’t be solved within a reasonable time limit, according to C. Solnon’s
survey in 2018, turned out to be, “Is Ng C @s?” In other words, are the knight moves
on a chessboard isomorphic to a subset of the queen moves? Investigate this problem.

286. [40] Continuing exercise 285, study other values of n > 3 for which N, C @,.
287. [M25] Is the nx n knight graph embeddable into the n x n rook graph for any n?

288. [30] Continuing exercise 285, the smallest ISIP instance that resisted solution in
2018 was quite weird: “Is book ("jean",0,5,0,178,1,0,0) C games(0,0,0,0,0,0,0,0)?”
(The pattern graph has 75 vertices; the target graph has 120.) Investigate this problem.

290. [30] (Universal graphs.) A five-vertex graph called the “bull” (%I) is $-universal,
in the sense that it contains every 3-vertex graph at least once as an induced subgraph.
a) Find a 4-universal eight-vertex graph in which every vertex has degree 3 or 6.
b) Find a 5-universal ten-vertex graph that contains an induced 4-universal graph

with eight vertices.

291. [27] Find a “revolving-door Gray code for 4-vertex graphs” by finding 4-vertex
subsets Vi, Va, ..., Vi1 of the graph H in exercise 290(a) such that the induced
subgraphs H | Vi, H |V, ..., H| Vi1 are the eleven possible graphs on four vertices.
Each Vj41 should share three vertices with V.

293. [34] (Subtree isomorphism.) Let S and T be free trees, having m nodes and n
nodes, respectively. A remarkably efficient algorithm, due to D. W. Matula, is able
to decide whether or not S C T (and S C T) in only O(mn./s) steps, where s is the
maximum inner degree of any node in S (the number of nonleaf neighbors).

a) Get ready to understand Matula’s algorithm by solving the problem by hand when

b) In general, let the nodes of S be {0,1,...,m — 1}, where deg(0) = 1. We think
of 0 as S’s root; every other node r has a parent, p(r), which is the first node on
the path from r to 0. Similarly, the nodes of T are {0,1,...,n — 1}; but instead
of regarding T' as rooted, we consider it to have 2(n — 1) directed arcs u — v,
one for each edge u—wv of T'. This arc e is denoted for convenience by e = §.
Let S, be the subtree of S consisting of all nodes whose path to 0 passes through r.
Similarly, when e = 7§, let T, be the subtree of T' consisting of all nodes whose
path to u passes through v. Is S, C T. in (a), when r =7, v = u, and v = w?

c) Let {ri,...,r} be the children of r in S, let e = %, and let {wi,...,w;} be the
children of v in T'. Under what conditions is it possible to embed S, into T, with
r — v, based on the embeddability of smaller subtrees?

January 13, 2024

benchmark tests
Knights and queens
queens

benchmarks
Larrosa

Valiente

Stanford GraphBase
Solnon

rook graph

book graphs
games graphs
benchmarks
Universal graphs
bull

4-vertex graphs
5-vertex graphs

revolving-door Gray code for 4-vertex graphs
Gray code for 4-vertex graphs

Subtree isomorphism.
free trees

Matula

inner degree

root

parent

subtree

106 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

d) Let sol[r][lel =[S, CT. with r—root(T:)], for 0 <r <mand 0 <e < 2n — 2.
Explain how to compute all elements of this (m — 1) X (2n — 2) matrix by solving
O(mn) maximum bipartite matching problems.

e) Furthermore, if v has [+ 1 neighbors in 7', the [+ 1 matching problems with
root(7.) = v are almost the same and they can be solved simultaneously.

f) Sketch the details of a complete implementation, using Algorithm 7.5.1H (the
Hopcroft—Karp algorithm) for matching. What’s the sol matrix for problem (a)?

294. [29] Evaluate Matula’s algorithm (exercise 293) empirically by applying it to
several classes of free trees:
a) Let S run through all 551 free trees with m = 12, and let T run through all 19320
free trees with n = 16.
b) Let S and T be uniformly random free trees with m = 25 and n = 1000.
c) Let T be a random free tree with n = 1000; obtain S by repeatedly removing a
random leaf, 100 times.

» 295. [20] The feedback vertex set problem asks whether a given digraph D has a set
of k vertices that cover every directed cycle. Show that it’s a special case of ISIP.

» 297. [23] Exercise 4 illustrates how any finite CSP can be encoded as an XCC problem
by listing its positive table constraints —the tuples that satisfy the given relations.
Show that any finite binary CSP can be encoded as an XC problem by listing its
negative table constraints— the ordered pairs that do not satisfy the given relations.

Illustrate your method by explaining how to find all radio colorings of a given
graph, using the colors {0,1,...,d — 1}. (See exercise 7.2.2.2-36.)

298. [21] Apply exercise 297 to enumerate all optimum radio colorings of (a) P30 Ps;
(b) Petersen’s graph; (c) Chvatal’s graph; (d) Mycielski’s graph Mjy.

300. [20] Any extended binary tree with d leaves and height h defines an h-bit prefiz

code for a d-element domain: The representation of k is the path to external node k,
using 0 for a left branch and 1 for a right branch. For example, the binary tree E#Q]
defines the 2-bit codewords (00,01, 1x) for k = (0,1, 2).

a) Is this the same as Table 2’s “prefix encoding”? J@;

b) What’s the prefix code for the extended binary tree ?

c) Relate that code to the “weakened encoding” of Table 2.
301. [20] Reverse-engineer Table 2’s “reduced encoding.” What makes it tick?
302. [20] How many variables, clauses, and total literals are generated by each of the
encodings in Table 2, when the given graph has V vertices and E edges?
303. [17] Why is the Sierpinski gasket graph S uniquely 3-colorable?
304. [20] True or false: The graph 53 minus any edge is not uniquely 3-colorable.

» 306. [M25] Since 5% s a subgraph of the triangular grid, we can also name its edges

and vertices by using the barycentric even/odd coordinate system of answer 7.2.2.1-124.
Give formulas for the barycentric coordinates of triangle a:...an—1 and its vertices,
assuming that vertex 12...2 =21...1+ (0,0,0). What are the coordinates of 0.. .0,

1...1, and 2...27 Hint: Show that every odd number between —2" and +2" has a
unique binary representation (b1 ...bn)2 in which every digit b; is £1.

307. [18] What clauses can be used with Table 2 to ensure that vertices u, v, and w
will have the respective colors 0, 1, and 27

309. [29] Apply the encodings of Table 2 to the problem of 3-coloring 5 for small n.
How well do they work with Algorithms 7.2.2.2L and 7.2.2.2C?

January 13, 2024

maximum bipartite matching
bipartite matching

matching

Hopcroft

Karp

Matula

feedback vertex set

cover

directed cycle

positive table constraints
table constraints

CSP represented as XCC
XCC representation of CSP
CSP as XC

negative table constraints
radio colorings

L(2,1) labeling, see radio coloring
Petersen’s graph

Chvdétal’s graph

Mycielski’s graph My
extended binary tree

binary tree

prefix code

reduced encoding

Sierpinski gasket graph
triangular grid

barycentric even/odd coordinate system
even/odd coordinate system
binary representation

>

v

v

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 107

311. [M30] Find a simple formula for the size of the backtrack tree that arises when

proving that 5{¥ cannot be 3-colored. Each node should branch on a vertex with

fewest available colors, breaking ties by choosing the lexicographically smallest.

313. [40] The pinched Sierpirski gasket 5’}3) remains uncolorable with three colors
even if we remove the edges 0000 — 0001, 0101 — 0111, 0222 — 2002, 2202 — 2222,
2212 — 2222. What’s the largest number of edges that can be removed from S
before it becomes 3-colorable?

315. [21] What clique hints, analogous to (69), are most appropriate for the (a) log,
(b) weakened, (c) reduced, and (d) prefix encodings?

316. [2{] How could a SAT solver learn ‘(0202; V 02222)’ from the prefix-encoded
clauses for 3-coloring Sf)? (See (70); assume that the clique hints have been given.)

318. [25] Exercise 7.2.2.1-117 shows that graph coloring is an XC problem. Empiri-
cally, how long does it take Algorithm 7.2.2.1X to show that S cannot be 3-colored?

319. [M46] Can an exponential lower bound be proved on the refutation length of the
clauses for 3-uncolorability of S\>? (See Theorem 7.2.2.2B.)

320. [24] Repeat exercise 309, but test flower snark line graphs L(J,) instead of 5.

321. [40] The flower snark line graph L(J,) for odd g actually remains 3-uncolorable
even if we remove any one of its 12¢ edges. What’s the largest number of edges that
can be removed before it becomes 3-colorable?

323. [16] The graph 55" in Fig.114 has (4% +4)/2 = 34 vertices, but only 27 of them
are visible. What are the names of the seven hidden vertices? (Give both names.)

324. [10] What’s a simpler name for the Sierpiriski simplex graph S when d = 2?
325. [M15] True or false: S is an induced subgraph of S\ when d <d.

326. [16] Almost every vertex of S,(Ld), :S'\ﬁd), and §,(Ld) has degree 2d —2. What vertices
are the exceptions?

328. [M17] The “proper” Sierpiriski graphs sE:“, exemplified by

@.@@.@@.@@
by ol as Sy o
(©0D—002) (©31)—032) (Bo1)—302)

>
2

o

o, s e s o
a5 ol -

R I TP R
?;0!3!@-@ @Qt?gp@
izl

a0 Gz
5 ab—em>-ah
S3 = @
oo
@’@)
Db tm-ad o

are different from but strongly related to the Sierpinski simplex graphs S In general,
s\ has d” vertices a; ... an, for 0 < a; < d, and two kinds of edges:
i) clique edges a1 ...an—1j—ai...an—1k, for 0 < j < k < d;
ii) nonclique edges a1 ...a;jk...k — a1...akj...j, forall 0 < i < n—1 and
0<j<k<d.
Notice that almost every vertex has degree d; this property is akin to exercise 326.

a) Give a formula for the total number of edges in s,

January 13, 2024

search tree size

analysis of algorithms
MRV heuristic

clique hints

log

weakened

reduced

prefix encoding

XC problem

exact covering problem
lower bounds for resolution
refutation length

flower snark line graphs
Sierpinski simplex graph
induced subgraph
subgraph

Sierpinski graphs

v

v

108 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

b) What’s an intuitive way to obtain S\ from 5&21?
@ .

n—

c) What’s an intuitive way to obtain S from s

330. [M25] Show that, in every d-coloring of S,(Ld), for n > 1, the number of pure
vertices having a given color is congruent to d (modulo 2).

332. [22] Generalize the encodings of ‘u # v’ in Table 2 from ternary to d-ary.
333. [23] Generalize the clique hints of exercise 315 to d-ary. Illustrate the case d = 5.

334. [20] Apply exercise 333 to the problem of 8-coloring the 8 x 8 queen graph, using
the direct encoding. (See test problem K1 in Table 7.2.2.2-6.)

335. [M26] When we try to prove that S isn’t 4-colorable, we can assume without
loss of generality that vertices 0...00, 0...01, 0...02, 0...03 have the respective
colors 0, 1, 2, 3. Show that the remaining problem still has 6-fold symmetry. How
could that symmetry be exploited?

336. [24] Repeat exercise 309, but test S instead of 5. (Use clique hints.)
337. [24] Repeat exercise 309, but test 5. instead of §{*. (Use clique hints.)

338. [%4] Apply a state-of-the-art SAT solver to the clauses for s®, §,(L4), S and
L(Jy) for various encodings, and compare the results to those obtained with Algorithm
7.2.2.2C in exercises 309, 320, 336, and 337.

340. [24] (The haystack problem.) Consider n® variables x;; for 0 < 4,5 < n, each
with domain {0, 1,...,n — 1}, subject to the following constraints: (i) ;; # x;;» when
j#£3. (i) mio +xi; > 1 when 0 < 4,5 < n. (iii) Z;0 = To; when 0 < i < n.

a) Prove that this CSP is unsatisfiable.

b) Formulate it as an exact cover problem, and try it with algorithms of §7.2.2.1.

c) Formulate it as a satisfiability problem, and try it with algorithms of §7.2.2.2.

341. [25] Explain how to generate SAT clauses that efficiently encode the relation
‘u < v —t’, when variables w and v are represented with the log encoding and ¢ is
constant. Illustrate your construction in the cases ‘u < v+1’ and ‘v < v—2’, assuming
that u = (usuauzu1)2 and v = (vsvav2v1)2.

342. [20] Shorten the direct encoding of (78) by simplifying (79).
(o V01V @1) A (o V U2 Vwy) can be replaced by (4o V vo V @1).)

343. [17] What are the direct and support encodings of ‘uv € {00, 01,12,20}’?

(For example,

346. [20] If the binary relation of exercise 343 is treated as a k-ary relation with k = 2
and “binarized” by the general strategy of (77), what support clauses do we get?

347. [11] Derive Roo1, Roio, - -

350. [M16] Let R(vi,...,v) be a k-ary relation, where variable v; has domain [0 .. d;)
for 1 < j < k. If R contains exactly G tuples, how many total literals are in the
(a) preclusion (b) support clauses, when R is encoded for SAT?

., R211 from (80)—(82) and (Rooo) by unit propagation.

351. [M20] Prove that the direct encoding doesn’t need the at-most-one clauses.

352. [M22] Use resolution to derive the clauses for b € D, in (76) from the clauses
for a € D,. (Thus half of the support clauses for R are redundant.)

353. [22] How many of the 2°” ternary relations on variables whose domain size is 3
can be expressed as the conjunction of binary relations on those variables?

January 13, 2024

pure vertices

queen graph

direct encoding

symmetry

augmented Sierpinski tetrahedron
clique hints

pinched Sierpinski simplex
clique hints

haystack problem

encode

log encoding

direct encoding

direct

support encoding

unit propagation
at-most-one clauses
resolution

ternary relations

binary relations

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 109

354. [23] Two of the 227 ternary relations on ternary domains are equivalent to each
other if they differ only with respect to permuting the elements of the domains or
permuting the order of the variables (or both). Thus, an equivalence class might contain
as many as 3!* = 1296 different relations. How many equivalence classes are there? How
many of them satisfy the special condition of exercise 3537 How many “come close”?

356. [20] When variables u, v, and w all have the domain [0..d), let R(u,v,w) be the
median-fixing relation ‘(uvw) = ¢’. Is R the conjunction of its three binary projections?

357. [20] Let R(a,b,c,d,e) be the quinary relation whose tuples are WORDS(1000), the
most common 1000 five-letter words of English: which, there, ..., ditch. What tuples
are not in R, but are in all of its projections Rq (b, ¢,d, e), Ry(a,c,d,e), ..., Re(a,b,c,d)?

358. [21] Omne way to perform unit propagation is to (i) delete any clause that contains

a true literal; (ii) remove all false literals from all clauses; (iii) regard a unit clause as

a true literal; (iv) regard an empty clause as a contradiction. If this process has been

applied to the support encoding S for some nonempty relation R(v1,...,vr), prove:
a) There will be no contradiction.

=2

If no clauses remain, R is satisfied by the true literals via,, ..., Uka,-
Otherwise the remaining clauses are the support encoding for some relation R'.

)
)
) If literal v, remains, there’s a solution with v, true and another with v, false.
)
)

e IN="Ns]

If literal v, remains, statements (a), (b), and (c) hold also for the clauses SA(vg).
If literal v, remains, statements (a), (b), and (c) hold also for the clauses SA(%.).

Lz

360. [20] Formulate the CSP (87) as an exact cover problem with primary variables w,
x, Y, z, and with three options for each primary variable (one for each domain element).

361. [20] As an alternative to exercise 360, formulate (87) as an XCC problem, in the
style of the answer to exercise 4.

362. [18] Test your knowledge of “corner cases” in basic definitions by determining
which of the following statements (if any) are true and which of them (if any) are false.
a) The domain of every inactive variable in a partially solved CSP has size 1.
b) The domain of every active variable in a partially solved CSP has size > 1.
c) The domain of every active variable in a partially solved CSP has size > 0, if we
have forward consistency.
d) Same as (c), but with domain consistency instead of forward consistency..
e) If all variables are active, there is forward consistency.
The remaining statements refer to a simple CSP that has four variables {w,z,y, 2z},
a single constraint ‘w+z < y+2’, and domains D, = D, = D, = {1}; D. ={0,1,2,3}:
f) If w, z, y, and z are active, there is forward consistency.
g) If w is inactive, but z, y, and z are active, there is forward counsistency.
h) If w and z are inactive, but y and z are active, there is forward consistency.
i) If w, x, and y are inactive, but z is active, there is forward consistency.

Same as (g), (h), (i), but with domain consistency instead of forward consistency.

J
363. [20] Show that forward consistency and domain consistency are almost equiva-
lent, when the CSP being solved is a coloring problem (all constraints are ‘#’), assuming
that we branch on a variable of domain size 1 whenever possible.

)
)
)
)

364. [28] Prove that, when reducing domains while solving the n queens problem,
domain consistency will yield no improvement over forward consistency until at least
[n/3] — 1 queens have been placed. But find a placement of five queens on a 16 x 16
board for which DC reduces more domains than FC does.

January 13, 2024

equivalent

median

WORDS (1000)
five-letter words
unit propagation
support encoding
exact cover problem
CSP represented as XC
XCC problem
inactive variable
active variable
active variable
forward consistency
domain consistency
domain consistency
coloring problem

7 queens problem
domain consistency
forward consistency

110 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

365. [25] If four nonattacking queens are placed on a 16 x 16 board, can a solution
to the 16 queens problem always be obtained by placing twelve more queens?

368. [25] Modify step D4 of Algorithm D so that the case w = v can often be omitted.

369. [238] Design a domain filtering algorithm that applies to any CSP in which all
constraints are binary, by adapting Algorithm 7.1.1C (the “Horn core algorithm”) to
the present context. Your algorithm should either establish domain consistency or
conclude that the problem is unsatisfiable.

370. [27] Extend exercise 369 to nonbinary constraints.

372. [20] (Transforming k-ary constraints to binary.) Show that any CSP P with
n variables and m constraints, of arities ki, ..., km, is equivalent to a CSP P~* with
m + n variables and ki + -+ + k. binary constraints. Furthermore, P is domain
consistent if and only if P” is domain consistent. Hint: See (77).
373. [25] (The dual of a CSP.) Continuing exercise 372, show that P is also equivalent
to a “dual” CSP PP that has binary constraints on only m variables. Does domain
consistency in P imply domain consistency in PP?
374. [23] Exercise 60 discusses a junction-oriented way to model the line labeling
problem as a CSP, in contrast to the line-oriented approach that has been followed
in the text and illustrated in (21) and (22). (In fact, the junction-oriented model is
precisely what exercise 373 calls the dual of the line-oriented model.)

Compare the results of junction-oriented domain filtering, when applied to the
histoscape example (20), with the results of line-oriented filtering in (91).
377. [21] Describe the top levels of the search tree for the CSP P of (21) and (22),
when the MRV heuristic is used to select a variable for d-way branching, and when
domains are reduced by forward consistency only. Initially all domains are {+,-,>, <}.

378. [21] Do exercise 377 but with the binary CSP P* of exercise 372 instead of P.

379. [18] By exercise 364, the constraints of the 4 queens problem are domain consis-
tent. Show that singleton domain consistency will reduce each domain size from 4 to 2.
380. [M22] Suppose there’s a binary constraint Ry, for every pair of variables u and v,
where R,, = {aa | a € D,} and Ry, = {ba | ab € Ry,}. These constraints are called
path consistent if u and v are consistent with w for all variables u, v, w, in the sense that

ab € Ry, implies that at least one ¢ € D,, satisfies ac € Ryw and bc € Ry -

(Notice that this condition, with v = v, implies domain consistency.)
Consider, for example, the 5 queens problem with variables {ri,...,r5}, where
r; = j means that there’s a queen in row ¢, column j. Let R;; denote R, ;. Initially

Rip ={jj’ | (i=i'Nj=7) Vv (i£iNj£]Ni={£]i -7 D}
but these constraints aren’t path consistent: We must remove 25 from R;s because
r1 = 2 and r3 = 5 wipes out r2. Then we must remove 21 from R;s, to avoid wiping

out r3. And then we must remove 24 from R4, lest r5 be wiped out.
What path-consistent relations R;; remain, after we’ve done all such removals?

383. [M50] Consider the d x d' matrix (r;;), where r;; = [ij € R] characterizes a
binary relation R. When doing domain filtering, we want to know the support vectors
s; = [row ¢ of r is nonzero] and s; = [column j of r is nonzero], for 0 < i < d and
0 <j<d. It’s easy to compute s; and s by simply scanning row ¢ or column j until
we see a 1. But let’s suppose that it’s ezpensive to access the array r (that is, to decide
whether or not ij € R); so we want to avoid checking r;; whenever possible.

January 13, 2024

16 queens problem
domain filtering
binary constraints
Horn core algorithm
k-ary constraints to binary
arities

binary constraints
domain consistent
dual of a CSP

line labeling problem
histoscape

MRYV heuristic
d-way branching
forward consistency
4 queens problem
singleton domain consistency
binary constraint
path consistent
domain consistency
5 queens problem
domain filtering
support vectors

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 111

The following two-pass procedure has been suggested, using an auxiliary d x d’
Boolean matrix m to remember where we’ve already looked in 7. Initially m, s, and s’
are zero. “Pass 1. For 0 < i < d do this: For 0 < j < d', set m;; < 1; if r;; = 1, set
s; < 1, s} < 1, and break out of the loop on j. Pass 2. For 0 < j < d’ with s; =0 do
this: For 0 < i < d with mi; =0, if ri; = 1, set s; < 1, and break out of the loop on ¢.”

a) Analyze that algorithm, assuming that each entry of the matrix is independently
random, with Pr(r;; = 1) = p for all ¢ and j. Given i and j, what is the probability

that r;; will be examined in Pass 1?7 In Pass 27

b) Improve Pass 1. Hint: We can often avoid looking at ri; if we know that sj = 1.
c) Experiment with the improved algorithm when, say, d = d' = 100.

384. [M46] Does the algorithm of exercise 383(b) have minimum expected cost, over
all support-finding algorithms for random d x d' matrices of density p?

» 387. [M25] The chain problem is a CSP with n variables 1, ..., ,, of which z;
through z,, are “sources” and z, is a “sink.” All variables have domain {0, 1,2}. There
are m binary constraints, ‘x; # x,’ for 1 < i < m; also n — m ternary constraints,

‘either ©; = x;(;) or T; = Tp(;)’ for m < i <n,

where two indices with 0 < j(7) < k(i) < ¢ are prescribed for every such i. (Notice the
similarity with addition chains, Boolean chains, resolution chains, etc.)
a) Explain why every chain CSP is unsatisfiable.

b) Express any given chain CSP as an XCC problem with < 15n options.
c) Exactly how many chain CSPs are possible, given m and n with 1 < m < n?
d) Experiment with XCC solvers on uniformly random chain CSPs that have been

formulated as in (b), when m = 24 and n varies.
e) Exhibit supports that establish domain consistency for every chain CSP. But show
that exercise 369 will find a contradiction just after z, is assigned a value.

388. [M28] Analyze the problems of exercise 387: Let Py, , be a random chain prob-
lem, where every possible choice of the pairs (j(i), k(7)) for ¢ > m is equally likely.
a) Let Sy, » be the expected total number of sinks in P, . (A sink is a variable z;
that isn’t in {j(¢ +1),k(i+1),...,j(n),k(n)}.) Find a simple formula for Sy, ;.
b) A sink, z;, for which i < n, is not connected to z,. Neither is a variable that’s
constrained only by unconnected variables. Find a recurrence by which we can
compute Cp, n, the expected number of variables of P, , that are connected
to z,. (For example, Cs 5 = 66/18.) What is Ca4,647
c¢) Find a recurrence by which we can compute ¢, , the probability that all variables
of Py, are connected to z,. (For example, ¢35 = 3/18.) What is cz4,647
389. [HM41] What’s the asymptotic behavior of Cy, ., for fixed m and large n?
391. [M21] How many solutions does the (d,n)-modstep problem have? (See (93).)
» 392. [M22] Analyze the behavior of a backtrack search for all solutions to the (d, n)-
modstep problem when d > n — 1 and n — oo, using MRV and assuming that filtering
is done by maintaining (a) forward consistency (only); (b) domain consistency.
400. [M20] Exactly how many permutations of {1,2,...,n} have pj4+1 < p; +d, for
1 < j < mn, given a number d with 1 < d < n?
401. [M21] For every subset S C {1,...,n — 1}, prove that exactly one slow growth
permutation of {1,2,...,n} has the property “pj+1 > p; if and only if j € S
402. [M20] True or false: The inverse of a slow growth permutation has slow growth.

January 13, 2024

Analyze

random

support-finding algorithms
chain problem

sources

random circuit

supports

domain consistency
chain problem

sink

recurrence

asymptotic behavior
modstep problem

MRV

forward consistency

slow growth permutation
inverse

112 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

v

403. [28] Construct an exact cover problem whose solutions are the 2" 7! slow growth
permutations of {1,2,...,n}. There should be n® options, each containing O(logn)
items. Hint: Use the pairwise ordering trick of exercise 7.2.2.1-20.

» 404. [21] Use exercise 402 to solve exercise 403 with more restrictive options.

» 410. [20] (Fillomino.) A “fillomino pattern” is a labeling of grid cells with 33877722
positive integers in such a way that every cell labeled d is rookwise connected 31888777
to exactly d cells that have the same label. (Equivalently, it’s a way to pack a 44488179
shape with polyominoes, where no two d-ominoes have an edge in common.) fgg;gggg
For example, a more-or-less random fillomino pattern is shown at the right. ggggggasg

A “fillomino puzzle” is a labeling with positive integers and blanks, for 81859926
88856666

which exactly one fillomino pattern can be obtained by filling in the blanks.
If, for instance, we want to solve puzzle (i) below, it’s clear that the upper left
corner cell must be labeled 2, and that there must be a 3 at the lower left.

ul4dy 214, 214,
N\ 200U . -y 2000 . oy 24,
() 175 s (i) 1275 (i) .75
uduu 33uu 33uu

So (ii) is forced; and with a bit of thought we see that the blank below the upper 1

can’t be 3 or more than 4. Hence we reach (iii), and ultimately a unique solution.
Show that one of the six clues in puzzle (i) is actually redundant. But none of the

other five can be removed, without spoiling the puzzle by allowing additional patterns.

411. [M24] Compute the exact number of 2 x n fillomino patterns forn =1, 2, 3, ...,
until reaching an n for which that number exceeds 10*°°.

412. [21] The “fillomino problem” is to find every fillomino pattern that’s consistent
with a given partial labeling. Formulate it as an exact cover problem.

413. [22] Try your luck with the following selected fillomino puzzles:

33LLLuLLLL uuuuu2uuuu 1,341412,, U240 LLuuuy

2,12, 31415926, u24,u8u24y uuuuouuou4 U150 LLuul3
1ouul2 [RIREIEIRIRERIELE] u68uu6u68y 2003020030 uuu36uu45
u1u3uun LLLULLLLL suuuu4uuuu u24,34u3301, Luu46,634,
(a)uuuuuu; (b)535897932; (@ 2684uuuuuu; (d)uluuuuuuu2; (@ uuuuuu31uu'
uulduly LLULLLLL L uouuuu6482 2uuuuuuuéu Lubbuuuuuu
21,,u1 LLLULLLLL suuuduuuuu u4.44.,3,2, Lub2u42000
2,1,2 38462643 u24,8uu24, L3uulu3uul 34LL013000
S ¢ 44 u68u,6LL68L 1uuuuuuuuu 23Luuuudly
R uuuu2uuuuu Lu342242,3 Luuuuun24y

414. [24] There are 59,951 4 x 4 fillomino patterns @ whose labels don’t exceed 5. Ex-
haustively study them all, finding every valid puzzle without redundant clues for which
& is the solution. What interesting statistics and extremal examples lurk among them?

» 415. [M27] Prove that the solution to a fillomino puzzle whose maximum clue is s can-
not include a d-omino with d > 4s+2. Can you construct such puzzles with d = 4s+27

» 416. [M30] Characterize all valid m x n fillomino puzzles whose clues are all 1s.

417. [HM40] Let #4(®) be the number of cells labeled d in the fillomino pattern @,
and let §; = limsup,_, #4(®»)/n> be the maximum density of d’s in any infinite
sequence of n X n patterns @,,. Determine §,4 for as many d as you can, and show that

da=1-—0(1/Vd) as d — co.

January 13, 2024

exact cover problem
pairwise ordering trick
fillomino

rookwise connected
polyominoes

pi, “random” example
e, “random” example
unique solution
googol:lOlOO

exact cover problem
pi, random

density

v

v

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 113

418. [23] An octomino that contains a 2 x 3 rectangle is called a “chunky-oct.” There

are three kinds: Type S, symmetrical (e.g., &); Type D, asymmetrical, 2 x 3+1 x 2

(e.g., @7); Type M, asymmetrical, 2 x3+1x1+4+1x1 (e.g., &).
a) How many chunky-octs are of Type S? Type D? Type M?

b) Pack them into the scaled-up Aztec diamond shown, in such a way that

all chunky-octs of the same type are kingwise connected.

420. [21] The trail at the right of Fig. 117 includes many unnecessary entries; for

example, ‘¢’ has the same effect as ‘3 ’. One idea for avoiding them is to set o <~ 0 —1

when backtracking, instead of advancing o twice per node by always setting o «— o+ 1.
a) Demolish that idea.

b) Find a correct way to do stamping that advances o only once per node.

421. [21] Suppose the domain of variable v is represented by a doubly linked list
as in (101) and (102), and that the dancing links protocol is being followed (so that
PREV(a) and NEXT(a) don’t change when a is deleted). Show that if 0 < a < da' < d
and a' € Dy, then NEXT(a) < a’ (even when a ¢ D).

423. [18] Explain in detail the representation of the initial domain {0,1,...,d — 1},
when using the (a) bit vector (b) doubly linked list (c) sparse-set representations.

424. [21] Sometimes a program wants to know min D,, the smallest element of v’s
current domain. (By convention, min{) = d in this context.) What’s a good way to
handle that in the (a) bit vector (b) doubly linked list (c) sparse-set representations?

425. [M11] True or false: Equation (111) says that (brq/ey ... bibo)2e = > {2%| a € D}.

426. [25] Work out the details of the AND operation for reversible sparse bitsets:
Given a set D that’s represented using b, D, and S as in Fig. 118, together with another
set D' C {0,1,...,d— 1} that’s represented as an ordinary bitset using a g-element ar-
ray b’, design an algorithm that sets D <—D N D', putting appropriate entries on the trail
so that this operation is reversible. Minimize the number of changes made to b, D, and S.

427. [27] (Compact-Table tuples.) A finite k-ary relation can be defined in general by
listing the k-tuples that satisfy it, as we did in (2) at the beginning of this section.
Such a list, called a “table constraint,” is also the domain of the hidden variable for
that relation (see answer 372). One of the best ways to represent large table constraints
in practice is to use reversible sparse bitsets.

Suppose R(v1,...,vr) is a relation whose variables v; each have a d-ary domain
D;, with a sparse-set representation DOM;, IDOM;, SIZE;, while R itself is represented
by b, D, and S as in Fig. 118. Initially there’s domain consistency with respect to R:
Every binding (vj,a;) with a; € D; is supported in R, meaning that some tuple of R
has v; = aj; conversely, every tuple of R is valid, meaning that each a; belongs to D;.

After other constraints have been propagated, some of the domains will have
changed. Explain what needs to be done in order to restore domain consistency with
respect to R. Hints: Let 0SIZE; be the value of SIZE; before the recent propagations.
Use the intersection algorithm of exercise 426, together with appropriate bitsets b'.

430. [M33] (Backmarking.) Suppose we are solving a CSP by assigning values to
variables x1, z2, ..., in that order. Step t of the search process begins at level I = I,
at which time we’ve made certain provisional assignments 1 < a1, ..., ; < a; and
we want to select a consistent value a;4; for z;41. If we succeed, this step is a “forward
step,” and we’ll have l;41 = [+ 1; otherwise it’s a “backward step,” and l;+1 =1 — 1.
(Initially Ip = 0. A backward step from level 0 terminates the search.)

January 13, 2024

octomino
chunky-octs
Aztec diamond
kingwise connected
trail

stamping
undoing

doubly linked list
dancing links

bit vector
doubly linked list
sparse-set
minimum

bit vector
doubly linked list
sparse-set

AND

reversible sparse bitsets

sparse bitsets
bitset

trail
Compact-Table
k-ary relation
table constraint
hidden variable

sparse-set representation

binding

valid
Backmarking
forward step
backward step

v

114 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024 @ 1203) 7.2.2.3

After the first backward step from level [, subsequent steps at that level tend to
repeat much of the previous computations. Indeed, there’s a value s = s; <[for which
the previous backward step at level [dealt with exactly the same assignments z; < a;
for 1 < j < s. Thus we already “know” the results of all tests on s-ary relations between
ai, ..., as—1 and a¢4+1, and we could have saved that information in an auxiliary array.

a) Forward and backward steps can be represented by a sequence of nested parenthe-
ses as in 7.2.1.6—(1). What values of I; and s; for 0 < ¢ < 30 correspond to the se-
quence ‘() (CO) CCOCOINOICOCOI)’? (Use s = 0 before backward steps.)

b) Devise a way to calculate so, s1, ..., from a given level sequence lo, I,

Hint: Maintain a sequence of intervals [po..qo], [p1--q1], ---, [pr--qr], where

0=po<p1 <---<pr,such that s = pr when k is maximum with pr <l < gqx.

c) Show that the s values can indeed be rather complicated, by constructing a level
sequence lp, I, ... for which the intervals in the preceding hint are

[0..00], [2..8], [4..6], [5..5], [10..15], [11..12], [14..14].

d) Find levels 0 = lo, ll, ey lso = 0 for which sg + s1 + -+ + s29 > 107.

e) What’s the average of so + - - - + s29 over all level sequences 0 = lo, ..., l30 = 07

f) The amount of nonrepeated computation at step ¢ can be measured by l; — s¢.
Generate random sequences of nested parentheses, 1000000 of each, and estimate
the average value of [y — s¢ for 0 < ¢ < 2000000. Hint: See Algorithm 7.2.1.6W.

g) Let D; ={1,...,d;} be x;’s domain. Explain how to use s; to avoid recomputa-
tion at step ¢, by maintaining a “mark” Mj, for each variable z; and each a € D;.

434. [05] Explain the significance of CLR(z) in Table 3.

435. [10] What node in Table 7.2.2.1-2 corresponds to node z in Table 3, for 0 <z <197
436. [20] True or false: ITM(z) < SECOND if and only if LOC(z) < SECOND.

437. [20] True or false: ACTIVE = 0 whenever Algorithm C finds a solution in step C9.

439. [25] Design an algorithm to set up the initial memory contents of an XCC
problem, as needed by step C1 of Algorithm C and illustrated in Table 3. The input
to your algorithm should consist of a sequence of lines with the following format:

e The very first line lists the names of all items, with the primary items first.

e Each remaining line specifies the items of a particular option, one option per line.

440. [18] Explain how to branch in step C2 on an item ¢ for which SIZE(i) is min-
imum. If several items have that minimum length, i itself should also be minimum.
(This choice is often called the “minimum remaining values” (MRV) heuristic.)

441. [20] In Table 3, find ¢ and ¢ such that hide(s, c) will set FLAG ¢ 1 if FLAG = 0.

442. [19] Play through Algorithm C by hand, using exercise 440 in step C2 and the in-
put in Table 3, until first reaching step C8. What will the memory contain at that time?

444. [21] Why would it be a mistake to omit ‘FLAG <— —1’ in step C47

445. [21] In some applications the MRV heuristic of exercise 440 leads the search
astray, because certain primary items have short lists yet convey little information
about desirable choices. Modify answer 440 so that an item ¢ whose name does not
begin with the character ‘#’ will be chosen only if SIZE(¢) = 1 or no other choices
exist. (This tactic is called the “sharp preference” heuristic.)

447. [22] Why doesn’t step C7 hide i’ when ¢’ > SECOND and P0OS(:') > OACTIVE?

January 13, 2024

nested parentheses
average

ACTIVE

minimum remaining values
MRV

hide

sharp preference

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 115

» 450. [93] (C. Solnon.) Upgrade Algorithm C to Algorithm C™ by treating cases with
SIZE(¢) = 1 more efficiently. Hints: Maintain a list of all such active primary items.
Step C5 is unnecessary when SIZE(7) = 1, because step C11 will always go to C10.

» 451. [20] Step C3 of Algorithm C might find ¢' = 4, in which case the last five
assigments can be skipped. Explain why it’s probably not a good idea to skip them.

» 452. [18] Suppose the item ¢ that’s chosen by the MRV heuristic in step C2 has options
01, ..., 04, where d = SIZE(i) > 1. Show that, after we’ve considered all solutions in
which ¢ is covered by o1, the MRV heuristic will tell us to branch again on this very
same item ¢, as we explore the solutions to the remaining problem.

453. [10] Does the search tree (121) contain a node at stage 1 and level 37

» 455. [33] Design Algorithm B, which should be like Algorithm C™T except that it does
binary branching instead of d-way branching. Your algorithm should use a user-supplied
heuristic function h(i) for dynamic variable ordering, as described in the text.

456. [20] When the MRV heuristic function h(i) = SIZE(¢) is used in Algorithm B,
the running time doesn’t actually match the speed of Algorithm CT. For example,
Problem C needs 45.0 Gu, not 41.6 Gp. Why?

458. [20] Modify Algorithm B so that it incorporates the WTD heuristic, (122).
459. [20] Formulate the queens-and-knights problem as an XCC problem.

460. [22] Sketch the overall behavior of Algorithm B when it solves the queens-and-
knight problem with the WTD heuristic. How large do the weights become?

461. [20] Compare WTD to MRV on the queens-and-knights problem when there are
(a) 8 queens, 3 knights; (b) 8 queens, 7 knights; (c) 12 queens, 5 knights.

463. [38] The queens-and-knights problem is an example where WTD is exponentially
better than MRV. Construct XCC problems for which WTD is exponentially worse.

464. [18] Modify Algorithm B so that it incorporates the FRB heuristic, (124).
465. [20] Do exercise 461, but with FRB instead of WTD.

466. [25] Modify Algorithm C™ (exercise 450) so that it can be used with heuristics
such as WTD and FRB to do d-way branching instead of binary branching.

v

467. [20] Do the WTD and/or FRB versions of exercise 466 improve on (125)?

468. [16] The matrix (126) is only one of several almost-support matrices that can be
constructed for the options {00, 05, 10, 13,16, 19}. What are the other possibilities?

v

469. [22] When setting up a support matrix, it’s desirable to have a fast way to test
whether or not a particular option o is compatible with at least one option o' that
contains a given item ¢, where ¢ ¢ o. Design an algorithm to do this. Hint: Allocate a
new 32-bit field MARK () in the SET array, for every item 4, and use “stamping.”

471. [17] True or false re (128): The items of every option in Oy belong to I,.

v

472. [13] Consider the example XCC problem of (126), after Algorithm S has explored
all solutions with option 13 and has then backtracked to stage 0 and removed 13. What
are O_1, Oy™*, and Op at that time? What are the ages of the inactive options?

473. [20] Why is it better for the set @) to be a queue (FIFO) than a stack (LIFO)?
474. [25] Is it possible to call opt_out (o) at a time when o € Q7

January 13, 2024

Solnon

forced moves

MRYV heuristic

d-way branching

search tree

stage

level

binary branching
heuristic function h(Z)
dynamic variable ordering
variable ordering

MRYV heuristic function
heuristic function
queens-and-knights problem
XCC problem

WTD

MRV

FRB

d-way branching

binary branching

support matrices
compatible

stamping

queue (FIFO) than a stack (LIFO)
opt_out (o)

116 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

476. [35] The low-level data structures used by Algorithm S extend those of Algo-
rithm C by giving each node a fourth field, XTRA, in addition to the fields ITM, LOC,
CLR that are illustrated in Table 3. We use the abbreviations TRIG(0) = CLR(o),
FIX(0) = XTRA(0), and AGE(0) = XTRA(o + 1), when o is the spacer node preceding an
option. The first item of an option, ITM(o + 1), is required to be primary.

The trigger and fixit stacks are implemented with classical singly linked list
structures, using an array called POOL whose elements have two fields, INFO and LINK.
The triggers of (127) could, for example, be represented with TRIG(0) = 1, TRIG(5) = 3,
TRIG(13) = 7, TRIG(19) = 11, and the following POOL:

p: 1 2 3 4 5 6 7 8 9 10 11 12 13
INFO(p): 19 4 13 4 13 17 5 11 19 11 0 17 —
LINK(p): 2 0 4 5 6 0 8 9 10 0 12 0 —

Two pointers, QF and QR, define the queue @, which is empty if and only if QF = QR.
(The POOL above can accompanied by QF = QR = 13.) The insertion operation ‘o = @’
means “INFO(QR) < o, LINK(QR) < AVAIL, QR < LINK(QR)”; and the deletion opera-
tion ‘Q = o’ means “p < QF, o < INFO(p), QF <— LINK(p), p = AVAIL,” if QF # QR.

For example, starting with (127) represented as above, and with FIX(0) = --- =
FIX(19) = 0, a call on opt_out(13) would have the effect of setting SIZE(11) <+ 1,
SIZE(23) « 2, FIX(5) < 7, FIX(19) < 9, LINK(8) < 0, INFO(7) « 13, INFO(9) « 13,
TRIG(13) <0, INFO(13) <5, LINK(13) <14, INFO(14) <19, LINK(14) <15, QR+ 15.

Use these conventions to design Algorithm O, a “naive” implementation of the
opt_out subroutine described in the text.

477. [32] Design Algorithm E, the empty_g subroutine that’s described in the text.
478. [30] Implement the portion of step S1 that establishes initial domain consistency.

479. [20] Explain how to delete all references to purged options from the trigger stacks
of unpurged options, after the algorithm of exercise 478 has acted.

480. [22] The support-finding loop in the answer to exercise 469 runs through the
active options that contain a given item ¢ sequentially, from first to last. Are better
results obtained by considering them (a) backwards (last to first)? (b) randomly?

482. [37] When Algorithm O (exercise 476) deactivates option o, it looks at every en-
try (o', i) of 0’s trigger stack. If o' and ¢’ are both active, it converts that entry to a fixit
(0,7') on the trigger stack of o’; otherwise (o’,4’) remains on the trigger stack of 0. We
could save a lot of time if the trigger stack had the property that its entries for inactive o’
all appeared at the bottom; then we wouldn’t have to look at them all individually.
a) Explain why we can’t hope to keep the trigger stacks sorted by age, with entries
for the earliest-deactivated options o' nearest the bottom.
b) However, suggest a refined method, Algorithm O™, that does tend to cluster the
inactive entries near the bottom, and avoids looking at them all. Hint: Sort the
entries (0',i') that remain in TRIG(0), after opt_out(o) has acted, by AGE(0').

483. [20] Demonstrate the importance of trigger hints empirically, by running Algo-
rithm S on the “extreme” XC problem for n = 12 (7.2.2.1-(82)), with and without them.

484. [22] Step S2 of Algorithm S advances SSTAMP, a 32-bit number whose values go
into the SS array that’s used in the “hints” of exercise 482. Ordinarily we can just set
SSTAMP < (SSTAMP + 1) mod 2%?; but trouble will arise when the result is zero. Explain
how to avoid trouble. (See exercise 469 for the solution to a similar problem.)

January 13, 2024

data structures
spacer node

first item of an option
primary

trigger

fixit

singly linked list
queue

empty

AVAIL list

opt_out

empty_q

domain consistency
trigger stack
“extreme” XC problem
stamping

overflow

>

v

v

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 117
486. [30] Spell out the low-level details of what happens when step S6 of Algorithm S
chooses an option cs+1 = x; to explore at the next stage of the search.

490. [22] Given m, n, 4, j, and a set P, where 0 < i < m, 0 < j < mn, and P C
{1,2,...,mn}, construct an XCC problem whose solutions assign labels {1,2,... mn}
to the cells of an m x n board, where the labels define steps 1, 2, ..., mn of a closed
knight’s tour (a Hamiltonian cycle of the m x n knight graph). Furthermore, if a queen
is placed in cell (7, j), that queen must attack every cell whose label is in P.

491. [23] (Peter Weigel, 2023.) Improve the construction of exercise 490 by having
one option for every potential pair of knight moves, to and from a white cell, instead
of having one option for every potential single move.

492. [20] Thanks to the construction of exercise 491, the author was able to celebrate
his 85th birthday in 2023 with a felicitous closed solution to the 10 x 10 prime queen
attacking problem: It featured the special pattern ‘Sg gg’ in the center, surmounted
by the exact date of his birth, ‘01 10 19 38’! How many such solutions exist?
493. [24] The strong prime queen attacking problem is the special case of exercise 490
where P consists of all prime numbers < mn plus all numbers 2° for 0 < e < lgmn.
a) Exhibit solutions of this problem, for as many m < n as you can.
b) Also count the total number of solutions, for as many m < n as you can.

495. [41] (Filip Stappers, 2023.) Design Algorithm M, an MCC solver that accepts
the same input as Algorithm 7.2.2.1M but uses dancing cells instead of dancing links.
Hint: Modify Algorithm B (exercise 455).

496. [22] How can Algorithm M use dynamic heuristics such as WTD and FRB?

498. [M21] (Covering with disks.) Can an m x n rectangle be covered with k “discrete
disks” of integer diameter d? (Namely the set of pixels of a d xd square whose centers are
at distance < d/2 from the center of that square.) Formulate this as an MCC problem.

499. [16] Exercise 7.2.2.1-266 explains how to generate the options for an exact cover
problem whose solutions are the ways to pack a given shape with a given set of
polyominoes. What happens if we use those options in an MCC problem instead of
in an XC problem, assigning the multiplicity [tzy . . vzy] to each cell (z,y) of the shape
and the multiplicity [up .. vp] to each piece p?

501. [22] Exercise 297 explains how to encode “negative table constraints” as con-
straints of an XC problem, provided that each constraint is binary. Show that negative
table constraints between k > 2 variables can be encoded as constraints of an MCC
problem. For example, how could you encode ‘z Zaory #bor z #¢’?
502. [M21] Use Algorithm M to find all solutions to the n queens problem such that
no three queens lie in a straight line of any slope.
503. [M20] According to (125), Algorithm CT finds the 15 million solutions to the 16
queens problem in 43.9 Gu. According to (134), Algorithm M finds the 71 thousand
for which no three are collinear in 87.4 Gpu.

So why not simply remove unwanted solutions from the output of Algorithm C*?
504. [M21] Find the maximum m such that m distinct straight lines each contain
three or more queens, in some solution to the 16 queens problem.
506. [21] (Ian Tullis, 2022.) If possible, create a 4-colored 10 x 10 pattern in which,
for 1 < ¢ <4, (i) every row contains exactly c cells of color ¢; (ii) every column contains
exactly ¢ cells of color ¢; (iii) the rookwise-connected components of color ¢ have exactly
¢ cells; and (iv) every component of color 4 is an ell tetromino.

January 13, 2024

closed knight’s tour
knight’s tour
Hamiltonian cycle
knight graph

prime queen attacking problem+

queen
Weigel
author
birthday

prime queen attacking problem
strong prime queen attacking

prime queen attacking
Stappers

MCC solver
dancing cells
dancing links
Covering with disks
k-center problem
discrete disks

pixels

MCC problem
exact cover problem
pack a given shape
polyominoes
negative table constraints
7 queens problem
no-three-in-line

16 queens problem
Tullis

polyominoes

ell tetromino
tetromino

v

118 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

507. [21] In how many ways can g queens and s knights be placed on an m x n board
so that no two pieces attack each other? Formulate this as an MCC problem.

508. [20] For 1 < ¢ < 7, find the maximum number of knights that can be placed
together with ¢ queens on an 8 x 8 chessboard so that no piece attacks another. How
does Algorithm M fare, in comparison to Algorithm 7.2.2.1M, when the options of
exercise 507 are used to solve this problem?

590. [81] A constraint satisfaction automaton (CSA) is a nondeterministic automaton
based on a given CSP. Like all automata, it has a set @ of states, which contains a set
I C @ of input states and a set 2 C @ of output states, together with a transition rule
that takes us from state to state. In this case the transitions have the general form

g — vi\ai,...,v\a, (vea?q:q"), forsomet >0,

where the v’s are variables, the a’s are domain elements, and the ¢’s are states. The
meaning is, “Begin deterministically: For 1 < j <, if v; is unassigned, remove a; from
its domain if a; was present. Then branch nondeterministically: Either (i) assign a as
the value of variable v, and go to state ¢’, or (ii) remove a from the domain of v and
go to state ¢"".” Variable v must not previously have been assigned a value. Case (i)
is permitted only when a is in v’s current domain. It means that the domain of v is
reduced to the single value {a}; furthermore, the domain of every other unassigned
variable w is also reduced, if necessary, so that every constraint for which all variables
but w are assigned is fully satisfied by every value in w’s remaining domain.

A CSA computation begins in an initial state, with all variables unassigned, and
with all domains equal to the initial domains but restricted by the unary constraints.
It ends successfully in an output state when all variables have been assigned; or it can
end unsuccessfully, either in a state g for which some domain is empty, or for which
all variables are assigned but g & €2, or for which no transition rule was specified. The
solutions of a CSA are the tuples of assigned values that a successful computation can
produce. (In particular, those solutions will also solve the given CSP.)

Either v or a in the ‘v <~ a’ part of a transition rule, or both, can be replaced by
an asterisk (*), meaning that the automaton itself is supposed to choose the variable
and/or the value to be assigned, deterministically, using an arbitrary heuristic. Of
course such a “wildcard” transition is inapplicable when no valid assignment is possible.

For example, the CSA with @ = I = Q = {q} and the wildcard transition rule
‘g — (% < %7 ¢: q)’ simply has the same solutions as the given CSP. The CSA with
Q = {qoaqu qz}: I= {q0}7 Q= {q2}7 and transitions

g — (Wa?q:q); @ = w\b,(x *? g2: q2); g2 — (¥ < *? g2 q2)

has all solutions except those for which v = a and w = b.

The domain element in a transition rule can also be a named wildcard of the form
‘a™’, where a is a local identifier. It means that the value a chosen by the automaton
can be used in the specification of the states ¢’ and ¢"’. For example, the transition rule

g (Wa"? qa qoq)

will cause the automaton to choose an arbitrary value a in v’s domain. Then if, say,
a = 3, it will branch nondeterministically, either assigning v <— 3 and going into state g3
or making no assignment and going into state g_s.

Notice that a CSA essentially adds a global constraint to the given CSP. “Find
all solutions that correspond to a sequence of states in the CSA from I to 2.” It can

January 13, 2024

queens and knights, nonattacking
knights and queens, nonattacking
MCC problem

chessboard

dancing cells versus dancing links
constraint satisfaction automaton
CSA

nondeterministic automaton
automata

states

input states

output states

transition rule

variables

domain elements

solutions

asterisk

wildcard

global constraint

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 119

be simulated by any procedure that makes further domain reductions, for example to
maintain consistency, as long as those reductions don’t eliminate any solutions.

The following examples exhibit some of the versatility provided by this CSA
formalism. Let the variables of a given CSP be {vi, ..., v, }, each with domain [0..d) =
{0,1,...,d — 1}, and subject to any number of further constraints.

a) Define a CSA whose solutions v; ... v, are those with (vi+---+v,) mod 5 € {1, 3}.
) Define a CSA for the solutions where each value occurs at most twice.
) Define a CSA for the solutions where each value occurs either twice or not at all.
) Similarly, design a CSA for all solutions v ... v, that are restricted growth strings.
(See Section 7.2.1.5; in particular, v1 = 0 and v2 is 0 or 1.)
e) Let d = 2, and restrict the solutions to binary strings v; ... v, that correspond to
nested parentheses when 0 <> (and 1 +»). (In particular, vi = 0 and v, = 1.)

o T

591. [21] Suppose the reflection vy ...v2v1 solves a certain CSP whenever vivs ... v,
does. All domains are [0..d). Design a CSA that yields only one of those solutions.

592. [28] Suppose the cyclic permutation vs...v,v1 solves a certain CSP whenever
102 ...V, does. Design a CSA that yields just one solution in each equivalence class un-
der cyclic shifts. All domains are [0..d). Hint: Consider prime strings (Section 7.2.1.1).

593. [28] Solutions to the n queens problem belong to the same equivalence class
if they differ only by a reflection and/or rotation of the board. The purpose of this
exercise is to define canonical solutions, of which there’s exactly one in each class.
Denote the cells by (7, j) for 0 < ¢, < n. Let R; be the column containing a queen
in row 4, and let C; be the row containing a queen in column j; thus R; = j if and only
if C; = i. Let Z = n— 1 — z; notice that rotation by 90° changes R; to C; and C; to R;.
a) Let (ai, bi, ¢, dl) = (Rl, C;, Rz, él) Can we have {ai, bi, ci, dl} n {C_Li, l_)i, Ci, CL}#@?
b) How does reflection of the board change the numbers (a;, b;, i, d;) of a solution?
c) Let n' = [n/2]. Write out the eight values of the 4[n/2]-tuple

(an’)bn’)cn’)dn’;an’+1)bn’+lycn’+1)dn’+l; . -;anflybnflycnflydn—l)

that occur when the following solutions are rotated and/or reflected:

w Y
— g ey EE"EE W
” | w v

- B] W
W W
Wl w N AERE ¥

g

d) Explain why the lexicographically least of eight such tuples is a canonical solution.
e) True or false: If n = 2n’, the canonical tuple begins with a,r < n' — 2.
f) Design a CSA for canonical solutions to the n queens problem.

594. [27] What’s the lexicographically largest canonical solution that uses 32 queens?

595. [24] A superqueen (also called an “amazon”) combines the moves of a queen and
a knight. Use the methods of exercise 593 to determine the number of inequivalent
solutions to the n superqueens problem for small n.

600. [15] True or false: If Montanari’s procedure (200) ever sets R;; < O (the all-0
matrix) for at least one pair (7, 7), it will eventually set R; ;» < O for all pairs (i, j').

January 13, 2024

consistency

restricted growth strings
nested parentheses
reflection

symmetry breaking (removal)

breaking symmetries
cyclic shifts

Lyndon words, see prime strings

prime strings

7L queens problem
queens problem
equivalence class
reflection

rotation

canonical solutions
lexicographically least
superqueen

amazon

knight

Tl superqueens problem
Montanari

O, the all-0 matrix

120 COMBINATORIAL SEARCHING (F7A: 13Jan 2024 Q 1203) 7.2.2.3

601. [28] Summarize what (200) will do when presented with each of the following
inputs, assuming that every unspecified relation R;; is the identity matrix when ¢ = j,
or the all-1s matrix when i # j. (Domain sizes can be deduced from the given matrices.)

a) n =25, Ri» = Rys = R34 = Rys = Rs1 = (?[1,)

b) n = 5, R12 = R23 = R34 = R45 = (%ég) and R51 = (géi).

c) n=15, Ri2 = Re3 = R3a = Ras = Rs1 = (?f}%)

d) n = 3, R12 = (i(l)), R13 = (éi?), and R23 = (ig(l))
602. [M25] (U. Montanari, 1974.) If (200) makes no change to any relation, prove
that the following property holds for every (s,t) € R;; and every sequence koki ...k,
of indices with ko =14, 1 <k <nfor 0 < < r, and k, = j: There’s a sequence of
values zozx1 ...z, such that xo = s, (x;,21+1) € sz,kz+1 for 0 <I<r,and z, =t.

999. [M00] this is a temporary exercise (for dummies)

January 13, 2024

Montanari

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 121

[This blank page has temporarily been inserted so that the answers will begin on an
I even-numbered page.]

January 13, 2024

122 ANSWERS TO EXERCISES 7.2.2.3

After [this] way of Solving Questions, a man may steale a Nappe,
and fall to worke again afresh where he left Off.

— JOHN AUBREY, An Idea of Education of Young Gentlemen (c. 1684)

SECTION 7.2.2.3
1. Only BCAON, BCUOD, BLUED, and SCION satisfy R; and Rs; the first two fail Ro.

2. (a) The literals of each clause define the domain of the corresponding variable. If
one clause contains x and the other contains Z, forbid the pair Z. [See H. Bennaceur,
ECAI 12 (1996), 155-159. Satisfiability /unsatisfiability is preserved, but the number
of solutions may change; when m = 1 the 3SAT problem has 7 solutions, the CSP has 3.]

(b) Seven variables ¢; € {1,2,3}, ..., cr € {3,4,1}; (Z) = 21 constraints. Three
constraints are satisfied in 6 ways (for example, c1¢5 € {12,13, 21,23, 31, 32}); the other
18 in 8 ways (cicy € D1 x D7\ 11). The SAT problem has 2 solutions, the CSP has 48.

(c,d) Adding Boolean variables {x1, z2, x3, x4}, we need only 5-out-of-6 constraints
such as ciz1 € {11,20,21,30,31}. [See M. Jérvisalo and I. Niemeli, Workshop on
Modelling and Reformulating Constraint Satisfaction Problems 3 (2004), 111-124.]

3. Let z18 = [x1 =B], etc. Then the clauses (z18 V z15), (T1B V T15), (T2c V @aL),
TocVTaL), (x3a Vs Vasy), (TsaVT31), (TeaVTau), (T31 VZTau), (24EV Ta0), (TaE VTa0),
xsp V zsn), (Tsp V Tsn) establish the domains. And the clauses (Ri1 V Ri2 V Ris),

11 VT1B), @11 V x31), (Enl/ Z5n), (1_312_\/ T18), (RIZ_V Z3u), (1_312 V 5p), (1_313 Vzis),
13Vzsr), (RisVasy), ..., (RssVzaL), (RassVxae), (RssVxsp) establish the relations.

(Many other encodings are possible; this one is systematic and avoids trickery.)

(
(2
(R
(R

4. Primary R, R», Rs; secondary z1, ..., z5. Options ‘R; z1:B z3:A z5:N’, ‘R; z1:B
x3:U x5:D’, ‘R1 x1:S x3:I x5:N', ..., ‘R3 x2:L x4:E x5:D. (See exercise 7.2.2.1-100.)

5. There are just two subsets of {¢}, namely 0 and {e}. The first of those relations is
always false, so it’s a constraint that wipes out all solutions. The second is a tautology,
always true; it doesn’t really constrain anything. (In general, there are 2d1--dk f_ary
relations on (D1y,..., D), when each D; has d; elements; hence there are 24* k-ary
relations over any d-element set. One of them is always false; another is always true.)

6. Given any binary relation on A x B, consisting of ordered pairs (a,b), math texts
say furthermore that the “domain” is the set of left coordinates and the “range” is the
set of right coordinates. Yet constraint satisfiers have happily spoken of the domains
of variables ever since Mackworth’s paper of 1977 introduced the terminology.

Mackworth was influenced by earlier work in computer vision, where the value
of a variable was often a rectangle (say) where some object might be found in a
digital image; that would be an extramathematical sense of the word “domain,” like a
“dominion.” Moreover, his main focus was on constraints, not variables; the domains
of the constraints are the values of the variables. [Fikes had actually used the term
“range,” not domain, in his original paper of 1970.]

8. False. For example, (012343434) is a homomorphism from Cy to C5. (The most
that can be concluded, from the existence of a homomorphism from Coyqq to G, is that
G isn’t bipartite, because it contains an odd cycle.)

9. (Solution by P. Jeavons.) Construct a new graph G’ by replacing every edge © —v
of G by a path 4 — uv — vu—v, where uv and vu are new vertices. Then there’s a ho-
momorphism from G’ to C5 if and only if there’s a homomorphism from G to K5. Hence
the problem is NP-complete. (In general the “H-coloring problem,” to decide whether

January 13, 2024

AUBREY
Bennaceur
Jéarvisalo
Niemeld
tautology
binary relation
Mackworth
computer vision
historical notes
Fikes

Jeavons
NP-complete

H -coloring problem

7.2.2.3 ANSWERS TO EXERCISES 123

or not a homomorphism from G to H exists, is trivial when H is bipartite; otherwise
it’s NP-complete [P. Hell and J. Nesetril, J. Comb. Theory B48 (1990), 92-110].)

10. (a) Let E = {{u,v} | v # v and {u,v} ¢ E} be the edges of the complement
graph G. (See Egs. 7-(15) and 7-(35).) An independent set in G is a clique in G. “Is
there a homomorphism from Ky to (V, E)?”

(b) The vertices not in a cover are independent. Use (a) with k « |V| —

(¢) They’re isomorphic if and only if each is embeddable in the other. It’s a single
GCP if |V| = |V’|: “Is there a homomorphism from (V, E,E) to (V',E',E")?"

(d) Let G’ be the graph on {1,...,
“Is G embeddable in G'?”

(e) Let A’ be the relation {(uv,u'v') | v = v’} on ordered pairs of vertices in V/,
and let ({0,...,m — 1}, 0) be the oriented cycle Cy,, where m = |A| and O = {ij | j =
(i +1) mod m}. “Is there a homomorphism from ({0,...,m —1},0,#) to (4, A", #)?”

11. “u # v implies h(u) || h(v)” is the same as saying that |V| mutually unlike k-tuples
satisfy relation R. And that’s precisely the kDM problem (k-dimensional matching).

15. Given similar relational structures S = (U, R1,...,R¢) and S’ = (U', Ry, ..., R}),
the corresponding CSP has variables U, each with domain U’. Suppose U = {1, ..., n}.
The values z;, ...x;, of every k-tuple 41 ...ix € Rj, where k = k;, are constrained to
satisfy the relation Rj, for 1 < j <t.

18. (a) Let T be the matrix (“7 "%), where z~ denotes 1/z. By induction we have
Gn(z) = e) TN=I(1). For example, G1(2) = w +w and G2(2) = w2 +2z+w’z".

Now let u = (w+w)z v =((Y52)/2)? +2°, A= u+ v, p = u—/v. Then
we have T' = S({)5, where § = (A 7°7 #7i7°7). Hence Gy (2) = aA¥ '+ bp 1,
with coefficients a =)\z + (z—2)/\/_ b= pz — (z—2%)/y/v. (Notice that when
B = 0, everything simplifies enormously because w = 1. For example, A =z~ + z.)

(b) Differentiate and plug in. (The exact formulas are hairy, until we get to (c).)

(c) When N is large we can ignore y. Thus G'(2)/G(z) in (b) is £ InG(z) ~
4 Nln)\, where X\ = ¢ cosh BB + v/e2# sinh? BB + e—28.

(d) Now we have G, (z) = @) TF=2XTN=#(1) where X = (
in closed form, let Y = S™XS, so that T*"' XTV =% = §(3 0)*=1y (3
= (%3

' 9). To put this
u)N~kS~. Hence
Gr(z) = ax" '+ lAzuNfl + c)\kaukfl + AN TR where 6 = YYa/\/v, b =
(25=2)b/\/v, ¢ = “=%=(1 — 2°) /v. So the average comes to (@ + C)\/(N\/_)))\N !
(b— cpf (NV0)) ™~ 1, divided by G(z); asymptotically, it’s sinh 8B/+/sinh® 3B + 6_4 .
[This answer is based on §2.5.1 of the book by Mézard and Montanari.]

0
0
m

w—

20. It turns out that 17 constraints like (12) are sufficient to force z; # x; whenever
i # j. (The problem without (14) is in fact equivalent to “radio coloring” as in exercise
7.2.2.2-36; the graph in (11) can’t be 7-colored radiowise.) But the second model, with
only 7 constraints like (15), has 20,358 solutions without the all-different constraint!
We can, for instance, set A <~ C<+— E<+ G<¢ 1l and B« D+ F <+ H <+ 8.

[The inventor of this puzzle is unknown. After Martin Gardner publicized it in
Scientific American 206, 2 (February 1962), 150, Fred Gruenberger told him that he’d
learned of the problem in 1961 from a friend at Walt Disney Studios, “where it had
already consumed a fair amount of Mr. Disney’s staff time.” Gruenberger had used
it that year in a TV documentary, “How a Digital Computer Works,” featuring three
high-school students who solved it from scratch in about five minutes, working at
a blackboard, while a computer would supposedly have to run through 8! = 40320

January 13, 2024

Hell

Nesetril
complement graph
clique

embeddable
ori_sented cycle

m
kDM problem
k-dimensional matching
3DM
Mézard
Montanari
radio coloring
Gardner
Gruenberger
historical notes
Disney

124 ANSWERS TO EXERCISES 7.2.2.3

permutations in order to find the answer! Ten years later, D. K. Cohoon called (11) the
“no-touch puzzle” in Math. Mag. 45 (1972), 261-265, without mentioning his source.]

Notice that the CSP model using (15) is essentially based on the complement of the
graph in (11), which has only 11 edges and is easy to draw. According to that model, the
problem is to make (A,B,...,H) label a Hamiltonian path in the complement graph —
an observation made independently by T. H. O’Beirne and H. Koplowitz in letters to
Gardner, and later by Cohoon. There are four such paths, easy to find.

21. We can save a factor of 2 by assuming that A occurs in the left half of the graph:
Remove A from the domains of {2, x5, s, xs} in the first model; remove {2,5, 6,8}
from the domain of A in the second.

To save another factor of 2, we can add the constraint z; < zs (say) in the first
model. That can’t be done in the second, without probing deeper into the solution.

22. Let there be 17 - 7 secondary items juv, one for every combination of a letter j
with A < j < H and an edge u — v, where u < v. There are 64 options (v, k), where
1 <wv<8andA <k <H; option (v, k) contains the primary items v and k, meaning
that vertex v is labeled with letter k. To prevent adjacent letters in edge u — v, add
secondary item juv to options (u, j), (v,7), (u,j+1), and (v, j+1). For example, option
(2,E) is ‘2 E D12 D24 D25 D26 E12 E24 E25 E26’. (This construction nicely incorporates
both of the text’s CSP models; notice that the all-different constraint “comes for free.”)

That XC problem has 4 solutions, found in 300 kilomems with 485 nodes in the
search tree. To break the symmetry as in exercise 21, first remove options (2, 4), (5, 4),
(6,4), (8,4); then also remove options (2,H) and (8,B), and use the pairwise ordering
trick of exercise 7.2.2.1-20 with m = 6, a; = (2,B + 1), 8; = (8,C + i) to ensure that
the label of 2 is less than the label of 8. (This introduces secondary items y1, ..., ys; it
also puts y2 and ys3 into option (2,E).) The resulting XC problem has 1 solution, costs
108 kilomems, and examines 146 nodes. [If we cleverly change 5 to #5 and use the
sharp preference heuristic of exercise 7.2.2.1-10, thereby forcing the first branch to be on
vertex 5, the search tree decreases to just 43 nodes and the running time to just 35 Kpu.]

23. Let variables (AB, BC, CD, DE, EF, FG, GH) each have the 11-element domain of all
edges not in the graph. Constrain each of (AB,BC), ..., (FG,GH) to be one of the 48
ordered pairs of edges that have one vertex in common. Also constrain each of the
nonoverlapping pairs of variables, namely (AB,CD), (AB,DE), ..., (EF,GH), to be one of
the other 62 ordered pairs of edges. (The all-different constraint would be redundant.)

26. FABABACDCE (and its mirror image ECDCABABAF).

27. The mirror image of a solution with f > 5 has f < 5. (Alternatively, we could
have assumed that d < 5, or e < 5, or even that a1 < 5; but F is probably harder
to place. When ¢ is even, the symmetry can be broken by choosing any model of odd
multiplicity, and requiring more than half of its occurrences to be < t/2.)

28. (Solution by B. C. Dull.) No. If that new constraint is violated, so is (18) when
I =10'+1", because we have for + fix + -+ furgo—1)r < Upr by (17).

But that “solution” is wrong! The new constraints are useful, for example, when
I = 0 and we have a partial solution for which f;; is known only when i > ¢/2.

30. Introduce a primary item, representing slot i, for 0 < ¢ < ¢t. Also a primary item
for the name of each model type, with its given multiplicity. (In Fig. 100, for example,
item A has multiplicity 3.) There will be one option for each slot and each type.

To implement the constraints (17), introduce primary items u;j; for 0 < j <t — gy
and 0 < k < m, having multiplicity [0..px]. (If pr = 1, this item could be secondary.)

January 13, 2024

Cohoon

no-touch puzzle
Hamiltonian path
O’Beirne

Koplowitz

Gardner

symmetry

pairwise ordering trick
XC: exact cover

sharp preference heuristic
Kp: kilomems
symmetry

Dull

slot

7.2.2.3 ANSWERS TO EXERCISES 125

Include u;x in the option for every model that uses feature £ in slot ¢, for j < ¢ < j+gx.
(Thus, one option for Fig. 100 is ‘2 B u1g u2o wo3 w13 u23’.)

31. Notice that for+--- +.f(t—lqk—l)k > r. — Ipg if and only if fOk +-- +f(t—lqk—l)k <
sik =t —lqr — ri + Ipr. Therefore introduce primary items vy, for 0 < < [ry/pr| and
0 < k < m, having multiplicity [0.. siz]. Include vy in the option for every model that
does not use feature k, for every slot 7 in the range 0 < i < t — lgx. (If s; = 0, any
options that would include vy, should be omitted, like the options for 0 B and 0 D in
Fig.100. The option in answer 30 becomes ‘2 B w1g u20 v41 v71 v72 w3 w13 u23’. Other
redundant constraints such as those of exercise 28 can be implemented in a similar way.)

32. Yes: The only solutions are FEBAGAHDCAGECDACDCEGACDHAGABEF and its
mirror image (change ‘AC’ to ‘CA’ in the middle). The running time is (a) 28 gigamems,
with 22 meganodes in the search tree; (b) 4 megamems, with 1670 nodes.
33. Noj; Algorithm 7.2.2.1M verifies this in 202 Gu, with 158 meganodes.

There’s actually an easy way to prove the impossibility by hand, because Model F
can only appear at the beginning, or at the end, or next to Model 0; furthermore FOF
is impossible. Hence the shortest possible way to produce four Model Fs is to put one
at each end and to have two occurrences of FO or OF inside the sequence.

One way to solve the 62-car problem is to place ‘00’ between two solutions of the
30-car problem. That 62-car problem actually has 19050 solutions, of which 18 are un-
changed under left-right reflection and the others form 9516 mirror pairs. Only 69 Gu of
computation are needed to find the symmetric ones. Every solution begins with FEBA
and ends with ABEF. Six of the palindromic solutions, such as FEBAFOHDCAGECDC-
AGEBAGAHDCAGECDAADCEGACDH . .. GACDHOFABEF, have two F’s near each end.

35. (a) We've seen equivalent problems before (for example, in Sections 5.4.2, 7.2.1.1,
and 7.2.1.7); but let’s start from scratch. Consider the digraph whose vertices are the
g-bit patterns a with va < p, having arcs @« — 3 when the last ¢ — 1 bits of a match
the first ¢ — 1 bits of 8. (It’s a subgraph of the digraph in exercise 2.3.4.2-23.) The
answer is the number of walks of length 10 that start from vertex 09 in this digraph:
144 when (p,q) = (1,2); 60 when (p,q) = (1, 3); 504 when (p,q) = (2, 3).

(b) pln/q) +min(p, n mod g).

(c) In general, the generating function G(z) for walks of length n from vertex o in
a given digraph is 3 G(2), where G%(2) = [a=0]+23 , ., GP(z) for each vertex .
For example, when (p,q) = (1,2) and o = 00 we have G(z) = G%(z) + G (2) + G*°(2);
G (2) = 1+2(G(2)+G*°(2)); G* (2) = 2(G*°(2)+G'°(2)); G'°(2) = 2G°*(2); hence
G12(2) = G(z) = (1 + 2)/(1 — z — 2%). (They’re Fibonacci numbers: Ci2, = F42.)

Similarly Gi3(z) = (1 4+ z + 2?)/(1 — z — 2*) (Narayana numbers); Ga3(z) =
(14 2+2%)/(1—z—2* — 2®) (Tribonacci numbers). In general, Gi4(z) = (1+2z+---+
27 1) /(1—2—27) and G(y—1)4(2) = (L+2+- - 422)/(1—z—2z>— - -—27). But the other
cases don’t fit any evident pattern: Gza(z) = (142422 +28—2*—2%)/(1—2—22—2*+2°);
Gas(2) = (14+24+227 +223 422" — 25 — 26— 227 — 28 —29) /(1 — 2 — 2° — 22° + 25 +210);
Gss(2) = (I+z2+22+225+220 —2° =20 — 28 —29) /(1 — 2 — 2% —2* — 225 + 27 +210).
36. (a) Given a plane partition whose elements P;; satisfy 0 < P;; < m, P;j > Pijt1),
P;; > P41y, and P;j = 0 for 4 > p or j > q — p, construct an extreme (p/q)-string
as follows: For k =1, 2, ..., m, form the tableau shape whose boxes are the elements
with P;; > k, and write down its rim representation, as in 7.2.1.4—(13) and (14). (This
will be a binary string of length ¢ that contains exactly p 1s.)

For example, suppose p = 2, ¢ = 5, m = 6, and consider the plane partition 3is.
The rim representations for k = 1, 2, 3, 4, 5, 6 are respectively 10100, 01010, 01001,

January 13, 2024

palindromic

walks

digraph

Fibonacci numbers

Narayana numbers

Tribonacci numbers
tableau shape

rim representation

126 ANSWERS TO EXERCISES 7.2.2.3

01001, 00011, 00011; and the concatenation of those strings is extreme. (This beautiful
construction, devised by Ira Gessel in March 2020, is clearly reversible.)

(b) Let r = nmodgq. Then cpgn is ep_ryq—r)(ln/ql), if r < p; 1, if r = p;
epr([n/ql), if 7 > p.

39. Each point (z,y, z) satisfies three equations in three unknowns, so the respective
vertices are ((—140,0,0), (75,75, —100), (0,252, —280), (40, —100, —200), (90, —50, 0),
(140, 50, 0), (—240,0,200), (140,0,0), (240, 0, 200), (—140, —50,0), (=90, 50,0), (—40,
100, —200), (0,—252,—280), (—75,—75,—100)). Then the seven hexagons 023 —
310 — 501 — 054 — 460 — 206, 134 — 421 — 612 — 165 — 501 — 310, ...,
612 — 206 — 460 — 643 — 356 165 do the job, because we can construct a model
(with stiff paper or computer graphics). [Structural Topology #13 (1986), 69-80.]

40. The simplest example whose histoscape is not a 3VP is the identity matrix (}}),
because more than three edges (in fact, five of them) touch vertex (1,1,1). Moreover,
the edge from (1,1,1) to (1,1,0) is adjacent to four faces! [Beware: The standard
row-and-column convention for coordinates ¢j of a matrix are sometimes confusingly at
odds with the standard Cartesian coordinates (z,y, z) of three-dimensional geometry.]

In general, consider the histoscape for (*}) when a = max{a,b,c,d} and b > c. It
fails to be 3VP when d > b, because the cubies (0,0,b) and (1,1,b) have a boundary
edge in common. A milder violation occurs when a > b and ¢ > d, because four faces
meet at vertex (1,1,b). Four faces meet at that vertex also whena >b=d > c.

But the other cases are fine: Case I, a =b=c >d. Case 2, a =b > max{c, d}.
Case 3, a >b=c=d. Case 4,a>b>d>c. When we take symmetry into account,
these cases contribute respectively ((*7) +4(%),4(")) +8(%),4(%),8(%) +8("Y)) valid
3VPs, a total of 4150.

(And the B* histoscapes of 2 x 2 matrices with a;; < B yield B¥/3+0(B?) 3VPs.)

41. An m x n histoscape is a 3VP if and only if r(a;_1);—1), @@—1);, @i(j—1), @i;) holds
for 1 <i<m and 1 < j < n, where r is the relation in the previous answer, because
the vertices (z,y, z) for which £ = ¢ and y = j depend only on those four matrix entries.

The best way to enumerate the solutions to a CSP whose relations are enforced in
such a structured manner is to use the techniques of “dynamic programming,” which
is the topic of Section 7.7. This problem offers us a nice preview of those coming
attractions, because the following remarkable algorithm finds the total number of m xn
matrices whose 2 x 2 submatrices all satisfy an arbitrary quaternary relation r. We
assume that each variable has the domain 0 < a;; < t; and we use an (n+1)-dimensional

array of t"T! potentially large integers ¢(zo, .. .,<s), all initially 1.
Q1. [Iterate on rows.] Do step Q2 for ¢ =1, ..., m — 1; then go to Q3.
Q2. [Iterate on columns.] Do subroutine (4, j) below for j =1, ..., n—[i=m — 1].

Q3. [Sum.] The answer is Y {c(zo,...,zn) |0 < xo,...,zn <t}. |
Subroutine (i,) is the following: Set ¢ < (j — i) mod (n + 1). For all t* choices of

(zo,...,2zn) such that 4 = 0, compute ¢ sums for 0 < d < ¢, namely
Sd < Z [Tij (ky L (g+1) mod (n+1)) L(g—1) mod (n+1), d)]c(IO; ceeyLg—1, ky LTg4+1ly.--, wn);
0<k<t
then set c(zo,...,Zq—1,d,Tg41,...,Zn) ¢ sq for 0 < d < t. (Notice that this compu-

tation is rather similar to the discrete Fourier transform in Eq. 4.6.4-(40).)

January 13, 2024

Gessel

coordinates

matrix coordinates
Cartesian coordinates
structured

dynamic programming
quaternary relation
discrete Fourier transform
Fourier transform

7.2.2.3 ANSWERS TO EXERCISES 127

The relation r;; in the formula for sq is 7 when j < n; but r;; is the universal
relation (always true) when j = n. (One could in fact let r;; be a different quater-
nary relation for each (4,j), where 4, constrains the joint values of (a(i—1)(n—1),@io,

@i(n—1), Ai+1)0)- Imagine the 2 x (m — 1)n matrix (Z?g‘;i’iZgg::;‘;;gg;g::;zgg)

The method works because, when subroutine (i,j) begins, c(zo,...,zs) is the
number of ways to set the initial matrix entries a; ;/, for (i, j') lexicographically less
than (i, 7), so that all constraints on those variables are satisfied and

(a(i,l)(]-,l), sy A(i—1)(n—1), @i0, .+ -+ ,ai(j,l)) = ($q,$q+1, ey L, Lo,y . - .,ar;qfl).

About 1.8 teramems of computation suffice to show that the desired number of 8 x8
matrices is 1,927,084,607,409,168,698,157,388,476,170,741,096,757,035,906,066. (Those
“mems” were however longer than usual, because 24 gigabytes of memory were needed.)

42. We essentially want to run that algorithm in reverse. To reverse step Q3, let the

counts ¢(zo, ..., Z,) be renamed c¢; for 0 < j < t"*!| in any convenient way. Then for
j=0,1,...,8et k < k —c; if k > ¢;; but stop when k < ¢;. That gives us suitable
values of (CDo, Liy... ,Z‘n), which will be (a(m_g)(n_l), A(m—1)0s -+ - ,a(m_l)(n_l)). And

we’ll want the kth solution for which those n + 1 values are prespecified.

Similarly, we can run subroutine (4,) in reverse, if we’re given the t"*! counts
that it ends with, because each of those counts was obtained as the sum of at most n
counts ¢; whose sum exceeds k. That will give us enough information to determine
a(i—1)(j—1), as well as a new value of k. The remaining problem is then to find the kth
solution when the final (m — ¢+ 1)n — j — 1 elements are given.

We must rerun the algorithm for each (¢,j) = (m—1,n—-1), (m—1,n—2), ...,
(1,1), because the previous counts have been discarded. However, we can save time by
cleverly omitting the computation of counts that won’t contribute to solutions having
the prespecified final elements. (See the author’s program HISTOSCAPE-UNRANK.)

The “random” 8 x 8 solution shown here was found by setting k < N/¢, where
N is the total number of solutions. (It can be fabricated from sugar cubes.)

54232263
67988870
51164777
53991762
54571142
79671771
52572452
32992360

Incidentally, this histoscape has 184 vertices and 94 faces. Only 89 of the vertices are
visible in this particular view, and only 48 of the faces are at least partly visible. There
are 35 T junctions, 24 V junctions, 42 W junctions, and 23 Y junctions. When half
edges are forced at the boundary, the line labeling problem has six solutions, because
of two independent ambiguities in the “central canyon”; all but four labels are forced.

43. It’s convenient to use the even/odd coordinate system of exercise 7.2.2.1-145, with
cubie (3,7, k) represented by (2¢ + 1,25 + 1,2k + 1). In the following description we
shall use the notation k to stand for k mod 2. Assume that a;; < t for all ¢ and j, and
set up a (2m + 1) x (2n+ 1) x (2¢ + 1) array b, initially zero.

January 13, 2024

universal relation
lexicographically less
mems

author

downloadable programs
golden ratio

junctions

half edges

boundary

line labeling

even/odd coordinate system

128 ANSWERS TO EXERCISES 7.2.2.3

First, mark all the cubies, by setting b(2i41)2j+1)2k+1) < 1 for 0 <k < aij.
Second, mark all the “visible” faces of cubies, by doing the following for all (3, j, k)
with ij]_ﬂ = 111 and bijr = 1: If b(i:l:2)jk = 0, set b(i:l:l)jk +— 1; if bi(j:l:2)lc = 0, set
bi(jj:l)k —].; if bij(k:l:Q) = 0, set bij(kj:l) +— 1. (We assume that bi]'k = 0 whenever
i<0orj<Oork<O0ori>2morj>2nork>2t)

Third, to mark all the “visible” edges, do the following for all (i, j, k) with 77k = 011
and bi]'k =1:1If bi(j:l:Q)k = 0, set bi(j:l:l)k — 1; if bij(kiz) = 0, set bij(kj:l) < 1. Also do
this, for all (¢, j, k) with 77k = 101 and bijr =1: If b(i:l:2)jk =0, set b(i:l:l)jk +— 1.

Fourth, mark all the vertices, by doing the following for all (i, 5, k) with 77k = 001
and b;jr = 1: If bij(lc:l:2) =0, set bij(lc:l:l) — 1.

Finally, now that we know the vertices, we’re ready to output the face polygons
(some of which might be “holes” enclosed in a larger polygon). Every vertex will be
part of three polygons, one with constant 4, another with constant j, another with
constant k. All three cases are similar; the polygon with constant ¢ can be found as
follows, starting at ijk where 27k = 000: “While b;j;, = 1, do a j-step and a k-step.” A
Jj-step means, “Output vertex (i/2)(j/2)(k/2); set bij < 2; set 0 < 2 if by 11y > 0,
otherwise § <— —2; repeat j < j + 0 until b;jx > 0.” A k-step is similar. (The polygon
will have an even number of vertices, because we alternate j-steps with k-steps.) After
all faces with constant ¢ have been output, all vertices will have b;;, = 2.

For example, consider the histoscape for (i3). It has 16 vertices: 000, 001, 030,
031, 110, 111, 120, 121, 210, 211, 220, 221, 300, 301, 330, 331. Its i-face polygons
are 000 030 031 — 001 000, 110 — 120 — 121 — 111 — 110, 210 —
220 — 221 — 211 — 210, 300 — 330 — 331 — 301 — 300; its j-face polygons
are 000 — 001 — 301 — 300 — 000, 030 — 031 — 331 — 330 — 030, 110 —
111 — 211 — 210 — 110, 120 — 121 221 — 220 — 120; its k-face polygons are
000 — 300 — 330 — 030 — 000, 001 — 301 — 331 — 031 — 001, 110 — 210 —
220 —120—110, 111 —211 —221 —121 —111. It looks like a square torus.

44. (a) Swap 14 with 15.

(b) Swapping adjacent elements of a vortex changes it to a non-vortex. (Moreover,
the 2 x 2 matrix (*?) is a vortex if and only if [a <b]+[b < d]+[d < c]+[c<a] is 0dd.)

(c) First row (1,...,n), second row (2n,...,n + 1), and so on.

(d) True, by answer 40 (case 4).

(e) It suffices to verify this for 2 x 2 matrices, when it’s clearly true.

45. Let rij(w,z,y, z) be any 4-ary relation that depends only on the relative order of
four distinct elements {w, z,y,z}. (There are 2°* such relations.) We can enumerate all
m X n matrices whose elements are a permutation of {0,1,...,mn—1} and whose 2 x 2
submatrices satisfy 7i;(ag—1)j—1), @(i=1)j, @i(j—1), @ij), with a dynamic programming
algorithm structured as the method of answer 41. But this time we need counts
c(Tn—t,...,x:) for each of the t2+1 choices of distinct elements with 0 S Tpotyeo, ke <
t, where t = in + j when starting subroutine (i,) and ¢ = in + j + 1 when finishing.
(For example, when m = n = 5, the number of counts is only 13¢ = 1235520 when
(5,7) = (2,2), but it rises to 25° = 127512000 during the last round when (i, j) = (4,4).)

Two ideas make it possible to represent these numerous counts efficiently in mem-
ory. Count ¢(Zn—¢,...,x¢) is the number of partial solutions zo ...z whose final n+ 1
elements are «n—¢...x¢. Those counts can be represented by yn—_:...y:, where y;
is x; minus the number of elements “inverted” by z; (namely the smaller elements
to its right, as in Section 5.1.1). For example, if n = 3 and ¢ = 8, the final four
elements of a permutation zg...xg might be zszexrrs = 3142; we represent them

January 13, 2024

square torus

torus

vortex

dynamic programming
all different

inversions

pi, as random example

7.2.2.3 ANSWERS TO EXERCISES 129

by ysysyrys = 1132. Or, going the other way, if ysysyrys = 3141, then zszezrws
must have been 6251. This representation has the nice property that 0 < y; < j for
n —t < j <t, so there clearly are t**! possibilities.

Every permutation zo...z: of {0,...,t} yields ¢ + 2 permutations zg ...z}, of
{0,...,t + 1}, if we choose w;,; arbitrarily and then set @} < x; + [z; > x}41]. For
example, if ¢t = 8 and zszex7rs = 3142, the ten permutations obtained from xo...xzs
will have z5rgrrrery = 42530, 42531, 41532, 41523, 31524, 31425, 31426, 31427, 31428,
or 31429. And the representations ysysyrysye of those last five elements will simply be
respectively 31420, 31421, ..., 31429! In general, we’ll have y; = y; for 0 < j <¢, and
yi11 = @1 will be arbitrary; this inversion-oriented representation works beautifully.

Furthermore, there’s a beautiful way to arrange the counts in memory, so that
subroutine (¢,) doesn’t clobber any of the existing counts when it updates ¢ to ¢ + 1.
These details are all worked out in the author’s program WHIRLPOOL-COUNT (online).

The answer to the stated problem is 2,179,875,344,187,129,600 (found in 10 Gpu).

46. (a) If n > 0, 2Q, = 2nU, is the number of permutations ao...a2,—1 for which
ask—1 < Q2 <= ag < a2i+1. Hence @, counts those which also have ap < ai. The
permutations enumerated by U,+1 have the form a;...az2:(2n + 1)azk+1 - .. a2y, for
some k, where aj ...as, and asg+41 - .. a2, are independently counted by Qr and Q,—k.

(b) Hence U’ (2) = Q(2)?, where Q(2) = 14+ U1 2%/2!4-2U 24!+ - = 1+2U(2)/2.
The solution to this differential equation, with U(0) = 0, turns out to be slightly scary:
U(z) = v2tanh(z/v/2)/(1 — (2/V2) tanh(z/V/2)).

[Let p,.(k) be the number of up-up-or-down-down permutations of the 2n+1 num-
bers {—n,...,0,...,n} that begin with k. For example, the values (pn(—n),...,pr(n))
for 1 <n<3are(1,0,1); (4,2,2,2,4); (42,28, 22,20, 22,28,42). Ira Gessel has discov-
ered a surprisingly simple formula for the bivariate exponential generating function

men W 2" cosh((w — z)/\/i)
mz,np(m+n)/2() N cosh((w + 2)/v2) = ((w + 2)/V2) sinh((w + 2)/V/2)

P
[To appear (2020); he used exercise 7.2.2.2-333.] One can also show that these curious
numbers satisfy the unusual recurrence relation ppy1(k) = > 17—, |7 — klpn(4).]

(c) Let V(2) = 1/(1 — ztanh z) = 1+ V12%/1! 4+ V22" /3! + - - -, where V,, = 2" 7' U,,
and let p be the positive number that satisfies ptanhpy = 1. We have ztanhz =
32, ck(z—p)* when 2 is near p1, where co = ptanhp =1, ¢; = p+tanh p—ptanh® p =
u, and ¢z = 1 — ptanh g — tanh? g + ptanh® g = 0. The only other root of ztanh z = 1
for |z| < 2u is z = —p. Hence the function V(z) — 2/(u*(p® — 2%)) is analytic in
|2] < 2p; and we have U, /(2n — 1)! = 217"V, /(2n — 1) = 2277/p®* 2 + O(1/(21)*™).

The constant p is a well-studied number called the dual Laplace limit,

po=1.19967 86402 57733 83391 63698 48641 14194 42615—;
the even more famous Laplace limit constant /p? — 1 is
A =10.66274 34193 49181 58097 47420 97109 25290 70562+ .

[Historical notes: See P. S. Laplace, Connaissance des Tems de 1828 (1825), 311-321,
who thought the value was 0.66195. Cauchy published the correct value of A to five dec-
imals in an important memoir of 1831, which laid the foundations of complex variable
theory; see his (Buvres complétes (2) 12 (1916), 101, where he also computed p and 2]

To get further accuracy, Philippe Jacquet observes that there are constants py
with pi tanpr = —1 and (k—.5)7 < px < km, for all k > 1; for example, p1 ~ 2.79839.

January 13, 2024

author

downloadable programs
differential equation
Gessel

bivariate exponential generating function
generating function
recurrence relation

dual Laplace limit
fundamental constants
Laplace limit constant
Historical notes
Laplace

Cauchy

complex variable theory
Jacquet

130 ANSWERS TO EXERCISES 7.2.2.3

Thus z = %iuy is another root of ztanhz = 1 and another pole of the meromorphic
function V' (z). (Apparently these, together with z = +pu, are the only poles.)
(d) See the author’s note “Whirlpool permutations” (May 2020), available online.

47. To formulate an m x n whirlpool puzzle as a CSP, there’s one variable z;; for each
empty cell, having as domain the numbers not yet present; those variables must be all
different. Also introduce redundant variables r;; for 0 < ¢ < m and 1 < j < n, with
binary domains {<, >}, constrained to describe the result of comparing ;;;_1) : ;.
Similarly, ¢;; describes x(;_1); : @5, for 1 < ¢ <m and 0 < j < n. Finally we constrain
(rig, Cijy T(i—1)j, Ci(j—1)) to yield a vortex, for 1 <i<mand 1 < j < n.

(This setup is easily expressed as an XCC problem. For example, puzzle (iv) has
72 primary items, 44 secondary items, and 1808 options; it is solved in 800 kilomems.)

Puzzles (i) and (iv) have unique solutions. But puzzle (ii) has none; indeed, two
entries are required to be 4. Puzzle (iii) has two solutions (one can swap 7 > 8).

113]5[7]9 3]14[15[9]2 3]14[15]12[13 3[13[14]23[15
17[16]15[14[13 4716 |5 47 7]9(2]6(16 9[12[2]24]6
(i) [23]24]25[11]12]; (i) ; (i) [5[20[24[23[17]; (iv) [10[11]5]87].
22[21[20[19[18 4[11]25[22[18 1[20[21]16[25
2]4[6]8(10 8[10[11]21[19 4[19[18]17[22

50. Start with a tetrahedron, and introduce a “crease” in one of its faces, either concave
(A) or convex (2). That gives us an object with six vertices, nine edges, two triangular
faces, and three quadrilateral faces. Now crease a quadrilateral face, between the two
triangular faces; that gives us six quadrilateral faces and the desired skeleton:

T

51. (We've seen this graph before in 7—(It’s called the Heawood
graph, after its discovery by P. J. Heawood [Quarterly Journal of Pure
and Applied Mathematics 24 (1890), 332-338 and fig. 16 following 386],
and it has 336 automorphisms. At present this is its only known signed
skeleton that is realizable as a 3VP, up to automorphism.)

52. Partial results on small graphs are discussed in the author’s online note “Signed
skeletons” (April 2020). For example, 13 signed realizations of the 8-vertex graph
are known(!), and there may be others. Does the 3-cube have more than four?

54. (a) The determinant is zero if and only if {vo,v1,v2,vs} are coplanar; but they
aren’t. If it’s negative, swap vz <> v3. (Hence the cyclic order (viv2v3) is unique.)

[See F. Joachimsthal, Crelle 40 (1850), 21-47, who observed that the volume of the
tetrahedron formed by {vo,v1,v2,vs} is |D(vo,v1,v2,v3)|/6. See also J. de la Grange,
Nouveaux Mém. Acad. Sciences et Belles-Lettres 4 (Berlin: 1773), 85-120, §5.]

(b) D(vo,v1,v2,v) =0.

(¢) D(vg,v1,v2,v) > 0.

(d) For example use (010203)s, where 01 = [v is opposite v; with respect to pas],

.., 03 = [v is opposite vs with respect to pi2]. (There’s no standard convention for

numbering octants; roman numerals are traditionally used in some arbitrary way.)

(e) With those v;, that method gives octant whenever z, y, z are all positive.

(f) It’s now in octant 2, because ™ > ¢ + 7.

January 13, 2024

meromorphic function

author
internet

all different
XCC problem
crease

concave
convex
Heawood
automorphisms
author
internet
determinant
coplanar
Joachimsthal
volume
tetrahedron

de la Grange
Lagrange
historical notes
roman numerals

7.2.2.3 ANSWERS TO EXERCISES 131

55. (a) A careful case analysis shows that edge vo — v1 is concave if and only if X,
intersects octant 3. Similar conclusions hold for vy — v» with respect to 5, and for
vo — v3 with respect to 6.

(b) For example, if 6 is the angle at edge vo — v1, we have (v2 —vo) - (vs — vg) =
|lva — wvol|||vs — vo|| cos . Choose 0 < 6 < 180° if concave, otherwise 180° < 6 < 360°.

57. First, if (z,y, 2) is a vertex of X, there must be no edge containing a point (z,y, z")
with z # z'. (In particular, there must be no vertex (z,y,z’) with z # 2'.)

Second, X mustn’t contain noncollinear edges whose projections are collinear.
For example, if the line segment {(¢,0,0) | 0 < ¢t < 1} is an edge of X, there
shouldn’t also be an edge of the form (u,0,u). Quantitatively, each edge has the
form {(zo + at,yo + Bt,z0 +t) | to <t < 1} for some (a, 5,7) # (0,0,0); by the first
assumption, we have in fact (o, 8) # (0,0). Distinct edges must not have a8’ = o'(.

[Consequently X has no faces perpendicular to the (z,y) plane. Indeed, every
plane in three dimensions is characterized by an equation of the form ax + by +cz = d,
where a, b, and ¢ are not all zero. Since adjacent edges of a face aren’t collinear, the
equation for its plane must have ¢ # 0. Hence we may assume that ¢ = 1.

58. (a) There obviously are 8 cases with one cubie. Three cubies that make the “ell”
tricube can be placed in 24 ways. Five cubies whose complement is an “ell” can also
be placed in 24 ways. Seven cubies can be placed in 8 ways. An even number of cubies
can’t make a 3VP with the center as vertex. Total, 8+24+24+48 = 64. (Incidentally, a
solution with (1, 3, 5, 7) cubies has respectively (0, 1, 2, 3) concave edges at the center.)
(b) Ouly the cubie in the corner closest to the camera obscures the center.
(c) This chart shows the octants that contain cubies, when octant 7 is closest:

(4
gt

Y
S\

=675

~
=)
S|

23 31 —467 54

)-8
o

204 315 =578

[
NS
=)

-
@Q QWK@‘“
R e R Ry
it @

L
e
G,
s

&

015 154 287 376 40

~

540 623 ~762

(Notice that the rotation z — y — z — x always gives an equivalent junction pattern.)
By exercises 54 and 55, the possible labels of a V, W, or Y junction in an HC picture
depend only on which octants adjacent to the corresponding vertex are occupied.

(d) By definition, the two “bars” of a T must be half edges that point left.

59. (3t + 2v + 3w + 3y)/2 variables and t + v + w + y constraints.

January 13, 2024

plane in three dimensions
ell

132 ANSWERS TO EXERCISES 7.2.2.3

60. (a) (a,b) € {41,51,33,62}, where ‘11’ abbreviates (1, 1), etc.

(b) (n,p) € {12,13,22,23,32,33,42,43}; (o,p) € {13,23,36}.

(¢) t + v+ w + y variables and (3t + 2v + 3w + 3y)/2 constraints (role reversal!).
(d) The text’s model has the nice feature that it allows us to deduce some labels
immediately (see (24) and (25)). Although we can deduce p = 3 from the two con-
straints in part (b), the corresponding inference from (22) is just as easy. The total
size of the new state space, 4'63“5Y, does however tend to be quite a bit smaller
than 4Gt+203w+30)/2. the ratio is (1/2)%(3/2)(3/8)*(5/8)Y, which is =~ .00014 in
example (20). Computational experience is generally advisable when choosing between
models, because different models typically suggest different branching heuristics. [See
P. van Beek, AAAI Conf. 10 (1992), 447-452, Example 3; see also exercise 374.]

61. With 19 primary items {a,b,...,s} and 26 secondary items {ab,ac,...,rs} (see

(21)), the options are ‘a ab:< ac:+’, ‘a ab:< ac:>’, ..., ‘s rsi+ Is:i- gs:+', as in exercise
7.2.2.1-100. (In general, continuing exercise 59, there will be ¢ + 6v + 3w + 5y options.)
62. Change the lower Y labels to ‘---". (That fills in the “hole”.)

64. Whenever jis T'(I,m,r) or V(I,r) or W(l,m,r) or Y(a,b,c) in H, j is respectively
T(r,m,1) or V(r,1) or W(r,m,l) or Y(c,b,a) in HE. (This rule defines H® also in
cases where H is unrealizable as an HC picture.)

Notice that H and HF have the same variables and the same domains, but different
relations. The values z; ...z, solve H if and only if ¥ ... 2% solves H®, where +® =+,
B = - <® =5 >% =< (For example, in the reflection of (20) we have a = V(c, b);
the corresponding constraint is (ac,ab) € {<+, <>, +> >- >< -<}, which is the same as
(ab,ac) € {+<,><, >+, =>,<> <=} which is the same as (ab, ac) € {>+,><, +<, <=, <> ->1}))

[People often say that mirror reflection interchanges left and right, but not top
and bottom. Martin Gardner explains why in his book The Ambidextrous Universe.]

65. (a) For example, a =V (b,c), b =V(c,a), c = V(b,a).

(b) H is realizable if and only if each of its connected components is realizable.
If H is connected and its junctions {jo, j1,...,Jp—1} all have type V, we can assume
that jx = V(Jk+oy,Jk—o,) for 0 < k < p, with subscripts treated mod p, where each
ok is £1. When p = 3, we must have 09 = 01 = 02. When p = 4, we must not have
00 # 01 # 02 # 03. When p > 4, we can assume (by switching to H® if necessary) that
oo =0 =07 = +1 for some 0 < k <! < p. Then H is realized by putting jo, jk, ji at
the vertices of a triangle, and placing the intervening junctions at roughly equidistant
positions near the intervening edges of that triangle — perturbing them slightly so that
each junction is convex or concave as desired, when seen from outside the triangle.

(c) The graph of a=b =c=W(d,e,f),d=e=1f=W(a,b,c) is K3z 3.

(d) The interior angles of a polygon with m vertices sum to (m —2)180°; hence at
most m — 3 of them are greater than 180°.

(e) True. (Just jiggle the junction a little bit.)

66. If indeed this question is recursively decidable, what is its complexity?

67. (a) Each “level” has a sequence of junctions j1 = W (jo, j1, j2), j2 = Y (41, j3, js),

js = W(j2, js, ja), -, jo = W(js, jo, ji0), whose connecting lines joji, jij, - .., jojio
must all be given the same label: either + or - or <. The standard boundary forces the
labels <<<<<<<<<< at the bottom, but ---------- on the other levels. These, in turn,

immediately force the labels in their vicinity, so the standard labeling is unique.
(b) Similarly, junctions of the form jo = V(jo,71), j1 = W(jo,j1,J2), j2 =
Y(jlyjé:j3): sy Jo = Y(j57jé7j7)7 Jr = W(j6,j’77j8)7 Js = V(J7:Jé): which appear

January 13, 2024

van Beek
unrealizable
Gardner

Ks3

interior angles
complexity

7.2.2.3 ANSWERS TO EXERCISES 133

upwards at the right and downwards at the left, force the labels from jo to js to be
either ++++++++ or —————-—- or <<<<<<<<. But ++++++++ is excluded, because it doesn’t
combine with ++++++++++ or —————-———- or <<<<<<<<<< at the bottom.

Let the V junctions at the top be t1 = V(¢2,%0), t2 = V(t1,t3), t3 = V(ta,t2),
cooy te = V(ts, t7), t7 = V(ts,te). We know that tot; must be - or >; the same holds
for t7ts. Hence the legal labelings from o to tg are =>+<=>>= =>+<=>>> —>+<<+>-,
S>HCKHDD | >HKLL=D] SO> =K ADd = OS> SDD-KLK=D> | =OD>HE=>) SOOOOD>— —>>>5>>>
SoKADD>—] DoKADID> | >=KL=>>—, >=KLK=OD>) >=KLLKH> -, >=KLKLKHADD, >, D> K->,
S>HC=DD>] DDA DOHLLHDD] SDHLLL=D DO>-K#> = SID-KHD> | DO>-KL=> >O>>+<->
>>>>>>>= >>>>>>>>: 4 from - to -, 7 from - to >, 7 from > to -, and 11 from > to >.
The latter can be used with either -~--------- or <<<<<<<<<< at the bottom. So the
total number of boundary labelings is 4 +7 4+ 7 4+ 11 + 11 = 40.

(c) There are exactly 40, because each of those 40 boundary-only solutions imposes
exactly the same constraints on the lines touching the boundary. [P. H. Winston, who
presented this picture as Fig. 3-17 in the second edition of his book Artificial Intelligence
(Addison-Wesley, 1984), noted that “The background border contributes considerable
constraint to line-drawing analysis efforts.” He may not have been aware, however,
that any border constrains the interpretation of the interior in the same way!]

68. (a) These possibilities are essentially forced by the definition of boundary cycle.
(b) In each of the following 4 x 4 matrices, the rows and columns are indexed by
(>,<, -, +), where rows represent the label of ji_1j, and columns represent the label of
Jrjrk+1. The entry is 0 when the row/column labels are illegal; otherwise it is 1 when
there’s no junction j;,; otherwise it is (g,l, m,p) when j,j; must be labeled (>, <, -, +).

oK oo

1000 g g g g 1010 1010 p000 ??

— |t000 — — (0101 — |0110 _—_|0000 —
L= 1000 R= 0000 |> V= 1000 A= 0100 W= 00pO | Y= 0
1000 0000 0100 1000 000m 0

(c) Multiply the matrices of the boundary cycle together, treating {g,l,m,p} as
noncommuting variables. The diagonal entries of the resulting matrix then specify the
permissible labelings of the internal lines. For example, the boundary cycle of (20) gives

VWYWVWVWYW = [

3pmpppmp 0 2pmpppmp 0
0 0 0 of.
)

2pmpppmp 0 pmpppmp 0O
0 0 0 0

hence the boundary (in isolation) can be labeled four ways, with j_1jo labeled > in three
cases and - in the other. (The sum of diagonal elements is called the “trace.”) In all
four cases the interior labels are respectively +-+++-+; hence (20) has a free boundary.
This free-boundary-testing algorithm needn’t implement arithmetic on string poly-
nomials in full generality. For each matrix entry, it needs to remember only whether
that entry is (i) zero, (ii) a multiple of a certain string o, or (iii) mixed. At the end,
the boundary is free if and only if the sum of the four diagonal elements isn’t mixed.

69. The trace of the boundary cycle matrix product WA"W V™ of exercise 68 is
Ffﬂpp + 0+ F?_,pp + F?_;mm. Therefore, to complete the labeling, we need to
consider a sequence of n V junctions, preceded and followed by the same sign. That’s
equivalent to binary strings 1z ...xp—11 with no two consecutive 1s —of which there
are F,_1 (see exercise 7.2.1.1-91). Altogether, then, there are F,_1(F>., + 2F2_})
labelings, of which F;,_; are standard. (Nitpicking note: Si has a free boundary, by
definition, although it cannot be fully labeled.)

January 13, 2024

00
10
mo |-
Op

Winston

noncommuting variables
trace

free boundary

string polynomials
consecutive 1s

free boundary

134 ANSWERS TO EXERCISES 7.2.2.3

()

Fig. A—-13. Unusual examples of HC pictures.

70. There are (1, 9, 1, 1) labelings with the bridge in the middle labeled (+, -, >, <),
respectively. (This example shows that an HC picture need not have a boundary cycle
consisting of distinct lines.)

71. No: The HC pictures in Figs. A-13(a) and A-13(b) have the same HC network
but different cycles. (Consequently the algorithm of exercise 68(c) must be told the
boundary cycle as well as the network.)

72. See Fig. A-13(c). (Answer 68(c) gives trace(VYY VW VW) = dmmpp + glpp;
so the boundary cycle can be labeled in five ways. Only one of those ways, ><++, gives
usable labels to the inner lines, because a V junction doesn’t allow --.)

73. (a) Let P be the 4 x 4 matrix product joji ... Jq—1, and let M = MoM; ... My_1.

By induction we can verify that P;; = Pig1yger for 0 < 4,5 < 4; Poo + Po1 = Fyt1;

Poz + Po3 = Pao + Po1 = Fy; Pax + Po3 = Fy—1; and M;; = Pai)2j) — Piyzj+1) for

0 <1¢,5 < 2. Hence trace P = Poo + P11 + P22 + P33 = Poo + Poo + P22 + P2 and

trace M = Moo+ Mi11 = Poo — Po1+ P22 — P23 = Poo — (Fy+1 — Poo) + Pa2 — (Fy—1 — Pa2).
(b) The matrix products can be expressed in closed form using the identities

a Foy1 Fy b For1 —F a b Aap —Aupo
At = B’ = A“B’ = ’ ’
< F, Fafl)y (_Fb Fyv)’ ADa—1p —Ag-1p-1)"

where Ay p = Faq1Fop1 — FuFy = £ (Lagbs1 +2(—1)°La_p). Hence Agp —Ag_1p-1 =
1(Lats+4(—1)"Lo_s), and the values of t, = trace(A” B*"") occur in a peculiar order:

1 <tz < <tgrz) =trgre <o <t2 <to, with t, =t4_p.

The extremes are t, + L, = 2F; when p € {1,q — 1}; ¢, + L, = 2L, when p € {0, ¢}.

(c) (Solution by D. M. Kane.) Note that B = XAX, where X = (, °). Thus M is
a product of ¢ As, but with m X's inserted somehow, where m is the number of switches
between V and A in the cycle. Our goal is to prove that trace M > 2F, — L, = —F, 3.

We can assume that M = (AXA)AP1(AXA)AP? .. (AXA)AP™ where p, > —1
for 1 < k < m. If all p; are nonnegative, trace M > 0, because AXA = ((1)1)

If pr = pm = —1, we have M = ABAP2T2pPst2 pBPm-1%2 And ABA = BAB
implies that trace M = trace(BABAP2t!BPs*2 BPm-112) — trace(ABAP21! BPs+?
... BPm=1%3) — .. — trace(ABPsTL | BPm-17TP2t4) thus reducing m by 2. Therefore
we can assume that at least one pi is —1, but no two —1s are consecutive.

Now let ||M]|| be the operator norm of M, namely sup|Mz| over all vectors z
of length 1. Then we have ||A|| = ||AXA| = ¢ and ||AXAXA| = 1. Consequently
IM]| < ¢"~° when m > 4. (We save a factor of ¢*> when pr = —1, ¢ when p > 0.)

Finally, let M have eigenvalues A and A, where |A| > |A|. Then trace M = A + A,
and A\ = det M = (—1)?. So |trace M| < [A|+1/|A| < ¢"° + ¢~ " < Fy_3, for n > 6.

January 13, 2024

bridge

boundary cycle

trace

organ pipe order, inverse
Kane

operator norm
eigenvalues

7.2.2.3 ANSWERS TO EXERCISES 135

74. Let Dy = I and Dy4+1 = D, ADEX | where ® means left-right reflection and *
means ‘change A to B and B to A’. Thus D, = A, D, = AAB, D; = AABAABB,
etc. We have DF = DI because AT = A and BT = B. Hence, using the matrices of
answer 73, D11 = D, AX DY X; and the surprising formula D43 = (—ll—n '_’;;) arises
by induction for n > 0. Consequently T} has trace(Dp—1ADy_1A) + Lon = Lon — 1
labelings, when n > 4(!). The same formula holds for n = 3; but T> has 14.

76. —<|_~. [This is a subpicture of Figure 9(d) in D. A. Huffman’s 1971 paper.
Examples (24) and (25) come from his Figure 8.]

77. (a) The junctions are ty, = T (tk—1,tkt1, k), Uk = V (Wht1,tr), vk = V (W, Wr—1),
wy = W (g, Ug+1, Vk), with subscripts mod n, for 0 < k < n.

(b) The Lucas number L,. (But only one of these labelings is standard; these
networks have a free boundary. Exercise 69 has similar considerations.)

(¢c) (Solution by K. Sugihara.) The network defines a graph that’s uniquely
embeddable as an HC picture H in the plane. Suppose H is the projection of some
3VP, X, and let Fj be the face of X that corresponds to the region of H bounded
by the polygon (wrur—_1tk—1tkurwr+1ve+1). Let P = (z,y) be a point in H’s center
region, and let L be the line through P perpendicular to the plane of the picture. Then
L intersects F}, at some point (z,y, zx). Since the edge ui_iwy is convex, by part (a),
we have z > zr—1. But zn,—1 > zp—2 > --- > 20 > 21 is impossible.

[See also the discussion by S. W. Draper in Perception 7 (1978), 283-296, as well
as the comments by Bruno Ernst in Chapter 2 of his book Adventures with Impossible
Figures (1986). Ernst shows the Penrose square and hexagon, together with a different
pentagon(!). The Penrose pentagon of the present exercise is #85 in the comprehensive
website Impossible World by Vlad Alexeev, https://im-possible.info, a gallery
launched in 2001 that features more than 1000 mind-bending images.]

78. Take a cube and flatten it so that opposite corners are near each other. (Here’s
a view from the side, only 90% squashed: <—<">.) This gives a crumpled object very
like a hexagonal tile; you can place such “chips” on a table with any desired overlaps.
Historical notes: A copy of Reutersvird’s original ‘Opus 1’ is held by Moderna
Museet in Stockholm [NMH 42/1981]. It does not show the boxes in general position —
the blank region in the middle is a symmetrical “star of David” —so HC picture (32)
is slightly different. He told Bruno Ernst in 1986 that he discovered the pattern while
doodling during a boring lecture about Latin! [See Figure 1 in Chapter 6 of Ernst’s book
Optical Illusions (1992). Figure 7 in Ernst’s Chapter 1 is (26), ‘perspective japonaise
no. 231 aga’, part of a series of more than 2500 artworks now prized by collectors.]

79. The central region has three V junctions, whose left lines can independently be
labeled - or <. Hence there are 8 standard labelings —all realizable as in exercise 78.

There’s a free boundary, since each of the corners can be labeled in three ways,
and each of the other six in two ways; these 2°3% = 1728 boundary labelings all force
the same labels inside. So there are 8- 1728 = 13824 labelings altogether.

80. Image (i) has a unique standard labeling. But (ii) has 33,554,432 = 2%, because
each of 25 interior “box tops” has a V junction that can be labeled in two ways.
Image (iii) shows what happens when the 36 cells of the 6 x 6 hexagonal rhombus
are partitioned into three independent sets of 12. One set of twelve boxes is placed in
front, another in back. The front ones are labeled uniquely. The back ones are labeled
uniquely at the edges, but in five ways when they appear only as a Y in the interior.
The middle ones each have two labelings of a W near the edges (except at the very

January 13, 2024

transpose of matrix
Huffman

Lucas number
free boundary
Sugihara
Draper

Ernst

Alexeev
Historical notes
Reutersvird
general position
star of David
Ernst

free boundary

136 ANSWERS TO EXERCISES 7.2.2.3

bottom), but nine in the interior (when they show up as an unconstrained Y with three
Ws). Altogether 11,809,800,000 = 5°2°9° standard labelings.

In image (iv) there’s clockwise overlapping in the outer loop, enclosing a loop with
counterclockwise overlapping; but it’s realizable with “squashed boxes.” As with the
other three images, a large number of T junctions makes the labelings factor into small
independent subnetworks, and we find 5,242,880 = 22°-5 standard labelings altogether.

[An interesting mapping was used to draw these images: If z, y, and z are each
=+1, corner (z,y, z) of the box in row i and column j of the array is assigned to point
(6i+j —2y — 2z, —i+5j + 2z + 2z, —5i — 65 — 2z + 2y) in barycentric coordinates. (At
most seven corners of each box are visible—all except corner (1,1,—1).) With this
scheme, all points where the edges of two boxes intersect are distinct, and those points
are also distinct from all corner points; thus the images appear in general position.|

81. (a,b) When m = n = 6 there are 85 Boolean variables, 50 ternary constraints; in
general there are m(n—1)+(m—1)n+(m—1)(n—1) Boolean variables and 2(m—1)(n—1)
ternary constraints. Each constraint has the form [A < B]+[B < C]+[C < A] € {1, 2}.

Dynamic programming works well, as in exercise 41, and this problem is consider-

ably easier than that one: Let box (4, 7) in row 4, column j for 0 <i <mand0<j<n
be adjacent to boxes (7,5 + 1), (i +1,7), and (i + 1,5 + 1); and consider the number

cn(@1,...,xm=-1) of m x n solutions with z; = [(i—1,n—1) < (i,n—1)]. After setting
c1(x1,...,Tm—1) ¢ 1, we can readily compute the 2™~ 1 counts Cnt1(Z1, -y Tm—1)
from the 2™~ ! counts ¢,. For example, when m = 3 we have c,+1(0,0) = 13¢,(0,0) +

1164 (0,1) + 9¢n(1,0) + 6¢n(1,1); cnp1(0,1) = 11c,(0,0) + 12¢,(0,1) + 10¢,(1,0) +
9¢,,(1,1); cnt1(1,0) = cat1(0,1); ent1(1,1) = cnt1(0,0). (These 2™ 2 coefficients are
themselves each precomputed in O(m) steps by solving a small-and-simple CSP.)

The total number of solutions is tm.n = Y {cn(z1,...,Zm-1) | 0 < z < 1}
For example, (t3,1, t3,2, t3,3, - -, t3,n, --.) = (4, 162, 6570, ..., [er™], ...), where r =
(414/1609)/2 ~ 40.556 and ¢ = (1609+311/1609)/28962 ~ .0985. We also have tg. =
22406540276117433798 = 25428, t19.10 = 2333623171515704644702 . .. 99558 ~ 219389

83. Regarding H as an embedded planar graph, let F' be the set of its faces. Each
f € F will correspond to part (or all) of some face f of X —except that H’s exterior
face fo will corresponds to a “background plane” fo, which is sufficiently distant that
it doesn’t conceal any of X.

For each line of H that is labeled < or >, introduce a new “shadow junction” at
the midpoint of that line; and let J be the set of all junctions (shadow or not). Each
junction j of type V, W, or Y will correspond to a vertex j of X. Every remaining
junction j will correspond to an artificial vertex j, namely the point of X or of the
background plane that lies just behind the point (z;,y;) of H.

Now use the following chart to establish relations between junctions and faces:

jEB jeB jEB jec

jec jec j<A j<A

A j<A A j<A A j=C A j=B

O DD 168 —D(DD— 1B —D(D~D— 1B —D(D~D— leB
1<A 1<A 1<A , 1<A

B C 1<C B / C I-C B @™ C recC B m C reC
reC / reC r<A r<A

r<A r<A meB meC

r<B r>=B m>C m>B

January 13, 2024

squashed boxes
barycentric coordinates
general position
Dynamic programming
planar graph
background plane

7.2.2.3 ANSWERS TO EXERCISES 137

jeB jEA

jeA A jeA jea jB

A i€B) A cy lea A jeB A // i€B A o 1eB

leA : 1<B reA 1B 1<A

B <8 @ B rea B <8 B 1<a @ B res

r<B r<A
. . JEA JEA

) €A jeB))
NN jeA Jleo ieo ® jeB @ jeB
N\ jen 1<A r<B A B Jec A B jec
reB ® =00 @l ©a<e @ © a~B
B <A C a€A beB ~ © - ¢ b-C © ¢ b=C
a<B b<A c<A N

jeB . .
A jgc @ A SONTIN €A
(1) o - < jeB jeB
) i-A @ jea jec
B | C llig B | C ax=C a<C
/ b>B b<B
reA
/ r<C @ c-A c<A

Here ‘(j €A, j < A, j = A) means “j lies (in, behind, in front of) the plane of A

To represent those relations linearly, we introduce a real variable z; for each j € J,
meaning that j = (z;,y;,2;), where z; and y; are given constants. We also introduce
three real variables (af,bs,cs) for each f € F, meaning that plane f consists of all
(z,y, z) for which az+by+z+c = 0. (See answer 57.) By convention, point (z, y, 2) lies
behind point (z,y, ') if and only if z > 2’. Hence j € A <= aazx;+bay;j+zj+ca =0;
j<A< aaxr; +bay;+zj+ca>1l;j- A<= aazr; +bay; +2z; +ca <—1.

(Actually ‘> 0’ and ‘< 0’ were expected here instead of ‘> 1’ and ‘< —1’; but strict
inequality is difficult to deal with, in general, while the theory of linear programming
handles nonstrict inequality with ease. Fortunately the two notions are equivalent in
this case: If there’s a solution to the strict inequalities, the nonstrict ones will be satis-
fied after we multiply all variables {ay, by, cy, z;} by a suitably large positive constant.)

[This construction is based on Chapter 3 of K. Sugihara’s book Machine Interpre-
tation of Line Drawings (1986), where a considerably more general problem is treated.
It is unknown whether or not this linear system is sufficient for a 3VP X to exist.]

85. No-—it’s strongly realizable as a 3VP. (Start by realizing ((;—————Y).)

86. See J. Computer and System Sciences 37 (1988), 14-38. The construction is based
on D. Lichtenstein’s theorem [SICOMP 11 (1982), 329-343] that 3SAT is NP-complete
even when the clauses are planar and severely restricted.

(The authors show, however, that labelability can be decided in linear time if the
HC picture arises from an “orthohedral” 3VP, in which every plane face is perpendicular
to the x-, y-, or z-axis. For example, a histoscape is orthohedral. In such a case all
angles can be assumed to be multiples of 60°. Furthermore, the two entries of Table 1
for which a V junction has a + label can arise only for 60° angles; the other four
possibilities for V can arise only for 120° angles.)

87. If indeed this question is recursively solvable, what is its complexity? [Partial
results were given by Kirousis and Papadimitriou in the paper just cited. K. Sugihara
presented polynomial time necessary and sufficient conditions for strong realizability,
in his book cited in answer 83, based on a related but different mathematical model of
the problem. Consequently the realizations constructed there aren’t 3VP in general.]

90. Replace (13,14) by (2,13) or (4,14) or (13,2) or (14,4) or (14,13). (And to get
two more solutions, change either (12, 6,13) to (6,13,7) or (8,6,14) to (6,7,4).)

January 13, 2024

strict inequality
linear programming
Sugihara

strongly realizable
Lichtenstein
3SAT

planar
orthohedral
histoscape
complexity
Kirousis
Papadimitriou
Sugihara

138 ANSWERS TO EXERCISES 7.2.2.3

91. Almost true (but false when m = 1). Given any graceful labeling [, we obtain 2k
equivalent labelings [(va) and m — [(va) when « runs through G’s automorphisms. If
those labelings aren’t distinct, there are automorphisms « and g for which l(va) = m—
[(vB) for all v. But then 8~ a would be an automorphism satisfying [(v3~ a) = m—I(v);
that is, complementation would be an automorphism.

That can’t happen when m > 1: By adding isolated vertices if necessary, we
can assume that the vertices are {0,...,m} and that I(v) = v for 0 < v < m. The
edge labeled m must be 0 — m, and we can assume that the edge labeled m — 1 is
1— (m—1). Then m is not adjacent to 1, so complementation isn’t an automorphism.

93. (a) For example, eliminate all options with [(NY) > I(MA) or [(GA) > [(SC). (Then
5814 options remain, and the running time goes down to 33 gigamems.)

(b) Add a new primary item ‘*’ and the new option ‘* GA:0 SC:18 NJ:5’. (The
search tree now has 192 nodes. The algorithm of exercise 125 solves it with 62 nodes.
Domain consistency is much more expensive but prunes the tree to only 23 nodes.)

94. LO'[I1] =m — 1 —LO[I], NAME' [Il] = NAME[m —], FIRST [I] = m — FIRST[m —],
for 0 < I < m; NEXTL'[I] = m — NEXTH[/], NEXTH' [I[]1 = m — NEXTL[{], for 1 <[< m;
but change m + 1 to —1. (Other settings of FIRST', NEXTL', NEXTH' are also possible.)

95. The first four real vertices can’t be {0, m—2,m—1, m} or {0,1, m—1,m}, because
only one edge can be labeled 1. Hence they are {0,2,m—1,m}; and LO[m—3] = 2.
That forces LO[m—41 = 0, leaving no choices for LO[m—5].

96. The key idea is to have a good way to represent the partial path fragments formed
by the already-chosen edges. If [is an unchosen vertex label, let MATE[I] = [; if [is cho-
sen and the endpoint of a partial subpath, let MATE[I] be the other endpoint; otherwise
let MATE[I] be the bitwise complement of the value it had when it was most recently an
endpoint, during the backtracking. For example, the MATE table (MATE[0], ..., MATE[5])
at node ‘405’ of (38) is (~5,1,2,3,5,4); at node ‘4052,13 it’s (~5,3,4,1,2,~4).

P1. [Initialize.] Set MATE[l] < for 0 <1 < m, then set [< 1.

P2. [Enter level I.] If I = n, visit a solution and go to P5. Otherwise set v < 0.

P3. [Try LO[r — 1] = v.] Set w < v+n —1, v' + MATE[v], w' « MATE[w]. Go to
P4 if v' < 0 or w' < 0 or v = w. Otherwise set LO[n —] < v, MATE[v] < ~v/,
MATE[w] < ~w', MATE[v'] < w', MATE[w'] < v', [< I + 1, and return to P2.

P4. [Try again.] Set v <~ v+ 1. If v <l and ! > 2, go to P3.

P5. [Backtrack.] Set | <— [— 1, and terminate if [= 0. Otherwise set v ¢ LO[n — 1,
w4 v+n—1I,v < MATE[v], w' < MATE[w]. If v’ > 0 set MATE[v] < v; otherwise
set MATE[v] <+ ~v' and MATE[~v'] + v. If w’ > 0 set MATE[w] < w; otherwise
set MATE[w] ~w' and MATE[~w'] ¢ w. Return to P4. |

97. A “blurred state” is obtained from MATE when all the negative entries are replaced
by ‘—’. For example, 1738092 and 1809372 both have (—,2,1,—,4,5,6,—,—,—) as
their blurred state. With a suitable hashing scheme we can maintain a dictionary of
all the distinct blurred states that arise during the search.

We also maintain a list of branch specs (vp, 8p,0p) for p = 1, 2, ...; here v, is
a value of LO; [, is the blurred state if v, is chosen; and o, is the branch when v,
isn’t. If « represents a blurred state, FIRST () represents its first branch and LOC(«)
represents the corresponding output node. Both FIRST and LOC are 0 unless changed.

In step P1, set p +— 0 and a; to the initial blurred state.

In step P2, “visit” a solution by setting LOC () ¢ 1.

January 13, 2024

isolated vertices
Domain consistency
bitwise complement
blurred state

7.2.2.3 ANSWERS TO EXERCISES 139

At the end of step P3, do the following just before returning to P2: Set «; to the
current blurred state, and set p <— p+ 1, vp < v, Bp < au, 0p < FIRST(ey_1), and
FIRST(ay—1) < p. If a; has occurred before, jump to the second sentence of step P5.

Finally, after backtracking is complete, we can transform the branch specs into
something like a ZDD with the following procedure: “Set z <— 2, s <— 1, 81 < a1, 01
0, LOC(a1) < z. While s # 0 do the following: “Set p - LOC(S3s), ¢ <~ FIRST(8;), s <
0s. While g # 0 do the following: “Set ¢’ < 04, @ + 4. If LOC() = 0 and FIRST (o) #
0, set 0q < 8, 5 < ¢, LOC(a) + 2z, z + 2z + 1. If ¢ # 0, output I, = (9,7 2: LOC(a))
and set p < 2, z ¢ z + 1; otherwise output I, = (¥,? 0: LOC(a)). Set ¢ < ¢'.”””

The output isn’t necessarily a true ZDD: Its “variables” have to be understood
correctly, it isn’t necessarily reduced, and its instructions can sometimes have the form
I, = (97 0: 0). But many algorithms that manipulate ZDDs will handle it correctly. For
example, the algorithm of exercise 7.1.4-208 will count the total number of solutions.

Equivalent nodes occur only on the same level, so it might seem that a breadth-first
search is needed. But this method coexists nicely with (depth-first) backtracking.

This exercise is based on the ideas of M. Adamaszek [J. Combin. Math. Combin.
Computing 87 (2013), 191-197], who was the first to enumerate graceful permutations
for 20 < n < 40. It gives a tremendous speedup over exercise 96; for example, when
n = 30 the running time decreases from 25 teramems to 34 megamems!

[Historical notes: Graceful permutations were implicitly introduced by J. Abrham
and A. Kotzig, Cong. Numerantium 72 (1990), 163-174, who proved that they have
exponential growth. T. Klgve, IEEE Trans. I'T-41 (1995), 279-283, considered them
independently and used them to design certain error-correcting codes. See J. McGill
and M. A. Ollis, Discrete Math. 342 (2019), 793-799, for further developments.]

98. (a) Let I; and I be the longest two distinct lengths. If we perturb each point by
less than |l — I2|/(2n), we change the path length by less than |l; — l2|. So we may
assume that the points p1 ...pn = (1,0)...(zn,0) of a longest path have distinct x’s.
The path can’t be longest if max(z;_1, ;) < min(z;,z;4+1) or if min(z;_1,z;) >
max(z;,zj41) for some 1 < i < j < m: p1...pi—1pj-..PiPj+1 - - p2pn would be longer.
Let S be the |n/2| points with smallest «’s, and let T’ be the other [n/2] points.
No two points of S can be consecutive in the path; otherwise there would also be two
consecutive points of T'. Hence we can assume that S = {x2,%4,...,Z2n/2)}-

The maximum path length is therefore (z1—z2) + (v3—x2) + (z3—x4) + -+ =
2)"T—-2Y S—a1+x,[neven], where is the smallest in T’ and x, is the largest z in S.
Similarly, the longest cycle (p1...pn) has length 23 T — 2S5 — 2z;[n odd].

(b) A graceful permutation with p, = p1 + m yields a cycle (p1...pn) of length
14+ (2m—1) + (pr—p1) = 2m?, which is maximum because YT — 55 = m>.

(c) The path length is 25T —pp, — 23S +p1 =1+ -+ + (2m—1) = 2m*> —m.
99. There are m = 2n + 1 edges. Call S a (d,m)-set if SU{ |k —d| |k € S}u{d} =
{1,...,m}. A canonical graceful labeling of K, has vertices 0 and d in the first
two parts, where 1 < d < m, and the vertices S of the third part are a (d, m)-set.
Furthermore, we require that 1 ¢ S if d = m, to rule out the complementary labeling.

There clearly is no (d,m)-set with d > m. But there are 20"~ Y/2 (1, m)-sets,

because S must contain 1 or m —1,2or m—2, ..., [m/2] or [m/2].
There’s no (d, m)-set when [m/2] < d < m. For S would have to contain m,
m—1, ..., d+1, and then there’d be no way to get edge d — 1.

There’s a unique ([m/2], m)-set, namely S = {m,m—1,...,[m/2] +1}.

January 13, 2024

breadth-first vs depth-first
depth-first vs breadth-first
Adamaszek

Historical notes

Abrham

Kotzig

Klgve

McGill

Ollis

longest cycle

140 ANSWERS TO EXERCISES 7.2.2.3
Finally, if d < [m/2], a (d, m)-set S must be {m,m—1,...
S"is a (d,m — 2d + 2)-set. (An interesting recursion!)
So the total number of solutions is 3., 2(d=1)/2 4 Dd\nt1

100. If 1—m, change each x; to m —z;;. Then if min{xz11,...,xp1} > min{z,, ...,
Znr}, change each z;; to Ti(r41—j)- Finally, sort the rows so that 11 < -+ < Zn1.

,m—d+1}US’, where

1-2""'—1-2[n=1].

101. It appears in level 4, because that placement of vertex 2 creates not only edge 7
(the goal of level 3) but also edge 6. One can think of it as belonging to both levels.

102. (a) At level 5 we've created the (g) edges {1,2,3,4,m —6,m —4,m —3,m — 2,
m — 1, m}; so the algorithm’s next step is to create edge m — 5. The possibilities are
(i) w21 = m — 5; (ii) w51 = 1; (iil) a1 = m — 3; (iv) wa1 = 4; (v) z11 = 5.

(b) Moves (i)—(v) of part (a) all work, and they nicely break left-right symmetry.
There’s also one more possibility, namely (vi) s1 = 3 and xs3 = m — 2; again this
breaks reflection symmetry. [All these cases will take us through level 6 to level 7.]

Historical notes: K. E. Petrie and B. M. Smith studied K,,0P» for n < 5, in order
to test several strategies that exploit symmetry in instances of CSP [Lecture Notes in
Computer Science 2833 (2003), 930-934]. Their methods were significantly improved
by B. M. Smith and J.-F. Puget [Constraints 15 (2010), 64-92], who considered KP
and KC graphs in general and discovered the unique labeling of K¢0OP;. However, the
method illustrated in Fig. 107 is significantly faster than all of those approaches.

103. Instead of filling the matrix (z;;) with explicit numbers, calculate symbolically
with values of the form ‘m — ¢’ or ‘¢’ for small values of c¢. (See exercise 102, and
imagine replacing (9, 8, 7, 6, 5) in levels 0 through 5 of Fig. 107 by (m, m — 1, m — 2,
m — 3, m —4). Notice that nodes on level [+ 1 involve only the values {0,1,...,(} and
{m,m —1,...,m—1}, when I < [m/2].)

Hence the top [m/2] levels of this symbolic tree will be the same for all n, except
for nodes that have too many rows. It turns out that this tree has only 8910 nodes,
and its maximum level is 23. So we can’t get an edge labeled m — 23 when m > 46.

[The analogous trees for K, 0 P; and K, 0C3 have maximum level 52.]

(f=15,e=14)

The nodes on level 2 have respectively (5, 6, 3, 3, 5, 6, 3) children; and they lead to
respectively (60, 49, 29, 23, 47, 63, 13) solutions on level 16. (Left-right symmetry must
still be broken below the rightmost node: Use column 1, not column 3, on level 3.)

105. For example, the numbers are 1, 177, 12754, 164273 for n = 1, 2, 3, 4; and an
instance of K¢ O Py is exhibited in Fig. 108. But by extending the method used for
r =3, it appears likely that K, 0 P4 will be ungraceful for all sufficiently large n.

104. Here is one of several possibilities:

106. Applying exercise 127 to this 99-edge graph quickly yields many solutions(!), such
as

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27 95 02

25 71 19 77 17 86 08 81 65 91 37 99 01 98 04 87 22

68 24 10 29 74 45 07 18 89 05 96 00 88 03 80 13 94

January 13, 2024

recursion
breaks reflection symmetry
Historical notes
Petrie

Smith
symmetry
Smith

Puget

KP

KC

unique

KC graphs

7.2.2.3 ANSWERS TO EXERCISES 141

[Smaller examples are also of interest. Consider, for example,

3 1415 9 26 3 1415 9 26 5 3 1415 9 26 5 35
2221 0 27 13 |, 32 0 33 2 11 7 |, 12 0 39 1 30 20 4 |,
7 2251 4 19 22 10 29 1 31 39 36 2 34 7 25 32

where there are respectively 1, 3, and 16 solutions having those top rows prescribed.]

107. Let 1(2k41) = M — Ta(2p41) = 4k and z302411) = m — 8k — 1 for 0 < k < [r/2];
M — T1(2k) = T32k) = 4k — 2 and xyo) = 8k — 3 for 1 < k < |r/2]; here m = 6r — 3
is always odd. (These values are distinct; for example, the even numbers among them
are {0,2,...,2r — 2} together with about 1/4 of the larger even numbers < 6r — 2.)
The differences between rows 2 and 3 give the odd edges {1,3,...,2r —1}. The
other odd edges can be found in the differences between rows 1 and 2 or 3, and between
adjacent columns of row 1. Finally, the even edges {m—(12k+{1,3,5,7,9,11})} are all
present too. [G. Suresh Singh, National Academy Science Letters 15 (1992), 193-194.]

108. Gracefulness is known, via exercise 127, for 1 < r < 14 at least (thanks to
computations by the author and Filip Stappers).

109. K,OC, has 2rn! symmetries: We can reflect the corresponding matrix left <>right,
and/or shift its columns cyclically, and/or permute its rows arbitrarily.

110. There are (";l)r edges; and (";1) mod 4 = (1,2,3,0) when nmod 8 = (1, 3,5, 7).
Thus K, 0C, is ungraceful when nmod 8 =1 and r mod 4 € {1,2}; when nmod 8 =3
and rmod4 € {1,3}; when nmod8 = 5 and rmod4 € {2,3}. (See Fig. 108 for the

case n =r = 5. There’s no restriction when nmod 8 =7.)

111. The odd-degree vertices are those in the r—2 “middle” cliques, if n is even; other-
wise they’re the ones in the two “extreme” cliques. This observation can sometimes be
used to prune the search tree by ruling out partial solutions whose odd-degree vertices
have all been labeled. For example, when proving that K¢ 0O P; has a unique labeling,
it decreases the tree size from 225 meganodes to less than 213 meganodes (about 95%).

112. The method of Fig. 107 shows, in fact, that K4 0 K4 has eleven 48 0 39 35

different graceful labelings, one of which is shown here. (It needs only 1 17 47 23
3 Gp to discover this, with a search tree of 12 million nodes. It needs 38 45 7 2
0.76 and 190 Ty to prove that K5O K4 and K50 K5 are not graceful.) 19 20 5 46

113. No; K2 ® K2 @ K2 @ K» can’t be graceful because it has 8 vertices. (But every
graph with four edges and < 5 vertices is graceful; see the list following Theorem S.)

115. (a) This is the mixed-radix representation = = [%> 4293 Jisee 4.1-(g). The
recurrence £1 =7 — 3, an = |[(n+ 1)@n |, Tnt1 = (n+ 1)zn — an yields (a1, ..., a2) =

(0,0,3,1,5,6,5,0,1,4,7,8,0,6, 7, 10, 7, 10, 4, 10) [OEIS A075874].

(b) (0,0,0,1,0,1,1,2,2,1,2,1, 1,2, 1,3, 2, 4, 3, 5) isolated; (1, 1, 1, 2, 2, 2,
3,3,3,2,3,3,3,4, 3,5, 3, 5, 4, 6) components. [These 20 graphs are all planar.]

(c) x(Gr,) =2for m €{1,2,3,9,10,12,15,17}; x(Gr,) = 3 for the other m < 20.

[From this data we might be tempted to conjecture that a “random graceful
labeling,” with m — oo edges, is a.s.planar, and 3-colorable. But F. Stappers has
studied G7, for m < 10000, and found them nonplanar for m = 33, 38, 41, 44, 46-49,
51-52, 54-56, 58—61, and all cases > 63. On the other hand, they’re all 3-colorable.]

116. While generating the 16! instances, as in the proof of Theorem S, we can main-

tain connectivity information, because the steps of union-find are easily undone (see
)
Algorithm 2.3.3E). We get connected _ (864 1141312 150551124 6537511962 106695003000

total 8647 11413127 159601936’ 6562523200’ 108536168696 7

January 13, 2024

Suresh Singh

author

Stappers

mixed-radix representation
OEIS

planar

Stappers

union-find

142 ANSWERS TO EXERCISES 7.2.2.3

795992914532 2869123162654 4974721374674 3859250594040 1104325114202 67540932632) for
838037875584 7 3252044834968 7 6508147089024 7 6590461997960 7 3099651627904 7 519187026552

7 < n < 17. (Divide all numerators and denominators by 2 to avoid complement
symmetry. Values for graphs with fewer edges are tabulated in OEIS A329790.)

117. This goes faster, because the union-find algorithm can be modified to detect the

creation of an odd cycle as soon as it occurs (see Section 7.4.1.1). The new counts
are 8 22242 6317387 427805408 10110604366 99502576642 432843270752 796114433250
81 222427 6318302 428781078' 102336573687 103635506314’ 4799126120827 1009922060716’

210439209812 | 1540992032 for 8 < n < 17; 2714363642056 altogether (= 0.1297 - 16!).

Incidentally, there are 11932174 graphs with 16 edges and at most 17 vertices, of
which 915503 (about 7.67%) are bipartite.

[When the labelings are also restricted to be a-graceful, in the sense of exercise
6 6840 1855042 124467512 2045525028 20277794448 128904318498
138, the results become §, ggio: Tgs62807 124746754 20808114227 30452011120 % 142798046522 °

240333763962 157722174046 20772768256 . ~ . |
304499321272 267381496426 > 72154842584 820394039226 altogether (N 0392 16)]

118. Such a graph must have n = 2m/r vertices; so 2m/r must be an integer > r.
We can proceed as in Theorem S and exercise 116, but prune the search by disallowing
partial solutions with more than n nonisolated vertices, or with any vertex of degree > r.
Examples for small r are easy, and unique: K3 when r =2, K4 when r = 3, and
the octahedron K3 2 » when r = 4. There are six labelings when (m, r) = (20, 5): Two of
them give Cs, the other four give C3 & C5. Similarly, (m,r) = (27, 6) yields two graceful
labelings of Cy. A unique labeling appears for (m,r) = (35, 7); its graph is C3 & C~.
When r = 8 we must go up to m = 48. Here there are 14

graceful labelings, for eight different graphs. The most symmetri- 0y
TN R
cal solution, shown here, has a graph with 384 automorphisms. //?i‘i‘\\
(All of these computations are short; but other methods are =5

needed for r > 8. See E. Pegg Jr., math.stackexchange.com/
questions/3246000 (2019), and OEIS A308722. Pegg conjectures
that the smallest instances for r = 2k > 2 occur when m = 3k2.)

N
RS

119. A 2-regular graph with m edges is a disjoint union of cycles, having a total of m
vertices. The number of graceful labelings for m = 3, 4, ..., 16, with 0 — (m—1), is
1,1,0,0,7, 18,0, 0, 175, 414, 0, 0, 7602, 20846. (Corollary E explains the zeros.)

It’s easy to find the cyclic components of any given labeling; so we can identify
isomorphic graphs among those labelings. There are [2™]1/][], »,(1 — 2") different 2-
regular graphs with m edges; hence the potential numbers of graceful 2-regular graphs,
for those values of m, are respectively 1, 1, 0, 0, 2, 3, 0, 0, 6, 9, 0, 0, 17, 21. The actual
numbers turn out to be 1, 1, 0, 0, 2, 3, 0, 0, 5, 8, 0, 0, 14, 19. Missing are 2C3 & Cs
(that is, C3 @& Cs @ C5); 4Cs; 5Cs, 3C3 @ Cs, 3Cs; 3C3 @ Cr, 2C3 & 2C5.

[In Utilitas Mathematica 7 (1975), 263-279, A. Kotzig proved that tC5 is ungrace-
ful for all ¢ > 1. And in Congressus Numerantium 44 (1984), 197-219, he showed that
a graceful 2-regular graph with ¢ odd components must have at least ¢(¢ + 2) vertices.
These results account for all of the missing cases listed above, except for 3C3 & Cs. On
the other hand he showed that C3 @& C5®- - - P Cary1 is graceful, for all ¢ > 1. And with
J. Abrham, he also proved that C), @ Cj is graceful if and only if (p+¢) mod 4 € {0, 3};
see Discrete Mathematics 150 (1996), 3-15.]

Incidentally, a gracefully labeled 2-regular graph always leaves one label € [0..m)]
unused. The unused label was respectively (4, 5, ..., 12) in the case m = 16 exactly
(311, 1547, 3208, 3510, 3651, 3532, 3241, 15564, 292) times.

January 13, 2024

complement symmetry
OEIS
«-graceful
unique
octahedron

Chr: cycle graph
symmetrical
Pegg Jr.

OEIS

cycles

Kotzig

Abrham

7.2.2.3 ANSWERS TO EXERCISES 143

120. Now there are m = 3t edges and n = 2t nonisolated vertices, for 2 <t < 7. The
method of exercise 118 rapidly gives us graceful labelings galore, respectively (1, 5, 222,
22806, 2988280, 641731574) of them.

The main difficulty is to group them efficiently into equivalence classes of isomor-
phic graphs. One good way is to compute a “hash code” h(G) for each graph G. Let rq,
s, ... be pseudorandom integers in the range 0 < r; < 2°°, and let ro = 0. For each
vertex v, compute h(v) as follows: Let Vi (v) be the set of vertices at distance k from v,
and let d(v) be the maximum k with Vj(v) # 0. Set t, < 21 + 1 for each w € Vi (v).
Then, for k = d(v), d(v) — 1, ..., 0, compute ¢, = tw [, ., (2T2d()+1-k — tu) for all
w € Vi(v), and set t,, + t;, for all such w. Let h(v) be the product of all those values
t',, mod 232, (Notice that h(v) is always odd, and h(v) = 1 when v is isolated.)

The hash code h(G) = (3°,[h(v)/2]) mod 2°?, summed over all vertices v, now
has the property that h(G) = h(H) whenever graphs G and H are isomorphic. Further-
more, with trial and error we can find constants ri for which h(G) # h(H) whenever
G and H are nonisomorphic cubic graphs with at most 14 nonisolated vertices.

(The adjacency matrices for all connected cubic graphs with up to 24 vertices can
be downloaded in a compact format from houseofgraphs.org, the “House of Graphs”;
and the disconnected ones can be readily constructed from the connected ones. (See
G. Brinkmann, K. Coolsaet, J. Goedgebeur, and H. Mélot, Discrete Applied Math. 161
(2013), 311-314.) For example, there are 509 connected cubic graphs with 14 vertices,
and 540 altogether. In fact, the author’s first try to choose random constants r; actually
was able to characterize uniquely every cubic graph with fewer than 20 vertices.)

The bottom line is that every cubic graph with at most 14 vertices is graceful,
with only two exceptions: 2K4 when n = 8 and 3K4 when n = 12. [A. Kotzig
and J. Turgeon proved that the graph tK, is graceful if and only if ¢ = 1 and
n < 4; see Colloquia Mathematica Societatis Janos Bolyai 18 (1976), 697-703.] In
fact, none of the connected cubic graphs are the least bit difficult to label; the two
“least graceful” such graphs when n = 14 are graph (%) below, with 9526 labelings
and 96 automorphisms, and the Heawood graph 7—(57), with 10436 labelings and 336
automorphisms. (The disconnected graph 2K4® (K30OP>), with 13824 automorphisms,
has only 11 graceful labelings.) The “most graceful” of the 14-vertex cubics has 3762313
labelings(!) and only the identity automorphism; it’s (xx) below.

Suppose we prespecify the labels 0 = lp < l; < - < [,—1 = m that are to be used.
Then a cubic graceful labeling is the solution to the MCC problem whose primary items
are #1, ..., #mandlo, ..., l,—1, where the I’s have multiplicity 3; the options are sim-
ply ‘#kl; I’ for 0 <14 < j < n, where k = [; —I;. We can assume that l,_> = m—1, and
disallow ‘#(m—1) 1 m’. It turns out that only 27028 of the (}}) = 75582 choices for the
I’s have solutions. The one for labels {0,1,2,3,5,6,7,10,11, 14, 15,16, 18,21} is unique
(see (xxxx) below); but {0,1,2,3,5,6,10,11,16,17, 18,19, 20,21} has 455698 solutions.

(%) (%) (%)

121. With considerably more computation, the results of exercise 120 can be extended
to the 204,154,267,353 graceful labelings of cubic graphs on 16 vertices. There are 4207
such graphs, of which 4060 are connected. The evidence is overwhelming: Each of

January 13, 2024

hash code
isomorphism clustering
adjacency matrices
House of Graphs
internet
Brinkmann
Coolsaet
Goedgebeur

Mélot

author

Kotzig

Turgeon

Heawood graph
MCC problem

144 ANSWERS TO EXERCISES 7.2.2.3

the connected ones has at least 107,291 essentially different graceful labelings. (That
“least graceful” example is (*#%) above.) From this circumstantial evidence, the author
conjectures confidently that every connected cubic graph is graceful.

Furthermore, all 147 of the disconnected cubic graphs on 16 vertices are also
graceful, except of course for 4K4. The closest to being ungraceful are 2K4 &
(with 213 labelings) and 2K4® P,0P,0P, (with 1149). With only a bit of trepidation we
may therefore conjecture that every cubic graph is graceful, except for 2K4, 3K,

122. Backtracking via Theorem S, as in exercise 116, we can avoid most of the m!/2
cases by allowing at most 8 of the vertices {0,1,...,m} to touch an edge. Thus we
readily discover that the (1, 2, 7, 23, 122, 888, 11302) distinct graphs with n = (2,
3, ..., 8) nonisolated vertices have respectively (1, 2, 13, 157, 3292, 110578, 5903888)
different graceful labelings. (Complementary labelings are not considered different.)
All graphs with at most 8 nonisolated vertices can be found in the House of
Graphs. And the hash function in answer 120, but with different r;, works for them.
One of the seven graphs with n = 4 nonisolated vertices, 2K, doesn’t have
enough edges to be graceful. But the text points out that the other six work out fine
(indeed, uniquely for Ki 3, Ps, C4, and K4, and up to 5 ways with the paw o).
When n = 5, K» & P; has too few edges; K» @ K3 can’t be labeled either; and
Corollary E rules out Cs and K3, as well as K1 — 2K5,. The other 18 are graceful:
K 4 uniquely, and the “dart” K; — (K1 & P3) maximally (26 ways).
Cases n = (6, 7, 8) lose respectively (4, 7, 19) graphs with too few edges, and
(4, 20, 93) graphs that violate Corollary E. But they do include (109, 845, 11124)
graceful graphs. Of course K ,_1 is always uniquely graceful. The other unique cases
for n = 6 are K» ® K4, K3,3, K2,2,2, and the double paw [>{. The other unique cases
for n = 7 are mostly disconnected: P> @ L3 2, P3 & Cys, C3 @ Py, C3 & Cs, C3 P L3 1,
Ps & K4, K3 ® Ki1,1,2, K2 ® K5; the connected one is K1 — (2K1 — 2K3>). (Here
Ly,,, denotes the “lollipop graph” on m + n vertices, consisting of K,, and P, joined
by a bridge; L3, is the paw.) There are 10 disconnected uniquely graceful graphs for
n=8 Ky®Ce, 2K ® K112, Ps ®C5, C3 D Ps, K13 ® L3,1, 2K & K4, K3 ® Ly 1,
Ki3® K4, Ps ® K5, K3 ® (P> — P3). And the 19 connected ones likewise have
lots of symmetry: K—1777 014, 2K, — 3K, Gls, 4K, — 2K», 2K; — (K2 D K4),
K> —2K3, K —G13, K1 (2K1 —_— (K2 [S%) Kg)), 2K, —K—3737 Kz — (Kl D 2K2),
Kz — (Pz@Pg), K3 (2K1 @Kg), G21, Ky —G’M, 2K, —Gg, Ky —G’g, K> —Gg,
K3 — (K & C4), where G,, or G', or G, denotes a special graph with m edges:

@mw@m@@“@

Gy Gy Gi3 G4 G G

The champions for gracefulness with 6, 7, and 8 vertices are

é 52 (126 labelings), @_5680 labelings), and @_@(37?8 labelings).

123. (a) No, because edge 11 (3— 14, NC— SC) doesn’t touch edges 12-18 (see (33)).
(b) 11067 (including the solution to Fig.105(d)).
¢) A rooted labeling always defines a connected graph. We get n nonisolated ver-

tices in respectively (864, 1122012, 148696974, 5469393230, 75003795230, 436515974020,

January 13, 2024

author

House of Graphs
paw

dart

K,

Km,n

n

Cn

m,n
lollipop graph
bridge

paw

7.2.2.3 ANSWERS TO EXERCISES 145

1132397252122, 1296227076156, 605872421102, 94984144008, 2895168460) cases, for
7 < n < 17. The total, 3649515044178, is approximately 17.4% of 16!.

(d)1,1,1,1,2,3,1,3,3,4,5, 7,3, 3, 15, 4. (See OEIS A338988 for further
values. No pattern is evident. Does this sequence grow exponentially?)

124. (See exercise 122.) The only example with at most 8 vertices is 4K; — 2K».

(And the only examples with 9 vertices are M, %ﬂ@, K, — @ﬁo, and
K, — (2K1 — (K2 ® 2K, — K2))); these are just four of the 259614 connected
graceful graphs. The first of these is the only example with at most 14 edges.)

125. After numerous experiments, the author’s most successful attempt is a backtrack
program called BACK-GRACEFUL, based on Algorithm 7.2.2W (and available online).
It keeps a list of all vertices in a sparse set, with labeled vertices at the left. To
enable efficient bitwise tests, it maintains ebits = 3, 2"[edge k is labeled]; rebits =
>, 2" *ledge k is labeled]; and vbits = 3", 2¥[no vertex is labeled k|. (For example,
if v is an unlabeled vertex with a neighbor labeled k, we can AND the vector of
permissible labels for v with —((ebits < k) + (rebits > (m—k))).)

The current state is also maintained in four arrays lt, lu, vt, vu: If vertex v is
unlabeled, vt[v] = —1 and vu[v] is the number of v’s unlabeled neighbors. But if v is
labeled k, we have vt[v] = k, lt[k] = v; lu[k] is the number of v’s unlabeled neighbors,
and vu[v] is the value of vu[v] when the label was assigned. If no vertex has been
labeled k, lt[k] = —1 and [u[k] is undefined.

The task at each level is to label a vertex for the longest currently unlabeled edge,
unless some unlabeled vertex has only one viable label.

To enumerate all ways that might create an edge of length g, we run through all
pairs (j5,k) = (0,q), (1,q+1), ..., (;n—g,m) such that either (i) lu[j] > 0 > lu[k]; or
(i1) lu[k] > 0 > lu[j]; or (iil) lu[j] < 0 and lu[k] < 0. In case (i), we set v « lv[j], and
for all v — w with l¢[w] < 0 we can label w with k. Case (ii) is similar. Case (iii) is the
more difficult “unrooted” case [see exercise 123]: For all unlabeled v with vu[v] > 0, we
prepare to label v with j now, and to label one of v’s neighbors with k at the next level,
if that succeeds. An attempted vertex labeling fails if it duplicates a previous edge label.

126. Each polyhedron has 30 edges and 120 automorphisms. Both questions were
apparently answered correctly for the first time in October 2020, by B. Dobbelaere and
T. Rokicki (working independently!). The icosahedron has only 12 vertices, and we
easily find 24 distinct solutions, of which 5 include the triangle 0 — 30 — 29 — 0 and
19 have the induced path 30 — 0 —29. All are rooted except for the solution shown.

The dodecahedron, with 20 vertices to label, is much more challenging; it has
784,298,856 distinct labelings, of which 38,092,064 are rooted (4.9%). The algorithm
of exercise 125 finds them in 25.3 teramems, with a 203-giganode search tree.

Notes: The solution shown is one of just 1882 for which all vertex labels lie in
[0..10] U[20..30]. Since one of the edges has length 10, we cannot eliminate both 10
and 20. It turns out that both 10 and 20 must be used, and that exactly 9 of the labels

January 13, 2024

OEIS

author

backtrack program
downloadable programs
sparse set

bitwise tests

AND

rooted
automorphisms
Dobbelaere
Rokicki

rooted

146 ANSWERS TO EXERCISES 7.2.2.3

must be odd. Incidentally, to find those 1882, the XCC model of exercise 93 actually
runs significantly faster than the supposedly “streamlined” algorithm of exercise 125.

127. See the online program BACK-GRACEFUL-ROOTED-RANDOMRESTARTS, devel-
oped by T. Rokicki and the author. As in exercise 125, it’s based on Algorithm 7.2.2W.
But for speed it considers only labelings that are “rooted” with respect to previously
specified labels, and it uses simpler data structures to detect duplicate edges. It ran-
domizes the table of legal moves at every level, and uses reluctant doubling (Eq. 7.2.2.2—
(131)) to restart periodically in a new, randomly generated part of the search space.

128. There are four with 0 at the Y: 2 1201; 2 '°015, 5 '°015; § 1" 016. There’s

one with 15 at the Y: [, 5 150. There are nine with 16 at the Y, such as © 160.
And 33 with other elements at the Y, such as ;1 ; 50 and 2 g 120. Total 47.

129. (a) There are k + 1 components and k residues.

(b) If r is bad and x mod k = r, then we clearly can’t set LO[k] < z. But if r is
good, at least one such z is OK.

(c) Say that z is a big vertex if £ + k > m. There are g big good vertices, lying
in < g components. The largest good vertices in the other good components are OK.

(d) The vertices {r,r+k,...,r+pk} can’t be connected by p edges of lengths > k.

(e) The k+ 1 — G bad components account for at least 2(k + 1 — G) bad residues,
by (d). Hence g < k—2(k+1—G) and we have G—g > k+2—G. If G < 2(k+2) we have
G —g > (k+2)/3; otherwise either g or G—gis > G/2 > (k+2)/3. Thus [(k+2)/3] =
|(k+4)/3] is a valid lower bound in all cases, by (b) and (c). [Experiments for m < 20
suggest that tx = [(k + 3)/2| — [k odd and k = [m/2] — 2 > 1] may in fact be valid.]

(f) When k& > m/2, all edges connect small to big. The hint follows because the
cycle containing x and x + k includes the edges y — (v + k) —z —=z.

Let there be ¢ unusable vertices, in C' components. A component that contains
g > 0 unusable vertices z1 < --- < x4 therefore contains at least the 2q + 2 vertices
<1 <o <xg<x1+k < <xg+k <z, and it contains at least 2g + 1 of
the m — k edges. Consequently m —k > 2¢ + C; and the number of usable vertices is
m+1l—-k—c>(m—k)/2+1+C/2>2+ [(m—k)/2], unless C =c=0.

[Altogether we get the superexponential lower bound t1 ...t = Q(m!/24™/?).]

. z1+x1+xo —x] —x9
130. (a) For example, when n =4 it’s det(—z1 watwiter —@)
—T2 —T] z3tzatT]
(b) The sum of s ...s,-15(1, s2,...,8n—1) over all 222 choices of s; = £1 is

2"~ 2 times the desired result. For example, when n = 4 we have [x1z223] S(T1, 22, 23) =
(S(1,1,1) — S(1,1,-1) — S(1,—1,1) + S(1, =1, —1)) /4. [See OEIS A033472.]

131. Empirical investigations by D. Anick suggest that 7(n)/7(n — 1) grows approx-
imately as a + bn + (—1)"c¢/n for some constants a, b, c. If that is true, 7(n) =
exp(nlnn — nln(e/b) + O(logn)). The exact values for n < 30 suggest further that
a = 0.19, b =~ 0.636, and ¢ = 0.42. But rigorous proofs are unknown. (This function
7(n) was introduced by A. Kotzig, who computed it by hand for n < 6 in 1984.)

132. Suppose 1 < e < 2", where 2" + ¢ = (en ...€e1e0)2. Then the edge labeled e is
between = (Zn—1...2120)2 and z & (z — 1), if e =1 and ex—1 = --- = ep = 0 and
xj =e; ®[j>k]ej41 for 0 < j < n. (This is in fact an a-labeling. Notice that I(x) is
essentially a left-right reflection of inverse Gray code, 7.2.1.1-(8).)

133. Notice that T}, like P,, has two automorphisms; so we divide the total number
of graceful labelings by 4. This yields 30 and 988184 for T35 and T4; also approximately
4-10'® and 10*® for T5 and Tg, using ten million estimates with Algorithm 7.2.2E.

January 13, 2024

XCC model
online
downloadable programs
Rokicki

author

reluctant doubling
restart

OEIS

Anick

Kotzig

«-labeling

Gray code
automorphisms

7.2.2.3 ANSWERS TO EXERCISES 147

136. (a) Suppose a has even parity and (8 has odd parity. Then I(18) — I(1a) =
1(08) —1(0c) — 2% — 2a4n—2, because ap = 0. Hence L; = Ly — 2" % — 2ayn—o.

(b) Let ag = (k 4 2)2*~'. This choice makes (ao,a1,...) = (0,1,3,4,8,9,...),
and we have a, = Y 7_, 27" for all n. (It can be shown that a, = n + (e12°* +
<o+ e2°)/2 when n = 2°% 4 .- 4+ 2° with e; > --- > e, > 0.) By part (a),
Lo=1L + 2" ? 4+ 2ayn—2> = L1 + (n+ 1)2" 2. The other edges 0o — la have labels

{m—k—ar—am-1_1_, |0<k<2"'} = {m—k—(n—-1)2""7]0<k< 2" "},

because ar +ayn—1_1_ = Gon-1_; = (R—1)2""%. Thus L1 = {1,2,...,(n—1)2""%} by
induction; and it all works, a-gracefully. [M. Maheo, Discrete Mathematics 29 (1980),
39-46; A. Kotzig, Journal of Combinatorial Theory B31 (1981), 292-296.]

137. (a) n =Y, _,(tx —sk+1) vertices; n—r—1 vertical plus n—¢, —1 horizontal edges.

(b) Numbers in ovals don’t change; in rectangles they’re subtracted from 28.

(c) Use a rectangle for (z,y) when = + y is odd. Label (0,0) with 0. For each
edge, proceeding left to right and bottom to top, make the labels of its endpoints sum
respectively to 0, 1, 2, (This will make the label in a rectangle equal to the one
below it, and one less than the one above it, when those neighbors exist.)

(d) Yes! In general let X9 = to, do = 0, and Xp41 = B + tk + tht1 — 28k4+1 + 1,
Ok+1 = Xk — Ok — Sg+1, for 0 < k < r. Then the label of (x,y) corresponding to (i) is
0z + |y/2] when z is even, 0, + [y/2] when z is odd.

[This in fact is an instance of a-labeling as in exercise 138, where the u’s are ovals
and the v’s are rectangles. A. Rosa presented a special case in Lemma 4.3 of his thesis.]

138. (a) We have 7y = m —vx > m — (m —1) =1 > u;. Hence all the complemented
labels exceed all the uncomplemented ones, and |ur —U| = m—vr—ur = m—k for all k.

(b) Since C,, has n edges, Corollary E tells us that n mod 4 must be 0 or 3. But
a bipartite graph has no odd cycles; hence n = 4k. Conversely, the labels 0 — T —
1—2—2—3—4—4—5—5—6—0—0 for Ci2 reveal a general pattern
that works for all £ > 0. (The similar non-« pattern 0 —11 —1—10—2—9 —
4—8—5—T7—0 for C11 shows that Cyr+3 is at least graceful, for all k£ > 0.)

(c) Let uj, = tm—1—tm—1—k and v, = Vm—1—Um—_1-%. (Equivalently, change each
vertex label ¢ to (I —1 —¢) mod (m + 1). Notice that um—1 =1—1 and vm—1 =m—1.)

(d) == . [A. Rosa introduced a-graceful graphs, and solved these problems as
well as exercise 145(b), in his original paper that introduced graceful graphs. His thesis
(1965) credited A. Kotzig for part (b).]

139. (a) This is obvious, because u, <! < Ty.

(b) We can assume that the central vertex is labeled 0. Then there are two
solutions, both with leaves labeled {1,2,4}.

(c) Suppose the edges of G are u1 —v1, ..., Um — Um, and the vertices of Ky, m
are {ao,-..,am—1,b0,...,bm—1}. We use a “cyclic” analog of the rainbow copies of K1
in Fig.110(c): Let the edges of the k-th copy be (I(u;)+k) mod m — (I(v;)+k) mod m,
for 1 < j,k < m. (For example, the three copies of the path 0 —3—1—2 in K33
are a1 —b; —ao —bo, ag—bz—ao—bl, ap—bo—an —bz)

(d) Simply let the ith copy v; of vertex v have label [(v)+(i—1)m. (Consequently,
by (c), we can perfectly pack t>m copies of G into Kim,tm; also (2tm—+1)t into Koimt1.)

Historical notes: 1. Cahit proposed the concept of ordering labeling in an un-
published research report at the University of Waterloo [CORR 80-47 (December
1980), 6 pages]. It was introduced independently by S. I. El-Zanati, M. J. Kenig,
and C. Vanden Eynden, in Australasian J. Combinatorics 21 (2000), 275-285, who

January 13, 2024

parity

ruler function p
«-gracefully
Maheo

Kotzig

Rosa

Rosa

historical notes
Kotzig
Historical notes
Cahit

El-Zanati
Kenig

Vanden Eynden

148 ANSWERS TO EXERCISES 7.2.2.3

also showed that the graph S, » with 2n edges 0 — a; — b; for 1 < j < n has an
ordered graceful labeling; that graph isn’t a-graceful when n > 2.

140. (a) 37, [175, (min(k +1,1) —max(0, k+1—m)), since the choices for each k are
independent and since u,,—1 =1 —1. (See OEIS A005193. Sheppard proved this when
he introduced Theorem S). The values for 2 < m < 8 are 2, 4, 10, 30, 106, 426, 1930.
(b) No simple formula is evident. The values are now 2, 4, 12, 40, 182, 906, 5404.
When m = 16 there are 246,377,199,752, compared to 7,614,236,170 for (a).
Divide by 2 if complementary labelings are considered to be equivalent.

142. (a) If the elements of K, ; and K. 4 are respectively u;, v; and xr, yi, the elements
of Kop ® Kc g are wip, iy, vjTr, vy, for 1 <i<a,1<j<bh,1<k<c, 1<1<d.
The edges are u;zy VY1, Uiy — Vj Tk, so the product is Kac,pa © Kad,be-

(b) (i) Think of the black or white squares of the 2m x2n chessboard, connected by
bishop moves. Rotate by 90° to get either an (m+n)x (m+n—1) or (m+n—1)x (m+n)
board, connected by rook moves, but with right triangles removed from the corners.
These right triangles affect m — 1 rows/columns at the upper left and lower right; they
affect n — 1 rows/columns at the lower left and upper right.

(ii) Now the board is (m+n) x (m+mn), with n (not n—1) rows/columns affected
at the upper left or lower right. Again the two graphs are isomorphic by transposition.

(iii) One of the graphs has | (2m+1)(2r+1)/2] vertices; it’s an (m+n) x (m+n)
board with m — 1 and n — 1 rows/columns affected at corners. The other, with one
more vertex, is an (m+n+1) X (m+mn+1) board with m and n rows/columns affected.
[When m = n these are the Aztec diamonds of orders n and n + 1/2.]

(iv) Both are generalized toruses (exercise 7-137), with offsets (m, —m) and (n, n).

(v) The graph whose vertices are binary vectors x1 ...Tmyi ... yn of given parity.
Each vertex has mn neighbors: Complement one of the x’s and one of the y’s.

(c) Complementing labels interchanges parts; so we need only consider (G ® H)'.
Let G’s parts (U, V') have labels I(u), [(v), and let H’s parts (X,Y") have labels I(z), [(y).
The new labels [(uz) = l(u) + ml(z), [(vy) = I(v) + ml(y) — m work beautifully, where
m is the number of edges in G. [H. S. Snevily, Discrete Math. 170 (1997), 185-194.]

145. (a) 000 322° 001 327, 010 §2¢° 011 $y0 100 §2° 101 32 110 Su® 111 Ssvo

(b) Use labels 0, 1, ..., s for uo through us and 0, 1, ..., t for vp through v;.

(c) There are mgye41 edges, where mo = 0 and mi+1 = m; + ps; +q¢; + 1.

(d) Assign the label a; + ¢ to each element u;; of Uj, and the label by + ¢ to each
element vy; of Vi, where ap = bo = 0 and aj+1 = aj+pj+q; +1, byy1 = bp+prr +qr +1;
here ;' = max{i | u; —v; } and k" = max{i | u; — vi }. The labels are distinct because
aj+1 > aj + pj, b1 > br + qx. These definitions ensure that as; + b;; = m;; hence
the edges of the caterpillar between Us; and Vi, receive the labels m —m;, m —m; — 1,
..., m—m;41 + 1. When i = s+t we have s; = s, t; = t; the final edge label is 1. In
the example, (ao,a1,a2) = (0,6,11) and (bo,b1,b2) = (0,4, 10); see below.

(e) Let (s,t) = (0,r—1); this gives the caterpillar K ,, whose edges are ug — vo,
.oy uo—Ur—1. Then set po = n—1and ¢; = 0 for 0 < ¢ < r. (See the case (3,4) below.)

(f) Denote the grid points by (z,y) for 0 <z < r and 0 <y < n. Let U; be the
points with « 4+ y = 27, and let V}; be the points with « + y = 2k + 1, as illustrated
below for n = 5 and r = 4. The edges between Uy — Vo — U; — Vi — -+ are
staircase paths. (Hence this is a caterpillar net in which every caterpillar is simply a
path. See B. D. Acharya and M. K. Gill, Indian J. Math. 23 (1981), 81-94.)

January 13, 2024

OEIS

Sheppard
chessboard

Aztec diamonds
generalized toruses
parity

Snevily

Acharya

Gill

7.2.2.3 ANSWERS TO EXERCISES 149

In the following illustrations, digits j¢ in an oval signify w;;; digits k¢ in a rectangle
signify vg;; shaded nodes show final vertex labels; shaded rectangles are complemented:

@D

w

146. Exercise 137 applies to P, Q, V, W, and Z; but exercise 145 is stronger.

In fact, the skeletons of all but the T pentomino are caterpillar nets; the T does,
however, have 1824 different a-graceful labelings. It’s easy to decompose the others into
small caterpillars, as in the decomposition of S below, thereby writing down a labeling
quickly by hand —except that the (unique) decomposition of U is difficult to find. The
R, V, and W also have surprising decompositions into rather large caterpillars:

[See B. D. Acharya, Lecture Notes in Math. 1073 (1984), 205-211.]

148. (a) (X0, x“i)(z;zl zbi) = Y b oF is an algebraic way to say that {a1,...,an}
and {b1,...,b,} are nonnegative integers whose nr sums a; + b; yield {0,...,m — 1}.

(b) Because the mth roots of unity are e?™*/™ the complete factorization of
(1—z™)/(1—z) over the real numbers is (1 4 z)™evenl. HLZ{2]71(1 — 2z cos ZE + 2?).
And any product of palindromials is a palindromial.

(c) Let G(x) = go+ - + gex® and H(x) = ho + - - - + hgz?. Clearly go = ho = 1.
Let k be minimal with 0 < gr < 1 or 0 < hy < 1;say 0 < gr < 1. Then hy = 0,
because g.—r = gr and ge—rhi + gcho < 1. But grho + gk—1h1 + -+ + gohr = 1, and
all terms but grho are 0 or 1. Contradiction.

(d) Since g1 + h1 = 1 we may assume that g1 = 1. Then the nonzero coefficients
of G can be written as a union of disjoint intervals [ao ..ao +ko)U[a1..a1+k1)U---U
[at ..a¢ + ki), where ap = 0 and ko > 1 and ai+1 > a; + k;. If we shift those intervals
by s whenever hs is 1, the union of all of the resulting disjoint sets is [0..m).

Let k = ko. Clearly hy = 1. And we must have k; < k for 0 < i < ¢, to avoid
overlap after shifting by k. Moreover, if k; < k for some ¢, where i is minimal, there
will be a short gap between a; +k&; and a; +k that cannot be covered by any subsequent
shift without overlap. Hence all k; = k, and T'(z) = 2% + - - - + z“*.

January 13, 2024

Acharya
roots of unity
factorization
intervals

150 ANSWERS TO EXERCISES 7.2.2.3

(e) We have G(1) = n, Fr(1) =k, and T(0) = H(0) = 1. So every nonzero term
of T or H is a nonzero term of T'(z) H(z) = Fy(2)/Fi(z) = Fyp/p,(2z").

(f) If nr > 1, every factorization counted by A(n, r) comes from one that’s counted
by A(n/k,r) or by A(n,r/l), for some k\n or some I\r. In particular, A(p®,q’) =
AP, ¢)[e> 0]+ A(p®, ¢’ 1)[f > 0]+ [e= f =0]. Hence A(p®,¢’) = (/).

(g) Let p; denote the operation of dividing n by p;, and let ¢; denote the operation
of dividing r by ¢;. Then every permutation 7 of {p1,p2,q1, g2} defines a factorization
Fpn(x) = Gx(x)Hx(x), by the rules Gpa(z) = Fyp; (#)Ga(2"), Hpa(v) = Ha(z);
qug(m) = Gg(mqf),qug(m) = F,; (x)Hp(z%); Ge(x) = He(z) = 1. For example,
Gpia2paqi (T) = Fpy (T) Fpy (27192), Hpgopaq, (T) = Fyp (a) Fy, (xP29272).

But we must avoid double-counting, because the operations {p1,p2} and {q1,¢2}
commute pairwise. There are 14 equivalence classes of permutations: pip2qiqz =
p1p2q2q1 = p2p19192 = P2P1G2q1, P1qip2q2, P1gig2p2 = P142q1P2, P192p2q1, P2q1p1qgz,
D2q1¢2P1 = P2q2q1P1, P2q2p1q1, and seven more with p <> ¢. So A(p1p2,qi1q2) = 14.

(h) The Mobius polynomial for variables {p1, ..., ps,q1,--.,q:}, when the p’s and
¢’s commute pairwise, is (1 —p1)...(L—ps) + (1 —q1)... (1 —q:) — 1.

) 1/(A=aq)...(1=g) =p) =X, 5P 1 —q) " .. (I—q)” 7"

[See M. Krasner and B. Ranulac, Comptes Rendus Acad. Sci. 204 (Paris, 1937),
397-399, as well as V. Senderov and A. Spivak, Kvant 29,1 (January—February 1998),
10-18, for comments on parts (b)—(d). N. Beluhov contributed to parts (a), (e),
(f), (g), and (i). Beluhov has also discovered the amazing identity A(pip5,qi¢5) =
S (=1)etH (2,:)4(!); see Enumer. Combinatorics and Applic. 2:1 (2022), #S2R6, 1-11.]

149. (a) Edges p through 2n are defined by the vertex labels already given. For the
other p—1 edges we must choose the labels 2n—j or 2n—p+7j, for 1 < j < |p/2]; there
are 2'7/2] solutions. (For example, when n = 7 there are two solutions with {14,11}
in the second part, and four with {14,9}. One of the former has {0,1,2,6,7,8,12} in
the first part; one of the latter has {0, 1, 2,3,4,11,13}.)

(b) The second part labels are {jn+k | 1 < j < r}U {nr}. For example, K77
can be labeled with {0,1,2,3,4, 47,48} and {9, 16, 23, 30, 37, 44, 49}.

150. Not when n,r < 23, according to calculations by F. Stappers. (Is K, » uniquely
graceful when n = 3k + 2 is prime?)

155. Primary items {1,...,m} for the arc labels, and m primary items vw for the arcs
v — w. Also n secondary items v for the vertices, and ¢ = m + 1 secondary items
{ho, ..., hm} for the holders of arc labels. There are (m+1)m? options: ‘((y—x) mod q)
vw vix wiy hyw hyw’, for each arc v—w and each z # y with 0 < z,y < m.

(We can greatly reduce the number of solutions by forcing some vertex v to be
labeled 0, and forcing some other vertex w to be labeled with a divisor of ¢.)

156. a =7, b =5. (Subtract 3, then multiply by the inverse of 5 — 3.)

157. Using exercise 155 we quickly (14 Myu) discover exactly 48 solutions with [(000) =
0 and [(001) = 1. Each of them belongs to a set of 12 that are mutually equivalent,
via automorphisms and antiautomorphisms followed by possible addition and multi-
plication, just as labelings (d) and (f) are obtained from (b) in Fig. 109. The four
essentially different solutions are represented, lexicographically least, by (I1(000),...,
1(111)) = (0,1,2,5,12,6,8,3), (0,1,2,6,12,8,5,3), (0,1,2,9,6,4,11,8), (0,1,3,10,11,6,2,12).

160. (a) Let d = ged(l(w) — I(v),q) and ¢’ = q/d, so that I(w) — I(v) = ed for some
¢ L ¢'. There’s a unique ¢’ such that 0 < ¢’ < ¢’ and ¢’ =1 (modulo ¢').

January 13, 2024

permutation
Moébius polynomial
Krasner

Ranulac

Senderov

Spivak

Beluhov

amazing identity
Stappers

uniquely

7.2.2.3 ANSWERS TO EXERCISES 151

There are d solutions to the simultaneous equations (a - [(v) + b) mod ¢ = 0 and
(a-1(w) +b) mod g = d, namely a = aj, and b = (—ay, -1(v)) mod q, where a), = ¢’ + kq'
and 0 < k < d. Hence we want to prove that a; L g for at least one value of k.

Say that the prime p is “in d” if p\g but pXg'. (For example, if d = 10 and g = 60,
then only 5 is in d.) We can write d = rd’, where the prime factors of r are in d but
those of d' are not. If p divides ged(ak,q) = ged(c' + k¢, g) it must be in d; otherwise
it would divide ¢’ but not ¢’. Therefore ged(ak,q) = ged(ak,r). And the values of
ar modr for 0 < k < d are d' copies of {0,1,...,r — 1}, because ¢’ L r.

(b) Exactly d'o(r) = d]],;, 4(1 - %) graceful labelings are produced by that con-
struction. Furthermore, different values of k give a different I': Let u and u’ be the ver-
tices for which u— v’ and (I(u') —I(u)) mod ¢ = 1. Then (I}, (u") — I}, (v)) mod g = ay.

(c) It suffices to find the essentially different cases that are normalized, in the sense
that [(v) = 0 and {(w)\g. Begin with the set of all normalized solutions (a), grouping
the solutions for divisor d into equivalence classes of size d[[;,,(1 — %) as in (b).
Then, for each automorphism or antiautomorphism «, apply « to a representative
of each class. If the result is in a different class, after normalization by an affine
transformation, merge the classes. Repeat until no more merging is possible. (We need
only consider enough a’s to generate them all under composition.)

161. (a) Denote a labeling by the tuple I(a)l(b)Il(c)l(d). If we choose v =b and w =,
the initial affine equivalence classes in answer 160(c) turn out to be {1024}, {4021} for
d =2 and {1034, 5032}, {2035, 4031} for d = 3, since there are no solutions for d = 1.
This digraph has two automorphisms, () and (b c¢). It also is self-converse, so it
has two antiautomorphisms, one for each automorphism; they are (a d) and (a d)(b c).
Let & = (ad). Then 1024a = 4021 and 2035« = 5032; so the classes of equivalent
labelings are {1024, 4021} and {1034, 2035, 4031, 5032} after the first step of merging.
Now let &« = (b ¢). We have 1024« = 1204, which normalizes affinely to 1024.
So no further merging occurs, and there are just two essentially distinct classes of
equivalent solutions. (We needn’t try a = (a d)(b c), which is generated by the others.)
(Alternatively, we could have chosen v = a and w = b, say. Then the initial
classes would have been {0143}, {0153}, {0243}, {0253}. The antiautomorphism (a d)
would have merged them to {0143,0253} and {0153,0243}. The automorphism (b c)
would then have made no further change.)
(b) Choose v = a and w = d, say, getting six initial classes {043125}, {015243},
{031245}, {034215}, {045213}, {053241}. The antiautomorphism (a f)(b e)(c d) merges
them to {034215, 043125}, {015243}, {031245, 053241}, {045213}; four classes only.

164. Set FIRST[I] <+~ —1for 0 <[< ¢. Then do the following steps for I =1, 2, ..., m:
Set v «+— LO[l], w + (v +1) mod g, ¢t + FIRST[v], FIRST [v] + w, NEXT[I] « ¢.

(A similar algorithm will create arrays FIRSTP and NEXTP with which all pred-
ecessors of any given vertex can be visited efficiently. We can also readily create
FIRST, NEXTL, and NEXTH from the LO array of a graceful undirected graph.)

165. (a) Let f(—1) = —1, otherwise f(z) = (a(z —b)) mod q. Then L0’ [(al) mod q] =
F(LOL); FIRST [(a(l —b)) mod gl = f(FIRST[!]); NEXT [(al) modgql = f(NEXTL[I]);
NAME' [(a(l — b)) mod ¢q] = NAME[[].

(b) LO, FIRST, and NEXT are unchanged; NAME' [[]« = NAME[]].

(c) LO'[g — 11 = (LO[] +!) mod ¢; NAME' [[]Jo = NAME[[]; FIRST' and NEXT' must
be computed from L0’ using exercise 164.

January 13, 2024

totient function
automorphisms
self-converse
antiautomorphisms
essentially distinct

NEXTL

graph representation

152 ANSWERS TO EXERCISES 7.2.2.3

168. Now ¢ = 20, and D" has the same [antiJautomorphisms as D. Choosing v = 000
and w = 001 in answer 160(c) yields respectively (46, 48, 14, 0, 0) affine classes for
d = (1, 2, 4, 5, 10); the classes for d = 4 are pairs of labelings, the others are singletons.

Automorphisms merge every class for d > 1 with at least one class for d = 1. So
we can confine attention to the 23 labelings with [(001) = 1 and [(010) < [(100).

An antiautomorphism finally leaves just seven classes: {012acjbg, 013cif28,
016e745g}, {01649ehg, 018aid54, 0196edgd}, {0165icf8, Olbec9ag, Olbecajg},
{0169ecjg, 01bacbh68, 01bac6f8}, {016acfb8, 016j9ceg, 0198e6b4}, {01358ife,
014eb976, 014hbje6, 017fg56i}, {0135i8fe, 01657£fgi, 01b9e476, 01bjehd6}. (Here
the extended hexadecimal digits 0 through j encode the labels 0 through 19.)

169. Very much so, with millions and millions of labelings! Here’s one
of the 32 solutions for which [(0000) = 0, {(0001) = 1, [(0010) = 2,
1(0100) = 4, 1(1000) = 8, and [(1111) = 15, all found in 200 Gu. By
arranging the vertices of this interesting digraph as a Karnaugh map
(see exercise 7.2.1.1-17), we can exhibit it as a “magical 4 x 4 torus.”

172. (a) It suffices to consider tuples with z; = 0. Then D5 has two classes {00, 02},
{01}% and Ds has six: {000,032}, {001,011, 021,031}, {002,010, 022,030} {003, 033}
{012,020}, {013, 023}* (Those marked with % define a self-conjugate graceful digraph;
the others define a conjugate pair. For example, {000, 032} gives K1 — K3, K3 — K;.)

(b) Use arithmetic mod q. If @ L q and aa’ = 1, define axr = y1...ym and
—ax? = z1...2m, where y; = a(wy; — zq) and 2z = 1 — [— y;. Reject z if © > ax or
x> —az” lexicographically, for some a L q. The accepted tuples are inequivalent.

(c) The answer is 35", [a Lq] 33" ((f(a,b,9)+9(a,b,q9))/(2q¢(q)) by “Burnside’s
Lemma,” where f(a,b,q) and g(a,b, q) are respectively the number of z with D(z) =
aD(z) 4+ b and D(z)" = aD(z) +b. Let t(a, 8, q) = ged(a, ¢)[ged(a, ¢)\B]; this is the
number of z € [0..¢) such that az = 8 (modulo ¢), when «,3 € [0..q).

Let f(I,a,b,q) = (a*l < 1? 1: t(a®* — 1,—b(a*"*+--- +a+1),q)), where s > 0 is
minimum with a®l < I. (All arithmetic is mod ¢.) Then f(a,b,q) = [1{=] f(l,a,b,q).

Let g(I,a,b,q) = ((—a)*1 <1? 1: t(a* — 1, =b(a* "'+ - - +a+1) — (s mod 2), q)),
where s > 0 is minimum with (—a)®l < I. Then g(a,b,q) = /=) 9(l,a,b,q).

(For example, it’s 12502550 when m = 9; see OELS A341884. The totient function
¢(n) is asymptotically not much less than n. In fact, liminf, o (Inlnn)p(n)/n =e™7;
see Hardy and Wright, An Introduction to the Theory of Numbers, Theorem 328.)
175. (a) Since log41 —lar = 2k +1 and lag41 — log+2 = 2k + 2, these labels are actually
graceful for the nonoriented path P,. Modulo ¢ = n, the edge labels 2, 4, ..., n —2
become arc labels n — 2, n —4, ..., 2.

(b) Use the labels lar, = k, lak+1 = r—1—k in the first half. Then define lz,_1_j =
I + 7+ 1. (This elegant construction is due to D. F. Hsu [Lecture Notes in Math. 824
(1980), 134-140], whose paper with G. S. Bloom [Congressus Numerantium 35 (1982),
91-103] introduced the notion of graceful digraphs and proved Theorem H.)

176. Let I'(v) = (n+ 1)I(v) for v € D, I'(wy) = k for the other vertices {w1,...,wn}.
[SIAM Journal on Algebraic and Discrete Methods 6 (1985), 519-536.]

177. D = P35, l(vo) =2n+1,l(v1) =0, l(v2) =n+1, and l(wx) =k for 1 <k < n.
178. Yes, because K., is a-graceful with labels {0,1,...,m — 1} in one part.

180. (Answer left to the reader: Enjoy! Consider also the analogs of exercises 116-120,
as well as the behavior of random graceful digraph labelings as m — co. Many results
have been reported by F. Stappers at archive.org/details/graceful _digraphs_6.)

January 13, 2024

digits, extended hexadecimal
Karnaugh map

magical 4 X 4 torus
self-conjugate
Burnside’s Lemma
congruence enumeration
OEIS

totient function

Y

Hardy

Wright

Hsu

Bloom

Stappers

7.2.2.3 ANSWERS TO EXERCISES 153

182. If D were graceful, its arc labels would sum to 1+ -+ +m = ¢g(q — 1)/2. That
sum is also congruent (modulo g) to > (d*(v) —d~(v))I(v), which is even.

183. For each k with 1 < k < m, we can reverse the orientations on the arcs labeled k
and m + 1 — k. [See the paper cited in answer 176, which introduced digracefulness.]

185. (a) A,E,C,F,B,D,G,H,I,J,K,L. (Note that A is the transitive tournament K3)

(b) C, G, H, I, J, K are not graceful; the other six are uniquely graceful. (The
lexicographically smallest LO[1]L0O[2] ...LO[10] tables for A, B, D, L are respectively
0040210442, 0010770742, 0010210742, 0017214742; E = B”; F = D”. Each labeling
can be obtained from any of the others by reversing pairs as in exercise 183.)

(c) The four unlabeled tournaments for n = 4 are A’, B’, C', D, obtained by
removing the bottom vertices of A, B, C, D. The self-converse D’ is ungraceful; the
others are uniquely graceful, with LO tables 002102 and 001042 for A’ and B'; C'T = B.

When n = 3, A” is uniquely graceful but B” is the ungraceful C5.

(d) Let v = ¢ = () + 1. Given a graceful tournament on vertices {1,...,n}, with
labels a; = I(j), suppose arc j —k is labeled [and arc k' — j' is labeled ¢ — . Then
ar©a; and ay Oa;r are two differences equal to I, so we have a cyclic (v, n, 2)-difference
set. (We'll have j = k' and k = j' when [= ¢q/2, but never j = j' and k = k’.) Con-
versely, by assigning labels from such a difference set, we get a graceful tournament if we
define either (j — k and k' — j) or (k—>j and j' — k') whenever k©j = k'©j’. [This
connection was apparently first noted by Kumudakshi in her Ph.D. thesis (Mangalore:
National Institute of Technology Karnataka, July 2016), Proposition 2.2.5.]

(e) These residues form a cycle (1 712 10 33 9 26 34 16) that defines a symmetrical
graceful tournament, in which v — v whenever v is one of the next four elements after u.
(But the transitive tournament K¢ is not graceful.) [In place of 7, R. D. Carmichael
mentioned the equally good multiplier 16, on pages 437438 of his Introduction to the
Theory of Groups of Finite Order (1937); he probably learned about this remarkable
difference set from someone else, so its origin is obscure. A computer search by L. J.
Dickey has shown that no other cyclic difference sets with A = 2 exist for n < 5000;
see D. R. Hughes, Lecture Notes in Mathematics 686 (1978), 55-58.]

187. Say G is weakly digraceful with tolerance t if it can be gracefully oriented using
just m + t arcs. Calculations by Filip Stappers show that, for all 1044 graphs with
up to 7 vertices, exactly (1013, 26, 4, 1) require tolerance t = (0, 1, 2, 3). (Only 3K
needs tolerance 3; only 2K3, L34, K¢, and K7 need tolerance 2. For K7 we can use
the vertex labels {0,1,2,4,7,15,19}, mod 24, with all arcs « — v going from min(u,v)
to max(u,v) except that 2—1, 4—2, 7—4, 19— 15, 15— 0; the “tolerant” arcs
15— 7 and 15— 1 also pair up with their reversals 7— 15 and 1—15.)

It seems likely that all connected graphs are weakly digraceful with bounded toler-
ance, because each modulus ¢ = m+t41 gives a “fresh start” for achieving gracefulness.

190. The arc labels between k and k + 1 are +(2k + 1) (modulo ¢), where ¢ = 2n + 1,
except for two values of k. The exceptional values are k = |(n—1)/2], when the labels
are 1, and k = n, when they are £(n—(—1)"). Altogether, they are therefore A(n) =
{#£1,4£3,...,£(2n—1)}, because the “missing” case =(2k+1) for k = |(n—1)/2] turns
out to be £(n — (—1)"). Finally, A(n) is the same as {£1,%2,...,+n} (modulo g).
[Discrete Mathematics 261 (2003), 116.]

191. Regard T as rooted at v, with subtrees T1, ..., Ty where |T1| > --- > |Ty4|, and
number the vertices vo, v1, ..., Um in preorder. Let [(vo) = 0; and for k =1, ..., [m/3]
let I(vr,) be the least positive integer such that [(vi) # I(v;) and |I(ve) —I(parent(vy))| #

January 13, 2024

historical notes
transitive tournament
Kumudakshi
Carmichael

Dickey

Hughes

tolerance

Stappers

lollipop Lo, n
preorder

154 ANSWERS TO EXERCISES 7.2.2.3

|l(v;) — l(parent(v;))| for 1 < j < k. At most 3(k — 1) values are excluded, hence
I(vk) < m. Let C = {|l(vx) — l(parent(ve))| | 1 < k < [m/3]} be the “colors” used.

The remaining m—[m/3] < 2m/3 vertices are leaves adjacent to v, by hypothesis.
So we can label them with the negatives of the unused colors, —({1,...,m}\ C).

192. Thelabels {0,1, 2,5,12, 23,29} give all differences {£1, £2,...,£18} (modulo 37),
with £1, £10, +11 occurring twice. For (i), let 0 4~ 1, 2 -~ 29, 12 —/~ 23; for (ii),
let 1 -2 /12 /1. For (iii), work modulo 41 and let 0 - 36 -/~ 18 —/~ 31 -/~ 0,
1422228/ 1. [Each of these labelings is essentially unique. The other graphs
on 7 and 8 vertices that are uniquely rainbow graceful are 3K, & 2K>, 4K, & K, 3,
3K, ® Ki,4,3K1 DK, ®Cs, 3K, K, ® Ps3, Kg.|

193. P. Adams and J. Appleton (see S. I. El-Zanati and C. Vanden Eynden, Mathemat-
ica Slovaca 59 (2009), 1-18) found that G* is graceful except in the following 18 cases:
For n = 6 vertices, 4K & K>, the complement of K». For n = 7, the complements
of K3,3, K1,5, Kz, and K;. For n = 8, the complements of K4,4, K3,4, Kz,s, K1,6,
K1,5, Kg,z, K3EBK2, 4K2, Kg, 3K2, 2K2, Kl,z, and Kz. (The “IIIOSt rainbow graceful”
8-vertex graph is m: There are 41,636 essentially different ways to label it!)

[It turns out that 43 copies of K7 can be packed perfectly into K43, but not
cyclically. On the other hand, 29 copies of 4K, & K1 cannot be packed perfectly into
K>y, cyclically or otherwise. It’s the smallest example of an m-edge graph whose copies
can't exactly cover K»mi1. See S. Hartke, P. R. J. Ostergard, D. Bryant, and S. L
El-Zanati, Journal of Combinatorial Designs 18 (2010), 94-104.]

194. No; 4K @ K is digraceful (answer 187), yet not rainbow graceful
(answer 193). (It has 156 essentially distinct graceful orientations, 18 of which @

are self-converse. The most graceful of these, with 5 labelings, is shown.)

196. (a) There are n®> — 1 nonzero triples, in equivalence classes of size n — 1, hence
(n®—1)/(n—1) classes. Each class has a unique element whose first nonzero component
is 1; thus a; = 1 in n? classes, (a1,a2) = (0,1) in n, and (a1,a2,a3) = (0,0,1) in 1.

(b) a1 + 2a3 = 0 (modulo 3) <= a1 = as. So the answer is {(0,1,0), (1,0, 1),
(1,1,1), (1,2,1)}. (In general aibi + a2bz + asbs = 0 has n? — 1 nonzero solutions
(a1,a2,a3) in F, belonging to (n®> —1)/(n — 1) classes, when [b1, b2, b3] is nonzero.)

(c) The nonzero vectors [by, by, bs], [b1, b5, b3] are linearly independent when one
isn’t a multiple of the other. In that case the homogeneous equations ai1b; + axbs +
asbs = a1b} + asby + aszby = 0 have n — 1 nonzero solutions (a1, az,as), all equivalent.

[See 7—(57) for the case n = 2; see also exercise 7-19.]

197. (a) It’s an immediate consequence of the definitions; there are m = (";Ll) edges.

(b) If ©® = c17® + com + ¢3, then 7° = ;7% + com” + 3. Hence the other roots
are 77 and 7%, [And ¢; = 7 + 7P 4 w7, —cg = wltP 4 wl+® 4 g tp?) ez = pltrtr?)

(c) Since wh+l= ciwh+comk =14 camh=2, a}) = az+cia1, ay = as+caa1, as = cza.

(d) b’l = b2, b’2 = b3, bg:, = (b1 — Clbg — Czb3)/C3.

(e) Eschewing parentheses and commas, they are 001, 010, 100, 403, 132, 223,
031, 310, 304, 244, 241, 211, 411, 212, 421, 312, 324, 444, 042, 420, 302, 224, 041, 410,
202, 321, 414, 242, 221, 011, 110, 003. Since 7! = 3, we have 7' T% = 37*.

(f) Let v = p> + p+ 1. Then {1,#%,7%,...,7®P"2} = {1,2,... p — 1}, so the
triples for {1, m,..., 7" '} are all the points. The given labels L are the points of the
line [1,0,0]. Hence the points of the line [1,0,0]a* are (L + k) mod v, and we have a
cyclic (v,p + 1, 1)-difference set. (For example, L = {0, 1,6,18,22,29} when p =5.)

(g) Let F be the field of p® elements, specified by a primitive polynomial mod-
ulo p, and let m be a root of f in F. Then the subfield Fy of p° elements is {0, 1, 77, ...,

January 13, 2024

unique

Adams

Appleton

El-Zanati

Vanden Eynden
complement

exact cover

Hartke

Ostergard

Bryant

El-Zanati
self-converse

linearly independent
homogeneous equations
primitive polynomial

7.2.2.3 ANSWERS TO EXERCISES 155

Tr(PS*?)“} where v = p®* +p° + 1. The polynomial fo(z) = (z — 7)(x — 72°) (& — 72°°) =
z® — c12® — c2x — c3 is primitive for F and has coefficients in Fy. Proceed as before.
When n = 8 we can use f(z) =2°—2°—1. Thenw =7 =77 =28+ 7"+ 7" +
7+1 is a primitive root for Fy, and we have fo(z) = #*> — (w?+1)z? —z —w. Using octal
notation with 0=0, I=1, 2=w, ..., 7= w?+w+1, the points 1, =, 72, ..., 7’2 are
001, 010, 100, 512, 777, 603, 451, 655, 181, 602, 441, 755, 423, 175, 242, 304, 276, 044,
, 151, and they yield the graceful rainbow labels {0, 1,17, 39, 41, 44, 48, 54, 62} for K.
[Transactions of the Amer. Math. Soc. 43 (1938), 377-385. T. P. Kirkman had
discovered cyclic difference sets “by accident” for the projective planes of orders 2, 3,
4,5, and 8, in Trans. Hist. Soc. Lancashire and Cheshire 9 (1857), 127-142. A famous
conjecture that K, 41 is rainbow graceful if and only if n is a prime power has been ver-

ified for all n < 2000000; see D. M. Gordon, Electronic J. Combin. 1 (1994), #R6, 1-7.]

199. (a) It suffices to consider tuples with ; = 0. Then R, has two classes {00, 01, 03,
04}, {02}, and Rs has eleven: {000, 011, 015, 050, 054, 065}, {001, 002, 024, 041, 063,
064}, {003, 026, 031, 034, 046, 062}, {004, 061}, {005, 013, 021, 044, 052, 060}, {006,
014, 030, 035, 051, 066}, {010, 055}, {012, 020, 022, 043, 045, 053}, {016, 025, 032,
033, 040, 056}, {023, 042}, {036}. For example, the first and fourth classes give K} 3.

(b) Use arithmetic mod ¢. Reject = if x > ax lexicographically for some a L g,
where ax = yi1...ym is defined by first setting 2z, < az; if al < m, otherwise
Zg—al < a(x; +1); then y; = z; — z1. The accepted tuples are inequivalent.

() It's 3307, [a Lq] 3257, £(a,0,9)/(ap(0)), where f(a,b,q) = I/, f(l,a,b,q)
and f(l,a,b,q) = (a®l =17 t(a®* — 1,-b(@*" ' +---+a+1),q9): ¢ —a’l = 1? t(a® —
L,I—b(@* ' +---+a+1),q): 1), where s > 0 is minimum with a*l <1 or ¢ —a®l < 1.
(Compare with answer 172(c). We get 943532049 when m = 9; see OEIS A342357.)
200. This conjecture was introduced by S. I. El-Zanati, C. Vanden Eynden, and
N. Punnim, Australasian J. Combinatorics 24 (2001), 209-219. In fact, they con-
jectured that every bipartite graph G with no isolated vertices has an “ordered graceful
rainbow labeling,” in which the smaller endpoint of every edge belongs to one part and
the larger endpoint belongs to the other. (One such labeling for Cs is (041327).)

203. True and true.

204. The unique answer is chord — chore — chose — chase — chasm — charm —
chard — chord. (But one might argue that an induced cycle is always “chordless.”)

205. Yes. One must check that d(cords,costs) = 3 and d(colts,carts) = 3 in
WORDS(5757): The first is true because corts and cosds are nonwords, according to the
Stanford GraphBase; the second is true because corts and calts are nonwords.

207, @) () + ()0 (3).

(b) nilna!...n. 2! tsl ¢4l ..., when t, of the ny are equal to g.
(c) 4 (Thls question is too easy. Hamming distance is defined in exercise 7-23.)
(d) Suppose Zi...Tr — Y1...Yr because z; # y;, and z1...x, — 21...2r

because xj # 2. Then Yi...Yr—21...2p if and only if j = k.

(e) K2,1,1. It contains two triangles that share an edge; hence the images of both
triangles vary in only one constituent, by (d). But then all vertices are adjacent.

(f) Suppose we change coordinates ko, k1, ..., k4 as we go around the cycle.
Then ko # k1 # - -+ # ka # ko, by (d). And each k; must equal some k; for j # i.

208. Every induced C7 of a Hamming graph is equivalent to 000 — 100 — 110 —
111 — 121 — 021 — 001 — 000. So we can start by dividing WORDS(5757) into (}) =

January 13, 2024

octal notation
Kirkman

Gordon

Burnside’s lemma
OEIS

El-Zanati

Vanden Eynden
Punnim

bipartite graph
ordered graceful rainbow labeling
unique answer
chordless

joke

Stanford GraphBase
Hamming distance

K>11

156 ANSWERS TO EXERCISES 7.2.2.3

10 families of subgraphs in which two of the coordinates are constant. (The largest
such subgraphs are *axe*, *a**s, *o**s, and ***es, with sizes 305, 316, 329, and 371.)
To find all solutions within each subgraph, count the frequency of each letter in
each coordinate position. Choose the coordinates (7, j, k) that will contain respectively
(3,2,2) letters in the solution, with j < k. A word is “unsupported” if any of its letters
in positions (i, , k) have frequencies less than (2,3,3). There must also be at least
one letter, in each of coordinates (4,7, k), whose frequency ezceeds (2,3,3). Discard
unsupported words (and update the frequencies) until all words are supported and all
frequencies are satisfactory. Then visit the solutions, of which there are 69457.

A solution is isometric if and only if three specific five-letter strings, found as in
answer 205, are nonwords. Exactly 6879 solutions survive this test —including just one
that belongs to WORDS(1000), namely beams — seams — seems — seeds — sends —
bends — beads — beams. (Furthermore, exactly (2628, 2088) of the 5757 words
participate in at least one (induced, isometric) cycle; (225, 298) in only one of them.
The champion words are pares, in 2543 induced cycles; later, in 233 isometric cycles.)

209. (a) To satisfy (i), permute the elements with coordinate k. To satisfy (ii), permute
the coordinates according to their first use.

(b) Straightforward backtrack suffices, branching on the possible f(v;) adjacent
to f(vyr). Also ensure that, for all 0 < j < i and j # i, the Hamming distance dg
satisfies [v;—vi] < du (f(vs), f(v5)) < d(vs,v;).

210. (a) Yes. Any strict embedding of G also strictly embeds all G’s induced subgraphs.

(b) If not connected, one of its components is nonembeddable (and induced).

(c) True. Suppose G \ v is disconnected, with induced components G’ and G”,
where G isn’t embeddable. Then G\ v’ is connected for some v’ in G'; it contains G".

211. Let (Cn, Hn, M;) be the n-vertex graphs that are respectively (connected,
connected and Hamming embeddable, MNH). Clearly H3s = Cs. Given lists of Cn
for 4 < n <9, exercise 210 tells us that we can compute H, and M, as follows: Start
with H, and M,, empty. For each G € C,, test if all n of its subgraphs G \ v are either
disconnected or in H,—1. If not, do nothing. Otherwise use exercise 209(b) to test if
G has a Hamming embedding. If so, put G into H,; otherwise put G into M,,.

The resulting sizes (|H4|/|C4l, ..., |Ho|/|Co]) turn out to be (5/6, 11/21, 36/112,
117/853, 469/11117, 2023/261080); and (JMy4l, ..., |Mg|) =(1, 2, 0, 1, 1, 6).

The MNH graphs for n < 8 all turn out to be “tied-path graphs,” namely the
graphs P(ni,...,n;) with 24-n1+- - -+ny, vertices and k+ni1+- - -+ny, edges that are ob-
tained by tying together the endpoints of paths P, 42, ..., Puy+2: Ma = {P(0,1,1)};
M5 = {P(17 2)7 P(17 17 1)}7 Mﬁ = w: M? = {P(]': 1:3)}7 M8 = {P(27 2:2)}

If we knew only these results, we’d be tempted to conjecture falsely that P(1,1,5)
and P(3,3,3) are MNH. But all such hopes are shattered by

M= {G3 Gp GGG)

we might still conjecture tentatively, however, that all MNH graphs are planar.
212. In anormalized embedding, say that ¢ is “k’s pioneer for ¢” if ¢ = min{j | z;r = c}.
Then 0 is every coordinate’s pioneer for 0. But a positive ¢ cannot be a double pioneer;
v; can’t be breaking records in two different coordinates, because it differs from its
parent in only one place. Let p(k,c) be k’s pioneer for ¢, if it exists.

We shall prove, by induction on ¢ > 0, that at most one normalized label I(v;)
is isometrically consistent with [(vo), ..., l(vi—1). Suppose we could legitimately set

January 13, 2024

unsupported
backtrack

strict embedding
tied-path graphs

7.2.2.3 ANSWERS TO EXERCISES 157

either z;;, = a or z;; = b, where a < b, and let j = p(k,a). Then j < i, and d(vj,v;)
takes on two different values when we set x;1; = @ and z;x = b. Contradiction.

Now suppose moves are legitimate in two different coordinates, k& < [, so that
if (i, 1) = (a,b) we could set (zik,z;) to either (a’,b) or (a,b'). If a' > a, let
j =p(k,a) and t = zj;. Then d(vi,v;) = A+[a#ad' |+[t£b] = A+[a#a]+ [t #b] for
some A; consequently 1+ [t #b] = [t #b'], and we must have t = b. Let h = p(l,b) and
t' = z;. Then d(vi,vp) = A"+ [t #£d' |+ [b#b] = A" + [t #a] + [b#b']; consequently
[t'#£a'] =[t' #a]+ 1 and t' = a. Hence h = p(k,a) = j, and j is a double pioneer! So
a=b=0. Finally let g = p(k,1). Then zy = 0; and d(v;,vy) = A" +[1#£a’']+[0#£0] =
A" +[1#0] 4+ [0#£V'], a contradiction. A similar contradiction arises when a’ < a.

So the desired algorithm is simplicity itself: To find I(v;), there are fewer than 2:
candidates; for 0 < j < i we need O(i) operations to test that d(I(v;),(v;)) is correct.
If a candidate succeeds, we know [(v;), and no other candidates need be examined. If no
candidate succeeds, there’s no isometric embedding. Total time is O(n*), usually less.

[See Discrete Applied Mathematics 7 (1984), 221-225, also for exercise 213.]

213. (a) There are three kinds of vertices: corner (C, with degree 2); interior (I, with
degree 4); other (O, with degree 3). There are four types of edges, which we may call
CO, II, IO, OO0. The relations OO 1 OO, OO < II, II &< II always hold. Each CO or IO
is related to itself and to three others “parallel” to it.

(b) True. For example, (0 —1) > (1—2) > (2—3) 1A (0—1).

(c) Clearly i is reflexive and symmetric. If (v — v) > (v’ — ') <1 (" — ")
in any isometric Hamming embedding, and if ux # vk, U}, # U}, ujpn # v, where uy
denotes the kth coordinate of I(u), then k = k' = k. And if the embedding is ternary,
we must also have {u,v} U{u",v"} # 0, hence (v —wv) < (v’ —2").

(d) Let there be r equivalence classes, and let u® —) represent class k.
Assign label I(w) = w1 ... w, to vertex w, where wy = (d(w,u™) — d(w,v*)) mod 3.

214. The graph with labels {00, 10,20,11,21,31} answers (i); for (ii), add a seventh
vertex labeled 30. Example (ii) shows that induced “minimal nonisometrically embed-
dable” subgraphs should not be used to prune the search for embeddable ones. But we
still can exclude graphs with an induced MNH. Totals for 1 < n <9 are (1/1, 1/1, 2/2,
4/5, 9/11, 28/35, 86/111, 318/427, 1265/1742), where the denominators show every
isometric embedding and the numerators show only the ternary ones.

216. (a) v((b®b') & ~(a | a’)), the number of non-* bits that differ.
(b) There are essentially only two other possibilities:

1(0) = 0000, I(1) = 1000, 1(2) = 110%, I(3) = **11, I(4) = 0001;
1(0) = 000%, I(1) = 100%, 1(2) = 1x10, I(3) = =111, I(4) = 010x.

(c) Let 5 be the top vertex, and let 6 and 7 be the two vertices inside the induced
five-cycle. Use the labels [(5) = 1x01, I(6) = 010, I(7) = *010.

(d) If v # 7, let v' = parent(v). We want to prove that v(I(u) ®l(v)) = d(u,v) for
all w and v. If w is their nearest common ancestor, coordinates (u, v, ..., w@®® =1
pldlw)=1) =y v) of I(u) and [(v) are respectively (1,1,...,1,0,...,0,0) and
(0,0,...,0,1,...,1,1); other coordinates match. So there are d(u,v) mismatches. (This
construction is a special case of median labels; see 7.1.1-(63).)

(e) For example, suppose d(u,w) = 4 and d(w,v) = 2. Coordinates (u,u’,u",u'"")
are 1 in I(u), non-1 in I(v); coordinates (v',v) are non-1in I(u), 1 in I(v); other coordi-
nates are either both 1 or both non-1, so they contribute nothing to the “distance.”

January 13, 2024

v(z)

sideways addition
nearest common ancestor
median labels

158 ANSWERS TO EXERCISES 7.2.2.3

Notice that coordinates (v',v) contribute 3 (1+d(u,v)—d(u,v"))+ 3 (1+d(u,v")—
d(u,w)) = 1(d(w,v)+d(u,v)—d(u, w)). Similarly, coordinates (u,u’,u", u"") contribute
2 (d(u, w) + d(u,v) — d(w,v)). So the total “distance” is indeed d(u,v).

For the Petersen graph, with vertices ij for 0 < ¢ < 7 < 5 and root 01, we have

23 04 14 24 03 13 34 02 12 23 04 14 24 03 13 34 02 12
0)=0 0 0 0 0 0 0 0 0 00)=0 0 0 0 0 0 0 0 O
(23)=1 00 0 ? 72 0 7 7 (23)=1 0 0 0 0 0 0 0 0
(04)=1 1 0 72 ? % 7 7 x (04)=1 1 0 0 * =x 0 = =
(14)=1 0 1 72 % 7 7 % 7 l(14)=1 0 1 0 = =% 0 =* =x
020=0 72 2 1. 0 00 ? ? = [(24)=0 = » 1 0 0 0 0 0.
(03)y=7? 72 %« 1 1 0 7 7 x (03)=% 0 « 1 1 0 0 = =
(3)=7 « 2 1.0 1 7 x ? (13)=x = 0 1 0 1 0 * =
(349y=0 2 2 0 727 2 1 0 0 (3)=0 % « 0 % = 1 0 0
(o2)=7? 7 % 72 72 % 1 1 0 (02)=% 0 % = 0 % 1 1 O
(12)=? % 72 72 % 72 1 0 1 (12) =% % 0 % = 0 1 0 1

(f) Change ‘?’ to (‘*’,‘0’) in u, when [u <v]+ f(u,v) is (even, odd), where ‘<’ is

preorder and f(u,v) = d(u,v)+d(u,r)+d(v,r). Proof: Let p = d(u,w) and ¢ = d(w,v),
and assume that w < v. Then the ancestors of u satisfy u® < wfor 0 <k < p;
similarly, « < v® for 0 < k < q. Define o = f(u®,v) mod?2 for 0 < k < p, and
Tpiq—k = f(u,v*¥))mod 2 for 0 < k < ¢. Notice that z, = 0, and 2o = Tp+q. In I(u)
and I(v) we have w) = 1 and v,»y = 7 if and only if Ty # zr11, for 0 < k < p;
similarly w,) = 7 and v, =1 if and only if xp4q—r # Tpyq—r—1, for 0 <k < g. So
the number of 7s is the number of substrings ‘01’ and ‘10’ within z, say 2m. If there
are m’ transitions ‘10’ before the 0 at z,, there are m — m' transitions ‘01’ after it.

Notes: If we shrink each subcube to a point, we get a “squashed cube.” The
subcube labels define an isometric embedding into a squashed cube—we can’t get
shorter paths by going outside the image and coming back again. (However, the
computation of shortest distances between unused points of the squashed cube isn’t
easy.) The existence of a subcube representation with n—1 coordinates was conjectured
by R. L. Graham and H. O. Pollak [Bell System Tech. J. 50 (1971), 2495-2519] and
proved by P. M. Winkler [Combinatorica 3 (1983), 135-139].

217. Because G C G’ implies G C G', (i), (iii), (v), and (vii) are obviously true. And
(viii) clearly holds. But (ii), (iv), (vi) fail either when G = G’ or when G' = G"'.

218. False. (Maybe Gl = Gz = Kz, H1 = C4, H2 = Kl)

219. True. Suppose f embeds G into H, u -/ v, f(u) — f(v), and v = wo — u; —
---—wup =v. Then k > 1, and f(uo) — f(u1) —---— f(ur) — f(u) is a cycle.

220. The vertex of degree m must map to r; its neighbors must map to {z10, - .., Zmo}-
So each path P,; must be mapped to a; vertices of {z;1,...,z;.} for some j. Those
with the same j form a submultiset of sum < n. So we get a suitable partition.
Conversely, such a partition yields an embedding. (And if a1 +--- + ax = mn
and t = 3m, we’ve solved the 3-PARTITION problem, which is strongly NP-complete.
See M. R. Garey and D. S. Johnson, Computers and Intractability (1979), §4.2.2.)

221. (a) 5n vertices and 6n + (5) edges.
(b) If v = f(v) is a strict embedding from G to H, then (v, k) — (f(v), k) is easily
seen to be an embedding from ¢(G) to g(H), by considering the three kinds of edges.
Conversely, assume that (v, k) = (f(v,k),g(v,k)) is an embedding. For fixed v,
let wy = f(v, k) and 7, = g(v, k). If w, # wr4+1 we must have r, = 0 or ri+1 = 0. And
if, say, ro is the only 0, we have wo # w1 = --- = wy and {ri1,rs} = {1, 3}, implying
both wy — w; and wo -~ wi. A similar contradiction arises if r is the only 0. So

January 13, 2024

squashed cube
isometric embedding
Graham

Pollak

Winkler
3-PARTITION
strongly NP-complete
Garey

Johnson

7.2.2.3 ANSWERS TO EXERCISES 159

(ro,...,rs) must be a cyclic permutation of (0,1,0,3,4) or (0,1,0,4,3); but none of
those is compatible with (w2, 72) — (w4, r4). Hence f(v, k) = f(v) is independent of k.
Now the image of ¢(G) has 5n vertices and 6n+ ('2’) edges; it must be an isomorphic copy.
222. If G has n vertices V, let s(G) have n? vertices (v, w), where (v,v) — (v, w) —
(w,w) for all v # w, and (v, w) — (w,v) when v — w. Let t(G) be s(G) together with
additional vertices {v, w} whenever v — w; we have (v,v) — {v,w} — (w,w) when
{v, w} exists. One can now prove that G C H if and only if s(G) C ¢t(H).

For example, if f is a strict embedding of s(G), f(v, v) must be a vertex of the form
(f(v), f(v)), at least when n > 2, because (v, v) has degree 2n—2 in s(G) and the other
vertices of t(H) have degree < 3. Then f(v,w) and f(w,v) when v — w in G must be
(f(v), f(w)) and (f(w), f(v)), since those are the only adjacent vertices in ¢(H) that are
neighbors of both (f(v), f(v)) and (f(w), f(w)). But when v # w and v -/ w, {f(v, w),
f(w,v)} can be any two of (f(v), f(w)), (f(w), f(v)), and possibly {f(v), f(w)}.

(Christine Solnon noticed that s(G) has a huge number of automorphisms, be-
cause one can independently swap (v, w) with (w, v) when v # w. To avoid this problem
she uses directed arcs (v,v) — (v, w) — (w, w).)

224. (a) Suppose the given ISIP has edge labels L; for 0 < j < J. Define a labeled SIP
on G and }AI, the complete graphs on the vertices of G and H, giving their vertices the
labels [; and compatibilities they have in G and H. Also give their edges the existing
labels L; on existing edges, with the existing compatibilities; and let L;(u,v) = A when
u——wv, where A is always compatible with A. Finally —and this is the key point —in-
troduce a new edge label L;, where L; (v, w) = [v—w], compatible if and only if equal.

(b) Suppose the given SIP has labels [; for 0 < ¢ < I and L; for 0 < j < J.
Introduce a new vertex label [;, where I (v) = [v—u] for v € G\ v and [;(?) = [0—1]
for o € H \ 4; these labels are compatible if and only if I;(v) < I;(9). Also introduce
new vertex labels l7114; for 0 < j < J, where l7414;(v) = Lj(u,v) if u—wv, otherwise
lr+1+j(v) = A, using the compatibility relation of L; and letting A be self-compatible.

(For directed graphs, however, we need more. Arc labels L; (v, w) are given when

v—rw. In part (a) let Lj(v,w) = 2[v—w]+ [vé—w]. In part (b), let I;(v) = [v—ru],
liv1(v) = [vs—u], livarj(v) = Lj(v,w) or A, lia4s45(v) = Lj(u,v) or A.)
226. Given a 3SAT problem with m clauses, where every literal occurs exactly twice
(exercise 7.2.2.2-208), construct G and H as follows: Start with the complete binary
tree B, with m leaves; if m = 2F —r, with 0 < r < 257!, there are r leaves on level k—1
and m — r leaves on level k. Attach 3=o—o- ... -0—o, a path of length 10m together
with a ‘Y” at one end, to the root of B, and call the result B;;. Then G is obtained
from B;; by replacing each leaf —o by a path —o—o—o. Similarly, H is obtained from
B} by replacing the kth leaf —o by the graph

% b , where {a,b,c} are the literals of clause k;

we also add nontree edges, two from each of a, b, ¢, to the vertices called respectively a,
b, € in the other clauses. (These labels define the nontree edges, but don’t appear in H.)
Notice that G has 14m + 1 vertices, 14m edges; H has 17m + 1 vertices, 20m edges.

If the clauses are satisfiable, then G C H, because we can match the “tip” of
leaf k to a literal a, b, or c that satisfies clause k. Conversely, if G C H, the ‘Y’ of
G must correspond to the ‘Y’ of H, because the path of length 10m can’t originate
within B,,. Also the embedding of levels 0 through k£ must properly match up the r
leaves on level k — 1 and the m — r leaves on level k. Thus the embedding will specify
literals that satisfy each clause, never choosing both [/ and I.

January 13, 2024

Solnon
automorphisms
complete graphs
directed graphs
complete binary tree

160 ANSWERS TO EXERCISES 7.2.2.3

[This construction is based on an idea of C. Papadimitriou. On the other hand,
E. Luks [J. Computer and System Sciences 25 (1982), 42-65] gave a polynomial-time
algorithm to test full isomorphism between graphs of bounded degree. J. Matousek
and R. Thomas [Discrete Math. 108 (1992), 343-364] have shown how to solve G C H
and G C H in polynomial time if G has bounded degree and H has bounded treewidth.]

228. (a,b) Both equivalences are easily proved. Notice that all vertices of G cither
have in-degree 0 (the original vertices of G) or in-degree 2 (the original edges of G);
the embeddings must distinguish them too. (See T. Werth, M. Wérlein, A. Dreweke,
L. Fischer, and M. Philippsen, in Data Mining for Business Applications (2009), 213.)
229. No. If M = 2k +1, use breadth-first searches to test if H contains a vertex w and
two vertices v — w at distance k from w. A similar method works when M = 2k + 2.
231. Yes, by including additional items in the option for v and V', namely
{e ' E|e=(u—/v)and E = (U—V) for some u and U}.

232. For SIP, there’s a secondary item uwv - UV for every arc u — v in the pattern and
every nonarc U -/ V in the target; this item is inserted into the option for ‘u U’ and
the option for ‘v V’ (and no other options). For ISIP, those options also get a secondary
item wv-UV for every nonarc u -~ v in the pattern and every arc U — V' in the target.
233. (a) If there are Wi, strict embeddings from G, to G,, then E(W,,,) = n”—I/Z(?),
because each of the n™ embedding functions f succeeds with probability 1/ 2(%). When
m = 2lgn + 1+ & we have () > (215") +2(1 +0)1lgn = (m+ §)lgn. Hence, by the
first moment principle (MPR—(21)), Pr(Gm C Gn) = Pr(Winy > 0) < E(Win) <070,

(b) Clearly E(Wp,) > nm27(7§)(1 —m?/n); and when m = 2lgn + 1 — 6, one
can show that E(W2,,) < (nm/Z(gl))2(1 + O(n~%/?)). Hence, by the second moment
principle, Pr(Gn, C G,) > 1 — O(n~=%*/3). [J. Combin. Theory B160 (2023), 144-162.]
235. In general, assume that G and H are connected graphs with G C H, and that H
can be disconnected into components H; and H» by cutting k edges. Then there must
be a way to cut k edges from G in such a way that each resulting component can be em-
bedded in either H; or Hs. (But (52) remains connected when any two edges are cut.)
236. BRAIN83(600) suffices for this, with 0 — 53, 0+ — 56, 1— — 15, 1 — 36, 1+ > 38,
2—— 179,276, 24 — 55, 3— — 35, 3— 39, 3+ — 14, 0— — 77.

237. Yes: 12 -3 ways in BRAIN83(370), found in 3.7 Ty (but none in BRAIN83(360)).
238. (J5 is 3-regular.) Not into BRAIN83(600); but 20 - 86 ways into BRAIN83(700).
239. Require f(0+) < f(v) for v € {1—,14+,2—,2+,3—,3+,0—}. (“Pairwise order-
ing,” exercise 7.2.2.1-20, makes options still longer but needs only 3 + 1.5 G to find
the 9 essentially different embeddings into BRAIN83(300).)

242. (a) The same result holds if ‘deg’ is replaced by ‘d’ in the definition of s, where
d is any supplemental labeling function. Proof: Let v’s neighbors in G be v, ..., vp,
where d(v1) > --- > d(vp); similarly, let f(v)’s neighbors in H be wi, ..., wg, where
d(w1) > -+ > d(wg) and q > p. Given k < p, there are indices 1 < i1 < --- < i < g,
depending on k, such that {f(v1), ..., f(vx)} = {wi,, ..., w;i, }. Let j be the index with
wi, = f(v;); then d(vy) < d(vj) < d(w;iy,) < d(wy). [See S. Zampelli, Y. Deville, and
C. Solnon, Constraints 15 (2010), 327-353.]

(b) (Solution by C. Solnon.) For 1 < k < p, let v have ax neighbors of degree k;
also let w have by neighbors of degree k, or of degree > k when k = p. Then check
whether or not b,...b: majorizes a,...a;, namely whether or not b, + --- + b >
ap + -+ ay for p >k > 1. (Compare with Algorithm 5.2D and exercise 7.2.1.4-54.)

January 13, 2024

Papadimitriou

Luks

isomorphism between graphs
bounded degree
Matousek

Thomas

treewidth

Werth

Worlein

Dreweke

Fischer

Philippsen

breadth-first searches
first moment principle
second moment principle
cutting

Pairwise ordering

supplemental labeling function

Zampelli
Deville
Solnon
majorizes

7.2.2.3 ANSWERS TO EXERCISES 161

[This partial ordering of multisets is a distributive lattice. When restricted to
multisets of at most r positive integers, all < s, it’s the lattice L(r, s) of partitions into
at most r parts < s, of which there are [¢¥] (T“)q partitions of k by 7.2.1.4—(51).]

N
243. 02 — MS would force 01 +— AL and 03 +— AL. 02 — TX would force 01 — NM and
03 — NM. Now 02 + LA limits the domains of 01 and 03 to {MS,TX}; and that forces
both 00 — NM and 04 — NM. (AL has no neighbors in h, so we can’t map 00 — AL.)

D) ™ ® ® ™ ® ®
@ @ ® @ @
® B O D@ D ® B D@D
@™ ® @ and @ @ ™ ®
@ @ @
@ ® @ @ ®

245. (a) One of 412 embeddings for P,O P, is (
OR ID WY NE IA IL
(b) And | NVUT COKS MOKY | is one of 4 -9 for P3O Ps.
CA AZ NM OK AR TN
246. P,O P (in just 8 - 3 ways, including {C0,NE, M0, 0K}); P30 Po.
247. There are 10 - 7 ways, including for instance

CAOR ID WY NE IA WIMI OHWV PA NJ)
AZNVUT COKSMO IL INKY VAMDDE /"

™ ® ® ™ ® ®
® @ @ ® @ @
D ® B DO D ® B DO D
™ @ ™ ® and @ @ ™ ®
@ @ @ @ @ @
@ @ ® @ @ ®

(And there are 12 - 19 ways to embed six pentagons that surround a hezagon.)

250. There are unique embeddings & C USA and C USA of

simplezx (4,4,4,3,0,0,0) and simplez (5,5,3,3,0,0,0). (Put NV in the left corner.)
253. Let M(v) be the mate of vertex v in the given matching, so that M (z;) = y;,
and M(y;;) = z;. Alsolet M(y;) = Lif j € {j1,...,Jm}. Suppose there’s also another
feasible matching, with mate function m, in which m(z;) = y; (hence j isn’t removable).
Let uo = x5, vo = yj, and u1 = M(vo). If up # L, let vy = m(ug) and upyr =
M (vg). If up = wo, this sequence will be periodic, and ug — Vg—1 —> Up—1 —> -+ —>
vo —+uo Will be a path in T'; hence x; and y; will be in the same strong component.
But if up, = L, let v_1 = M(uo) and u—1 = m(v—1). Hu_;y # L, let v_j_1 =
M(u—;) and u_j—1 = m(v_;—1). Eventually we’ll have u_; = L, and a path u —
Vp—1 —>Up—1 —> - —>V_; —ru_r; so y; and L will be in the same strong component.
Conversely, if there’s an oriented path z; —---—y; —x; or L—-- - —y; —
x; in T, we can convert the given matching to a feasible matching with z; — y; by
reversing each edge of that path. Hence j isn’t removable.
254. (a) [This is Philip Hall’s theorem, J. London Math. Soc. 10 (1935), 26-30, where
Hall sets are featured. When 1 —y;,, ..., m — ¥j,, is such a matching, the sequence
Ji...Jm is called a “system of distinct representatives.” Group theorists use the term
“Hall set” for quite a different concept—also due to Philip Hall.] The condition is
certainly necessary. If the algorithm fails, its final dag supplies an I with |D(I)| < |I|.

January 13, 2024

partial ordering of multisets
distributive lattice

lattice

L(r,s)

partitions

g-nomial coeffs

Philip Hall

historical notes

system of distinct representatives
distinct representatives
Hall set

pigeonhole principle

162 ANSWERS TO EXERCISES 7.2.2.3

(b,c) If j is removable from x;’s domain, there’s no matching in the subgraph
with z; and y; deleted. So there’s a subset I C {1,...,m}\ 4 with |D'(I)| < |I|, where
D' is the subdomain in the subgraph. Thus |D(I)| < |I|; by feasibility, |D(I)| = |I|.

(d) Because all values in D(I) must be used as the images of I’s variables.

(e) Let A, B, C be disjoint subsets of {1,...,n}, with a = |A], b= |B|, ¢ = |C],
o' = ID(A)], ¥ = |D(B)\ D(4)], ¢ =|D(C)\ D(A)), @' +V =a+b,a +¢ =a+c
By feasibility we have ' > a and a’ +b' + ¢ > |D(AUBUC)| > a + b+ c. Therefore
2" +b +c >2a+b+c=2a"+b +c, hencea’ =a and |[D(AUBUC)| =a+b+ec

(f) This structure is a consequence of parts (b) and (d); I through I, are the min-
imal nonempty Hall sets. (Consequently the problem now has r+ 1 independent sets of
variables {z; | © € I;}, each of which has the all-different constraint only within its sub-
domain D(I;); moreover, perfect matchings are required, except between Iy and D(Io).

(g) Each I; is the set of z’s belonging to some strong component, with j = 0 when
that component also contains L. (Notice that Io might be). There might be more
than r + 1 strong components, but only because {y;} is a singleton strong component
when D(i) = {j} is a singleton domain.)

Historical notes: Chapter 7 of C. Berge’s book Graphs and Hypergraphs (1973)
surveys the theory of alternating paths, which allows us to understand the family
of all maximum matchings. Minimal nonempty Hall sets correspond to connected
bipartite graphs for which every edge is part of a perfect matching. Such graphs are
called “elementary bipartite” by L. Lovdsz and M. D. Plummer [Matching Theory
(1986), Chapter 4], who have traced the concept back to D. K6nig [Mathematikai és
Természettudomanyi Ertesit 33 (1915), 221-229]. One of many interesting properties
of such graphs, noted in their exercise 4.1.5, can be paraphrased as follows: “Let F' be
a loopfree digraph on vertices {z1,...,Zn}, and let G be the bigraph on {z1,...,zs},
{y1,...,yn} whose edges are x; — y; for 1 < i < n and z; — y; whenever z; — y;
in F. Then F is strongly connected if and only if G is elementary.”

J.-C. Régin [Proc. Nat. Conf. on Artificial Intelligence 12 (1994), 362-367] de-
veloped the algorithm of exercise 253 after discovering that every removable element
of an all-different constraint can be identified from a single computation of strong
components. Subsequent refinements of his algorithm were surveyed carefully and in-
vestigated empirically by I. P. Gent, I. Miguel, and P. Nightingale [Artificial Intelligence
172 (2008), 1973-2000], who noted gains in efficiency after strong components I; have
been identified as in (f) and used for GAD filtering on the smaller domains D(I;).

255. Given a matching, let T simply be the digraph on vertices {yi1,...,yn} with arcs
{yj; —yr | i —yr and k # ji }. Then k # j; is removable from D; if and only if yi, and
yj; belong to different strong components. (We're essentially identifying x; with y;,.)

256. (a) The domain D, of a must be a target vertex with a predecessor of out-degree
> 4; so D, = {6, 8, 13, 14, 15, 16}. And Dy is the set of targets with a predecessor
having out-degree > 1, in-degree > 1, and at least two neighbors, namely {3, 6, 8, 12,
13, 14, 15, 16}. But Dy, = {3} is the only target with a predecessor of bi-degree > 1,
where “bi-degree” is the number of two-way (<>) edges; D. = {8} is the only target
with bi-degree > 1 and out-degree > 2. Similarly, D. = D,; Dy = {0}; Dy = {14}.

After the forced assignments b — 3, ¢ — 8, £ — 0, g — 14, the remaining domains
reduce to Dy = D = {6, 13, 15, 16}; Dq = D U {12}. LAD filtering now tells us that
e /> 16, because Dq doesn’t contain 16’s successor (3). Similarly, d /4 13; d v/& 16.

January 13, 2024

perfect matchings
Historical notes
Berge

perfect matching
elementary bipartite
Lovész

Plummer

Koénig

bigraph

strongly connected
Régin

Gent

Miguel
Nightingale
bi-degree

R O T I e P S
40 147 31 23 32 2,3 20 31 54_ 43 54 15 00 44 33 55 | 55_ 55

0—4,0=0 >o< 0—2,0=0 P 0—0,0=0 > 22 > 33
SN 32 2.3 207 Tsa sa” s 54 1.5 00" Taa_ 33 55 | 55 55

o \L/ \Lu 2—0 o \L/ \Lu 5—o o o~ \L/ \&0,040

7.2.2.3 ANSWERS TO EXERCISES 163

So we branch on e, and there are three cases: If e — 6, then d — 15 and we
discover two solutions, a — 13 or 16. If e — 13, then d — 12 and a — 6, 15, or 16. If
e — 15, then d — 6 and a — 13 or 16.

(b) With strict embedding the initial domain D, is reduced to {8, 13, 16}. Only
two of the previous solutions survive: (a,b,c,d,e,f,g) — (6 or 15, 3, 8, 12, 13, 0, 14).
259. Yes; but there are three essentially different ways to delete two edges. If the edges
are adjacent — at distance 1 in the line graph — there are 32-4 embeddings, such as (P1)
below. If at distance 2, (P2) is one of 16 - 7 embeddings. At distance 3 there are none.

SIE ABIIR - JC Y %

260. Respectively 8-1,32-1,0,16-1,16-3, 64-1, 8-1 strict embeddings. (Notice that
in case (iv), the pattern has 8 automorphisms, the target has 8, and the image has 4.
So we get (8-8)/4 = 16 different embedding functions f.)

263. Spectacularly false. For example, if H = G — K then H<? is a complete graph.

(P1)

264. The degree of 12 in G<? is 11. So we can exclude 22 vertices whose degree in H<?
is 10 or less: {AZ, CA, CT, DC, DE, FL, GA, LA, MA, ME, MI, MN, ND, NH, NJ, NV, OR, RI, SC,
TX, VT, WA}. (The text’s original method didn’t exclude AZ or TX; its supplemental edge
labels £¢, ¢m did exclude all of these except MN and NV, and picked off also NM and WI.)

265. dg’““ (v) is the number of simple paths of length exactly k that begin at v. (Thus
when k = 1, di? (v) = deg(v).) Consequently v’s degree in G=? is d52 (v) +[dE? (v) > 0].
266. Symmetrically equivalent vertices have the same label. Left to right, they are:
(i) (4, 2,7, 6,8, 8,5, 2); (ii) (0, 20, 2, 12, 6, 12, 6, 0); (iii) (2, 6, 6, 16, 12, 10, 7, 5);
(iv) (0, 8, 7, 16, 12, 20, 8, 0); (v) (0, 0, 22, 16, 24, 34, 4, 0); (vi) (0, 0, 0, 2, 4, 4, 2, 2);
(Vii) (07 27 27 47 27 27 07 0); (Viii) (07 07 07 07 27 07 07 0); (ix) (07 07 07 27 07 27 07 0)'

267. Here ‘a, b’ stands for the label left-to-right, then right-to-left:

268. Graph (i) is undirected, because s and t are symmetrically placed.

269. Indeed, if v — MO and v’ is diagonally adjacent to v, we can’t have v’ — AL,
GA, LA, MN, NC, NM, OH, WV, or WY, even though those states are at distance 2 from MO,
because no appropriate 4-cycle connects them to MO.

270. Only 15 vertices v of H = USA have at least 4 neighbors in H%2?, namely {AR,
CO, IA, IL, KS, KY, MO, NE, NV, OK, SD, TN, UT, WV, WY}. Furthermore, if say 11 — NV,
then 12 — AZ CA, ID, OR, or UT; hence 12 + UT. Similarly 11 + NV implies 21 — UT, a
contradiction. An analogous contradiction rules out 11 — WV.

273. One part has the neighbors u' of u in G (either u—u’ or u<—u' or both). The
other part has the neighbors v’ of v. There’s a potential match between u' and v’ if and
only if all of the following conditions hold: (i) v’ is in the current domain of u'. (ii) If
u—ru' in G then v —v' in H. (iii) If u<— v’ in G then v<—v' in H. (iv) For each

January 13, 2024

line graph
automorphisms
domain

164 ANSWERS TO EXERCISES 7.2.2.3

supplemental pair label that we’ve computed, satisfying (64), £c (u,u') < £ (v,v") and
La(u',u) < La(v',v). Andif G is to be strictly embedded into H, we also have two more
conditions: (v) If u/+v' in G then v-/>v' in H. (vi) f u¢/~u' in G then v¢~v' in H.

Condition (i) implies that dg(u') < dg(v') for every supplemental label that
we’'ve computed, because we used those labels to initialize the domains.

This bipartite matching problem arises not only for the original pattern graph G
and the original target graph H, but also (and independently) for every pair of supple-
mental graphs G* and H* that we know are solutions to (65).

274. Count the number of strict embeddings S C G that map v — s and possibly
w > 5, in a motif S with designated vertices s and possibly t._(In particular, when §
is K5 on the vertices s and ¢, the complementary graph G = G is supplementary.)

277. (a) Choose a vertex p in each connected component, and use breadth-first search
to list the elements p(l)p(2) ... reachable from p in increasing order of distance, starting
with p itself. Concatenate those lists. (Some choices are much better than others.)

(b) (This data structure is a special case of a sparse-set representation.) Maintain
also the inverse permutation u; ...u, so that, if the target vertices are {1,...,n}, we
have t; = k if and only if ux, = j. Initially t; = u; = j for 1 < j < n. When assigning
fpigr) =k, first set j < up, L« 1+1, K < t;,t; < k, t; < k', up < I, upr < j. Then
for each neighbor k" of k, set j < upr and, if j > s, set s; «— s;+1, k' + ts,, ts, < k',
tj « k', upr < j, upr < s;. Finally, if s; < r;, set | < [— 1. (That assignment to k
cannot be part of a solution, so we must backtrack. No changes to the ¢t and w arrays
need to be made when backtracking.)

(c) Yes; this condition is weaker than LAD filtering. (Notice that ¢ = ¢ is fixed
and can be computed in advance; also a target vertex k is near if and only if u < s;.)

(d) Yes, in the ISIP (strict embedding); again ¢ = ¢; is fixed. But no, in the SIP.

[These heuristics are used by the SIP and ISIP solvers VF2 and VF3 to prune the
backtrack tree. See V. Carletti, L. P. Cordella, P. Foggia, A. Saggese, C. Sansone, and
M. Vento, IEEE Trans. PAMI-26 (2004), 1367-1372; PAMI-40 (2018), 804-818.]

278. At step j, H is a Hall set, based on domains different from D;. [See C. McCreesh
and P. Prosser, LNCS 9255 (2015), 300-301.]

279. First assume for convenience that the target graph has n < 64 vertices, that all
graphs are undirected, and that there are at most 7 supplemental graphs (thus at most
8 altogether). Represent the pattern by an m x m matrix A, of bytes; the individual
bits of Ay, tell us which of the 8 pattern graphs have u — v. Each target graph H®
is represented by n octabytes HS; bit u' of HS is 1 if and only if v' — in H.

To assign v +— o', first set D, < {v'}, and mark it “final” so that it won’t
participate at deeper levels of the search. Then, for every pattern vertex u # v, we
must set D, < D, & H? whenever A,, tells us that u — v in H®; we simply set
Dy, < Dy, \ {v'} if Ay, = 0. (For strict embedding, also set D, < D, & ~H3.)

The resulting domains should now be refined further as in exercise 278. That
algorithm is readily extended to recognize quickly whether or not at least one nonfinal
domain has been reduced to size 1; if so, we repeat the process with a new v and v'.

If the target graph has n > 64 vertices, a similar procedure can be carried out
with [n/64] octabytes per domain and with [n/64] octabytes in place of each H3 . If
the graphs are directed, byte Ay, should represent u — v in the pattern graphs, and
bit «' of HS should represent u' — v’ in H®. The transposed target graphs should
also be represented separately, so that bit u' of H>% represents v' —u' in HS. If A,,
tells us that v—wu in H”, we should set Dy, + D, & H5*.

January 13, 2024

initialize the domains
complementary graph
breadth-first search
data structure
sparse-set representation
LAD filtering

VF2

VF3

Carletti

Cordella

Foggia

Saggese

Sansone

Vento

Hall set

McCreesh

Prosser

strict embedding

7.2.2.3 ANSWERS TO EXERCISES 165

[Historical notes: Bitwise domain filtering was recommended by J. R. Ullmann Historical notes
in one of the first papers about SIP solving, JACM 23 (1976), 31-42. See also J. J. gilmizsndomai“ filtering
McGregor, Information Sciences 19 (1979), 229-250, as well as Ullmann’s subsequent McGregor
paper in ACM J. Experimental Algorithmics 15 (2011), 1.6:1-1.6:64. C. McCreesh has McCreesh
reported (unpublished) that the state-of-the-art Glasgow solver, c. 2020, spends roughly or e domains
1/3 of its time doing bitwise propagation, 1/4 doing relaxed GAD filtering, 1/6 copying ANDN
domains from one level to the next, and 1/10 choosing the variable on which to branch.] Van Kessel
280. In the following code, Dy, is the octabyte in address dom+ 8k. Sorting is achieved (ggeilm;?
by making byte START [i] point to the first domain of size i; NEXT[k] points to the next automorphism

. . 4-cub
domain of the same size. The assembler code ‘start GREG @ ;next GREG @+64 ;dom GREG cube

@+128’ appears somewhere in the Data_Segment, so that we can address those arrays
conveniently. Bucket m receives all domains of size > m, because they can be treated
in any order. Symbols t, u, h, i, j, k, kk denote registers $255, $0, $1, $2, $3, $4, $5.

Sort SET j,0 j+« 0. LDB k,start,0 Kk < START[O].
SET i,56 7 < 56. PBZ k,2F No domain empty?
1H STOU j,start,i START[i..i+ 7]+« 0. 1H INCL j,1 G j+1.
SUB i,i,8 341 — 8. 8ADDU kk,k,0
PBNN i,1B Repeat while 7z > 0. LDOU +t,kk,dom t < Dy.
CMP t,1i,0 t <+ —1. OR u,u,t U+ UuUt.
STB t,m,start START[m] « —1. ANDN ¢t,t,h t(—t\H.
SET k,m k < m. BZ t,Unfeas To Unfeas if t = 0.
1H 8ADDU kk,k,0 kk < 8k. STOU t,kk,dom Dy, +t.
LDOU t,kk,dom t < Dy. SADD t,u,0 t <+ ‘U|
SADD t,t,0 t < |Dgl. CMP t,t,j t < sign(t — j).
CMP i,t,m BN t,Unfeas To Unfeas if |U| < j.
CSP t,i,m If t > m set t + m. CSZ h,t,u If |U| = j set H « U.
LDB i,start,t LDB k,k,next k < NEXT[k].
STB i,next,k NEXT[k] < START[t]. BP k,1B Repeat loop if & > 0.
STB k,start,t START[t] « k. BN k,Feas We’re done if k < 0.
SUB k,k,1 k<« k—1. 2H INCL 1i,1 L ¢+ 1.
PBP k,1B Loop while £ > 0. LDB k,i,start Kk < START[:].
DoIt SET u,0 u <+ 0. PBP k,1B Repeat loop if k > 0.
SET h,0 h < 0. PBZ k,2B Increase size if k = 0. |
SET i,0 i+ 0. (j=0) Feas ...

The total time is approximately (8 + 30v)m + 10u + 38wv.
Complete GAD filtering can also be done with bitwise manipulation, but the

algorithms are considerably more complicated and time-consuming. See P. Van Kessel
and C.-G. Quimper, Proceedings of the AAAI Conference 26 (2012), 577-583.

283. (a) The problem is to find knight paths p1...pm and qi...¢n so that the mn
cells p; + ¢g; lie in a chessboard and are distinct. There are respectively (2, 13, 16, 3)
essentially different solutions for (m, n) = (2, 22), (3,12), (4,7), (6,6); examples appear
in (i)—(vi) of Fig. A-14. The symmetrical constructions (iv) and (v) show that P,_>0O
P,_> C N, for all n > 4, indeed in at least two different ways when n is even. Case (vi)
is delightfully “symmetrical” although it has no nontrivial automorphism: It arises from
64 different embedding functions f, while cases (iv) and (v) arise from only 16 each.

(b) Every extremal solution is shown in (vii)—(xiv) of Fig. A-14.

(c) Case (xv) is one of three essentially different solutions for n = 20.

(d) Case (xvi) is the essentially unique solution for n = 8.

(e) Case (xvii) is one of two essentially different solutions for n = 8.

(f) Case (xviii) is the essentially unique embedding for n = 2, and it’s strict.

[Incidentally, the 4-cube P> 0 P, 0 P> O P>, which is also Cy 0 Cl4, is uniquely
embeddable in N, for all n > 7, and that embedding is in fact strict.]

January 13, 2024

166 ANSWERS TO EXERCISES 7.2.2.3

TaPax 7 NN NN A ZNIB7N 7
@ LI G ASN AD-AD RARGLE IS A
AT LN | [ARG 5 | [N LAY NN ST XD
N 10| [SE58s XD EYHRD | [LRSS [S
LD | AN N %Qﬁ/ REGCASN LR AL YIS | [NSEASIAS
QRSN R Be s DR TR | [TS N X

LT P ANNING MO NN NIX| B [4 pod

P <A AS\vs NP AV VAR NY NG v v
(i) (ii) (i) (iv) v) (vi)
aPar 7
7N g FANS A} A
d D1 i< [N A XTI N 4 PN A > (BN

X) A ») JARS > KAL) N

A \ L/ ») YA LA -4 B
O (s Q) ALY 4 ANV NIAY X IN

N 4 v N N ¥ v
\% \v \% R/ \v £ \42% \%
(vii) (viii) (ix) (x) (xi) (xii)
7 7 N NN A N N
LR ks 7 [[MY AN PPN

ST NS LX) () L@INGDY AL DL
TRl Nav.v4 o AVWPA 020 A L Y rPavg

AT DN 6"(&”&)&%@ N XD LD LI 4

VTN XA (LA 4 b, ROl adESvg
5] Y vy N NOA N4
\% o £ Y/ v

(xiii) (xiv) (xv) (xvi) (xvii) (xviii)

Fig. A-14. A gallery of knight’s grids in a chessboard.

284. Although SIP solvers use sophisticated techniques like filtering and supplemental
labels, the special geometry of these problems means that a specially tuned backtrack
search can be significantly faster. For example, suppose ¢ is given, as well as a fixed
knight path p; ...pn,. Instead of mapping a pattern vertex into a fixed vertex of the
target graph IN;, we can map ¢i to the origin and backtrack over all knight paths
q1q2 . .. for which the points p; 4+ ¢; are distinct and fit into a ¢ x ¢ region of the plane.
That avoids ©(t?) near-similar branches at the top levels of the search tree.

We have (f2(3),..., f2(11)) = (1, 2, 7, 10, 15, 22, 29, 36, 46); and f»(12) > 57,
because of the knight path q; ...g¢s7 in Fig. A-15. Using somewhat similar paths one
can prove that fa(t) = t%/2 — O(t), with most of the cells ¢; on “even” rows.

When m = 3 we can compute exact results a bit further: (f3(3),..., f3(14)) = (1,
1,3, 5,9, 12, 16, 20, 27, 33, 39, 48); and f3(15) > 55 because of a knight path q; ... ¢ss5
that sticks to cells (¢,j) with (¢ + j) mod 3 fixed. Using such paths together with a
“crooked path” pipsps one can show that f3(t) = t%/3 — O(t). However, f3(14) = 48 is
obtained with a “straight” pip2ps and a completely mysterious path g ... gss.

When m = 4 we have (f4(3),..., fa(17)) = (1, 1, 2, 4, 5, 7, 10, 15, 18, 22, 25,
34, 37, 43, 52), and f4(18) > 61. In this case the optimum solutions for 13 < n < 16
all occur when pipopsps is the zigzag path shown as ‘1 1 1 1’; such solutions prove
that fi(t) = t*/4 — O(t). However, the zigzag path yields only f4(17) > 49. Hence the
straight path wins when ¢ = 17, and the sequence f4(t) remains mysterious.

Turning now to induced subgraphs, (£,(3), ..., (18)) = (1, 2, 5, 8, 8, 10, 12, 15,
19, 24, 28, 32, 36, 40, 46, 52); also (f5(3),..., f:(24)) = (1, 1, 3, 4, 5, 6, 7, 10, 11, 12,
14, 16, 20, 21, 25, 28, 32, 34, 41, 44, 49, 53); furthermore (£,(3),..., £,(36)) = (1, 1, 2,
4,4, 5,6, 8,8, 10, 12, 12, 14, 15, 17, 18, 20, 20, 22, 24, 25, 26, 28, 29, 31, 32, 34, 35,
37, 38, 40, 41, 43, 44). Tt appears that lim; o0 f,(t)/t* = a» and limy— e f3(t)/t* = s
for some (unknown) positive constants a» and as. But f,(t) = O(t), because none of
the paths pipapsps allow us to “turn a corner.”

January 13, 2024

backtrack search

7.2.2.3

ANSWERS TO EXERCISES

167

33 35 37 39

1
14 11 4 1

14 16 1113 4 10 1 3 33 35 37 39 L 3
6 43 8 45 47 18 49 16181413 15111012 4 3 5 1 2 323334353637383940 1 2
6 43 8 45 471849 18 16151713123010 5 9 3 2 6 3233 34353637383940 1 2 3 4
5 42 7 44 9 46 19 48 17 50 1817 1015302812 931 5 6 8 2 31 32 34 25 36 38174041 2
542 7 44 9 4619481750 20 1921 1728 26303129 9 8 32 6 7 3132 34 2536 38174041 2 5 4
41 4 2910311220 1451 16 21 1026 20 2829027313236 8 7 33 31 30 26 25 24 18 17 16 41 42
41 4 2910311228145116 21 2120 22 26 27 25 20 36 323335 7 31 30 26 25 24 1817 164142 5 6
3 4028 30 11 321321 15 52 22 52 2025 23 27 44 36 35 37 33 34 29 30 27 26 23 24 19 18 15 16 43 42
3403630113213 271552 22 52 2223 51 25 44 24 37 43 3534 38 29080 272623241918 15164342 7 6
36 39 2 3727 3356222453 5251 53 2324 48 44 43 45 37 38 40 34 29 28 27 22 2320 19 1415 1243 10
39 2 37 353356 262453 55 23 29 282722232019 1415 124310 7 8

53 55 5148 50 2445 47 43 40 42 38 39

35 1 3826 3457552523 54 55 5350 54 48 47 49 4542 46 40 39 41 28 22 21 20 14131211 10
138 3457 25 54 5554 50 49 4746 4241 28 22 2120 1413121110 9 8

54 49 46 41 21 13 1L

21 13 11 9

I
%2

I I A T
T
SN NSNS

Fig. A-15. Champion knight’s grids on larger boards.

285. C. McCreesh found the first solution below in 2019, in 446 seconds using 160
parallel threads, on the Glasgow solver (which incorporates random restarts). It seems
probable that millions of solutions exist, but a person has to be lucky to find them.
The problem is essentially to label each cell 75 of a chessboard with the name
of another cell zy, so that when two cells are a knight move apart their labels are a
queen move apart. (For example, the knight-move neighbors of the cell labeled 36 in
the first solution are labeled 06, 63, 47, and 66.) In problems such as this it’s often
easier (and fun) to look for symmetrical solutions, because such solutions have many
fewer variables. For example, we can impose further constraints: (i) if i — zy then
ji — yx; (i) if ij — zy then iJ — xy, where § = 7 — y; (iii) if 4§ — zy then 75 — Zy.
C. Solnon discovered in 2021 that condition (i) cannot be satisfied. But T. Rokicki
found that there are exactly 8 - 4 ways to satisfy both (ii) and (iii), as in the second
solution below, thus achieving “axial symmetry” (see exercise 7.2.2.1-386). He showed
furthermore that exactly 8- 14 solutions have the other kind of 4-fold symmetry, under
90-degree rotation, as in the third solution; the constraint in this case is (iv) if ij — zy
then j7 — yZ. Also exactly 4 - 23 solutions, like the fourth, satisfy (ii) but not (iii).
And 32 - 991 have central symmetry: (v) if ¢j — zy then 77 — Z7, but not (ii) or (iii).

6030364474156414 1211060502011615 6750324130073471 1040716166 764717
0641653366177524 5100134146140756 3363605712743102 117260434467 7516
1063004735341167 1042550403524517 0037235261350124 622141777046 2665
05563261 77571331 5024304344372357 7351661556227213 6300732423740764
6270275543 713702 2054403334475327 6405552162112604 514227 3037204556
4550527607225373 6032257473223567 5376421625544077 05033353 54 3404 02
7226252351460104 2170633136647726 7546036520171444 2257323631355025
2012541621034042 6261767572716665 0643704736452710 1206135552140115

286. N. Beluhov notes that the 3 x 3 “Lo Shu” magic square may actually be regarded
as an embedding of N3 into Ps; O Ps3; and the famous magic square in Albrecht Diirer’s
Melencolia I is an embedding of Ny into (4, with axial symmetry!

January 13, 2024

McCreesh

Glasgow solver
restarts

symmetrical solutions
Solnon

Rokicki

horizontal and vertical symmetry
axial symmetry
4-fold symmetry
90-degree rotation
central symmetry
Beluhov

Lo Shu

magic square

Diirer

axial symmetry

168 ANSWERS TO EXERCISES 7.2.2.3

Without reducing for symmetry, there are 44176 embeddings for n = 3, 171569126
for n = 4, and zillions for 5 < n < 7. Restricting to solutions with central symmetry,
these counts become (80, 66624, 69200, 1599680, 48560, 32000), for 3 < n < 8.

Surprisingly, no 4-way symmetry is possible for 9 < n < 30. In fact Rokicki found
that there are only 32 - 2 symmetrical solutions for n = 9, all with central symmetry.

[But Solnon has discovered that unsymmetrical solutions can be obtained quite
quickly, with a dynamically weighted improvement of the MRV heuristic, at least for
9 < n < 12! I shall be reporting on that at length, in a future version of these notes.]

287. (Solution by N. Beluhov.) Of course N,, has very few edges when n is small, so the
task is easy; (1, 24, 1296, 69120) embeddings solve the problem when n = (1, 2, 3, 4).

When n = 5, there are exactly 28800 embeddings. In fact, they are the mappings
ij — p((2¢+7) mod 5)¢g((3i+7) mod 5) and their transposes, when p and g are arbitrary
permutations of {0, 1,2, 3,4}. Those maps also embed the toroidal 5 x 5 knight moves.

But it’s impossible when n > 5, because knight edges of the same slope must map
onto rook edges of the same slope. (This is true in each “knight rhombus,” and we can
connect moves of the same slope by chains of such rhombuses.) And without loss of
generality, knight edges of at least two distinct slopes map onto horizontal rook edges.

(And in general, the n x n graph of every skew free (p, ¢)-leaper is embeddable
in the n x n rook graph for n = p® + ¢%, but not for larger n.)

288. If solvable, there would be headline news: We could name 75 American collegiate
football teams who played each other in 1990 if and only if 75 corresponding characters
encountered each other in the first half of Victor Hugo’s Les Misérables (1862)! But
unfortunately this one is not solvable. Indeed, 95 of the target teams belong to one of
eleven “conferences”; and they play almost everybody in their own conference. So the
largest independent set among those teams has at most 1+1+14+1+1+1+14+14+2+2+2
members. Since at most 8 of the remaining 25 teams are independent, the target graph
has at most 23 independent vertices. But the pattern graph has 27 ¢solated vertices.
290. (a) The unique solution is nicely symmetric. One interesting way
to find it is to consider a Boolean function on (5) = 28 variables @y,
one for each potential edge w — v. The function that characterizes 4-
universal graphs H is Agcq, S(G), where Gy is the set of all 4-vertex
graphs and S(G) = [GC H]. For example, when G = L(3,1) we have S(-—<J) =
Vtuvw TtuZtoTiwTyyTuwTvw, Which is an OR taken over all 8 -7-6 -5 = 1680 ordered
quadruples of vertices tuvw.

Many simplifications are possible, because H must contain a 4-vertex clique C as
well as an independent set I of size 4, having just one vertex in common with C. The
eighth vertex must not be adjacent to all of C'\ I, but adjacent to at least one of I\ C.
That leaves only 11 unspecified variables x,; the resulting BDD has only 1019 nodes
and can be computed in only 4 megamems.

(b) It turns out that exactly 90 distinct 4-universal 8-vertex
graphs can be strictly embedded in a 5-universal 10-vertex graph —
but not the graph of (a). This example becomes 4-universal when we
delete vertices 8 and 9; further deletion of {5,6,7} gives the bull.

The Boolean function for all 5-universal graphs in Gio, analogous to the one in
part (a), has () — 22 = 23 variables and a BDD of size 3803(!), computed in 2.5 Gp.

[Historical notes: J. W. Moon introduced n-universal graphs in Proc. Glasgow
Math. Assoc. 7 (1965), 32-33. He defined A(n) as the minimum number of vertices in
such a graph, and showed that 2" ~Y/2 < A\(n) < 1.1n2""1/2_ N. Alon sharpened this

January 13, 2024

Rokicki

Solnon

MRYV heuristic
Beluhov

(p, q)-leaper
leaper

football teams
Hugo

Les Misérables
independent set
isolated

unique solution
Boolean function
lollipop

paw

clique

BDD

Historical notes
Moon

Alon

7.2.2.3 ANSWERS TO EXERCISES 169
to A(n) = 2"=Y/2(1 + O(n=*/2(log n)*/?)) in Geometric and Functional Analysis 27
(2017), 1-32. Exact values for small n were computed by J. Trimble [arXiv:2109.00075
[math.CO] (2021), 22 pages], who found (A(1),...,A(6)) = (1, 3, 5, 8, 10, 14) and
16 < A(7) < 18. The minimum number of edges in an n-universal graph is (0, 1, 4, 11,
21) for 1 < n < 5; the smallest known examples for n = 6 and 7, due respectively to
F. Stappers and J. Trimble, have respectively 45 and 77 edges. T. Zhang and S. Szeider
showed in LIPIcs 280 (2023), 39:1-39:20, that A(7) > 16.]

291. Infact we can obtain each Vj4+1 by “promoting” a vertex of Vj: Vi = 0125 (K1 1,2);
Vo = 0126 (C4); Vs = 0136 (Py); Va = 0236 (Ps®K1); Vs = 0237 (K2 ®2K,); Ve = 0247
(K4); Vr = 1247 (K13); Vs = 1347 (L(3,1)); Vo = 1357 (K4); Vio = 1367 (C3 & K1);
Vi1 = 2367 (2K»). Ezercise: Make and post an animated video of this. [See suggestions
by Filip Stappers (https://archive.org/details/gray-4-universal/) and Ho Boon
Suan (https://www.youtube.com/watch?v=KelZ0OGPr3Zw).]

An interesting CSP now suggests itself: Given a digraph in which each vertex v
has a given color ¢(v) € {1,...,d}, we seek an oriented path vy —vs — -+ —>vg such
that each color occurs once in {c(v1), c(v2),...,c(vqe)}. Let’s call this the rainbow path
problem. There’s a nice way to formulate it as an XCC: Let there be 3d primary items
z, x+, v— for 1 < « < d, together with a secondary item v for each vertex v; we also
have two special primary items | and T. If the vertices colored x are vy, ..., v, there
are 3t options ‘x v1:01s ... ve:0es’, ‘L vs:l x=", ‘x+ vs:l T, for 1 < s < ¢t. Also, for
each arc v — v with c(v) # c(v'), there’s an option ‘c(v)+ v:l v":1 ¢(v')—

This exercise is the special case where each v is a 4-element subset of {0,...,7}
and c(v) is the corresponding induced subgraph; v — v’ if and only if v’ increases an
element of v by 1. The associated XCC has 105 items, 341 options, and 22 solutions,
found in 3 megamems. (But we were lucky, because there are 8! = 40320 ways to label
the vertices of H and only 4224 of them yield solutions.)

293. (a) The answer is unique, except for permutation of {0, 2, 3}:

(b) Yes. Subtree S, has nodes {7,8,d,e}; subtree T. has
nodes {w,x,y,z,A,B}; map 7 +— w, 8 = x, d = y, e — z. (This
example uses an extended hexadecimal code in which the letters
[a..z] denote [10. 35] and the letters [A..Z] denote [36..61].)

(c) Let ej =, for 1 < j < 1. The stated embedding is possible 1f and only if
there are analogous embeddlngs of Sy, ..., Sy, into some k distinct subtrees Te;.

(d) The condition in (c) is that there’s a matching of size k in the graph with
k boys, [girls, and b; — g; <= sollr;1[e;].

(e) Let v’s neighbors be {wo,...,w;}; define e; as in (c), but for 0 < j < [.
Now consider the graph of (d), but with [+ 1 girls. The embedding for e = ¥ is
possible when u = w; <= there’s a matching of size k with g; unmatched. And
Algorithm 7.5.1H has the beautiful property that such a matching exists <= g; €
{QUEUE[O0], ...,QUEUE[g — 11} when that algorithm terminates with no free boys. (This
brilliant idea saves us a factor of n. See Theorem 3.4 in Matula’s paper, Annals of
Discrete Math. 2 (1978), 91-106.)

(f) Assign integers [0..2n — 2) to the arcs e of T so that (i) all arcs e = % with
the same value of v are consecutive, and (ii) if deg(e) < deg(e’) then e < ¢'. (Here
deg(e) means deg(v) when e = %.) For 1 < d < m, set THRESH[d] to the number of arcs
with deg(e) < d. If e = ¥ and ¢ = Y, set UERT [e] < u, VERT [e] < v, DUAL[e] <« ¢'.

The heart of the computation is solve (r), a recursive procedure to set sol[q] [e]
for all arcs e and all descendants g of r, where r is a node of S. Here’s how it works:

January 13, 2024

Trimble
Stappers
Trimble
Zhang

Szeider
internet

video
Stappers

Ho Boon Suan
CSp

rainbow path problem
XCC

hexadecimal code, extended

unmatched girl in maximum matching

recursive procedure

170 ANSWERS TO EXERCISES 7.2.2.3

If r is a leaf, simply set sol[rl[e] <— 1 for 0 < e < 2n — 2. Otherwise suppose 71,
., T, are r’s children, and solve(r;) for 1 <4 < k. We start with sol[r]1[el < 0 for
0 <e<2n—2 Then we set d < k+ 1, e < THRESH[d], and do the following while
e < 2n—2: While e = THRESH[d + 1] set d < d+1; set up a bipartite matching problem
(see below), and use its solution to fix sol[r] [e + j1 for 0 < j < d; then set e + e +d.
(One can abort, concluding that S € T, if solve(r) never sets any sol[r] [e] < 1.)
The bipartite graph for r and [e..e+d) has k boys b; = r; (the children of r) and
d > k girls g; = e + j, with b; — g; if and only if sol1[b;]1[DUAL[g;1]1 = 1. However,
several special cases are important: If b; — g; for no j, there’s no perfect matching and
we don’t bother to look for one. If b; — g; for all j, we omit boy b; from the graph.
(That happens often, for example whenever r; is a leaf.) So we’re left with ¥’ < k boys,
where k' is at most the inner degree of r. If k¥’ = 0 (every boy matches every girl), we
set sol[rlle + j] < 1 for 0 < j < d. Otherwise if Algorithm 7.5.1H terminates with
f =d—K, and with q girls in its queue, we set sol[r] [QUEUE[51] + 1 for 0 < j < q.
Finally, S C T if and only if sol[1][e] = 1 for at least one arc e.

Here’s the sol matrix for the trees of (a):

u 11796cclfhnuxxwwCCHOONpRpML1435686aclkmf ifo5sjtCQuGFOtVpRISqQMrUqTO32sNuwzyGWPSLr5b97 5ked5nhguBAxuHEDSKJItFCwv4qpjfc6
v 028abdemgiovyzABDEQPWVISKUT33447799kk11hhnnj jssHHFFGGNNJ JRRrrMMLL1 11t ttxxx000qqq ££ FwwwwCCCCpppp 55555
0001110000000000000000
111211111111211111111111111111111111111111111111211111111211111111111111111111
111211111111211111111111111111111111111111111111211111111211111111111111111111
001010000000
00000000000000000000000000010110101010101011111011101010101010101101111011011111011111110111011101111111111111111111
11111114111114124241114141411141411141424111421141141112112411411121141111111111111111111111141111111111111111111111111111
00000000000000000000000000001100101010001010110010110010100010001000110011000011011101110111111101110111111111111111
000111
000000000000000000000000000111101011101010111110111110111011101011011110110111
000000000000000000000000000111111111111111111111111111111111112111111211
11111111111111121111111111111111111111112111111211111112111111112111111111111111111111111111211111111211111111111111111111
00111000000111111100111111011000110101111111111111
11111111111111121111111111111111111111112111111211111112111111112111111111111111111111111111211111111211111111111111111111
111211111111211111111211111111111111111111111111121111111111111111111111111111
000000000000000000000000000111211
11111114111114124241114141411141411141424111421141141112112411411121141111111111111111111111141111111111111111111111111111
0000000000000000000000000001111111111111111111111111111111111121111421111111111411111111114111111111111111111111111111
11111114111114124241114141411141411141424111421141141112112411411121141111111111111111111111141111111111111111111111111111

HE@MOAOTHE ©ONO A WN R

The author’s online program MATULA includes additional matrices solx and

soly, which record the MATE and QUEUE information of subproblem solutions, so that
an actual embedding of S into T can be exhibited when one exists.
294. (a) The average running time is less than 2 kilomems, and the standard deviation
is very small. There are exactly 516399 pairs with S C T (4.85%). Tree S is embed-
dable the most (2016 T's); tree S = K12 is embeddable the least (31 T's); tree 11 has
the most embedded subtrees (74 Ss); trees T' = Pig and Ki,15 have the fewest (1 S);
trees S> and T5 lead to the largest bipartite matching problem (5 boys, 14 girls).

Slzmﬂ C max; levom%&o D max; 5225% Z T2=O%.

(b) These tests, which take about 250 kilomems, find S C T slightly more than
half of the time, and rarely need bipartite matching with more than 3 boys.

(c) These tests take about 10 megamems, and find a unique embedding about
30% of the time. (About 5% of the time there are five or more.) The matching problems
usually all have fewer than 5 boys and fewer than 9 girls.
295. If D has n vertices, there’s a solution if and only if K, C D.
297. Let there be a primary item v for each variable v, and let D, be v’s domain. Let
there be a secondary item u;v; for all elements of N = {(u,v,%,5) | v < v, i € Dy,
Jj € Dy, (u,v) = (i, 7) disallowed}. There’s one option for each v and each j € D,:

‘7
U Viwwigen %V Ve Vit

January 13, 2024

author
downloadable programs

7.2.2.3 ANSWERS TO EXERCISES 171

For radio coloring we can in fact do better. Let D, = [0..d) for all v, and Prestwich
= b,] J—) — 9 © i i . Klavzar
N = {(u,v,.z,j) | u—wv, u <, |d j| < 2} 1ntrod1'10e also a.secondary item v; for sernary-to-binary encodings
each v and j, meaning that v has a neighbor colored j. The option for v and j is then unit clauses

. , weakened encoding
CRAV V(u,v,i,j)eN Ui Vj V(v,u,j,i)EN VjlUi .
298. (a) 608 (d = T7); (b) 95520 (d = 10); (c) 3311464 (d = 12); (d) 401800 (d = 11).
300. (a) Yes. For example, (@2 V ¥2) says that we don’t have u = v = 2. (Like the
binary encoding, it allows all pairs of binary bits in each variable’s representation.
But it’s better, because it lumps 11 together with 10 instead of with 00.)
(b) (000,001, 01, 1#x). (See also the variable-length example in 6.2.2—(33).)
(¢) Omit 000. (S. Prestwich introduced this alternative in order to study en-
codings that have many bit patterns assigned to a single value.)

301. vav1 = (00,01,10,11) means v = (0,1,2,1 or 2). The allowable usuivov; are
0001, 0010, 0011, 0100, 0110, 1000, 1001, 1100; hence u # v. (See also answer 332.)

302. Direct: (vars, clauses, totlits) = (3V,4V + 3E,9V + 6E). Multivalued: (3V,V +
3E,3V+6E). Log or Ordered: (2V,V+3E,2V+8E). Binary: (2V,6E,24F). Support:
(3V,4V+6E,9V + 18E). Weakened: (3V,V+ 3E,3V + 12E). Reduced: (2V,3E,8E).
Prefix: (2V,3E,10E). Curiously, the multivalued encoding has fewer total literals than
the reduced encoding when E > %V, although it has more variables and more clauses.

303. By induction on n, the colors at the corners are uniquely determined: Given
the colors of vertices 01...1 and 02...2, there are two ways to 3-color each of the
subgaskets 1x...% and 2%...%; but three of those four possibilities fail to hook up.
[S. Klavzar, Taiwanese Journal of Mathematics 12 (2008), 513-522.]

304. True. There are two 3-colorings when n = 1. And any 3-coloring C 553 with
equal colors at two corners can be extended to a 3-coloring C 5521: in one or two ways.

306. The hint follows by induction. Consider three ternary-to-binary encodings

(((alp) e (@n1p)),)

Op=1; 0o=1; 0r=T1;
1p=T1 lo=1 1r=1; and let a1 ...an—1 — ((lar0)...(an-10)),,
20=1;, 20=T1; 2r=T;

((ai7)... (an_lr))2).

For example, 1202 — ((T111),, (11111)», (1111)2) = (-5,5,1). It’s easy to verify that
a — (z,y,z) implies that x, y, and z are odd numbers with = + y + z = 1. Conversely,
one can go back from such (z,y, z) to «, but only if « is a ternary vector ai ...an—1.
To go from the representation of triangle a to its three vertices a0, al, or
a2, add respectively (—1,—1,1), (—1,1,—1), or (1,—1,—1). The corner points are
0...00— (=27,2"TH —2™); 1...11 — (=2",0,2™); and 2...22 — (27,0, —2™).
307. Assert the unit clauses (u1), (u2), (vi), (v2), (w1), (w2). In the weakened
encoding, also assert (o) and (wo).

309. Here are typical running times for Algorithm 7.2.2.2C, in units of 10" mems:

without clique hints with clique hints
3 4 5 6 7 8 9 n 3 4 5 6 7 8 9 10 11
Dir 1.0 43 4.7 41 53 7.612.0 1.2 40 43 3.7 35 45 7.9
Mul 0.9 46 43 4.1 48 7.113.1 1.2 41 34 38 43 49 75
Log 0.9 3.1 39 39 3.2 49 8.1 1.1 40 3.6 3.0 2.8 3.4 5.810.723.5

January 13, 2024

172~ ANSWERS TO EXERCISES 7.2.2.3
Bin 28.948.270.3 78.5 89.7

Sup 24 64 69 58 59 6.913.3
Wea 9.114.914.514.716.9 23.6 27.0
Red 0.8 3.9 3.3 34 3.2 3.7 86 1.0 3.8 3.8 2.7 2.6 3.1 6.512.924.0
Pre 34 7.7 75 5.7 64 7.511.2 14 28 34 3.0 23 3.0 48 7.314.6
Tests were omitted when there was little chance of success. Since runtime depends on
random choices, each experiment was done nine times; the median is shown. (For exam-
ple, the values for Pre when n = 11 ranged from 11.2 to 16.1.) Algorithm 7.2.2.2L gives
very similar results when n < 5. But for n > 6 it often loses focus and takes forever.

28 7.8 7.0 6.2 6.0 6.8 9.6

311. For n > 1 let X,, be the search tree size for 3-coloring S when distinct colors
have already been specified for vertices 0...00 and 0...01; also let Y;, be similar, but
for vertices 0...00 and 1...11; and let Z, be similar, but for 5 instead of S,
Then Xo = Ys =5 and Z> = 2. Also Xp41 = Xpp + (Xn + Yo — 1) + (X, + 22,);
Y1 =14+ (Xn+Y,—14Y, - 1)+ (Xn +22,); Znt1 = X +Yn —142Z,. Via
generating fllIlCtiOIlS we ﬁnd Xn+1 = Yn+1 = 2”71L2n+1 =+ 1 and Zn+1 = 2”71L2n — 1,
where L,, = Fp4+1+ Fr—1 is a Lucas number. The answer, if we decide to save a factor
of 6 by prespecifying the colors of 0...00 and 0...01, is Z, = [(3++5)""/2].

313. For all n > 2, Filip Stappers has constructed 2"~ * sets of 2"~ +1 removable edges
as follows: Each set includes the two “tip” edges that touch vertex 2...2, plus 2" 1 —1
non-tip edges. When n = 2 the non-tip edge is 00 — 01, which can also be written
11 — 01; these two forms have different progeny. When n > 2, replace each non-tip
edge aa — ab for n—1 by two non-tip edges caa — aac, abb — abe, where ¢ ¢ {a, b};
also add either 2...200—2...201 or 2...211—2...210 as a further non-tip edge.

For example, when n = 4 we get eight sets of nine removable edges, such as:
0000 — 0001, 0022 — 0021, 0111 — 0110, 0122 — 0120, 2000 — 2002, 2011 — 2012,
2200 — 2201, 2202 — 2222, 2212 — 2222. (This construction actually produces all of
the largest removable sets when n < 4. Is that conjecture actually true for all n?)

315. (a, C) (u1 Vv U1 \Y wl) A (UQ Vv V2 Vv UJQ).
(b) (uOVUOVwo) A (u1 V v1 le) A (17,1 V U1 V?I]l) A (quUQsz).
(d) (u1 VvV wl) A} (’1_1,1 VvV ’U_Jl) A (U2 V vs V wz).

316. If (-02022) and (—=02223), the clique hint (02022 V 02125 V 02223) implies (02125).
Hence (-02012); and (00222 V 02012 V 02022) implies (00222), contradicting (0002z).

318. The construction of exercise 7.2.2.1-117(b) nicely sets up an exact cover problem
with [3"/2] primary items, 3" secondary items, and [3""*/2] — 5 options, each of size
at most 3. (The colors of the first three vertices are forced.) And Algorithm 7.2.2.1X
nicely proves uncolorability, with a search tree of size Z,, = O(5.24™) (see exercise 311).
Indeed, only a few links need to dance at every node of that tree.

But there’s a catch! The author’s implementation of step X3, which was used for
many of the experiments in Section 7.2.2.1, looks at the LEN fields of every uncovered
primary item, when choosing the item for branching by MRV (see exercise 7.2.2.1-9).
So his implementation incurs a cost of €(3"/2 — [) for each node at level I. That’s
foolish —because in this problem all the LEN fields are at most 3!

A better implementation of step X3 solves the problem with only O(n) steps of
computation at each node, while making precisely the same choices: We maintain heap-
ordered lists of all uncovered primary items that have a given length. (See Algorithm
5.2.3H.) Then we simply choose the smallest item in the nonempty list of least LEN.
With that improvement the running time for 5% is & (1.7n + 12)(3 4+ /5)" p.

January 13, 2024

focus

recurrence relations
generating functions
Lucas number
Fibonacci numbers
Stappers

dance

author

LEN fields

primary item

MRV

heap-ordered lists

7.2.2.3 ANSWERS TO EXERCISES 173

In this particular problem it turns out to be very important to choose the smallest
item each time; otherwise the algorithm gets lost and exercise 311 does not apply.
Notice that the secondary items (three per clique) could actually be made primary;
surprisingly, however, that changes the order of exploration and messes everything up.

319. The same question can of course be asked for S and 9.

320. We observed in Section 7.2.2.2 that Al- q 29 49 99 199 399 7991599 3199
gorithm 7.2.2.2L is hopelessly slow for this Dir 58 44 46 40 52 56 40 41
problem. The clique-hinted runtimes shown Mul 96 60 53 36 57 99 62
here are in units of ¢ kilomems. Ome of Log 35 24 24 28 29 33 19 17
| surprises in this experiment is that Sup 148 169 111 99 109 152 105
several surp _ p Red 53 29 31 27 34 37 25 22
the weakened encoding performs much better wea 32 35 41 55 66 51 39 58

than expected, especially when ¢ is small. Pre 47 31 35 35 77 77 35 38

321. (The author hopes that some reader will supply a good answer. His best so far
is to remove nine edges, such as these: ag —b1, eg—d1, fo—c1, a1 —b1, b —eci,
b1 —dl, C1 —dl, C1 —E€1, d: _fl)

323. 013 = 031; 113 = 131; 123 = 132; 133 = 311, 213 = 231; 312 = 321; 313 = 331.
324. A path of length 2"~ *. (And gf) is a (2" 7'+ 1)-cycle.)

325. True: Consider the vertices ai ...a, with a; < d for all j. (And we can indepen-

dently remap the coordinates of those vertices in d'¢ = d'(d' —1)...(d' —d+1) ways.)

326. The pure vertices j...j for 0 < j < d (S),2<j<d (S?),1<j<d (5.

328. (a) d"(d —1)/2 clique edges; (d" — d)/2 nonclique edges.

(b) Contract all the nonclique edges.

(c) Add a loop to each pure vertex j...7, then take the line graph.
[The graphs s for arbitrary d were introduced by S. Klavzar and U. Milutinovié, in
Czechoslovak Mathematical Journal 47 (1997), 95-104; a few years later, M. Jakovac,
in Ars Combinatoria 116 (2014), 395-405, introduced S, For a comprehensive survey
of graph-theoretical properties satisfied by these and similar graphs, see A. M. Hinz,
S. Klavzar, and S. S. Zemlji¢, Discrete Applied Mathematics 217 (2017), 565-600.]

330. Each of d" vertex labels receives a color, and each color ¢ appears d™ ' times —

once in every clique. And c¢ appears an even number of times on the impure labels,

since they’re paired up. So its pure appearances are congruent to d" ! (modulo 2).
Incidentally, a d-coloring of Séd) is essentially a self-transpose d X d latin square.

332. Each variable v must be represented individually. Direct and Support: d Boolean
variables v; = [v=j], with the at-least-one clause (voV:--Vwv4_1) and (}) at-most-one
clauses @; V U;. Multivalued and Weakened: Omit those at-most-one clauses. (If v; =1
and vy = 0 for j < k < d in the weakened encoding, v = j.) Log: [= [lgd] variables
v1, U2, V4, ..., denoting v = (...vsv2v1)2. Assert clauses of length [to exclude the
cases d < v < 2%, (Those clauses can often be shortened; for example, to exclude v > 4
when d = 5 it suffices to assert (74 V 02) and (04 V 71).) Prefix: Again [lgd] variables,
but there are no constraints; v = j is represented by the path to the jth leaf in the
complete binary tree with j external nodes. For example, the five values when d = 5
are represented by vqvov; = 000, 001, 01%, 10%, 11%, effectively lumping together the
binary values {2, 3}, {4,5}, {6,7}. Reduced: d — 1 variables v; = [v=j]for 0 < j < d.
Order: d — 1 variables v/ = [v > j] for 0 < j < d; assert (37 Vvi—1) for 1 < j < d.

We also must assert clauses to prohibit v = j and v = j. Direct, Multivalued:
(4; V vj). Reduced: Same, but assert (u1 V-V ug_1 Vvr V- Vuvg_1) when j = 0.

January 13, 2024

weakened encoding
author

pure vertices
contraction of a graph
line graph

Klavzar

Milutinovié

Jakovac

Zemljic
self-transpose

latin square
complete binary tree

174 ANSWERS TO EXERCISES 7.2.2.3

Log: Assert a clause of length 2! from the binary representation of j; for example,
when [= 3 and j = 4, assert (@4 Vu2 Vu1 VosV vz Vo). (However, that clause
can be shortened to (@4 V ui V 04 V v1) when d = 6, and to (4a V U4) when d = 5.)
Support: Assert (@; Vuv1 V-V vj_1 Vujt1 V- Vog_1), and the same with u <> v.
Weakened: Assert (@; Vujq1 V- Vug_1 V0 Vujp1 V- Vog_1). Prefix: Assert a
clause of length 2 or 2l — 2 based on the path to leaf j. For example, when d = 5 and
j corresponds to {4, 5}, assert (@4 V uz V04V v2). (See exercise 7.2.2.2-391(c).) Order:
Assert (w/ V witlV 07 V vitl); but omit @9, v°, u¢, v¢ (which are always false).
333. We assume that all domain sizes are d, and that we want to assert all possible
hints when the underlying constraint graph has a d-clique {v(1), ..., v(®D}. Let vy be one
of the Boolean variables representing vertex v. If we know that vy = 1 for at least one v
in any c-clique, where 3 < ¢ < d, we can assert the positive clause (v(i1) V- .. Vo(ic)) for
all (¢) subsets {i1,...,ic} C {1,...,d}. Similarly, if we know that v; = 0 for at least
one such v, we can assert the negative clause (71 V - .-V 5(ic)) for all such subsets.
Let’s assume, for example, that the vertices {u,v,w,z,y} form a clique when
d = 5. Direct, Multivalued, Support, and Reduced have positive hints (u; V v; V
w; Vx; Vy;) for 0 < j < d; we must, however, omit j = 0 in the reduced encoding,
where vy doesn’t exist. Log encoding, likewise, has (us4 V v4 V wa V 24 V ya); and when
j € {1,2} it also has five positive clauses for ¢ = 4, namely (u; V v; V w; V z;), ...,
(vj Vw; Vx; Vy;), as well as ten negative clauses for ¢ = 3, such as (4; V 7; V @;).
Thus, Log has 14545+ 10+ 10 = 31 hints altogether, for every 5-clique(!). Order has
even more: Positive for ¢j € {32,43,54} and negative for ¢j € {33,42,51}, totalling
10+5+14+10+5+1 = 32. (Examples are the hints (@' vV o' V @' V ' V §1),
(@2V82Vw2VZ?), and (u?Vov3Vw?).) And Prefix has positive hints for ¢j € {42, 44, 51},
negative hints for ¢j € {33,34, 51}, also totalling 32. Finally, Weakened has positive
hints for ¢j € {50, 51, 52, 53, 54}, negative hints for cj € {33, 42}.
334. With hints for 17 8-cliques (7 rows, 8 columns, and two long diagonals; the top
row is already forced), the time for Algorithm 7.2.2.2C to prove unsatisfiability goes
down dramatically, from 9813 My to 0.8 My (median of nine runs) — better than K6!

335. Suppose we have a 4-coloring h, with h(a:...an) € {0,1,2,3} for all vertices
ai...an. If mis any permutation of {1,2,3}, let O = 0. Then h'(a1...an) =
h((aim)...(a,m))7" is a 4-coloring; and A'(0...05) = h(0...0(jm))n~ = jar =j.

Consequently we can assume without loss of generality that h(0...011) = 0. Let
vk, be the vertex a1 ...an such that k = (a1...an)2. Then the sequence h(vi), h(vs),
h(vs), ..., h(vzn_1) begins 1, 0, and ends with 2 or 3. So there’s a first odd index j
with h(v;) > 1, and we can assume without loss of generality that h(v;) = 2.

We could exploit this when backtracking to save a factor of at least 3. But if we are
using SAT, the assertions (0...011p) and (=0...1013) don’t actually give any speedup.

336. (Prefix = Log when d = 4.) To avoid decimal points in the table below, the
running times are given in units of 10°"~* mems, rounded to two significant digits.

W 5w 5w 5w Fw ORI CONNCONNCO
Dir 580 200 24 12 13 Dir 460 650 160 25
Mul 580 130 33 18 17 Mul 22000 2500 250 30
Log 5900 2600 440 62 48 Log 8400 6700 1600
Sup 2100 800 250 85 24 Sup 8700 3900 480
Wea 140000 8900 1700 290 450 Pre 6100 4700 1200 1600
Red 9100 5000 200 20 24 Red 16000 1800 180 17
Ord 680 130 26 11 16 Ord 2500 1700 320 150

January 13, 2024

SAT

7.2.2.3 ANSWERS TO EXERCISES 175

337. Similarly, the table entries above are in units of 10>"~2 mems. Reasons for the
sterling performance of the direct encoding when n = 3, and for the poor performance
of the prefix encoding when n = 6, are unknown.

338. Here are the clique-hint runtimes for Kissat 2022-light on an Intel Xeon computer,

model E5-2620 v4 2.1GHz, reported by Armin Biere. (The units for 5’\53), ?,54), 5’\55)
are respectively 10711, 107=7, and 10m~5 sec; the uni_ts4for L, = L(J,) are ¢* psec.
Algorithm 7.2.2.2C is totally eclipsed on the S* and ST(L) benchmarks!)

§€(,3) §§‘3) §ﬁ’) 5'8) §é4) §§4) §§4) §5(,5) §é5) §§5) §§5) Lio23 L2047 Laogs Lsio1

Dir 170 84 45 26 6 7 9 8 6 28 31 62 57 49 15
Mul 150 81 45 24 10 11 19 34 40 37 28 23 17 13
Log 110 60 32 18 54 38 27 40 39 38 23 18 14 10
Sup 180 73 54 28 25 31 33 47 57 59 20 15 10 6
Red 100 59 35 18 17 100 46 13 11 11 14 21 20 14 10
Wea 120 85 50 29 170 210 340 32 19 14 11
Pre 60 44 33 21 54 38 27 55 74 76 30 24 27 19
Ord 110 60 32 18 7 14 51 22 26 30 25 23 18 14 10

340. (a) Each of the n clusters {z;; | 0 < j < n} is an n-clique, so their values must
be a permutation of the domain. If ¢ > 0 and j > 0, x;0 < 2 implies z;; > 2; hence
xio > 2. So the n — 1 variables {xo1,...,Zon—1)} have only n — 2 available values.

(b) Since there really are only n? — n + 1 variables, by (iii), we can identify ;o
with zo;. Let there be 2n2 —n +1 primary items z;; and v;; for 0 <4, j < n, omitting
wo; when j > 0. Introduce 2(n — 1)? secondary items a;; and b;; for 0 < i,j < n, in
order to forbid (i, ;) = (0,1) and (1,0). There’s an option containing x;; and v
for each 0 < 4,7,k < n except when i = 0 and j > 0. If i > 0 and j = 0 that option
contains also vo, as well as a;; for 0 < j' < n when k =0, and b;;» for 0 < j' < n
when k=1. If s > 0 and j > 0 it contains also b;; when k = 0 or a;; when k = 1.

The running time for Algorithm 7.2.2.1X is approximately proportional to (n—1)!,
if the primary items have their natural order; for example, it’s 105 My when n = 8 and
90 Gu when n = 12. But the time is much, much longer when they’re randomly ordered
(e.g., 1880 Gu when n = 7). On the other hand, Algorithm 7.2.2.1P quickly proves
unsatisfiability in ©(n?) steps, because the domains of ;; and v;; are inconsistent. For
example, it needs only 22 My to remove all options when n = 32.

(c) Use, for instance, the direct representation, with z;;r = [zi; = k]; identify z;o
with xo;x. The clauses for clique ¢ are A; A B; A C; A D; for 0 < i < n, where

A = /\;7;_01)[#0] ((Yo ijk) A No<ren <n(ijr V @-jkz)) [domain constraints];
Bi = No<j<jr<n Poa(i > 07 (Fijk V Zijr): (Zjok V Ejron)) [clique constraints];

Ci = NeZo (i > 07 (V725 wij): (ViZg jor)) [clique hints];

D; = (’L > 07 /\7:_11((.’5;00 \Y :Eijl) A (fim Vv fijo)): ga) [COnStraint (11)]

Thanks to the clique hints, classical SAT solvers handle this problem quite well. For
example, in nine runs for n = 32 with different random seeds, the median time for
Algorithm 7.2.2.2L was 59 My, and Algorithm 7.2.2.2C needed only 2.4 Mp. But
without the clique hints the runtime is exponential —for example 270 Gp with 7.2.2.2C
for n = 11. The multivalued encoding does poorly too (280 Gu), even with clique hints.

[This problem was introduced by M. R. C. van Dongen as one of the benchmarks
for the 2nd international CSP solver competition in 2006. In the competition, of course,
only the variables, domains, and constraints were given, and variable names were

January 13, 2024

Kissat

Intel Xeon computer
Biere

clique

permutation
pigeonhole principle
domain inconsistency
direct representation
§, tautology

clique hints
multivalued encoding
van Dongen
benchmarks
competition

176 ANSWERS TO EXERCISES 7.2.2.3

randomized. A mechanical solver wouldn’t be able to deduce unsatisfiability efficiently
without somehow understanding the clique structure, and introducing something like
the v;; items of (b) or the hints of (c).]

341. Changing the notation to gain symmetry, let’s encode ‘u+v > 2"—1+t’, where u =
(un=1...u0)2 and v = (vp—1...v0)2. It’s the same problem, since & = (tn—-1...U0)2 =
2" — 1 — u. There are no constraints if ¢ < 1 — 2"; there are no solutions if ¢ > 2".

For all m > 0 and 1 —2" <t < 2", let an, be an auxiliary variable and construct
the following clauses: (i) (@n,t V Un—1 Vup—1) if 0 < ¢t < on-L (i") (@nt V Un—1 V
Un—1 V an,l,t+2n71) ift < 0; (ii) (dn,t VUun—1 V an_l,t); (iii) (an,t V Un-1 V an_l,t);
(iv) (@n,t V ap_y4_9n-1),if t > 1 and n > 1. (In cases (ii) and (iii), omit an—1, if
t >2""1) Then u+ v > 2" — 1+t if and only if v and v satisfy these clauses with
an,t = 1, for some values of the other auxiliary variables.

(We can remove @, ¢, and all clauses that contain pure literals of the form @, ;.)

For instance, t = —1 encodes ‘u < v+1": (4gVwvsVas,r), (isVas,—1), (vsVas,—1),
(@s,r V u4), (as,;r V va), (3,7 V az3), (@z,—1V s VsV azs), (a3,—1V 44V az,-1),
(6_1,3771 V vy V a2,,1), (62,3 \% ’1_1,2), (6_11273 \% 112), (62,3 \% al,l), (62,71 V a2 V v2 V al,l),
(6_1,171 V ’l_Ll), (61,1 \Y 111). And ‘u <v-—21is (’l_l,g V ’l)g), (’l_l,g V a3,2), (’l)g \Y a3,2), (a3776),
(63,2 Vua VU4), (63,2 Vua Vaz,g), (@3,2 Vg Vaz,g), (@3,2 Vaz,_g), (643,_6 VugsVus Vag,_z),
(6_11272 \% ’1_1,2), (62,2 \% 1)2), (6_11272 \% alyo), (62,72 Vuz VoV alyo), (6_11170 Va V 111).

342. The shortest “covering” is (o VwvoVw1) A(uoVwi) A(G1Vu2) A(t2Vui)A(viVd?).

343. Besides the at-least-one and at-most-one clauses, the direct encoding has pre-
clusion clauses (%oV¥2) A (@1VTo) A (@1V01) A (42V01) A (42VD2), while the support
eIlCOdiIlg has (ﬁoVUoVUl) A (thvz) A (ﬁzVUo) A (EOVuOVuQ) A (171Vu0) A (172Vu1).

346. @00 V R01 V_]'Elg \ Rgo) /L(Roo Vuo) A (Eoo V Uo) A (T{m \% uo) A (Em \% Ul) A (Elz \%
u1) A (Ri2 Vu2) A(R20 Vu2) A(R20 Vo) A(toV Roo V Roi) A(1V Ri2) A(t2 V Rao) A (Do V
RooV R20)A(01V Ro1) A (D2 V Ri2) and the at-least-one, at-most-one clauses for v and v.

347. After deducing wo, vo, wo, we have (for example) @1; hence Roo:.

350. (a) There are N =d; ...dy — G clauses of length k, hence Nk literals altogether.

(b) The clause exemplified by (80) has G literals; the Gk clauses like the left
of (81) each have 2; the di + --- + dj clauses like the right of (81) have a total of
di + - -+ di + Gk. So the grand total is (3k +1)G +dy + - - - + dk.

351. Consider a general relation R as in exercise 350, with Boolean variables vj, for
1<j<kand0<a<d;. Then R(ai,...,ax) is true if and only if every preclusion
clause is satisfied with vjq; true for 1 < j < k and the other Boolean variables arbitrary.
(The reduced encoding without at-most-one is the “multivalued encoding”; see Table 2.)

352. Let C, be the clause for a € Dy, and let C' = \/{uq | a € Dy} be u’s at-least-one

clause. Given b € D,, resolve C with each C, for which ab ¢ R = R(u,v); this gives

C' =Uy, V Vi, where Uy = \/{ua | ab € R}, V, = \/{vc | c € R}, and R, = {c|ac € R

for some a with ab ¢ R}. If R; # 0, we get the desired clause (9, V Uy) by resolving C'

with (. V @) for each ¢ € R;,. Otherwise the desired clause is subsumed by U,, which

can be obtained by resolving C' with C, for all a € D,, that have no support in R.
(The other half of the clauses are, however, important for unit resolution.)

353. Form the 27-bit vectors for the set of all 2° truth tables a; on (x1,x2,x3) that
define binary relations on (x1, x2); also similar vectors b; and ¢y, for (z1, z3) and (z2, x3).
The number of distinct a; & b; & ¢y, is 1614530, which is ~ 1.2% of 227. (The answer
to the analogous question for domain size 2 is 166, by exercise 7.2.2.2-191.)

January 13, 2024

auxiliary variable
pure literals

covering

preclusion clauses
multivalued encoding
truth tables

bitwise AND

7.2.2.3 ANSWERS TO EXERCISES 177

354. There are 111618 classes; they form 55809 pairs, because the complements of
equivalent relations are equivalent. One of the pairs has classes of size 1 (the empty
relation and the full relation). Another pair has classes of size 9 (for example, ‘z = 0’
and ‘z # 0°). Another has classes of size 12 (‘(x+y=+z) mod 3 = const’ or ‘(zty=+z) mod
3 # const’, analogous to the parity relations mod 2). Then there’s size 18 (like ‘z = y’
or ‘¢ # y’). The class containing ‘x = y = z = 0’ is one of 20 classes of size 27. The class
containing ‘z, y, and z are distinct’ is one of 4 classes of size 36; so is the class containing
‘c =y = z’. There are 12722 classes of size 648, and 96726 of the maximum size, 1296.

The 1614530 decomposable relations in answer 353 form 1841 equivalence classes.
Those classes are not closed under complementation; for example, ‘(zyz) = 1, whose
class has size 108, is decomposable; but ‘(xyz) # 1’ differs in six places (z,y, z) from the
intersection of its projections onto {z,y}, {z, 2z}, {y, 2}. Altogether 6034 of the classes,
and 6496994 of the relations (= 4.8%), are within 1 of that intersection; 65623736 rela-
tions are within 5. Ounly the class that contains ‘(z+y-+2) mod 3 = 0’ is at distance 18.

356. Yes; it’s not difficult to prove that R(u,v,w) = P(u,v)A P(u,w) A P(v,w), where
P(u,v) = (max(u,v) > ¢) A (min(u,v) < c).

357. hells, shart, and trice. (But hells and trice are in WORDS(3500).)

358. (a) If a1 ...ar € R there’s a solution with vy, =+ = Ukqe, = 1.

(b) All clauses are satisfied, and the value of every literal has been unambiguously
forced. Furthermore exactly one vjq; is true for each j.

(c) If vg becomes false, D, loses the value a. If v, becomes true, all v, for a #a
become false; we're left with the support clauses for a relation on the variables # v.

(d) The current relation R’ has at least two elements in D,.

(e,f) The arguments in (a), (b), (c) remain valid.

Historical note: F. Rossi, C. J. Petrie, and V. Dhar [ECAI 9 (1990), 550-556]
described the “hidden variable” trick as part of the CSP folklore; U. Montanari had
alluded to it on page 105 of his paper of 1974.

360. Introduce secondary items wax2, wiyo, ..., Y221 for the excluded pairs. The
options are then ‘w woz2’, ‘w wiyoe’, ‘W wax2 wayYo’; ‘T Tozo Toz2', ‘T T1Y1 T1Y2’, ‘T
w22 T2y2’; ‘Y W1Yo W2Yo YozZo Yoz1', Y T1Y1 Y120 Y121, ‘Y T1Y2 T2y2 Y221; ‘2 ToZo YoZo
Yy120’, ‘Z Yoz1 Y121 Y221, ‘Z Woz2 Toz2'.

361. Now there are six primary items, {wz,wy, wz, vy, zz,yz}, while {w,z,y,z} are
secondary. There are 8 + 7 + 8 + 6 + 7 + 4 options, listing the “positive” tuples. For
example, the options for wz are ‘wz w:0 z:0’, ‘wx w:0 z:1’, ..., ‘wzr w:2 z:1’; the
options for yz are ‘yz y:0 z:2°) ‘yz y:1 2:2°, ‘yz y:2 z:0°, ‘yz y:2 2:2’. (By contrast,
answer 360 used the “negative” tuples that were expressly forbidden in (87). In this
instance, negative beats positive.)

362. (a) True. An inactive variable has been assigned the (unique) value in its domain.
(b) False. Any or all variables in a given problem might have a singleton domain.
(c) False. An empty domain is always weakly viable (indeed, viable), because Def-
inition V is satisfied vacuously. If a domain becomes empty while maintaining forward
consistency, we are justified in backtracking immediately; but that may be inconvenient.
Sometimes it’s best to wait for the next level of search to discover an empty domain.
(d) Even more false than (¢)! An active variable with empty domain cannot
appear in the same constraint as an active variable with nonempty domain.
(e) True, unless there are unary constraints — which must match the domains.
(f,g,h) True. The only constraint still involves two or more active variables.

January 13, 2024

parity

all-different

median of three

projections

Historical note

Rossi

Petrie

Dhar

hidden variable

Montanari

positive versus negative table constraints
negative versus positive table constraints

178 ANSWERS TO EXERCISES 7.2.2.3

(i,j) False. But would be true if D, were reduced to {2, 3}.

363. If the current partial solution of a coloring problem is FC but not DC, some active
binding (v,a) is unviable. Hence v is adjacent to a vertex w with D,, C {a}; and w is
active (by FC). So we’ll remove a from D, when we maintain FC after assigning w = a.

NTWLATT
P4

364. Placing a queen in some row or column reduces the number of
unattacked cells in another row or column by at most 3. Thus no
wipeout is possible until some domain has size < 3.

But five queens placed as shown leave rg with only two free
cells, allowing DC to forbid four potential placements. (Incidentally,
these five placements appear in 37 solutions of the full problem.) A

365. No; Peter Weigel has shown that exactly 8 -89 + 2.3 = 718 foursomes cannot
be completed. The three solutions with fourfold symmetry are obtained by placing a
queen in (row, col) = (1,2) or (3,7) or (7,8), then rotating by 90°, 180°, 270°.
368. Sometimes the case w = v is necessary. If, for example, Sc = {u,v} and
STAMP (u) > STAMP(c), the change to D, might have caused v to lose all support in c.
But we can introduce a new variable g, setting ¢ <— 0 at the beginning of step
D4, also setting g <— 1 at the beginning of D6 if STAMP(w) > STAMP(c). Then step D4
needs to do step D6 for w = v only if ¢ = 0 after all other choices of w € S. have been
tried. [See C. Lecoutre, Constraint Networks (2009), Algorithm 9.]

369. We use the following data structures for clauses ¢ and bindings /3:

BIND(c¢) is the binding for which clause c lists potential supports;

P0S(c) is the MEM location for the current support of BIND (c);

IN(B), where 8 = (v,a), is 1 if a is in v’s current domain, otherwise 0;
LAST(f) is the final clause ¢ such that MEM[P0OS(c)] = £;

PREV (¢) is the previous clause ¢’ such that MEM[POS(c')] = MEM[P0S(c)];
START (c) is the MEM location just preceding clause c.

A stack So, Si, ... holds bindings that will soon be removed from their current
domains.

H1. [Initialize.] Set LAST(8) < 0 and IN(3) < 1 for all bindings . Also set ¢ < [+
s < 0, so that the table of clauses, MEM, and the stack are initially empty. Then, for
each binding 8 = (v,a) and for each constraint R(v,w) that involves v, generate
a potential clause as follows: Let {b1,...,by} be the values of w such that ab; €
R(v,w). If k = |Dy|, do nothing (the relation doesn’t constrain). Otherwise if
k>0, set ¢ < c+1, BIND(¢) « 3, START (¢) <« I, MEM[I+j] < (w,b;) for 1 < j <
k, 1l < 1+ k, POS(c) < I, a + MEM[!], PREV(c) < LAST(a), and LAST(a) < c.
[See (89).] Otherwise if IN(3) =1, set IN(3) < 0, Ss < 3, s < s+ 1.

H2. [Prepare to loop.] Terminate the algorithm if s = 0 (because all bindings with
IN(B) = 1 are supported). Otherwise set s < s — 1, 8 < Ss, and ¢ < LAST(3).
(We need to find supports for bindings previously supported by .)

H3. [Done with loop?] If ¢ = 0, return to H2. Otherwise set ¢’ < PREV(c), 3 «
BIND(c), and let 3 = (w,b). Go to H6 if IN(3) = 0 (because we’ve already deleted
b from w’s domain and don’t need support for it). Otherwise set k <— P0S(c) — 1.

H4. [Done with ¢?] If k = START(c¢), go to H5. Otherwise set o < MEM[K]. If
IN(aw) = 0, set k < k — 1 and repeat this step. Otherwise set P0S(c) <+ k,
PREV(¢) LAST(a), LAST () < ¢, and go to H6.

January 13, 2024

wipeout

Weigel

fourfold symmetry
Lecoutre

7.2.2.3 ANSWERS TO EXERCISES 179

H5. [Remove binding §.] Set IN(8) ¢ 0 and remove b from the domain of w. If w’s
domain is now empty, terminate and report unsatisfiability. Otherwise set Ss < (3
and s < s+ 1.

H6. [Loop on c.] Set ¢ « ¢’ and return to step H3. |

370. Consider, for example, the 4-ary relation wryz € {0101, 1210, 2110}, where D,, =
D, =D, =D, ={0,1,2}. We can set up 12 dual Horn clauses analogous to (88):
T1Yozl = Wo, T2Y120 = W1, T1Y120 = W2; = To, WoYoz1 N W2Y120 = T1, W1Y120 = T2;
..; = Z2; here z.ypz. is a “compound” Boolean variable meaning z, A yp A zc.
Additional clauses such as Z, = TaUbZc, Up = TaPbZec, Zc = Talybze, complete the set.
The algorithm of exercise 369 is extended to allow “hyperbindings” 3 such as
{(z,a), (y,b), (#,¢)} as well as ordinary bindings, and to build the table of all necessary
clauses in the extension of step H1. In general, a k-ary constraint yields |D,| support
clauses whose left-hand sides involve (k — 1)-ary compound Booleans, for each v in
the scope of the relation. And there are k — 1 clauses for each (k — 1)-ary compound
Boolean, having that compound on the right and a simple Boolean on the left.

372. Each “variable” of P* is either a variable v of P or a constraint ¢ of P (sometimes
called a “hidden variable”). Each “constraint” of P~ is arelation between some ordinary
variable v and some hidden variable ¢ with v € Sc. (Thus the graph of constraints in P~
is bipartite; it represents the hypergraph whose hyperedges are P’s scopes S., just as the
bipartite Heawood graph represents the Fano hypergraph in 7—(57).) Each domain D,
is the same in P and P~; each domain D., is the set of ¢;’s ki-tuples.

Domain consistency is especially easy to understand when all constraints are bi-
nary, because a binary constraint can be represented as a Boolean matrix. Domain con-
sistency holds if and only if none of the Boolean matrices has an all-zero row or column.

Consider a 4-ary constraint such as ‘wzyz € {0101, 0122,1100, 1212, 2020, 2211}".
The Boolean matrix that relates this constraint to the ternary variable x is

0101 0122 1100 1212 2020 2211

0 0 0 0 0 1 0
1 1 1 1 0 0 0 .
2 0 0 0 1 0 1

Notice that each column of such a matrix contains exactly one 1. In general, if v € S,
and a € D,, the number of 1s in the row for v = a in the matrix that relates v to c is the
number of supports for v=a in ¢. An all-zero row is equivalent to having no support.

(The construction in this exercise provides an alternative solution to exercise 370.)

373. Let the variables of PP be the hidden variables of P, namely P’s constraints,
where we require the tuples of hidden variable ¢ to match the tuples of every other
hidden variable ¢’ wherever their scopes overlap. (There’s a constraint between c and ¢’
if and only if S. NS #0.) Yz
Suppose, for example, that P is the CSP with —_—
four binary variables {w, z,y, z} and the following two 011 101 110

ternary constraints: 001 1 0 O
wzy < 010 0 1 0
100 0 0 0

c=w+zr+y=1; =‘z+y+2=2".
Then P is domain consistent. But PP is not, because the matrix for the relation
between ¢ and ¢/, shown at the right, has an all-zero row (and an all-zero column).
References: The dual of a CSP was defined by R. Dechter and J. Pearl [Artificial
Intelligence 38 (1989), 353-366], who observed that many of the constraints between
hidden variables are often redundant because they're consequences of others. When

January 13, 2024

dual Horn clauses
“compound” Boolean variable
hyperbindings
support clauses
hidden variable
bipartite
hypergraph
Heawood graph
Fano hypergraph
Fano projective plan
binary constraint
Boolean matrix
supports

Dechter

historical remarks—
Pearl

180 ANSWERS TO EXERCISES 7.2.2.3

the unnecessary constraints are removed, we get what database theorists call a “join
graph.” Domain consistency of PP was called pairwise consistency by P. Janssen,
P. Jégou, B. Nouguier, and M.C. Vilarem [IEEE International Workshop on Tools
for Artificial Intelligence 1 (1989), 420-427]. F. Bacchus, X. Chen, P. van Beek, and
T. Walsh [Artificial Intelligence 140 (2002), 1-37] made a thorough study of local
consistencies in P* and PP.

374. The total size of all domains in (22), before reduction, is 4 - 26 = 104, compared
t04-14+6-5+3-8+5-5 = 83 in exercise 60. When reducing (22) to (91), 46
domain values are immediately ruled out by having no initial supports. (For example,
the Horn clause for be=< has an empty left-hand side.) Then the algorithm of exercise
370 makes 67 deductions (such as gs=< = fq=+) before finishing.

Filtering in the dual model goes much faster, in part because all constraints
are binary. After 48 domain values are immediately ruled out, only three deductions
need to be made by the Horn-core method of exercise 369. (For example, one of
them is e=--= = b=+-+.) The final domains are of size 1 for the interior junctions
{d,g,h,i,j,k,1,n,p}. In fact, forward consistency by itself gives excellent reduction.

Exterior junctions {a,q,r} of type V are left with domains of size 3; the others,
{b,c,e,f,m, o,s}, are left with 2-element domains. The actual line labels are repre-
sented only implicitly by the domains of this model.

377. Suppose the branch variable at the root is ab. One of the four branches is ‘ab = +’.
Since variable ab appears in the binary relation for junction a, FC reduces the domain
of ac to {>}; hence we’ll assign ac = > next. Oops: The ternary relation at junction c¢
(namely the relation on {ac,cd,cm} should now tell us that we’re in trouble; but FC
won’t be aware of any difficulty until either cd or cm has been assigned a value.
Another branch is ‘ab = <’. That one reduces the domain of ac to {+,>}. It should
get us into trouble at junction b; but no trouble will be sensed there until there’s an
assignment to either be or bd. (And other branches near the root fare no better.)

378. In this case the branch ‘ab = +’ changes D, to {+>} and D, to {+-+}, by FC.
Hence we’ll soon take the branch ‘a = +>’, which forces ac = >, which reduces D. to 0.
The branch ‘ab = <’ sets Dy < 0. The branch ‘ab = -’ soon forces ac = <,
be = -, ..., and the complete solution at the right of (23), all via FC. Finally, the
branch ‘ab = >’ and FC give the other three solutions, with minimal branching.

379. If we place a queen in a corner, say in cell (1,1), both of the free cells in row 3
are domain inconsistent with respect to column 3. If we place a queen near the corner,
say in cell (2, 2), the free cell in row 1 is domain inconsistent with respect to column 1.

[Singleton domain consistency was introduced by R. Debruyne and C. Bessiére in
IJCAI 15 (1997), 412-417; see also the implementation hints by C. Bessiere, S. Cardon,
R. Debruyne, and C. Lecoutre in Constraints 16 (2011), 25-53. It can be very useful
as a preprocessing step for difficult problems; but the cost of maintaining it during
search is usually too high. With Boolean domains this idea is called “falsifying failed
literals”; see also the SLUR algorithm of exercise 7.2.2.2-444]
380. We have jj' € R,y if and only if (i, ') = (4,) + (1, £2)k for some k (modulo 5).
For example, R24 = {12,15,21,23,32,34,43,45,51,54}. (These are the positions of
pairs of queens in complete solutions to the problem. Every complete solution is
equivalent to one of the two toroidal solutions; see exercise 7.2.2-12.)

[With 6 queens, path consistency is achieved after only one round of removals.
With 7 or more queens, the initial constraints are path consistent.]

January 13, 2024

database theorists
join graph

pairwise consistency
Janssen

Jégou

Nouguier

Vilarem

Bacchus

Chen

Beek

Walsh

forward consistency
Debruyne

Bessiere

Cardon

Lecoutre
preprocessing step
failed literals
SLUR algorithm
toroidal

7.2.2.3 ANSWERS TO EXERCISES 181

383. (a) Let g =1 —p. In Pass 1, ry; is examined if and only if r; = 0 for 0 < k < j,
hence with probability ¢’. So the expected total cost is E?;Ol Zj;ol ¢ =(1—q%)d/p.

Pass 2 examines r;; if and only if we have (i) r¢; = 0 for 0 < k < 3; (ii) rp =1
for some k < j; and (iii) either rio...74;—1) # 0...0 or rgp...7%; = 0...00, for
i < k < d. So the probability is ¢’(1 — ¢/)(1 — pg?)4~ *~1.

Summing this geometric series over 4, we find that the total expected cost of Pass 2
is (1—q%)d'/p— S, where S = E;l:ol (1—pq’)¥p is the expected number of unnecessary
probes made by the naive algorithm. [This analysis was first carried out by M. R. C.
van Dongen, A. B. Dieker, and A. Sapozhnikov, who also derived a complicated formula
for the variance. See Constraint Programming Letters 2 (2008), 55-77.]

(b) Do the inner loop only for values of j with sj = 0. Then, if that loop ends with
s; = 0, do another loop on j, but only for values of j with m;; = 0. (This algorithm
is due to M. R. C. van Dongen; see Fig. 7.3 in his Ph.D. thesis (Cork: National Univ.
of Ireland, 2002). The expected number of probes in Pass 1 remains the same; but
the expected number of column supports found on that pass is increased. No simple
formula is known for the expected number of probes in the subsequent Pass 2.)

[When d' = 2, the expected cost of this improved algorithm can be shown to
equal (1 4+ g)d + g%~ ' — ¢**!. And the expected cost when d’ = 3 turns out to be
A+g+a)d+q" 2 +2¢" " =L+ a+d") + > (1 -¢")]

(c) p=.01 p=.02 p=.03 p=.04 p=.05 p=.10 p=.50 p=.90
mean cost (naive) 12700 8700 6300 4900 4000 2000 400 220

mean cost (a) 8100 6000 4600 3700 3100 1700 390 210
mean cost (b) 7500 5200 3700 2800 2200 1100 200 110
dev (b) 310 300 280 260 200 130 18 3

384. Although that algorithm treats rows and columns in dramatically different ways,
its expected cost does appear to be symmetrical in d and d' (at least when d < 4 or
d' < 4). That’s nicely consistent with being optimum. Furthermore, the author has
proved optimality when d = 2, as well as when (d,d’) = (3,3) and (3,4).

Marc van Dongen observes that an optimum algorithm queries 7;; only when
either (i) both s; and s} are unknown, or (ii) one of them is known but not the other.
Every optimum algorithm can be assumed to make all of its type (i) queries first,
because (ii) followed by (i) is never better than (i) followed by (ii).

387. (a) Every z; has the value of some source, by induction on i. But =, doesn’t.

(b) Let R; be primary and z; be secondary for 1 < ¢ < n. Also let z;; be
secondary for 1 < <m and j € {0, 1,2}, together with 3m options ‘R; z;:j x;,; . Add
another primary item #, with three options ‘# zn:j x1; ... om,;’ for j € {0,1,2};
that takes care of the binary constraints. Finally, introduce 15(n —m) options ‘R; z;:a
Zj(i):b Tp(y:e’ for m < i < n and for all a,b,c € {0,1,2} with (a =bor a =¢).

(c) Define jj(i) and k(i) in (3) (") ... ("5}) = 2™ " (n—1)"="(n—2)"=" ways.

(d) These problems are tough for Algorithm 7.2.2.1C; for instance, the first
random example tried for m = 24 and n = 64 took 1.4 teramems. But it became much
more tractable, only 31 gigamems, when each item R; for m < ¢ < n was renamed
#R;, and the sharp preference heuristic of exercise 7.2.2.1-10 was used. (That trick also
polished off nine other random instances, with a median run time of 1.5 megamems.)

(e) To support z; = a in a binary constraint, set the other variable to (a+1) mod 3.
To support ; = a in a ternary constraint, set the other two variables to a.
But after z, < a, answer 369 will remove a from the domains of =1, z»,

January 13, 2024

geometric series

van Dongen

Dieker

Sapozhnikov

variance

van Dongen

author

van Dongen

sharp preference heuristic

182 ANSWERS TO EXERCISES 7.2.2.3

[This family of problems was introduced by J. Hwang and D. G. Mitchell, LNCS
3709 (2005), 343-357, who showed that with suitable choices of j(¢) and k(?) it can be
solved via backtracking only with an exponentially large search tree, if every node of
that tree is a d-way branch on the value of some variable (or on the options that can
cover an item), assuming that the algorithm prunes domains (or removes options) only
via forward consistency. They devised a Prover-Delayer game, as in Theorem 7.2.2.2R.

On the other hand, a polynomial-size search tree can be constructed with binary
branching, where every search tree node chooses either to include an option or not: For
each value a tentatively assigned to x,, try to include an option for R; that specifies ei-
ther x;(;y:a or Ty (;):a, where 7 is as small as possible. That option leads to an immediate
contradiction. So we can remove it, and continue until z,, = a is contradicted.

We can obviously generalize the chain CSP by allowing arbitrary ternary con-
straints R; for m < ¢ < n, perhaps different for each i. Many such generalizations are
likely to be instructive.]

388. (a) Let X; = [z; is a sink]. Then EX; = Pr(X; = 1) = Gmax(i,m)+1 - - - @n, Where
@ = Pr(i ¢ {j(1),k(}) = (57)/('5")- Hence EX; = (*=Cy™ 1) /("51); and Sy, =
Y EXi = 2(142m?/n?).

(b) Set d <~ n—m —1, ag,0,m < 1. Then for 1 <i<dand 0 <j <i,set

aijm — ("I £ aigm + (P = (PTG A0 a1 1m.

Then there are a; j,m cases in which z, is connected to exactly j of the variables {xm+1,
ey Tt} Conse_quently the number of cases in which z; is not connected to z, is
bmon — Ejd:O ("7J7?) @a,j,m; and the probability that a particular source is connected
t0 Tn 1S Pmn = 1 — bm,n/qm,n, Where gmn is defined in exercise 387(c). Finally,
Cmyn = MPm,n + Ein:m—H Din- ‘We have 024,64 ~ 8.4023 and 024,500 ~ 41.08.

(c) Let f(s,t) =0if s <0ort < 0 and f(s,t) = [s=0]if s+t = m; also
fs,t)y= ("I f(s=2,t+1)+ (s —1)tf(s—1,¢)+ (3) f(s,t — 1) when s +¢ > m. Then
f(s,t) is the number of cases with s + ¢ variables, m of which are sources, and ¢ sinks.
Hence ¢m,n = f(n —1,1)/¢m,n. We have caa 64 = 1.7522 X 1072,

Incidentally, cm,n = 0 for n < 2m — 1; and c¢m2m—1 = m!(m — D)*(m — 2)!/
((2m — 2)!(2m — 3)!) =32 - 16" m’x (1 + O(1/m)).)

389. Observing that Cr,,n < C2n < Cryyn +m, Svante Janson has proved that C,,n ~
2V/m3n; and he has also obtained formulas for the higher moments. [To appear.] On the
other hand, he conjectures that ¢, approaches (p + o(1))", for some constant p < 1
that has no simple form.

391. Let yx = (T(k+1) moan — Zx) modd for 0 <k < n. Then xo...2, 1 is a solution
if and only if (yo+ -+ y»—1) mod d = 0. Hence the number of solutions is d), (:k)

392. (a) We can assume that xo < 0 is assigned first; then z1 < 0 or 1; then z2 + x1
or z1+1; etc. The active domains after x; has been assigned will be D;j 11 = {xj,zj41};
D, ={0,...,d—1}for j+1 <k <n-—1; Dh_1 = {0,d — 1}. So the search tree size
will be Q(2"d). [In fact, Algorithm 7.2.2.1C looks at exactly 2"d — d + 1 nodes when
d > n, 2"d + 1 nodes when d = n, and 2"d + n® — 2n + 2 nodes when d = n — 1]

(b) After zo < 0 we’ll have Dy = {0} for 0 < k < n, if d > n; D = {0,k}, if
d=mn;and {0,k —1,k} for 1 <k <n—1,if d =n—1. The latter case is the most
interesting: After setting z; = j—1, we’ll have D, = {k—1} for j < k < n. So there will
be O(n?d) nodes altogether. [In fact, Algorithm S looks at exactly (n + 1)d + n nodes
when d > n; 2n® + 2n nodes when d = n; and (n” + 7n —2)d/2 nodes when d = n — 1.]

January 13, 2024

Hwang

Mitchell
backtracking
exponentially large
d-way branch
forward consistency
Prover—Delayer game
Delayer

binary branching
Janson

7.2.2.3 ANSWERS TO EXERCISES 183

400. There are exactly d ways to insert ‘n’ into such a permutation of {1,...,n — 1},
namely at the beginning or after one of {n —1,n —2,...,n — d+ 1}. So the answer
is d!'d"~¢, by induction. [The number of permutations with exactly k instances of
pj+1 > p;j +d was investigated by J. Riordan in the final chapter of An Introduction to
Combinatorial Analysis (1958), thereby generalizing the Eulerian numbers. See OEIS
A120434 for the case d = 2.]

401. p; = nif and only if j > 1 is minimum with j ¢ S. Remove p; ...p; and recurse.

[Richard Stanley, in Enumerative Combinatorics 1, second edition (2012), exercise
1.114(b), discovered another interesting family of permutations with this uniqueness
property, namely those pi ...p, such that {p1,...,pr} is an interval, for 1 < k < n;
a typical example for n = 7 is 4325617. Such permutations are readily generated via
backtracking, but not so easy to set up as a CSP; the condition is that if i < j < k we
don’t have p; < pr < pj or p; < pr < pi, In other words, they’re (132, 312)-avoiding’.
Their left-to-right reversals, the (213, 231)-avoiding permutations, are precisely those
that produce degenerate binary search trees; see exercise 6.2.2-5(b).]

402. True. In fact, the set S corresponding to the inverse is S = {n —j | j € S}.

403. Let p; and g; be primary items for 1 < j < n; also introduce (n — 1)(n — 2)
secondary items j.k for 1 < j <n and 1 <k < m = n — 1, which correspond to items
yr of the pairwise encoding trick that enforces pj+1 < p; +1. Foreach 1 < jk < n
there’s an option containing p;, qx, and perhaps other items: If j > 1 and k > 2, set
t < k — 2; then while ¢t > 0 include (j—1).t and set t < t & (¢t — 1). (This contributes
ag—2.) If j < mnand k < m, set t < —k; then while ¢t > —m include j.(—t) and set
t < t & (t —1). (This contributes S;_1.) For example, the “diagonal” options when
n=>5are ‘pr q1 1.1 1.2°, ‘pa g2 2.2°, ‘p3 q3 2.1 3.3°, ‘pa qa 3.2°, ‘p5s g5 4.3 4.2".

404. We can also require gr+1 < qr + 1: Introduce new secondary items j,k for 1 <
j <nandl <k <m. Whenever answer 403 put r.s in the option for p; and g, also
put r,s in the option for pr and g;. (Thus one option for n =5 is ‘ps g3 1.1 2.3 3,2.)

410. 2443 2177 5144 2141 2143 2144
2433 2772 5544 2442 2443 2644
1422 ; 1372 ;. 1552 ; 1412 ; 1413 ; 1662
3331 3377 3332 3331 3331 6662
(1of3) (10f32) (1of3) (lofl) (1of12) (1 of 24)

[Historical note: Fillomino was invented by Waku Sakinaga; see Puzzle Communication
Nikoli 47 (February 1994).]

411. If ¢, = tn(1) 4+ tn(2) + --- is the desired number, where ¢,(m) is the num-
ber of patterns with m in the upper right corner, we have the recurrences t,(m) =
an(m,m) + 2" by (m,mym/,m'); an(l,m) = (I < 22 0: 1 > 2n? 0: | = 2n? 1:
1=22t,_1—2t,_1(m)+an_1(m,m): an_1(l—2,m)+2 Ef:,;ll bu_1(l—2,m;m',m'));
bo(l,m;l!,m') = (m=m'?70: 1 <170:0 <120:L+10' >2n? 0: 1 +10' =2n? 1
I =17ty — toa(m) — toi(m') + bp_y(m,m;m’,m'): 1 < I'? a1 (I' — 1,m') +
Zf:,f:lfll bu—i(m',m" U=, m")[m” #m]: b, (I',m';1,m)). Here a, (I, m) is the number
of length n prefixes of 2 x co fillomino patterns that end with two m’s at the right, where
those m’s are part of an [-omino; b, (I, m;l',m’) is similar, but ending with m # m' at
the right, respectively parts of an [-omino and an I'-omino. Hence (t1,t2,...,t145) = (1,
5, 33, 138, 715, 3524, ..., 51376 52565 68766 30928 69800 54061 86098 15559 89493
34784 20112 85272 12992 22603 93822 34860 83493 24519 70607 50508). (The ratio

tn+1/tn converges rapidly to 4.91867 12250 37424 13083 06703 91572 28440)

January 13, 2024

Riordan

Eulerian numbers
OEIS

Stanley

interval
backtracking
modeling as CSP
patterns in permutations
(132, 312)—av0iding
reversals

(213, 231)—avoiding
degenerate

binary search trees
Historical note
Sakinaga
recurrences

184 ANSWERS TO EXERCISES 7.2.2.3

412. Suppose the given shape S has IV cells. There are N primary items ¢j, one for
each cell. (If S is an m x n grid, for instance, we have N = mn and 0 < i < m,
0 < j < n.) A potential d-omino is a set P C S of rookwise connected cells for which
every ij € P is either blank or labeled d, but not adjacent to any cell ¢ P that’s
labeled d. (All such P can be found by using an interesting variant of the algorithm
in exercise 7.2.2-75; see, for example, the author’s online program FILLOMINO-DLX.)
There are secondary items eq, one for each edge between two unlabeled cells and each
possible d. And there’s one option for each potential d-omino P, containing (i) all ¢j € P
and (ii) all eq for which e is an edge between a blank cell € P and a blank cell ¢ P.

For example, the puzzle of exercise 410 has m = n = 4, N = 16, and exactly (8, 5,
11, 11) potential (1, 2, 3, 4)-ominoes, hence 35 options. Two of the potential tetromino
options are ‘02 03 12 13 h224 111247 and ‘11 21 22 32 h224 V124 1)334’, where hij and Vij
denote the horizontal and vertical edges that connect (i—1)j and i(j—1) with ¢j.

How large can d be? Suppose ¢4 of the given cells are labeled d, for a total of
C=c+ca+ -+ cs “clues,” where s is the maximum label. Then every potential
d-omino has d < max(N — C,s). And there’s a sharper bound max(N — C%, s5), where
ct = >oien c;' and c;' is a lower bound on the number of d labels that are known to
exist. For example, we may take ¢ = ¢;; ¢f = 2(c, — the number of pairs of adjacent
2s); and for d > 3, ¢ = d[cq/d] + [ca mod d=0 and the ds aren’t disjoint d-ominoes].

413. 335555666 6244221244 1334141224 2244446633
221221 314159266 6244888244 2344144434 5153366313
leesin 144999936 6688866688 2143122334 5553616345
610332 555899939 2684446888 1223i33i14 4444646345

(a) ecceee ; (b) 535897932 ; (c) 2684226882 | (d)21i3i3ii22_ (e) 5566643145
933010 338877773 6448446482 2iiiiii4dd’ 3565543345
213ee1 685772643 6248441448 3444413324 3552542215
192192 338462643 6248862248 3322113421 3442513334

344466644 6688666688 1444114433 2344544414
6882268888 3334224223 2332242244

[Puzzle (c), by Chris Green, was posted at puzzleparade.blogspot.com (19 July 2013),
#60; puzzle (d), which totally defeats the construction in answer 412 because it requires
a humongous number of options, was posted at gmpuzzles.com by Tapio Saarinen
(7 October 2014); puzzle (e) was posted on Twitter by @kobouzul7 (31 December 2022).

414. We save a factor of roughly 8 by removing symmetry. Each potential puzzle with
k clues leads to k potential puzzles with one fewer clue, until we reach invalid cases that
are matched by more than one of the given 59951. Potential puzzles without redundan-
cies must still be screened to ensure that they can’t be solved with labels greater than 5.

All told we obtain 938484 nonisomorphic minimal 4 x 4 puzzles whose clues don’t
exceed b, of which (937236, 1240, 8, 0) have (1, 2, 4, 8)-fold symmetry. Exactly (1124,

56253, 374643, 377611, 104436, 20410, 3520, 430, 57) of them have (4, 5, ..., 12) clues.
4uuu 4uuu 4uuu 4uuu wuool Lowd Lubo 1033 Llul U342 Lu2u Lu4l
vou4 Lwuud wou4 wuud 0150 Lu3u Wbub Bb5uLL 204 4u4u 3uul 240y
1w luuue 2uuu 200w wbly L3uu 5ubu L5544 L5L4 L2044 Luud Lw3uu
vuud wuu?2 wouw?2 wuuwd luow 3430 5ub5L 5544 5,54 4u4u Lw2uu 3uu?

G)) @) (@v) (v) (vi) (vi)) (viii) (ix) (x) (xi) (i)

Fig. A-16. A gallery of interesting 4 x 4 fillomino puzzles.

Puzzles (i)—(iv) in Fig. A-16, which have just 4 clues each, make a nice sequence
by which we can introduce newbies to the wonders of fillomino. Omne of the cutest

January 13, 2024

author

downloadable programs

Green
Saarinen
Q@kobouzul7

symmetry

7.2.2.3 ANSWERS TO EXERCISES 185

examples with 4-fold symmetry is puzzle (v). And (vi) and (vii) are among the 15 with parity
“pure” clues (all the same). Puzzle (viii) is interesting not because it’s hard to solve, checkerboard
. domain consistency
but because all twelve of its clues are necessary. Similarly, none of the eight clues in (ix) Beluhov
and (x), which appear in the cells of odd parity like a checkerboard, are redundant. The unique
most difficult 4 x 4 fillomino puzzles, rated by the search tree size (16) when full domain spanning tree
X A . N X N =) centroid of a free tree
consistency is maintained, are probably those in (xi) and (xii). (See Appendix E.) hexomino
415. (Solution by N. Beluhov.) Let P be a maximal rookwise connected subset of the]1\346;523;'
solution, having no labels < s. Every element of P must have the same label d = |P]|, monominoes
because the solution is unique. Let T be a spanning tree of P. Every edge u — v X Pf“tcfminoes
L. . . . entominoes
of T partitions T', hence P, into two polyominoes P, U P, when that edge is removed Eeentetmrorrlninoes
from T, where u € P, and v € P,. By uniqueness, we cannot have s < |P,| < |Py|. tetrominoes
Case 1, T has one centroid, v. When T is rooted at v, let v’s children be u;, :’:Ziﬁ;’:;moes
.., Uk, with corresponding subtree sizes s;1 > --- > s;. Then s1 < s2 +--- + s by parity
Eq. 2.3.4.4-(7). Hence we have |P,| = s2+- - -+sk+1 > | Py, | = s1 in the decomposition Aztec rectangles
P =P, UP,. It follows that s; < s; and d < ks + 1 < 4s + 1. rotating 45

Case 2, T has two centroids, v — v. We may suppose that v = i(j—1) and
v = ij, coordinatewise. If T also contains both of the edges v’ = (i—1)(j—1) — u
and v = (i—1)j — v (or, similarly, if T contains both ' = (i+1)(j—1) — = and
v’ = (i+1)j —v), we get a decomposition P = P,: U P, U P,, by deleting those edges,
where |P,/| < sand |P,/| < s. On the other hand, if in the original tree T we delete only
edge u — v and replace it with edge v’ — ', we get a new tree for which «' and v’ are
the two centroids, as well as a new polyomino P,/,, = P, UP,,. By symmetry between
u—wv and u' — ', therefore, d = |Pyy| + |Pyryr| < 2|Pyryr| < 2|Pyr| + 2|Pyr| < 4s.

Finally, if T doesn’t contain such u' and v’, we can regard u and v as co-roots
of T'; and their subtrees (at most four total) must each have size < s. Hence d < 45+ 2.

This proof shows that we can obtain d = 4s + 2 for s = 1 only when the P is the
“italic X hexomino” EEB} That’s impossible if the overall shape is a rectangular grid,;
but is a valid puzzle in a grid minus two corners, and d = 5 is possible in a 3 x 3 grid.

[]
14,,0u1050034
43212,,54,2,

I_H_H_ISI_II_H_ISI_I31_I

l_ll_ll_lll_lll_ll_l

ulu2,20y
Here’s s = 2: 1uuuuuul 3 vu4uuuubuu2y
Lu2u2uly , 1555555, 40l
sululyuy and here’s s > 4, shown for s =5: LuuuuLLLLLLL .
1,uu5u55555

u2uubuuuuduu
ul3ubuuuduuu
u2,45,,21234
43uu5uluuuél

416. (Solution by N. Beluhov and P. Mebane.) When m = 1 they are ., and
1°0°11,721 0 0101° forr>1,0<a,¢<1,2<b; <4, (1-a)bs <2, (1—¢c)b, < 2.

for s = 3, see exercise 413(a);

When m = 2 they’re afB1... 5807y for r >0, a,v € {E’&Nlil}’ Bi € {El‘i', Iili}

Now suppose 3 < m < n. By answer 415 with s = 1, this problem is equivalent
to tiling an m X n rectangle with monominoes and X pentominoes, together with tee
tetrominoes at the edges and bent trominoes at the corners.

Notice that the 1s all occur in cells 45 with the same parity (i+5) mod 2. Therefore
we can transform the m x n grid into two “Aztec rectangles,” rotating 45° and mapping
iy (m—i+j+6,i+j—08)/2for 1 <i<m,1<j<n andd € {0,1}. If we put
a border around the Aztec rectangles by appending m + n + 2 images of ij for ¢ = 0

January 13, 2024

186 ANSWERS TO EXERCISES

7.2.2.3

or ¢t =m+1 or j =0 or j =n+l, and if we fill those border cells with 1s, we get an
equivalent problem that’s easy to visualize: (i) There must be no 2x2 array of 1s; (ii) no
two s can be kingwise adjacent. For example, if m =4, n =7, and § = 0 we have

1112 13 14 15 16 17
21 22 23 24 25 26 27|
31 32 33 34 35 36 37|
|41 42 43 44 45 46 47|

matrix

4x7

00|11 22 33 44|55

02|13 24 35 46|57

04[15 26 3748

08
even Aztec
4x7

07 18

odd Aztec
4x7

1

1ol oo
Lououlu
11t
Ll uou

C ecCcC

even Aztec even Aztec even matrix
4 x 7 problem 4 x 7 solution 4 x 7 solution

The two Aztec rectangles are isomorphic when mn is even. The solutions when

m is even and § = 0 are the first n

of By, when nmod (m+1) € {m—2,

columns of A, when nmod (m+1) € {1, m}, and
m}, where A,, and By, are infinite matrices

Ag

cccoecc

L om,C =D o~

1
1

ccoe,cococ

1
1 a1y
1

L omrC =D o~

1
1
1

cccoecoc

[

1yt

L mC omC o~

ccoe,cococ

1

1

ol t

£ omE o= om

[
[=2]

C ~ccc o~

1
1

CcoecC o=
L oe,cC mCoC
L oe,cC mCoC
CcoecC o=
CcoecC o=cC
L oeC mCoC
~CococC o~
N
EromcE o=

1o uou i

whose columns have period length 2m + 2, illustrated here for m = 6.

Solutions exist for odd m only when n is odd and 6 = 0. Two easy constructions
always work: The even-numbered rows are ,1,1,1,1,1..., and the odd-numbered
rows alternate between 1, ,u1uuuluuul. .. and uuluuuluuuluy. .. . Besides those
two, (n—1)/2 additional solutions also arise when m = n is odd, such as the following:

N
[N
ckrcccooereEocC

[P U
L mE mCwmE mccCocE
EcmCcE omE o mE ~
L mc mCwmcCcCcCmE
mEC o oemcC o mC omCoE
CmEC mCcCCRE RE
N N

uou 1

WC RCCCrRECEC R

Cc -cfcc et mEoC

E mE mc omcCoCoC omE

mEEC o omC o mEomE ok

E mC mcoccC oecCoEoC

1
u
1
1
1
1

[

cmcccoRrocooco RE

1

mECccooRrCDoeE

N

1

CmCcCCRrRECRBE RE

CceCwmrCcCCRETCE

mEfcfcfecC mcccE o~

CREC RD RE R
ccerccoocooReC
N
EmE omC omE ok
mEc ot omcocEoE
EmEc omc omE o
mE mrfococComE

“C e,CCCrccCEC m

1 1
u u
u 1
1 1
1 1
1 u
1 1

E mEC mcoCoC omC omE
Ec omcC mC mC omEC
EmcccoemcCocoE omcC
M E mC omC omC omE e
[-
L mC mrCcCCRE RE
P N
Lt wcCwrccCcCrmECoC
CmCCCrRCRE rEC
CcCce,CCCRERE
FC RO RC RD rCEC
EmEcccomcEcocoE omE
N R
Ecemccc et omE
N L
N N
mEC o omCECoEomE ok

1
u
1
1
1

WL mC mCCCrRECEC
I
ccerCrC RrDCC R
L N

1uu U 1w

417. Given a polyomino

its area h = h(P).

vertical line segments that it has. (A 23-omino and its halo
are pictured.) Furthermore, N. Beluhov and S. Gerdjikov

P

with d = d(P) cells, consider the path that goes through
the centers of all cells that lie just outside of P’s perimeter (its outer boundary). The
region between this path and the perimeter is called P’s “halo,” and we shall call
The formula h = (p — v)/2 is not difficult to prove, where p
is the perimeter’s length and v is the number of maximal

[Kozépiskolai Matematikai és Fizikai Lapok [K0MaL] (3) h = 3611

70,7 (October 2020), 419, problem A.783] have shown that

h < t/2 implies d < by = [(t* + 4)/8]. This bound is in
fact sharp for all ¢ > 4, with the maximum d attained by a
[t/2] x [t/2] Aztec rectangle with § = 0 (see exercise 416).

Polyominoes without common edges have disjoint halos. Therefore if an n x n
fillomino pattern &, contains k d-ominoes, we must have k(d + hq) < n? + O(n),
where hy = [v/8d —47/2 is the smallest possible halo area of a d-omino. Consequently
1/n), and we have dq < d/(d+ha). These upper bounds are:

#4(P,) /0 < d/(d+hg)+O
3

5

d=1

_d
dthg

NI= DN

NI

1

January 13, 2024

=

4

4
7

wlot Ot

(=2}

-
M

-
©

|\1\1 [N

-
=

8

2
3

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2

3

20 11 12 13 28 30 8 17 3 38 40 42 22 23 24 25

29 16 17 18 39 41 11 23 4 51 53 55 29 30 31 32

kingwise adjacent
halo

Beluhov
Gerdjikov

Aztec rectangle
Toroidal

7.2.2.3 ANSWERS TO EXERCISES 187

Toroidal constructions (with appropriate offsets) give lower bounds for small d: Stappers
322 144 Demaine
15 122 331 4144 199 bbbl Friedman
(d=1) 555; (d=2) 244; (d=3) ;0 (d=4) ; (d=9) 9999922; (d=11) bbbbb333; Aztec rectangles
151 244 322 4413 2299 bbbl biaxial
331 1433 axial
..... mmmmm2 Break symmetry
cecel gggl 333332 R unique
. 888885 | jiji2 . Kurchan
(d=14) eeeee:4444, (d=16) ggggg5555 (d=19) 333351 ;o (d=22) m.mm.mm; X gecoutrek
eeeel TV TR mmmm zymane
1 55555
gee 3133 mmmm?7 7777 tuples

ruler function

(These constructions for d € {14, 19,22} are due to Filip Stappers, and Erik Demaine
contributed d = 3. See https://erich-friedman.github.io/mathmagic/0316.html
for generalizations.) The efficient packing of Aztec rectangles and their halos also gives
us the lower bounds 04 > d/(bak—1 + k) when 1 < bop_o < d < bag—_1; dq > d/(bor + k)
when bar—1 < d < bay; these bounds are in fact optimum when d = by,. So we have
the following partial results:

d=1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25
§,>23 4 1L 8 5 3 7 2 9 2 11 2 13 7 5 1617 3 19 5 3 22 23 3 25
d—8921585123143163181072324427743132432

Are these the true values of §,4, or can some of them be increased?

418. (a) 9; 4; 7. (See exercise 7.2.2.1-386. Adding a domino to a 2 X 3 hexomino gives
(0,1,1,1,4) octominoes with respectively (180°, biaxial, axial, diagonal, no) symmetry;
adding two nonadjacent monominoes gives (2,1,3,0,7).)

(b) Using answer 7.2.2.1-266, piece &7 is, for example, 0[1-4] 1[0-3].
Break symmetry by restricting piece &, say, to 1/8 of its options. Among the
(8 - 16928) packings, connectedness is obtained uniquely(!) as shown. [This
pleasant puzzle was introduced by R. Kurchan in 2022.]

420. (a) That suggestion would make the current stamp equal to (1, 2, 1, 2, 3, 2, 1, 2,
3,2,3,2,1, 0) when o in Fig. 117 has the respective values (1, 2, ..., 14). Therefore
entries such as ‘}’ would improperly be omitted from the trail in lines 11 and 16. And
the omission of ‘¥’ on line 29 would give the incorrect value y = 4 on line 30.

(b) If we associate a fresh value of o to each node, the “correct” current stamps
corresponding to (1, ..., 14) are then (1, 2,1, 3,4, 3,1, 5,6, 5, 7, 5, 1, 0). To obtain
this behavior, place both x and z' on the trail when x changes, so that both z and
STAMP (z) are restored when backtracking. Backtracking should also restore o to its
previous state. For example, the trail at line 06 would be ‘|0 07,”0 0",’0 l, 1‘1,’1’. At line 29
it would be ‘|, 7 oo [5 1" 51 |7 5% - (That’s 1+3+3+1+3+3+1+3 =18 entries
instead of 1+2+2+2+24+14+2+2+2+ 142 =19; not a huge win in this case.)
421. This property is invariant because it is true initially and unchanged by deletion.
[C. Lecoutre and R. Szymanek used it when iterating over all tuples of a relation that
belong to the current domains; see LNCS 4204 (2006), 284-298.]

423. (a) BITS(v) = 2¢—1. (b) NEXT,(a) = a+1 and IN,[a] = 1 and PREV,(a + 1) = a,
for 0 < a < d; NEXT,(d) = IN,[d] = 0; PREV,(0) =d. (c) DOM,[k] = IDOM,[k] = k, for
0 <k<d;SIZE(v) =d.

424. (a) p(BITS(v) + 2%). (b) NEXT(d). (c) Initialize MIN(v) to 0. If deleting a =
MIN(v) in (110), also do this: Set ¢ <— MIN(v) + 1, MIN(v) < d. For 0 < k < SIZE(v),
if DOM, [k] < MIN(v), set MIN(v) < DOM,[k], and break out of this loop if MIN(v) = t.

425. True. (See Eq. 4.1-(5).)

January 13, 2024

188 ANSWERS TO EXERCISES 7.2.2.3

426. This algorithm uses an approach similar to Quicksort (Algorithm 5.2.2Q) to Quicksort
exchange elements of D that are out of place. It doesn’t change b, when b; should trail ()

. X bitwise OR
have become zero according to (111), because such words by, will never be fetched. The bitwise AND
operation “trail(z)” means “push the pair (address of x, value of) onto the trail.” residual supports

ildcards
R1. [Initialize.] Set i <0, s < 8, j < s — 1. ;VDD
Verhaeghe

R2. [Done?] (At this point all cases k for k < ¢ and k > j are done.) If ¢ > j, go to RT.

R3. [Try k =DI[:].] Set k < D[] and = < b, & b},. If z = 0, go to R4. Otherwise, if
x # by, trail(b) and set by < x. Set i < 7+ 1 and return to R2.

R4. [Done?] (We know that bp;7 should be zero.) If i = j, go to R7.

R5. [Try k =DI[j1.] Set k < D[j] and = < b, &b},. If z = 0, set j + j — 1 and return
to R4. Otherwise, if © # by, trail(by) and set by « .

R6. [Swap.] Set D[i] <» D[j1, i< i+ 1, j < j — 1, and return to R2.
RY7. [Terminate.] If S # 4, trail(S) and set S < 4. 1|

427. Let the tuples of R be 73 for 0 < i <t. Andfor 1 <5<k, 0<a<d,letr[jal
be the bitset whose ith bit is [v; =a in 7;]. (Thus, if R is the relation (78), we can let
(10, ..., 75) = (000, 001, 010, 012, 020, 121, 211), with ¢ = 7; then r[L,0] = 1111100,
r[1, 1] = 0000010, r[1,2] = 0000001, ..., r[3,1] = 0100011, r[3, 2] = 0001000.)

First we need to remove invalid tuples from the current R. For each j with
0SIZE; # SIZE;, the values DOM;[k] for SIZE; < k < OSIZE; have been deleted
from D; since R’s last propagation. So we intersect b with b', where b’ is either
(i) ~OR{r[j,DOM;[k]] | SIZE; < k < 0SIZE;} or (ii) OR{r[j,DOM;[k]] | 0 < k < SIZE;};
use (i) if 0SIZE; — SIZE; < SIZE;, otherwise use (ii). This bitwise OR is computed by
looking only at the S words of r[j, a] whose indices appear in the first S locations of D.

Then we need to filter the domains. For each j with SIZE; > 1, and each a =
DOM; [k] for 0 < k < SIZE;, we remove a from Dj if (v;,a) has no current support in R.
That’s easily tested by running through the nonzero words of b, using the first S entries
of D, and ANDing them with the words of r[j, a], until we find a nonzero word (or not).

The filtering operation goes faster if we keep a table of residual supports s[j, a],
where s[j, a] is the index of the word where a support was previously found. A loop
through b is needed ounly if word s[j, a] of b A r[j, a] is zero.

If filtering makes a domain empty, we backtrack (having found a contradiction).

[Compact tables can be made considerably more compact by extending these
algorithms to allow such things as tuples with wildcards (e.g., 01%%2x) or even allowing
ZDD-like specifications. For a survey of these developments, see the Ph.D. thesis of
Hélene Verhaeghe (University of Louvain, 2021), viii + 169 pages.]

430. (a) t=012 3456 7 8 91011121314151617 181920 21 22 23 24 25 26 27 28 29

b=012101232123434543232123234321
ste=000001101122024042232122232321

(b) Initially po < 0, go < oo, 7 <= 0. For t =0, 1, ..., do this: Set k < r and,
while I; < p or Iy > qi, set k < k — 1; then s; < pr. If l;41 < I; (a backward step),
update the intervals as follows: If [;—1 < I; (a “valley”), first set r < r+1 and g, < l¢;
then set p, < l;; then if p,_1 = p,, set r < r — 1 and, if ¢.+1 > ¢, also set ¢, < qr+1.

For example, after finding s» = 0 in (a), the current intervals are updated to
[0..00], [1..2], [3..3] because t = 7 is a valley at level 3. They’re next updated to
[0..00], [1..2], [2..3]. When eventually ¢t = 25 they’re [0..00], [1..2], [2..5], [3..3].

(c) The shortest such sequence goes from 0 down to 8, then up to 1, down to 6,
up to 3, down to 5, up to 4, down to 15, up to 9, down to 12, up to 10, down to 14, up

valley

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 189

to 13 at time 8 +7+5+3+---+1=53=23"_,(gj —p; +1) +pr — 1. (In general

the shortest goes from 0 down to g1, then up to p1 —1, ..., down to g, up to p, — 1.)
(d) t=0123456 7 8 91011121314151617 18192021 2223 24 25 26 27 28 29
) lb=0123454560567678787878787654321
elther{s,g:OOOOO0050560670787878787650000
Itb=01234565676787878787878765432.1
Or{s,g:OO0000006067078787878787600000
~ 1

(e) 389533569/9694845 ~ 40.2. [In general, if we consider X = > 7" !5, over
all (Z"”f)/(m + 1) level sequences that have m forward steps and m backward steps,
empirical results for small m suggest that max X =~ .54m?.]

(f) Empirically, the average of I; — s; for m = 10° is only about 6.8, although
the standard deviation turns out to be about 52; and the empirical average value
of r at step t is, incidentally, 441 £ 200. By exercise 2.3.4.5-5, the average of I; is
exactly ((m + 1)4™ — (2m + 1)(>7))/(2m(>")) = 1y/mm + O(1); this is ~ 885 when
m = 1000000. So backmarking can be expected to save considerable recomputation.
[Can the asymptotics of) (l; — s¢) and) 7 as m — co be determined analytically?]

(g) Initially Mj;, = 0 for all j and a. We let a; = 0 before z; is assigned.

G1. [Begin step t.] Set j < I; +1 and a < a;. (We want to assign a new value to z;.)

G2. [Advance a.] Set a < a + 1. Go to GT7 if a > d;. Otherwise repeat this step if
Mjq < s¢. (We've already seen that x; = a isn’t consistent with the currently
assigned values {z; = a; | 1 <i < Mjq}.)

G3. [Begin further tests.] Set k < Mj,.

G4. [Check relations with .| If (a1, ..., axr,a) doesn’t satisfy all constraints between
(x1,...,zr) and x; that involve zy, set Mj, < k and return to G2. (If k = 0, we
simply test the unary constraint on z;.)

G5. [Loop on k.] If k < ¢, set k < k + 1 and return to G4.

G6. [Finish forward step.] Set Mjq < j, aj < a, lg41 < I + 1; step ¢ is done.

G7. [Finish backward step.] Set a; < 0 and ls41 < I — 1; step ¢ is done. |

(Here s; is evaluated as in (b). Of course the values of I; and s; need not be stored in

memory. This technique was introduced by J. Gaschnig for binary constraints [IJCAI

5 (1977), 457], and extended to (k + 1)-ary constraints by R. Dechter in §5.2.2 of her

book Counstraint Processing (2003).)

434. It’s the color of the item in NODE[x], but irrelevant in a spacer node.

435. Node z + 6. (The former nodes 1 to 5 were doubly linked list heads.)

436. True, if x isn’t a spacer node.

437. False; unused secondary items will still be active. (The author experimented with
a version of Algorithm C that keeps primary and secondary items segregated within
the ITEM array, but found that the extra complications were hardly ever helpful.)
439. (See further comments in the answer to exercise 7.2.2.1-8, which is similar.)

I1. [Read the first line.] Set s - —1, « < i <= 0. Then, for each item name « on the
first line, set ¢ < i+ 1, SIZE(44) < 0, NAME(44) < «. If o names the first secondary
item, also set s < i. (As in the text, SIZE(¢) = SET[¢t — 11, POS(¢) = SET[t — 2],
and NAME(t) occupies SET[t — 4] and SET[¢t — 3]. We’re temporarily using only
four slots of SET for each item.) At the end, set ACTIVE <« 4, ITM(0) < O.

I2. [Read an option.] Go to I3 if no input remains. Otherwise let the next line of input
contain the distinct item names a1, ..., ax, with respective colors c1, . .., ¢y (where

January 13, 2024

Catalan numbers

unary constraint

Gaschnig

IJCAI: Proc Int Joint Conf on AI
Dechter

color

list heads

secondary items

author

ITEM

190 ANSWERS TO EXERCISES 7.2.2.3

¢;j = 0 if j has no color). Complain if a primary item is colored, or if all items are
secondary. Do the following for 1 < j < k: Find the index i; for which NAME (4¢;) =
a;j, using an algorithm from Chapter 6. Set ¢ < SIZE(4i;), SIZE(4i;) + t + 1,
ITM(z + j) ¢ 4;, LOC(x + j) < t, CLR(z + j) < ¢;. Finally, adjust the spacers by
setting LOC(x) <k, x <~z + k + 1, ITM(z) < —k. Repeat step 12.

I3. [Initialize ITEM.] Set k < 0, j < 4. While k < ACTIVE, set ITEM[k] < j, k < k+1,
j < j+4+SIZE(4k). If s < 0, set SECOND + j and s < ACTIVE.

I4. [Expand SET.] While k& > 0, do the following: Set j <— ITEM[k — 1] and SIZE(j) «
SIZE(4k), POS(j) < k — 1, NAME(j) < NAME(4k); if SIZE(j) = 0 and k < s, termi-
nate (primary ITEM[k — 1] has no options); if k = s set SECOND <— j. Set k < k—1.

I5. [Adjust NODE.] For 2’ =1, 2, ..., x — 1, do the following if ITM(z') > 0: Set i <
ITEM[ITM(z') — 11, j < i+ LOC(z’), ITM(z') «+ i, LOC(z') « j, SET[j]1 < z'. 1|

440. Set 6 < oo. For 0 < k < ACTIVE, do the following steps if ITEM[k] < SECOND:
Set A < SIZE(ITEM[K]); if A = 6 and ITEM[kK] < i, set ¢ < ITEM[K]; if A < 6, set
i « ITEM[K], 6 <)\, and terminate the loop if A = 1. (Early termination violates
the statement of the exercise, but we do it anyway because tiebreaking isn’t important
when 6 = 1; the remaining option for i is forced.) Afterwards, go to C9 if § = oco.
(Notice that € will never be zero, although it could be zero in exercise 7.2.2.1-9.)

441. i = 23 (meaning x) and ¢ = B will leave q with no options.

442. Item 11 (q) is selected in step C2, deactivated in step C3, and hidden with
OACTIVE = ACTIVE = 4 in step C4. (Thus the options containing q, represented by
nodes 2 = SET[11] and 14 = SET[12], leave the option lists for items 23 = ITM(3),
31 = ITM(4),4 = ITM(1), 23 = ITM(15).) Step C5 sets TRAIL[0] < (4,2), TRAIL[1] «+
(31,2), TRAIL[2] « (17,2), TRAIL[3] « (23,2), and y1 < t < 4. Step C6 tries option
xo + 2, deactivating items 23, 31, 4. Then C7, with OACTIVE = 4 and ACTIVE = 1, hides
(23,0) and jumps to C11 while trying to hide (31, A). After sizes are restored, C6 tries
option xo < 14, which is successfully hidden by C7. Here’s the state when we reach C8:

1 SET[7] 4 SET[7] ke 0 1 2 3 4
LNAME 0 p o 17 17 ITEM[kK]: 17 4 31 23 11 ACTIVE=3
RNAME 1 18 7
POS 2 1 LNAME 19 x T 0 1 2 3 4 5 6
SIZE 3 1 RNAME 20 ITM(z): 0 4 11 23 31 -4 4
e 4 6 POS 21 3 LOC(z): 4 6 11 26 33 4 4
5 11 SIZE 22 2 CLR(z): — 0 0 0 A — 0
6 1 e 23 12
LNAME 7 q 24 8 T: 7 8 9 10 11 12 13
RNAME 8 25 15 ITM(z): 17 23 31 —4 4 23 -2
51;2: 18 ;1 AE 3? 3 LOC(z): 18 24 32 2 5 23 2
o1l 2 RHAME 28 CLR(x): 0 A O v B
12 14 POS 29 2 T: 14 15 16 17 18 19
LNAME 13 SIZE 30 2 ITM(z): 11 23 -2 17 31 -2
RN?’;E E 0 . i;% 12 LoC(z): 12 25 2 17 31 —
S17E 16 2 m 4 CLR(z): 0 A — 0 B —

(Hmm; why are SET[22] = 2 and SET[23] = 12? Answer: When x was purified
by hide(23, 4) in C7, option ‘p x:B’ was deleted from p’s list but not x’s. The other two
options involving x had already been deleted from x’s list by hide(11,0) in step C4.)

444. Suppose there’s a primary item i’ # i whose options all involve 7. Then hide(i, 0)
will remove all options of #'. If it sees FLAG = 0 when SIZE(i') becomes zero, it will
abort its normal operations prematurely.

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 191

Notice that this case can arise only when all options of 4 also include i, because
step C2 minimizes SIZE(¢). Suppose the MRV heuristic had not been used; then it
would be possible to have active items without options, and step C2 would have to go
to C10 after choosing an item with SIZE(:) = 0.

445. Before testing A versus 6 in answer 440, go to C10 if A = 0 (see exercise 444).
Otherwise add a large constant to X if A > 1 and NAME (ITEM[kK]) doesn’t begin with ‘#’.

447. The secondary item ¢ is inactive, so its option list has already been purified.

450. Let FORCE be an array whose size is at least the number of primary items. After
setting s" in (118), say “If s’ =1 and FLAG = 0 and ¢’ < SECOND and POS(i') < ACTIVE,
set FORCE[f] « ¢/, f < f+ 1.” Also, before setting FLAG in (118), set f < 0.

Steps C17 through C11" are identical to steps C1 through C11, except that C1T
also sets f < 0, and that C2* and C8™ are revised (including new intermediate steps):

C2". [Choose i.] Set 6 « oo. For 0 < k < ACTIVE, do the following steps if
ITEM[k] < SECOND: Set A < SIZE(ITEM[K]); then if A = 1, set FORCE[f] «
ITEM[K], f < f + 1; otherwise if A = # and ITEM[k] < i, set i < ITEM[K];
otherwise if A < 0, set ¢ «— ITEM[k], 6 < A.

C2.1%. [Forced?] If f > 0, set f < f —1, i + FORCE[f], and go to C8.2%. Otherwise
if & = oo, go to C9T.
C8". [Advance to the next level.] Set [< [+ 1.

C8.1%. [Not forced?] If f = 0, go to C2F. Otherwise set f < f — 1, i + FORCE[f],
and repeat step C8.1% if POS(4) > ACTIVE.

C8.2%, [Force a move.] Perform steps C3+and C4™. Then set 34, «t and go to C6%. |

451. Indeed, it’s tempting to save five mems by doing those assignments only when
i’ # i; the runtimes for dancing cells in (120) would then look almost 10% better! But
on the author’s computer, the true running time for, say, Problem Q increases from 64.3
user seconds to 72.2 user seconds, even though 43.9 Gu becomes 37.6 Gu. The reason
is that conditional branches can slow down a modern computer’s pipeline. (Similar
remarks apply when " =z’ in (118), or @’ = a in general sparse-set deletion, (110).)

452. The remaining problem is the same as the former, but with option o; removed.
Removing 01 decreases SIZE(i') by [i’ € 01], for each item i'. Hence every active primary
item ¢’ of the remaining problem will have SIZE(i') > d — 1 = SIZE(i). Furthermore,
if SIZE(i') = SIZE(i), we’ll have POS(:') > POS(4).

453. In fact there are two such nodes. One of them is labeled ‘v3; : a3z1’. The other is
the right child of the node labeled ‘vz : a21’.

455. The following algorithm operates under the same ground rules as Algorithm C*,
except that it uses two additional arrays, dod; ...dr and LS[s] for 0 < s < 1o, where
To is the number previously called T (the largest possible stage). The new size T of
the z and d arrays must be larger than before, because it must now accommodate the
largest possible level under binary branching. We use the simple subroutine

opt(z, ') = ‘@ + «'; while ITM(z — 1) >0 set z + v — 1’

to set x to the leftmost item of the option that contains z’.

B1. [Initialize.] Set the problem up in memory as in exercise 439. Also insert addi-
tional entries into the SET array, if they’re needed for branching heuristics. Set
ACTIVE to the number of items, SECOND to the internal number of the smallest
secondary item (or oo if there are none), and [< s <t « f < 0.

January 13, 2024

MRV heuristic
forced move

mems

dancing cells
author
conditional branches
pipeline

sparse-set deletion
deletion

To

stage

level

opt(x,x’)
secondary item

192

B2.

B3.

B4.

B5.

B6.

B7.

BS.

B9.
B1o0.

B11.

B12.

B13.

B14.
B15.
B16.

ANSWERS TO EXERCISES 7.2.2.3

[Not forced?] If f =0, go to B3. Otherwise set f < f —1 and ¢ < FORCE[f].
Repeat step B2 if POS (i) > ACTIVE; otherwise set ys < t and go to B6.

[Choose i.] Set 8 < co. For 0 < k < ACTIVE, do the following steps if ITEM[k] <
SECOND: If SIZE(ITEM[k]) = 1, set FORCE[f] « ITEM[K], f < f + 1; otherwise
set A « h(ITEM[K]), where h is the given heuristic function; if A = 6 and
ITEM[K] < i, set i < ITEM[k]; if A\ < 0, set i < ITEM[k], 6 < A.

[Forced?] If f > 0, set f < f—1,i < FORCEL[f], ys < t, and go to B6. Otherwise
if 8 = oo, set ys < t and go to B14.

[Trail the sizes.] Terminate with trail overflow if ¢ +ACTIVE exceeds the maximum
available TRAIL size. Otherwise set TRAIL[t + k] <« (ITEM[k],SIZE(ITEM[k]))
for 0 < k < ACTIVE; then set ys <t and ¢t < ¢t + ACTIVE.

[Try ¢’s first option.] Set d; < SIZE(é), x; < SET[:], and do opt(z,z;). (We'll
try to extend the current partial solution by including the option that starts at x.)
[Deactivate ITM(z).] Set i« ITM(z), i - LOC(z), k<« P0S(:). If k > ACTIVE, go
to B8. Otherwise do step B11; after finishing B11, set ACTIVE < ACTIVE —1, "'
ITEM[ACTIVE], ITEM[ACTIVE] < i, ITEM[k] <", POS (i) < ACTIVE, POS(i") « k.

[Advance z.] Set z <— z + 1. Return to B7 if ITM(z) > 0.

[Enter new stage.] Set s < s + 1.

[Enter new level.] Set [<~ [+ 1 and LS[s] < [. Terminate with level overflow if
[> T (there’s no room to store z;); otherwise return to B2.

[Hide incompatible options.] For j < i+ SIZE(i) — 1 down to ¢, do the following
if j #4': Set ¥’ « SET[j], and do step B12 if CLR(z) = 0 or CLR(z') # CLR(z).
[Visit siblings of 2’.] Do opt(z”,z"). Then while ITM(z") > 0, do step B13 unless
2 =, and set 2’ «+ 2" + 1.

[Hide option z''.] Set i’ « ITM(z") and j' « LOC(z"). If j/ > SECOND and
P0S (i) > ACTIVE, do nothing (item i" has already been purified). Otherwise set
s’ « SIZE(:")—1. If s = 0 and j" < SECOND, set f < 0 and go to B16 (the active
primary item i has no option beside z''). Otherwise if s’ = 1 and ;"' < SECOND,
set FORCE[f] + 4" and f <+ f+1. If s’ > 0, set 2"’ < SET[i" + s'1, SIZE(s") <«
s, SET[i" + 8’1 < 2", SET[j"] « &", LOC(z") « i" + s', LOC(z"") « j".
[Visit a solution.] Visit the solution that’s specified by nodes zyg;1 for 0 < j <.
[Back up.] Terminate if s = 0. Otherwise set ¢ < ys, s < s — 1, [+ LS[s].
[Purge ;.] If d; = 1, go to B15. Otherwise, for y, < k < t, set SIZE(i') + s’ if
TRAIL[k] = (¢, s'). Then set ACTIVE < t—ys, t < ys, " < x;, and do step B13.
Also set ' < z;, and do step B12. (Step B13 won’t find s’ = 0, because every ac-
tive primary item has at least two active options when d; > 1.) Return to B10. |

(Step B11 is a subroutine, called by step B7. Similarly, B12 and B13 are subroutines.
Subroutine B13 might jump to B16 directly instead of returning to its caller, B12.)

This algorithm maintains the entire history zo . ..z; of all branches leading to the

current level, so that an interested user can monitor the current progress. But only
one node per stage (namely 1gro7, TLg[1], ---) is actually needed.

456.

Step C4* takes advantage of d-way branching to hide all of i’s options once,

instead of d times. Binary branching can’t do that.

(Incidentally, Problem C doesn’t really need the MRV heuristic, because the

ordering of its primary items causes Algorithm B to choose the same items i even with

January 13, 2024

heuristic function
siblings
subroutine

level

stage

7.2.2.3 ANSWERS TO EXERCISES 193

the trivial heuristic h(i) = 0. However, that heuristic takes 1665.8 Gy with Problem H,
compared to 445.7 Gu with h(i) = SIZE(:) and 407.4 Gu with Algorithm CT.)

458. In step B1, provide space for WT'(¢) (initially set to 1.0) in the SET array, when ¢
is primary. (It’s best to store it as a single-precision floating point number, because it
will be used in division. Furthermore, there won’t be any problem of overflow, because
the assignment “WT (i) < WT () + 1.0” will do nothing when WT (i) = 2%%.)

In step B13, set WT (i) < WT(i") + 1 before going to B16.

(The author’s implementation also provides optional diagnostic features that can
display an item’s weight at crucial times.)

459. For n queens and p knights on an n X n board, we can start with a setup like
7.2.2.1-(23) for the queens, with primary items {r; | 1 < i < n}, {¢; |1 < j < n}
listed in organ-pipe order, together with secondary items {as | 1 < s < 2n}, {bs | —n <
d < n}. Let’s add primary items {N; | 0 < k < p} for the knights, together with
secondary items {Ry | 0 < k < p}, {Cr | 0 < k < p}, whose colors will be row and
column indices. Finally, n2 secondary items {ij | 1 < 4,5 < n} will keep the queens and
knights separate. The queen options are ‘r; ¢; ai+; bi—; ij’ for 1 < 4,5 < n; the knight
options are ‘Ny, ij Ry:i Cr:j Ryrii’ Criij’’, for all 1 <4,j,4,5 <mand 0 <k < p with
(i—i)Y+(G—-7) =5and ¥ = (k—1)modp. (When n = 8 and p = 5 there are
(16+45) + (64+30+10) items and 6441680 options.)
460. Using answers 458 and 459, Algorithm B will begin by choosing options ‘rs c¢i1 ae
b4 51’, ‘64 as b_3 14 1‘1’, ‘7‘3 Cg Q11 b_5 387, ‘63 ag b3 63 7‘6’, ‘05 a2 bz 75 7‘77, ‘C7 ais b1 87
r8’, ‘c2 a4 bo 22 r2’; ‘ce a10 b—2 46 r4’ in stages 0 through 7, with do...d7» = 85321111.
Then stage 8 chooses ‘No 11 Rg:1 Co:1 R4:2 C4:3’ as one of Ny’s 295 remaining options;
and stage 9 chooses ‘Ny 32 R1:3 C1:2 Ro:1 Co:1’ as one of two for Ni. (Our formulation
has not precluded ‘N; 23 R1:2 C1:3 Ro:1 Co:1’, since we use forward consistency only.)
We first run into trouble in stage 11, when N4’s weight becomes 2 and we reach step B16
for the first time. (The clock shows only 91 kilomems so far, since the initialization.)
A complex calculation that rules out all knight placements, including all 295
options for N1, eventually takes us back to stage 7. At that point, about 125 My have
elapsed; and (No, N1, N2, N3, N4) have acquired weights (3448, 4019, 4839, 4859, 2504).
Since dadsdsd7 = 1111, we backtrack to stage 3, where ‘cs a7 by 43 r4’ is now forced.
Stage 4 now finds that 1, 5, ca, c6 have only two active options, while each knight
item Nj has 316. But N3 is chosen for branching, by (122), since 316/4859 < 2/1. An-
other complex calculation, never branching on a queen, eventually leads back to stage 2.
And so on. After each of the options in stages 3, 2, 1, 0 has been purged, a complex
exploration of knight moves consumes 150 to 200 My and increases the knight-item
weights. At the end (759 Mp) those weights are (21261, 23721, 27138, 27795, 28194).
(It is mot true that the queen items retain weight 1. Knights can be placed in such
a way that forced queen moves lead to a contradiction. In fact, r5 acquires weight 47!)
461. (a) 76 My : 819 My; (b) 13.3 Gu : 118.8 Gu; (¢) 11.6 Gy : 13.6 Tpu.
463. (Solution by P. Weigel.) Let there be primary items p; for 0 < ¢ < n, representing
pigeons, and secondary items h; for 0 < j < n, representing holes. Also primary items
f and F together with secondary items %, x, y, which cleverly fool the WTD heuristic
as follows: The options for pigeons are ‘p; h; *:0 y:(i + j) mod 2’, for all 7 and j, except
that * is omitted when j = ¢ mod n. The options for f are ‘f %:1” and n — 2 identical
copies of ‘f x:0’; the options for F' are ‘F' *:1’ and n — 2 identical copies of ‘F z:1’.
(First we branch on f or F, causing * to get color 1. A contradiction soon arises,
giving weight 2 to either py or p,. After that, branching never occurs again on f or F,

January 13, 2024

floating point number
overflow

author

organ-pipe order
forward consistency
Weigel

pigeons

194 ANSWERS TO EXERCISES 7.2.2.3

because they have at least n— 2 options and their weight remains 1. If all active p; have
weight 1, they all have at most n/2 remaining options, because of the parity item y.)
However, the d-way heuristic WT'D' is not fooled, because it continues to branch
on f or F until all n — 1 options have been tried. To defeat it, we can simply add a
new primary item #, with two identical options ‘#’; the second # shuns f and F'.
For example, the running time for WTD when n = 20 is 6.8 gigamems, using #,
and 2.6 gigamems for WTD, compared to 473 kilomems for MRYV.
This XCC problem also turns out to be exponentially bad for FRB and FRB'.

464. In step Bl, provide space for single-precision floating point numbers TRY(z)
(initially 1.0) and FR(:) (initially 0.5) in the SET array, when 4 is primary. In step B6,
also set igp < 7 and TRY (ip) < TRY(ip) + 1. Then at the end of step B8, set FR(ig) +
FR(29) — FR(io)/TRY(io). In step B13, set FR(ip) < FR(ip) + (1.0 — FR(io))/TRY(io)
before going to B16. (See answer 458.)
465. (a) 1.1 Gu : 819 My; (b) 207.9 Gu : 118.8 Gu; (c) 17.1 Tu : 13.6 Tpu.
466. Any heuristic function h that can be used in step B3 can also be used in step
C2%, provided that we replace ‘if A = 1’ in that step by ‘if A = 0, set f < 0 and go
to C107; otherwise if A = 1’. (The case A = 0 could not previously arise, because the
hide routine (118) normally prevents the size of any primary item from becoming zero.
Suppose, however, that ¢’ is a primary item for which (i) every option that contains 7’
also contains the primary item 7; and (ii) some option o contains i but not i'. Then i
has more options than i’; and a non-MRV heuristic method might choose to branch on i.
If so, hide will be called in step C4* with FLAG < —1, and (118) will set SIZE(i') <« 0.
This size will be trailed in step C5%, and we’ll find A = 0 after trying option o for item i.)
To implement the WTD heuristic (see exercise 458), increase WT (i') before setting
FLAG < 1 in (118), and increase WT(ITEM[i]) before going to C10" from step C2%.
Similarly, to implement FRB (see exercise 464), update the failure rate of i = ITEM[k]
by setting TRY (i) < TRY (i) + 1 in step C4%; set FR(i) < FR(i) + (1.0 — FR(i))/TRY ()
in step C7T before going to C11%, and FR(i) < FR(i) — FR(i) /TRY (i) in step C87.
(Sample implementations are in the online programs SSXCC-WTDO0 and SSXCC-FRBO.)

467. Yes! Call them WTD} and FRBT as in (131). Then WTD{ improves Problem K,
achieving 2.5 Gu; FRBT improves Problems O, U, Y*, achieving (5844.4, 117.5, 2.5) Gu.

468. S[10,r] can be 16 or 19. S[13,r] can be 05, 16, or 19. S[19,p] can be 00 or 10.
S[19,q] can be 00 or 13.

469. Allocate also a new integer field MATCH(7), for every secondary item ¢. Let STAMP
be a 32-bit integer, initially 0; all the MARK fields are also initially 0. To get ready for
testing option o, do this, assuming that NODE[o] is the spacer preceding option o: Set
STAMP < (STAMP + 1) mod 232, If STAMP = 0, set STAMP < 1 and MARK (i) « 0 for all .
Forx =041, 042, ..., set ¢ < ITM(z), and exit the loop if i < 0; otherwise set
MARK (i) < STAMP, and if i > SECOND also set MATCH(i) < (CLR(z) = 07 —1: CLR(z)).

Now, given an item i ¢ o (equivalently, MARK (i) # STAMP), do this: For j <« i,
i+1, ..., exit the loop unsuccessfully if j = i+ SIZE(4) ; otherwise set o <+~ SET[j] and
exit the loop successfully if o' does not fail the following compatibility test: “Set z’ <+ o'
and z < 2’ + 1. While z # 2', set i’ «+ ITM(x); ifi' < 0,set o' + x + = +i —1;
otherwise if MARK(i') = STAMP and (i < SECOND or CLR(z) # MATCH(:')), fail; set
x < x + 1.7 (Notice that o' is set to the spacer preceding a successful option.)

471. False. If i € 0 € Os we have i € I if and only if ¢ has not been “purified”; that
is, 7 is not a secondary item whose nonzero color was fixed by an option in {ci,...,cs}.

January 13, 2024

parity

d—way

wrDf

FRB

floating point numbers
hide routine
MRV

WTD heuristic
FRB

online programs
WTDf}

FRBY
secondary
spacer

purified

7.2.2.3 ANSWERS TO EXERCISES 195

472. O-; ={00,05,10,13,16,19}; O = {00, 05,13, 19}; Oy = {00, 19}; AGE(10) =
AGE(16) = —1 (purged); AGE(13) = 0 (removed); AGE(05) = 0 (purged). (Soon
afterwards, a solution will be found at stage 2, with OI"'* = O, = {19}, O = ¢,
AGE(00) =1, AGE(19) = 3 (both chosen), or with the roles of 00 and 19 reversed.)

(To help understand the concept of age, we can associate implicit “age labels”
to the edges of tree (121). Age labels on the horizontal edges, marked ‘#’, are always
even numbers; for example, they’re (0,0,0) in the first row and (2,2, 2) in the second.
Age labels on the vertical edges, marked ‘=’, are always odd numbers, such as (1) in
the first column and (1,3) in the second.)

473. There’s an economy of scale when we can use exercise 469 to make many com-
patibility tests with respect to the same option.

474. Yes. For example, suppose o = ‘p q’, o' = ‘p r’, 0" = ‘q s’, So,r] = S[0",] =
o', Slo,s] = S[o’,s] = o'. If we choose o, blocking o' will trigger (0", r), thereby
enqueuing o”. Similarly, blocking 0" will enqueue o'. (No harm is done.)

476. We allow o to be within an option. Global variable A is the current age. Global
variables ACTIVE and OACTIVE represent the number of currently active items, in a
slightly tricky way: If option o is being blocked by a new choice ¢s41, then ACTIVE =
|I541] and DACTIVE = |I|; but ACTIVE = DACTIVE = |I,| if 0 is being removed or purged.

O1. [Move to left spacer.] While ITM(0) > 0, set 0 <~ 0 — 1. Then set = < o+ 1.

0O2. [Hide o from ITM(z).] Set ¢ < ITM(x), p < LOC(x). If p > SECOND and POS (i) >
DACTIVE, go to O3 (item i has been purified); otherwise set s’ < SIZE(i) — 1. If
s’ = 0 and p < SECOND, go to O11 (i is wiped out); otherwise set ' < SET[i + s'],
SIZE(i) < s, SET[i + s'] « x, SET[p] + a4, LOC(z) < i + &', LOC(z') <+ p.

03. [Loop on z.] Set « = + 1. Return to O2 if ITM(z) > 0.
O4. [Begin trigger loop.] Set AGE(0) < A, p < TRIG(o0), HEAD « 0.

O5. [Loop done?] If p = 0, go to 010. Otherwise set o' < INFO(p), q < LINK(p),
i’ + INFO(q), p' < LINK(g).

06. [Is o' active?] Set a <+ AGE(0'). If a > A, go to O7 (o is active); otherwise set
i+ ITM(0' +1). IfLOC(0o' + 1) >4+ SIZE(:), go to O8 (0 is inactive).

O7. [Is ¢ active?] Go to O9 if POS(i') < ACTIVE (i’ is active).
08. [Keep trigger.] Set LINK(gq) « HEAD, HEAD < p, p < p’, and return to O5.

09. [Trigger becomes fixit.] Set INFO(p) < o, LINK(q) <« FIX(0o'). If FIX(0') = 0,
put o' = Q and set AGE(0') < co. Then set FIX(0') < p, p « p'; return to O5.

010. [Success.] Set TRIG(0) < HEAD and terminate successfully.
O11. [Clear the queue.] If QF = QR, go to O12. Otherwise @ = o, unfix(0), and repeat
step O11. Here the routine ‘unfix(o)’ changes all of o’s fixits back to triggers:

Set p «— FIX(0) and FIX(0) «+ 0.
unfix(o) = { While p > 0, set o' + INFO(p), q + LINK(p), INFO(p) « o,
p’ < LINK(q), LINK(q) < TRIG(0'), TRIG(0') + p, p < p'.

O12. [Failure.] Terminate unsuccessfully (because item 4 has lost its last option). |

Steps 02-03 make option o inactive (that is, not present in the sets of its active
items). Steps 04-09 remove o from S[o’, '] when both o’ and i’ are active, by creating
“holes” to be fixed; but (¢0’,4') remains on o’s trigger stack if o' or i’ are inactive. Step

January 13, 2024

A

age

ACTIVE
0ACTIVE
purified
inactive option

196 ANSWERS TO EXERCISES 7.2.2.3

06 relies on the fact that the first item of o’ is primary. Notice that our data structures
make it easy to convert triggers to fixits and vice versa.
Step O9 makes AGE (o) infinite when o’ enters Q; we’ll use this in step E2 below.

477. We follow the conventions of Algorithm O, as in exercise 476.
E1. [Done?] If QF = QR, terminate successfully. Otherwise @ = o.

E2. [Is o active?] If AGE(0) = oo, go to E3 (o is active). Otherwise unfix(o), as in
step O11, and return to E1.

E3. [Mark o’s items.] Set STAMP, MARK, and MATCH as in the first paragraph of answer 469.
E4. [Begin fixit loop.] Set p <~ FIX(0).

E5. [Loop done?] If p = 0, set FIX(0) < 0 and return to E1. Otherwise set ¢
LINK(p), ¢ < INFO(g), p' - LINK(g). (We needn’t look at INFO(p) just now.)
E6. [Find a support.] (Now ¢ is a primary item, and ¢ ¢ 0.) Use the second paragraph

of answer 469 to find an option o' such that ¢ € o' || 0. If unsuccessful, go to ES.
E7. [Record the support.] Set INFO(p) < o, LINK(q) < TRIG(0'), TRIG(0') < p,
p + p, and return to E5.
ES8. [Prepare to purge.] (There’s no active support for (o,7).) Set FIX(0) <« p and
unfix(o) as in step O11.

E9. [Purge 0.] Set DACTIVE < ACTIVE and call opt_out(0). Terminate unsuccessfully if
that fails; otherwise return to E1. |

478. (These steps have much in common with Algorithm E above.)

A1l. [Begin option loop.] Set QR<=AVAIL, QF <—QR, A<— —1, OACTIVE < ACTIVE, o< 0.
A2. [Mark o’sitems.] Set STAMP, MARK, and MATCH as in the first paragraph of answer 469.
A3. [Begin item loop.] Set k < 0 and ¢ <— ITEM[K].

A4. [Find a support.] If MARK(i) = STAMP, go to A6. Otherwise use the second
paragraph of answer 469 to find an option o’ for which i € o’ || 0. If that succeeds,
go to Ab. Otherwise call opt_out(0), and go to A7 if that succeeds. Otherwise
terminate unsuccessfully.

A5. [Record the support.] Set p <= AVAIL, g < AVAIL, INFO(p) « o, LINK(p) « g,
INFO(q) « i, LINK(q) < TRIG(0'), TRIG(0') « p.

A6. [Item loop done?] Set k < k + 1, i «+ ITEM[k]. Return to A4 if § < SECOND.

AT. [Option loop done?] Set o0 <— 0+ L0C(0) + 1. Return to A2 if o < LAST.

AB8. [Empty the queue.] Call empty_q(), terminating unsuccessfully if it fails. ||

479. Do the actions in the following paragraph for all options o with AGE (o) > 0:

Set p + TRIG(0) and ¢’ + —1. While p # 0, do this: “Set q «+ LINK(p) and
p' <+ LINK(q). If AGE(INFO(p)) > 0, simply set ¢' < gq; otherwise put p => AVAIL,
q = AVAIL, and set TRIG(0) + p' if ¢ < 0, LINK(¢') < p' if ¢ > 0. Then set p < p'.”
480. The author’s experiments have found neither (a) nor (b) to be an improvement.
482. (a) An entry (o’,i') might go into TRIG(0) long before o' becomes inactive. For
example, we might have chosen o = S[0’,] already in step S1 (Algorithm A).

(b) We shall place a “hint” (—c,v) into every newly reconstructed trigger stack,

when we wish to claim that all entries (0',i') below the hint have AGE(0') < c. Here
v is a validation code: Options change their status and their age as the search tree

January 13, 2024

first item of 0
AGE (0")
author

hint

validation code

7.2.2.3 ANSWERS TO EXERCISES 197

evolves; but this hint will remain valid as long as v is equal to SS[c > 1], the “stage
stamp” that was recorded for stage |¢/2] in step S2.

Each step of Algorithm O™ is the same as the corresponding step of Algorithm O,
except as noted below. Algorithm O’s variable HEAD is replaced by arrays H[a]l and
T[al of temporary list heads and tails, for 0 < a < 2T%. Initially H[a] = 0 for all a.

04, [Begin trigger loop.] Set AGE(0) < A, p < TRIG(0), Gmin < 00, p' < 0.
05.1%. [Hint?] If o' > 0, proceed to step O6™ (this entry is not a hint).
05.2". [Valid hint?] If —0’ < A and ' = SS[(—0’) > 1], set p’ < p and go to O10F.
05.3", [Discard a useless entry.] p = AVAIL, ¢ = AVAIL, p < p’, and return to O5™.

O7%. [Is 7' active?] Go to O9T if POS(i') < ACTIVE (i’ is active). Otherwise set
a <+ A

08", [Keep trigger.] If a < 0, go to 05.3%. If @ < @umin, Set Gmin « a. IfH[a] = 0, set
T[al < q. Then set LINK(q) + H[al, H[al < p, p + p', and return to O5™.

010", [Bucket sort.] If p’ # 0 and amin = —0' — 1, set p’ < LINK(q), p = AVAIL,
q = AVAIL (avoid a double hint). For @ = @min, @Gmin + 1, ..., A — 1, do this:
“If H[a] # 0, set LINK(T[al) < p', p < AVAIL, q < AVAIL, LINK(p) < gq,
INFO(p) < —a — 1, INFO(g) + SS[(a + 1) > 11, LINK(q) < H[al, H[al < O,
p' < p.” ThenifH[A] # 0, set LINK(T[A]) < p', p’ < H[A], H[A] « 0. Finally
set TRIG(0) < p’ and terminate successfully. (See Algorithm 5.2.5R.) 1|

483. With the hints, 6.3 Gu (compared to 1.3 Gu for Algorithm C); without them,
124.1 Gu. (The ratio is even more extreme, about 1 to 150, when n = 15. In that
case Algorithm S runs in 2.1 Tu, compared to 432 Gp for Algorithm C. One might
guess that options need never be purged, when the “extreme” problem is being solved,
because every possible option is present. But that’s definitely false, even when n = 2!
After the option ‘1’ is removed, option ‘1 2’ has no support with respect to item 2.)

484. If SSTAMP becomes 0, remove all hints from all trigger stacks. Then set SS[k] < k
for 0 < k < s and SSTAMP < s. (The values in SS are distinct, and less than SSTAMP;
so they can safely be used in future hints.)

486. Let left(o,) mean “o < x — 1; while ITM(0) > 0 set 0 < 0 — 1.7
J1. [Begin loop.] Do left(o, z;), and set p <— 0ACTIVE < ACTIVE, z < o+1, i < ITM(x).
J2. [Is ¢ inactive?] Set p’ «— P0S(i). If p’ > p, go to J4 (i has been purified).

J3. [Deactivate i.] Set p « p — 1, i < ITEM[p]l, ITEM[p] « i, ITEM[p'] « ¢,
P0S(i) < p, P0S(i') < p'. If i > SECOND, set MATCH (i) < CLR(z) (see answer 469).

J4. [Loop done?] Set z <« + 1 and ¢ < ITM(z). Return to J2 if ¢ > 0.

J5. [Begin another loop.] Set ACTIVE < p. (We'll block the options # o from the lists
of all the newly inactive items, {ITEM[k] | ACTIVE < k < OACTIVE}.)

J6. [Block ITEM[p]’s options.] Set ¢ < ITEM[p] and j < ¢+ SIZE(¢) —1. If ¢ > SECOND
and MATCH (i) # 0, purify i as follows: “While j > i, set o' < SET[j], j < j—1, and
call opt_out(o’) if CLR(0') # MATCH(i).” Otherwise block i’s options # o as follows:
“While j > 4, do left(o’, SET[§]), set j < j — 1, and call opt_out(o') if o’ # 0.”

J7. [Loop done?] Set p < p + 1. Return to J6 if p < OACTIVE.

J8. [Deactivate o.] Set SIZE(ITEM[p]) < 0 for all p with ACTIVE < p < OACTIVE and
ITEM[p] < SECOND. Also set AGE(0) < A. |

January 13, 2024

stage stamp
stamping

To

Bucket sort
sort

radix list sort
hints

purified
purify

198 ANSWERS TO EXERCISES 7.2.2.3

sparse-set representation
queen graph

knight graph

parity

multiplicity

MCC problem
symmetry reduction
Weigel

It’s important for j to be decreasing, not increasing, in step J6, because the options
being blocked move right as they leave the sets. The calls on opt_out(o’) will not fail,
because o is supported. No change is needed to any trigger stack in step J8, because
the active option o being chosen contains no active primary items. Sizes are zeroed in
that step because step O6 should henceforth consider option o to be inactive.

490. There’s no closed tour, hence no solution, when mn is odd. We shall write simply
‘45 for cell (i,7). Let ij < '/’ be the adjacency relation for the m x n queen graph,
namely “ij #ij' and (i =i orj =4 ori+j=4+j ori—j=1—j)"; similarly, let
ij =~ i'j" denote adjacency in the corresponding knight graph, “(i —i')*+(j—j')? = 5.”
Let A be the set {i'j' | i'j’ ——ij} of cells attacked by the queen. Say that cell ij’ is red if
it has the same parity as the queen’s cell, that is, if (i +j'+i+7) mod 2 = 0; otherwise,
i'j" is white. We will assume that all red cells have odd labels; the other case is similar.

Suppose A has a; red cells and ag white cells; usually a1 > ag. Also suppose P has
p1 odd numbers, po even numbers. We must have p; < a; and po < ao, because P C A.

Let there be mn primary items i'j' and secondary items ;;, for 0 < i’ < m,
0 < j' < n; also mn primary items #k' and secondary items y;/, for 1 < k' < mn.
The “color” of z;;; will be a label, and the “color” of y;s will be a cell. The options
are ‘1" #k" @ik’ yidy', wp ok gy, for all & 57, K 77, 57, K such that
i 24"" and k" = 1+ (k' mod mn) and OK(i',j', k") and OK(i",j", k") are true,
where OK (i, j', k') means “0 <7 <m,0 < j' <mn, (i'+j+k'+i+j) mod2 =1,and k' €
P = i'j’ € A” (The option says, “Step k' of the tour goes from cell 'j" to cell i"j".”)

We can make this construction much more efficient when a; = pi, by simply
omitting all of the options in which j’ is red, 'j' € A, and k' ¢ P; also those in which
i""j"" is red, i"j" € A, and k" ¢ P. Moreover, if a; —p1 =t > 0, we can retain those
options but append *' or *’ to each of them, where * and % are new primary items
of multiplicity ¢. (This modification makes it an MCC problem, not XCC, if ¢ > 1.)

491. Use the primary item i’j' only when ¢'j’ is white, and #k’ only when &’ is odd;
use the secondary item z;;; only when i'j’ is red, and y; only when k' is odd. Also
introduce new primary items 4'j’~ and ~4'j’ for every red cell i'j’. The options are now
(#k/ Z"j,—’ wz‘ljl :k/ yk! :Z'Ij/ Z'Hj” I,L'N!]‘III :k”I yklll :Z'I”j/” *i,,,j,,,, for a‘ll Z'/, j’, k/, i”7 j”, k”,
1:/”7 ']'I”7 k/” SllCh that ilj/ li”j”, i”j” iS White, i”'” li”lj/”7 ilj/ # i”/j”l, k/ is Odd,
K =K +1, k" = 1+ (k" mod mn), OK (¢, ', k'), OK(i", ", k"), and OK (", " , k").

492. By fixing the labels of those eight cells, the 73347504713669661796 31346308613691141758
Cructi q 10591 opti 9200 4 100 76957235020918976865 64075235900918599215
construction produces options on 33740308377067 169598 33308962376013165798

items. Its 43 solutions are found by Algorithm S
with heuristics (MRV, WTD, FRB) in respectively
(343, 231, 1602) Gu. (And the FC method FRB'™
takes 1475 Gp.) The solutions shown here mini-
mize and maximize the sum of attacked labels.

067784011019389964 15
83320724850011146194
78258231202360391263
81307922598613629340
26532887562190434845
29805154 895849464192
52278857505542914447

06658601101938991293
290205888500119497 56
66872803202384394895
2704672283 7847965540
68737077242180435249
T1267582T794651544144
74697225768142455053

493. (a,b) Almost all parameter combinations (m,n, i, j) are unsatisfiable, either be-
cause p1 > a1 or because a small search tree proves impossibility. (The cases (5, 6, 2, 2)
and (6,6,2,2) are MCC problems.) The only surviving combinations with m < n are
(6,7,2,3): 2-52 solutions, 3.6 Gu; (7,8,2,2): 16 solutions, 9.6 Gu; (7,8,2,3): 1206
solutions, 597.1 Gu; (7,8,3,3): 2-989 solutions, 1450.7 Gu; (7,10,2,4): 491 solutions,
1338.4 Gu; (8,8,3,3): 2 - 688 solutions, 2154.8 Gu; (8,9,3,4): 2 - 6010 solutions,
33.9 Tp; and two really hard cases (9, 10,4, 4) and (10, 10,4, 4). [All runtimes are from
DC-WTD, without symmetry reduction. This problem was originally posed by Peter
Weigel, who was able to show after massive calculations that the 9 x 10 case has exactly

January 13, 2024

7.2.2.3

ANSWERS TO EXERCISES

199

2 - 1658756 solutions. He has also found many thousands of solutions to the 10 x 10
problem — for which he estimates that, with methods that are currently known, about
100 years of computation will be needed to obtain a complete count.]

180906393437 0512035631285154

052817360740
101908333835
290427164132
201130012415
032613223142
122102251423

4401061352553027
11044502293253 50
2043160714392633
1710194623 3649 38
4221081540473425
0918412235243748

69180138672253126510
36396817021366095255
19703704210823541164
40352031160314455651
273005420724594863 46
34412825321544615057
2926330643 6049584762

5346210255482314
2001544722135649
4552191203501524
1811645116053257
6344170431582506
1041366138072833
4362390835305926
400942376027 3429

1063361972653443
372009643544 7166
6211180106674233
2138050817704568
1261023904073241
5522591631406946
60135603 52493027
2354155825284750
1457245348512629

23202578591057766114
26792209187760135675
21241980115817741562
36278203080512635255
8302370681665316 73 64
283584010407406554 51
85883138414867704572
3429908732394643 5069
8986333047424968 7144

495. Besides opt(z,z’), the following adaptation of Algorithm B uses the subroutine

deactivate(i) = {

ACTIVE < ACTIVE — 1, ¢'"" + ITEM[ACTIVE], k < P0S(i);
ITEM[ACTIVE] < i, ITEM[k] < ¢'", POS(4) < ACTIVE, POS(i"') < k.

The elements of its TRAIL array are triplets, not pairs.

M1.

M2.

Ma3.

M4.

Mb5.

Meé.

MT7.

MS.

M.
M1o0.
M11.
M12.

[Initialize.] Set the problem up in memory as in step Bl of answer 455. Also
insert additional entries BOUND (4) and SLACK (i) into the SET array for each pri-
mary item ¢, initialized to v; and v; —u; when ¢’s given multiplicities are [u; .. v;].
Terminate if SIZE(¢) < u; for any ¢. Deactivate any items for which SIZE (i) = 0.
[Not forced?] If f =0, go to M3. Otherwise set f < f — 1 and ¢ < FORCELf].
Repeat step M2 if POS (i) > ACTIVE; otherwise set ys < ¢, 8 < 1, and go to M6.

[Choose i.] Set < co. For 0 < k < ACTIVE, do the following steps if ITEM[k] <
SECOND: Set i’ < ITEM[k], s < min(SLACK (4'),BOUND (i)), A < SIZE(i') +1 +
s —BOUND(:'). If A =1, set FORCELf] < ¢’ and f < f+1, for 1 < j < SIZE(').
(In that case, every remaining option of i’ is forced.) Otherwise, if A < § and
(A< for(s<oand (s <oor (SIZE(?') > ¢’ and (SIZE(') > o’ or i’ <1))))),
set 0 < A\, i<, 0 < s,and o’ < SIZE(i'). (See exercise 7.2.2.1-166.)
[Forced?] If f > 0, set f < f — 1,4 < FORCELf], 6 < 1, ys < ¢, and go to M6.
Otherwise if 8 = 0o, set ys ¢t and go to M16.

[Trail the sizes.] Terminate with trail overflow if ¢+ACTIVE exceeds the maximum
available TRAIL size. Otherwise set TRAIL[t + k] <« (ITEM [k1,SIZE(ITEM[K]),
BOUND (ITEM[K])) for 0 < k < ACTIVE, omitting BOUND if ITEM[k] > SECOND.
Then set ys <t and ¢t < t + ACTIVE.

[Try ¢’s first option.] Set d; < 0, z; < SET[:], and do opt(z,z;). (We'll try to
extend the current partial solution by including the option that starts at x.)
[Commit ITM(z).] Set i < ITM(z), i’ < LOC(z), k < POS(¢). If k > ACTIVE, go
to M10 (the secondary item 4 has been purified). Otherwise, if ¢ < SECOND, set
BOUND (i) < BOUND(?) — 1, and go to M9 if BOUND (i) > 0.

[Cover i.] (Now ¢ > SECOND or BOUND(2) = 0.) Do step M13. Then deactivate(s)
and go to M10.

[Hide option z.] Set z" < & and do step M15.
[Advance z.] Set z <— z + 1. Return to M7 if ITM(z) > 0.
[Enter new stage.] Set s <— s+ 1.

[Enter new level.] Set I - [+ 1 and LS[s] <« [. Terminate with level overflow if
[> T (there’s no room to store x;); otherwise return to M2.

January 13, 2024

opt (l‘, l")
deactivate(?)
multiplicities
forced

200 ANSWERS TO EXERCISES 7.2.2.3

M13. [Hide incompatible options.] For j < ¢+ SIZE(i) — 1 down to ¢, do the following
if j #4': Set &’ < SET[j1, and do step M14 if CLR(x) = 0 or CLR(z’) # CLR(x).

M14. [Visit siblings of 2’.] Do opt(z"”,z’). Then while ITM(z"") > 0, do step M15, and
set " «+ 2" +1.

M15. [Hide option z".] Set i’ < ITM(z") and j” < LOC(z"). If j > SECOND and
POS(3") > ACTIVE, do nothing (item " has already been purified). Otherwise
set s’ < SIZE(i") — 1. If j/ < SECOND and s’ < BOUND(:") — SLACK("), set
f « 0 and go to M18 (the active primary item i’ needs z” to attain its lower
bound). Otherwise, if j” < SECOND and s’ = 0, deactivate(:"’) (which has lost
its last option). Otherwise, if s' > 0, set """ « SET[i" + s'], SIZE(:"") « ',
SET[i" + s'] < a'', SET[5"] + «"’, LOC(z") <" + s, LOC(z"") « j".

M16. [Visit a solution.] Visit the solution that’s specified by nodes zgp;7 for 0<j<s.
M17. [Back up.] Terminate if s = 0. Otherwise set ¢t < ys, s < s — 1, [« LS[s].

M18. [Purge z;.] If d; = 1, go to M17. Otherwise, for y; < k < t, set SIZE(i') <« s’
if TRAIL[K] = (i, s,b'); also set BOUND(i') <« b if i < SECOND. Then set
ACTIVE <t —ys, t < ys, ¢’ < x;, d; + 1, and do step M14. Return to M12. |

(As before, steps M13, M14, and M15 are subroutines; and subroutine M15 might jump
directly to M18 instead of returning to its caller.)

496. Begin step M3 with 6 < co and 6" <+ oo, where 6 is an integer and ' is a floating
point number. Later in that step, if A > 1, set A’ + A\/w, where w = WI(i') for WTD,
w = FR(:') for FRB. Then if ' <" and (X < # or (s < o and (s < o or (SIZE(Z') > o'
and (SIZE(i') > o' ori' < i))))),set @ < XN, 0« X\, i+ i, 0« s, and o’ « SIZE(3').

498. Assume that m > 1 and n > 1. Let # be a primary item of multiplicity k; also
let zy be a primary item of multiplicity [1..k], for 0 <z <mand 0 <y < n. Ifdis
odd, there are mn options, for 0 < zo < m and 0 < yo < n, consisting of # together
with {zy |0 <z <m, 0 <y <n, (x—20)?+ (y—yo)*> < d?/4}. If d is even, there
are (m — 1)(n — 1) options, for 1 < o < m and 1 < yo < n, consisting of # together
with {zy |0<z<m, 0<y<n, (x—z0)(z—2o+ 1)+ (¥ —vo)(y—yo +1) <d?*/4}.
499. The solutions are the ways to pile such polyominoes into that shape, using at
least u, and at most v, copies of piece p, so that at least u,, and at most v,y of those
pieces occupy cell (z,y).

Problem € in the text (see (134)) is the special case where the pieces are simply
the twelve pentominoes, with u, = v, = 1, and the shape is simply a 7 X 7 square,
with uzy = 1 and vgy = 1+ [z=0 or y=0 or =6 or y=6] for 0 < z,y < 7.
(Symmetry was broken by restricting piece P

to one of its eight orientations.) Two of the VVXV Y Y PYPY P PYYZYZVYVWVW
10,343,858 solutions are shown here: The most VXX X W YPOP PPZYWWOV
interesting one doubles up only on cells that VXWWRPO PZZXWSO0V
are corners or adjacent to corners. (It’s unique, TWwWWwRRRO Q0QXXXS505
except for reflecting the RW bipair.) The other TTTRZZ0 QUUXRTOS
is one of only seven that have X in the center, TS S 50U 200 QURRRTDOS

QSRS Q Q UUZUZ Q UURTTT

and double up only above the diagonal.
(A. O. Muaiz’s post for 2 May 2023 in https://puzzlezapper.com/blog/ pro-
poses the name “polyomino piling” for cases where all uz, > 0 and some vzy > 1.)
501. Assume that there’s a secondary item for each variable, and that ‘z = a’ is
represented by options that contain ‘z:a’. Then the example can be handled by

January 13, 2024

siblings

subroutines
Symmetry was broken
bipair

Muiiz

polyomino piling
piling

7.2.2.3 ANSWERS TO EXERCISES 201

introducing a new primary item #, with multiplicity [0..2]; we simply include # Historical notes
in the options that force x = a, y = b, and 2z = c.]f’gi(li
This construction fails, however, if some option contains more than one of the OEIS
colorings x:a, y:b, z:c, because it requires us to include # more than once in that option. collinear
We can omit any option where all three appear. And we can add ‘+:1’ to options where Ef(}cg:zcﬁat corn
two of them appear, where + is a new secondary item. Then the options ‘! # +:1” and unique
‘! +:0’, where ! is a new primary item, finish the job. MCC problem
In general, a similar scheme will encode ‘z; # a1 or - -- or) # ax’, using a new unique

primary item # whose multiplicity is [0..%k — 1].
502. (This is essentially an application of the idea in the previous exercise.) If 0 < p < ¢
and p L g, the relevant lines ‘y = (p/q)x + constant’ of slope p/q can be enumerated
by considering the lower left points at which they intersect an n x n grid, namely
{(z,9) |0 Lz <n—-2¢0<y<n-—2p}\{(z,y) | £ > q,y > p}. Also, the lines
of slope s are in one-to-one correspondence with lines of slopes 1/s, —s, and —1/s.
Thus we can build a table of N(n) triples (s, 3i,7i), where line ¢ is characterized by
‘a;z+Biy = v:’. (We have (N(4),...,N(12)) = (0, 12, 32, 76, 136, 252, 356, 572, 836).)

Start with the items 7, cj, as, bg and the n? options of the n queens problem
(see 7.2.2.1—(23)). Add N(n) new primary items #y, for 0 < k < N(n), each with
multiplicity [0..2]. Then append to option ‘r; ¢; aitj, bi—;’ every item #; for which
att + P¢j equals 7 in the table of relevant lines.

Historical notes: Answer 7.1.4-241(a) pointed out Sam Loyd’s observation in
1896 that this problem is solvable when n = 8. Solutions for larger n were counted by
F. Pahl, who posted the results to math.stackexchange in answer to question 4642059
(February 2023). The asymptotic behavior is currently unknown —not even whether
solutions exist for infinitely many n. See OEIS sequence A365437.

503. Yes, that would be quick. It’s well known that points {(z1,y1), (z2, y2), (z3,y3)}
are collinear if and only if z1(y2 —y3) + z2(ys —y1) + z3(y1 —y2) = 0. This test already
rules out more than 3.5 million cases after examining at most the first five rows. [The
fastest way to visit all solutions is probably a customized backtrack program. But the
MCC technology would be helpful if additional constraints were imposed.]

504. This beautiful “orchard pattern” (m = 17) is unique, except for
rotation and reflection. It was discovered when studying the N(16) = 2668 8 .
relevant lines of answer 502. (Incidentally, the line z+2y = 4 is part of 1172 m

solutions that contain all three of its points; at the other extreme, the line FHSEES

i M

x+2y = 14 is part of 226825 solutions that contain > 3 of its eight points.) :

506. Construct an MCC problem with primary items R;; and Cj of multiplicity &,
for 0 < 4,5 < 10 and 1 < k < 4; also secondary items ijk, which are essentially Boolean
variables whose color is [cell ¢j is colored k]; also primary items ¢j. There are 400 op-
tions, ‘45 Rir Cjr 1j1:[k=1] ij2:[k = 2] i53:[k = 3] ij4:[k =4]’; they enforce (i) and (ii).

Also introduce primary items #ij, which signify that cell ij belongs to a poly-
omino whose size matches its color. Every potential placement of a c-omino has a
corresponding option that includes c¢ of these sharp items. For example, 443944

1332
the solution shown makes use of the options ‘#06 051:0 061:1 071:0 161:0’; 2%2%3%%3%%
‘#03 #13 022:0 032:1 042:0 122:0 132:1 142:0 232:0’; ‘#02 #11 #12 013:0 1243343424
023:1 033:0 103:0 113:1 123:1 133:0 213:0 223:0°; ‘#00 #01 #10 #20 004:1 3333123332
014:1 024:0 104:1 114:0 204:1 214:0 304:0’. 4423324413

. . . . 3424324143
It turns out that Tullis’s tapestry is unique: There’s only one solution, 3414234243
3144233244

except for rotation and reflection(!).

January 13, 2024

202 ANSWERS TO EXERCISES 7.2.2.3

507. (Of course this is quite different from the queens-and-knights problem of exercise queens-and-knights problem
459.) Let @ and S be primary items with multiplicities q and s, respectively. Also let r;, 1\‘)3(;;5}21 graph
¢j, aq, bq, and s;; be secondary items, for 0 <i<m,0< j<n,and 0 <d <m+n—1. blangk (unmatchable) color
There are two options for every cell ij of the board, one for queen placement and one w%%tchable
. heuristic
for knight placement, namely FRB heuristic
. . . tilted square
‘Q ri ¢ aitj bitn—1—j U{s#1:0 | ij — Kkl in the m X n knight graph}’, Historical notes
‘S sij 7:0 ¢:0 @iq;:0 bigrn—1-5:0 U{ski:0 | 3 —kl in the m x n knight graph}’. gﬁ Software

unit d-vector
The trick here, due to Peter Weigel, is to give color 0 to some secondary items while

giving a blank (unmatchable) color to others, while noting that queens can be a knight’s
move apart and knights can be a queen’s move apart. (See exercise 7.2.2.1-169.)

508. A bevyofqg=1,..., 7 queens can coexist respectively with (22, 15, 11, 7, 5, 3, 1)
knights in respectively (12, 40, 56, 328, 16, 40, 104) ways, ignoring symmetry; and no
additional knights can be added. For example, here’s a maximum solution for each case:

R e
B A A AESuEenl
mE. | | i Wr@ i
e e S SR
The dancing links technology of Algorithm 7.2.2.1M handles each of these 14
problems in fewer than 301 M. Algorithm M is faster yet —at most 183 My, when
(¢, s) = (2,15). But the WTD heuristic makes it worse, when ¢ is small: More than 1 Gu
when ¢ = 1. And the FRB heuristic is champion in all cases with ¢ < 5; for instance, it
needs only 33 My when (g, s) = (3,12), compared to 186 My by Algorithm 7.2.2.1M.
Indeed, the FRB heuristic turns out to be dramatically superior on larger instances
of this problem. For example, it needs only 991 gigamems to find all solutions when
(m,n,q,s) = (12,15, 5, 38); the other three methods spend more RARAA A || N
than 49 Ty on this problem before even completing the first of + JW W‘
143 branches at the root of the search tree! (Incidentally, all 8 Mﬂiﬁﬁ :
solutions are obtained from the one shown by reflecting the board \@:W
and-or by using the “tilted square” trick of exercise 7.2.2-11. The ﬁ‘
maximum number of knights for (m,n,q) = (12,n,5) and n > 12 ;F
turns out to be 25 + [2(n —12)].) it::
Historical notes: This problem was introduced by ITA Software in spring 2002 as
a pre-interview test question, in the case m = n = 8 and ¢ = s, and popularized in 2004
by Roger Hui (see http://code. jsoftware.com/wiki/Essays/Queens_and Knights).

590. In each CSA below, I = {go} and @ is implicit.

(@) @={q,g3}; ¢ = (* < "7 g(rta)moas: ¢r)-

(b) Clearly n < 2d. Let e, = 0°1047'~% be the unit d-vector with 1 in co-
ordinate a. Let Q = {q(a,p)}, over all a € [0..d) and ternary d-vectors p with
po+ -+ pi—1 = n. Use the transitions qo — (* < a*? g(a,eq): qo0); q(a,p) —
Rap, (% < b"7 q(b,p+ep): q(a,p)), where Ry, = 0 if pa # 2; otherwise R,,, = {v1 \ q,
..., Un \ a} excludes a from all unassigned domains.

(c) Same as (b), but with € restricted to the (n‘jz) vectors p with no 1s.

(d) Let Q = {g(n,a,b) | 0 <a <d, 0<b< 2}. Use transitions go — R, (v1
07 q(1,0,0): go) and q(4, a,b) = R(j,a,b), (v; < a’*? (¢’ = a+17 q(j+1,a+1,0): q(j+1,

e

>
>
s

>

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 203

a,1)): q(j,a,b)), where R = {v; \a | 1 < j <n, j <a<d}; R(j,a0) = 0; and
R(j:ay]-) = {7}]‘+1 \a+2: Uj+2\a+3, B vﬂ\a-"—(n_])-"-]‘}

(e) Let Sj = (=1)"* +--- + (—1)"". A necessary and sufficient condition is that
S; >0for 1 <j<n,and S, =0. One solution is therefore to enter state g(j, S;) after
assigning v through v;, with Q = {g(n,0)}: go = vi \ 1, v \ 0, (vi + 07 ¢(1, 1) qo);
q(3,8) = (Vj+1 a7 q(j+1,s+ (—1)*): q(4,s)), for 1 Sj <nand 0<s<y.

[These constructions can often be significantly improved by reducing the domains
further. For example, ifd=10and n=121in (C), R0,1111120000 could exclude {6, 7, 8, 9}
from the domains of all five unassigned variables. In part (d) the underlying CSP might
find it much better to assign variables in a different order; if then a is in the domain Dy,
of vk, we must have a —1 € Dy U ---U Dy_;. In part (e) we could assign values
successively to vi, vn, v2, vp—1, and so on. We could even allow the CSP to assign
variables in order of smallest domain; a partial assignment in which s variables have
been assigned to 0 and ¢ variables to 1 is then feasible if and only if we get a nested
vector by assigning the leftmost n/2 — s unassigned variables to 0 and the others to 1.]

591. Let @ be the set of all states q(4,a) or ¢'(j,a), for 7 > 1 and 0 < a < d, together
with the special state L that is reached when “symmetry is broken.” Let I = {¢(1,0)}.
Use the transitions ¢(j,a) — (v; < a? ¢'(j,a): ¢(j,a +1)); ¢’ (j,a) = vuy1-;\ 0, ...,
Vnti—j \ @ — 1, (Unt1-j < a? q(j +1,0): L); L — (+ « %7 L: 1). (State q'(j,a)
makes no restrictions when a = 0.) We can let Q = @Q; but the actual final states are
q(n/2 +1,0) or ¢'((n + 1)/2,a) for palindromic solutions, L for the others.

592. The following CSA uses Duval’s algorithm (see answer 7.2.1.1-106) to produce
only the solutions that are powers of a prime string: Let I = {go}, @ = I U {q(4,k) |
1<j<k<n+1}U{#}, and Q = {g(j,n + 1) | j divides n}. (State # is “dead.”)
Use the transitions go — (v1 <+ *? ¢(1,2): go) and

q(j, k) = (vk = a™? (a <o 3?7 #:a=ve ;7 q(4, k +1): q(k, k +1))).

[This method is attractive, but additional pruning is often possible. For example, if
Dy, is the kth domain, we can remove from D; any element > max Dy, for any k > 1.]

593. (a) Yes, but only in special cases. The middle row, when ¢ = 7 (hence i = (n—1)/2)
is special; that’s the only time we can have a; = ¢;. And we clearly have a; = a; if and
only if a; = (n —1)/2. Also a; = d; if and only if R; = C;; that can happen without
attacking queens if and only if R, = ¢ = ;. Similarly, a; = b; occurs if and only if
R; =7 and C; =i. Cyclic symmetry dispenses with the other cases, like b; = ¢;.

(b) For example, transposition (3, j) <> (j,7) swaps R; <> Cj; thus (a;, b;, ¢, d;) <>
(d:, &, bi,a;). In general, reflection complements the set {a;, bi,ci,d;}.

(c) Each tuple spawns seven others: (b,/,cp/ydpry@pnrs...;bn—1,Cn—1,dn—1,an-1);
(Cn’)dn’ygn’ybn’;_---;Cnflydnjl,anfl,bn_—l); (dn/,anl,bnl,cnl;...; dnf]_, Ap—1, bn,]_,
cn-1); (dyr,Cprybyr, @y .. ;dn—1,Cn—1,bn—1,an—1); and so on. Thus the eight tuples

for the first solution are (2, 7 7,2;4,4,2,5;6,0,0,

3,3,6,6); (7,7,2, 24,2 5,4; 0,
6:3,6,6,3); (7,2, 2,7 2,5, 4, 4 0, 1, 6, 0; 6, 6, 3

,6,3,3); (2,2,7,7;5,4,4,2; 1,6,
3,3,6); (5,0,0,5;2,5,3,3;6,7,7,1; 1, 1,4,4); (0,0,5,5; 5,3,3,2; 7, 7, 1, 6; 1,

1;
6, 0,
)) 4
) (0,5,5,0:3,3,2,5 71,67 4,4,1,1); (5,5,0,0;3,2,5,31,6,7,7; 4,1, 1, 4).
1
6

0,1,
0; 6
4,1
The second solution has central symmetry, so it has only four distinct tuples: (1,
7,1,7,7,1,7,1;5,4,5,4;3,2,3,2); (7,1,7,1;1,7,1, 7; 4, 5, 4, 5; 2, 3, 2, 3); (0, 6,
0, 6;6,0,6,0; 3,2,3,2; 5,4, 5, 4); (6,0, 6 0; 0, 6 0, 6;2,3,2,3;4,5,4,5).
The other two solutions each have eight tuples, of which the lexicographically
least turn out to be (0, 1,8, 7; 6,3, 5,1; 1,8, 1, 3; 5, 6, 4, 6; 2,4, 0, 8) and (5, 5, 5,
5,1,7,1,7; 4,1, 4, 2; 7, 10, 10, 10; 10, 6, 7, 6; 2, 2, 2, 1).

January 13, 2024

partial assignment

symmetry is broken
palindromes

Duval

dead

transposition
central symmetry

204 ANSWERS TO EXERCISES 7.2.2.3

(d) Indeed, if f(x) is any one-to-one function that maps every solution x of some
combinatorial problem into a tuple, the z’s for which f(x) is lexicographically least,
over all solutions equivalent to x by any definition of equivalence, are canonical.

(e) True: min(a,s,a,) <n'; and we can’t have a,y = b,y =c, =d, =n' — 1.

(f) In the following, ‘¢j?’ is shorthand for ‘R; <— j7’ or ‘C; 4?7’ in exercise 590;
it means that we either place a queen in cell (4, j) or forbid that cell. Similarly, ‘not ij5’
is shorthand for ‘R; # j, C; # 4’; this restriction is vacuous unless 0 < ¢,j < n. States
qr, arise when we potentially have 4-fold symmetry; states rj, arise when we potentially
have 2-fold symmetry; and states s are intermediary. After symmetry has been broken
we reach state L, which is the wildcard state ‘L +— (x - %7 L: 1)’ as in answer 591.

Q1(’i,j) = R(i:j)7 (U? QQ(i,j)I Q1(i,j+1)); Tl(":]) > not ij_—]- (Z]? TZ(i:j): Tl(i:j+1));
(i,4) = (477 as(i, j): 5203, 5)); ra(i, §) = (737 r3(i, 0): L);

a3 (i, 5) = (77 qa(i, §): s4(i,4)); ra(i,§) = not j=1i, (j2? ra(d, 5): rs(i, j+1));

q4(i,) = (717 qu(i+1,0): L); ra(i, j) = (7i? r1(i+1,0): L);

52(1:]) — not jl: (ij? 53(]))7 53(/‘:]) — not .7_—11: (]i? T4(i7j): 53(/‘:.7'1'1))7
s4(i,j) = not 7, L; q1(¢,n) = r1 (g,) =r3(i,n) = s3(¢,n) = L. Here R(3, j) stands for
the restrictions ‘not (j—1)7, not 7j—1, not j—17’, as well as four more when i = [n/2]:
‘not 7j, not ji, not i7, not 7z’ These rules suffice when n = 2n' and I = {q:(n’,0)}.

If n =2n" +1, let I = {51(0)} and introduce n’ + 1 new states s1(j), where we
have s1(0) — not n'j and not jn' for n’ < j <n, (n'0?7 L: 51(1)); s1(j) — not j—1n’,
(n'j7 L: s1(j+1)) for 0 < j < n'; and s1(n') = (n'n'? g1 (n'+1,0): L1).

The final state is (g1(n,0),r1(n,0), L) for solutions with (4,2, 1)-fold symmetry.
594. (14, 14, 14, 14; 16, 16, 16, 16; 31, 31, 31, 31; 29, 29, 29, 29; 26, 27, 27, 27; 24,
24, 6, 24; 3, 1, 1, 6; 27, 3, 3, 3; 10, 30, 10, 10; 22, 6, 25, 21; 5, 26, 30, 11; 11, 11, 11,
8; 23, 22, 23, 23; 12, 12, 12, 12; 7, 5, 22, 22; 13, 13, 13, 13). [Place twelve queens in
extreme positions, and reduce domains accordingly. Then start the CSA of answer 593
in state ¢1(20,26); only six canonical solutions continue with azo = 26 and bao = 27.
More than 32 queens could, of course, be treated similarly.]

595. With @(n) = 8@a(n)+4@s(n)+2@d(n) solutions (see answer 7.2.2.1-24), we have

n=1011 12 13 14 15 16 17 18 19 20
Qa(n) = 0 5 18 231 642 4040 25320 166201 1115373 8060958 61981118
Qm)=11 2 6 11 49 79 245 498 1192 3798
Qa(n) = 0 02 2 0 0 12 17 0 0 60

Q(n) = 4 44 156 1876 5180 32516 202900 1330622 8924976 64492432 495864256

[See §12.2 of V. Kotésovec’s book Non-Attacking Chess Pieces (online since 2011)
for detailed information about pieces that combine a queen with a leaper.]

600. True. It will set Ry; < O when k = ¢, and R;;7 < O when k = j; then R;rj < O.

601. (a) Let X = ({). When k =1, Rs» < I. Then when k =2, Ry3 + I, Rss + X.
Then when k = 3, we set Ria < X, Ros < I, R54 < I. Then when k =4, Ri5 + I,
Rys < X, R35 < I, Rs5 < O. Soon all are O, by exercise 600.

(b) These relations say that ;41 = (z; +1) mod 3 for 1 < j < 5; but z5x1 can be
not only 01, 12, or 20, but also 02. However, it’s peculiar because (for example) R21 =
(ﬁ) puts no constraint on x1z2! The constraints begin to propagate as in (a): When
100
)

k=1, Rs2 < (100) then when k = 2, R13 + (100) Rs3 (é%%); etc.; Rs5 = (388

=

January 13, 2024

one-to-one function
symmetry has been broken
Kotésovec

leaper

7.2.2.3 ANSWERS TO EXERCISES 205

after k = 4, meaning that x5 must be 0. A lot happens when k& = 5, basically forcing
r1x2w3rexs = 20120 and allowing only one possibility for z;x; when ¢ < j.

The first round ends with Ro; = (§éé), R31 = (§zg), etc. But round 2 “purifies”
each R;; with ¢ > j so that only one 1 remains, thus achieving a perfectly stable state.

(¢) Nothing changes. In fact, there will be no change in any scenario where
Ry =1I for all k and R Ry is all 1s whenever ¢ # k # j.

(d) When k = 2, Ri3 + (38(1)) and R33 <« (égg). Then R31 < (filé), R3o (filfiJ)
when k = 3. No further changes occur; hence the final state is curiously asymmetric,
with Ris # RE . Ras #* RY,, and Ry still equal to (i i) (Don’t ask what that means.)
602. It’s true for r = 1; so assume that » > 1. Let k = max{ki,...,k-—1}, and let
(p, ¢) be minimum and maximum with k, = k, = k. (Possibly p = q.) By (200) there’s
a value x such that (s,z) € R, (z,2) € Rk, (z,t) € Ri;. Hence by induction on r we
can find suitable zg ...z, with o = s and x, = z, suitable x, ...z, with z, =z, =z,
and suitable z4 ...z, with z, =z and =, =¢.

999. ...

January 13, 2024

APPENDIX E

ANSWERS TO PUZZLES IN THE ANSWERS

(see answer 93(b))

4144 4424 4441 4144 3122 4441
4414 4424 4224 4454 3441 2433
1434 1344 2444 2454 3144 2313 (see answer 414)
2233 3322 2122 2555 1221 3322

(i) (ii) (iii) (iv) (xi) (xii)

No intuitive answers, please.
— LIFE INTERNATIONAL (17 December 1962)

206
January 13, 2024

LIFE

INDEX AND GLOSSARY st

Index-making has been held to be the driest
as well as lowest species of writing.

We shall not dispute the humbleness of it;
but the task need not be so very dry.

— LEIGH HUNT, in The Indicator (1819)

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

Barry, David McAlister (= Dave), iii. LIPIcs: Leibniz International Proceedings
AAAT: American Association for Artificial in Informatics (2008-).
Intelligence (founded in 1979); Relation: A property that holds for certain
Association for the Advancement of tuples of elements.
Artificial Intelligence (since 2007). Tuple: A sequence (1, ...,xzy) of elements,
ECAI: European Conference on Artificial sometimes written simply zj ... xg.
Intelligence (1980-), formerly called Nothing else is indexed yet (sorry).
Artificial Intelligence and Simulation Preliminary notes for indexing appear in the
of Behavior (1974-1978). upper right corner of most pages.
EJOR: European Journal of Operational If I’ve mentioned somebody’s name and
Research (1977-). forgotten to make such an index note,
Instantiations, see Assignments. it’s an error (worth $2.56).
207

January 13, 2024

