
January 13, 2024

Note to readers:

Please ignore these

sidenotes; they're just

hints to myself for

preparing the index,

and they're often
aky!

KNUTH

THE ART OF

COMPUTER PROGRAMMING

VOLUME 4 PRE-FASCICLE 7A

CONSTRAINT

SATISFACTION

(preliminary draft)

DONALD E. KNUTH Stanford University

ADDISON{WESLEY

6

77

January 13, 2024

Internet

Stanford GraphBase

downloadable software

MMIX

Internet page https://www-
s-fa
ulty.stanford.edu/~knuth/tao
p.html
ontains

urrent information about this book and related books.

See also https://www-
s-fa
ulty.stanford.edu/~knuth/sgb.html for information

about The Stanford GraphBase, in
luding downloadable software for dealing with

the graphs used in many of the examples in Chapter 7.

See also https://www-
s-fa
ulty.stanford.edu/~knuth/mmixware.html for down-

loadable software to simulate the MMIX
omputer.

See also https://www-
s-fa
ulty.stanford.edu/~knuth/programs.html for various

experimental programs that I wrote while writing this material (and some data �les).

Copyright

 2023 by Addison{Wesley

All rights reserved. No part of this publi
ation may be reprodu
ed, stored in a retrieval

system, or transmitted, in any form, or by any means, ele
troni
, me
hani
al, photo-

opying, re
ording, or otherwise, without the prior
onsent of the publisher, ex
ept

that the oÆ
ial ele
troni
 �le may be used to print single
opies for personal (not

ommer
ial) use.

Zeroth printing (revision -25), 10 January 2024

January 13, 2024

BARRY

Internet

PREFACE

But that is not my point.

I have no point.

| DAVE BARRY (2002)

This booklet
ontains draft material that I'm
ir
ulating to experts in the

�eld, in hopes that they
an help remove its most egregious errors before too

many other people see it. I am also, however, posting it on the Internet for

ourageous and/or random readers who don't mind the risk of reading a few

pages that have not yet rea
hed a very mature state. Beware: This material has

not yet been proofread as thoroughly as the manus
ripts of Volumes 1, 2, 3, 4A,

and 4B were at the time of their �rst printings. And alas, those
arefully-
he
ked

volumes were subsequently found to
ontain thousands of mistakes.

Given this
aveat, I hope that my errors this time will not be so numerous

and/or obtrusive that you will be dis
ouraged from reading the material
arefully.

I did try to make the text both interesting and authoritative, as far as it goes.

But the �eld is vast; I
annot hope to have surrounded it enough to
orral it

ompletely. So I beg you to let me know about any de�
ien
ies that you dis
over.

To put the material in
ontext, this portion of fas
i
le 7 previews Se
tion

7.2.2.3 of The Art of Computer Programming, entitled \Constraint satisfa
tion."

It will be the �rst se
tion of Volume 4C. As usual, it
overs many topi
s that are

of independent interest and that have
lose ties to other se
tions. I haven't had

time yet to write a more detailed prefa
e to the subje
t, but I en
ourage
urious

readers to browse the pages and take a look at the illustrations and exer
ises

that I've a

umulated so far. Espe
ially the exer
ises.

� � �

The explosion of resear
h in
ombinatorial algorithms sin
e the 1970s has

meant that I
annot hope to be aware of all the important ideas in this �eld.

I've tried my best to get the story right, yet I fear that in many respe
ts I'm

woefully ignorant. So I beg expert readers to steer me in appropriate dire
tions.

Please look, for example, at the exer
ises that I've
lassed as resear
h

problems (rated with diÆ
ulty level 46 or higher), namely exer
ises 52, 66, 87,

105, 108, 121, 131, 150, 187, 200, 319, 384, : : : ; I've also impli
itly mentioned or

iii

January 13, 2024

iv PREFACE

Gessel

Beluhov

Bessi�ere

Horsley

Jeavons

M
Creesh

Prosser

Si
herman

Solnon

Stappers

Stu
key

Sugihara

Trimble

Wermuth

Knuth, Jill

internet

downloadable programs and data{

posed additional unsolved questions in the answers to exer
ises 51, 83, 115, 118,

119, 123(d), 129(e), 150, 180, 197, 211, 290, 313, 321, 383(b), 389, 417, 430(e, f),

493, 502, 594, : : : . Are those intriguing problems still open? Please inform me

if you know of a solution to any of them. And of
ourse if no solution is known

today but you do make progress on any of them in the future, I hope you'll let

me know.

I urgently need your help also with respe
t to some exer
ises that I made

up as I was preparing this material. I
ertainly don't like to re
eive
redit for

things that have already been published by others, and most of these results are

quite natural \fruits" that were just waiting to be \plu
ked." Therefore please

tell me if you know who deserves to be
redited, with respe
t to the ideas found

in exer
ises 12, 40, 41, 42, 43, 44, 45, 47, 50, 51, 52, 55, 64, 65, 67, 68, 69, 70, 71,

72, 73, 74, 76, 78, 79, 80, 81, 91, 99, 112, 115, 116, 117, 118, 119, 120, 121, 122,

123, 124, 132, 133, 137, 145, 146, 148, 149, 160, 165, 168, 169, 172, 177, 185(
),

187, 194, 199, 211, 214, 221, 222, 224, 229, 235, 255, 259, 260, 274, 283, 291, 297,

298, 304, 306, 311, 333, 341, 352, 353, 354, 356, 364, 383, 388, 400, 401, 402, 403,

404, 411, 412, 430, 463, 493, 504, 590, 591, 592, 593, 594, : : : , and their answers.

Furthermore I've
redited exer
ises 36, 148, and : : : to unpublished work of Ira

Gessel, Nikolai Beluhov, and : : : . Have any of those results ever appeared in

print, to your knowledge?

Can anybody help me identify the sour
e of the
rystal maze puzzle? (The

answer to exer
ise 20 tells what I know so far.)

� � �

Spe
ial thanks are due to Christian Bessi�ere, Daniel Horsley, Peter Jeavons,

Ciaran M
Creesh, Patri
k Prosser, George Si
herman, Christine Solnon, Filip

Stappers, Peter Stu
key, Koki
hi Sugihara, James Trimble, Udo Wermuth, and

: : : for their detailed
omments on my early attempts at exposition, as well as

to numerous other
orrespondents who have
ontributed
ru
ial
orre
tions. I

also thank my wife for help with Fig. 100.

� � �

I happily o�er a \�nder's fee" of $2.56 for ea
h error in this draft when it is �rst

reported to me, whether that error be typographi
al, te
hni
al, or histori
al.

The same reward holds for items that I forgot to put in the index. And valuable

suggestions for improvements to the text are worth 32/
 ea
h. (Furthermore, if

you �nd a better solution to an exer
ise, I'll a
tually do my best to give you

immortal glory, by publishing your name in the eventual book:�)

The answers to several of the exer
ises refer to programs that I wrote while

preparing this material. If you want to see a program
alled FOO, look for FOO on

the webpage https://
s.stanford.edu/~knuth/programs.html. (Many other

example programs
an also be found there.)

January 13, 2024

PREFACE v

online

Knuth

notation `� x

sideways sum

population
ount

notation `� x

notation hxyzi

median fun
tion

Hexade
imal
onstants

TARJAN

As in Volume 4B, I've posted prototypes of the algorithms presented here

on that same webpage. In parti
ular, you
an download the programs SSXCC0,

SSXCC, SSXCC-BINARY, SSMCC, and XCCDC; those experimental versions of

Algorithms C, C

+

, B, M, and S were my
onstant
ompanions while writing the

later portions of Se
tion 7.2.2.3.

Data �les for the ben
hmark examples mentioned in that se
tion
an also

be found online at

https://
s.stanford.edu/~knuth/programs/x

-ben
hmarks.tgz

https://
s.stanford.edu/~knuth/programs/m

-ben
hmarks.tgz

so that interested readers
an do their own experiments.

Cross referen
es to yet-unwritten material sometimes appear as `00'; this

impossible value is a pla
eholder for the a
tual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.

99 Umbruary 2019

P.S.: A note on notations. Some formulas in this booklet use the notation `� x'

for the \sideways sum" or \population
ount" fun
tion, as well as the notation

`� x' for the \ruler" fun
tion. Those fun
tions, and other bitwise notations, are

dis
ussed extensively in Se
tion 7.1.3 of Volume 4A.

Other formulas use the notation hxyzi for the median fun
tion, whi
h is

dis
ussed extensively in Se
tion 7.1.1.

Hexade
imal
onstants are pre
eded by a number sign or hash mark:

#

123

means (123)

16

.

If you run a
ross other notations that appear strange, please look at the

Index to Notations (Appendix B) at the end of Volume 4A or 4B. Volume 4C

will, of
ourse, have its own Appendix B some day.

The �eld of
ombinatorial algorithms is too vast

to
over in a single paper or even in a single book.

| ROBERT ENDRE TARJAN, SIAM Review (1978)

January 13, 2024

CONTENTS

Chapter 7|Combinatorial Sear
hing 0

7.2. Generating All Possibilities . 0

7.2.1. Generating Basi
 Combinatorial Patterns 0

7.2.2. Ba
ktra
k Programming 0

7.2.2.1. Dan
ing links 0

7.2.2.2. Satis�ability . 0

7.2.2.3. Constraint Satisfa
tion 1

Related models . 2

*Statisti
al me
hani
s 4

A simple example . 6

Automating automobiles 7

Line labeling in
omputer vision 9

Graph labeling . 16

*Gra
eful digraphs . 24

Graph embedding . 28

*Supplemental labels and graphs 35

Spe
ial
ases of subgraph isomorphism 37

Solving a CSP . 38

Translating CSP to SAT 39

SAT en
odings of general relations 46

Consisten
y . 48

EÆ
ien
y . 54

Representing the domains 56

*Dan
ing
ells . 61

*Dynami
 variable ordering heuristi
s 65

*Maintaining XCC supports 69

Performan
e on ben
hmarks 73

*Sparse-set methods for MCC problems 76

Tra
table families of CSPs 79

A brief history . 80

Exer
ises . 84

Answers to Exer
ises . 122

Appendix E, Answers to Puzzles in the Answers 206

Index and Glossary . 207

vi

January 13, 2024

THE HOPCROFT{KARP ALGORITHM vii

Hop
roft

Karp

Internet

mat
hing

dags

data stru
tures

mate tables

depth-�rst pro
ess

sparse graph representation

edge nodes

maximum
ardinality mat
hing

A foretaste of Se
tion 7.5.1. Se
tion 7.2.2.3 refers forward to the Hop
roft{

Karp algorithm, whi
h will be dis
ussed at the beginning of Se
tion 7.5.1 (\Bi-

partite mat
hing"), a

ording to present plans. That algorithm is
opied here

for referen
e. (Further details and exposition
an be found in prefas
i
le 14a, on

the Internet at https://
s.stanford.edu/~knuth/fas
14a.ps.gz.)

We're given a bipartite graph. The verti
es of one part are
alled \girls" and

the verti
es of the other part are
alled \boys," so that we
an
onveniently use

the English language to distinguish the parts. The problem is to �nd a maximum

mat
hing, namely a set of disjoint edges that is as large as possible.

Hop
roft and Karp's algorithm
onstru
ts dags (dire
ted a
y
li
 graphs)

of SAPs (shortest augmenting paths), as explained in that prefas
i
le. The

following implementation uses an interesting
ombination of data stru
tures.

First there are \mate tables" to represent the
urrent mat
hing, with GMATE[g℄

for 1 � g � M and BMATE[b℄ for 1 � b � N to indi
ate the partners of girl g

and boy b, or 0 if they're
urrently free.

The breadth-�rst
onstru
tion of a dag is
ontrolled by an array QUEUE[k℄

for 0 � k < M , whi
h re
ords the girls
urrently present. If f girls are free, they

appear in the �rst f positions of QUEUE. There's also a partial inverse, IQUEUE[g℄

for 1 � g � M : If 0 � k < f and QUEUE[k℄ = g, then IQUEUE[g℄ = k. Yet

another array, MARK[b℄ for 1 � b � N , equals l if b 2 B

l

; otherwise MARK[b℄ = 0.

There's also MARKED[t℄, for 0 � t < N ; it lists the boys for whi
h MARK[b℄ 6= 0.

The algorithm also involves a depth-�rst pro
ess, to remove SAPs after the

dag has been built. Those steps use the array STACK[l℄, for 0 � l < M , to

remember the boy of B

l

who is
urrently being visited.

The bipartite graph that underlies everything is represented sparsely as a

olle
tion of edge nodes, ea
h of whi
h
ontains four �elds GTIP, BTIP, GNEXT,

BNEXT. An edge between girl g and boy b is represented by an edge node e for

whi
h GTIP(e) = g and BTIP(e) = b; here 1 � e � E, where E is the total

number of edges. The �rst edge involving g, for 1 � g � M , is GLINK[g℄; the

next one is GNEXT(GLINK[g℄); and so on, until 0 terminates the list. The values

of GTIP, BTIP, and GNEXT remain �xed throughout the
omputation.

A similar
onvention is used to represent the dag, whi
h is
onstru
ted

dynami
ally: The �rst ar
 from boy b in the dag is BLINK[b℄, for 1 � b � N ,

and the next is BNEXT(BLINK[b℄), et
. The
ontents of BLINK and BNEXT are

therefore not �xed. Every girl g in the dag is the sour
e of exa
tly one ar
, whi
h

leads to GMATE[g℄. If GMATE[g℄ = 0, that ar
 leads to ?.

Algorithm H (Maximum bipartite mat
hing). Given a bipartite graph with

M girls, N boys, and E edges, represented as explained above, this algorithm

omputes a maximum
ardinality mat
hing, whi
h will appear in the GMATE and

BMATE arrays. It also uses the auxiliary arrays QUEUE, IQUEUE, MARK, MARKED,

and STACK, de�ned above. The MARK array must be initially zero.

H1. [Prime the pump.℄ Set GMATE and BMATE to a maximal (not ne
essarily

maximum) mat
hing; also set f to the number of unmat
hed girls, and

list them in the �rst f slots of QUEUE.

January 13, 2024

viii PREFACE: A FORETASTE OF SECTION 7.5.1

ba
ktra
king

breadth-�rst

depth-�rst

H2. [Start building the dag.℄ Set t i l r 0, q f , and L 0.

H3. [Begin level l+1.℄ (At this point the girls of G

l

are listed in QUEUE[k℄ for

i � k < q, and the dag
ontains t boys.) Set q

0

 q.

H4. [Pro
ess a g 2 G

l

.℄ Go to H10 if i = q

0

. Otherwise set g QUEUE[i℄,

i i+ 1, and e GLINK[g℄.

H5. [Let b be a suitor for g.℄ If e = 0, return to H4; otherwise set b BTIP(e).

H6. [Is b new?℄ If MARK[b℄ = 0, go to H8. Otherwise if MARK[b℄ > l, set

BNEXT(e) BLINK[b℄, BLINK[b℄ e.

H7. [Loop on b.℄ Set e GNEXT(e) and return to H5.

H8. [Enter b into B

l+1

.℄ If L > 0 and BMATE[b℄ 6= 0, go to H7. Otherwise set

MARK[b℄ l+1, MARKED[t℄ b, t t+1, BLINK[b℄ e, BNEXT(e) 0.

H9. [Is b free?℄ If BMATE[b℄ 6= 0, set QUEUE[q℄ BMATE[b℄, q q + 1.

Otherwise if L = 0, set L l + 1, r 1, q q

0

(we've rea
hed the �nal

level). Otherwise set r r+1 (there are r free boys on level L). Go to H7.

H10. [Is the dag
omplete?℄ If q 6= q

0

, set l l+1 and return to H3. (Otherwise

the dag is
omplete, and the last r elements of MARKED are the free boys

in B

L

.) Terminate the algorithm if L = 0 (there are no augmenting paths).

H11. [Start to �nd a SAP.℄ If r = 0, set MARK[MARKED[k℄℄ 0 for 0 � k < t

and return to H2. Otherwise set b MARKED[t� r℄, r r � 1, l L.

H12. [Enter level l.℄ Set STACK[l℄ b.

H13. [Advan
e.℄ Set e BLINK[b℄, and go to H15 if e = 0. Otherwise set

BLINK[b℄ BNEXT(e), g GTIP(e). If MARK[GMATE[g℄℄< 0, repeat this

step (g has been deleted). Otherwise set b GMATE[g℄.

H14. [SAP
omplete?℄ If b = 0 (g is free), go to H16. Otherwise set l l � 1

and return to H12.

H15. [Resume higher level.℄ Set l l + 1. Then go to H11 if l > L; otherwise

set b STACK[l℄ and go ba
k to H13. (This is like \ba
ktra
king," ex
ept

that we never retra
e a step be
ause we're destroying the dag as we go.)

H16. [Prepare to augment.℄ (At this point l = 1; g = g

0

and STACK[1℄ = b

1

in

a SAP. The other boys are STACK[2℄, : : : , STACK[L℄.) Set f f � 1,

k IQUEUE[g℄, i QUEUE[f℄, QUEUE[k℄ i, and IQUEUE[i℄ k.

(Those operations removed g from the list of free girls.) Set b STACK[1℄.

H17. [Augment.℄ Set MARK[b℄ �1, g

0

 BMATE[b℄, BMATE[b℄ g, and

GMATE[g℄ b. Then if g

0

6= 0, set g g

0

, l l + 1, b STACK[l℄, and

repeat this step. Otherwise go ba
k to H11.

This algorithm has many steps, but it's not frighteningly
ompli
ated. It es-

sentially
onsists of two separate-but-
ooperating subalgorithms, namely the

breadth-�rst dag
onstru
tion in H2{H10 and the depth-�rst dag de
onstru
tion

in H11{H17.

Algorithm H
omes with an important free bonus: After it has found a

supposedly maximum mat
hing, its data stru
tures
ontain enough information

January 13, 2024

THE HOPCROFT{KARP ALGORITHM ix

erti�
ate of
orre
tness

maximum independent set in bipartite graph

to
onvin
e any skepti
 that the mat
hing is indeed as large as possible. Indeed,

if no girl is free, the mat
hing is perfe
t and obviously optimum. Otherwise the

girls in QUEUE[k℄ for 0 � k < q are adja
ent to only t boys in the graph, namely

the boys in MARKED[k℄ for 0 � k < t. And it's easy to verify that q = t+f ; hen
e

any mat
hing must leave at least f girls without a partner. Indeed, Algorithm H

provides us with a maximum independent set,

I = fg j g is a girl in the �nal dagg [fb j b is a boy not in the �nal dagg;

whi
h is
erti�ed by the maximum mat
hing and vi
e versa!*

Algorithm H's main
laim to fame, however, is that it runs remarkably fast.

Give it a graph, and it
hurns out a maximum mat
hing, li
kety-split. The

reason is that SAPs are extremely good augmenters:

Theorem H. Let s be the size of a maximum mat
hing. When r = 0 in step

H11, the size of the
urrent mat
hing is at least

L

L+1

s.

Proof. If the
urrent mat
hing has s

0

edges, we've observed that at least s� s

0

vertex-disjoint augmenting paths exist. We also know that ea
h of those paths

ontains at least L+1 edges of a maximum mat
hing. So s � (L+1)(s�s

0

).

Corollary K. The running time for Algorithm H to �nd a maximum mat
hing

of size s is O

�

(M +N +E)

p

s

�

.

Proof. Every time a dag is
onstru
ted, the value of L in
reases. Ea
h round of

onstru
tion and de
onstru
tion
learly involves O(M +N +E) steps. If the al-

gorithm hasn't terminated before the value of L ex
eeds

p

s, a mat
hing of size �

p

s�1

p

s

s = s�

p

s has been found, and

p

s more rounds will
omplete the task.

* The
omplement of I is a vertex
over
ontaining C verti
es, where C is the size of the

mat
hing found. No vertex
over
an
ontain fewer than C verti
es; hen
e I is maximum.

January 13, 2024

pin
hed gasket

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION 1

Knight of Holinesse

SPENSER

MILTON

WEBSTER

CHESTERTON

STRAVINSKY

onstraint satisfa
tion problem{

CSP: The
onstraint sat prob

XCC problems

exa
t
overing with
olors

items

options

SAT problems

Boolean satis�ability

satis�ability

literals

lauses

variables

domains

onstraints

nogood

SAT as CSP

His Lady sad to see his sore
onstraint,

Cride out, Now now Sir knight, shew what ye bee.

| EDMUND SPENSER, The Faerie Queene (1590)

The work under our labour grows, luxurious by restraint.

| JOHN MILTON, Paradise Lost (1667)

Liberty exists in proportion to wholesome restraint.

| DANIEL WEBSTER (1847)

It is impossible to be an artist and not
are for laws and limits.

Art is limitation; the essen
e of every pi
ture is the frame.

| GILBERT K. CHESTERTON, Orthodoxy (1908)

I surround myself with obsta
les.

Whatever diminishes my dis
omfort diminishes my strength.

The more
onstraints one imposes, the more one

frees one's self of the
hains that sha
kle the spirit.

| IGOR STRAVINSKY, Po�etique musi
ale sous forme de six le�
ons (1939)

7.2.2.3. Constraint satisfa
tion. In Se
tion 7.2.2.1 we solved numerous ex-

amples of XCC problems|exa
t
overing with
olors|whi
h featured \items"

and \options." Then in Se
tion 7.2.2.2 we resolved lots of SAT problems|

Boolean satis�ability|whi
h featured \literals" and \
lauses." All of these,

and more, are instan
es of a
ombinatorial
hallenge that's more general yet, the

onstraint satisfa
tion problem|often
alled the CSP for short|whi
h we will

see is based on \variables," \domains," and \
onstraints."

The idea is simple: We're given a �nite list of variables (x

1

; x

2

; : : : ; x

n

), to

whi
h we
an assign values that belong to given �nite domains (D

1

; D

2

; : : : ; D

n

).

And we're also given a set of
onstraints fR

1

; R

2

; : : : ; R

m

g, ea
h of whi
h spe
i�es

that a
ertain subset of the values (x

1

; x

2

; : : : ; x

n

) must be mutually
ompatible.

Some
ombinations of values are \good"; the others are \nogood."

For example, let n = 5, and suppose that ea
h domain is a set of letters:

D

1

= fB; Sg; D

2

= fC; Lg; D

3

= fA; I; Ug; D

4

= fE; Og; D

5

= fD; Ng: (1)

Thus there are 2�2�3�2�2 = 48 possible settings of x

1

x

2

x

3

x

4

x

5

, from BCAED

to SLUON. Let's also impose three
onstraints:

R

1

(x

1

; x

3

; x

5

) = `x

1

x

3

x

5

2 fBAN; BUD; SINg';

R

2

(x

1

; x

4

) = `x

1

x

4

2 fBE; SE; SOg';

R

3

(x

2

; x

4

; x

5

) = `x

2

x

4

x

5

2 fCOD; CON; LEDg':

(2)

This CSP has two solutions, easily found by hand (see exer
ise 1).

Every SAT problem is obviously a CSP in whi
h all the domains are f0; 1g.

For example, problem F = f1

�

2; 23;

�

1

�

3;

�

1

�

23g in 7.2.2.2{(3) has four
onstraints,

x

1

x

2

2 f00; 10; 11g; x

2

x

3

2 f01; 10; 11g; x

1

x

3

2 f00; 01; 10g;

x

1

x

2

x

3

2 f000; 001; 010; 011; 100; 101; 111g: (3)

January 13, 2024

2 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

CSP as SAT

log en
oding

Boolean variables

dire
t en
oding

order en
oding

XCC as CSP

primary item

options

se
ondary item

CSP as XCC

relational stru
tures

universal algebra

predi
ates

Cohn

Cartesian produ
t

tuples

ommas

relation

binary

ternary

quaternary

unary

nullary

dire
ted graph

verti
es

Conversely, every CSP
an be formalized as an equivalent SAT problem,

by using several SAT variables to represent ea
h CSP variable x whose domain

size d ex
eeds 2. For example, if the domain is f0; 1; : : : ; d � 1g, Se
tion 7.2.2.2

dis
ussed the \log en
oding," with l = dlg de Boolean variables meaning that

x = (x

l�1

: : : x

1

x

0

)

2

. There's also the \dire
t en
oding," with d variables x

k

=

[x= k ℄, as well as the \order en
oding," whi
h has d� 1 variables x

j

= [x� j ℄.

We also dis
ussed a variety of ways to represent arbitrary
onstraints, in the

form of one or more
lauses involving su
h Boolean variables. Ea
h of those

en
odings has its own virtues and weaknesses, depending on the appli
ation.

Every XCC problem
an, similarly, be regarded as a CSP. One way is to

have a variable x

i

for every primary item i, with domain D

i

equal to the set of

options that
ontain i. The
onstraints are that x

i

and x

j

annot be options

that
on
i
t: If x

i

= o

i

and x

j

= o

j

, where o

i

6= o

j

, then o

i

and o

j

annot have

a
ommon primary item, nor
an they have a
ommon se
ondary item that's

olored di�erently in o

i

and o

j

. Conversely, exer
ise 7.2.2.1{100 presented one

way to en
ode any CSP as an XCC problem.

Thus XCC, SAT, and CSP
an ea
h be redu
ed to the other two.

We've already learned how to
onstru
t ex
ellent XCC solvers and ex
ellent

SAT solvers, so we might be tempted to stop there, regarding CSP as a problem

that's already been well solved. But we shall see that
areful
onsideration of the

CSP not only
lari�es XCC and SAT, it also tea
hes us important new methods.

Related models. Many groups of resear
hers have independently adopted

on
eptual frameworks that are identi
al to or very similar to the notions of

variables, domains, and
onstraints. For example, a theory of relational stru
-

tures has been developed as part of the bran
h of mathemati
s
alled \universal

algebra." A relational stru
ture is a set U together with a set fR

1

; R

2

; : : : g of

relations or \predi
ates" de�ned on the elements of U . Ea
h relation R

i

depends

on k elements, for some k = k

i

, and it de�nes the k-tuples of elements for whi
h

that predi
ate is true. [See P. M. Cohn, Universal Algebra (1965), Chapter V.℄

Let's be a little more pre
ise. The Cartesian produ
t of sets (D

1

; : : : ; D

n

),

denoted by D

1

�� � ��D

n

, is the set of all n-tuples (x

1

; : : : ; x

n

) su
h that x

i

2 D

i

for 1 � i � n. Thus, D

1

� � � � � D

n

is the set of all solutions to a CSP with

domains (D

1

; : : : ; D

n

), in the
ase when there are no
onstraints. An n-tuple

su
h as (x

1

; : : : ; x

n

) is often written simply as x

1

: : : x

n

, when
ommas aren't

ne
essary. We also write D�� � ��D = D

n

when the n domains are all identi
al.

A k-ary relation on sets (D

1

; : : : ; D

k

) is a subset of D

1

� � � � � D

k

. We

write either R(x

1

; : : : ; x

k

) or x

1

: : : x

k

2 R when we want to say that the k-

tuple (x

1

; : : : ; x

k

) satis�es relation R. The relation is
alled binary when k = 2,

ternary when k = 3, quaternary when k = 4, and so on; it's unary when k = 1.

(Stri
tly speaking, there also are nullary relations; see exer
ise 5.)

The simplest nontrivial relational stru
tures arise where there's just a single

binary relation. In fa
t, this
ase is so simple, we hardly ever think of it as a

\relation stru
ture" at all: We
all it a dire
ted graph. Indeed, we know well

that a dire
ted graph is a set V of verti
es, together with a set A � V � V of

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: RELATED MODELS 3

ar
s

symmetri
al

irre
exive

graph

edges

homomorphism

omplete graph

lique

similar

arity

nonequality relation

disequality, see nonequality

embedded

subgraph isomorphism, see embedded graphs

subgraph

opy

onstant

rea
hable

Jeavons

general
ombinatorial problem

GCP

ar
s; and that's exa
tly what it means to be a relational stru
ture with a single

binary relation. This
ase is so
ommon, we usually use the spe
ial notation

u��!v, instead of writing A(u; v) or uv 2 A.

Furthermore, if the lone binary relation is symmetri
al (meaning that u��!v

implies v��!u) and irre
exive (meaning that v /��!v), we usually
all it E instead

of A; and we write u���v instead of writing E(u; v) or uv 2 E. In su
h
ases,

of
ourse, we have an ordinary (undire
ted) graph, and E is its set of edges.

Now let's
onsider two graphs, G = (V;E) and G

0

= (V

0

; E

0

). Suppose

we atta
h a label h(v) to every vertex v 2 V , where h(v) belongs to V

0

. This

mapping h : V ! V

0

is
alled a homomorphism if E(u; v) implies E

0

(h(u); h(v));

in other words, it's a homomorphism if we have

h(u)���h(v) in G

0

whenever u���v in G: (4)

For example, if G

0

is the
omplete graph K

d

on verti
es V

0

= f1; 2; : : : ; dg,

we have j��� k in G

0

if and only if j 6= k. So h is a homomorphism from G to

K

d

if and only if it's a way to
olor the verti
es of G properly with d
olors.

Going the other way, suppose G (not G

0

) is the
omplete graph K

d

. It's

easy to see that h is a homomorphism from K

d

to G

0

if and only if the verti
es

fh(1); : : : ; h(d)g form a d-
lique in G

0

.

Things get even more interesting when there's more than one relation. If

S = (U;R

1

; : : : ; R

t

) and S

0

= (U

0

; R

0

1

; : : : ; R

0

t

) are relational stru
tures, we say

that S and S

0

are similar if R

i

and R

0

i

both have the same \arity," for 1 � i � t.

(In other words, R

i

and R

0

i

are both k

i

-ary.) In su
h
ases we de�ne a homo-

morphism h from S to S

0

to be a mapping from U to U

0

su
h that

R

i

(x

1

; : : : ; x

k

i

) implies R

0

i

(h(x

1

); : : : ; h(x

k

i

)); for 1 � i � t. (5)

For example,
onsider the augmented graph stru
ture G

6=

= (V;E; 6=) whose

relations in
lude the nonequality relation 6̀=' as well as the ordinary edge rela-

tion E. A homomorphism from G

6=

to G

06=

now has two properties:

h(u)���h(v) in G

0

whenever u���v in G; h(u) 6= h(v) whenever u 6= v: (6)

Consequently G is embedded in G

0

: The verti
es fh(v) j v 2 V g and edges

fh(u) ��� h(v) j u���v in Gg form a subgraph of G

0

that's essentially a
opy

of G. If, for instan
e, G is the n-
y
le C

n

, h proves that G

0

ontains an n-
y
le.

Sometimes a k-ary relation is
onstant, meaning that it is satis�ed by only a

single k-tuple. One interesting example is the stru
ture S = (V;A; fabg), where

(V;A) is a digraph with spe
ial verti
es a and b. Then a homomorphism h from

S to the relational stru
ture S

0

= (f0; 1g;=; 6=) will tell us that u��! v implies

h(u) = h(v), and also that h(a) 6= h(b). Hen
e every vertex v rea
hable from a

will have h(v) = h(a), and we
an
on
lude that b is unrea
hable. Conversely, if

b isn't rea
hable from a, su
h a homomorphism
an easily be found.

The evident versatility of homomorphisms has led Peter Jeavons to de�ne

the general
ombinatorial problem (GCP) as follows: \Given a pair of similar re-

lational stru
tures S and S

0

, is there a homomorphism from S to S

0

?" [See Theo-

January 13, 2024

4 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

Feder

Vardi

Jeavons

relational databases

attributes

natural join

join

Codd

Gar
ia-Molina

Ullman

Widom

Statisti
al me
hani
s

physi
s{

spin

on�guration

energy

Ising model

Lenz

Ising

reti
al Computer S
ien
e 200 (1998), 185{204; see also T. Feder and M. Y. Vardi,

SICOMP 28 (1998), 57{104.℄ Exer
ises 10 and 11 provide further examples.

In parti
ular, Jeavons observed that the CSP is indeed a spe
ial
ase of the

GCP. To
ast (1) and (2) in this framework, for example, we let

S =

�

f1; 2; 3; 4; 5g; f1g; f2g; f3g; f4g; f5g; f135g; f14g; f245g

�

; (7)

S

0

=

�

fA; : : : ; Zg; D

1

; D

2

; D

3

; D

4

; D

5

; R

1

; R

2

; R

3

�

; (8)

here D

1

through D

5

are the domains in (1), and R

1

through R

3

are the tuples

in (2). The general idea is to have only
onstant relations in S, and to put the

domains and
onstraints into S

0

. A homomorphism h from S to S

0

will then give

us the values (h(1); : : : ; h(5)) = (x

1

; : : : ; x

5

) that simultaneously belong to the

domains and satisfy the
onstraints.

Conversely, every GCP is readily seen to be a CSP. (See exer
ise 15.)

The CSP framework is also intimately
onne
ted with the theory of relational

databases. Individual fa
ts in su
h a database are sets of tuples, involving the

values of variables
alled \attributes." For example, we might have �ve attributes

alled `lo
ation', `employee', `manager', `job', `language', and three relations:

Departments Layout Personnel

lo
ation manager language lo
ation job employee job language

basement Ali
e norsk basement test Chris
ode deuts
h

basement Udo deuts
h solarium test Chris
ode norsk

solarium Iris norsk solarium
ode Logan test deuts
h

What
ombinations of (lo
ation, employee, manager, job, language) exist in this

pe
uliar institution? They
orrespond pre
isely to the solutions to the CSP in

(1) and (2)! Database theorists
all this the natural join of the three relations.

[See E. F. Codd, CACM 13 (1970), 377{387; H. Gar
ia-Molina, J. D. Ullman,

and J. Widom, Database Systems: The Complete Book (Prenti
e{Hall, 2002).℄

*Statisti
al me
hani
s. Similar ideas arise also when physi
ists
on
eive of the

universe as a giganti

olle
tion of dis
rete parti
les, ea
h of whi
h has its own

\spin." If there areN parti
les, the overall state is then anN -tuple� = �

1

: : : �

N

alled a
on�guration, where �

j

is the jth spin. Di�erent parti
les
an have

di�erent kinds of quantized spins, belonging to a given �nite spa
e of possible

values, exa
tly analogous to the domains in a CSP.

Every
on�guration � has an asso
iated energy E(�), whi
h is usually the

sum of
ontributions from parti
les that intera
t lo
ally. For example, the \one-

dimensional Ising model," formulated by W. Lenz and analyzed by his student

E. Ising [Zeits
hrift f�ur Physik 31 (1925), 253{258℄, has the energy fun
tion

E(�) = �

N�1

X

j=1

�

j

�

j+1

�B

N

X

j=1

�

j

; (9)

where ea
h spin �

j

is �1, and where the
onstant B represents the strength of an

external magneti
 �eld. If �

j�1

= �

j+1

= ��

j

and B�

j

< 2, parti
le j will tend

to
hange its spin to mat
h its neighbors, be
ause that would redu
e the energy.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: RELATED MODELS 5

generating fun
tion

temperature

partition fun
tion

probability

Boltzmann

ground states

maxSAT

random satis�ability

M�ezard

Montanari

Any set of k-ary relations between parti
les
an be used to de�ne energy

fun
tions. So, in parti
ular, we
an
ast the CSP of (1) and (2) into this mold,

obtaining
on�gurations in D

1

� � � � �D

5

whose energy fun
tion is

E(�

1

�

2

�

3

�

4

�

5

) = �[R

1

(�

1

; �

3

; �

5

)℄� [R

2

(�

1

; �

4

)℄� [R

3

(�

2

; �

4

; �

5

)℄: (10)

Here are the 48 possibilities, together with their asso
iated energy levels:

� E(�)

BCAED �1

BCAEN �2

BCAOD �1

BCAON �2

BCIED �1

BCIEN �1

BCIOD �1

BCION �1

� E(�)

BCUED �2

BCUEN �1

BCUOD �2

BCUON �1

BLAED �2

BLAEN �2

BLAOD 0

BLAON �1

� E(�)

BLIED �2

BLIEN �1

BLIOD 0

BLION 0

BLUED �3

BLUEN �1

BLUOD �1

BLUON 0

� E(�)

SCAED �1

SCAEN �1

SCAOD �2

SCAON �2

SCIED �1

SCIEN �2

SCIOD �2

SCION �3

� E(�)

SCUED �1

SCUEN �1

SCUOD �2

SCUON �2

SLAED �2

SLAEN �1

SLAOD �1

SLAON �1

� E(�)

SLIED �2

SLIEN �2

SLIOD �1

SLION �2

SLUED �2

SLUEN �1

SLUOD �1

SLUON �1

To analyze su
h models, physi
ists essentially
al
ulate the generating fun
-

tion G(z) =

P

z

E(�)

, summed over all
on�gurations �. In our
ase, for

example, G(z) = 2z

�3

+ 18z

�2

+ 24z

�1

+ 4. But be
ause physi
ists understand

physi
s, they do this in an idiosyn
rati
 way by setting z = e

��

, where � is

the re
ipro
al of the \temperature." In other words, they
al
ulate

P

e

��E(�)

,

whi
h they
all the partition fun
tion; and they usually denote that sum by Z(�).

Sin
e the partition fun
tion is always a sum of positive terms, physi
ists
on-

sider the ratio e

��E(�)

=Z(�) to be the probability of
on�guration�. [Su
h prob-

ability distributions were introdu
ed in the 19th
entury by Ludwig Boltzmann;

see, for example, the Sitzungsberi
hte derMathematis
h-Naturwissens
haftli
hen

Classe der Kaiserli
hen Akademie der Wissens
haften 76 (Wien, 1877), 373{435.℄

At high temperatures, � is near 0; hen
e all
on�gurations are almost equally

likely. But at low temperatures, � approa
hes 1; then only the
on�gurations

with smallest possible energy, the so-
alled \ground states," are signi�
ant,

be
ause they are exponentially more probable than any other state. In our 48-

state example, ea
h of the
on�gurations with energy �3 o

urs with probability

1

48

+

13

384

�+O(�

2

) when � ! 0, but probability

1

2

�

9

2

e

��

+O(e

�2�

) when � !1.

Thus, in general, the solutions to a satis�able CSP
orrespond to the ground

states of the asso
iated physi
al problem. And when the CSP is unsatis�able,

the ground states satisfy as many of the
onstraints as possible.

Considerations su
h as these a

ount for the fa
t that physi
ists have
on-

tributed signi�
antly to the understanding of random satis�ability problems, in

parti
ular by introdu
ing Algorithm 7.2.2.2S. Further dis
ussion of statisti
al

me
hani
s is, of
ourse, beyond the s
ope of a book on
omputer programming;

but readers hungry for more may
onsult Information, Physi
s, and Computation

by Mar
 M�ezard and Andrea Montanari (Oxford University Press, 2009).

The takeway message from all these examples is obvious: There has to be

something good about the CSP notions of variables, domains, and
onstraints,

when we want to model real-world problems, be
ause so many people have

independently
ome up with essentially the same approa
h.

January 13, 2024

6 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

hello world

rystal maze puzzle{

global

all-di�erent

A simple example. To warm up, let's look at a little puzzle that appeared

on a British TV show
alled The Crystal Maze in 1994. The task is simple|

but you've got only two minutes to do it: \Pla
e eight large disks, marked with

the letters A through H, onto the eight
ir
les shown;
onse
utive letters
an't be

adja
ent."

A B C D E F G H

=) : (11)

We're a
tually fa
ing two
hallenges here, namely (i) solve the puzzle; and

(ii) express it as a
onstraint satisfa
tion problem, so that a
omputer
an solve

it for us. We'll ta
kle (ii), so as not to spoil the fun of (i). And we'll allow

ourselves ten minutes, say, to a

omplish goal (ii).

What are appropriate variables, domains, and
onstraints? We'd

better label the verti
es of the graph, so that we
an readily des
ribe

what we want to de�ne. One approa
h, based on the labeling shown, is

to have eight variables fx

1

; x

2

; : : : ; x

8

g, one for ea
h vertex, ea
h with domain

fA; B; : : : ; Hg. Then there are seventeen
onstraints, one for ea
h edge of the

graph; for example, the
onstraint for edge 1���2 is

1 2

3 4 5 6

7 8

x

1

x

2

2 fAC;AD;AE;AF;AG;AH;BD;BE;BF;BG;BH;CA;CE;CF;CG;CH;DA;DB;DF;DG;DH;EA;

EB;EC;EG;EH;FA;FB;FC;FD;FH;GA;GB;GC;GD;GE;HA;HB;HC;HD;HE;HFg; (12)

and the same relation is used for all of the other edges. It
an be written mu
h

more su

in
tly, if we assume that the letters are represented by integer
odes:

jx

1

� x

2

j > 1: (13)

OK, that took three minutes. Are we done? Well, no, a
tually; the seventeen

onstraints we've spe
i�ed do not obviously rule out the possibility that x

1

= x

8

.

We're not allowed to put a disk on two di�erent
ir
les.

We
ould add eleven further
onstraints, namely x

i

6= x

j

for ea
h of the

yet-un
onstrained pairs. But seasoned CSP solvers generally prefer to append a

single global
onstraint instead, involving all of the variables at on
e:

x

1

, x

2

, x

3

, x

4

, x

5

, x

6

, x

7

, x

8

are all di�erent. (14)

Indeed, spe
ial methods have been devised for the \all-di�erent"
onstraint,

be
ause it arises in so many di�erent problems. With (14), we've satis�ed (ii).

Five minutes to go. Is there a better way? Another possibility is to let the

variables be fA; B; : : : ; Hg, one for ea
h disk, ea
h with domain f1; 2; : : : ; 8g. Then

only seven
onstraints are needed, one for ea
h pair of
onse
utive letters; e.g.,

AB 2 f16;17;18;23;27;28;32;35;36;38;46;53;61;63;64;67;71;72;76;81;82;83g: (15)

And ea
h of these
onstraints has only 22 tuples,
ompared to 42 in (12). It's a

win! Of
ourse we also need the global all-di�erent
onstraint. (See exer
ise 20.)

If we only had more time, we
ould have dis
overed a
ompletely di�erent

way to model problem (11) as a CSP, su
h as the approa
h in exer
ise 23.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXAMPLE APPLICATIONS 7

ar sequen
ing problem

CSPLIB

ben
hmarks

Gent

Walsh

re
e
tion

mirror images

symmetry breaking

Automating automobiles.We've already seen dozens and dozens of signi�
ant

examples of
onstraint-based problems when we studied exa
t
overing and SAT.

But we
ertainly haven't exhausted all of the major appli
ations, and several

problems on our yet-unexamined list have been histori
ally asso
iated with the

CSP. One of them, known as the
ar sequen
ing problem, is espe
ially appropriate

for us to study next, not only be
ause its initials are \CSP" but also be
ause

it is problem 001 in CSPLIB|a noteworthy
olle
tion of ben
hmarks that was

laun
hed by I. P. Gent and T. Walsh in 1999 (see LNCS 1713 (1999), 480{481).

Consider the portion of an automobile assembly line where optional features

are being installed on newly made vehi
les. Some of the
ars will be made with

moonroofs; some will have heated seats; and so on. The assembly line is divided

into work areas, one for ea
h spe
ial feature. Work area i has spa
e for q

i

ars,

where q

i

is the number of time slots needed to install feature i as the
onveyor belt

moves the
ars along. If at most p

i

=q

i

of the
ars need that feature, p

i

installers

are on duty, one of whom will
ommen
e work when a
ar enters the area and

walk with it until the installation is done. The
ar sequen
ing problem is the

task of arranging a given set of
ars into a sequen
e so that no subsequen
e of

q

i

onse
utive
ars will in
lude more than p

i

that need feature i.

A B A B A C D C E F

roof���! ������LED lights������! �premium audio�! �����heated seats�����! ��sport

Fig. 100. Cars of models A, B, : : : enter this assembly line at the far right, re
eiving

optional features when they're in an appropriate work area. If this sequen
e has

spe
i�
ations (16), the �nal
ar (F) will be delayed in the LED area, be
ause three

ars in a row want that feature. The
ar sequen
ing problem tries to avoid su
h delays.

For example, there might be six models using the following subsets of �ve

features:

Model A B C D E F i p

i

q

i

premium audio? 0 1 2

LED lights? 1 2 3

heated seats? 2 1 3

moonroof? 3 2 5

sport suspension? 4 1 5

(16)

Suppose ten
ars of models fA;A;A;B;B;C;C;D;E;Fg are to be made. The se-

quen
e ABABACDCEF is almost
orre
t, but it fails on the �nal
ar (see Fig.100).

Can you �nd a delay-free sequen
e? Noti
e that the left-right re
e
tion of any so-

lution is also a solution; we
an rule out mirror images by requiring that model F,

say, appears among the �rst �ve
ars. Exer
ise 26 has the (unique) answer.

The
ar sequen
ing problem has boundary e�e
ts at the left and right that

make it somewhat unrealisti
. (Industrial assembly lines don't really start out

empty every day!) Still, it's a ni
e
lean problem, instru
tive to
hew on.

January 13, 2024

8 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

variables

domains

slot

inverse variables

hannelling
onstraints

permutations of the multiset

multiset

Boolean variables

redundant

Histori
al notes

Din
bas

Simonis

Van Hentenry
k

One way to formulate the
ar sequen
ing problem in terms of variables,

domains, and
onstraints is to have one variable x

i

for every \time slot" in the

assembly line sequen
e. The domain of ea
h x

i

is the set of model types, for

0 � i < t, where t is the total number of
ars to be produ
ed. We
an also

introdu
e t inverse variables, one for ea
h vehi
le, telling whi
h slot it o

upies;

those variables have the domain f0; 1; : : : ; t� 1g.

Our example of the 10
ars in Fig. 100 and (16) would therefore have 10

variables fx

0

; : : : ; x

9

g with the 6-element domain fA; : : : ;Fg, plus 10 variables

fa

0

; a

1

; a

2

; b

0

; b

1

;

0

;

1

; d; e; fg with the 10-element domain f0; : : : ; 9g. These

variables are related to ea
h other by so-
alled \
hannelling
onstraints": For

example, we
an't have a

1

= j unless x

j

= A; and in general the slot o

upied

by ea
h vehi
le must have the
orresponding model type. We also
onstrain

a

0

< a

1

< a

2

, b

0

< b

1

, and

0

<

1

, so that vehi
les of the same type are properly

ordered in the overall sequen
e. (Noti
e that the number of ways to satisfy the

stated
onstraints between these 20 variables is exa
tly 10!=(3! 2! 2! 1! 1! 1!) =

151200, whi
h is the number of permutations of the multiset fA;A;A;B;B;C;C;

D;E;Fg. We
ould
ut that number in half by requiring f < 5; see exer
ise 27.)

We also need
onstraints to rule out bad situations, like the subsequen
e

x

7

x

8

x

9

= CEF that delays the lineup in Fig.100. For this purpose it's
onvenient

to introdu
e Boolean variables f

ik

for 0 � i < t and 0 � k < m, where m is the

number of optional features and f

ik

= 1 if and only if the
ar in slot i has fea-

ture k. There are
hannelling
onstraints between x

i

and f

ik

; for example, x

i

= B

implies that f

i0

f

i1

f

i2

f

i3

f

i4

= 10010. The assembly-line
onstraints are then

f

ik

+ f

(i+1)k

+ � � �+ f

(i+q

k

�1)k

� p

k

; for 0 � i � t� q

k

and 0 � k < m. (17)

For example, x

7

x

8

x

9

= CEF
auses f

71

f

81

f

91

= 111, violating f

71

+f

81

+f

91

� 2.

OK, it looks like we're done. Given any
ar sequen
ing problem with t
ars

and m features, we've now de�ned t(2 + m) variables, and devised suÆ
ient

onstraints to
hara
terize all the solutions. It turns out, however, that we
ould

a
tually �nd those solutions mu
h faster by adding additional
onstraints: If r

k

is the total number of
ars that will re
eive feature k, we must also have

f

0k

+f

1k

+ � � �+f

(t�lq

k

�1)k

� r

k

�lp

k

; for 0< l < dr

k

=p

k

e and 0 � k < m. (18)

The reason is that the �nal lq

k

ars in the sequen
e
annot a

ount for more

than lp

k

of the total. (In our example, r

1

= 7; hen
e (18) gives f

01

when l = 3;

the �rst
ar
annot therefore be of type B or D.) The
onstraints in (18) are

redundant, yet a
omputer might not be able to think of them, and they
an

signi�
antly redu
e the size of the sear
h tree. (See exer
ise 31.)

Of
ourse the
ar sequen
ing problem
an also be formulated as a CSP in

many other ways, whi
h will suggest themselves as we gain further experien
e.

Histori
al notes: Su

essful experiments with the
ar sequen
ing problem

were �rst
arried out by M. Din
bas, H. Simonis, and P. Van Hentenry
k [ECAI

8 (1988), 290{295℄. They were able to solve randomly generated problems with

t = 200, m = 5, (p

0

=q

0

; : : : ; p

4

=q

4

) = (1=2; 2=3; 1=3; 2=5; 1=5), and with overall

utilization r

k

� :9tp

k

=q

k

, by introdu
ing the redundant
onstraints (18).

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: LINE LABELING 9

ompetition

ontest

real-world data

Solnon

Cung

Nguyen

Artigues

WalkSAT

greedy

omputer vision

vision

photographs

s
ene

fa
es

o
tahedron

pyramid

three-fa
ed

trihedral world

3D obje
ts

verti
es

edges

fa
es

three-valent polyhedral obje
t

Szilassi polyhedron

histos
ape

An international
ompetition was held in 2005, based on a
tual industrial

data. It in
luded additional
onstraints, su
h as the
olors of paint to be used and

the initial
ontents of the assembly line, and it inspired many
reative solutions.

[See C. Solnon, V. D. Cung, A. Nguyen, and C. Artigues, EJOR 191 (2008),

912{927.℄ The winning programs were based on lo
al sear
h methods analogous

to WalkSAT, using \greedy" heuristi
s.

Line labeling in
omputer vision. Speaking of history, let's turn now to

some fas
inating aspe
ts of
omputer vision that in
uen
ed mu
h of the early

work on
onstraint pro
essing. When a
amera photographs a s
ene, it makes

a two-dimensional image of three-dimensional reality; interesting problems arise

when we try to re
onstru
t the reality from the image.

We'll work with an extremely simpli�ed yet powerful model, as the original

resear
hers did: Our \reality" will be a world of spe
ial polyhedral obje
ts, where

exa
tly three fa
es meet at ea
h of the verti
es. For example, an ordinary
ube or

tetrahedron or will qualify. But an o
tahedron will not, nor will an Egyptian-

style pyramid, nor , be
ause a vertex where four fa
es meet isn't allowed.

These three-fa
ed
on
epts
an be generalized, of
ourse, but it's helpful to start

with a thorough understanding of the
omparatively simple trihedral world.

More pre
isely, the 3D obje
ts we shall deal with have no
urved surfa
es.

They are de�ned by verti
es, edges, and fa
es, where the verti
es are \
orners"

at whi
h edges and fa
es
ome together. All of the fa
es are \
at," meaning that

their points all lie on some plane. Ea
h fa
e is bounded by an exterior polygon,

possibly with one or more interior polygons delimiting \holes" in the fa
e. Ea
h

edge runs between two verti
es and is part of the (in�nite) line where the planes of

two adja
ent fa
es meet; it's a segment of the polygonal boundaries of those fa
es.

And signi�
antly, ea
h vertex is the endpoint of exa
tly three edges. We shall
all

su
h an obje
t a three-valent polyhedral obje
t, or 3VP for short. (See Fig. 101.)

Fig. 101. Examples of 3VPs (three-valent

polyhedra): (a) A stylized sphinx. [68 ver-

ti
es, 102 edges, 38 fa
es.℄ (b) The Szilassi

polyhedron, de�ned in exer
ise 39. Ea
h of

its seven fa
es is adja
ent to all of the other

six(!). [14 verti
es, 21 edges, 7 fa
es.℄ (
) A

lasp formed from two identi
al, interlo
ked

obje
ts, ea
h of whi
h is a tetrahedron from

whi
h a large triangular wedge has been hol-

lowed out. [20 verti
es, 30 edges, 14 fa
es.℄

(d) The histos
ape for the matrix (

4 3

1 2

), as

de�ned in exer
ise 40. [20 verti
es, 30 edges,

12 fa
es.℄ Many of the verti
es, edges, and

fa
es of these examples are invisible be
ause

they lie behind the parts that we
an see.

(a)

(b) (
) (d)

The two-dimensional images shown here make sense to us, somehow, al-

though signi�
ant depth information has been lost. In some mysterious way

we've learned to rely on visual
ues in order to understand what's really present.

January 13, 2024

10 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

Hu�man

Clowes

half edge

valley folds

origami

HC pi
ture

jun
tions

(a) (b) (
) (d)

(all of these 3D images are orthographi
 proje
tions)

Fig. 102. If the obje
ts in Fig. 101 were transparent, ex
ept for the edges, none of the

edges would have been hidden. Ea
h edge is a segment of a straight line, on the bound-

ary between two adja
ent fa
es. Exa
tly three of them meet at ea
h vertex of a 3VP.

(a) (b) (
) (d)

Fig. 103. \The other sides" of the images in Fig. 101,

after rotation by 180

Æ

, reveal verti
es, edges, and fa
es that were

previously invisible, while
on
ealing many of the others. (Szilassi's poly-

hedron (b) looks the same as before, be
ause it has 180

Æ

rotational symmetry:

The horizontal fa
e is symmetri
al, but the other three were visible only from behind.)

What are those visual
ues? Working independently, D. A. Hu�man and

M. B. Clowes were able to de
ipher them su

essfully, in a pair of in
uential

papers that were published at almost the same time [Ma
hine Intelligen
e 6

(1971), 295{323; Arti�
ial Intelligen
e 2 (1971), 79{116℄. Given a 2D image

that represents a 3VP X in a 3D s
ene, their �rst key idea was to
lassify ea
h

line segment by giving it one of four labels, a

ording to its
ontext:

� a
onvex edge (+), where points between the adja
ent fa
es belong to X ;

� a
on
ave edge (-), where points between adja
ent fa
es aren't part of X ;

� a half edge (> or <), where only one of its adja
ent fa
es
an be seen.

(A half edge in the 2D image is a
tually a
onvex edge in X itself. But one of

the two fa
es joined by this edge is invisible, be
ause that fa
e lies behind what

we
an see.) The label of a half edge is
hosen so that the visible adja
ent fa
e

appears to our right as we walk toward the point of the arrow.

For example, Fig. 104 is a marked-up version of Fig. 101, with all lines

properly labeled. Convex edges are identi�ed by ti
k marks, suggesting + signs.

Con
ave edges are shown as dashed lines, like the \valley folds" in standard

origami diagrams. The half edges are de
orated with arrows in the proper

dire
tions. Noti
e that the outer boundary in ea
h
ase is a polygon that
onsists

entirely of half edges, traversed
lo
kwise.

Let's say that an HC pi
ture is a list of distin
t 2D points j = (x; y),
alled

\jun
tions," together with lines j���j

0

between designated jun
tions, for whi
h

(i) every jun
tion has degree 2 or 3; (ii) two lines interse
t only at jun
tions;

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: LINE LABELING 11

planar

Hu�man

Clowes

orthographi
ally

general position

proje
tion

(a) (b) (
) (d)

Fig. 104. Convex (),
on
ave (), and half edges ().

(iii) the two lines at a jun
tion of degree 2 aren't
ollinear. Property (ii) means

that the asso
iated graph is planar. Property (iii) means that we
an \see" all

the jun
tions just by looking at the lines. (The \HC" in this de�nition stands

for Hu�man and Clowes.)

Given any 3VP X , suppose we proje
t its verti
es v = (x; y; z) and edges

v ��� v

0

orthographi
ally onto the (x; y) plane, eliminating hidden points and

lines by assuming that (x; y; z) is in front of (x; y; z

0

) whenever z < z

0

. We shall

also assume that X is in general position, meaning that a slight rotation of X

won't
hange the number of lines we see or the ways they relate to ea
h other.

(This assumption rules out ex
eptional
ases that might o

ur a

identally, but

with probability zero; exer
ise 57 has a formal de�nition.)

The resulting proje
tion is always an HC pi
ture, to whi
h labels might be

atta
hed. For example, Figs. 101 and 103 are HC pi
tures, and Fig. 104 is a

labeled HC pi
ture. Every visible vertex of X appears as a jun
tion in the HC

pi
ture. Furthermore, additional jun
tions are often present at the left of half

edges, as artifa
ts of the proje
tion pro
ess: We see them wherever an edge of X

is partly hidden, but they aren't really intrinsi
 to X itself. (One su
h jun
tion

is below the middle of Fig. 104(d); Fig. 104(
) has 15 of them.)

The jun
tions of an HC pi
ture
an be
lassi�ed into four types, based on

their degrees and the angles between their neighboring lines:

Type T

�

�

�+ � = 180

Æ

Type V

�

� < 180

Æ

Type W

�
�

�+ � < 180

Æ

Type Y

�

�

�; �;
 < 180

Æ

(19)

(Type T jun
tions are the artifa
ts of proje
tion, mentioned above.)

And now we get to the pun
h line, noti
ed independently by Hu�man and

Clowes: When the lines of an HC pi
ture are labeled with + or - or > or <, in

order to distinguish between
onvex edges,
on
ave edges, and half edges, only

a small number of
ases are a
tually possible, for ea
h type of jun
tion. In fa
t,

� A T jun
tion
an be labeled in only four ways (not 4

3

= 64);

� A V jun
tion
an be labeled in only six ways (not 4

2

= 16);

� A W jun
tion
an be labeled in only three ways (not 4

3

= 64);

� A Y jun
tion
an be labeled in only �ve ways (not 4

3

= 64).

That's part of the reason why we're able to per
eive depth rather easily.

January 13, 2024

12 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

HC network

line labeling problem

Table 1

LEGAL LABELS FOR EACH JUNCTION TYPE

Exer
ise 58 works out the
omplete list of possibilities, exhibited in Table 1.

And there's also more good news, a se
ond pun
h line: Every line appears in

two jun
tions, but has only one label; hen
e it's
onstrained at both ends!

Let's
onvert these geometri

on
epts to a purely
ombinatorial problem,

by abstra
ting away the
oordinates and
onsidering only the underlying graph.

We shall say that an HC network is a list of named jun
tions, where ea
h jun
tion

is either T (l;m; r), V (l; r), W (l;m; r), or Y (a; b;
); here l, m, r, a, b, and
 are

the names of other jun
tions, and jun
tion j

0

appears in the de�nition of j if and

only if j appears in the de�nition of j

0

.

For example, here's the HC network that
orresponds to Fig. 101(d):

n

a

e

b

q

f

m

i

g

d

j

h

r

o

p

k

s

l

a = V (b;
);

b =W (e; d; a);

 =W (a; d;m);

d = Y (b; g;
);

e = Y (b; f; g);

f =W (q; h; e);

g =W (d; e; h);

h = Y (f; j; g);

i = V (j; k);

j =W (l; i; h);

k =W (i; l; n);

l = Y (j; s; k);

m = Y (
; n; o);

n = T (k;m; p);

o =W (m; p; r);

p = V (o; n);

q = V (s; f);

r = V (o; s);

s =W (r; l; q):

(20)

(Every HC pi
ture has a unique HC network, ex
ept that the parameters of

Y jun
tions
an be permuted
y
li
ally. For example, we
ould have written

`d = Y (g;
; b)' or `d = Y (
; b; g)' instead of `d = Y (b; g;
)' in (20); and there

also are three equivalent ways to de�ne ea
h of the other Y jun
tions fe; h; l;mg.

But `d = Y (b;
; g)' would be in
orre
t, be
ause it doesn't mat
h the HC pi
ture.

The bran
hes of a Y must be listed in
lo
kwise order.)

Given an HC network, the line labeling problem is to
lassify ea
h of the

lines between adja
ent jun
tions as either
onvex (+),
on
ave (-), or a properly

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: LINE LABELING 13

boundary
y
le

standard

oriented half edge (< or >), in su
h a way that every jun
tion
onforms to one of

the patterns in Table 1; a half edge ab that points from a to b is labeled >. This

is, of
ourse, a
onstraint satisfa
tion problem: The variables are the lines; the

domains are the symbols f+; -; <; >g; and the
onstraints are given by Table 1.

For example, the line labeling problem for (20) has the 26 variables

fab; a
; bd; be;
d;
m; dg; ef; eg; fh; fq; gh; hj;

ij; ik; jl; kl; kn; ls;mn;mo; np; op; or; qs; rsg (21)

and the following 19
onstraints:

(ab; a
) 2 f<+; <>; +>; >-; ><; -<g;

(be; bd; ab) 2 f>+>; -+-; +-+g;

(a
;
d;
m) 2 f<+<; -+-; +-+g;

(bd;dg;
d) 2 f<->; -<<; >>-; ---; +++g;

(be; ef; eg) 2 f<-<; -<>; >>-; ---; +++g;

(fq; fh; ef) 2 f>+>; -+-; +-+g;

(dg; eg; gh) 2 f<+<; -+-; +-+g;

(fh; hj; gh) 2 f<->; -<<; >>-; ---; +++g;

(ij; ik) 2 f<+; <>; +>; >-; ><; -<g;

(jl; ij; hj) 2 f>+>; -+-; +-+g;

(ik; kl; kn) 2 f<+<; -+-; +-+g;

(jl; ls; kl) 2 f<->; -<<; >>-; ---; +++g;

(
m;mn;mo) 2 f<-<; -<>; >>-; ---; +++g;

(kn; np) 2 f<<g;

(mo; op; or) 2 f<+<; -+-; +-+g;

(op; np) 2 f>+; ><; +<; <-; <>; ->g;

(qs; fq) 2 f<+; <<; +<; >-; >>; ->g;

(or; rs) 2 f>+; >>; +>; <-; <<; -<g;

(rs; ls; qs) 2 f<+>; -+-; +-+g:

(22)

(Here `<+' stands for the ordered pair (<; +); `>+>' stands for (>; +; >); and so on.)

Noti
e that the
onstraint for jun
tion b was not written `(be; bd; ba) 2

f>+<; -+-; +-+g', be
ause `ba' isn't one of the variables: The line between jun
-

tions b and a is represented by `ab' in (21). We
ould have had 52 variables

fab; a
; ba; b
; : : : ; srg instead of 26, by introdu
ing 26 further
onstraints su
h

as (ab; ba) 2 f++; --; <>; ><g. But that would have wasted time and spa
e.

Noti
e also that the
onstraint for jun
tion n was not written `(kn;mn; np) 2

f<+<; <-<; <<<; <><g'. The simpler and more dire
t statement in (22) is more

eÆ
ient, and in fa
t it's the best way to understand the top row of Table 1.

The CSP in (22) is readily expressed as an XCC problem (see exer
ise 61),

and it turns out to have just four solutions. The labeled pi
ture in Fig. 104(d)

represents the histos
ape \
oating in air"; the other three solutions

(23)

represent it \atta
hed to the ground," or \atta
hed to a wall" at the left or ba
k.

Every
onne
ted HC pi
ture has a unique boundary
y
le,
onsisting of the

jun
tions that tou
h the \outside" region, in
lo
kwise order. For example, the

boundary
y
le of (20) is (abefqsrom
). A line labeling is
alled standard if every

line between
onse
utive jun
tions of the boundary
y
le has been labeled as a

half edge pointing
lo
kwise. That makes sense, be
ause it means that the obje
t

lies entirely inside the boundary|unatta
hed to any unbounded ba
kground

environment. All four of the labelings in Fig. 104 are standard.

January 13, 2024

14 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

sphinx

Szilassi polyhedron

free boundary

Reutersv�ard

interse
tion of planes+

Hu�man

The sphinx of Fig. 101(a) has only two standard labelings, in spite of its

numerous jun
tions and lines. The other possibility, besides Fig. 104(a), simply

hanges two of the labels so that the head isn't ne
essarily atta
hed to the body.

The Szilassi polyhedron, Fig. 101(b), likewise has exa
tly two standard

labelings. (See exer
ise 62.) But Fig. 101(
) is far more ambiguous: It has

256 standard labelings. Indeed, three of its lines are
ompletely un
onstrained,

be
ause they're the stems between two T jun
tions.

A surprising thing happens when we ask for all valid labelings of Fig. 101,

standard or not: The possibilities for the interior lines| the lines not between

adja
ent jun
tions of the boundary
y
le| remain the same! More pre
isely, the

number of ways to satisfy the
onstraints only at the boundary jun
tions turns

out to be (720, 3, 6, 4), for Figs.101(a), (b), (
), (d), respe
tively, while the total

number of valid labelings is (720 � 2, 3 � 2, 6 � 256, 4 � 1). In other words, all of the

onsistent boundary labelings are mutually inter
hangeable; hen
e the boundary

an essentially be \fa
tored out." When this happens we say that the HC pi
ture

has a free boundary. Not every pi
ture has a free boundary, but ex
eptions seem

to be rare in pra
ti
e. Exer
ises 67{74 explore this
urious phenomenon.

It's not diÆ
ult to
onstru
t HC pi
tures that
annot be labeled. For

example, any pi
ture that
ontains a subpi
ture of the forms

(TT)

or

(VTT)

or

(YTT)

or

(WTVT)

(24)

will fail be
ause ea
h T jun
tion for
es two labels. Other impossible subpi
tures

(WT)

or

(WWT)

or

(WWT)

or

(WYT)

(25)

involve only one T; and exer
ise 76 has a small T-less example. The Swedish

artist Os
ar Reutersv�ard has devised many amusing unlabelable pi
tures su
h as

(26)

that fool our eyes when plausible side patterns are
ontradi
tory in the middle.

On the other hand, some HC pi
tures
an be labeled perfe
tly, yet they

don't
orrespond to any a
tual 3VP. Consider, for example, the pi
tures

A B

or

A

B

; (27)

whi
h look lo
ally right although they're globally wrong. They \fail to
ompute"

be
ause ea
h of them has two plane regions (`A' and `B') that interse
t in two

di�erent lines,
ontradi
ting a well-known prin
iple of geometry.

A somewhat subtle distin
tion arises here, noted by Hu�man in his original

paper of 1971: There are lo
ally
onsistent pi
tures that are globally in
onsistent

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: LINE LABELING 15

strongly realizable

weakly realizable

impossible

Hu�man

trun
ated tetrahedron

rounding error

Penrose triangle

Penrose

Penrose

by virtue of the two-planes-determine-one-line prin
iple, su
h as

A

B

and

A

B

; (28)

yet
ertain globally
onsistent pi
tures have exa
tly the same HC networks:

A

B

and

A

B

: (29)

Let's say that an HC pi
ture H is strongly realizable if H is the proje
tion

of at least one 3VP X in general position. It is weakly realizable if there's an HC

pi
ture H

0

with the same HC network as H for whi
h H

0

is strongly realizable.

It is impossible if it's not weakly realizable. Thus, the pi
tures in (29) are

strongly realizable; the pi
tures in (28) are weakly realizable; the pi
ture in (26) is

impossible. (The pi
ture in (26) is not only impossible, it
an't even be labeled.)

Hu�man observed that a trun
ated tetrahedron gives another instru
tive

example: Consider

C

BA
versus

C

B

A

: (30)

The left pi
ture is strongly realizable, but the right pi
ture is not! In this
ase

three planes are involved (`A', `B', `C'); three of the lines show the interse
tions

of planes AB, BC, and CA. Those three planes always interse
t in a single point,

ABC, be
ause no two of them are parallel. The relevant lines at the left of (30)

do indeed share an invisible
ommon point; but the lines at the right do not:

versus :

Thus we see that the notion of strong realizability is quite deli
ate|not at

all robust: A tiny rounding error in one of the (x; y)
oordinates
an
hange a

strongly realizable pi
ture into one that
an be realized only weakly.

The most famous impossible HC pi
ture is probably the \Penrose triangle"

A

B

C

(31)

introdu
ed by L. S. Penrose and R. Penrose in the British Journal of Psy
hology

49 (1958), 31{33. (Their version was slightly di�erent: It was equilateral, and it

in
luded a few spurious \
ra
k" lines.) Hu�man's argument about non
on
urrent

lines AB, BC, CA proves that (31) isn't even weakly realizable; and exer
ise 77

gives another proof of impossibility.

January 13, 2024

16 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

Reutersv�ard

fun

HUFFMAN

Graph labeling

gra
eful labeling

omplement

Os
ar Reutersv�ard, who is now known as the \father" of impossible pi
tures,

dis
overed a paradoxi
al pattern akin to the Penrose triangle already in 1934:

(32)

This HC pi
ture appears to be made of nine separate boxes that overlap in an

impossible fashion. Surprisingly, however, it a
tually turns out to be strongly

realizable! (See exer
ise 78.)

In fa
t, the theory of realizable obje
ts is still far from
omplete, even when

restri
ted to the 3VP world, and many fas
inating problems remain to be solved.

I plead guilty to the
harge that I deal with pi
tures of impossible obje
ts

be
ause it is fun. It is, and that is reason enough.

However, in addition to this I believe that mu
h
an be learned in the study

of any language by asking `Is that a nonsense senten
e?'

and `Why is that a nonsense senten
e?'.

| D. A. HUFFMAN (1971)

Graph labeling. Let's turn now to a
ompletely di�erent but equally fas
inating

way to atta
h labels to the verti
es and edges of a graph. Our new goal is to give

an identifying number to ea
h vertex while simultaneously identifying ea
h edge.

Consider, for example, Fig. 105(a), whi
h is a graph of the 13
olonies that

ombined to form the original United States of Ameri
a in 1776. Two verti
es

are adja
ent if the
orresponding
olonies have a
ommon boundary. Figure

105(b) shows that ea
h
olony
an be represented by a
leverly
hosen number,

so that every edge is identi�ed uniquely by the di�eren
e between the numbers

of its endpoints:

14�13=1

17�15=2

6�3=3

10�6=4

10�5=5

18�12=6

12�5=7

18�10=8

17�8=9

13�3=10

14�3=11

12�0=12

18�5=13

15�1=14

15�0=15

17�1=16

17�0=17

18�0=18

: (33)

Numberings with this property are
alled \gra
eful." Formally speaking, if

G is a graph with m edges, a gra
eful labeling of G is a fun
tion that assigns an

integer l(v) to ea
h vertex v, in the range 0 � l(v) � m, with the property that

no two verti
es have the same value of l(v), and no two edges have the same value

of jl(v)� l(w)j. We say that l(v) is the label of vertex v, and jl(v)� l(w)j is the

label of edge v���w. Noti
e that jl(v)� l(w)j is always positive, and it's at most

jm�0j = m; therefore there's exa
tly one edge labeled d, for ea
h d in f1; : : : ;mg.

Every gra
eful labeling has a \
omplement," obtained by setting l(v) m�

l(v) for all v. (See Fig.105(
).) Complementation doesn't
hange the label of any

edge. A labeling and its
omplement are
onsidered to be essentially identi
al.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: GRACEFUL GRAPHS 17

symmetry

automorphism

permutation

13-
olonies graph

essentially di�erent

puzzle

sudoku

data stru
ture

isolated verti
es

(a)

NH

MA

RICT

NY

NJPA

DEMD

VA NC

SCGA

(b)

8

17

115

0

1218

510

6 3

1413

(
)

10

1

173

18

60

138

12 15

45

(d)

5

180

Fig. 105. (a) A famous graph G, whi
h has 13 verti
es and 18 edges. (b) One of the

many gra
eful labelings of G. (
) The same labeling as (b), but
omplemented. (d) A

puzzle: Complete this labeling to make it gra
eful. (The solution is unique.)

Every symmetry of a graph also preserves gra
efulness. In other words, if

� is an automorphism (a permutation of the verti
es for whi
h v���w implies

v����w�), and if l is a gra
eful labeling, then the labeling l

0

(v) = l(v�) is also

gra
eful. For example, Fig. 105(a) is symmetri
al if we swap GA$ SC; hen
e we

ould also swap the labels 13 $ 14 in Fig. 105(b) and/or the labels 5 $ 4 in

Fig. 105(
). In this way every gra
eful labeling of the 13-
olonies graph yields a

set of four labelings that are mutually equivalent. (See exer
ise 91.)

That graph a
tually has hundreds of thousands of gra
eful labelings: 641952

altogether! Dividing by 4 gives us 160488 that are essentially di�erent. They
an

be found qui
kly, using for example the XCC model of exer
ise 93. Ea
h of the

18 edges
an be the \longest," namely the edge that's labeled 18. That edge
on-

ne
ts NY to PA, as it does in Fig. 105(b,
), in 22782 of those 160488 solutions; and

it
onne
ts NY to MA in even more of them (24896). On the other hand only 24 of

the 160488 have the longest edge between GA and SC, as in Fig.105(d). (The latter

labeling has been left as a puzzle; it's roughly as diÆ
ult as a \hard" sudoku.)

A ni
e data stru
ture
an be used to represent a gra
efully labeled graph

inside a
omputer, using a few arrays of size m+ 1. First, by in
luding isolated

verti
es if ne
essary, we
an assume that the verti
es are named 0, 1, : : : , m,

and that l(v) = v for 0 � v � m. (In other words, a vertex's label is also

its name.) Then, if edge d
onne
ts verti
es v and v + d, we set LO[d℄ v.

Consequently two arbitrary verti
es v and w with v < w are adja
ent if and only

if LO[w � v℄ = v. With three further arrays, FIRST, NEXTL, and NEXTH, we
an

also visit all neighbors w of any given vertex v using a simple loop:

Set w FIRST[v℄. While w � 0, set w

�

NEXTL[v � w℄; if w < v;

NEXTH[w� v℄; if w > v.

(34)

For example, the arrays might look like this in the
ase of Fig. 105(b):

l = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LO[l℄ =| 13 15 3 6 5 12 5 10 8 3 3 0 5 1 0 1 0 0

FIRST[l℄ = 12 15 �1 6 �1 10 3 �1 17 �1 6 �1 18 14 13 17 �1 15 12

NEXTL[l℄ =| 3 8 10 5 18 10 0 5 1 �1�1�1 0 0 �1 0 �1�1

NEXTH[l℄ =| 3 1 13 �1 12 5 18 �1�1 14 �1 15 �1 17 17 �1 18 �1

NAME[l℄ = NY RI | NC | DE VA | NH | MD | NJ GA SC CT | MA PA

(35)

(The NAME array shown here gives an optional external name for printouts.

Entries marked `|' in these example arrays are unused.)

January 13, 2024

18 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

C

5

ontiguous USA graph

USA graph

randomized algorithm

mira
le

�

Roki
ki

When a graph has at least one gra
eful labeling it's
alled \gra
eful"; in

that sense, the 13-
olonies graph
an be
onsidered quite gra
eful indeed. Not

all graphs are gra
eful, of
ourse. For example, a dis
onne
ted graph with more

than m + 1 verti
es
an't possibly be gra
eful; there aren't enough labels to go

around. And one
an easily
he
k that C

5

, the 5-
y
le, has no gra
eful labeling.

The 13-
olonies graph is merely an indu
ed subgraph of a mu
h larger

graph, whi
h we've been exploring in lots of examples in previous se
tions. The

ontiguous USA graph, introdu
ed in 7{(17) and last seen in exer
ises 7.2.2.2{35

and 37, has 49 verti
es and 107 edges. Could that graph possibly be gra
eful?

The answer is yes; and exer
ise 127 dis
usses a randomized algorithm that is

able to label it gra
efully without a great deal of work. In fa
t, an inspired use of

that algorithm has revealed what
an only be des
ribed as a gra
eful mira
le: A

solution
an a
tually be a
hieved by stipulating that the 15 states on the western

and northern borders, from California to Maine, should be labeled respe
tively

with the numbers 31, 41, 59, : : : , 83, 27| the �rst 30 digits of �!! This has to

be seen to be believed (see Fig. 106).

56

88

15 66

31 0

16

24

96

7

26 11 5548

104 95

100

27

92

92397

3

2

53

107

98

83

90

103

64

82

58

84

25

41 62 78

28

6

101

8

86

33

5

59

19

93

106

Fig. 106. A gra
eful mira
le,

found by Tomas G. Roki
ki in O
tober 2020.

107� 106 = 1

64 � 62 = 2

107� 104 = 3

97 � 93 = 4

58 � 53 = 5

101� 95 = 6

16 � 9 = 7

96 � 88 = 8

11 � 2 = 9

41 � 31 = 10

95 � 84 = 11

98 � 86 = 12

101 � 88 = 13

19 � 5 = 14

41 � 26 = 15

31 � 15 = 16

25 � 8 = 17

59 � 41 = 18

101 � 82 = 19

106 � 86 = 20

28 � 7 = 21

84 � 62 = 22

25 � 2 = 23

33 � 9 = 24

25 � 0 = 25

90� 64 = 26

53� 26 = 27

90� 62 = 28

84� 55 = 29

92� 62 = 30

64� 33 = 31

55� 23 = 32

59� 26 = 33

100� 66 = 34

101� 66 = 35

92 � 56 = 36

48 � 11 = 37

62 � 24 = 38

97 � 58 = 39

95 � 55 = 40

66 � 25 = 41

48 � 6 = 42

62 � 19 = 43

55 � 11 = 44

93 � 48 = 45

48 � 2 = 46

53 � 6 = 47

64 � 16 = 48

97 � 48 = 49

83 � 33 = 50

56 � 5 = 51

58 � 6 = 52

106 � 53 = 53

82 � 28 = 54

64 � 9 = 55

83 � 27 = 56

98 � 41 = 57

66 � 8 = 58

107 � 48 = 59

86 � 26 = 60

84 � 23 = 61

78 � 16 = 62

66 � 3 = 63

66 � 2 = 64

84 � 19 = 65

90 � 24 = 66

98 � 31 = 67

92 � 24 = 68

78 � 9 = 69

93 � 23 = 70

86 � 15 = 71

98 � 26 = 72

92 � 19 = 73

83� 9 = 74

82� 7 = 75

95 � 19 = 76

82� 5 = 77

103� 25 = 78

104� 25 = 79

106� 26 = 80

88� 7 = 81

93 � 11 = 82

98 � 15 = 83

95 � 11 = 84

88 � 3 = 85

86 � 0 = 86

92 � 5 = 87

103� 15 = 88

96 � 7 = 89

95 � 5 = 90

97 � 6 = 91

100� 8 = 92

95 � 2 = 93

101� 7 = 94

103� 8 = 95

101 � 5 = 96

100 � 3 = 97

101 � 3 = 98

101 � 2 = 99

106 � 6 = 100

107 � 6 = 101

104 � 2 = 102

103 � 0 = 103

104 � 0 = 104

107 � 2 = 105

106 � 0 = 106

107 � 0 = 107

The problem of labeling a given graph G of size m gra
efully
an be formal-

ized as a CSP in many ways. For example, we
an render the de�nition dire
tly,

by saying that the variables of the CSP are the verti
es and edges of G; the

domain of ea
h vertex is f0; : : : ;mg and the domain of ea
h edge is f1; : : : ;mg;

the
onstraints are that l(e) = jl(v)�l(w)j when e is the edge v���w; furthermore

the vertex labels should all be di�erent and the edge labels should all be di�erent.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: GRACEFUL GRAPHS 19

domain

reverse model

omplementation

unique gra
eful labeling

star graph

unique gra
eful labeling

path graph

gra
eful permutation

That dire
t model lets us solve small problems, of
ourse. But experien
e

shows that it doesn't s
ale up well. A mu
h better method
an be based on the

LO and NAME arrays of the data stru
ture in (35), where we take the attitude

that vertex and edge labels are already given; our job is to atta
h them to the

graph! More pre
isely, there's a variable for ea
h vertex label in f0; : : : ;mg; and

they all have the domain V [f?g, meaning that ea
h label l should be assigned

a NAME[l℄, whi
h is either a vertex of G or unde�ned. The de�ned labels should

all be di�erent. Furthermore, there's a variable for ea
h edge label in f1; : : : ;mg;

and its value LO[l℄ has the domain f0; : : : ;m� lg. The
onstraint is that

NAME[LO[l℄℄���NAME[LO[l℄+ l℄ is an edge of G; for 1 � l � m. (36)

Let's
all this the \reverse model."

The reverse model has a big advantage, be
ause LO[l℄ has a very small

domain when l is large. Indeed, LO[m℄must be 0; and LO[m� 1℄must be either

0 or 1. We
an in fa
t assume that LO[m� 1℄ = 0, be
ause
omplementation

hanges LO[m� 1℄ to 1� LO[m� 1℄. (See exer
ise 94.)

For example, the reverse model makes it easy to dis
over all of the gra
e-

ful labelings when G is the
omplete graph K

n

. In this
ase there are m =

�

n

2

�

edges; and the
onstraint (36) is satis�ed if and only if NAME[LO[l℄℄ and

NAME[LO[l℄+ l℄ are both de�ned, meaning that LO[l℄ and LO[l℄ + l are both

among the n \real" verti
es that belong to K

n

.

If n = 1, we're done: K

1

is gra
eful, with vertex 0.

Otherwise m > 0 and LO[m℄ = 0. Hen
e 0 and m are real verti
es, and

we're done if n = 2.

Otherwise m > 1, and we may assume that LO[m� 1℄ = 0 as stated above.

That means m� 1 is also real. So if n = 3, we know that the three real verti
es

are f0; 2; 3g; hen
e LO[2℄ = 0 and LO[1℄ = 2. That settles K

3

.

If m > 2, edge m�2 is always either 0���(m�2) or 1���(m�1) or 2���m,

and ea
h
ase gives us a new real vertex. Consequently the four verti
es when

n = 4 are either f0; 4; 5; 6g, f0; 1; 5; 6g, or f0; 2; 5; 6g. Only the third alternative

allows us to de�ne LO[3℄without introdu
ing a �fth real vertex. That settlesK

4

.

Finally, if n > 4, we get stu
k (see exer
ise 95). So we've dis
overed that

K

n

has a unique gra
eful labeling when n � 4, but K

n

is ungra
eful when n � 5.

The star graph K

1;n

is another instru
tive example. It
onsists of a
entral

vertex that's joined to ea
h of n other verti
es; so it has lots of symmetry, like

K

n

, but it has only m = n edges.

We might as well assume that n > 1, be
ause K

1;1

= K

2

. So we know that

LO[n℄ = 0, and also LO[n� 1℄ = 0. But that means 0 must be the
entral

vertex, be
ause no other vertex has more than one neighbor. Consequently

LO[n� 2℄ = 0, LO[n� 3℄ = 0, and so on; K

1;n

has a unique gra
eful labeling.

That was easy. But what happens if G is the path graph P

n

? A gra
eful

labeling of P

n

is
alled a gra
eful permutation, be
ause P

n

has m = n � 1

edges, and the sequen
e p

0

p

1

: : : p

n�1

of labels on the path is a permutation

of f0; 1; : : : ; n� 1g. The permutation p

0

p

1

: : : p

n�1

is gra
eful if and only if

jp

0

� p

1

j jp

1

� p

2

j : : : jp

n�2

� p

n�1

j is a permutation of f1; : : : ; n� 1g: (37)

January 13, 2024

20 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

unique gra
eful labeling

reversal

omplementation

data stru
ture

ZDD

KP graphs

liques

We know that P

3

has a unique gra
eful labeling, be
ause P

3

= K

1;2

. That

fa
t
an be
onfusing, be
ause the six permutations p

0

p

1

p

2

of f0; 1; 2g are

012; 021; 102; 120; 201; 210

and four of them satisfy (37)! Everything be
omes
lear, however, on
e we realize

that the permutations p

0

p

1

: : : p

n�1

, p

n�1

: : : p

1

p

0

, (n�1�p

0

) : : : (n�1�p

n�1

),

and (n�1�p

n�1

) : : : (n�1�p

0

) are
onsidered to be essentially the same, be
ause

ea
h of them is obtainable from the others by reversal and
omplementation.

Similarly, the gra
eful labelings of P

4

and P

5

redu
e to 1203 and either 21304 or

30421, whi
h ea
h represent four permutations. There are four times as many

gra
eful permutations as there are ways to label P

n

gra
efully, when n > 2.

Let's take a look at P

6

. We
an assume that edges 5 and 4 will be 0��� 5

and 0���4, whi
h we
an abbreviate to 05 and 04, respe
tively. Thus p

0

p

1

: : : p

5

will
ontain the substring 405 or 504, and we
an assume that it's 405. Edge 3

must be 03 or 14 or 25; but 03 is impossible be
ause 0 already has two neighbors.

Two
ases remain, 1405 and 4052. The tree of possibilities is, in fa
t,

405

1405 4052

31405 14053 4052,13

231405 140532 214053 134052 405213 405231

(38)

as we
hoose edge 3, edge 2, then edge 1, leading to six solutions altogether.

Noti
e that this pro
edure
hooses the values of LO[5℄, LO[4℄, LO[3℄, : : :

sequentially. But it does not
hoose any values for the NAME array until the very

last step. For instan
e, at one point in (38) we know that 4052 and 13, or their

re
e
tions, should be substrings of the �nal permutation; but we don't
ommit

ourselves prematurely to exa
tly where those substrings will appear. Exer
ise 96

dis
usses a
onvenient data stru
ture for dealing with su
h partial permutations.

The number of gra
eful permutations grows exponentially with n. For exam-

ple, P

41

an be labeled gra
efully in 258,002,411,935,989,500 ways! Exer
ise 97

explains how a ZDD with fewer than 25 million nodes
an represent them all.

Some dazzling patterns arise when we
onsider \KP graphs" of the form

K

n

P

r

, whi
h
onsist of r > 1
liques in a row, ea
h of size n > 2. For example,

here are two of the many gra
eful labelings of K

4

P

10

and K

5

P

7

:

0

B

�

0 96 4 93 5 90 11 88 22 84

1 3 13 65 89 14 62 25 81 58

91 9 87 7 77 50 18 72 51 69

95 28 73 12 55 17 82 33 68 27

1

C

A

;

0

B

B

B

�

10 56 99 0 100 13 93

33 66 7 77 12 87 59

81 95 1 41 3 94 8

86 2 97 15 70 26 71

89 6 79 52 69 45 24

1

C

C

C

A

: (39)

Ea
h of the 10
olumns on the left has six di�eren
es; in the �rst
olumn they are

fj0� 1j; j0� 91j; j0� 95j; j1� 91j; j1� 95j; j91� 95jg = f1; 91; 95; 90; 94; 4g. And

ea
h row also has nine di�eren
es between adja
ent
olumns; in the �rst row they

are fj0 � 96j; j96 � 4j; : : : ; j22 � 84jg = f96; 92; 89; 88; 85; 79; 77; 66; 62g. Those

60+36 di�eren
es are all distin
t! And so are the 70+30 di�eren
es on the right!!

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: GRACEFUL GRAPHS 21

symmetries

automorphisms

omplementation

break this symmetry

anoni
al form

In general K

n

P

r

has rn verti
es and m = r

�

n

2

�

+ (r � 1)n edges; that's

exa
tly n

2

edges when r = 2. It has 2n! symmetries (aka automorphisms),

be
ause we
an permute the rows of the matrix and/or re
e
t it left$right.

Every gra
eful labeling of a KP graph
an be represented as an n�r matrix

(x

ij

), for 1 � i � n and 1 � j � r, as in (39). When
omplementation is

taken into a
ount, every suitable matrix is therefore equivalent to a set of 4n!

su
h solutions. The usual way to break this symmetry, in order to generate only

inequivalent solutions, is to add additional
onstraints so that the matrix is in

a \
anoni
al form." For example, we
an insist as above that 0 is adja
ent to

m�1, or that 0 and m�1 o

upy the same
olumn, and also that

x

11

< x

21

< � � � < x

n1

; x

11

< x

1r

: (40)

(See exer
ise 100.) The matri
es in (39) are
anoni
al in this sense. Constraints

like (40), whi
h signi�
antly prune the sear
h tree, are supposedly helpful.

But in this
ase a far more eÆ
ient approa
h is possible, based on the label-

oriented philosophy suggested by the reverse model and exempli�ed by the way

we've already handled K

n

and P

r

. Figure 107 illustrates the smallest KP graph:

9

0

9

0

8

9

70

8

9

70

28

59

70

28

39

70

8

9

0

18

9

60

18

79

0

18

39

0

18

29

0

8

29

60

8

9

80

9

80

7

9

80

27

39

80

7

39

80

47

9

80

1

9

80

16

79

80

1

79

80

14

9

80

13

39

80

1

9

80

2

39

80

2

29

80

29

80

5

29

80

7

29

80

3

29

80

4

09

09

8

09

8

7

09

8

73

09

83

7

09

8

1

09

8

17

09

84

17

09

8

13

09

83

1

09

8

2

09

8

62

09

83

2

09

82

09

82

5

09

82

7

09

82

3

09

82

4

Fig. 107. The

sear
h tree for

all gra
eful label-

ings of K

3

P

2

.

\Edges" labeled

9, : : : , 9 � l have

been spe
i�ed in

all possible ways

at level l+ 1.

This problem has four solutions, whi
h appear at the bottom of the tree (level 9).

The key idea here is that we
onstru
t a \home-grown"
anoni
al representation

on the
y, by �lling the 3�2 matrix with the labels of verti
es that we've
hosen

to be the endpoints of edges m, m� 1, m� 2, : : : . Sometimes the pla
ement of

a single new vertex will
reate more than one ne
essary edge (see exer
ise 101).

January 13, 2024

22 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

proof,
omputer-generated

unique gra
eful labeling

KC graphs

wraparound edges

parity

Bos�ak

y
le graphs

C

5

C

6

Sear
h trees analogous to Fig. 107
an be
onstru
ted for all n > 2, and

it turns out that the trees for n = 3, 4, 5, : : : have respe
tively 49, 446, 2094,

5545, 8103, 8825, 8907, 8910, 8910, 8910, 8910, : : : nodes. Also, the number of

solutions for those n turns out to be respe
tively 4, 15, 1, 0, 0, 0, 0, 0, 0, 0, 0, : : : .

Hmmm|guess what? The algorithm runs through pre
isely the same

al
ulations for all n � 10, ex
ept that the numberm of edges keeps getting larger

and larger. It never is able to get past row 10 of its partially �lled matrix. This

amounts to a
omputer-generated proof that the graphs K

n

P

2

are ungra
eful

for all n > 5. (See exer
ise 103.) Furthermore, the maximum running time over

all n, whi
h is also the time needed to generate that proof, is only 1.6 megamems.

Of
ourse the graphs K

n

P

3

an be analyzed too, by �lling n� 3 matri
es

in a similar way. The
al
ulations are harder, yet the running time is still quite

reasonable: Only (700 K�, 80 M�, 3.6 G�, 60 G�, 360 G�) are needed for n = (3,

4, 5, 6, 7) to show that they have respe
tively (284, 704, 101, 1, 0) gra
eful

labelings. Furthermore, 1.9 T� suÆ
e to prove that K

n

P

3

is ungra
eful for all

n > 6, by
onstru
ting a tree of 5,463,149,994 nodes.

Fig. 108. Some

gra
eful gems: The

unique labelings of

K

5

P

2

and K

6

P

3

.

Also a (less rare)

K

6

P

4

and K

5

C

5

.

0

B

B

B

�

0 24

6 22

7 19

21 11

25 2

1

C

C

C

A

0

B

B

B

B

B

�

0 56 1

5 36 9

12 6 52

33 55 26

44 2 49

57 20 11

1

C

C

C

C

C

A

0

B

B

B

B

B

�

0 78 4 76

16 37 67 25

40 69 17 53

62 3 72 70

73 2 60 6

77 51 7 45

1

C

C

C

C

C

A

0

B

B

B

�

0 62 6 64 75

3 18 69 10 33

41 70 23 59 20

73 9 43 24 51

74 2 71 14 8

1

C

C

C

A

There's another intriguing family of graphs, the \KC graphs" K

n

C

r

for

n > 2 and r > 2, whi
h add wraparound edges to the KP graphs. These graphs

have even more symmetry: Every vertex has degree n+1, so there are rn verti
es

and m = r(n+1)n=2 edges. An example appears at the right of Fig. 108, where

one
an
he
k that the 50
olumn di�eren
es jx

ij

�x

kj

j together with the 25 row

di�eren
es jx

ij

� x

i((j�1) mod r)

j are pre
isely f1; 2; : : : ; 75g.

A new phenomenon now appears. Experiments show that K

3

C

r

is un-

gra
eful whenever r is odd; yet the number of gra
eful labelings for the even

values r = 4, 6, : : : grows very rapidly: 3809, 41928684, : : : . There's a very

simple mathemati
al reason for failure in the odd-r
ase:

Lemma O. In any gra
eful labeling of a graph with 4k+1 or 4k+2 edges, the

number of verti
es with an odd degree and an odd label is always odd.

Proof. We have

P

u���v

�

�

l(u)� l(v)

�

�

= 1+2+ � � �+m =

�

m+1

2

�

when there are m

edges; and a given vertex v appears exa
tly deg(v) times in this sum. Working

modulo 2, we also have

�

�

l(u) � l(v)

�

�

� l(u) + l(v). Therefore

P

v

deg(v)l(v) �

�

m+1

2

�

. But

�

m+1

2

�

� 1 when m = 4k + 1 or m = 4k + 2.

Corollary E (J. Bos�ak). If all verti
es of a gra
eful graph have even degree,

the graph has 4k or 4k + 3 edges for some integer k.

In parti
ular, K

3

C

r

is ungra
eful when r is odd, be
ause it has 6r edges.

Furthermore, the simple
y
le graphs C

5

, C

6

, C

9

, C

10

, C

13

, : : :
an't be gra
eful.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: GRACEFUL GRAPHS 23

Sheppard

isolated vertex

symmetry

unique gra
eful labeling

fork

paw

free tree

superexponentially

Otter

The reverse model tells us another basi
 fa
t about gra
efulness in general:

Theorem S. There are exa
tly m! gra
eful labelings with m edges.

Proof. There are exa
tly k+1 ways to make 0 � LO[m�k℄ � k, for 0 � k< m.

More pre
isely, if we insist that LO[m� 1℄ = 0 in order to rule out
omple-

mentary solutions, there are exa
tly m!=2 essentially distin
t gra
eful labelings

with m edges, for all m � 2. [D. A. Sheppard, Dis
r. Math. 15 (1976), 379{388.℄

Here, for example, are the 4!=2 = 12 labelings when m = 4:

0000

0

1

23

4

0001

0

1

23

4

0002

0

1

23

4

0003

0

1

23

4

0010

0

1

23

4

0011

0

1

23

4

0012

0

1

23

4

0013

0

1

23

4

0020

0

1

23

4

0021

0

1

23

4

0022

0

1

23

4

0023

0

1

23

4

Ea
h instan
e is a

ompanied by its four-digit LO string, LO[4℄LO[3℄LO[2℄LO[1℄.

There are m+1 verti
es in general, namely f0; 1; : : : ;mg; but some of them may

be isolated|not parti
ipating in any edge. We
an think of ea
h isolated vertex

in two ways: It's either present in the graph, representing its label; or it's absent,

representing an unused label.

One of the ni
e things about this listing of m!=2 labelings is that symmetry

is automati
ally handled as it should be. A highly symmetri
al graph will appear

only as often as it has truly distin
t labelings, be
ause labelings that di�er only

be
ause of an automorphism are seen just on
e. For example, we observed earlier

thatK

1;4

has a unique gra
eful labeling, while P

5

has two; sure enough, we obtain

K

1;4

only in
ase 0000, but P

5

in
ases 0011 and 0021. Noti
e that C

4

also has

a unique labeling (
ase 0022). The tree , whi
h is often
alled the \fork,"

has three distin
t labelings (
ases 0001, 0012, 0020). The \paw" , otherwise

known as K

1

���(K

1

�K

2

), has the most (
ases 0002, 0003, 0010, 0013, 0023).

We
an see gra
efulness in a
tion by looking at all m!=2
ases, when m

isn't too large, and we're immediately fa
ed with a host of interesting unsolved

questions: How many of those
ases yield graphs that are
onne
ted? planar?

bipartite? triangle-free? When we omit the isolated verti
es, how many of the

resulting graphs are
onne
ted?
ubi
? And so on. (See exer
ises 116{122.)

In parti
ular, how many of those gra
eful labelings yield a free tree on the

verti
es f0; 1; : : : ;mg? Equivalently, how many of those m!=2 sets of m edges

have no
y
les? In su
h
ases no vertex is isolated. (See Theorem 2.3.4.1A.) The

free trees shown above when m = 4 are 0000, 0001, 0011, 0012, 0020, and 0021.

Experimentation now reveals a striking phenomenon: The number of gra
e-

ful labelings of free trees grows superexponentially, as m in
reases, while the

number of free trees grows only exponentially. (There are ni
e ways to
ompute

both numbers, without expli
itly generating labelings or trees; see exer
ise 130

and 2.3.4.4{(9). Furthermore, a

ording to R. Otter in Annals of Mathemati
s

(2) 49 (1948), 583{599, the number of free trees with n verti
es is propor-

tional to �

n

=n

5=2

, where � � 2:955765.) For example, when m = 30, there

are 902,745,276,529,593,126,158,482,120 essentially di�erent labelings, but only

40,330,829,030 free trees with 31 verti
es. That's an average of more than 2�10

16

labelings per tree!

January 13, 2024

24 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

Kotzig

GTC

Rosa

Ani
k

aterpillars

diameter 4

Gra
eful digraphs

digraphs, gra
eful

set in
lusion

Boolean latti
e

Anton Kotzig
onje
tured in 1965 that every tree is gra
eful, and his
on-

je
ture soon be
ame famous, even infamous|be
ause nobody
ould �gure out

how to prove it, yet all other questions about trees have generally been fairly

easy to resolve. Indeed, there are hundreds of people for whom the initials GTC

now mean only one thing: Not Green Templeton College, not Girls' Training

Corps, not GPU Te
hnology Conferen
e, but Gra
eful Tree Conje
ture.

The GTC is almost
ertainly true. For example, Alexander Rosa, who

invented the
on
ept of gra
eful graphs while
ompleting his dissertation under

Kotzig's dire
tion, proved it already in 1965 for all trees of at most 16 verti
es,

and for many in�nite families of trees. A
areful study of the
ase m = 16 by

David Ani
k [Dis
rete Applied Mathemati
s 198 (2016), 65{81℄ showed that only

a handful of the 48629 free trees with 17 verti
es have fewer than 50 labelings; and

those few turned out to be obviously gra
eful, be
ause they all are \
aterpillars"

(see exer
ise 145) ex
ept for this one of diameter 4:

(41)

At the other extreme, the
hampion tree has 10,399,350 di�erent labelings. Here

it is, with ea
h edge showing the number of times it
an be the edge of length 16:

767530

1926341

353690

785907

315764

41053

155394

1328781

1830521299404

29978549736

194851853701286047

321336

(42)

(Long edges seem to prefer verti
es of high degree.) Ani
k's analysis suggests

strongly that all trees of larger sizes will also be easy to label.

*Gra
eful digraphs. There's also a ni
e way to de�ne the
on
ept of a gra
eful

dire
ted graph. Suppose D is a simple, loopfree digraph with m ar
s. As before

we want to assign distin
t integers l(v) to its verti
es, with 0 � l(v) � m.

But now we say that ea
h dire
ted ar
 v ��! w impli
itly re
eives the label

�

l(w)� l(v)

�

mod (m+1), respe
ting the orientation of the ar
; and D is gra
eful

if those ar
 labels are distin
t. It follows that gra
efulness gives us exa
tly one

ar
 labeled k, for ea
h k between 1 and m.

For example, Fig. 109 shows a digraph that represents set in
lusion in a 3-

element universe, together with several of its gra
eful labelings. We
an
he
k

labeling (b) for gra
efulness, just as we did in (33) for the undire
ted graph in

Fig. 105, but this time using the operator y 	 x = (y � x) mod 13:

1	 0 = 1

3	 1 = 2

9	 6 = 3

8	 4 = 4

8	 3 = 5

6	 0 = 6

7	 0 = 7

9	 1 = 8

3	 7 = 9

4	 7 = 10

4	 6 = 11

8	 9 = 12

: (43)

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: GRACEFUL DIGRAPHS 25

Symmetries

antiautomorphisms

antisymmetries

self-
onverse

000

001

010

011

100

101

110

111

(a)

0

1

6

9

7

3

4

8

(b)

0

2

12

5

1

6

8

3

(
)

0

1

2

6

12

8

5

3

(d)

3

5

8

12

6

2

1

0

(e)

0

1

9

11

8

6

12

5

(f)

Fig. 109. This dire
ted graph (a)
an be gra
efully labeled in many ways, some of

whi
h are readily derivable from ea
h other. For example, (
) arises from (b) when

every vertex label is doubled, modulo 13. (We work mod 13 in this digraph be
ause it

has 12 ar
s.) Can you see how (d), (e), and (f) were obtained from the others?

Let q = m+1. Cy
li
 labels mod q are mu
h more versatile mathemati
ally

than the absolute-di�eren
e labels that we
onsidered before, be
ause (for exam-

ple) we
an add a
onstant to every vertex label without
hanging the implied

label of any ar
. This means we
an arbitrarily
hoose any vertex v and look

only for labelings with l(v) = 0, when we're trying to de
ide whether or not a

given digraph is gra
eful. Any gra
eful labeling with l(v) = b yields one with

l(v) = 0 after b is subtra
ted from ea
h label.

Furthermore, when q is a prime number as it is in Fig.109, we
an arbitrarily

hoose any two verti
es v and w, and look only for labelings with l(v) = 0 and

l(w) = 1: Given any labeling with l(v) = 0, we
an multiply all the vertex labels

by the number a for whi
h a � l(w) � 1 (modulo q). This operation preserves

gra
efulness, be
ause it impli
itly multiplies every ar
 label by a (modulo q). For

example, multiplying Fig. 109(b) by 2
hanges the label of vertex 100 from 7 to 1.

Symmetries of the digraph give us yet another way to derive one labeling

from another, just as the symmetry GA $ SC did in Fig. 105. For example,

labeling (d) arises from (
) when the label
urrently assigned to vertex x

1

x

2

x

3

is moved to vertex x

2

x

3

x

1

, for ea
h binary ve
tor x

1

x

2

x

3

.

Digraphs also bring a new notion into the pi
ture, be
ause they
an have

antiautomorphisms (antisymmetries), whi
h are permutations � of the verti
es

for whi
h v ��! w implies v� �� w�. In general, every digraph D has a
on-

verse D

T

whose ar
s all go the other way. A digraph is self-
onverse if and only if

it has an antiautomorphism. For example, the mapping x

1

x

2

x

3

� = �x

1

�x

2

�x

3

is an

antiautomorphism of the digraph in Fig. 109; hen
e the labeling in (e), obtained

from (d) when ea
h l(v) is repla
ed by l(v�), gra
efully negates ea
h ar
 label.

Two labelings of a digraph are regarded as essentially the same if we
an get

one from the other by (i) subtra
ting bmod q, or (ii) multiplying by amod q when

a is relatively prime to q, or (iii) using an automorphism or antiautomorphism

to permute the vertex labels, or (iv) using any
ombination of transformations

(i), (ii), (iii). In this sense, 156 di�erent labelings are essentially equivalent to

Fig. 109(b)| in
luding Fig. 109(f). (See exer
ises 156 and 157.)

Exer
ise 160 explains how to �nd all gra
eful labelings of a given digraph D,

by �nding representatives of ea
h of its equivalen
e
lasses. The �rst step is to

solve an appropriate CSP, using methods adapted from those that work for

undire
ted graphs. Some instru
tive
ase studies appear in exer
ises 161 and 168.

January 13, 2024

26 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

data stru
tures

digraph representation

ompa
t representation

We saw above in (35) that any gra
eful graph
an be represented
onve-

niently within a
omputer by a set of �ve
ompa
t arrays. Dire
ted graphs turn

out to be even more attra
tive in this respe
t, be
ause only four arrays suÆ
e;

a single array NEXT repla
es the former NEXTL and NEXTH. For example, here's a

ompa
t representation of Fig. 109(a) that
orresponds to Fig. 109(b):

l = 0 1 2 3 4 5 6 7 8 9 10 11 12

LO[l℄ = | 0 1 6 4 3 0 0 1 7 7 6 9

FIRST[l℄= 7 9 �1 8 8 �1 4 4 �1 8 �1 �1 �1

NEXT[l℄ = | �1 �1 �1 �1 �1 1 6 3 �1 3 9 �1

NAME[l℄ = 000 001 | 101 110 | 010 100 111 011 | | |

(44)

As before, the general idea is to in
lude isolated verti
es if ne
essary so that the

verti
es of the gra
eful digraph D are f0; 1; : : : ;mg, the same as their labels. The

NAME array
onne
ts these internal numbers with D's external representation, if

those vertex names are needed for
ommuni
ation with users.

The LO array is
ru
ial. For 1 � l � m, we have LO[l℄ = v if and only if

the ar
 labeled l goes from v to (v + l) mod q, where q = m + 1. Consequently

it's easy to test whether or not v ��! w is an ar
 of D, given v and w, by

inspe
ting a single element of the LO array: That ar
 is present if and only if

LO[(w � v) mod q℄ = v.

The FIRST and NEXT arrays are set up so that we
an easily visit every

su

essor of a given vertex v, using the following eÆ
ient algorithm:

Set w FIRST[v℄;

while w � 0, visit w, then set w NEXT[(w� v) mod q℄.

(45)

Exer
ise 164 explains one way to derive FIRST and NEXT from LO.

Every array LO with 0 � LO[l℄ � m for 1 � l � m de�nes a gra
eful

digraph with m ar
s on the verti
es f0; : : : ;mg. Thus the total number of m-ar

gra
eful labelings is exa
tly (m+ 1)

m

. That's mu
h larger than the m! gra
eful

labelings with m edges (see Theorem S); exer
ise 172 shows, however, that we

an de
rease it by a fa
tor of approximately 2m

2

when equivalent labelings are

lumped together. Thus the
omplete set of gra
eful digraphs
an be explored

without diÆ
ulty when m isn't too large.

Digraphs often do turn out to be gra
eful; for example, 844161 of the 1540944

nonisomorphi
 digraphs on six verti
es
an be labeled su

essfully. But of
ourse

there are many ex
eptions| in
luding half of the \most basi
" ones:

Theorem H. The oriented path P~

n

and the oriented
y
le C~

n

are both gra
eful

when n is even, but they're both ungra
eful when n is odd.

Proof. The ar
s are v

0

��!v

1

��!� � ���!v

m

, where m = n� 1 for P~

n

and m = n

(and v

m

= v

0

) for C~

n

. Suitable labels exist when n is even (see exer
ise 175).

But there's an unsurmountable problem when n is odd, be
ause the sum

(modulo q) of all ar
 labels,

�

l(v

1

)� l(v

0

)

�

mod q+ � � �+

�

l(v

m

)� l(v

m�1

)

�

mod q,

is
ongruent to l(v

m

) � l(v

0

). This sum should not be
ongruent to zero in the

ase of the path, but it should be
ongruent to zero in the
y
le.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: GRACEFUL DIGRAPHS 27

digra
eful

orientations

tournament

symmetri
 digraph

representation of graphs and digraphs

Lee distan
e

In a gra
eful digraph the sum of all the ar
 labels must be 1 + 2 + � � �+m,

whi
h is q(q � 1)=2. Hen
e it's
ongruent to 0 when q is odd, and it's an odd

multiple of q=2 when q is even. Contradi
tion.

An undire
ted graph is
alled digra
eful if there's at least one way to
onvert

it to a gra
eful digraph by orienting ea
h of its edges. There are 2

m

possible

orientations of m edges, so this gives us lots of
exibility.

A gra
eful graph is obviously digra
eful as well, be
ause we
an orient ea
h

edge towards its endpoint whose label is largest. Furthermore, the ungra
eful

graphs C

4n+2

are digra
eful, be
ause C~

4n+2

is gra
eful by Theorem H. On the

other hand, exer
ise 182 proves that the graphs C

4n+1

are not digra
eful.

Is the
omplete graph K

n

digra
eful? This is probably the most interesting

unsolved question about digra
efulness, be
ause every orientation of K

n

is
alled

a tournament. Gra
eful tournaments have been studied in other disguises, and

they are known to exist for n = 1, 2, 3, 4, 5, and 9. (See exer
ise 185.)

There is, however, a mu
h ni
er and more natural way to regard an undi-

re
ted graph G as a digraph, namely to treat it as the symmetri
 digraph G

$

,

in whi
h every edge u��� v has been repla
ed by two ar
s u��! v and v ��! u.

Indeed, as dis
ussed just before 7{(26), G and G

$

have essentially the same

properties, so we represent them both in the same way inside a
omputer.

If G has m edges, G

$

has 2m ar
s. Thus the vertex labels of G

$

should

be
hosen modulo q = 2m + 1. The labels of u ��! v and v ��! u are then

negatives of ea
h other, modulo q; and there are just m possibilities, namely

f�1;�2; : : : ;�mg. Consequently we de�ne the label of edge u���v in G

$

to be

d

L

�

l(u); l(v)

�

= min

��

l(u)� l(v)

�

mod q;

�

l(v)� l(u)

�

mod q

�

= min

�

�

�

l(u)� l(v)

�

�

; q �

�

�

l(u)� l(v)

�

�

�

: (46)

(This is the Lee distan
e between the points l(u) and l(v) on a q-
y
le; see

exer
ise 7.2.1.1{18.) And now a pleasant thing happens: When we draw K

2m+1

with its verti
es in a
ir
le, it has exa
tly 2m+1 edges of Lee distan
e 1, exa
tly

2m+1 edges of Lee distan
e 2, : : : , and exa
tly 2m+1 edges of Lee distan
e m.

Therefore if G

$

is a gra
eful digraph with m edges, we
an pa
k 2m+ 1
opies

of G perfe
tly into K

2m+1

. (Figure 110 illustrates the
ase m = 5.)

(a) (b) (
)

Fig. 110. K

11

has eleven edges of distan
e 1, : : : , and eleven of distan
e 5. A 5-
y
le

an be drawn with one edge of ea
h distan
e. Hen
e eleven 5-
y
les exa
tly
over K

11

.

\Eleven people
an form eleven rings of �ve, where everybody meets everybody else."

January 13, 2024

28 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

rainbow gra
eful

Gra
eful Tree Conje
ture

Montgomery

Pokrovskiy

Sudakov

Gallian

embedding

subgraph

image

Let's say that a graph G with m edges is rainbow gra
eful if the
orrespond-

ing digraph G

$

is gra
eful. This means that we
an assign a label l(v) to ea
h

vertex v, with �m � l(v) � m, in su
h a way that the edge labels d

L

�

l(u); l(v)

�

de�ned in (46) are distin
t for all m edges u���v.

A gra
eful graph is automati
ally rainbow gra
eful, be
ause d

L

�

l(u); l(v)

�

=

�

�

l(u)� l(v)

�

�

when l(u) and l(v) are nonnegative. Furthermore Fig. 110(b) shows

that C

5

is rainbow gra
eful, although it is neither gra
eful nor digra
eful. In

fa
t| see exer
ise 190|there's an astonishingly simple way to prove that every

y
le C

n

is rainbow gra
eful, for n � 3, be
ause of the elegant labeling

l(k) = (�1)

k+[2k<n℄

k; for 1 � k � n. (47)

A great many graphs are in fa
t known to be rainbow gra
eful, and more

are being dis
overed every day. For example, a

ording to the systemati
 study

in exer
ise 193, every graph on at most 6 verti
es is rainbow gra
eful, ex
ept for

K

6

nK

2

(the 14-edge graph obtained by deleting one of the edges of K

6

).

We've seen that graphs with lots of edges are often impossible to label

gra
efully, be
ause so many labels have to avoid interfering with ea
h other.

Yet rainbow labeling is di�erent, be
ause the
omplete graphs K

5

and K

6

|

whi
h have the maximum number of edges|do turn out to be labelable! In

fa
t, exer
ise 197 shows that K

n+1

is rainbow gra
eful whenever n is prime or

a power of a prime. It's remarkable, but true, that K

8

, K

9

, K

10

, and K

12

are

rainbow gra
eful. (On the other hand, K

7

, K

11

, and K

13

are not.)

The �rst major steps towards proving the Gra
eful Tree Conje
ture were

taken by R. Montgomery, A. Pokrovskiy, and B. Sudakov, who developed new

methods in order to prove an asymptoti
 form of a weaker
onje
ture:

Theorem M. All suÆ
iently large trees are rainbow gra
eful.

Proof. See Geometri
 and Fun
tional Analysis 31 (2021), 663{720.

Numerous unresolved questions about gra
efulness remain under a
tive in-

vestigation, be
ause the number of interesting graphs and digraphs is essentially

boundless. Joseph A. Gallian has been a
tively maintaining a dynami
 survey

of what is
urrently known. His annual reports [Ele
troni
 Journal of Combina-

tori
s, #DS6℄ began in 1998 with a 46-page review
ontaining 306 referen
es; its

23rd edition (2020) had 553 pages (with an 18-page index) and 2922 referen
es.

Graph embedding. Graph G is said* to be embedded in graph H if it is

isomorphi
 to a subgraph of H . Informally, this means that H
ontains a \
opy"

of G. Formally, it means that there's a fun
tion f from the verti
es of G to the

verti
es of H su
h that two
onditions are satis�ed:

i) if v 6= w then f(v) 6= f(w);

ii) if v���w in G then f(v)���f(w) in H .

When that happens, we say that \H
ontains G," and the set of all verti
es

ff(v) j v is a vertex of Gg is
alled the image of G in H .

* People also talk about a graph \embedded in a surfa
e"; that's an entirely di�erent topi
.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: SUBGRAPH ISOMORPHISM 29

stri
t embedding

isometri
 embedding

shortest distan
e

WORDS(1000)

Stanford GraphBase

�ve-letter words

lique

snake path: an indu
ed path

indu
ed

Cartesian produ
t of graphs

Embeddings a
tually
ome in three
avors. An ordinary vanilla-
avored

embedding simply satis�es (i) and (ii); but a stronger version,
alled a stri
t

embedding, also satis�es a third
ondition:

iii) if v /���w in G then f(v) /���f(w) in H .

Stronger yet is an isometri
 embedding, whi
h satis�es even more:

iv) d

G

(v; w) = d

H

(f(v); f(w)), where d denotes the shortest distan
e.

Noti
e that
ondition (iv) by itself implies (i), (ii), and (iii).

For example, suppose G is the �ve-
y
le C

5

, and suppose H is WORDS(1000),

the Stanford GraphBase graph that represents the thousand most
ommon �ve-

letter words of English. One of the zillions of �ve-
y
les in H is

share���spare���stare���store���shore���share: (48)

Formally we
ould say that the verti
es of G are f0; 1; 2; 3; 4g, and that G's edges

are v��� ((v + 1) mod 5) for 0 � v < 5; then f(0) = share, : : : , f(4) = shore.

But su
h formalities are needlessly
ompli
ated when we're talking about graphs

as simple as C

5

; the embedding is immediately
lear just from (48).

Example (48) is not a stri
t embedding of C

5

, be
ause we have share���

stare in H but 0 /��� 2 in G. We
ould in fa
t have
ome up with a �ve-
y
le

su
h as

share���shape���shade���shake���shame���share; (49)

in whi
h all �ve words are mutually adja
ent in H ; but that seems like
heating,

be
ause any graph is trivially isomorphi
 to a subgraph of a
omplete graph.

(This graph WORDS(1000) a
tually
ontains the 8-
lique fright, might, night,

light, sight, fight, tight, eightg; hen
e it
ontains a
opy of every G with

up to eight verti
es!) The essen
e of a �ve-
y
le is present in (48), at least

partly, but it has been drowned out in (49). A stri
t embedding retains the full

stru
ture, be
ause (ii) and (iii) say that G appears as an indu
ed subgraph of H .

There's no way to embed C

5

stri
tly into WORDS(1000), be
ause WORDS(1000)

is a subgraph of K

26

K

26

K

26

K

26

K

26

; and that graph has no indu
ed C

5

(see exer
ise 207(f)). Thus a weak embedding like (48) is the best we
an get.

Surprisingly, however, there is a stri
t embedding of the next odd
y
le, C

7

:

likes���lakes���
akes���
aves

���waves���wives���lives���likes: (50)

This one even turns out to be isometri
, in the target graph WORDS(1000).

But|surprise, surprise| the indu
ed
y
le (50) is not isometri
 in the

larger graph WORDS(5757)|be
ause that graph
ontains the somewhat unusual

word laves. The distan
e from lakes to waves in the larger graph is therefore 2,

not 3; and the same is true for the distan
e from
aves to lives.

Noti
e that if we add the word laves to (50), we get an isometri
 embedding

of the graph

(51)

into K

26

K

26

K

26

K

26

K

26

.

January 13, 2024

30 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

subgraph isomorphism problem

SIP

indu
ed subgraph isomorphism problem

ISIP

graph isomorphism problem

GIP

CSP

homomorphism

all-di�erent
onstraint

brain graph

onne
tome, see brain graph

Goriely

internet

BRAIN83+

4-regular graph

Chv�atal's graph

Evidently isometri
 embeddings are somewhat tri
ky. Some of their basi

properties are explored in exer
ises 208{216, but we shall
on
entrate on embed-

dings of the other two kinds.

Given a pattern graph G and a target graph H , the problem of visiting

all embeddings of the pattern in the target is
alled the subgraph isomorphism

problem (SIP), and the problem of visiting all of the stri
t embeddings is
alled

the indu
ed subgraph isomorphism problem (ISIP). These should be distinguished

from the graph isomorphism problem (GIP), whi
h is to test whether or not G

and H are essentially the same. The GIP is obviously equivalent to testing SIP

or ISIP in both dire
tions; but it's mu
h simpler, and it
an be atta
ked by many

methods that don't work for the SIP or ISIP. We'll study the GIP in Se
tion 7.2.3.

Let's write G � H if the SIP for pattern G and target H is solvable, and

G v H if the ISIP is solvable. (This is a slight abuse of notation; the relation

G � H really means that G

�

=

H

0

for some H

0

� H , and G v H really means

that G

�

=

H j U for some verti
es U of H . But we think of the embedded graph

as a
tually present inside its host.)

The SIP is easily seen to be a CSP, with variables, domains, and
onstraints:

The variables are the verti
es of G, the domains are the verti
es of H , and

the
onstraints are
onditions (i) and (ii). Indeed, we've already noted this

hara
terization of embedding in (6) above. The SIP is, in essen
e, the CSP

that's
onstrained to be a homomorphism of a given binary relation, together

with the all-di�erent
onstraint.

To �x the ideas, it will be helpful to
onsider an \organi
" example. Fig-

ure 111 shows the prin
ipal inter
onne
tions of a typi
al human brain, together

with two of the subgraphs obtained when only the strongest links are
onsidered.*

Clearly BRAIN83(250) is embedded in BRAIN83; but a moment's thought

shows that it would be pointless to use a subgraph-isomorphism test to verify

that fa
t: The big graph is so ri
h and twisted, almost any not-too-big graph
an

probably be found within it, in zillions of ways. The interesting question is rather

whether a smaller graph with ni
e stru
ture
an be found within BRAIN83(250).

Consider, for example, the attra
tive 4-regular graph
alled Chv�atal's graph.

We looked at it long ago in Figure 2(f), near the beginning of Chapter 7; here it

is again, with
onvenient names given to the verti
es:

0 0+ 1� 1

1+

2�

22+3�3

3+

0�

(52)

Can this graph be embedded in the somewhat sparse graph BRAIN83(250)?

* See https://
s.stanford.edu/~knuth/brain83.html for
omplete details about this

graph, whi
h was
onstru
ted from data
ompiled and simpli�ed by Alain Goriely.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: SUBGRAPH ISOMORPHISM 31

exa
t
over problem

Human Conne
tome Proje
t

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

BRAIN83, 1654 edges

(a)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

BRAIN83(250), 170 edges

(b)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

BRAIN83(300), 242 edges

(
)

Fig. 111. The graph BRAIN83, based on hundreds of high-resolution brain s
ans per-

formed by the Human Conne
tome Proje
t, shows the \wiring diagram" of a healthy

human brain. The full graph (a) has 83 verti
es (representing the major regions of

interest) and 1654 edges (representing
hannels between them). Vertex 00 is the brain

stem; verti
es 01{41 form the right brain; and verti
es 42{82 form the left brain, with

v + 41 on the left
orresponding to v on the right.

Ea
h edge is labeled with an integer l � 0, whi
h is a logarithmi
 measure of its

importan
e: The strength of an inter
onne
tion is proportional to e

�l=1000

. (However,

l is depi
ted linearly here, with a line that's shaded l=1350 of the way from bla
k to

white.) The subgraph BRAIN83(250) in (b), whi
h retains only the edges with l � 250,

illustrates some of the strongest inter
onne
tions. For example, verti
es 77 and 36 are

the left and right
audate nu
lei, and they are
onne
ted by an edge with l = 33.

One way to de
ide this is to set it up as an exa
t
over problem, following

the lead of exer
ise 7.2.2.1{77, whi
h
onsidered the spe
ial
ase where G and H

have the same number of verti
es. In general, let there be a primary item v for

ea
h vertex v of G, and a se
ondary item V for ea
h vertex V of H . Let there

also be se
ondary items e � E for every edge e of G and every non-edge E of H.

The exa
t
over problem then has one option for ea
h pair (v; V), representing

the potential mapping v 7! V , namely

`v V

S

�

e � E

�

�

e = (u���v) and E = (U /���V) for some u and U

	

': (53)

The solutions to this exa
t
over problem are pre
isely the embeddings we want,

be
ause (i) every vertex v of G is paired with a distin
t vertex V of H ; and

(ii) we
annot pair u with U and v with V in
ases where u���v and U /���V .

For example, when G is Chv�atal's graph (52) and H is BRAIN83(250), G has

12 verti
es and 24 edges; H has 68 non-isolated verti
es, with

�

68

2

�

� 170 = 2108

nonedges between them. Our exa
t
over problem therefore has 12 primary

items, 68 + 24 � 2108 = 50660 se
ondary items, and 12 � 68 = 816 options.

The options are long: GraphH has 65 nonedges involving vertex 00, so every

option that pairs v with 00
ontains 2+4�65 = 262 items. The 816 options there-

fore have more than 200,000 entries altogether, and Algorithm 7.2.2.1X takes 6

gigamems just to input them before getting started! But then it needs only 2

gigamems to solve the problem|and the result is no solutions (no embeddings).

January 13, 2024

32 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

automorphisms

essentially di�erent solutions

United States

We
an dis
over the la
k of solutions by being a little smarter when we

set up the problem. In the �rst pla
e, there's no point in
onsidering 00 as a

potential target vertex, be
ause that vertex has degree 2; every target vertex

will
learly have degree 4 in the image of G, so it must have degree � 4 in H .

We
an therefore eliminate from BRAIN83(250) not only the 15 isolated verti
es,

but also the 28 verti
es of degrees 1, 2, and 3.

Furthermore, after those verti
es go away, other verti
es no longer have

degree � 4. If we keep pruning verti
es of low valen
y from the graph, we �nally

rea
h a graph

b

H that has only 22 verti
es, all of degree � 4. This redu
ed target

graph has only

�

22

2

�

� 63 = 168 nonedges; and the redu
ed exa
t
over problem

has fewer than 17000 entries in its 264 options. Algorithm 7.2.2.1X needs just

40 megamems to input them, and 90 megamems to prove them unsolvable.

In fa
t, exer
ise 235 shows that there's a sneaky way to see that G 6�

b

H

without even running the algorithm.

OK, BRAIN83(250) is too sparse to
ontain Chv�atal's graph G. But what

about BRAIN83(300)? That graph H has 70 nonisolated verti
es, and we
an

prune it down to a min-degree-4 graph

b

H with only 58 verti
es and 211 edges.

Now we get an exa
t
over problem that Algorithm 7.2.2.1X
an input in 3 G�

and solve in 8 G�; there are 72 solutions. Therefore G is indeed embeddable

into the graph of Fig. 111(
), in 72 ways. (That fa
t has little or no biologi
al

signi�
an
e, of
ourse; but somehow it's
omforting to know that we all have

Chv�atal's graph rather �rmly embedded in our brains.)

All 72 solutions turn out, in fa
t, to lie entirely within the left brain. But

the right brain will
ontain (52) too, if we add a few more edges of the full graph.

It's signi�
ant that 72 is a multiple of 8, be
ause Chv�atal's graph has 8

automorphisms (see exer
ise 7{44). If G is any graph with exa
tly r automor-

phisms, the number of fun
tions f that embed G into H is always a multiple

of r, be
ause we obtain r distin
t embedding fun
tions f(v�) when � ranges over

all the automorphisms. Thus there really are only 9 essentially di�erent ways to

embed (52) into BRAIN83(300). One of them takes 0 7! 48, 0+ 7! 49, 1� 7! 51,

1 7! 47, 1+ 7! 77, 2� 7! 53, 2 7! 78, 2+ 7! 55, 3� 7! 58, 3 7! 75, 3+ 7! 50,

0� 7! 54; it's essentially the same as the embedding 1 7! 48, 1+ 7! 49, 2� 7! 51,

2 7! 47, : : : , 1� 7! 54, and to six others. (This solution does not belong to

BRAIN83(298), be
ause the edge 48���54 has the label l = 299. There are 2 � 8

embeddings into BRAIN83(293), but none into BRAIN83(292).)

That was fun. Let's try another example, this time with a smaller target

so that we
an see more
losely what is going on. Here's a question about the

United States that has perhaps never been asked before:

Is

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

�

DC

AL

AZ AR

CA CO

CT

DE

FL

GA

ID IL INIA

KS KY

LA

ME

MD

MAMIMN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

? (54)

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: SUBGRAPH ISOMORPHISM 33

grid

ontinental USA

automorphisms

initial domains

maximum bipartite mat
hing

mat
hing

bipartite graph

Solnon

LAD �ltering{

On the left is P

4

P

5

, a 4� 5 grid. On the right is the 49-vertex, 107-edge graph

of the
ontinental USA that we saw most re
ently in Fig. 106. At �rst glan
e,

smallish grids are visible within the right-hand graph, but a 4�5 seems unlikely.

There are, in fa
t, three di�erent ways to solve the embedding problem

of (54)| that is, 4 � 3 a
tual embedding fun
tions, be
ause the grid has four

automorphisms. The reader is en
ouraged to �nd at least one of them now, by

hand, before turning the page to peek at the answer.

Meanwhile let's look at how a
omputer might atta
k this problem intelli-

gently. Call the graphs G and H . In the �rst pla
e, the six interior verti
es of G

have degree 4; so their domains
annot in
lude any of the 15 states fCA, CT, DC,

DE, FL, LA, ME, MI, ND, NH, NJ, RI, SC, VT, WAg of smaller degree.

We
an shrink the domains even further by looking at the degrees of neigh-

bors. For example, the neighbors of 11 in G have degrees f3; 3; 4; 4g, while the

neighbors of GA in H have degrees f2; 2; 4; 4; 8g. Therefore no embedding of G

into H
an map 11 7! GA. (See exer
ise 242.) In a similar way we
an remove AL,

GA, MA, NC, OR from the domains of 11, 12, 13, 21, 22, and 23. Furthermore the

neighbors of NY in H have degrees f3; 3; 3; 5; 6g; this doesn't rule out 11 7! NY,

but it does show that we
an't map 12 7! NY or 22 7! NY. That leaves just 28

possibilities in the initial domains of G's \middle" verti
es 12 and 22.

An even
loser look shows that we
an't take 12 7! MS. For if we did, there

would be a mat
hing of size 4 in the bipartite graph

02

11

13

22

AL

AR

LA

TN

: (55)

The left part here shows the neighbors of 12; they must ea
h mat
h a vertex in

their domain that also happens to be a neighbor of MS. There's no su
h mat
hing.

Similar analyses rule out the mappings 11 7! OR, 02 7! MA, and so on. This te
h-

nique for domain redu
tion was introdu
ed by C. Solnon [Arti�
ial Intelligen
e

174 (2010), 850{864℄, who
alled it LAD �ltering (for \Lo
ally All Di�erent").

We now begin to form a sear
h tree, with 27 possibilities to try for the image

of 12. The �rst of these, alphabeti
ally, is AZ, so let's tentatively map 12 7! AZ.

This means we remove AZ from every other domain, and restri
t the domains of

02, 11, 13, and 22 to neighbors of AZ. Hmm; we soon rea
h an impasse, be
ause

21 has no pla
e to go: It must map to a neighbor of the domains of 11 and 22,

namely a neighbor of fNM; NV; UTg; but LAD �ltering proves that impossible.

The next thing to try is 12 7! AR. This option is somewhat more plausible;

LAD �ltering whittles the domains down quite a bit, but not too far. They are

0

B

�

i e d e i

h b a b h

g
 b
 g

j g f g j

1

C

A

;

a = fARg;

b = fMO; OK; TNg;

 = fKS; KY; MOg;

g = f [fIN; WVg;

h = f [fNC; NMg;

d = b [fLA; MS; TXg;

e = b [
 [fAL; MS; NM; TXg;

f = b [
 [fCO; IA; IL; NE; VAg;

i = e [g [h [fGAg;

j = g [h [fMD; OH; SD; WI; WYg:

(56)

January 13, 2024

34 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

GAD �ltering

all-di�erent

Sudoku

For example, the domain of 11, 13, and 22 is fMO; OK; TNg; the domain of 02 is

fLA; MO; MS; OK; TN; TXg; and the domain of 32 has 10 elements.

At this point we turn to a
omplementary te
hnique, known as GAD �ltering

(for \Globally All Di�erent"). The idea is again to solve a bipartite mat
hing

problem; but our goal this time is to mat
h every pattern vertex with some

element of its
urrent domain. (Be
ause if no su
h mat
hing exists, the
urrent

domains are too small and we must ba
ktra
k.)

The domains in (56) readily yield su
h a mat
hing. For example, here's one:

0

B

�

VA NM TX MS AL

NC TN AR OK CO

IA KY MO KS WV

SD NE IL IN WY

1

C

A

: (57)

Of
ourse this doesn't solve our subgraph isomorphism problem|Virginia is

nowhere near New Mexi
o, and there are many other faults. But VA does belong

to the
urrent domain of 00, a

ording to (56), and NM does belong to the domain

of 01. The advantage of (57) is that the theory of bipartite mat
hing gives us an

eÆ
ient way to trim o� all the \ex
ess fat" from the domains of variables that

are required to be all-di�erent. Indeed, the algorithm of exer
ise 253 uses (57)

to redu
e (56) substantially, so that only the following domains are left:

0

B

�

i e d e i

h b a b h

g
 b
 g

j g f g j

1

C

A

;

a = fARg;

b = fMO; OK; TNg;

 = fKS; KYg;

g = f [fIN; WVg;

h = f [fNC; NMg;

d = fLA; MS; TXg;

e = fAL; MS; NM; TXg;

f = fCO; IA; IL; NE; VAg;

i = e [g [h [fGAg;

j = g [h [fMD; OH; SD; WI; WYg:

(58)

Noti
e, for example, that (56) had MO in 19 of the 20 domains; the only

ex
eption was `a', the domain of the pattern vertex 12 that we've tentatively

mapped to AR. But in (58), MO belongs only to `b', whi
h is the domain of

pattern verti
es 11, 13, and 22.

Sudoku experts will see why MO
an be dropped from 16 of the 19 domains

where it was formerly present: Any all-di�erent assignment using (56) must map

f11; 13; 22g into fMO; OK; TNg. Hen
e those three values
an't be used elsewhere.

Similarly, we now know that 21 and 23
an't be mapped to MO; so they must

map to fKS; KYg. We
an therefore eliminate KS and KY from all domains but
.

GAD �ltering, whi
h redu
es (56) to (58), is not spe
i�
 to the subgraph

isomorphism problem; it applies to any CSP with an all-di�erent
onstraint. No

further redu
tion from (58) is possible, from that global standpoint.

But the smaller domains in (58) now let us make further progress on our

SIP, (54), by going ba
k to LAD �ltering, be
ause the lo
al bipartite graphs have

gotten signi�
antly smaller. Indeed, exer
ise 243 shows that a
ontradi
tion soon

arises. Thus we learn that the tentative mapping 12 7! AR is impossible.

So we try 12 7! CO next. LAD �ltering is now able to remove 300 elements

from the other 19 domains; that's good, yet it's signi�
antly fewer than the 379

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: SUBGRAPH ISOMORPHISM 35

GAD �ltering

Supplemental

M
Creesh

Prosser

Trimble

Chv�atal

LAD deletions that we had in the previous
ase. So our new LAD-
onsistent

domains are not as
onstrained as those in (56) above:

0

B

�

i e d e i

h b a b h

g
 b
 g

j g f g j

1

C

A

;

a = fCOg;

b = d;

f = h;

g = i;

x = fNE; OK; WYg;

y = fCA; NM; ORg;

 = x [fAZ; ID; MO; SD; TXg;

d = x [fKS; NM; UTg;

e =
 [fKSg;

h = e [fAR; IA; MT; NV; UTg;

i = h n fAZg [y [fIL; LA; MN; ND; TNg;

j = i [fAZ; KY; MS; WA; WIg:

(59)

In this situation GAD �ltering makes no
hange. So we need to bran
h again;

let's try 11 7! OK. Hurray! LAD �ltering now redu
es most of the domains to

singletons:

0

B

�

fLAg fTXg fNMg fAZg fCA; NVg

fARg fOKg fCOg fUTg fID; NVg

fTNg fMOg fNEg fWYg fID; MTg

fKYg fILg fIAg fSDg fMT; NDg

1

C

A

: (60)

So we're almost done. Bran
hing on 04 7! CA gives us Fig. 112; and the other

bran
h gives a se
ond solution (see exer
ise 244).

Fig. 112. One

of the three ways

to embed P

4

P

5

into the graph USA.

LA TX NM AZ CA

AR OK CO UT NV

TN MO NE WY ID

KY IL IA SD MT

�

DC

AL

AZ AR

CA CO

CT

DE

FL

GA

ID IL INIA

KS KY

LA

ME

MD

MAMIMN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

*Supplemental labels and graphs. We've now seen how to solve problem (54),

using a mixture of LAD and GAD �ltering to keep the ba
ktra
k tree reasonably

small. And there's another important te
hnique that we
ould also have used,

based on the fa
t that subgraph isomorphism is quite a strong property. [See C.

M
Creesh and P. Prosser, LNCS 9255 (2015), 295{312; C. M
Creesh, P. Prosser,

and J. Trimble, LNCS 12150 (2020), 316{324.℄ Noti
e, for example, that one

subgraph isomorphism always implies another:

If G � H , then G

�2

� H

�2

, with the same embedding. (61)

Here G

�2

denotes the graph whose verti
es are the same as those of G, but

whose edges u��� v exist if and only if there's a path of length � 2 between u

and v in G. If the fun
tion f embeds G into H , and if there's su
h a path in G,

then there's
learly also a path of length � 2 between f(u) and f(v) in H .

With (61) we
an improve on what we did before. For example, suppose G is

Chv�atal's graph (52). Then G

�2

= K

12

and every vertex has degree 11, sin
e the

diameter is 2. But if H is BRAIN83(300), its verti
es 30, 70, and 71 have degree

only 9 in H

�2

. Therefore we
an omit those three verti
es from all domains, and

it turns out that the SIP
omputation will take only 83% as long as before.

January 13, 2024

36 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

supplemental label

motif

initial domains

monotone

supplemental edge label

y
le C

k

LAD �ltering

supplemental pair label

We didn't a
tually need the full strength of (61) in this parti
ular
ase; all

we used was the degrees of verti
es in G

�2

and H

�2

. In general, a supplemental

label for a vertex is any fun
tion d

G

for whi
h the following property holds:

If G � H via embedding fun
tion f, then d

G

(v) � d

H

(f(v)) for all v 2G. (62)

The degree of v in G

�2

is just one example of a supplemental label.

Suppose S is an arbitrary graph, with a designated vertex s, and let d

S

G

(v)

be the number of embeddings of S into G that map v to s. Then d

S

G

is a sup-

plemental label, be
ause those embeddings of S into G will also be embeddings

of S into the image f(G) within H . We
an think of S as a lo
al \motif."

If we
an somehow dis
over a motif S that o

urs frequently in the pattern G

but less often in the target H, the labels d

S

G

and d

S

H

will help redu
e the size of

initial domains when we try to embed G into H. (See also exer
ise 242.)

Supplemental labels
an be
ombined in numerous ways. If d

G

and d

0

G

are

any two supplemental labels, so are min(d

G

; d

0

G

), max(d

G

; d

0

G

), and �d

G

+ �d

0

G

whenever �; � � 0; indeed, so is any monotone
ombination of d

G

and d

0

G

.

Furthermore, supplemental labels
an be derived for edges as well as verti
es.

A supplemental edge label is a fun
tion `

G

for whi
h we
an prove the following:

If G � H via embedding fun
tion f,

then `

G

(u; v) � `

H

(f(u); f(v)) whenever u���v in G.

(63)

(It's possible to have `

S

G

(u; v) 6= `

S

G

(v; u).) For example, let S be a motif graph in

whi
h two adja
ent verti
es, s���t, have been designated; and let `

S

G

(u; v) be the

number of ways we
an embed S into G with u 7! s and v 7! t. Then `

S

G

is a sup-

plemental edge label, by the same reasoning we used for d

S

G

above. And supple-

mental edge labels
an be
ombined monotoni
ally as before. Noti
e that, when

S is the
y
le C

k

, `

S

G

is the number of k-
y
les in G that
ontain a given edge.

A well-
hosen supplemental edge label
an signi�
antly enhan
e LAD �lter-

ing. Let's go ba
k to the USA problem of (54) and label ea
h edge u���v by the

number `

G

(u; v) of 4-
y
les that it supports. Then `

G

equals 2 on every internal

edge ofG = P

4

P

5

; and `

H

has interesting diversity on the edges ofH = USA. We

an now, for example, prove that 11 7! NY is impossible: The neighbors of 11 are

01, 10, 12, and 21, all linked by edges with `

G

= 2; the neighbors of NY are CT, MA,

NJ, PA, VT, whose `

H

labels are respe
tively 2, 2, 1, 1, 2. LAD �ltering rules this

out, be
ause the bipartite problem requires the four pattern verti
es to mat
h

only three target verti
es fCT; MA; VTg. Similar reasoning shows that 11 67! AZ,

NM, WI, and 17 other targets that non-supplemental arguments had previously

ruled out. The same pruning applies also, of
ourse, to the domain of 12.

More generally, a supplemental pair label `

G

satis�es a stronger
ondition:

If G � H via embedding fun
tion f,

then `

G

(u; v) � `

H

(f(u); f(v)) for all verti
es u and v in G.

(64)

One way to get su
h a fun
tion is to designate two non-adja
ent verti
es s and

t in a motif graph, and to de�ne `

S

G

just as we did above. A supplemental pair

label obtained in this way might turn out to be nonzero when u���v.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: SUBGRAPH ISOMORPHISM 37

supplemental graph

LAD

GAD

Maximum bipartite mat
hing

Hop
roft{Karp algorithm

Solnon

Hamiltonian

lique

Finally there's an even more powerful notion, a supplemental graph, whi
h

is a (possibly dire
ted) graph on the same verti
es but usually with a di�erent

adja
en
y relation. Suppose the following statement is true:

If G � H , then G

�

� H

�

, with the same embedding. (65)

Then we say that G

�

and H

�

are a pair of supplemental graphs. (We began

this dis
ussion with su
h a pair, in (61).)

For example, if `

G

is a supplemental pair label, we get a supplemental graph

by letting u ��! v if and only if `

G

(u; v) � k, for any threshold k. (And we

onventionally write u ��� v if and only if we have both u ��! v and v ��! u.)

Let's say that G

S;k

is the supplemental graph we obtain in this way from the

supplemental pair label `

S

G

. (Examples
an be found in exer
ises 268 and 270.)

The union and interse
tion of supplemental graphs is a supplemental graph.

And on
e we have a supplemental graph, we
an use it to de�ne further

supplemental labels and graphs, based on its motifs!

We're
learly fa
ed here with an embarrassment of ri
hes. Innumerable

supplemental labels and graphs
an potentially be
omputed, perhaps turning a

huge sear
h tree into a mere shrub. On the other hand, supplemental data based

on motifs that don't o

ur anywhere in the pattern is totally useless. A deli
ate

balan
ing a
t is required when solving a SIP, and indeed when solving any CSP:

It's great to redu
e the number of sear
h nodes by a fa
tor of 10, but not when

the
omputation time per node in
reases by a fa
tor of 100, and not when there

aren't extremely many nodes in the �rst pla
e.

Thus a well-engineered SIP solver does its best to
on
entrate on supple-

mental data that justi�es the time and spa
e needed to
ompute it. We
an

judi
iously relax our standards of LAD and GAD �ltering, if our data stru
tures

allow us to do a pretty-good-but-in
omplete job at high speed, as long as we

don't
hange the set of solutions. Maximum bipartite mat
hing problems are

solved qui
kly by the Hop
roft{Karp algorithm (Algorithm 7.5.1H on page vii);

but the existen
e of a suitably large mat
hing
an often be ruled out even more

qui
kly by rudimentary tests. (See exer
ises 277{280.)

When C. Solnon surveyed the state of the art of SIP solving [LNCS 11510

(2019), 1{13℄, she observed that it's wise to feed your problem �rst to a
om-

paratively simple solver that polishes o� easy instan
es qui
kly. You
an solve

more problems in a given amount of time if you start in that way, but swit
h to

heavier artillery if that solver doesn't �nish in, say, 0.1 se
onds.

Some SIP problems are extremely diÆ
ult indeed. So we
an expe
t
ontin-

ued progress towards methods that ameliorate their solution|perhaps by un-

derstanding more about how to �nd fruitful motifs in a given pattern and target.

Spe
ial
ases of subgraph isomorphism. The general SIP has many spe
ial

ases that are well known by other names. For example, when the pattern graph

is a path or a
y
le having the same number of verti
es as the target graph, the

problem is to �nd a Hamiltonian path or Hamiltonian
y
le. Spe
ial te
hniques

apply to that problem, and we shall dis
uss them at length in Se
tion 7.2.2.4.

Similarly, when the pattern graph is a
lique, the spe
ial methods dis
ussed in

January 13, 2024

38 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

automorphisms

three-
olorable

bandwidth

free trees

trees

Matula

subtree isomorphism

subdag isomorphism

dire
ted a
y
li
 graphs

forests

NP-hard

mat
hing

Hop
roft

Karp

bipartite

author

ba
ktra
king

ba
kmarking

XCC

line labeling

gra
eful labeling

ar sequen
ing problem

MCC

subgraph isomorphism

Se
tion 7.2.2.5 be
ome available. And when the pattern graph is the same as

the target graph, the solutions to the SIP are the automorphisms of that graph.

An n-vertex graph G is three-
olorable if and only if G � K

n;n;n

. It has

bandwidth � k if and only if G � P

k

n

, where P

k

n

is the graph on f0; 1; : : : ; n� 1g

with u���v if and only if ju� vj � k.

The spe
ial
ase when both pattern and target are free trees is perhaps the

ni
est of all, for in that
ase the SIP
an be solved with a beautiful algorithm

published by David W. Matula in 1978. His algorithm (see exer
ise 293) has a

running time of O(m

1:5

n) in the worst
ase, when the pattern size is m and the

target size is n; and its running time in pra
ti
e is typi
ally of order mn.

The fa
t that subtree isomorphism
an be handled so eÆ
iently might lead

us to suspe
t that \subdag isomorphism"|when both pattern and target are

dire
ted a
y
li
 graphs|might also be fairly easy. All su
h hopes are dashed,

however, by the simple
onstru
tion in exer
ise 228, whi
h shows that every SIP

an be regarded as a spe
ial
ase of subdag isomorphism.

The spe
ial
ase of trees
annot even be extended to forests: If the pattern

graph G
onsists of dis
onne
ted trees, the problem of de
iding whether or not

G � H turns out to be NP-hard, even when H is a free tree and G has an

extremely simple form. (See exer
ise 220.)

On the other hand, if the pattern G is simply a
olle
tion of disjoint edges,

P

2

� � � � �P

2

, an embedding of G is the same thing as a mat
hing, and again we

an test G � H eÆ
iently. The Hop
roft{Karp algorithm does this well when

H is bipartite, and other methods work for arbitrary H (see Se
tion 7.5.5).

Solving a CSP. So far we've been looking at lots of di�erent kinds of
onstraint

satisfa
tion problems; and an endless variety of further appli
ations be
kons. But

it's time now to think systemati
ally about general approa
hes that we might

take when we're fa
ed with a new CSP.

In the �rst pla
e, we
an always basi
ally start from s
rat
h, and write a

standalone program that's spe
i�
ally tailored to whatever spe
ial problem we

have in mind. In fa
t, Algorithm 7.2.2B, the basi
 ba
ktra
k algorithm, is still

the method of
hoi
e for suÆ
iently simple tasks,* as well as for
omparatively

unstru
tured tasks like those in exer
ises 7.2.2{71 and 79. The CSP frame-

work of variables, domains, and
onstraints has also suggested re�nements of

ba
ktra
king, su
h as ba
kmarking (see exer
ise 430).

In the se
ond pla
e, we
an formulate any CSP as an XCC problem|exa
t

oloring with
olors|and use the versatile methods of Se
tion 7.2.2.1. Exer
ise 4

is a simple example of this general prin
iple, and further examples
an be found in

exer
ises 61 (line labeling) and 93 (gra
eful labeling). Similarly, exer
ise 30 solves

the
ar sequen
ing problem as an MCC, using Algorithm 7.2.2.1M for nonexa
t

overing. The notions of items and options often turn out to be more dire
tly

related to a problem than the notions of variables, domains, and
onstraints; for

example, we saw in (53) that subgraph isomorphism is
onveniently expressed

* The author still �nds himself turning ba
k to that algorithm about on
e a month, sin
e

ustomizations of 7.2.2B
ontinue to be useful and fun, even after 60 years of experien
e!

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: TRANSLATING CSP TO SAT 39

XC problem

rainbow path problem

satis�ability

SAT solvers

CSP solver

satis�ability problem

ternary domain

balan
ed

lauses

at least one

at most one

dire
t en
oding

binary notation

log en
oding

as an XC problem|exa
t
overing without
olors. Another instru
tive example

is the \rainbow path problem" in the answer to exer
ise 291.

In the third pla
e, we
an formulate any CSP as a satis�ability problem, and

use the extremely well-developed SAT solvers dis
ussed in Se
tion 7.2.2.2. This

approa
h is often the way to go, espe
ially if we want to �nd only one solution

instead of the
omplete set, and we'll soon examine it in greater detail.

In the fourth pla
e, we
an
hoose from many well-designed
omputer pro-

grams that have been developed spe
i�
ally for problems that
onform expli
itly

to the CSP model. The task of designing a
omplete, general-purpose CSP solver

is beyond the s
ope of this book; however, we shall study several of the important

te
hniques that have been devised for su
h systems. A large
ommunity of

resear
hers in
onstraint pro
essing has developed new methods that enhan
e

what we've already seen in Se
tions 7.2.2.1 and 7.2.2.2.

Translating CSP to SAT. The most obvious di�eren
e between the satis�abil-

ity problem that we
onsidered in Se
tion 7.2.2.2 and the more general CSP is the

fa
t that satis�ability is based on Boolean variables, while the variables of a CSP

usually have domains with more than two values. Large domains
an, however,

be represented with small domains, if we in
rease the number of variables.

Let's look �rst at the simplest non-binary
ase, where all CSP variables

have the ternary domain f0; 1; 2g. (We
ould
onsider the \balan
ed" domain

f�1; 0;+1g instead; and indeed, f�1; 0;+1g is the domain of
hoi
e in many

appli
ations. But all ternary domains are essentially equivalent to f0; 1; 2g; and

we'll soon be studying domains f0; 1; : : : ; d� 1g for d > 3.)

One natural way to represent a ternary variable v SATwise is to en
ode it as

three binary variables, fv

0

; v

1

; v

2

g, where v

j

= [v= j ℄. The three possible triplets

v

0

v

1

v

2

are then f100; 010; 001g; and the other �ve triplets, f000, 011, 101, 110,

111g
an be ex
luded by introdu
ing four
lauses into our SAT problem:

(v

0

_ v

1

_ v

2

); (66)

(�v

0

_ �v

1

) ^ (�v

0

_ �v

2

) ^ (�v

1

_ �v

2

): (67)

Clause (66) says that v has at least one value, namely that v

0

+ v

1

+ v

2

� 1;

lauses (67) say that v has at most one value, namely that v

0

+v

1

+v

2

� 1. We've

often seen this so-
alled dire
t en
oding before, for instan
e in Eq. 7.2.2.2{(13).

A
loser look shows that v

0

is really unne
essary here, be
ause the three

allowable pairs v

1

v

2

= f00; 10; 01g are distin
t. In fa
t, if we read those pairs in

the opposite order, v

2

v

1

, we get 00, 01, and 10, whi
h are the values 0, 1, and 2

in binary notation! When v

0

is dropped, we need only one
onstraint to ensure

uniqueness of v's value,

(�v

1

_ �v

2

); (68)

instead of the four in (66) and (67). This method is
alled the log en
oding,

be
ause it generalizes to a representation of d values with only dlg de binary

variables. (At least dlg de of them are needed, to distinguish between d
ases.)

Many other en
odings are also possible. Indeed, we've already made an

extensive study of the mappings x 7! x

l

x

r

by whi
h a ternary variable x
an

January 13, 2024

40 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

inequality relation: x 6= y

disequality, see inequality relation

not equality, see inequality rel

dire
t en
oding

Table 2

ENCODING `u 6= v' WITH TERNARY DOMAINS

Name Clauses for u Clauses for v Clauses for u and v

Dire
t

(u

0

_ u

1

_ u

2

)

(�u

0

_ �u

1

)

(�u

0

_ �u

2

)

(�u

1

_ �u

2

)

(v

0

_ v

1

_ v

2

)

(�v

0

_ �v

1

)

(�v

0

_ �v

2

)

(�v

1

_ �v

2

)

(�u

0

_ �v

0

)

(�u

1

_ �v

1

)

(�u

2

_ �v

2

)

Multivalued (u

0

_ u

1

_ u

2

) (v

0

_ v

1

_ v

2

)

(�u

0

_ �v

0

)

(�u

1

_ �v

1

)

(�u

2

_ �v

2

)

Log (�u

1

_ �u

2

) (�v

1

_ �v

2

)

(u

2

_ u

1

_ v

2

_ v

1

)

(�u

1

_ �v

1

)

(�u

2

_ �v

2

)

Binary

(u

2

_ u

1

_ v

2

_ v

1

)

(u

2

_ �u

1

_ v

2

_ �v

1

)

(�u

2

_ u

1

_ �v

2

_ v

1

)

(u

2

_ u

1

_ �v

2

_ �v

1

)

(�u

2

_ �u

1

_ v

2

_ v

1

)

(�u

2

_ �u

1

_ �v

2

_ �v

1

)

Support

(u

0

_ u

1

_ u

2

)

(�u

0

_ �u

1

)

(�u

0

_ �u

2

)

(�u

1

_ �u

2

)

(v

0

_ v

1

_ v

2

)

(�v

0

_ �v

1

)

(�v

0

_ �v

2

)

(�v

1

_ �v

2

)

(�u

0

_ v

1

_ v

2

)

(�u

1

_ v

0

_ v

2

)

(�u

2

_ v

0

_ v

1

)

(u

0

_ u

1

_ �v

2

)

(u

0

_ u

2

_ �v

1

)

(u

1

_ u

2

_ �v

0

)

Weakened (u

0

_ u

1

_ u

2

) (v

0

_ v

1

_ v

2

)

(�u

0

_ u

1

_ u

2

_ �v

0

_ v

1

_ v

2

)

(�u

1

_ u

2

_ �v

1

_ v

2

)

(�u

2

_ �v

2

)

Redu
ed

(u

1

_ u

2

_ v

1

_ v

2

)

(�u

1

_ �v

1

)

(�u

2

_ �v

2

)

Pre�x

(u

2

_ u

1

_ v

2

_ v

1

)

(u

2

_ �u

1

_ v

2

_ �v

1

)

(�u

2

_ �v

2

)

Order

(�u

2

_ u

1

) (�v

2

_ v

1

)

(u

1

_ v

1

)

(�u

1

_ u

2

_ �v

1

_ v

2

)

(�u

2

_ �v

2

)

be represented by a pair of binary variables, as part of our study of Boolean

te
hniques: Equations 7.1.3{(110) through 7.1.3{(131) showed that the best su
h

mapping depends heavily on the
ontext in whi
h the representation is used.

The
ontext of a SAT en
oding within a CSP is, of
ourse, the set of

onstraints that involve the en
oded variable. So let's
onsider how to express a

given relation between two ternary variables u and v, when u and v have both

been suitably en
oded. We might as well begin with the simplest su
h relation

that arises frequently in appli
ations, namely inequality: `u 6= v'.

Table 2 shows nine ways to represent ternary inequality via SAT
lauses.

Some
lauses are usually needed for u by itself and for v by itself; then there are

lauses that involve both u and v. In the dire
t en
oding, for example, Table 2

lists (66) and (67) for both variables, followed by three
lauses (�u

j

_�v

j

) to ensure

that we don't simultaneously have u = j and v = j.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: TRANSLATING CSP TO SAT 41

multivalued en
oding

log en
oding

binary en
oding

support en
oding

weakened en
oding

pre�x en
oding

order en
oding

unary en
oding

oloring a graph

Prestwi
h

WalkSAT

Sierpi�nski gasket graph{

3-
oloring

unique

The multivalued en
oding is like the dire
t en
oding, ex
ept that it omits

the at-most-one
lauses (67). If, say, there's a solution with u

0

= u

1

= 1, we

an obtain two other solutions by
hanging either u

0

or u

1

to zero; in either
ase

u will remain unequal to v, be
ause u

0

= u

1

= 1 implies that v

0

= v

1

= 0.

The three
lauses of the log en
oding that forbid u = v in Table 2 are the

ones that don't allow the quadruple u

2

u

1

v

2

v

1

to be 0000, �1�1, or 1�1�.

The binary en
oding is similar to the log en
oding, but it allows both 11 and

00 as a

eptable en
odings of the domain value 0. Therefore we must forbid not

only 0000, 0101, and 1010, but also 0011, 1100, and 1111.

The support en
oding (see exer
ise 7.2.2.2{399) starts out like the dire
t

en
oding; but its
lauses that make u 6= v are quite di�erent. For example, the

lause `(�u

0

_ v

1

_ v

2

)' says that u = 0 implies v = 1 or v = 2.

Exer
ise 300 explains the weakened en
oding and the pre�x en
oding.

The redu
ed en
oding is the most e
onomi
al of all. Eight values of the

quadruple u

0

u

1

v

0

v

1

are permissible, ea
h of whi
h for
es u 6= v (see exer
ise 301).

Finally, Table 2
on
ludes with the order en
oding, also
alled the unary

en
oding, whi
h is another important idea that we've studied earlier. In this

ase v

j

= [v� j ℄ (see Eq. 7.2.2.2{(163)). However, order en
oding is not a really

new alternative when d = 3, be
ause the possible values v

1

v

2

= 00, 10, 11 are

equivalent to the log-en
oded values v

2

v

1

= 10, 00, 01, if v

1

$ �v

2

and v

2

$ v

1

.

It's a ni
e theory. How well do these en
odings work in pra
ti
e? Noti
e that

the CSP with domains f0; 1; : : : ; d � 1g and
onstraints u 6= v between
ertain

pairs of variables is pre
isely the problem of
oloring a graph with d
olors. So

we
an apply any of the nine en
odings to the verti
es and edges of any given

graph G, and use a SAT solver to see whether or not G is 3-
olorable. [In fa
t

the �rst seven en
odings of Table 2, generalized to d
olors for arbitrary d, were

used to test the
olorability of dozens of graphs by S. Prestwi
h in LNCS 2919

(2004), 105{119, using Algorithm 7.2.2.2W (WalkSAT) as the solver.℄

Fig. 113. The Sierpi�nski gasket graph S

(3)

n

,

shown here for n = 4, is
reated by pasting

together the
orners of 3

n�1

triangles in an

interesting way. Ea
h triangle has a ternary

label � = a

1

: : : a

n�1

, and its
orners are

labeled �0 (top), �1 (lower left), �2 (lower

right). Every vertex whose label has the form

� = a

1

: : : a

k�1

a

k

a

n

: : : a

n

, so that a

k

6=

a

k+1

= � � � = a

n

, is pasted together with the

vertex labeled �

0

= a

1

: : : a

k�1

a

n

a

k

: : : a

k

.

This rule gives two labels to all verti
es,

ex
ept for f0 : : : 0; 1 : : : 1; 2 : : : 2g; hen
e there

are (3

n

+ 3)=2 distin
t verti
es altogether.

S

(3)

4

=

000

0002=0020

001 002

0022=0200

010

011 012

020

0202=0220

021 022

0222=2000

100

101 102

110

111 112

120

121 122

200

2002=2020

201 202

2022=2200

210

211 212

220

2202=2220

221 222

2222

0000

Figure 113 illustrates a family of graphs for whi
h 3-
oloring is parti
ularly

instru
tive. The reader will have no trouble
oloring the verti
es of S

(3)

4

with

three
olors; but the interesting thing is that this
oloring is essentially unique!

January 13, 2024

42 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

Fibona

i numbers

pin
hed Sierpi�nski gasket graph

triangles

Indeed, verti
es u and v must have the same
olor whenever u and v lie on the

same verti
al line, or on any diagonal whose slope is �30

Æ

(see exer
ise 303).

Computer programmers have little diÆ
ulty verifying the uniqueness, in

their heads; but it's a di�erent story for
omputers themselves. Suppose, for

example, that the ma
hine has found a way to
olor the lower-right third of

Fig.113. Then there are two legal
olors for verti
es 0202 and 0212 (whose other

names are 0220 and 0221). One of those
olors is
orre
t; but the other one leads

to a dead end, whi
h the ma
hine might not dis
over for a long, long time. If a

onventional ba
ktra
k sear
h is used, the running time needed to
olor S

(3)

n+1

will a
tually be about 3 +

p

5 � 5:24 times as long as the time that's needed

for S

(3)

n

. (In fa
t, exer
ise 311 shows that Fibona

i numbers have a surprising

onne
tion to this problem.)

The
orners of a Sierpi�nski gasket graph have di�erent
olors in any 3-

oloring. Let's therefore de�ne the pin
hed Sierpi�nski gasket graph

b

S

(3)

n

to be

the same as S

(3)

n

but with the
orner verti
es 0 : : : 0 and 1 : : : 1 pasted together.

This graph
annot be 3-
olored. (Noti
e that

b

S

(3)

n

has d3

n

=2e verti
es, ea
h of

whi
h has degree 4 ex
ept for the remaining
orner vertex 2 : : : 2; see page x.)

One way to
ompare the en
odings of Table 2 is to see how long it takes for

a SAT solver to prove the unsatis�ability of the
lauses produ
ed from

b

S

(3)

n

, with

ea
h en
oding. We might save a fa
tor of six if we introdu
e
lauses to for
e the

olors of the top three verti
es 0 : : : 00, 0 : : : 01 and 0 : : : 02 (see exer
ise 307).

Detailed statisti
s are reported in exer
ise 309, and the bottom line is that

Log � Redu
ed < Pre�x � Dire
t �Multi � Support <Weakened� Binary;

at least with respe
t to this 3-
oloring problem. For example, the running times

in gigamems, when Algorithm 7.2.2.2C was applied to the
lauses for

b

S

(3)

9

,

were Log (8.1), Redu
ed (8.6), Pre�x (11.2), Dire
t (12.0), Multivalued (13.1),

Support (13.3), Weakened (27.0), Binary (338.0), showing the median of nine

runs in ea
h
ase. (The binary en
oding is terrible; we won't dis
uss it further.)

We
an a
tually do better, however, be
ause the graph

b

S

(3)

n

ontains lots of

triangles (3-
liques); and that means we
an give
lique hints to the SAT solver.

For example, whenever u���v���w���u is a 3-
lique in a graph that we want

to 3-
olor, we
an in
lude the
lauses

(u

0

_ v

0

_ w

0

) ^ (u

1

_ v

1

_ w

1

) ^ (u

2

_ v

2

_ w

2

) (69)

when we're using the dire
t en
oding, multivalued en
oding, or support en
oding,

be
ause ea
h
olor must appear on one of those verti
es. The other en
odings also

have appropriate
lique hints (see exer
ise 315). So the running times for

b

S

(3)

9

go down: Pre�x (4.8), Log (5.8), Redu
ed (6.5), Multivalued (7.5), Dire
t (7.9),

Support (9.6), Weakened (39.2). The pre�x en
oding has jumped into the lead!

Let's take a look under the hood, in order to understand a bit of what's going

on. The SAT solver used in these experiments, Algorithm 7.2.2.2C, gets mu
h of

its prowess from its ability to learn new
lauses, as it tries random possibilities

and noti
es the reasons for
ontradi
tions. For example, in one attempt when

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: TRANSLATING CSP TO SAT 43

empty
lause

Boolean algebra

parameters, tuning

waerden

Stappers

ParamILS

author

Biere

Kissat

given the small example

b

S

(3)

4

of Fig. 113 (but pin
hed), the �rst thing that it

learned after inputting the pre�x-en
oded
lauses was

(0202

2

_ 0122

2

): (70)

It means, \if vertex 0202 has
olor 2, so does vertex 0122." Can you guess why?

The ma
hine tried to assume the truth of 0202

2

; and that implies both 0212

2

and 0201

2

; but the
lique hint (0212

2

_ 0122

2

_ 0201

2

) then implies 0122

2

.

Exer
ise 316 dis
usses the ma
hine's next dis
overy, whi
h was the
lause

`(0202

2

_ 0222

2

)'. Its eighth major dedu
tion was `(0112)

2

'; and after learning

21
lauses it was ready to dedu
e the empty
lause, namely unsatis�ability.

Thus the magi
 of Boolean algebra allows a SAT solver to pursue lines

of reasoning that go well beyond anything that a
onventional ba
ktra
king

approa
h would ever
ontemplate. But when we look at the running times by

whi
h the pre�x en
oding veri�es un
olorability, our hopes are a
tually dashed:

b

S

(3)

3

b

S

(3)

4

b

S

(3)

5

b

S

(3)

6

b

S

(3)

7

b

S

(3)

8

b

S

(3)

9

b

S

(3)

10

b

S

(3)

11

1:36K� 27:6K� 345K� 2:98M� 23:0M� 299M� 4:77G� 72:9G� 1460G�

This is the best of our SAT-oriented methods for

b

S

(3)

n

; yet when n in
reases by 1,

its running time eventually grows by a fa
tor ex
eeding 15. That's mu
h worse

than the fa
tor of 3 +

p

5 � 5:236, whi
h we know from exer
ise 311 is a
hievable

by simple ba
ktra
king! Indeed, Algorithm 7.2.2.1X is able to handle the
ase

n = 11 in only 2.34 G� (see exer
ise 318), more than 600 times faster.

All is not lost, however. Algorithm 7.2.2.2C has ten tunable parameters,

and the running times above were all obtained with the default settings shown in

7.2.2.2{(194). But a quite di�erent set of parameters, 7.2.2.2{(196), is known to

work mu
h better with problems of the form waerden (3; k;n). Filip Stappers has

dis
overed that a similar phenomenon o

urs for the pin
hed gasket ben
hmarks:

He used ParamILS on small
ases to obtain the somewhat e

entri
 settings

� = 0:6; � = 0:6; % = 0:99; �

p

= 10000; Æ

p

= 5000;

� = 20; w = 1; p = 0:02; P = 0; = 0:15: (71)

Those parameters make the algorithm run dramati
ally faster as n grows:

b

S

(3)

3

b

S

(3)

4

b

S

(3)

5

b

S

(3)

6

b

S

(3)

7

b

S

(3)

8

b

S

(3)

9

b

S

(3)

10

b

S

(3)

11

1:84K� 49:0K� 583K� 2:84M� 18:0M� 90:8M� 521M� 2:27G� 13:2G�

And indeed the ratio for

b

S

(3)

n+1

=

b

S

(3)

n

is now
lose to 3+

p

5, as when ba
ktra
king.

The fa
t that

b

S

(3)

11

an be proved 3-un
olorable in only 13 G� is quite

impressive,
onsidering that it's a problem with 3

11

+ 1 = 177148 Boolean

variables and 4 � 3

11

+ 6 = 708594
lauses! As the author was
ondu
ting

these experiments in 2022, he
onsidered also Armin Biere's \Kissat," one of

the world's best
ontemporary solvers. Kissat, whi
h is the fruit of a de
ade's

further resear
h sin
e Se
tion 7.2.2.2 was written, is more than twi
e as fast as

the best solvers of 2012, on a majority of diÆ
ult problems. Kissat tunes its

January 13, 2024

44 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

ower snark line graphs

line graphs

fsnark (q)

ubi
 graph

log en
oding

parameters

Sierpi�nski simplex graphs

simplex graphs

liques

pure verti
es

pasting graphs together

Sierpi�nski tetrahedron graph

Bell

kite designs

Sierpi�nski [sub℄ triangle graph see gasket

pin
hed

own internal parameters; and its running time when applied to

b

S

(3)

n

turns out to

have the same order of growth, (3 +

p

5)

n

. (See exer
ise 338). It appears that

this kind of ma
hine learning
annot break through that asymptoti
 barrier.

Re
all that we did see, way ba
k in Fig. 92 when Algorithm 7.2.2.2C was

originally de�ned, that SAT te
hnology does dramati
ally speed up similar proofs

with respe
t to another family of graphs. In that problem, whi
h deals with the

\
ower snark line graphs" L(J

q

), the graphs in question have only 6q verti
es

and 12q edges, so they lead to far fewer Boolean variables. Those graphs aren't

3-
olorable when q is odd; so they give us lots more
ases on whi
h we
an

ompare the e�e
tiveness of di�erent SAT en
odings. Let's therefore pursue the

exploration of
ower snarks by extending the results reported in Fig. 92.

Exer
ise 7.2.2.2{176(
) de�nes
lauses
alled fsnark (q), whi
h represent the

multivalued en
oding for the problem of 3-
oloring the graph L(J

q

). We know

now, however, that we
an improve those
lauses by also in
luding
lique hints.

(Indeed, the 12q edges of L(J

q

) arise from 4q 3-
liques, be
ause J

q

is a
ubi

graph.) Furthermore we
an of
ourse
onsider the same problem with respe
t

to the other en
odings in Table 2. Exer
ise 320 shows that when q = 99 the

respe
tive running times, in megamems, are Log (240), Redu
ed (305), Pre�x

(339), Weakened (402), Dire
t (448), Multivalued (520), Support (1091).

Surprise: Those aren't the rankings that our experien
e with pin
hed gaskets

has led us to expe
t, although both
oloring problems seem to be quite similar.

A se
ond surprise awaits us when we study the running times for larger and

larger q. A

ording to Fig. 92, those times grow linearly for q � 99; thus if we

hange q to 2q + 1 we should expe
t the proof of unsatis�ability to take about

twi
e as long. That's not what happens, however. Considering only the log

en
oding, whi
h appears to be best for these graphs, we �nd

L(J

99

) L(J

199

) L(J

399

) L(J

799

) L(J

1599

) L(J

3199

) L(J

6399

)

249M� 1:10G� 4:66G� 21:2G� 48:2G� 171:7G� 630G�

whi
h is roughly quadrati
 behavior. The reasons are by no means
lear, nor

is mu
h known about the e�e
t of adapting Algorithm 7.2.2.2C's parameters

(�; �; %; : : : ;) to the various en
odings. SAT solvers are full of surprises!

So far we've been looking only at ternary domains. Domains of size 4 or more

lead of
ourse to many further questions, with seemingly endless possibilities to

explore. The en
odings for d = 3 in Table 2
an be extended to arbitrary d in

interesting ways (see exer
ise 332). And the graphs S

(3)

n

an also be extended

to Sierpi�nski simplex graphs S

(d)

n

for arbitrary d; the
ase d = 4 and n = 3 is

illustrated in Fig.114. When d = 4, S

(d)

n

is
alled the Sierpi�nski tetrahedron graph

of order n. It was a
tually invented by Alexander Graham Bell [National Geo-

graphi
 Magazine 14, 6 (June 1903), 219{251℄, in
onne
tion with kite designs!

Noti
e that S

(d)

n

is essentially a (d � 1)-dimensional obje
t. That makes it

a bit of a
hallenge (but fun) to imagine when d > 4.

We
an obtain a pin
hed version

b

S

(d)

n

by pasting verti
es 0 : : : 0 and 1 : : : 1

together as we did before. Exer
ise 330 points out that the graph

b

S

(d)

n

annot be

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: TRANSLATING CSP TO SAT 45

augmented Sierpinski simplex gr

pre�x en
oding

order en
oding

Hints for d-
liques

Fig. 114. The graph S

(d)

n

is obtained by pasting to-

gether d

n�1

liques of size d, using the same rules that

were spe
i�ed for d = 3 in Fig. 113: Ea
h d-
lique has

a d-ary label � = a

1

: : : a

n�1

, and its \
orner verti
es"

are labeled �j for 0 � j < d. Ea
h vertex has two d-

ary labels � and �

0

as before, ex
ept for the d \pure"

verti
es labeled j : : : j; exer
ise 323 gives examples.

Therefore there are (d

n

+ d)=2 verti
es altogether.

S

(4)

3

=

33

31

32

30

13

11

12

10

23

21

22

20

03

01

02

00

d-
olored, when d is odd; but the situation is quite di�erent when d is even. For

example, it's easy to 4-
olor the graph in Fig. 114 by putting the same
olor at

ea
h of the four
orners. Yet we
an't 4-
olor it with all-di�erent
orner
olors.

Let's therefore de�ne the augmented Sierpi�nski simplex graph to be

S

(d)

n

= S

(d)

n

plus d� 1 edges 0 : : : 0���j : : : j for 0 < j < d. (72)

This graph
annot be d-
olored when n > 1 and d is even.

As we saw when d = 3, instru
tive results are obtained when we experiment

with various SAT en
odings to verify the d-un
olorability of

b

S

(d)

n

for odd domain

sizes d, and of S

(d)

n

for even domain sizes. The prin
ipal
ontenders when d = 4

are the dire
t, multivalued, log, support, weakened, redu
ed, and order en
od-

ings. (See Table 2 and exer
ise 332; pre�x en
oding is the same as log en
oding

when d = 4, and order en
oding be
omes distin
t from the others when d > 3.)

Hints for d-
liques, dis
ussed in exer
ise 333, prove to be enormously bene�
ial.

Detailed statisti
s for d = 4 and n � 7 show that for these problems we have

Dire
t � Multi � Ordered < Redu
ed < Support < Log�Weakened;

roughly speaking, as reported in exer
ise 336. The best results overall, obtained

with the dire
t en
oding, make those relative rankings quantitative:

S

(4)

3

S

(4)

4

S

(4)

5

S

(4)

6

S

(4)

7

57:8K� 1:99M� 23:8M� 1:16G� 135G�

(possibly indi
ating superexponential growth in the running time as n in
reases).

That's great news: Those running times are a huge win for SAT-based meth-

ods|be
ause the S

(4)

n

problem has a mu
h, mu
h larger sear
h spa
e than the

b

S

(3)

n

problem does. For example, its ba
ktra
k tree appears to have about 10

13

nodes already when n = 4, and more than 10

50

when n = 5. The methods that

we used to beat SAT in the two-dimensional
ase are now hopelessly inadequate.

Moving on to domains of size d = 5, again there are surprises (see exer
ise

337). The log en
oding now be
omes totally out
lassed, and the new
hampion

is the redu
ed en
oding! Typi
al running times for the latter are

b

S

(5)

3

b

S

(5)

4

b

S

(5)

5

b

S

(5)

6

156M� 1:78G� 17:9G� 172G�

although the ba
ktra
k tree for

b

S

(5)

4

has� 10

17

nodes. These are tough problems.

January 13, 2024

46 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

order en
oding

2SAT

3SAT

log en
oding

auxiliary variables

table
onstraint

Dire
t en
oding

at-least-one

at-most-one

nogood

pre
lusion
lause

on
i
t
lause, see pre
lusion

SAT en
odings of general relations. We've now seen a variety of Boolean

representations of d-ary domains; but we've looked at only one
onstraint, 6̀='.

The next most important way to
onstrain two variables u and v is probably

the relation `u � v'|or perhaps `u < v', whi
h is the same as `u � v � 1'. The

order en
oding is parti
ularly good for
onstraints su
h as this. Indeed, in the

d-ary domain f0; 1; : : : ; d�1g, with the Boolean variable u

j

standing for [u� j ℄,

the relation `u � v � t' for any �xed t is equivalent to the
lauses

^

0�j�d�t

(�u

j

_ v

j+t

); if t > 0;

^

�t<j<d

(�u

j

_ v

j+t

); if t � 0. (73)

(We omit �u

0

or v

d

if they are present.) In the
ase t = 1, for example, we get

`u < v' () (v

1

)^ (�u

1

_ v

2

)^ (�u

2

_ v

3

)^ � � � ^ (�u

d�2

_ v

d�1

)^ (�u

d�1

): (74)

And we
an even go mu
h further: Exer
ises 7.2.2.2{405 and 406 give en
odings

for `au+ bv �
' as well as `uv � a' and `uv � a', for any
onstants a, b,
, using

only
lauses that belong to 2SAT. Exer
ise 7.2.2.2{407 gives a 3SAT equivalent

of the ternary relation `u+ v � w', when all three variables are order-en
oded.

There's also a good way to translate the relation `u � v' into SAT
lauses

when u and v have the log en
oding, thanks to Eq. 7.2.2.2{(169). For example,

suppose d = 16, u = (u

8

u

4

u

2

u

1

)

2

, and v = (v

8

v

4

v

2

v

1

)

2

, using four bits to

represent ea
h variable. Then we have u � v if and only if

(�u

8

_v

8

) ^ (�u

8

_a

1

) ^ (v

8

_a

1

) ^ (�a

1

_�u

4

_v

4

) ^ (�a

1

_�u

4

_a

2

) ^ (�a

1

_v

4

_a

2

) ^

(�a

2

_�u

2

_v

2

) ^ (�a

2

_�u

2

_a

3

) ^ (�a

2

_v

2

_a

3

) ^ (�a

3

_�u

1

_v

1

): (75)

Noti
e that these
lauses introdu
e auxiliary variables a

k

; su
h variables must

not be used in the en
oding of any other
onstraint. (For instan
e, if we also

require v � w, we'd need to introdu
e auxiliaries
alled a

4

, a

5

, and a

6

, say.)

Exer
ise 341 shows that a similar s
heme
an en
ode `u � v � t' for any t.

In general, however, a CSP
an involve arbitrary
onstraints that don't have

ni
e properties like the relation `u � v � t'. A so-
alled \table
onstraint" is

spe
i�ed by tabulating the pairs (u; v) that satisfy it. (Or by listing the pairs

that don't satisfy it, if the bad pairs are easier to spe
ify than the good ones.) If

we
an deal with any table
onstraint, we
an handle any
onstraint whatsoever.

Table
onstraints are usually translated into SAT by letting the Boolean

variable v

a

represent [v= a℄, for ea
h value a in the domain of ea
h variable v,

as we've done in most of the examples above. Here are the most popular s
hemes:

� Dire
t en
oding. Start with the at-least-one and at-most-one
lauses for ea
h

variable, as in (66) and (67). Then, for ea
h pair of values (a; b) su
h that the

assignments u = a and v = b do not satisfy the given relation|a so-
alled

nogood |add the \pre
lusion
lause" (�u

a

_�v

b

), also
alled a \
on
i
t
lause."

(Thus Table 2, whi
h en
odes `u 6= v' in ternary domains, has three nogoods.)

Noti
e that the dire
t en
oding works naturally for k-ary
onstraints as well

as for binary
onstraints: If the values (a

1

; : : : ; a

k

) don't satisfy a given relation

on the variables (v

1

; : : : ; v

k

), the pre
lusion
lause is (�v

1a

1

_ � � � _ �v

ka

k

).

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: TRANSLATING CSP TO SAT 47

Support en
oding

k-ary to binary

hidden variable

hypergraph

bipartite graph

dire
t en
oding

support en
oding

� Support en
oding. Given a binary relation R(u; v), start with the at-least-

one and at-most-one
lauses as above. Then add the \support
lauses"

^

a2D

u

�

�u

a

_

W

�

v

b

�

�

ab 2R(u; v)

	

�

^

^

b2D

v

�

�v

b

_

W

�

u

a

�

�

ab 2R(u; v)

	

�

: (76)

(The domains are D

u

and D

v

. In Table 2, D

u

= D

v

= [0 : : 3), R(u; v) = [u 6= v ℄.)

The support en
oding
an also be de�ned for k-ary relations R(v

1

; : : : ; v

k

).

But in this
ase we use a tri
k by whi
h any k-ary relation
an be regarded as a

set of k binary relations R

j

(v

j

; R); here R

j

relates the original variable v

j

to a

new \hidden variable" R, whose domain D

R

is the set fa

1

: : : a

k

j R(a

1

; : : : ; a

k

)g

of all tuples that satisfy R. If a 2 D

v

j

and a

1

: : : a

k

2 D

R

, then we have

R

j

(a; a

1

: : : a

k

) () a = a

j

; for 1 � j � k. (77)

(The idea
on
ealed in this daunting notation is basi
ally an elaboration of the

way in whi
h we represented a hypergraph as a bipartite graph in 7{(57).)

Let's study a simple example, by
onsidering the
ase whereR = R(u; v; w) is

the following more-or-less random ternary relation on ternary variables fu; v; wg:

R(u; v; w) () uvw 2 f000; 001; 010; 012; 020; 121; 211g: (78)

The dire
t en
oding for R has 3

3

� 7 = 20 nogoods, be
ause R has seven tuples;

so it
onsists of the at-least-one and at-most-one
lauses together with

(�u

0

_�v

0

_ �w

2

) ^ (�u

0

_�v

1

_ �w

1

) ^ (�u

0

_�v

2

_ �w

1

) ^ (�u

0

_�v

2

_ �w

2

) ^ (�u

1

_�v

0

_ �w

0

) ^

(�u

1

_�v

0

_ �w

1

) ^ (�u

1

_�v

0

_ �w

2

) ^ (�u

1

_�v

1

_ �w

0

) ^ (�u

1

_�v

1

_ �w

1

) ^ (�u

1

_�v

1

_ �w

2

) ^

(�u

1

_�v

2

_ �w

0

) ^ (�u

1

_�v

2

_ �w

2

) ^ (�u

2

_�v

0

_ �w

0

) ^ (�u

2

_�v

0

_ �w

1

) ^ (�u

2

_�v

0

_ �w

2

) ^

(�u

2

_�v

1

_ �w

0

) ^ (�u

2

_�v

1

_ �w

2

) ^ (�u

2

_�v

2

_ �w

0

) ^ (�u

2

_�v

2

_ �w

1

) ^ (�u

2

_�v

2

_ �w

2

): (79)

The support en
oding for R is obtained by
ombining the support en
odings for

the three binary relations R

u

(u;R), R

v

(v;R), and R

w

(w;R), namely

(R

000

_R

001

_R

010

_R

012

_R

020

_R

121

_R

211

); (80)

(R

000

_u

0

) ^ (R

000

_v

0

) ^ (R

000

_w

0

);

(R

001

_u

0

) ^ (R

001

_v

0

) ^ (R

001

_w

1

);

(R

010

_u

0

) ^ (R

010

_v

1

) ^ (R

010

_w

0

);

(R

012

_u

0

) ^ (R

012

_v

1

) ^ (R

012

_w

2

);

(R

020

_u

0

) ^ (R

020

_v

2

) ^ (R

020

_w

0

);

(R

121

_u

1

) ^ (R

121

_v

2

) ^ (R

121

_w

1

);

(R

211

_u

2

) ^ (R

211

_v

1

) ^ (R

211

_w

1

);

(�u

0

_R

000

_R

001

_R

010

_R

012

_R

020

);

(�u

1

_R

121

);

(�u

2

_R

211

);

(�v

0

_R

000

_R

001

);

(�v

1

_R

010

_R

012

_R

211

);

(�v

2

_R

020

_R

121

);

(�w

0

_R

000

_R

010

_R

020

);

(�w

1

_R

001

_R

121

_R

211

);

(�w

2

_R

012

); (81)

(u

0

_u

1

_u

2

) ^ (�u

0

_�u

1

) ^ (�u

0

_�u

2

) ^ (�u

1

_�u

2

);

(v

0

_v

1

_v

2

) ^ (�v

0

_�v

1

) ^ (�v

0

_�v

2

) ^ (�v

1

_�v

2

);

(w

0

_w

1

_w

2

) ^ (�w

0

_ �w

1

) ^ (�w

0

_ �w

2

) ^ (�w

1

_ �w

2

): (82)

At-most-one
lauses for R, su
h as (R

000

_R

001

), aren't needed (see exer
ise 347).

January 13, 2024

48 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

proje
tions

lossless join dependen
y

join dependen
y

n queens

queens

for
ing

unit propagations

onsisten
y{

Ma
kworth

� En
oded proje
tions. A k-ary relation
an be \proje
ted" onto any subset

of its variables, obtaining a weaker relation that must also be true. The

onjun
tion of these weaker relations is an approximation to the overall one.

For example, the ternary relation (78) has three proje
tions onto binary relations:

uv 2 f00; 01; 02; 12; 21g; (83)

uw 2 f00; 01; 02; 11; 21g; (84)

vw 2 f00; 01; 10; 11; 12; 20; 21g: (85)

We need 3 + 3 + 1 pre
lusion
lauses to rule out their inadmissible pairs. That

leaves the seven tuples of R, and also 011; so one more pre
lusion
lause,

(�u

0

_ �v

1

_ �w

1

); (86)

will give us the equivalent of (79) in the dire
t en
oding.

(In database theory, a relation that's equal to the interse
tion of some of its

proje
tions is said to have a lossless join dependen
y on those proje
tions.)

Exer
ise 353 shows that about 1.2% of all ternary relations on ternary do-

mains
an be de
omposed losslessly into their binary proje
tions. The remaining

98.8% are inherently ternary; but nearly half of them are almost de
omposable,

needing only �ve or fewer additional pre
lusions su
h as (86). (See exer
ise 354.)

Noti
e that the dire
t en
oding is smallest when there are
omparatively

few nogood tuples, as we saw in the relation `u 6= v';
ontrariwise, the support

en
oding is smallest when there are
omparatively few good ones. The tradeo�

is often tri
ky. When trying to pla
e n queens, for example, exer
ise 7.2.2.2{400

on
ludes that the dire
t en
oding is preferable when trying to �nd just one solu-

tion to that problem, but the support en
oding is better for �nding all solutions.

We needn't
hoose a single en
oding s
heme; the best solution for some

appli
ations might be to use two di�erent en
odings simultaneously.

Re
all from Eq. 7.2.2.2{(180) that some en
odings are for
ing, in the sense

that every implied
onsequen
e with respe
t to the individual (nonauxiliary)

literals
an be found eÆ
iently by a SAT solver using only unit propagations.

Furthermore, exer
ise 7.2.2.2{433 showed that the log en
oding in (75) is for
ing

for the relation `u � v'. Thus, for example, if u

4

= u

1

= 1 and v

2

= v

1

= 0, then

unit propagation in (75) will for
e v

8

= 1 and u

8

= 0.

For
ing
lauses are obviously desirable, if they don't take up too mu
h spa
e.

The dire
t en
oding usually doesn't have the for
ing property; for instan
e, if

we assert u

0

= 0 in (79), unit propagation does nothing. By
ontrast, however,

asserting u

0

= 0 in (81) immediately implies R

000

, R

001

, R

010

, R

012

, R

020

, �v

0

,

�w

0

, �w

2

; hen
e w

1

, by (82). The good news is that the support en
oding is always

for
ing. (See exer
ise 358; we
an regard variables R

000

, R

001

, : : : as auxiliary.)

Consisten
y. Let's shift gears now and turn to CSP-solving te
hniques that

go beyond what we've previously learned about XCC-solving and SAT-solving.

One of the key
on
epts is the notion of \
onsisten
y,"
hampioned by Alan K.

Ma
kworth in Arti�
ial Intelligen
e 8 (1977), 99{118, and extended by many

others. In general, we want to avoid or ameliorate the need to ba
ktra
k, by

re
ognizing as early as possible when our
urrent line of sear
h is doomed to fail.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: CONSISTENCY 49

oNP-
omplete

domain �ltering{

Horn
lauses

dual Horn
lauses

Horn
ore

support
lauses

A set of
onstraints is \in
onsistent" if and only if it has no solution; and

that's a
oNP-
omplete problem. So we
an't expe
t to solve it eÆ
iently. Yet it

makes sense to strive for subproblems that are not easily proved to be in
onsis-

tent. We
an in fa
t distinguish many degrees of
onsisten
y, in
reasingly diÆ
ult

to
he
k but more and more e�e
tive in pruning the sear
h tree. Interesting and

important tradeo�s arise as we try to balan
e the
ost of
onsisten
y testing with

the number of
ases to be examined.

Consider, for example, the CSP that has four variables fw; x; y; zg, ea
h with

the ternary domain f0; 1; 2g, subje
t to the following six
onstraints:

wx 6= 22; wy 62 f10; 20g; wz 6= 02; xy 62 f11; 12; 22g;

xz 62 f00; 02g; yz 62 f00; 01; 10; 11; 21g: (87)

Instead of trying the 81 possibilities for wxyz, we
an start by observing that

z 6= 1, by propagating the yz
onstraint. Therefore x 6= 0, by propagating

the xz
onstraint. Hen
e y 6= 2, by propagating the xy
onstraint. The yz

onstraint now tells us that z 6= 0; hen
e z = 2. Therefore w 6= 0; and the wy

onstraint tells us that y 6= 0. Consequently x 6= 1, w 6= 2; the unique solution

is wxyz = 1212! This pro
ess is
alled domain �ltering.

One way to understand su
h propagations is to set up a system of de�nite

Horn
lauses from the given
onstraints (87):

�w

0

^ �w

1

) �x

2

�x

0

^ �x

1

) �w

2

�w

0

) �y

0

�y

1

^ �y

2

) �w

1

�y

1

^ �y

2

) �w

2

�w

1

^ �w

2

) �z

2

�z

0

^ �z

1

) �w

0

�x

1

^ �x

2

) �z

0

�x

1

^ �x

2

) �z

2

�z

1

) �x

0

�x

0

^ �x

2

) �y

1

�x

0

) �y

2

�y

0

) �x

1

�y

0

^ �y

1

) �x

2

�y

2

) �z

0

) �z

1

�z

2

) �y

0

�z

2

) �y

1

�z

0

^ �z

2

) �y

2

(88)

(Well, these are a
tually dual Horn
lauses, be
ause every variable is
omple-

mented.) For example, if w 6= 0 and w 6= 1, then x 6= 2, be
ause wx 6= 22. In

these terms, the �ltering pro
ess is identi
al to Algorithm 7.1.1C, the
omputa-

tion of the \Horn
ore"; and we know from that algorithm that the
omputation

an be done eÆ
iently, using simple data stru
tures.

The rule to get from (87) to (88) is that, when R(u; v) is a relation between

variables u and v whose domains are D

u

and D

v

, we have jD

u

j+ jD

v

j
lauses,

V

f�v

b

j ab 2 R(u; v)g) �u

a

; a 2 D

u

;

V

f�u

a

j ab 2 R(u; v)g) �v

b

; b 2 D

v

; (89)

however, the
lauses for �u

a

and �v

b

are omitted when the premises are false; su
h

lauses are trivially true. (For example, (88) doesn't in
lude ` �w

0

^ �w

1

^ �w

2

) �x

0

',

be
ause we
an't have �w

0

^ �w

1

^ �w

2

. The wx relation needs only two
lauses.)

A wide-awake reader might be thinking at this point that (89) looks familiar.

And indeed, (89) des
ribes pre
isely the support
lauses that were de�ned above

in (76). For instan
e, ` �w

0

^ �w

1

) �x

2

' is the same as the support
lause `�x

2

_

w

0

_w

1

', when it's written in CNF. The only di�eren
e is that we omit a support

lause su
h as `�x

0

_w

0

_w

1

_w

2

', be
ause it's subsumed by the at-least-one
lause

`w

0

_w

1

_w

2

'. The fa
t that support
lauses are dual Horn
lauses explains why

SAT solvers handle them eÆ
iently.

January 13, 2024

50 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

re
ursively

urrent domain

bran
h variable

assigned

binary bran
h

instantiation, see assignment

ina
tive

a
tive

binding

viable

weakly viable

forward
onsisten
y{

domain
onsisten
y{

The pro
ess of solving a CSP
an be viewed re
ursively as a sequen
e of

steps in whi
h we narrow the domains by propagating
onstraints. Ea
h node �

of the sear
h tree
orresponds to a set D

�

= fD

�;v

j v is a variableg, where D

�;v

is the \
urrent domain" of v when we're working on subproblem �. At the root

node, o, ea
h domain D

o;v

is simply v's initially given domain. If some v has

D

�;v

= ;, subproblem � has no solution; re
ursion stops. Otherwise, when node

�

0

is a
hild of node �, the elements D

�

0

;v

of D

�

0

all satisfy D

�

0

;v

� D

�;v

.

A new level is entered when we break a problem into subproblems, ea
h

of whi
h is a \bran
h" in the sear
h tree. Two main bran
hing strategies are

used, in order to ensure that we �nd every solution exa
tly on
e; both of those

strategies involve a variable
alled the bran
h variable, v, whose domain is being

split: (i) A d-way bran
h
an be made when v's domain D

�;v

has d elements,

fa

1

; : : : ; a

d

g. Then node � has d
hildren, �

j

for 1 � j � d, and we have

D

�

j

;v

= fa

j

g. We say that v has been assigned the value a

j

in bran
h �

j

. (ii) A

binary bran
h on v=a
an be made whenever a 2 D

�;v

. Then node � has two

hildren, �

=

and �

6=

, and we have D

�

=

;v

= fag, D

�

6=

;v

= D

�;v

na. In bran
h �

=

of a binary bran
h we say, as in (i), that v has been assigned the value a.

If an assignment to one variable somehow for
es other variables to have

domain size 1, we
an optionally regard those variables as all being assigned

simultaneously. Similarly, if one or more variables in the right
hild �

6=

of a bi-

nary bran
h happen to have domain size 1, we
an optionally
all them assigned.

However, there's an important restri
tion: Whenever values have been assigned

to all of the variables in a
onstraint, those values must satisfy the
onstraint.

A variable that has been assigned a value in node � or in any an
estor of

that node is said to be ina
tive, be
ause we've already de
ided its fate. All other

variables are a
tive; they're the variables of subproblem � that we still need to

deal with. A bran
h variable must always be a
tive in its node.

The restri
tion that we've imposed on assigned variables makes it
lear when

we've found a solution: Node � solves the given CSP if and only if it has no a
tive

variables, that is, if and only if a value from its original domain has been assigned

to every variable. After rea
hing a solution node, we ba
ktra
k and try for more.

Any pair � = (v; a), where v is a variable and a belongs to v's domain, is

alled a binding. If the value a also happens to have been \assigned" to v, in the

sense just des
ribed, � is also
alled an assignment.

De�nition V. The binding (v; a) is said to be \viable" in subproblem � when

every
onstraint involving v
ontains at least one tuple � su
h that (i) v = a in � ,

and (ii) every other variable v

0

in that
onstraint has a value v

0

= a

0

in � for

whi
h a

0

belongs to the
urrent domain D

�;v

0

of v

0

. It's \weakly viable" when it

is viable with respe
t to the
onstraints in whi
h v is the only a
tive variable.

Noti
e that if the binding (v; a) is not viable, no solution to subproblem �
an

have v = a. Hen
e we
an safely remove a from v's
urrent domain in su
h a
ase.

Armed with these de�nitions, we're now ready to dis
uss the two most

important kinds of
onsisten
y, namely \forward
onsisten
y" (FC) and \domain

onsisten
y" (DC).

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: CONSISTENCY 51

wipe out

supporting tuple

8 queens problem

� Forward
onsisten
y holds at node � if and only if every a
tive binding

is weakly viable. In other words, whenever a
onstraint
ontains only one

a
tive variable, the domain of that variable is limited to values that satisfy that

onstraint, together with the values already assigned to the other variables.

� Domain
onsisten
y holds at node � if and only if every a
tive binding is

viable. In other words, no a
tive variable v has a value a in its domain for whi
h

the assignment v = a would \wipe out" (redu
e to ;) the domain of any other

a
tive variable. In other words, every binding (v; a) of an a
tive variable v has

a supporting tuple in every
onstraint that involves v. In other words, domain

�ltering as in (88) doesn't
hange any domains. (See exer
ise 362.)

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q q q q

q q

q

q

2

1

3

3

5

2

2

3

4

2

1

3

1

1

0

1

3

3 2 3 2 4 3 2 2 4 2 2 2 2 0 1 1 2

(a) (b) (
) (d) (e)

Fig. 115. If we try to extend pla
ement (a) of three queens to eight nonatta
king

queens, using forward
onsisten
y, the task is found to be impossible after we've

bran
hed to subproblems (b), (
), (d), (e). (Row and
olumn domain sizes are shown.)

Figures 115 and 116 illustrate the di�eren
e between FC and DC in a spe
ial

ase of the 8 queens problem, whi
h we
onsider to be a CSP with 16 variables

fr

1

; : : : ; r

8

;

1

; : : : ;

8

g. A queen that has been pla
ed in row i and
olumn j
orre-

sponds to having r

i

= j and

j

= i, as in 7.2.2.1{(23). In position (a), the a
tive

variables are fr

2

; r

3

; r

6

; r

7

; r

8

;

2

;

3

;

5

;

6

;

7

g and their forward-
onsistent do-

main sizes are respe
tively f2; 1; 3; 3; 5; 3; 2; 3; 2; 4g. We're for
ed to pla
e a queen

in row 3,
olumn 5, giving (b); then we bran
h on two ways to o

upy row 2, et
.

q

q

q

q

q

q

q

q

q

r3

r2 r2

r3
6

r3

r2 r2

r3
6

r6

7 r7

r7

2

1

3

3

5

2

1

2

1

3

1

1

0

1

2

3 2 3 2 4 2 2 1 2 2 2 1 1 1 0

(a) (b) (
)

Fig. 116. When domain
onsis-

ten
y is applied to the problem of

Fig.115, impossibility is dete
ted

before any bran
hing is needed.

On the other hand, domain
onsisten
y takes another ta
k: Subproblem (a)

of Fig. 116 isn't domain
onsistent, be
ause (for example) the binding (r

6

; 5)

would wipe out r

3

. Also (r

8

; 7) would wipe out

6

, et
. This domain �ltering

takes us to (
), whi
h �lters out four more bindings and wipes out

7

, et
.

It's easy to maintain forward
onsisten
y at every node of a sear
h tree,

be
ause an assignment `v=a' asks us to look only at
onstraints of the spe
ial

form R(v; v

1

; : : : ; v

k

; w), for k � 0, where w is
urrently a
tive but we've already

assigned v

1

=a

1

, : : : , v

k

=a

k

. Whenever R is su
h a
onstraint, we simply restri
t

the domain of w to values for whi
h aa

1

: : : a

k

w 2 R(v; v

1

; : : : ; v

k

; w).

January 13, 2024

52 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

line labeling problem

histos
ape

s
ope

notation D

v

S

time stamps

stamps

Domain
onsisten
y is harder to maintain, be
ause
onstraints that don't

dire
tly involve a newly assigned variable
an also
ome into play. Whenever

an a
tive variable w loses an element b from its domain, there may be one or

more a
tive bindings (w

0

; b

0

) that were supported in some
onstraint by a tuple

with w = b. All su
h supports must be repla
ed by tuples that have w 6= b; and

if no su
h tuples exist, we must remove b

0

from the domain of w

0

. And so on.

Let's return, for example, to the CSP of (21) and (22), the line labeling

problem for the histos
ape of Fig. 101(d). It has 26 variables, ea
h with domain

f+; -; >; <g; hen
e it begins with 26 � 4 = 104 a
tive bindings, namely (ab; +)

through (rs; <). And those variables are subje
t to 6 binary
onstraints and 13

ternary
onstraints.

Forward
onsisten
y holds trivially, when we start, be
ause no assignments

have yet been made. But domain
onsisten
y fails spe
ta
ularly; for example, the

no-brainer
onstraint `(kn; np) 2 f<<g' supports only one value in the domains

of variables kn and np. Thus we
an immediately shrink D

kn

and D

np

to f<g.

Furthermore the ternary
onstraint `(be; bd; ab) 2 f>+>; -+-; +-+g' allows us

to shrink D

bd

to f+; -g, while D

be

and D

ab

be
ome f+; -; >g. Similar redu
tions

o

ur for every
onstraint that arose from a W jun
tion in (20).

Constraints related to V and Y jun
tions don't help us immediately. But

on
e we know that ab
annot be <, the
onstraint on (ab; a
) tells us that a

annot be +. There are propagations galore! This is worth investigating further.

The s
ope of a
onstraint is de�ned to be the set of variables that it
on-

strains. Domain redu
tion relies on a basi
 operation that
an be formalized as

follows, when
 is a
onstraint and v is a variable in
's s
ope:

revise (
; v) =

8

>

<

>

:

For ea
h a 2 D

v

,

if

ontains no tuple having v = a, and having

all other variables in their
urrent domains,

set D

v

 D

v

n a.

(90)

Thus we remove values from v's domain if they aren't viable with respe
t to
.

We
an rea
h domain
onsisten
y if we keep applying revise (
; v) to all

possible
ombinations of
 and v, until no more
hanges o

ur. But su
h blind

meandering will repeat a lot of unne
essary tests, so we'd like to be a bit more

lever. Algorithm D below is one fairly simple yet general way to pro
eed.

Besides the notationD

v

for the domain of variable v, we shall write S

for the

s
ope of
onstraint
. Algorithm D gives \time stamps" STAMP(v) and STAMP(
)

to ea
h variable and ea
h
onstraint. Variables also have a �eld INQ(v), to tell

whether or not they're in the queue Q.

Algorithm D (Domain �ltering). Given a CSP, this algorithm attempts to

redu
e the domains of variables without redu
ing the number of solutions. It

terminates with wipeout if some domain be
omes empty; otherwise it terminates

with domain
onsisten
y. Values may already have been assigned to some of the

variables, in whi
h
ase we assume that all
onstraints without a
tive variables

have been satis�ed. An auxiliary queue, Q, holds a set of a
tive variables that

need to be examined or reexamined.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: CONSISTENCY 53

time stamps

ternary
onstraints

hidden variables

singleton domain
onsisten
y

binary
onstraints

unary
onstraints

D1. [Initialize.℄ Set STAMP(
) 0 for ea
h
onstraint
; STAMP(v) INQ(v)

[v is a
tive℄ for ea
h variable v; t 1. Put all the a
tive variables into Q.

D2. [Queue empty?℄ Terminate su

essfully if Q is empty. Otherwise set v (Q

(deleting the front of Q) and INQ(v) 0.

D3. [Loop over
onstraints.℄ Do steps D4{D5 for every
onstraint
 for whi
h

v 2 S

and STAMP(v) > STAMP(
). Then return to D2.

D4. [Loop over variables.℄ Do step D6 for every a
tive variable w 2 S

, in
luding

w = v (see exer
ise 368).

D5. [Certify
.℄ Set STAMP(
) t and t t+ 1, then return to D3.

D6. [Revise w.℄ Do revise (
; w) (see (90)). If that routine doesn't
hange D

w

,

do nothing more. Otherwise, if D

w

= ;, terminate with wipeout. Otherwise

set STAMP(w) t; and if INQ(w) = 0, also set Q(w and INQ(w) 1.

The elements v 2 Q whose domain has
hanged sin
e
 was
erti�ed are pre
isely

those with STAMP(v) > STAMP(
). The time stamps therefore help us to avoid

alling revise unne
essarily.

But a more �ne-grained analysis shows that Algorithm D might still make

many redundant tests. Exer
ises 369 and 370 show how to a
hieve domain
on-

sisten
y with a near-minimum amount of work, using the Horn
ore algorithm.

In any
ase, after the dust has settled, the domains for the histos
ape

onstraints (22) will have been redu
ed to the following, regardless of what

algorithm was used to a
hieve domain
onsisten
y:

bd =
d = dg = fh = gh = hj = jl = kl = ls = op = +;

eg = ij = mn = -; ik = kn = np = <; (91)

ab = be = ef = fq = qs = f-; >g; a
 =
m = mo = or = rs = f-; <g:

All of the \interior" lines now have a �xed label, while the \boundary" lines

ea
h have only two possible labels. Thus the four possible solutions, shown in

Fig. 104 and (23), have essentially been dis
overed by domain �ltering alone.

On the other hand, forward
onsisten
y does not work well on the CSP

of (21) and (22), be
ause of the ternary
onstraints. Those
onstraints
an,

however, be
onverted to binary, by using \hidden variables"; and FC handles

those binary
onstraints very ni
ely. (See exer
ises 377 and 378.)

Many other kinds of
onsisten
y have been explored by CSP resear
hers. For

example, one fairly easy way to strengthen DC is to require that the hidden vari-

ables be domain
onsistent with respe
t to ea
h other (see exer
ise 373). Another

straightforward way to prune domains is
alled singleton domain
onsisten
y :

We
an remove a from D

v

if the assignment v=a gives a subproblem that
an't

be made DC without emptying another variable's domain (see exer
ise 379).

Path
onsisten
y goes even further and takes propagation to a new level: It

introdu
es new binary
onstraints, whereas domain �ltering simply introdu
es

new unary
onstraints. If u, v, w are any variables for whi
h the
onstraint R

uv

between u and v in
ludes the pair ab, we
an legitimately remove that pair if

there's no value
 su
h that a
 2 R

uw

and b
 2 R

vw

. (See exer
ise 380.)

January 13, 2024

54 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

eÆ
ien
y{

ba
ktra
k tree

16 queens problem

forward
onsisten
y

MRV heuristi

symmetry

running time

bitwise operations

AC6

Bessi�ere

XCC problem

XCC as CSP

primary items

options

ompatible

assigned

ina
tive

over

a
tive list

EÆ
ien
y. The sear
h tree for a CSP
an be
ome signi�
antly smaller when we

use
onsisten
y to �lter the domains. For example, we noted in Se
tion 7.2.2 that

the ba
ktra
k tree for all 14772512 solutions to the 16 queens problem|anal-

ogous to the tree for 8 queens, whi
h was shown in its entirety in Fig. 68|has

1,141,190,303 nodes. By
ontrast, when that same problem is regarded as an ex-

a
t
over problem, and solved via Algorithm 7.2.2.1X using 16

2

options analogous

to 7.2.2.1{(23), the sear
h tree has only 193,021,021 nodes: a 6-fold redu
tion.

Algorithm 7.2.2.1X essentially uses forward
onsisten
y, together with the MRV

heuristi
 to
hoose variables for bran
hing. And if we prune the tree further,

by maintaining full domain
onsisten
y before every bran
h, the total number

of nodes goes down to 139,562,927: fewer than 10 nodes per solution. Careful

use of symmetry, as explained in exer
ise 593,
an be
ombined with domain

onsisten
y to redu
e the sear
h tree size for 16 queens to about 5 million nodes.

Of
ourse sear
h tree size isn't the whole story. We must multiply the number

of nodes by the average time spent per node, in order to get the total running

time. The average time per node, when the basi
 ba
ktra
k Algorithm 7.2.2B

was spe
ialized to the 16 queens problem,
ame to only about 98 mems; and we

redu
ed that to 30 mems per node with Algorithm 7.2.2B

�

. Furthermore, we saw

that bitwise operations and Algorithm 7.2.2W gave a further redu
tion to only

8�=�, hen
e a total running time of 9 G� to �nd all solutions. That was a winner

over Algorithm 7.2.2.1X, whi
h needed 40 G� to �nd those solutions, even though

its sear
h tree was only 1/6th the size. Furthermore, even the sophisti
ated

method of exer
ise 593, with its \tiny" 5-meganode sear
h tree, needs 26 G� to

�nd all solutions, when it maintains domain
onsisten
y with the state-of-the-art

algorithm AC6 devised by C. Bessi�ere, Arti�
ial Intelligen
e 65 (1994), 179{190.

Let's pause a minute to understand why it makes sense to say that \Algo-

rithm 7.2.2.1X essentially uses forward
onsisten
y." The same is a
tually true

also for Algorithm 7.2.2.1C, with respe
t to any XCC problem. Indeed, any XCC

problem
an be regarded as a CSP, whose variables are the primary items and

whose domains are the options. Option o belongs to the domain of item i if and

only if i 2 o. The task is to
hoose non
on
i
ting options so that every primary

item is
overed by some option of its domain. In other words, whenever i and i

0

are distin
t variables, we're allowed to assign o to i and o

0

to i

0

if and only if o

and o

0

are
ompatible, where
ompatibility (written `o k o

0

') is de�ned as follows:

o k o

0

() either o = o

0

or o \ o

0

= f
olored itemsg; (92)

where `f
olored itemsg' means the expli
itly
olored se
ondary items of o [o

0

.

Using the language of De�nition V, the bindings (v; a) of an XCC are the

pairs (i; o) where i 2 o. When step C5 of Algorithm 7.2.2.1C
overs item i with

the option o that's spe
i�ed by x

l

, it means that option o is assigned to variable i,

as well as to any other primary items i

0

that happen to be
ontained in o. Those

variables be
ome ina
tive; so the \
over" operation 7.2.2.1{(12) removes them

from the \a
tive list" of not-yet-
overed items i

1

, : : : , i

t

that are a

essible from

RLINK(0) in step C3. And it's not diÆ
ult to verify that the e�e
t of the \hide"

and \purify" operations in 7.2.2.1{(13) and 7.2.2.1{(55) is to remove from the

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EFFICIENCY 55

weakly viable

data stru
tures

dan
ing links

gra
eful labeling

author

prepro
essing

inpro
essing

Sabin

Freuder

random CSPs

modstep problem

d-ary sequen
e: Sequen
e
onsisting of digits f0; 1; : : : ; d� 1g.

system pre
isely the options o

0

that are in
ompatible with o. In other words, the

algorithm redu
es the domains so that every remaining a
tive binding (i

0

; o

0

) is

weakly viable; and that, by de�nition, is forward
onsisten
y! Noti
e that the

urrent number of a
tive bindings (i; o) for i is what the algorithm
alls LEN(i).

In order to maintain forward
onsisten
y throughout the sear
h pro
ess,

Algorithm 7.2.2.1C needed some elaborate data stru
tures, whi
h it based on

the te
hnique of \dan
ing links." Extensive
omputational experien
e with a

wide variety of XCC problems has shown that this extra work often pays o�

handsomely in pra
ti
e, be
ause it substantially redu
es the sear
h tree without

osting a great deal per node.

In other words, FC is usually a big win when
onstraints are propagated. But

there are ex
eptions, su
h as the algorithm re
ommended for the gra
eful labeling

problem in the answer to exer
ise 125. That problem doesn't bene�t mu
h from

forward
onsisten
y, at the most important levels of sear
h, in
omparison with

less expensive heuristi
s that are
ustom-tailored for gra
efulness.

While writing the present book, the author was surprised to �nd that FC

also worked faster than DC, in most of the problems that he studied. We did

observe in Se
tion 7.2.2.1 that many XCC problems are solved more qui
kly if

we start by prepro
essing them with Algorithm 7.2.2.1P; that's like applying

DC on
e, at the beginning. But problems that bene�t from \inpro
essing" as

well as prepro
essing are mu
h more rare, as we noti
ed in Se
tion 7.2.2.2. Data

stru
tures that maintain full domain
onsisten
y through the sear
h ne
essarily

add a level of
omplexity that will pay for itself only in situations where the

sear
h tree is substantially s
aled down.

Of
ourse there do exist problems where DC inpro
essing is dramati
ally

better than the maintenan
e of FC together with prepro
essing. For example,

D. Sabin and E. Freuder showed in LNCS 874 (1994), 10{20, that random CSPs

with suitably
hosen parameters are best handled with DC. On the other hand,

we know from experien
e with SAT solving in Se
tion 7.2.2.2 that the study of

random problems
an be misleading, be
ause random problems tend to have

quite di�erent behavior from \real" appli
ations, with respe
t to ba
ktra
king.

The simplest nonrandom CSPs for whi
h DC inpro
essing
an be de�nitely

re
ommended are probably spe
ial
ases of the \(d; n)-modstep problem," whi
h

is to �nd all d-ary sequen
es x

0

x

1

: : : x

n�1

su
h that we have

x

(k+1) mod n

2 fx

k

; (x

k

+ 1) mod dg; for 0 � k < n. (93)

This problem has n variables x

k

, ea
h with domain D

k

= f0; 1; : : : ; d� 1g, and

n binary
onstraints (93). The solutions when d = 3 and n = 4 are 0000, 0012,

0112, 0120, 0122, 1111, 1120, 1200, 1201, 1220, 2001, 2011, 2012, 2201, and 2222.

Consider the
ase d = 4, n = 5. If we assign x

0

 0, FC will hold if we redu
e

D

1

to f0; 1g and D

4

to f0; 3g; domains D

2

and D

3

are still f0; 1; 2; 3; 4g. But DC

would redu
e D

2

to f0; 1; 2g and D

3

to f0; 2; 3g. After subsequent assignments

x

1

 0, x

2

 1, the FC-only method won't know that x

3

 1 is doomed to fail.

The behavior of the (n�1; n)-modstep problem for all values of n is not

diÆ
ult to dis
over, with respe
t to both FC and DC. Exer
ise 392 proves that

January 13, 2024

56 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

slow growth permutations

word squares

alphabet blo
ks

radio link frequen
y assignment problem

RLFAP

Cabon

de Givry

Lobjois

S
hiex

Warners

ben
hmarks

�llomino puzzles

domains, representation of{

data stru
tures{

the asso
iated sear
h tree has approximately 2

n

n nodes, when the domains are

maintained with forward
onsisten
y only; but the size goes down to only about

n

3

=2 when full domain
onsisten
y is maintained.

Later in this se
tion we'll dis
uss Algorithm S, whi
h solves XCC problems

by maintaining full DC instead of just FC. When the XCC formulation of the

(23; 24)-modstep problem is fed to Algorithm 7.2.2.1C, the 575 solutions are

found after 267 gigamems of
omputation; but Algorithm S polishes them o�

after just 29 megamems. Thus the (n�1; n)-modstep problem is a slam dunk for

DC over FC.

Another simple CSP for whi
h DC shines is the problem of listing all \slow

growth permutations" of order n: These are the permutations p

1

p

2

: : : p

n

of

f1; 2; : : : ; ng for whi
h we have

p

k+1

� p

k

+ 1 for 1 � k < n. (94)

For example, they're 1234, 2341, 3412, 3421, 4123, 4231, 4312, and 4321 when

n = 4. It turns out that there are 2

n�1

su
h permutations in general, and they

an be obtained as the solutions to a ni
e little XCC problem (see exer
ise 403).

When that problem for n = 24 is solved by Algorithm 7.2.2.1C, its 2

23

=

8388608 solutions are found in 3 teramems, while traversing a 3.5-giganode sear
h

tree. By
ontrast, Algorithm S needs only 96 gigamems and 42 meganodes.

Algorithm S beats Algorithm 7.2.2.1C on the (n�1; n)-modstep problem for all

n � 8, and on the slow growth problem for all n � 12.

But there's a surprise: With an improved model for slow growth permuta-

tions (see exer
ise 404), Algorithm 7.2.2.1C
omes ba
k into the lead! Indeed,

that new formulation of the problem, based on the theory in exer
ise 402, is able

to �nd the 2

23

solutions in just 17.4 gigamems (and 33.6 meganodes), using FC

propagation only! And the new model makes Algorithm S slower (132 G�).

We looked at hundreds of XCC problems in Se
tion 7.2.2.1: Langford pairs,

polyomino pa
kings, edge mat
hings, sudoku automorphisms, kenken, masyu,

et
., et
.; it's natural to hope that Algorithm S will improve on the results

reported there, be
ause of its ability to look further ahead and thereby to

redu
e bran
hing. Alas, it usually turns out to be worse than the best FC-only

methods|although there are ex
eptions, su
h as double word squares (exer
ise

7.2.2.1{87) and \alphabet blo
ks" (exer
ise 7.2.2.1{113). Algorithm S also wins

big on
ertain problems beyond the s
ope of this book, su
h as the radio link

frequen
y assignment problem (RLFAP); see B. Cabon, S. de Givry, L. Lobjois,

T. S
hiex, and J. P. Warners, Constraints 4 (1999), 79{89, and the numer-

ous ben
hmarks at https://x
sp.org/assets/instan
es/Rlfap.tgz. Fur-

thermore it's a winner on �llomino puzzles (exer
ises 410{417), whi
h weren't

mentioned in Se
tion 7.2.2.1.

The moral of this story seems to be that a CSP solver should usually try to

maintain FC (forward
onsisten
y) throughout a sear
h. But one should think

twi
e before going to the extra expense of maintaining DC (domain
onsisten
y).

Representing the domains. The
urrent domains of the a
tive variables

hange frequently from level to level of the sear
h tree. So we need eÆ
ient

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: REPRESENTING THE DOMAINS 57

sta
k

Floyd

reversible memory

stamps

trail

State variable: A variable that helps to govern a pro
ess

me
hanisms to update them when we make assignments, and to downdate them

when we ba
ktra
k.

The simplest expedient is to push a fresh
opy of all
urrent domains onto a

sta
k, whenever we enter a new level of re
ursion. But that's usually not a great

idea when eÆ
ien
y is important, espe
ially not when many domains are large.

One of the most
ommon approa
hes is therefore to use Floyd's idea of

reversible memory, as dis
ussed in Eq. 7.2.2{(24) and (25), possibly also re�ned

with \stamps" as in Eq. 7.2.2{(26). An auxiliary sta
k
alled the trail
ontains

pairs (variable; value) that
an be used to restore the previous values of state

variables when ba
ktra
king. Figure 117 illustrates a typi
al example.

x y Trail � x,x

0

y,y

0

Trail

01

2

begin � 0 0 j 1 0,0 0,0 j

02

6

6

6 x 1 1 0 j

x

0

1 1,1 0,0 j

x

0

03

6

6

6 y x 1 1 j

x

0

y

0

1 1,1 1,1 j

x

0

y

0

04

6

6

6 x 2 2 1 j

x

0

y

0

x

1

1 2,1 1,1 j

x

0

y

0

05

6

6

6

2

begin �

1

2 1 j

x

0

y

0

x

1

j 2 2,1 1,1 j

x

0

y

0

j

06

6

6

6

6

6

6 y x 2 2 j

x

0

y

0

x

1

j

y

1

2 2,1 2,2 j

x

0

y

0

j

y

1

07

6

6

6

6

6

6 x 3 3 2 j

x

0

y

0

x

1

j

y

1

x

2

2 3,2 2,2 j

x

0

y

0

j

y

1

x

2

08

6

6

6

4

ba
k to � 2 1 j

x

0

y

0

x

1

3 2,2 1,2 j

x

0

y

0

09

6

6

6 x y 1 1 j

x

0

y

0

x

1

x

2

3 1,3 1,2 j

x

0

y

0

x

2

10

6

6

6

2

begin �

2

1 1 j

x

0

y

0

x

1

x

2

j 4 1,3 1,2 j

x

0

y

0

x

2

j

11

6

6

6

6

6

6 y 4 1 4 j

x

0

y

0

x

1

x

2

j

y

1

4 1,3 4,4 j

x

0

y

0

x

2

j

y

1

12

6

6

6

6

6

6 y x 1 1 j

x

0

y

0

x

1

x

2

j

y

1

y

4

4 1,3 1,4 j

x

0

y

0

x

2

j

y

1

13

6

6

6

6

6

6

2

begin �

21

1 1 j

x

0

y

0

x

1

x

2

j

y

1

y

4

j 5 1,3 1,4 j

x

0

y

0

x

2

j

y

1

j

14

6

6

6

6

6

6

6

6

6 x 5 5 1 j

x

0

y

0

x

1

x

2

j

y

1

y

4

j

x

1

5 5,5 1,4 j

x

0

y

0

x

2

j

y

1

j

x

1

15

6

6

6

6

6

6

4

ba
k to �

2

1 1 j

x

0

y

0

x

1

x

2

j

y

1

y

4

6 1,5 1,4 j

x

0

y

0

x

2

j

y

1

16

6

6

6

6

6

6 y 2 1 2 j

x

0

y

0

x

1

x

2

j

y

1

y

4

y

1

6 1,5 2,6 j

x

0

y

0

x

2

j

y

1

y

1

17

6

6

6

6

6

6 y x 1 1 j

x

0

y

0

x

1

x

2

j

y

1

y

4

y

1

y

2

6 1,5 1,6 j

x

0

y

0

x

2

j

y

1

y

1

18

6

6

6

4

ba
k to � 1 1 j

x

0

y

0

x

1

x

2

7 1,5 1,6 j

x

0

y

0

x

2

19

6

6

6 x 8 8 1 j

x

0

y

0

x

1

x

2

x

1

7 8,7 1,6 j

x

0

y

0

x

2

x

1

20

6

6

6

2

begin �

3

8 1 j

x

0

y

0

x

1

x

2

x

1

j 8 8,7 1,6 j

x

0

y

0

x

2

x

1

j

21

6

6

6

6

6

6 y x 8 8 j

x

0

y

0

x

1

x

2

x

1

j

y

1

8 8,7 8,8 j

x

0

y

0

x

2

x

1

j

y

1

22

6

6

6

6

6

6 x 3 3 8 j

x

0

y

0

x

1

x

2

x

1

j

y

1

x

8

8 3,8 8,8 j

x

0

y

0

x

2

x

1

j

y

1

x

8

23

6

6

6

6

6

6 y 5 3 5 j

x

0

y

0

x

1

x

2

x

1

j

y

1

x

8

y

8

8 3,8 5,8 j

x

0

y

0

x

2

x

1

j

y

1

x

8

24

6

6

6

6

6

6

2

begin �

31

3 5 j

x

0

y

0

x

1

x

2

x

1

j

y

1

x

8

y

8

j 9 3,8 5,8 j

x

0

y

0

x

2

x

1

j

y

1

x

8

j

25

6

6

6

6

6

6

6

6

6 y 4 3 4 j

x

0

y

0

x

1

x

2

x

1

j

y

1

x

8

y

8

j

y

5

9 3,8 4,9 j

x

0

y

0

x

2

x

1

j

y

1

x

8

j

y

5

26

6

6

6

6

6

6

4

ba
k to �

3

3 5 j

x

0

y

0

x

1

x

2

x

1

j

y

1

x

8

y

8

10 3,8 5,9 j

x

0

y

0

x

2

x

1

j

y

1

x

8

27

6

6

6

6

6

6 x y 5 5 j

x

0

y

0

x

1

x

2

x

1

j

y

1

x

8

y

8

x

3

10 5,10 5,9 j

x

0

y

0

x

2

x

1

j

y

1

x

8

x

3

28

6

6

6

6

6

6

2

begin �

32

5 5 j

x

0

y

0

x

1

x

2

x

1

j

y

1

x

8

y

8

x

3

j 11 5,10 5,9 j

x

0

y

0

x

2

x

1

j

y

1

x

8

x

3

j

29

6

6

6

6

6

6

6

6

6 y 4 5 4 j

x

0

y

0

x

1

x

2

x

1

j

y

1

x

8

y

8

x

3

j

y

5

11 5,10 4,11 j

x

0

y

0

x

2

x

1

j

y

1

x

8

x

3

j

y

5

30

6

6

6

6

6

6

4

ba
k to �

3

5 5 j

x

0

y

0

x

1

x

2

x

1

j

y

1

x

8

y

8

x

3

12 5,10 5,11 j

x

0

y

0

x

2

x

1

j

y

1

x

8

x

3

31

6

6

6

6

6

6 x 6 6 5 j

x

0

y

0

x

1

x

2

x

1

j

y

1

x

8

y

8

x

3

x

5

12 6,12 5,11 j

x

0

y

0

x

2

x

1

j

y

1

x

8

x

3

x

5

32

6

6

6

6

6

6 y x 6 6 j

x

0

y

0

x

1

x

2

x

1

j

y

1

x

8

y

8

x

3

x

5

y

5

12 6,12 6,12 j

x

0

y

0

x

2

x

1

j

y

1

x

8

x

3

x

5

y

5

33

6

6

6

4

ba
k to � 8 1 j

x

0

y

0

x

1

x

2

x

1

13 8,12 1,12 j

x

0

y

0

x

2

x

1

34

6

6

6 y 7 8 7 j

x

0

y

0

x

1

x

2

x

1

y

1

13 8,12 7,13 j

x

0

y

0

x

2

x

1

y

1

35

4

ba
k out 0 0 14 0,12 0,13

Fig. 117. Reversible storage is implemented by keeping a trail of
hanges that need

to be undone. An entry like `

x

0

' means \reset x to 0." The variation at the right saves

spa
e by trailing
hanges to x only when x

0

doesn't mat
h the
urrent stamp �.

January 13, 2024

58 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

stamping

Bit ve
tors

bitwise operations

MMIX

SADD

sideways addition

ruler fun
tion �

binary
onstraints

forward
onsisten
y

assignment

Boolean matrix

In Fig. 117, node � of a sear
h tree has three
hildren �

1

, �

2

, and �

3

; �

1

is

a \leaf" (either a solution or a
ontradi
tion), while �

2

has a
hild �

21

and �

3

has two
hildren f�

31

; �

32

g, all leaves. The illustration shows the
urrent states

of variables x and y as the
omputation pro
eeds; at the end, x and y on
e

again have their original values. The right-hand version uses STAMP(x) = x

0

and

STAMP(y) = y

0

to avoid pla
ing some redundant entries on the trail; the
urrent

stamp � in
reases by 1 whenever we enter a new node or ba
ktra
k to a parent.

Noti
e that stamping doesn't really help mu
h in this parti
ular example;

at line 34 the trail has �ve entries whose net e�e
t is simply to reset x 0 and

y 0. Exer
ise 420 explains how we might be able to do better.

When the original domain of variable v has d elements, it's usually best to

represent it internally as the set f0; 1; : : : ; d � 1g. So we shall assume in the

following dis
ussion that the
urrent domain D

v

is always
ontained in that set.

We typi
ally need to do four basi
 things with D

v

:

� Determine whether or not a 2 D

v

, given a value 0 � a < d;

� Delete a given value a from D

v

, if it is present;

� Determine the size, jD

v

j;

� Visit (\iterate through") all elements of D

v

.

Elements that are deleted will have to be undeleted later.

Three kinds of data stru
tures suggest themselves for operations su
h as

these: Bit ve
tors; doubly linked lists; \sparse-sets." Let's
onsider them in turn.

First, when d � 64, it's attra
tive to work with the binary number

BITS(v) =

X

f2

a

j a 2 D

v

g; (95)

and to take advantage of a
omputer's bitwise operations. Indeed,

a 2 D

v

() BITS(v)& (1� a) 6= 0; (96)

D

v

 D

v

n fag () BITS(v) BITS(v)&�(1� a); (97)

jD

v

j � 1 () BITS(v)& (BITS(v)� 1) = 0: (98)

To
ompute jD

v

j = � BITS(v), we
an use a built-in instru
tion like MMIX's SADD,

or a tri
k like 7.1.3{(62). And to iterate through D

v

, we
an do this:

Set t BITS(v); while t 6= 0, visit �(t&�t) and set t t� (t&�t). (99)

In a CSP with only binary
onstraints, we
an maintain forward
onsisten
y

after making the assignment v a by simply setting

BITS(w) BITS(w)& C

v;a;w

; for all w related to v, (100)

where C

v;a;w

is an appropriate
onstant (namely, row a of the Boolean matrix

for the
onstraint between v and w).

Se
ond, our old standby from Se
tion 2.2.5, the doubly linked list, is another

natural
hoi
e. If d < 2

32

we
an, for instan
e, work with an array of d + 1

o
tabytes, for every variable v, where every o
tabyte for 0 � a � d
ontains

two tetrabytes
alled PREV

v

(a) and NEXT

v

(a) that link to the neighbors of a in

v's list. For simpli
ity we'll write PREV and NEXT instead of PREV

v

and NEXT

v

.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: REPRESENTING THE DOMAINS 59

list head

head of list: see List head

dan
ing links

undeletion

sparse-set representation

permutations

inverse

pi, random

The spe
ial value a = d serves as the list head. If the
urrent domain D

v

is

fa

1

; : : : ; a

s

g, where 0 � a

1

< a

2

< � � � < a

s

< d and s > 0, we'll have

NEXT(d) = a

1

; NEXT(a

j

) = a

j+1

for 1 � j < s; NEXT(a

s

) = d; (101)

PREV(d) = a

s

; PREV(a

j

) = a

j�1

for 1 < j � s; PREV(a

1

) = d; (102)

and if s = 0 we'll have NEXT(d) = PREV(d) = d. Noti
e that we always have

NEXT(PREV(a))= PREV(NEXT(a))= a; if a 2 D

v

or a = d. (103)

Let's also add a Boolean array

IN

v

[a℄ = [a2D

v

℄; for 0 � a < d; IN

v

[d℄ = 0: (104)

(If d < 2

31

, these bits will �t with the o
tabytes
ontaining PREV and NEXT.)

The four basi
 operations are obviously easy with this representation. Fur-

thermore, the \dan
ing links" proto
ol, 7.2.2.1{(1) and 7.2.2.1{(2), tells us how

to preserve histori
al information so that the undeletion operation is simple:

NEXT(PREV(a)) a and PREV(NEXT(a)) a: (105)

Exer
ise 421 proves that the dan
ing links proto
ol also has an interesting

property that was not mentioned in Se
tion 7.2.2.1.

Third, the sequential sparse-set representation, whi
h we dis
ussed in 7.2.2{

(16) through 7.2.2{(23),
an be adapted to domain representation in a very ni
e

way. Ea
h variable v is now represented by two arrays DOM

v

[k℄ and IDOM

v

[k℄

for 0 � k < d, together with another variable SIZE(v). Both DOM

v

and IDOM

v

are permutations of f0; 1; : : : ; d� 1g; and IDOM

v

is the inverse of DOM

v

:

DOM

v

[IDOM

v

[a℄℄ = IDOM

v

[DOM

v

[a℄℄ = a; for 0 � a < d. (106)

Furthermore, the
urrent value of v's domain is simply

D

v

= fDOM

v

[k℄ j 0 � k < SIZE(v)g; (107)

and these elements
an appear in any order. For example, if d = 7 and D

v

=

f1; 3; 4; 5g, we might have

k = 0 1 2 3 4 5 6

DOM

v

[k℄ = 3 1 4 5 2 6 0

IDOM

v

[k℄ = 6 1 4 0 2 3 5

and SIZE(v) = 4: (108)

(That parti
ular domain
an in fa
t be represented in 4! 3! di�erent ways.) Noti
e

that

a 2 D

v

() IDOM

v

[a℄ < SIZE(v): (109)

The main point of interest for this representation is the deletion operation:

Set k IDOM

v

[a℄.

If k < SIZE(v), set SIZE(v) SIZE(v)� 1, a

0

 DOM

v

[SIZE(v)℄,

DOM

v

[SIZE(v)℄ a, IDOM

v

[a℄ SIZE(v), DOM

v

[k℄ a

0

, IDOM

v

[a

0

℄ k.

(110)

It's interesting be
ause undeletion is \free": We just set SIZE(v) SIZE(v)+1.

In fa
t, a whole round of deletions
an be undone by just restoring the

previous value of SIZE(v); only SIZE(v) needs to be pla
ed in the trail.

January 13, 2024

60 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

a
he-friendly

bit ve
tors

reversible sparse bitset

sparse bitset

bitset

pi, as random

trail

The sparse-set representation has an important property that's often useful:

The elements DOM

v

[d� 1℄, DOM

v

[d� 2℄, : : : , DOM

v

[SIZE(v)℄ are the values not

present in the
urrent domain D

v

, in the exa
t order in whi
h they were deleted.

In other words, the most re
ent
hanges to the domain appear together, in

positions SIZE(v), SIZE(v)+ 1, : : : of DOM

v

.

Another advantage is the fa
t that the sequentially a

essed array DOM

v

is

more
a
he-friendly than a doubly linked list. On the other hand, the order of

domain elements is not preserved; that might be a handi
ap (see exer
ise 424).

Sparse-set te
hnology
an also be applied in a rather di�erent way, whi
h

sometimes makes bit ve
tors attra
tive even when the domain size d is very large.

This
ombination of ideas gives us a fourth
andidate for representing domains,

a new type of data stru
ture
alled a \reversible sparse bitset."

In general, suppose we want to represent a set D of d elements within a

omputer that has e-bit words, using q = dd=ee of those words to store bit

ve
tors b

k

for 0 � k < q. The natural way to do this is to represent the element

a of D as bit a� ke of word b

ba=e

; more pre
isely,

b

k

=

X

f2

a�ke

j a 2 D and ke � a < (k + 1)eg: (111)

This s
heme is
alled the bitset representation of D.

When the set D
ontinually gets smaller and smaller as a
omputation

pro
eeds, many of the individual words b

k

will be zero, and we won't want

to look at them again. That's where sparse-set prin
iples
ome into play: We

an maintain an array of q elements, D[j℄ for 0 � j < q, and an integer S, with

b

D[j℄

6= 0 () j < S; for 0 � j < q. (112)

Thus D and S play the roles of DOM

v

and SIZE(v) in (107); the inverse permutation

IDOM

v

isn't needed. Figure 118 shows how it works.

b

0

b

1

b

2

b

3

b

4

b

5

b

6

D S

Initial set f0; 1; : : : ; 19g: 111 111 111 111 111 111 110 0123456j 7

AND with 011 001 001 000 011 111 10: 011 001 001 000 011 111 100 012645j3 6

AND with 010 001 000 010 110 100 01: 010 001 000 000 010 100 000 0154j623 4

AND with 101 001 100 010 011 000 11: 000 001 000 000 010 000 000 41j50623 2

Fig. 118. The sparse bitset representation of a set with d elements, using q = dd=ee

words of e bits ea
h, illustrated here for d = 20 and e = 3, hen
e q = 7. (Of
ourse

e would be mu
h larger in an a
tual
omputer; with MMIX we'd
hoose e = 64. Noti
e

that if the bits are numbered 0 to 19 from left to right, word b

6

initially
ontains the

binary number (011)

2

, not (110)

2

, a

ording to Eq. (111).) The �rst S elements of D

tell us where to �nd all of the words b

k

that are still nonzero. Exer
ise 426 explains

how to perform the AND operations in O(S) steps, while
hanging D as little as possible.

A sparse bitset su
h as this be
omes reversible if we make all of the individual

words b

k

reversible, by re
ording their
hanges in the trail, together with the

value of S before those
hanges were made.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: DANCING CELLS 61

dan
ing
ells{

author

Solnon

internal numbers

option list

spa
ers

*Dan
ing
ells. We've just seen that sparse-set arrays
an perform many of the

fun
tions of doubly linked lists, without needing any more spa
e. How far
an

we push this idea? Could a sparse-set representation possibly
ompete with the

dan
ingly linked lists in the
ore of Algorithm 7.2.2.1C, whi
h has been the most

popular XCC solver for many years?

That question was posed to the author in 2020 by Christine Solnon, and the

answer turns out to be \yes"(!). She has suggested that the newfangled XCC

solver be known as \dan
ing
ells," be
ause exquisite
horeography on
e again

governs the
omputations. Algorithm C below in
ludes many of her ideas.

The easiest way to understand dan
ing
ells is to look again at the toy prob-

lem 7.2.2.1{(49), with whi
h we introdu
ed the original algorithm. That problem

has three primary items fp; q; rg, two se
ondary items fx; yg, and �ve options:

`p q x y:A' ; `p r x:A y' ; `p x:B' ; `q x:A' ; `r y:B' : (113)

Table 7.2.2.1{2 illustrated the previous data stru
tures for (113). There were

doubly linked lists of primary and se
ondary items, using LLINK and RLINK �elds;

ea
h item also had a doubly linked list of its options, using ULINK and DLINK.

Table 3 shows a
onvenient way to represent those same lists in sparse-set

style. There are three arrays,
alled ITEM, SET, and NODE; the elements of NODE

have three �elds,
alled ITM, LOC, and CLR. Items have internal numbers, whi
h

are listed in ITEM; for example, ITEM[1℄ = 11 is the internal number for `q'.

Suppose ITEM[k℄ = i. Then the SET array, beginning at SET[i℄, lists the

pla
es where item i appears in options; and the NODE array shows the options

themselves. For example, when k = 1, we have SET[11℄ = 2, and SET[12℄ = 14;

NODE[2℄ and NODE[14℄ are the two nodes whose ITM �eld is 11. Furthermore,

LOC(2) = 11 and LOC(14) = 12; these are
ross-referen
es ba
k to the SET array.

Noti
e also that SET[i� 1℄, also
alled SIZE(i), is the length of i's option list;

SET[i� 2℄, also
alled POS(i), is k; and item i's name appears before its POS.

Options in the NODE array are separated by \spa
ers" as before; the spa
er

before an option of length l has LOC = l, and the spa
er after it has ITM = �l.

Table 3

THE INITIAL CONTENTS OF MEMORY CORRESPONDING TO (113)

i SET[i℄

LNAME 0 p

RNAME 1

POS 2 0

SIZE 3 3

� 4 1

5 6

6 11

LNAME 7 q

RNAME 8

POS 9 1

SIZE 10 2

� 11 2

12 14

LNAME 13 r

RNAME 14

POS 15 2

SIZE 16 2

i SET[i℄

� 17 7

18 17

LNAME 19 x

RNAME 20

POS 21 3

SIZE 22 4

� 23 3

24 8

25 12

26 15

LNAME 27 y

RNAME 28

POS 29 4

SIZE 30 3

� 31 4

32 9

33 18

k: 0 1 2 3 4

ITEM[k℄: 4 11 17 23 31

x: 0 1 2 3 4 5 6

ITM(x): 0 4 11 23 31 �4 4

LOC(x): 4 4 11 23 31 4 5

CLR(x): | 0 0 0 A | 0

x: 7 8 9 10 11 12 13

ITM(x): 17 23 31 �4 4 23 �2

LOC(x): 17 24 32 2 6 25 2

CLR(x): 0 A 0 | 0 B |

x: 14 15 16 17 18 19

ITM(x): 11 23 �2 17 31 �2

LOC(x): 12 26 2 18 33 |

CLR(x): 0 A | 0 B |

January 13, 2024

62 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

option lists

invariant

a
tive items

ITEM{

SET{

NODE{

ITM{

LOC{

CLR{

POS{

SIZE{

XCC as CSP

primary item

ACTIVE

SECOND

spa
er

siblings

hide(i,
,p)

Dear reader, please study Table 3
arefully, until you understand exa
tly

how it was obtained from (113). Noti
e that the SET array is heterogeneous:

Some of its entries are parts of names, some of its entries are integers, some of

its entries point into NODE. You should have no trouble �guring out the meaning

of CLR(x)|see exer
ise 434. More importantly, you should understand how

ITEM and POS play the roles of DOM and IDOM in the dis
ussion above (see (108)),

with respe
t to the list of items, ex
ept that POS appears in s
attered entries of

SET instead of having an array of its own. Similarly, SET and LOC play those roles

with respe
t to the option lists. In parti
ular, when i, k, and x have appropriate

values, the following relations are invariant, analogous to (106):

POS(ITEM[k℄)= k and ITEM[POS(i)℄= i; (114)

LOC(SET[i℄)= i and SET[LOC(x)℄ = x: (115)

Table 3 shows the initial setup, when problem (113) has been input but not

yet solved. The algorithm will permute the values of ITEM and POS as it runs, so

that the
urrently a
tive items all appear at the beginning of ITEM. It will also

permute SET and LOC entries, so that the elements of i's
urrent option list are

the nodes

D

i

=

�

SET[i+ j℄ j 0 � j < SIZE(i)

	

: (116)

(It's appropriate to
all this set D

i

, be
ause|as remarked earlier| the domain

of variable i is the set of all options that
ontain item i and are
onsistent with

previous
hoi
es, when an XCC problem is regarded as a CSP.)

On the other hand, the algorithm never
hanges the ITM or CLR �elds.

ITEM[k℄ is a primary item if and only if ITEM[k℄ < SECOND. It is
urrently

a
tive if and only if k < ACTIVE, where ACTIVE is initially the total number

of items. (Thus, ACTIVE = 5 and SECOND = 23 in Table 3.) As the algorithm

pro
eeds, an item is a
tive if and only if it hasn't yet appeared in a
hosen option.

If NODE[x℄ is not a spa
er, it represents an item in some option. We say that

the siblings of x are the nodes for the other items in that option; for example,

the siblings of 2 are 1, 3, and 4. Here's a simple way to visit all the siblings of x:

Set x

0

 x+ 1, and repeat the following while x

0

6= x:

If ITM(x

0

) > 0, visit x

0

and set x

0

 x

0

+ 1;

otherwise set x

0

 x

0

+ ITM(x

0

).

(117)

Algorithm C relies on a te
hni
al subroutine
alled `hide', whi
h takes the

pla
e of routines in Se
tion 7.2.2.1 that were
alled `
over', `hide', `
ommit', `pu-

rify', et
. With sparse-set te
hnology, we won't need to write an `unhide' routine.

The purpose of `hide(i;
)' is to remove all options of item i's
urrent list

from every other option list to whi
h they belong, ex
ept when i is se
ondary

and
 6= 0. In the latter
ase, we don't dis
ard an option that gives i the spe
i�ed

olor
. (More pre
isely, an option is retained if it in
ludes `i:
'.) For example, if

we hide i = 11 in Table 3, the options in nodes 2 and 14 will be removed. (Node

2 is the `q' part of the option `p q x y:A'; hen
e that option will disappear from

the option lists of p, x, and y.) If we hide i = 23 with
 = A, we'll remove the

options in nodes 3 and 12, but not 8 or 15, be
ause they
olor x with A.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: DANCING CELLS 63

FLAG

global variables

OACTIVE

se
ondary item

MRV: Minimum remaining values

If some primary item is about to lose its last remaining option, the hide

routine stops what it was doing and sets FLAG 1, where FLAG is a global

variable. This will allow ba
ktra
king to o

ur immediately. (See exer
ises 441

and 447. Sparse-set prin
iples win here, be
ause the hide routine of 7.2.2.1{(13)

had no way to
at
h the
ondition LEN(x) = 0 without greatly
ompli
ating the

unhiding pro
ess, when traversing doubly linked lists.) This feature ensures that

no primary item's option list will ever be
ome empty.

The hide routine also relies on global variables ACTIVE and OACTIVE, where

OACTIVE is the value that ACTIVE had just before items of the
urrent option

were being dea
tivated. It uses lo
al variables j, x, x

0

, x

00

, i

0

, i

00

, and s

0

:

hide(i;
) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

For 0 � j < SIZE(i), set x SET[i+ j℄ and

do the following if
 = 0 or
 6= CLR(x):

For all siblings x

0

of x, set i

0

 ITM(x

0

) and

do the following if POS(i

0

) < OACTIVE:

Set s

0

 SIZE(i

0

)� 1.

If s

0

= 0 and FLAG = 0 and i

0

< SECOND and

POS(i

0

) < ACTIVE, set FLAG 1 and return.

Otherwise set x

00

 SET[i

0

+ s

0

℄, SIZE(i

0

) s

0

,

SET[i

0

+ s

0

℄ x

0

, i

00

 LOC(x

0

), LOC(x

0

) i

0

+ s

0

,

SET[i

00

℄ x

00

, LOC(x

00

) i

00

.

(118)

Algorithm C (Exa
t
overing with
olors). This algorithm visits all solutions

to a given XCC problem, using the same
onventions as Algorithm 7.2.2.1C; but

it's based on sparse-set stru
tures (\dan
ing
ells") instead of doubly linked lists.

It maintains sequential lists x

0

x

1

: : : x

T

and y

0

y

1

: : : y

T

for ba
ktra
king, where

T is large enough to a

ommodate one entry for ea
h option in a partial solution,

as well as a sequential sta
k
alled TRAIL[0℄, TRAIL[1℄, : : : ,
ontaining pairs.

C1. [Initialize.℄ Set the problem up in memory, as in Table 3; but terminate

if there's any primary item with no options. (See exer
ise 439.) Also

set ACTIVE to the number of items, SECOND to the internal number of the

smallest se
ondary item (or 1 if there are none), and l y

0

 t 0.

C2. [Choose i.℄ Set i ITEM[k℄ for some k with 0 � k < ACTIVE and

ITEM[k℄ < SECOND and minimum SIZE(i). But if no su
h k exists, go to

C9. (The tie-breaking rule in exer
ise 440 often works well for this step.)

C3. [Dea
tivate i.℄ Set k

0

 ACTIVE � 1, ACTIVE k

0

, i

0

 ITEM[k

0

℄, k

POS(i), ITEM[k

0

℄ i, ITEM[k℄ i

0

, POS(i

0

) k, POS(i) k

0

.

C4. [Hide i.℄ Set OACTIVE ACTIVE, FLAG �1; hide(i; 0) and set j i.

C5. [Trail the sizes.℄ Terminate with trail over
ow if t + ACTIVE ex
eeds the

maximum available TRAIL size. Otherwise set TRAIL[t+ k℄

�

ITEM[k℄;

SIZE(ITEM[k℄)

�

for 0 � k < ACTIVE; then set y

l+1

 t t+ ACTIVE.

C6. [Try SET[j℄.℄ Set x

l

 SET[j℄ and k OACTIVE ACTIVE. For all

siblings x

0

of x

l

, set i

0

 ITM(x

0

), k

0

 POS(i

0

), and if k

0

< k set k k�1,

i

00

 ITEM[k℄, ITEM[k℄ i

0

, ITEM[k

0

℄ i

00

, POS(i

00

) k

0

, POS(i

0

) k.

Then set ACTIVE k. (We've dea
tivated the other items of option x

l

.)

January 13, 2024

64 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

\extreme" XC problem

mems

update

bizarre

XCC ben
hmarks

ben
hmarks

Ma
Mahon

ubes

Dudeney

hessboard

pentominoes

Grabar
huk

snake

windmill dominoes

queen graph

graph
oloring

C7. [Hide SET[j℄.℄ Set FLAG 0. For all siblings x

0

of x

l

, set i

0

 ITM(x

0

);

and if i

0

< SECOND or POS(i

0

) < OACTIVE, hide(i

0

; CLR(x

0

)), and go to C11

if FLAG = 1. (See exer
ise 447.)

C8. [Advan
e to the next level.℄ Set l l + 1 and return to C2.

C9. [Visit a solution.℄ Visit the solution that's spe
i�ed by nodes x

0

x

1

: : : x

l�1

.

C10. [Leave level l.℄ Terminate if l = 0. Otherwise set l l � 1, i ITM(x

l

),

j LOC(x

l

).

C11. [Try again?℄ If j+1 � i+SIZE(i), go to C10. Otherwise, for y

l

� k < y

l+1

,

set SIZE(i

0

) s

0

if TRAIL[k℄ = (i

0

; s

0

). Then set t y

l+1

, ACTIVE

t� y

l

, j j + 1, and return to C6.

Exer
ise 442 presents a play-by-play a

ount of the sequel to Table 3.

How well does this new algorithm
ompete with its prede
essor? Hundreds

of tests on a wide variety of nontrivial examples from Se
tion 7.2.2.1 give it

an ex
ellent s
ore
ard indeed! For example, when we try the \extreme" XC

problem with all 2

n

� 1 possible options on n primary items, for n = 15 (see

7.2.2.1{(82)), it �nds all $

15

= 1;382;958;545 solutions in just 432 gigamems,

ompared to 611 gigamems for Algorithm 7.2.2.1C. That's just 313 mems per

solution (and 10.8 mems per update), for dan
ing
ells,
ompared to 442 mems

per solution (and 15.2 mems per update) for dan
ing links.

Similarly, when we look for all 108,056,025 mat
hings of the \bizarre" graph

7.2.2.1{(89) for q = r = 6, the new data stru
tures �nd them in just 15.2 G�

(141 mems/sol, 14 �=�), beating the old 19.4 G� (179 mems/sol, 17.8 �=�).

Here are a baker's dozen typi
al XCC ben
hmarks, for further insights:

ode (options, items, dan
ing
ells dan
ing links

name solutions) runtime runtime

ratio

C (4320, 30+61, 1566720) 42.2 G� 51.9 G� 0.813

D (2327, 77+1, 16146) 12.5 G� 20.3 G� 0.614

H (1416, 196+93, 5224) 623.4 G� 613.4 G� 1.016

K (343, 49+288, 110968) 9.6 G� 3.1 G� 3.089

L (352, 48+0, 326721800) 881.2 G� 1123.3 G� 0.784

M (1514, 49+42, 987816) 21.6 G� 25.3 G� 0.854

O

�

(6966, 180+0, 16928) 7105.4 G� 12732.0 G� 0.558

Q (256, 32+58, 14772512) 58.9 G� 40.2 G� 1.467

R (121, 11+741, 401800) 4.8 G� 0.8 G� 5.816

S (3858, 342+90, 30258432) 211.4 G� 170.5 G� 1.240

U (2440, 72+0, 31520) 119.7 G� 194.5 G� 0.615

W (1212, 12+36, 352) 7.4 G� 10.5 G� 0.702

Y

�

(949, 205+276, 16) 26.3 G� 23.2 G� 1.132

(119)

You win some, you lose some; it's not
lear why.

Problem C in this list
omes from Ma
Mahon's 30
olored
ubes, exer
ise

7.2.2.1{146. Problem D is based on Dudeney's original disse
tion of a
hessboard

into pentominoes and a square tetromino, exer
ise 7.2.2.1{274. Problem H
omes

from the 5�7 sub
ase of Grabar
huk's double-snake puzzle for windmill dominoes

(exer
ise 7.2.2.1{306). Problem K
olors the 7 � 7 queen graph with 8
olors,

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: DYNAMIC VARIABLE ORDERING 65

lique

Langford pairs

hexagon

Ma
Mahon

triangles

hunky-o
ts

prepro
ess

16 queens problem

organ-pipe order

radio-
olor

My
ielski

sudoku solutions

transposition

solid pentominoes

penta
ubes

word sear
h puzzles

Y pentominoes

pentominoes+

symmetry breaking

for
ed moves

variable ordering heuristi
s{

minimum remaining values

MRV

ba
ktra
k sear
h

using the
lique en
oding of exer
ise 7.2.2.1{117(b). Problem L �nds all possible

Langford pairs for n = 16 (exer
ise 7.2.2.1{15). Problem M makes a hexagon

from Ma
Mahon's 24
olored triangles, �xing the position of tile aaa (exer
ise

7.2.2.1{126). Problem O solves another pa
king problem,
alled \
hunky-o
ts";

see exer
ise 418 below. The asterisk in `O

�

' means that Algorithm 7.2.2.1P

has been used to prepro
ess the XCC data, removing unne
essary options and

items. Problem Q is the
lassi
al 16 queens problem, as in 7.2.2.1{(23), using

organ-pipe order for the primary items. Problem R �nds all ways to radio-

olor My
ielski's graphM

4

with 11
olors (exer
ises 7.2.2.1{116 and 7.2.2.2{36).

Problem S enumerates sudoku solutions that are symmetri
 under transposition

(exer
ise 7.2.2.1{114). Problem U pa
ks the twelve solid pentominoes into a

3�4�5 box (exer
ise 7.2.2.1{340(b)). ProblemWmakes 6�6 word sear
h puzzles

for the words ONE to TWELVE (exer
ise 7.2.2.1{105, but not requiring `.'). And

Problem Y
omes from Fig.73,
onsidering H-equivalen
e of Y pentominoes. (See

the remarks pre
eding 7.2.2.1{(97); restri
t the
entral
ell to 40=8 = 5 options.)

A
loser look at Algorithm C shows that we
an often speed it up by stream-

lining the
ases where an item has only one option left (the \for
ed moves").

Exer
ise 450 presents this improvement, whi
h we shall
all Algorithm C

+

.

Algorithm C

+

has an even better s
ore
ard than (119):

ode (options, items, dan
ing
ells dan
ing links

name solutions) runtime runtime

ratio

C (4320, 30+61, 1566720) 41.6 G� 51.9 G� 0.802

D (2327, 77+1, 16146) 12.4 G� 20.3 G� 0.612

H (1416, 196+93, 5224) 407.4 G� 613.4 G� 0.664

K (343, 49+288, 110968) 4.1 G� 3.1 G� 1.313

L (352, 48+0, 326721800) 814.7 G� 1123.3 G� 0.725

M (1514, 49+42, 987816) 20.6 G� 25.3 G� 0.814

O

�

(6966, 180+0, 16928) 7090.2 G� 12732.0 G� 0.557

Q (256, 32+58, 14772512) 43.9 G� 40.2 G� 1.093

R (121, 11+741, 401800) 2.9 G� 0.8 G� 3.515

S (3858, 342+90, 30258432) 125.9 G� 170.5 G� 0.738

U (2440, 72+0, 31520) 119.1 G� 194.5 G� 0.613

W (1212, 12+36, 352) 7.4 G� 10.5 G� 0.702

Y

�

(949, 205+276, 16) 23.6 G� 23.2 G� 1.018

(120)

*Dynami
 variable ordering heuristi
s. All of the timings reported in (120)

were obtained by using the \minimum remaining values" heuristi
, aka MRV, to

hoose the item on whi
h bran
hing will o

ur. (This is the
hoi
e of i in step C2

+

of Algorithm C

+

, or in step C3 of Algorithm 7.2.2.1C using exer
ise 7.2.2.1{9.)

At every node of the sear
h tree, the MRV heuristi
 requires us to run

through all of the a
tive primary items, in order to �nd one for whi
h SIZE(i)

is as small as possible.* That might seem unattra
tive, be
ause the traditional

goal of ba
ktra
k sear
h is to minimize the amount of
omputation per node.

However, a good
hoi
e of i often dramati
ally de
reases the number of nodes.

* More pre
isely, step C2 of Algorithm C
an terminate the loop early if it �nds an item

with SIZE(i) = 1. Step C3 of Algorithm 7.2.2.1C
an terminate early if it �nds SIZE(i) = 0.

January 13, 2024

66 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

bran
hing variable,
hoi
e of

binary bran
hing

d-ary bran
hing

stages

levels

In fa
t, the amount of time devoted to the MRV heuristi
 in (120) is
ompar-

atively small; it's at most 8%, ex
ept in Problem R. In Problem L, for example,

only about 33 G� of the 814.7 G� total running time is spent in step C2. In

Problems C, O

�

, U, and W the MRV time is
ompletely negligible.

Thus it's natural to wonder whether or not we should devote even more time

to the
hoi
e of an item on whi
h to bran
h, by somehow improving on MRV.

Similarly, in a general CSP, it might be wise to have a better strategy than MRV

for
hoosing the variable on whi
h to bran
h at ea
h node of the sear
h.

When MRV is not used, a binary bran
hing strategy might well be more

appropriate than the d-ary bran
hing that's done by Algorithm C. Indeed, after

we've explored the subproblem in whi
h item i is
overed by option o, our new

heuristi
 might well want to bran
h next on another item i

0

6= i, instead of

exploring all of the ways to
over i at this stage of the sear
h. (See exer
ise 452.)

The binary bran
hing strategy requires a reformulation of Algorithm C. Step

C4 of that algorithm hides item i, on
e and for all, before bran
hing on any of

i's options, be
ause it knows that i would have been hidden repeatedly later on

when ea
h of those options was a
tually tried. Unfortunately, that optimization

is no longer legitimate. (In
identally, we made the same optimization in step C4

of Algorithm 7.2.2.1C; but we
ouldn't do it in Algorithm 7.2.2.1M.)

When we do binary bran
hing it's best to view the sear
h tree from a slightly

di�erent angle than before, with subtree pointers going south and east instead

of southwest and southeast:

v

1

: a

1

v

2

: a

2

v

3

: a

3

v

21

: a

21

v

31

: a

31

v

32

: a

32

6= 6= 6=

6= 6= 6=

= = =

= = =

(121)

(This tree has basi
ally the same stru
ture as the
omputation in Fig.117; node �

of Fig. 117
orresponds to the root of (121), namely the node labeled `v

1

: a

1

'.)

Every bran
h that we take while solving a CSP is represented visually by a

node labeled `v : a', where v is a variable whose domain
ontains the value a.

A downward bran
h leads to the subproblem for whi
h v = a in the solution; a

rightward bran
h leads to the subproblem for whi
h v 6= a. A
ontradi
tion, or

a solution, is represented by an unlabeled external node.

(If the CSP is a
tually an XCC problem, a label su
h as `i : o' would be more

appropriate than `v : a', where i is an item for whi
h o is an option.)

It's
onvenient to speak of both \stages" and \levels" in the sear
h tree that

arises during binary bran
hing: A node is at stage s and level l if the path to that

node from the root involves exa
tly s downward bran
hes and l total bran
hes.

For example, node `v

3

: a

3

' in (121) is at stage 0 and level 2. The
hild node

dire
tly below a bran
h at stage s and level l has stage s+1 and level l+1; the

other
hild of that node has stage s and level l+1. Stages are signi�
ant be
ause

we always ba
ktra
k upward to the right
hild of a node in the previous stage;

after �nishing a subtree we never ba
ktra
k leftward to a node in the same stage.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: DYNAMIC VARIABLE ORDERING 67

sear
h tree

for
ed moves

heuristi
 fun
tion h

internal
ode number

MRV

tradeo�s

Boussemart

Hemery

Le
outre

Sais

on
i
t-dire
ted heuristi

weight

y
le

8 queens problem

queens-and-knights problem

Of
ourse the sear
h tree doesn't really appear inside a
omputer! It exists

only in our minds, as a mental model by whi
h we try to understand the steps

that a
omputer takes while solving a CSP. However, when the
omputer is

urrently operating in stage s, its data stru
tures do physi
ally re
ord enough

information to resume work on ea
h of the s subproblems in prior stages.

A detailed reformulation of Algorithm C

+

, using the framework of binary

bran
hing rather than d-way bran
hing, appears in the answer to exer
ise 455,

where it is presented as Algorithm B. When no for
ed moves are present, Al-

gorithm B
hooses an item for bran
hing by using an arbitrary user-supplied

heuristi
 fun
tion h, whi
h returns a
oating point value. The idea is to �nd the

a
tive primary item for whi
h h(i) is minimum, breaking ties if ne
essary by using

i's internal
ode number (its position in SET). The spe
ial
ase h(i) = SIZE(i)

gives us MRV; but sometimes we
an do mu
h better, by gathering statisti
s

on the
y with respe
t to
ombinations of values that have proved to be good or

bad. If ne
essary we
an allo
ate spa
e in the SET array to gather su
h statisti
s,

just as we've already made room for LNAME, RNAME, POS, and SIZE in Table 3.

An ideal heuristi
 fun
tion will be relatively easy to
ompute, while keeping

the sear
h tree as small as possible. Deli
ate tradeo�s are involved; hen
e it's

not surprising that dozens of heuristi
s for dynami
 variable ordering have been

proposed. We shall
onsider two that are parti
ularly appealing be
ause of their

simpli
ity and their e�e
tiveness in a variety of situations.

The �rst signi�
ant alternative toMRV was introdu
ed in 2004 by F. Bousse-

mart, F. Hemery, C. Le
outre, and L. Sais [European Conf. on Arti�
ial Intel-

ligen
e 16 (2004), 146{150℄, who
alled it a \
on
i
t-dire
ted heuristi
." When

stated in XCC terminology, their idea is to maintain a dynami
 weight, WT(i), for

ea
h primary item i. We start with WT(i) 1; then we set WT(i) WT(i)+ 1

whenever we're for
ed to ba
ktra
k when i has lost its last remaining option. In

this way the items that are most diÆ
ult to handle will tend to get the highest

weight, and the following heuristi
 fun
tion suggests itself:

h(i) = SIZE(i)

Æ

WT(i): (122)

Boussemart and his
oauthors explained their heuristi
 by
onsidering an

a
ademi
 yet instru
tive problem that involves queens and knights: \Pla
e eight

queens and �ve knights on a
hessboard in su
h a way that (a) no two queens

are in the same row,
olumn, or diagonal; and (b) the knights are
onne
ted by

a
y
le of knight moves." In other words, the queens must satisfy the
onditions

of the
lassi
al 8 queens problem, and the knights must form a 5-
y
le.

This queens-and-knights problem
learly has no solution, be
ause knight

moves
annot form a
y
le whose length is odd. But the MRV heuristi
 is a

terrible way to establish unsatis�ability! Ea
h queen has at most 8 options, while

ea
h knight has more than 50; the algorithm will therefore pla
e all of the queens

before trying to do anything with the knights. Laborious trials will show that

�ve knights
annot
oexist properly with the existing queens, and the algorithm

will go ba
k to reposition the queens. Eventually the fa
t that �ve knights
an't

make a
y
le will be re-proved 92 times, on
e for every valid queen pla
ement.

January 13, 2024

68 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

WTD

weighted

Boussemart

Hemery

Le
outre

Sais

dom/wdeg

failure rate based

Li

Yin

Li

histori
al survey

failure

fail early

oating point
al
ulations

When Algorithm B is applied to the queens-and-knights problem using

heuristi
 (122), it soon gives high weights to knight pla
ement. Consequently

it needs to dis
over the 5-
y
le failure only �ve times instead of 92 (see exer-

ise 460), and it's able to prove unsatis�ability after about 759 megamems of

omputation. By
ontrast, the MRV-based Algorithm C

+

needs 7.9 gigamems.

We shall
all the heuristi
 (122) `WTD', meaning \weighted," in order to

have a
onvenient three-letter
ounterpart to the name `MRV'.

Of
ourse the queens-and-knights problem has been spe
ially
ontrived so as

to make WTD look good. But WTD often handles \real" instan
es very ni
ely

too. For example, MRV takes 23.6 G� to solve Problem Y

�

of (120), but WTD

needs only 6.6 G�. Even better is Problem H, where WTD makes a spe
ta
ular

improvement from 407.4 G� to 19.6 G�! It makes small gains also in Problems

K and M. But WTD is slower than MRV in the other nine problems
onsidered

in (120); for example, it needs 1080.5 G�, not 814.7 G�, to solve Problem L.

Boussemart, Hemery, Le
outre, and Sais originally de�ned their heuristi

for general CSPs, not for the spe
ial
ase of XCC problems. They asso
iated

a weight with ea
h
onstraint ; then the weight of a variable v was the sum of

the weights of all
onstraints that
ontain v and at least one other unassigned

variable. For te
hni
al reasons they
alled their heuristi
 \dom/wdeg."

The se
ond heuristi
 we shall
onsider is
alled `FRB', meaning \failure rate

based." It's sort of dual to WTD: When a trial assignment to item i
auses the

option list of another item i

0

to be wiped out, WTD in
reases the weight of i

0

; but

FRB in
reases the failure rate of i. This idea was pioneered by H. Li, M. Yin,

and Z. Li [LIPI
s 210 (2021), 9:1{9:10℄, whose paper also introdu
ed several

other methods and gave a histori
al survey of variable ordering heuristi
s.

To implement FRB, we maintain two new quantities FR(i) and TRY(i) for

ea
h primary item i, where FR(i) is initially 0.5 and TRY(i) is initially 1. After

trying to
over item i with one of its options o, we set TRY(i) TRY(i)+1 and

FR(i) =

�

FR(i)� FR(i)=TRY(i); if nonfailure;

FR(i)+ (1:0� FR(i))=TRY(i); if failure;

(123)

here \failure" means that some primary item i

0

not in o has lost its last option,

ausing us to ba
ktra
k. The FRB heuristi
 fun
tion for bran
hing is then

h(i) = SIZE(i)=FR(i): (124)

(Like MRV, it tends to help us \fail early" in a sear
h, rather than later.)

By de�nition, we have TRY(i) = 2 just after the �rst time we try to bran
h

on i; and the failure rate FR(i) is either 0.25 or 0.75. Later, after the se
ond

try, we'll have TRY(i) = 3 and FR(i) 2 f0:1666 : : : ; 0:5; 0:8333 : : :g. In general,

after the mth attempt to bran
h on i, TRY(i) will be m + 1 and FR(i) will be

in the set f

1

2m+2

;

3

2m+2

; : : : ;

2m+1

2m+2

g, an odd multiple of

1

2m+2

. Formula (123) is

designed to preserve a

ura
y in the
oating point
al
ulations.

It's a bit of a surprise that FRB does not do well on the queens-and-knights

problem: It needs 11.0 G�,
ompared to 7.9 G� with Algorithm C

+

. (See also

exer
ise 465.)

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: MAINTAINING XCC SUPPORTS 69

ben
hmark problems

dan
ing links

fo
us

forward
onsisten
y

in
ompatible

domain
onsisten
y

ompatible

But FRB really shines on quite a few \real" problems. For example, it solves

problem Y

�

of (120) in only 2.6 G�; that's mu
h better than the 6.6 G� a
hieved

by WTD, whi
h was already a big improvement on MRV. Here are the
omplete

s
ores, on all thirteen of the ben
hmark problems that we've been
onsidering:

ode (options, items, MRV WTD FRB

name solutions) runtime runtime runtime

winner

C (4320, 30+61, 1566720) 41.6 G� 54.3 G� 45.6 G� MRV

D (2327, 77+1, 16146) 12.4 G� 21.3 G� 12.8 G� MRV

H (1416, 196+93, 5224) 407.4 G� 19.6 G� 34.8 G� WTD

J (264, 144+0, 1) 50.3 G� 0.8 M� 1.9 M� WTD

K (343, 49+288, 110968) 4.1 G� 2.7 G� 2.8 G� WTD

L (352, 48+0, 326721800) 814.7 G� 1080.5 G� 1126.1 G� MRV

M (1514, 49+42, 987816) 20.6 G� 19.1 G� 8.1 G� FRB

O

�

(6966, 180+0, 16928) 7090.2 G� 8363.8 G� 6104.5 G� FRB

Q (256, 32+58, 14772512) 43.9 G� 66.6 G� 65.6 G� MRV

R (121, 11+741, 401800) 2.9 G� 3.3 G� 3.5 G� MRV

S (3858, 342+90, 30258432) 125.9 G� 149.9 G� 147.5 G� MRV

U (2440, 72+0, 31520) 119.1 G� 189.1 G� 124.8 G� MRV

W (1212, 12+36, 352) 7.4 G� 10.3 G� 9.2 G� MRV

Y

�

(949, 205+276, 16) 23.6 G� 6.6 G� 2.6 G� FRB

(125)

Here MRV means Algorithm C

+

; WTD and FRB are variants of Algorithm B.

This list in
ludes also a fourteenth problem, Problem J, whi
h isn't really

real: Problem J is the toy problem that we get by taking 24 independent
opies

of the options 7.2.2.1{(92), for whi
h MRV has \bad fo
us." (The
orresponding

runtime for dan
ing links is 27.4 G�.) It illustrates the fa
t that WTD and FRB

both help to maintain a good fo
us.

*Maintaining XCC supports. All of the results of (125) were obtained by using

forward
onsisten
y to prune the sear
h: Whenever an option o was in
luded in a

partial solution, all options o

0

that were in
ompatible with o were ex
luded from

the remaining subproblem. Some of those problem instan
es
ould have been

solved with a mu
h smaller sear
h tree, if full domain
onsisten
y had been used

to look ahead further at ea
h step. For example, the 461-meganode tree that's

impli
itly traversed by the FRB solution of Problem O

�

ould have been redu
ed

to only 7.2 meganodes|a 64-fold redu
tion! But the extra time needed per node

to maintain DC in that problem would have more than
an
eled the advantage

of fewer nodes; the total runtime would have risen from 6.1 T� to 7.3 T�.

There are, of
ourse,
lasses of diÆ
ult problems for whi
h DC maintenan
e

does give a winning strategy, and we naturally want to solve those problems as

eÆ
iently as we
an. Algorithm S below a
hieves that goal, by adding further

data stru
tures and me
hanisms to the dan
ing
ells te
hnology.

Re
all from (92) that we write o k o

0

when options o and o

0

of an XCC

problem are
ompatible. It means that o and o

0

are either equal or they have no

items in
ommon, ex
ept for se
ondary items with identi
al nonnull
olors.

In order to maintain DC, we must remove an option o from
onsideration

whenever the addition of o to the
urrent partial solution would
ause some

a
tive item i =2 o to lose all of its
urrent options.

January 13, 2024

70 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

support matrix

domain

purging

A ni
e way to understand the task at hand is to imagine a giant \support

matrix" S[o; i℄, whi
h has one row for every a
tive option o and one
olumn for

every a
tive primary item i. If o is one of i's options (that is, if i 2 o), we set

S[o; i℄ to the spe
ial symbol #. Otherwise S[o; i℄ should be some option o

0

su
h

that o k o

0

and i 2 o

0

. Su
h an option is a support for o and i, namely a witness

to the fa
t that option o
an appear in a solution without wiping out the domain

of item i, whi
h is the set of i's available options. It's easy to see that a set of

XCC options is domain
onsistent if and only if there exists a support matrix S

for whi
h all of the non-# entries S[o; i℄ are appropriate options o

0

.

For example, let's
onsider again the small XCC problem (113), with its

primary items fp; q; rg and se
ondary items fx; yg. To make it more interesting,

we shall add an additional option `r y:A'. Then we
an almost|but not quite|

onstru
t a support matrix for the resulting six options:

p q r

00 `p q x y:A' # # 19 `r y:A'

05 `p r x:A y' # 13 `q x:A' #

10 `p x:B' # 16 `r y:B'

13 `q x:A' 05 `p r x:A y' # 05 `p r x:A y'

16 `r y:B' 10 `p x:B' 13 `q x:A' #

19 `r y:A' 10 `p x:B' 13 `q x:A' #

(126)

(Ea
h option has been given a two-digit identifying number, for
onvenien
e,

based on its position in Table 3. Thus we
an speak of options f00; 05; 10; 13;

16; 19g instead of spelling them out.) We have, for instan
e, S[05; q℄ = 13; and

13 is indeed a support for (05; q) be
ause 05 k 13 and q 2 13.

Unfortunately, (126)
ontains an unavoidable \hole" in position S[10; q℄.

There is no option
ompatible with 10 that
ontains q. Therefore the options

aren't domain
onsistent; we must delete option 10 from the domain of p.

Deleting an option is
alled \purging"; it makes that option ina
tive.

After 10 has been purged, we
annot use it in the support matrix. So S[19; p℄

has to be
hanged. No problem: We
an set S[19; p℄ 00.

But S[16; p℄ must also be
hanged; and that's impossible. Hen
e option 16

must also be purged. This leaves us with a valid S, establishing DC:

p q r

00 `p q x y:A' # # 19 `r y:A'

05 `p r x:A y' # 13 `q x:A' #

13 `q x:A' 05 `p r x:A y' # 05 `p r x:A y'

19 `r y:A' 00 `p q x y:A' 13 `q x:A' #

(127)

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: MAINTAINING XCC SUPPORTS 71

trigger sta
k

�xit sta
k

queue

a
tive items and options

domain
onsistent

hosen

blo
ked

removed

purged

Forward
onsisten
y

age

Algorithm S doesn't a
tually represent the support matrix dire
tly; it repre-

sents the inverse fun
tion instead: For ea
h option o

0

, we maintain a list of all the

pairs (o; i) for whi
h S[o; i℄ = o

0

. This list is
alled the trigger sta
k of o

0

, be
ause

we use it to maintain the support
onditions. If option o

0

be
omes ina
tive for

any reason, thereby leaving one or more holes in S, its loss will trigger a series

of events that will re�ll those holes, one by one.

Ea
h option o also has a �xit sta
k,
ontaining all pairs (o

0

; i) for whi
h the

event (o; i) has been triggered by o

0

and the
orresponding hole is still un�lled.

There's also a queue Q,
ontaining all options whose �xit sta
k is nonempty.

In (127), for example, the trigger sta
k of 13 is (05; q) (19; q); all �xit sta
ks

are empty, and so is Q. At this point the algorithm might want to
onsider the

subproblem in whi
h option 13 is removed; that would push (13; q) onto the �xit

sta
ks of 05 and 19, also inserting 05 and 19 into Q. The hole in 05
an't be

�lled; therefore we'll have to purge option 05. (Its trigger sta
k (13; p) (13; r)

won't trigger any new events, be
ause option 13 is no longer a
tive.) To �ll the

hole in 19, we impli
itly set S[19; q℄ 00, by pushing (19; q) onto 00's trigger

sta
k. The queue is now empty; hen
e we've established DC for f00; 19g.

The support matrix is huge. But fewer and fewer portions of it are relevant

as we get into deeper and deeper levels of the sear
h, be
ause we need supports

only for the a
tive options and the a
tive items.

Suppose we're
urrently operating in stage s, having
hosen mutually
om-

patible options

1

, : : : ,

s

to be part of a solution. Then the set I

s

of
urrently

a
tive items is the set of all items that don't appear in

1

[� � � [

s

. (And that's

the same as the set fITEM[k℄ j 0 � k < ACTIVEg.)

The set O

s

of
urrently a
tive options is a bit tri
kier to
hara
terize. Let

O

�1

be the set of all options that were present in the original problem. Algo-

rithm S will begin by redu
ing them, if ne
essary, to O

init

0

, whi
h is the largest

subset of O

�1

that is domain
onsistent, and it will enter stage 0. And O

init

r

, for

r > 0, will be the set of all options that were a
tive when we most re
ently
hose

r

and entered stage r. As we
ontinue to work in stage r without ba
ktra
king

to a previous stage, the set O

r

begins as O

init

r

and gradually shrinks as we return

from exploring fresh
hoi
es of

r+1

. This leads to an interesting dynami
 nested

stru
ture when we're
urrently in stage s:

O

�1

� O

init

0

� O

0

� O

init

1

� O

1

� � � � � O

init

s

� O

s

: (128)

Here every set O

init

r

and O

r

is domain
onsistent, for 0 � r � s.

An option
an be
ome ina
tive in four di�erent ways: It
an be (i)
hosen,

that is,

r

for some r; or (ii) blo
ked, that is, in
ompatible with

r

when

r

was

hosen; or (iii) removed, that is, no longer

r+1

when ba
ktra
king to stage r; or

(iv) purged, that is, taken out of
onsideration be
ause it has no a
tive support.

(Forward
onsisten
y dea
tivates options only in the �rst three ways.)

Every option is assigned an \age" whenever it is dea
tivated. Option

r

and

any options that it blo
ks get age 2r�1; when

r+1

is removed after ba
ktra
king,

its age de
reases from 2r + 1 to 2r; and purged options inherit the age of the

most re
ently dea
tivated option. Options of O

�1

nO

init

0

, whi
h were purged at

January 13, 2024

72 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

sort

undoing

T

0

�rst item of every option

stamping

domain
onsisten
y

the beginning before entering stage 0, have age �1. Consequently

O

r�1

= fo j AGE(o) � 2r � 1g;

O

init

r

= fo j AGE(o) � 2rg;

for 0 � r � s; (129)

if we regard AGE(o) as in�nite when o is
urrently a
tive. (See exer
ise 472. The

ages of a
tive options are not a
tually stored in memory.)

Most of the work of Algorithm S is done by two subroutines, opt out (o)

and empty q (), whi
h are presented in exer
ises 476 and 477 as Algorithms O

and E, respe
tively. The task of opt out (o) is to dea
tivate a given option,

possibly leaving holes in the support matrix; if holes do appear, their lo
ations

are re
orded in Q and the �xit sta
ks. The task of empty q () is to �ll all

of the remaining holes. Algorithm E might
all Algorithm O as a subroutine,

but Algorithm O never
alls Algorithm E. Either algorithm might fail, if a

ontradi
tion is dete
ted; in su
h a
ase it will terminate unsu

essfully, after

repairing any in
onsisten
ies that may have arisen in the data stru
tures.

The main point of interest, with respe
t to these subroutines, is that a na��ve

approa
h to Algorithm O turns out to be mu
h too slow, be
ause the trigger

sta
ks are full of irrelevant information about ina
tive items and options. (The

support matrix for a problem with M options and N items has nearly MN

non-# entries; hen
e the average length of ea
h trigger sta
k is nearly N .) The

remedy is to sort the trigger sta
ks by age of their entries, thereby making it

possible to avoid looking at unimportant data about various supports that are

known to be OK. This requires a rather elaborate me
hanism, be
ause partial

re-sorting is
onstantly ne
essary as options
hange their age. The good news is

that we don't have to worry about undoing
hanges that were made to S; any

support, S[o; i℄, remains a support when we ba
ktra
k. The resulting improved

pro
edure, Algorithm O

+

, is a marvel to behold (exer
ise 482).

Here now is the
hef-d'�uvre for whi
h we've been preparing ourselves:

Algorithm S (XCC with supports). This algorithm solves the same problems as

Algorithm C; but it \looks ahead" by purging unsupported options that
annot

be part of a solution. It uses auxiliary arrays x

0

x

1

: : : x

T

, y

0

y

1

: : : y

T

0

, d

0

d

1

: : : d

T

,

TRAIL, and LS as in Algorithm B, as well as linked lists for the spe
ial data

stru
tures des
ribed in exer
ise 476. Also SS[s℄ for 0 � s < T

0

. Variable A

denotes the
urrent age.

S1. [Initialize.℄ Perform step C1 of Algorithm C, ensuring also that the �rst

item of every option is primary. Set LAST to the �nal value of x in Algo-

rithm I (exer
ise 439). Set TRIG(o) FIX(o) 0 for every option o; also

STAMP SSTAMP 0, s l �1. Perform Algorithm A (exer
ise 478)

to establish domain
onsisten
y. Terminate if it dete
ts in
onsistent input;

otherwise use exer
ise 479 to tidy up the trigger sta
ks.

S2. [Enter new stage.℄ Set s s+ 1; in
rease SSTAMP (see exer
ise 484); and

set SS[s℄ SSTAMP.

S3. [Enter new level.℄ Set l l + 1 and LS[s℄ l. Terminate with level

over
ow if l > T (there's no room to store x

l

).

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: BENCHMARK SCORES 73

MRV

for
ed move

stamping

G�

gigamems

M�

meganodes

nodes

heuristi
 fun
tions

forward
onsisten
y

S4. [Choose i.℄ Set i ITEM[k℄ for some k with 0 � k < ACTIVE and

ITEM[k℄ < SECOND. But if no su
h k exists, go to S8. The
hosen i

need not minimize SIZE(i); however, if SIZE(i) > 1, there must be no

for
ed move, that is, no a
tive primary item with SIZE(i) = 1.

S5. [Trail the sizes.℄ Set y

s

 t and d

l

 SIZE(i). If d

l

= 1, go to S6.

Otherwise terminate with trail over
ow if t + ACTIVE ex
eeds the max-

imum available TRAIL size. Otherwise set TRAIL[t+ k℄

�

ITEM[k℄;

SIZE(ITEM[k℄)

�

for 0 � k < ACTIVE; then set t t+ ACTIVE.

S6. [Try SET[i℄.℄ Set x

l

 SET[i℄ and A 2s + 1. Use the algorithm

of exer
ise 486 to blo
k all options in
ompatible with x

l

and to
hoose

option x

l

. Then
all empty q () (exer
ise 477), and return to S2 if su

essful.

S7. [Try again.℄ Go to S9 if d

l

= 1, otherwise to S10.

S8. [Visit a solution.℄ Visit the solution spe
i�ed by nodes x

LS[j℄

for 0 � j < s.

S9. [Ba
k up.℄ Terminate if s = 0. Otherwise set s s � 1, l LS[s℄, and

repeat step S9 if d

l

= 1.

S10. [Untrail the sizes.℄ For y

s

� k < t, set SIZE(i

0

) s

0

if TRAIL[k℄ = (i

0

; s

0

).

Then set ACTIVE t� y

s

, t y

s

.

S11. [Remove x

l

.℄ Set A 2s and OACTIVE ACTIVE. Call opt out (x

l

); go to

S9 if it fails. Call empty q (); go to S9 if it fails. Otherwise go ba
k to S3.

The opt out subroutine
alled in step S11 should use the improved Algorithm O

+

that is des
ribed in exer
ise 482. (That's the reason for SS and SSTAMP.)

Performan
e on ben
hmarks. \The proof of the pudding is in the eating,"

a

ording to an an
ient proverb. How well does Algorithm S work in pra
ti
e?

Well, we
an look �rst at the problems already
onsidered in (119) and (125):

name bestFC DC-MRV DC-WTD DC-FRB

C MRV,41.6G�,5.4M� 109.2G�,6.7M� 126.6G�,7.1M� 130.2G�,8.2M�

D MRV,12.4G�,1.6M� 19.9G�,0.2M� 23.5G�,0.3M� 27.0G�,0.3M�

H WTD,19.6G�,32.5M� 137.4G�,4.3M� 312.6G�,7.1M� 397.4G�,7.3M�

K MRV

y

,3.1G�,10.6M� 28.1G�,3.1M� 20.7G�,2.2M� 96.8G�,6.6M�

L MRV,814.7G�,4.0G� 7.0T�,2.8G� 8.0T�,3.0G� 12.5T�,3.7G�

M FRB,8.1G�,15.7M� 73.5G�,10.4M� 67.5G�,10.3M� 333.6G�,19.3M�

O FRB

�

,6.1T�,461.5M� 8.2T�,7.1M� 8.5T�,9.6M� 10.5T�,10.1M�

Q MRV

y

,40.2G�,193.0M� 208.5G�,121.0M� 307.7G�,137.8M� 384.7G�,158.7M�

R MRV,2.9G�,1.6M� 4.4G�,1.9M� 4.6G�,2.0M� 4.9G�,2.0M�

S MRV,125.9G�,548.0M� 2.7T�,568.5M� 7.5T�,691.7M� 3.2T�,667.8M�

U MRV,119.1G�,17.1M� 210.6G�,1.7M� 255.9G�,2.2M� 393.4G�,2.8M�

W MRV,7.4G�,1.7M� 12.0G�,0.8M� 18.5G�,1.2M� 27.0G�,1.7M�

Y FRB

�

,2.6G�,1.3M� 7.7G�,54.9K� 4.5G�,40.1K� 5.8G�,42.0K�

(130)

Here `G�' stands for gigamems, as usual, while `M�' stands for meganodes|

one million nodes in the sear
h tree. The number of nodes is the total number

of times that step S3 is exe
uted (or an analogous step su
h as C3

+

or B10).

The �rst main
olumn of (130) shows the shortest runtimes obtained with

algorithms that use only forward
onsisten
y
he
ks;* the other
olumns show

various
avors of Algorithm S, using di�erent heuristi
 fun
tions in step S4.

* MRV

y

refers to dan
ing links, Algorithm 7.2.2.1C, while MRV refers to dan
ing
ells,

Algorithm C

+

; WTD and FRB refer to the
orresponding heuristi
s in Algorithm B (see (120)).

January 13, 2024

74 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

Prepro
essing

mems per node

alphabet blo
ks

all-interval

tone rows

musi

n-tone rows

rows of musi
al tones

�llomino

�

slow growth permutations

small-and-slim nonominoes

slim nonominoes

nonominoes

Baxter

Square Disse
tion

prime queen atta
king

queen atta
king

Torto

word re
tangles

4-letter words

WORDS(3000)

5-letter words

modstep problem

Prepro
essing by Algorithm 7.2.2.1P has been used for the FC versions of Prob-

lems O and Y, but not for any of the DC versions. (There are o

asional instan
es

where prepro
essing does turn out to be mildly helpful to Algorithm S, due to

quirks of fate when bran
hing. However, they're too rare to matter.)

One of the
hief surprises in (130) is that FC sometimes gives a smaller sear
h

tree than DC does (Problems C, R, S). Again, quirks of fate are responsible:

DC isn't always helpful, and FC
an make lu
ky
hoi
es. On the other hand,

DC makes an order of magnitude improvement in Problems H, O, U, and Y|

most notably in Problem O, where there's a 65-fold redu
tion.

These statisti
s give us another reminder that there's tremendous variability

between problems. The various ratios of mems per node in (130) are \all over

the map," ranging from about 200 in the FC versions of Problems L, M, S to

more than 100,000 in the DC versions of Problems U and Y, and a million in

Problem O! The �=� ratios are roughly
omparable for FC and DC in Problems

C, R, W; but DC expends more than 60 times as many mems per node as FC

does on Problems H, O, Y.

There seems to be only one thing
onsistently true about all thirteen of

the experiments reported in (130), namely that FC was always better than DC.

Sometimes it was marginally better (Problems D, O, R, Y); sometimes it was

spe
ta
ularly better (Problems L, S); and it always was the method of
hoi
e.

Of
ourse that's not the whole story! There also are tough problems that are

hallenging for FC but amenable to DC, and it's high time to look at them now:

ode (options, items, best FC DC-MRV DC-WTD DC-FRB

name solutions) runtime runtime runtime runtime

A (18486, 30+110, 8) FRB

y�

, 59.1 G� 54.5 G� 13.0 G� 22.6 G�

E (2536, 54+14, 89328) FRB

�

, 33.2 G� 28.1 G� 55.6 G� 62.3 G�

F (7800, 81+594, 1) WTD

�

, 10.5 G� 158.3 M� 139.1 M� 149.5 M�

G (576, 48+506, 8388608) FRB, 41.7 G� 96.3 G� 87.6 G� 70.3 G�

I (20088, 81+72, 16) MRV

�

, 28.9 G� 999.5 M� 1.1 G� 1.0 G�

N (5546, 17+668, 43) FRB

�

, 77.4 G� 30.5 G� 13.5 G� 32.7 G�

P (14179, 200+100, 3) FRB

�

, 1.4 T� 3.0 T� 531.7 G� 4.3 T�

T (2658, 29+338, 416) FRB

y

, 4.9 T� 12.4 T� 5.8 T� 4.1 T�

V (22000, 9+20, 32620) FRB

y�

, 112.9 G� 65.7 G� 73.8 G� 81.0 G�

Z (1104, 24+24, 575) MRV, 203.7 G� 29.4 M� 29.9 M� 30.1 M�

(131)

Here Problem A is part of the \alphabet blo
ks"
hallenge in exer
ise 7.2.2.1{

113, after all but one of the options for FIRST have been removed. Problem E

�nds the all-interval 14-tone rows, using the XCC model of exer
ise 7.2.2.1{

103(b). Problem F solves the \�llomino �" puzzle of exer
ise 413(b). Problem G

visits the slow growth permutations of order 24, using the options de�ned in

exer
ise 403. Problem I �ts nine di�erent small-and-slim nonominoes into a 9�9

box (exer
ise 7.2.2.1{302). Problem N solves Ni
k Baxter's Square Disse
tion

puzzle (exer
ise 7.2.2.1{359). Problem P is a 10� 10
ase of the \prime queen

atta
king" problem, dis
ussed further below. Problem T
omes from `Torto'

(exer
ise 7.2.2.1{112). Problem V �nds all 4� 5 word re
tangles, using the 2000

most
ommon 4-letter words of English together with WORDS(3000). And �nally,

Problem Z is an arti�
ial ben
hmark dis
ussed earlier, the (23; 24)-modstep

problem, whi
h was designed spe
i�
ally to make DC look good.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: BENCHMARK SCORES 75

prepro
essing

FC versus DC+

slow growth perms

prime queen atta
king problem

Honaker

Keith

knight's tour

queen

prime numbers+

Tramu

the author

reentrant knight's tour, see
losed

losed

Jelliss

Twelve FC experiments lie behind ea
h row of (131), namely the appli-

ation of algorithms that we may
all MRV

y

, MRV, WTD, FRB, WTD

y

, FRB

y

;

MRV

y�

, MRV

�

, WTD

�

, FRB

�

, WTD

y�

, FRB

y�

. The dagger after MRV indi
ates

dan
ing links, and the dagger after WTD or FRB indi
ates the d-ary variants in

exer
ise 466; an asterisk indi
ates prepro
essing. (However, only six experiments

were needed for Problems G and Z, be
ause prepro
essing has no e�e
t on the

options of those
ases.) For example, the twelve s
ores for Problem A were

(202:1; 168:8; 98:9; 1653:7; 77:6; 94:6; 202:0+10:2; 168:8+10:2;

94:5+10:2; 1729:3+10:2; 77:6+10:2; 48:9+10:2) G�;

where 10.2 G� was the prepro
essing time. In this problem, FRB

y�

was a
lear

winner and FRB

�

was a
lear loser; WTD

y

was a
lose se
ond.

The biggest surprise in (131) was the result of Problem G, whose six s
ores

(2999:1; 5405:7; 918:2; 41:7; 1129:1; 539:9) G�

testi�ed to a tremendous vi
tory for the FRB heuristi
, pla
ing it ahead of all

three variants of Algorithm S. Previous experien
es with MRV methods had

suggested that FC
ouldn't possibly do well with the options of Problem G.

DC was the
hampion, in all other
ases of (131)|
onvin
ingly so, in

Problems A, F, I, N, P, and of
ourse Z. However, method FRB

�

unexpe
tedly

turned out to be se
ond best in Problems E and P.

Of all these instan
es, the most instru
tive is probably Problem P, whi
h

is based on the \prime queen atta
king problem," proposed in 1998 by G. L.

Honaker, Jr., and solved for n � 8 by M. Keith that same year. [See Virginia

Chess Newsletter 1999 #1 (February 1999), 4{6.℄ The goal is to
onstru
t an

n � n knight's tour, labeling the kth move with k for 1 � k � n

2

, and also to

pla
e a queen on some
ell of the board, in su
h a way that the queen atta
ks

as many prime numbers as possible. Here, for example, are solutions for n = 10

152833 3013060950 9700

343114 6910499805 0851

271629 3271120752 9996

383570 1168414895 0493

172637 4045720392 5356

363944 6702474255 9491

251823 4643667382 5754

226120 0174855879 9081

192463 8659766588 8378

622160 7564878477 8089

47104978 670865767370

50794609 047768716475

45481180 076603746972

54514413 420584994063

19125306 816041029700

52552043 148398856239

21182382 593261940196

56895815 249386293835

17229188 312633369528

90571625 928730273437

5964576871 6291087396

5667606306 6972979209

6558037061 9007109574

3655668902 0544759893

1922370445 1411944376

5435201788 0146151299

2118233847 1613007742

3453328750 3928798481

3124514829 2685824178

5233302586 4940278083

in whi
h a queen near the
enter atta
ks all 25 of the primes � 100. (Prime

numbers are shown in bold; 00 is equivalent to 100.) The �rst of these was

found by Ja
ques Tramu in 2004; the other two were found by the author in

2022 as he was writing the present se
tion. The middle one adds a further

onstraint, namely that the tour should be
losed :
ells 00 and 01 should be a

knight move apart. The rightmost one adds yet another
onstraint, suggested by

George Jelliss: Every odd-numbered
ell atta
ked by the queen must be either

January 13, 2024

76 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

omposite numbers

Weigel

bipartite

MCC{

multiple
overing with
olors

XCC

prime or 01. Both of these solutions were obtained with Algorithm S, using the

straightforward XCC formulation that's dis
ussed in exer
ise 490.*

(It's fun to wat
h the knight as it springs from 01 to 02 to � � � to 99 to 00

in these tours, be
ause it must get perked up whenever it
omes into prime-ri
h

territory, yet stay out of
onta
t during a run of
omposite numbers.)

For Problem P we add further
onstraints, thus making the knight's task

almost impossible: First, we require that every power of 2, as well as the primes,

must be atta
ked by the queen. (Thus, not only 02, but also 01, 04, 08, 16, 32,

and 64 must be hit.) Se
ond, we require that 00 appears in
ell (1; 4), near the

top middle. Third, we require that the �rst eight digits of � appear in �xed

positions that make a ni
e pattern: 31, 41, 59, 26 must be in the respe
tive
ells

(4; 2), (5; 3), (6; 4), and (7; 4). Amazingly, this problem turns out to be solvable,

and it has exa
tly three solutions:

113499 9671067594 7382

983710 3300957283 7693

351297 7007180574 8184

380936 1732018085 9277

131631 0869041978 8986

303914 4102795887 2091

154247 6859660390 5788

482940 4526636023 5421

434627 5067246552 6156

284944 2564516255 2253

11349996 710685947378

98371033 009572798693

35129770 071805847774

38093617 320180759287

13163108 690419888376

30391441 028958812091

15424768 596603905782

48294045 266360235421

43462750 672465526156

28494425 645162552253

1134999679 7277946770

9837103300 9568717493

3512978005 7873766966

3809361732 0106659275

1316310881 0419026164

3039144118 0760632091

1542478259 8403905762

4829404526 8758235421

4346275083 2485528956

2849442586 5188552253

The options de�ned in exer
ise 490 aren't a
tually good enough to
arry

out an exhaustive sear
h for all solutions to Problem P in a reasonable time,

even though this extension of the prime queen atta
king problem is very highly

onstrained. Fortunately, however, Peter Weigel has dis
overed a way to exploit

the fa
t that the graph of knight moves is bipartite, leading to a re�ned XCC

formulation that works
onsiderably faster. Problem P therefore in
orporates

his improved options, whi
h are explained in exer
ise 491.

In
identally, the surprising performan
e of method FRB

�

on Problem P
an

be appre
iated from the twelve s
ores that lie behind the result reported in (131):

(422:3; 295:0; 73:7; 10:8; 50:4; 11:0;

29:8+:005; 21:2+:005; 2:7+:005; 1:4+:005; 2:2+:005; 2:0+:005) T�:

We have, of
ourse, only s
rat
hed the surfa
e with respe
t to possible

heuristi
s; further developments are likely to lead to even better results.

*Sparse-set methods for MCC problems. Se
tion 7.2.2.1 introdu
ed a wide-

ranging generalization of XCC problems
alled multiple
overing with
olors, or

MCC for short. In an MCC problem we
an, for example, insist that a parti
ular

primary item must appear in exa
tly �ve of the
hosen options, not in exa
tly one

option as in XCC. Ea
h primary item i has in fa
t a designated interval [u

i

: : v

i

℄

of multipli
ities, governing the number of times it must appear in a solution.

* Indeed, the middle one, obtained after 6.4 T� of
omputation, was sort of \epi
" for me:

It was the �rst time I'd ever solved a problem with DC methods that I
ouldn't solve with FC!

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: BENCHMARK SCORES 77

dan
ing links

tweaking

d-way bran
hing

binary bran
hing

Stappers

dan
ing
ells

options

items

primary

se
ondary

olors

ompatible

XCC problem

re
ursive

bran
hing{

SLACK �eld+

Of
ourse MCC problems
an be enormously diÆ
ult, even harder than XCC

problems. But we learned in Algorithm 7.2.2.1M that dan
ing links te
hnology

an solve lots of important examples. That algorithm in
orporates an additional

dan
e step
alled \tweaking," 7.2.2.1{(69), whi
h
an be viewed as a way to

swit
h from the d-way bran
hing of Algorithm 7.2.2.1C to binary bran
hing.

Filip Stappers demonstrated in 2023 that MCC problems are amenable also

to dan
ing
ells te
hnology. In fa
t, he extended Algorithm B to Algorithm M

(see exer
ise 495), whi
h usually outperforms the algorithm of Se
tion 7.2.2.1(!).

Let's pause a moment to de�ne MCC problems more formally. We're given

a set O of options, ea
h of whi
h is a set of items. Items are either primary or

se
ondary; se
ondary items have
olors. An interval [u

i

: : v

i

℄ is spe
i�ed for every

primary item i, where u

i

� v

i

and v

i

> 0. Two options are
ompatible if their

se
ondary items are
olored in the same way. A solution is a subset S � O of

mutually
ompatible options, for whi
h ea
h primary item i o

urs in at least u

i

and at most v

i

of S's options. Every option must in
lude at least one primary

item. An XCC problem is the spe
ial
ase where u

i

= v

i

= 1 for all i.

(It often happens that a parti
ular
olor o

urs only on
e with a parti
ular

item, in the entire set O. Su
h unmat
hable
olors are
onventionally left blank,

instead of being given an expli
it name. Thus, if se
ondary item i is blank in

two di�erent options, those options aren't
ompatible.)

The design of Algorithm M, like its pre
ursor Algorithm 7.2.2.1M, is es-

sentially re
ursive. We
hoose, in some fashion, an option o 2 O, and make a

two-way bran
h: Either o 2 S or o =2 S. Ea
h bran
h redu
es our job to an

MCC subproblem that's simpler than the original one. Eventually we get to a

subproblem that is obviously solvable (be
ause O = ; and all items are properly

overed), or a subproblem that obviously has no solution (be
ause some primary

item i has fewer than u

i

remaining options).

As in Algorithm C above, we let SIZE(i) denote the number of options that

ontain item i in the
urrent subproblem. And as in 7.2.2.1{(72), we maintain

auxiliary quantities SLACK(i) and BOUND(i), where

SLACK(i)= v

i

� u

i

and BOUND(i) = v

i

: (132)

The value of SLACK(i) remains un
hanged throughout the
omputation; but

BOUND(i) de
reases by 1 whenever we've in
luded an option
ontaining i into the

partial solution S. (This poli
y means that we'll be working on subproblems for

whi
h u

i

< 0, whenever the
urrent upper bound v

i

= BOUND(i) has be
ome less

than SLACK(i). But a negative lower bound doesn't
ause any trouble.)

The input to AlgorithmM is a list of the given problem's items and their mul-

tipli
ities, followed by the problem's options. It might turn out that SIZE(i) = 0

for some item i, namely that i doesn't show up in any of the options; that makes

the spe
i�
ations unsatis�able if i is primary and u

i

> 0. But otherwise su
h a

s
enario is perfe
tly legitimate, and we simply make i ina
tive, hen
e invisible,

in su
h
ases. Algorithm M is
areful to ensure that SIZE(i) remains nonzero

for all other items i, throughout the rest of the
omputation.

January 13, 2024

78 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

monus operation

MRV

for
ed move

partridge puzzle

balls

disks

pentominoes

balan
ed

5-queens

domination

piles

How do we
hoose an option o on whi
h to bran
h? Algorithm M follows the

lead of Algorithm B, and
hooses a primary item, i, on whi
h to bran
h. Then

o is SET[i℄, the �rst option in i's
urrent list of options.

OK then, how do we
hoose a primary item i on whi
h to bran
h? Suppose,

for example, that i
urrently appears in SIZE(i) = 5 options fo

1

; o

2

; o

3

; o

4

; o

5

g,

and that SLACK(i) = 1, BOUND(i) = 4; the problem requires us to in
lude either

three or four of those �ve options in the eventual solution S. The �rst option to

be in
luded must therefore be either o

1

or o

2

or o

3

; we'll fail if we omit all three.

Hen
e we're fa
ed with a 3-way de
ision about how to sele
t the �rst option.

In general, as observed in exer
ise 7.2.2.1{166(a), we're fa
ed with a d

i

-way

de
ision, where

d

i

= SIZE(i)+ 1 �

�

BOUND(i)

.

� SLACK(i)

�

(133)

and `

.

�' is the \monus operation," x

.

� y = max(x � y; 0). Algorithm M takes

are to ensure not only that SIZE(i) > 0, as mentioned above, but also that

d

i

> 0. One way to
hoose i is to adopt the MRV strategy, whi
h sele
ts an item

for whi
h the bran
hing degree d

i

is a small as possible.

Noti
e that a \for
ed move" arises when d

i

= 1, namely when SIZE(i) =

BOUND(i) � SLACK(i), be
ause SIZE(i) > 0. This means that all SIZE(i) of

i's
urrent options must be in
luded in S; otherwise we wouldn't satisfy the

lower bound u

i

= BOUND(i)� SLACK(i). (This analysis generalizes the for
ed-

move
ondition of XCC problems, where BOUND(i) = 1 and SLACK(i) = 0; in

Algorithms B and C, a move for i was for
ed if and only if SIZE(i) = 1.)

Full implementation details are in exer
ise 495. So let's look at some results:

dan
ing dan
ing dan
ing dan
ing

ode (options, items, links
ells
ells
ells

name solutions) (MRV) (MRV) (WTD) (FRB)

A (811, 202+0, 60568) 58.6 G� 49.2 G� 26.1 G� 61.5 G�

B (77, 97+0, 1) 222.8 G� 99.9 G� 37.9 G� 133.0 G�

C

:℄

(4068, 132+0, 5347) 4607.2 G� 4080.2 G� 6774.6 G� 2646.0 G�

D

℄

(64, 65+0, 4860) 4.2 G� 17.4 G� 17.7 G� 17.7 G�

E (1393, 61+0, 10343858) 2267.3 G� 2168.5 G� 2344.3 G� 2055.7 G�

H

:℄

(1335, 15+61 720) 6.9 G� 6.2 G� 7.8 G� 8.5 G�

M (1504, 88+102, 696) 199.4 G� 159.0 G� 200.9 G� 120.9 G�

N

:℄

(256, 2700+58, 71486) 1786.8 G� 87.4 G� 134.5 G� 140.6 G�

P (2436, 1730+0, 112) 438.7 G� 354.4 G� 991.1 G� 379.9 G�

Q

℄

(3940, 65+126, 512) 284.0 G� 138.0 G� 138.7 G� 138.7 G�

R

:℄

(13052, 36+46, 6) 28.1 G� 20.8 G� 20.6 G� 17.3 G�

S (4038, 132+0, 98) 281.0 G� 297.4 G� 408.7 G� 183.9 G�

T (1740, 280+400, 8) 1081.4 G� 1256.4 G� 504.2 G� 283.0 G�

W (2071, 447+0, 0) 6.0 G� 4.7 G� 3048.4 G� 10.4 G�

X

℄

(576, 115+128, 4) 550.2 G� 361.3 G� 158.9 G� 411.0 G�

(134)

Here Problem A is the \authenti
" partridge puzzle (exer
ise 7.2.2.1{155) with

n = 6. Problem B
overs an 8� 12 grid with 10 two-dimensional balls of diam-

eter 4 (see exer
ise 498). Problem C
overs the diagonals of a 10 � 10 grid

with the twelve pentominoes, in a ni
ely balan
ed fashion (exer
ise 7.2.2.1{

300(b)). Problem D is the
lassi
 5-queens domination problem: 7.2.2.1{(64)

with (m;n) = (5; 8). Problem E piles all twelve pentominoes on a 7� 7 board,

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: TRACTABLE CSPS 79

hypersolid pentominoes

motley disse
tions

16 queens problem

no-three-in-a-line

Perfe
t Pa
king puzzle

word re
tangles

balan
ed

pentomino

Tullis

tapestry

Wainwright

partridge puzzle

rossword diagram

sharp preferen
e heuristi

nonsharp preferen
e heuristi

allowing multipli
ities [1 : : 2℄ at the edges (see exer
ise 499). Problem H pa
ks

eleven hypersolid pentominoes|all but the V| into a 2 � 2 � 3 � 5 hyper-

ube (exer
ise 7.2.2.1{352). ProblemM enumerates the motley disse
tions of a

6�12 re
tangle (exer
ise 7.2.2.1{369). Problem N solves the 16 queens problem

with no-three-in-a-line (see exer
ise 502). Problem P solves the Perfe
t Pa
k-

ing puzzle (exer
ise 7.2.2.1{350). Problem Q �ts �ve Q

6

on�gurations into a

Q

32

(exer
ise 7.2.2.1{162(i)). Problem R �nds the 4 � 5 word re
tangles with

fewest distin
t letters, 7.2.2.1{(66). Problem S a
hieves
entral symmetry in the

blank regions of a balan
ed 10� 10 pentomino pattern (exer
ise 7.2.2.1{300(
)).

Problem T dis
overs Tullis's remarkable tapestry (see exer
ise 506). ProblemW

is Wainwright's original partridge puzzle (exer
ise 7.2.2.1{157) with n = 6. And

Problem X �nds all ways to put exa
tly (12; 12; 4) words of lengths (3; 4; 5) into

an 8� 8
rossword diagram (exer
ise 7.2.2.1{111(a)).

The notation `D

℄

' means that Problem D was solved with the \sharp prefer-

en
e heuristi
" of exer
ise 7.2.2.1{10. (A primary item whose name begins with

is
hosen for bran
hing, unless some other primary item has a for
ed move.)

Similarly, `C

:℄

'
alls for the analogous \nonsharp preferen
e heuristi
." In ea
h

problem we've used the preferen
e heuristi
 that wins for dan
ing links.

The results exhibited in (134) are, of
ourse, just the \tip of an i
eberg,"

be
ause many other strategies for
hoosing an option on whi
h to bran
h are

learly possible, and be
ause many di�erent
avors of problems exist. We
an

expe
t that a portfolio of
omplementary te
hniques will
ontinue to evolve, as

more and more people dis
over the wondrous world of MCC-solving.

Tra
table families of CSPs.

� � �

Who knows what I might eventually say next?

� � �

January 13, 2024

80 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

histori
al remarks{

Fikes

Montanari

pixel

identity relation

0s and 1s

Boolean matrix multipli
ation

path
onsisten
y

all shortest paths

shortest paths

Floyd

Gaussian elimination

Hu�man

Clowes

line labeling

Waltz

shadows

A brief history. The notion of \
onstraint satisfa
tion problems" was intro-

du
ed and named by Ri
hard E. Fikes in Arti�
ial Intelligen
e 1 (1970), 27{120,

299. He implemented an elaborate system that generated a sequen
e of CSPs

from a given nondeterministi
 program in a fairly general language; the goal was

to solve one or more of the resulting CSPs. His system in
luded more than a

dozen
onstraint manipulation methods by whi
h it was possible to eliminate

variables and/or to redu
e their domains and/or to dis
over
ontradi
tions.

Before the 1970s, a sear
h for
ombinatorial patterns was generally spe
i�ed

by pres
ribing one or more global
onstraints that the variables of a problem were

supposed to satisfy. A more nuan
ed understanding, by whi
h su
h obje
tives

ould often best be regarded as networks of lo
al
onstraints, was then formulated

by Ugo Montanari in Information S
ien
es 7 (1974), 95{132.

Montanari limited his dis
ussion to the spe
ial
ase in whi
h all
onstraints

are binary. In other words, he
onsidered n-tuples (x

1

; : : : ; x

n

) su
h that x

j

2 D

j

for 1 � j � n, and su
h that (x

i

; x

j

) 2 R

ij

for
ertain ordered pairs (i; j), where

ea
hD

j

was a given �nite set and ea
h R

ij

� D

i

�D

j

was a given binary relation.

He'd been working with digitized pi
tures,
ontaining n � 1000 pixel values x

j

,

where ea
h domain D

j

had roughly 20 values. In su
h problems he expe
ted

most of the
onstraints to involve geometri
ally adja
ent pixels x

i

and x

j

, so

that only O(n) or O(n logn) relations would need to be spe
i�ed. His goal was

to redu
e the sear
h spa
e by doing some sort of prepro
essing to simplify them.

He required ea
h relation R

ii

between a variable and itself to be a subset of

the identity relation x = y; but (
uriously and unne
essarily) he allowed R

ij

and

R

ji

to be independent of ea
h other. His main
ontribution was the following

algorithm to re�ne the given network of relations:

For 1 � k � n, set R

ij

 R

ij

\R

ik

R

kk

R

kj

for 1 � i; j � n. (200)

Here ea
h R

ij

is regarded as a jD

i

j � jD

j

j matrix of 0s and 1s, and the matrix

multipli
ation is Boolean (namely ORs of ANDs, not sums of produ
ts). If any

R

ij

is
hanged by this pro
ess, the entire
omputation (200) is supposed to be

repeated, until no further
hanges o

ur. Finally a form of path
onsisten
y will

have been a
hieved (see exer
ise 602).

Algorithm (200) was inspired by an algorithm for all shortest paths due to

R. W. Floyd [CACM 5 (1962), 345℄, whi
h in turn was related to the solution

of simultaneous linear equations by Gaussian elimination. It's not very eÆ
ient;

noti
e, for example, that it may well
onstrain variables that were initially

un
onstrained, be
ause R

ij

might
hange from jD

i

j� jD

j

j to something smaller.

But it was a start, and it en
ouraged other resear
hers to �nd improvements.

Meanwhile, as we have seen, D. A. Hu�man and M. B. Clowes had in-

dependently
ome up with an interesting system of
onstraints, both binary

and ternary, between adja
ent lines in digitized images. Their ideas about line

labeling were
onsiderably extended by D. L. Waltz, who showed how to deal not

only with the edges of polyhedra but also with the
omplex shadows that are
ast

by su
h obje
ts. [See his Ph.D. thesis (MIT report TR-271, November 1972),

349 pages; partially summarized in The Psy
hology of Computer Vision, edited

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: A BRIEF HISTORY 81

Winston

propagation

Waltz �lter

Rosa

Golomb

networks

Gardner

rainbow gra
eful

subgraph isomorphism

Sussenguth

hemi
al
ompounds

indu
ed subgraphs

supplemental labels

bitwise operations

Ullmann

domain
onsisten
y

binary
onstraints

M
Gregor

by P. Winston (M
Graw{Hill, 1975), 19{91.℄ He found that the propagation of

su
h lo
al
onstraints led to enormous speedups in the re
ognition of s
enes, and

his approa
h be
ame known as the \Waltz �lter."

But let's ba
ktra
k. Several years before
omputer s
ientists had been

atta
hing interesting symboli
 labels to lines in s
enes,
ombinatorial mathe-

mati
ians had been atta
hing interesting numbers to the verti
es of graphs.

Alexander Rosa published an in
uential paper [in Theory of Graphs (Paris:

Dunod, 1967), 349{355℄, based on his dissertation written in 1965, that intro-

du
ed four kinds of labelings
alled �-valuations, �-valuations, �-valuations, and

�-valuations. Every �-valuation was a �-valuation; every �-valuation was a �-

valuation; every �-valuation was a �-valuation; and every �-valuation was enough

to show that them edges of the underlying graph
ould
over all edges of the
om-

plete graph K

2m+1

in rainbow fashion, when rotated
y
li
ally as in Fig. 110(
).

S. W. Golomb began to think about graph labels independently, be
ause he

wanted a
onvenient way to identify the terminals of
ommuni
ation networks

and the inter
onne
tions between them. He de
ided to
all a graph \gra
eful"

if it had an ideal labeling by his
riterion; and of
ourse he told his good friend

Martin Gardner about these ideas. Martin wrote about \The gra
eful graphs

of Solomon Golomb, or how to number a graph parsimoniously" in S
ienti�

Ameri
an 226, 3 (Mar
h 1972), 108{112; Golomb's own publi
ation appeared at

about the same time in Graph Theory and Computing (A
ademi
 Press, 1972),

23{37. People soon dis
overed that Rosa's �-valuations were exa
tly the same

as Golomb's gra
eful labelings, and interest in the subje
t began to take o�.

Rosa's �-valuations eventually be
ame known as \rainbow gra
eful"|a ni
e

oin
iden
e, be
ause \�" stands for both \rainbow" and \Rosa."

The �rst signi�
ant algorithm for subgraph isomorphism was developed by

E. H. Sussenguth, Jr., motivated by queries to databases of
hemi
al
ompounds

[J. Chemi
al Do
umentation 5 (1965), 36{43℄. He
onsidered indu
ed subgraphs

of labeled stru
tures, and based his method on supplemental labels that he
alled

\properties," su
h as the length of a shortest
y
le (if any) from a vertex to itself.

His implementation used bitwise operations to represent the sets of pattern and

target verti
es that have various
ombinations of label values. Several years

later, J. R. Ullmann independently des
ribed bitwise te
hniques for �nding non-

indu
ed
opies of a given pattern in a given target [JACM 23 (1976), 31{42℄.

Ullmann obtained domain
onsisten
y for binary
onstraints by repeatedly

using

revise (R

ij

; x

i

) =

8

<

:

For ea
h a 2 D

i

,

if D

j

&(row a of R

ij

) = 0,

set D

i

 D

i

n a,

(201)

where D

j

and the rows of R

ij

are bit ve
tors. (Compare with (90) and (200).)

Then J. J. M
Gregor, in Information S
ien
es 19 (1979), 229{250, observed that

another pro
edure is faster when jD

j

j < jD

i

j:

revise (R

ij

; x

i

) =

(

Set z 0 and, for ea
h b 2 D

j

,

set z z j (
olumn b of R

ij

);

then set D

i

 D

i

& z.

(202)

January 13, 2024

82 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

forward
onsisten
y

pre
lusion

Golomb

Baumert

forward
he
king

Harali
k

Elliott

domain
onsisten
y

Gas
hnig

Fikes

Waltz

binary
onstraints

Ma
kworth

k-ary
onstraints

ar

onsisten
y

n queens problem

onsisten
y

Bessi�ere

time stamps

Le
outre

AC6

Hemery

AC3rm

ba
ktra
king

d-way bran
hing

Sabin

ILOG Solver

R�egin

Freuder

maintaining domain
onsisten
y

sparse-set

le Cl�ement de Saint-Mar
q

S
haus

Solnon

Le
outre

Reversible sparse bitsets

Demeulenaere

Hartert

Le
outre

Perez

Perron

R�egin

S
haus

The redu
tion of domains via forward
onsisten
y was
alled \pre
lusion" by

Golomb and Baumert in their
lassi
 paper on ba
ktra
king [JACM 12 (1965),

516{524℄. It eventually be
ame prominent under the name \forward
he
king,"

following an in
uential study by Robert M. Harali
k and Gordon L. Elliott

[Arti�
ial Intelligen
e 14 (1980), 263{313℄.

The more powerful notion of domain
onsisten
y was �rst formulated in gen-

eral by John Gas
hnig [Pro
eedings of the Annual Allerton Conferen
e on Cir
uit

and System Theory 12 (1974), 866{874℄, inspired by the work of Fikes andWaltz.

Gas
hnig fo
used on binary
onstraints; Alan K. Ma
kworth extended the theory

to k-ary
onstraints in IJCAI 5 (1977), 598{606. (For te
hni
al reasons he
alled

it \ar

onsisten
y.") Gas
hnig made extensive tests, as part of his thesis work

at Carnegie-Mellon University [Report CMU-CS-79-124 (1979), Chapter 4℄, and

was disappointed to learn that the n queens problem was not solved faster when

domain
onsisten
y was maintained.

Dozens of algorithms for a
hieving and maintaining domain
onsisten
y

have been proposed sin
e then. An ex
ellent survey of those developments,

in
luding also a dis
ussion of many stronger notions of
onsisten
y, has been

prepared by Christian Bessi�ere, in Handbook of Constraint Programming (2006),

29{83. Algorithm D, whi
h features time stamps and a queue of variables to

he
k, is based on a pro
edure by Christophe Le
outre [Constraint Networks

(2009), x4.1.2℄. Algorithm S in
orporates ideas from Bessi�ere's AC6 algorithm

[Arti�
ial Intelligen
e 65 (1994), 179{190℄ and an algorithm that C. Le
outre

and F. Hemery
alled AC3rm [IJCAI 20 (2007), 125{130℄.

All of the early programs for CSP solving were essentially based on ba
k-

tra
king with d-way bran
hing. If it be
ame ne
essary to ba
ktra
k after ex-

ploring the possibility that v = a, for some element a in the
urrent domain

of a variable v, the only reasonable next step seemed to be to look at the
ase

v = a

0

, for some other element of v's domain, and so on, until all possible values

for v had been tried. The �rst person to realize that `v 6= a' might lead to a

situation where it's better to bran
h next on a variable w that's di�erent from v,

be
ause `v = a' had been supporting elements of w's domain in a
ru
ial way, was

apparently Daniel Sabin, who mentioned it at a
omputer
onferen
e in 1994 and

in
orporated it into the design of ILOG Solver. [See page 147 of Jean-Charles

R�egin's Ph.D. thesis (Universit�e Montpellier II, 1995), vii + 389 pages.℄

Two
onferen
e papers by Daniel Sabin and Eugene C. Freuder [European

Conferen
e on Arti�
ial Intelligen
e 11 (1994), 125{129; LNCS 1330 (1997),

167{181℄, promoting the idea that domain
onsisten
y should be maintained

throughout the sear
h for solutions, signi�
antly in
uen
ed subsequent pra
ti
e.

The e�e
tiveness of a sparse-set representation for
urrent domains was

pointed out in a 12-page note by V. le Cl�ement de Saint-Mar
q, P. S
haus,

C. Solnon, and C. Le
outre, presented at a workshop on \Te
hniques for imple-

menting
onstraint programming systems" (TRICS) in 2013.

Reversible sparse bitsets were introdu
ed by J. Demeulenaere, R. Hartert,

C. Le
outre, G. Perez, L. Perron, J.-C. R�egin, and P. S
haus in LNCS 9892

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: A BRIEF HISTORY 83

Compa
t-Table

data stru
ture

(2016), 207{223, as an important
omponent of the Compa
t-Table data stru
-

ture that's dis
ussed in exer
ise 427.

� � �

(more history to
ome, when more subse
tions are written)

� � �

Many other histori
al notes appear with the answers to parti
ular exer
ises.

They
an be lo
ated by
onsulting \Histori
al notes" in the index.

January 13, 2024

84 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

3SAT

SAT as CSP

CSP represented as SAT

SAT representation of CSP

CSP represented as XCC

XCC representation of CSP

Cartesian produ
t

0-tuple

nullary relations

domain

range

homomorphism

y
li
 graph

independent set

vertex
over

isomorphi

bandwidth

Eulerian trail

Jeavons

unlike

Notations: k

general
ombinatorial problem

GCP

generating fun
tion

Ising
on�gurations

partition fun
tion

asymptoti
ally

magnetization

all-di�erent
onstraint

rystal maze puzzle

EXERCISES

1. [01 ℄ Find all solutions to the CSP in (1) and (2).

2. [21 ℄ Every 3SAT problem with m
lauses on n Boolean variables
an be regarded

as a CSP with n variables, binary domains, and m ternary
onstraints. (See (3).)

a) Instead, represent it with m variables, ternary domains, and binary
onstraints.

b) What CSP does your method
onstru
t from the 3SAT problem R

0

in 7.2.2.2{(7)?

) Redu
e the number of binary
onstraints to 3m, by adding n binary variables.

d) What CSP do you get from 7.2.2.2{(7) now?

3. [18 ℄ Express the CSP of (1) and (2) as a SAT problem.

4. [15 ℄ Express the CSP of (1) and (2) as an XCC problem.

5. [M05 ℄ The Cartesian produ
tD

0

of 0
opies of a set D
onsists of a single element,

the 0-tuple, denoted by �. Des
ribe all of the possible nullary relations.

x 6. [M16 ℄ When f is a fun
tion from a set A to a set B, textbooks of mathemati
s

traditionally say that A is the \domain" and B is the \range." But when h is the

fun
tion in a CSP that takes i to x

i

, the literature of
onstraint pro
essing traditionally

says that x

i

lies in the domain|not the range! Dis
uss.

8. [15 ℄ True or false: If there's a homomorphism from the
y
li
 graph C

9

to a given

graph G, that graph must
ontain either a 3-
y
le or a 9-
y
le.

x 9. [M25 ℄ Is it hard to de
ide if there's a homomorphism from a given graph to C

5

?

x 10. [25 ℄ Explain why the following problems are spe
ial
ases of the GCP.

a) Does graph G = (V;E) have an independent set of size k? (Can we
hoose k

distin
t verti
es in G without sele
ting any neighbors?)

b) Does graph G = (V;E) have a vertex
over of size k? (Are there k verti
es that

\hit" every edge of G at least on
e?)

) Are graphs G = (V;E) and G

0

= (V

0

; E

0

) isomorphi
? (Is there a one-to-one

orresponden
e between their verti
es so that u���v inG() h(u)���h(v) in G

0

?)

d) Does graph G = (V;E) have bandwidth k? (Can its verti
es be given distin
t

integer labels so that u���v implies jh(u)� h(v)j � k?)

e) Does the dire
ted graph G = (V;A) have an Eulerian trail? (Can we \walk"

through it, traversing every ar
 exa
tly on
e?)

11. [20 ℄ (P. Jeavons.) The k-tuple x

1

: : : x

k

is said to be unlike the k-tuple x

0

1

: : : x

0

k

if

x

j

6= x

0

j

for 1 � j � k. It's
onvenient to write `x

1

: : : x

k

k x

0

1

: : : x

0

k

' when this is true.

Let R be a k-ary relation on a set V . What's a \natural" way to understand the

signi�
an
e of a homomorphism from (V; 6=) to (R; k)?

x 15. [M12 ℄ Why is the general
ombinatorial problem (GCP) a spe
ial
ase of the CSP?

18. [HM34 ℄ Let G(z) = G

N

(z) =

P

z

E(�)

be the generating fun
tion for energy,

summed over all 2

N

one-dimensional Ising
on�gurations �, as de�ned in (9).

a) Find a \
losed-form" expression for G(z), when B is (i) 0; (ii) arbitrary.

b) What is the average energy per parti
le, zG

0

(z)=(NG(z)), when z = e

��

?

) Express those quantities asymptoti
ally as N !1.

d) Also evaluate G

k

(z) =

P

�

k

z

E(�)

, and the \average magnetization"

1

N

P

N

k=1

G

k

(z)

G(z)

.

x 20. [20 ℄ Is the all-di�erent
onstraint really ne
essary, when the
rystal maze puzzle

(11) already has seventeen
onstraints like (12)? How about when there are just seven

onstraints like (15)?

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 85

symmetry

ar sequen
ing problem

MCC problem

(p=q)-string

generating fun
tions

extreme

plane partitions

Szilassi

polyhedron

21. [21 ℄ Sin
e the graph in (11) is symmetri
, every essentially di�erent solution to

the CSP models in the text will be found four times. Explain how to exploit symmetry.

x 22. [20 ℄ Express (11) as an exa
t
over problem with primary items f1;::: ;8;A;:::;Hg.

23. [22 ℄ Express (11) as a CSP with only 7 variables. Hint: Use edges, not verti
es.

26. [20 ℄ Solve the
ar sequen
ing problem of Fig. 100 and (16).

27. [15 ℄ Why
an the solution to exer
ise 26 assume f < 5, in the text's formulation?

x 28. [M25 ℄ The redundant
onstraints in (18) are asymmetri
al: They all apply at the

left of the sequen
e, be
ause they involve f

0k

. We
ould generalize them, and require

f

(l

0

q

k

)k

+ f

(l

0

q

k

+1)k

+ � � �+ f

(t�l

00

q

k

�1)k

� r

k

� (l

0

+ l

00

)p

k

in the \middle" of the sequen
e, where l

0

+ l

00

< dr

k

=p

k

e. Would that be a good idea?

x 30. [21 ℄ Express the
ar sequen
ing problem as anMCC problem without using
olors.

31. [21 ℄ Improve the previous answer by in
orporating the redundant
onstraints (18).

x 32. [20 ℄ Extend (16) to two new types of
ar: Model G has premium audio and heated

seats only; Model H is \loaded" with every feature ex
ept heated seats. Then the 30

ars f7 �A; 2 �B; 5 �C; 4 �D; 4 �E; 2 �F; 4 �G; 2 �Hg have overall requirements (r

0

; : : : ; r

4

) =

(15; 20; 10; 12; 6), whi
h are the maximum that
ould
on
eivably be installed in 30
ars.

Does that \tight"
ar sequen
ing problem have a solution? Answer this question

by applying Algorithm 7.2.2.1M to theMCC en
oding of (a) exer
ise 30; (b) exer
ise 31.

33. [21 ℄ If we double all the requirements of exer
ise 32, we get a 60-
ar problem.

Unfortunately that problem has no solution. Is there, however, a solution to the 61-
ar

problem in whi
h we manufa
ture one extra \Model 0"
ar (with no optional features)?

35. [M25 ℄ Inspired by the
ar sequen
ing problem, let's say that a \(p=q)-string" is a

binary string in whi
h no q
onse
utive bits
ontain more than p 1s.

a) How many strings of length 10 are (1/2)-strings? (1/3)-strings? (2/3)-strings?

b) What is the maximum number of 1s in a (p=q)-string of length n?

) Find the generating fun
tions G

pq

(z) =

P

n�0

C

pqn

z

n

for 0 < p < q � 5, where

C

pqn

is the number of (p=q)-strings of length n.

x 36. [M35 ℄ A (p=q)-string with the maximum number of 1s is
alled extreme.

a) Let e

pq

(m) be the number of (p=q)-strings of length qm that
ontain exa
tly pm 1s.

Prove that e

pq

(m) is the number of plane partitions that �t in a p� (q � p)�m

box (see answer 7.2.2.1{262). Hint: Find a one-to-one
orresponden
e.

b) Let

pqn

be the number of extreme (p=q)-sequen
es of length n. Express

pqn

in

terms of the numbers in part (a).

39. [M21 ℄ (L. Szilassi, 1986.) Regard ea
h of the following 14 triples ijk of digits

023; 134; 245; 356; 460; 501; 612; 054; 165; 206; 310; 421; 532; 643

as a
y
le that
ontains the pairs ij, jk, and ki. Then every pair of distin
t digits

i 6= j with 0 � i; j < 7 o

urs exa
tly on
e. Show that those triples
an be assigned

to points (x; y; z) in su
h a way that every triple
ontaining digit j belongs to plane j,

where plane 0 is `z = 0'; plane 1 is `4y+ z = 200'; plane 2 is `2x+ z = �280'; plane 3 is

`5x� 5y+7z = �700'; plane 4 is `�5x+5y+7z = �700'; plane 5 is `�2x+ z = �280';

plane 6 is `�4y+z = 200'. Furthermore, the six triples
ontaining j form the boundary

of a polygon that de�nes the fa
e of a polyhedron, for 0 � j < 7.

January 13, 2024

86 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

ubies

histos
ape

onstraint satisfa
tion problem

uniformly random solution

Whirlpool permutations

vortex

D�urer

lexi
ographi
ally smallest

up-up-or-down-down permutation

exponential generating fun
tion

generating fun
tion

whirlpool permutations

x 40. [M28 ℄ Three-dimensional spa
e
an be dis
retized into little \
ubies," where
ubie

(i; j; k)
onsists of all points (x; y; z) with i � x � i+1, j � y � j+1, and k � z � k+1.

(Ea
h
ubie therefore shares a
ommon fa
e with 6 adja
ent
ubies, a
ommon edge with

12 diagonally adja
ent
ubies, and a
ommon vertex with 8
orner-adja
ent
ubies.)

Given an m�n matrix (a

ij

) for 0 � i < m and 0 � j < n, its histos
ape is the set

of
ubies (i; j; k) for 0 � k < a

ij

. (For example, Fig. 101(d) is the histos
ape for (

4 3

1 2

).)

How many 2� 2 matri
es with 0 � a

ij

< 10 have a histos
ape that's a 3VP?

x 41. [M27 ℄ Continuing exer
ise 40, how many of the 10

64

8� 8 matri
es whose entries

satisfy 0 � a

ij

< 10 for 0 � i; j < 8 have a histos
ape that's a 3VP? Hint: Formulate

this question as a
onstraint satisfa
tion problem.

42. [24 ℄ Extend the algorithm of the previous exer
ise so that it will �nd the kth

m � n histos
ape whose entries satisfy 0 � a

ij

< t, given k, m, n, and t, when those

histos
apes are listed in some
onvenient order. Then, by
hoosing k at random, use

your method to �nd a uniformly random solution to the 8� 8 problem.

x 43. [M26 ℄ Given anm�n matrix whose histos
ape is a 3VP, what are its verti
es, and

what polygons de�ne its fa
es? (Design an algorithm that answers these questions.)

x 44. [M21 ℄ (Whirlpool permutations.) An m�n matrix has (m�1)(n�1) submatri
es

of size 2 � 2. An m � n \whirlpool permutation" is an m � n matrix
ontaining

mn distin
t numbers, in whi
h the relative order of the elements in ea
h of those

submatri
es is a \vortex"|that is, it travels a
y
li
 path from smallest to largest,

either
lo
kwise or
ounter
lo
kwise.

Thus there are eight 2� 2 whirlpool permutations of f1; 2; 3; 4g:

�

1 2

4 3

� �

1 4

2 3

� �

2 1

3 4

� �

2 3

1 4

� �

3 2

4 1

� �

3 4

2 1

� �

4 1

3 2

� �

4 3

1 2

�

:

a) The 4 � 4 matrix at the right is not quite a whirlpool permutation.

Fix the problem by inter
hanging two rookwise adja
ent elements.

0

B

�

16 3 2 13

9 7 8 10

5 6 12 11

4 14 15 1

1

C

A

b) Prove that if any two rookwise adja
ent elements of a whirlpool per-

mutation are inter
hanged, the result is not a whirlpool.

) What is the lexi
ographi
ally smallestm�n whirlpool permutation of f1; : : : ;mng?

d) True or false: The histos
ape of an m� n matrix with distin
t elements is a 3VP

if and only if that matrix is a whirlpool permutation. (See Fig. 101(d).)

e) IfM ex
eeds the di�eren
e between the largest and smallest elements of a whirlpool

permutation, and if x is any number, prove that the matrix obtained after repla
ing

ea
h element a

ij

by (a

ij

+ x) modM is also a whirlpool permutation.

x 45. [M30 ℄ How many 5 � 5 matri
es are whirlpool permutations of f0; 1; : : : ; 24g?

Hint: An algorithm similar to that of exer
ise 41
an be used to
ount them.

x 46. [HM35 ℄ An up-up-or-down-down permutation of 2n�1 elements is a permutation

a

1

a

2

: : : a

2n�1

for whi
h a

2k�1

< a

2k

if and only if a

2k

< a

2k+1

, for 0 < k < n. Let U

n

be the number of su
h permutations; for example, (U

1

; : : : ; U

5

) = (1; 2; 14; 204; 5104).

a) Prove that U

n+1

=

P

k

�

2n

2k

�

Q

k

Q

n�k

, where Q

k

= (k = 0? 1: kU

k

).

b) Find the exponential generating fun
tion U(z) = U

1

z=1!+U

2

z

3

=3!+U

3

z

5

=5!+ � � � .

) What is the asymptoti
 behavior of U

n

,
orre
t to relative error (1 +O(1=4

n

))?

d) The number of 2�n whirlpool permutations is 2nU

n

. Prove this by establishing a

one-to-one
orresponden
e between up-up-or-down-down permutations and 2� n

whirlpool permutations of f0; : : : ; 2n � 1g with �rst element 0.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 87

pi as random

puzzle

skeleton

3-
ube

on
ave edges

signed skeleton

onvex edge

Szilassi polyhedron

realized

oordinates

o
tants

o
tal notation

pi as sour
e

phi as sour
e

gamma as sour
e

47. [21 ℄ Whi
h of the following partially �lled 5� 5 matri
es
an be
ompleted to a

whirlpool permutation of f1; 2; : : : ; 25g in exa
tly one way?

(i)

1 3 5 7 9

17

25

2 4 6 8 10

; (ii)

3 14 15 9 2

6 5

; (iii)

3 14 15

9 2 6

5

1 25 22

11 21 19

; (iv)

3 14 15

9 2 6

5

1 21 25

4 18 22

:

x 50. [M25 ℄ The skeleton of a polyhedron is the graph formed by its verti
es and edges.

Hen
e the skeleton of a 3VP is a
ubi
 graph. Make sket
hes of four 3VPs, ea
h of whi
h

has the same skeleton as the 3-
ube, but they di�er in the number of
on
ave edges.

51. [M20 ℄ The signed skeleton of a polyhedron is like its skeleton, but ea
h edge is

also identi�ed as being either
on
ave or
onvex. In illustrations we
an indi
ate a

onvex edge by a solid line and a
on
ave edge by a dashed line; for example, the

signed skeletons of the obje
ts in answer 50 are

:

What is the signed skeleton of the Szilassi polyhedron?

52. [HM46 ℄ Is there an algorithm to de
ide whether or not a given signed
ubi
 graph

an be realized as the signed skeleton of some 3VP?

54. [HM20 ℄ Let v

0

be a vertex of X, where X is a 3VP. Let the three neighbors of v

0

in

the skeleton of X be fv

1

; v

2

; v

3

g, and let ea
h v

i

have Cartesian
oordinates (x

i

; y

i

; z

i

).

a) Show that we
an always
hoose the subs
ripts in su
h a way that

D(v

0

; v

1

; v

2

; v

3

) > 0; where D(v

0

; v

1

; v

2

; v

3

) = det

0

B

�

x

0

y

0

z

0

1

x

1

y

1

z

1

1

x

2

y

2

z

2

1

x

3

y

3

z

3

1

1

C

A

:

b) Let p

12

be the plane that
ontains v

0

, v

1

, and v

2

. What equation de�nes the set

of all ve
tors v = (x; y; z) that lie in p

12

?

) What inequality
hara
terizes all v = (x; y; z) that lie on the same side of p

12

as v

3

?

d) De�ne p

23

and p

31

by analogy with p

12

. Then the three planes p

12

, p

23

, p

31

divide

three-dimensional spa
e into eight \o
tants": Every point v lies on one side or the

other of ea
h plane, unless it belongs to that plane. Devise a
omputer-friendly

way to number the o
tants 0 to 7 in o
tal notation.

e) Using your numbering s
heme, what o
tant
ontains the \three-famous-
onstants"

point (�; �;
) when v

0

= (0; 0; 0), v

1

= (1; 0; 0), v

2

= (0; 1; 0), v

3

= (0; 0; 1)?

f) Same as (e), but v

0

= (0; 0; 0), v

1

= (1; 1; 0), v

2

= (0; 1; 1), v

3

= (1; 0; 1).

x 55. [HM25 ℄ Continuing exer
ise 54, let � > 0 be smaller than the distan
e from v

0

to

any other vertex of X, and let X

�

be the interior of the
losed set X \ S

�

(v

0

), where

S

�

(v

0

) = fv j kv � v

0

k � �g = f(x; y; z) j (x� x

0

)

2

+ (y � y

0

)

2

+ (z � z

0

)

2

� �

2

g:

a) Explain how to de
ide pre
isely whi
h of the edges from v

0

to v

1

, v

2

, and v

3

are

on
ave and whi
h are
onvex, if told whi
h of the o
tants are interse
ted by X

�

.

b) Explain how to
ompute the angles between the pairs of planes that meet at v

0

.

January 13, 2024

88 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

general position

HC pi
ture

proje
tion

HC network

XCC problem

Szilassi

mirror image

re
e
tion of an HC network

realizable

planar graph

boundary
y
le

onne
ted
omponent

de
ision problem

57. [HM25 ℄ Using Cartesian
oordinates (x; y; z), state quantitative
onditions for the

notion of \general position," under whi
h we
an be sure that a given 3VP X has a

well-de�ned HC pi
ture after proje
tion to the (x; y)-plane.

58. [M29 ℄ Derive Table 1 by
onsidering the 2

8

= 256 di�erent ways that up to eight

ubies
an be pla
ed into a 2� 2� 2 box.

a) Show that exa
tly 64 of those pla
ements make a 3VP in whi
h the
enter of the

box is a vertex.

b) Furthermore, if that 3VP is in general position, we'll be able to see its
entral

vertex in exa
tly 32
ases.

) Draw those 32 pi
tures, and verify that the di�erent possibilities for V, W, and Y

jun
tions are pre
isely those shown in Table 1.

d) Also explain why Table 1 is
orre
t for T jun
tions.

59. [10 ℄ If an HC network has respe
tively (t; v; w; y) jun
tions of types T, V, W,

and Y, how many variables does the
orresponding CSP have? How many
onstraints?

x 60. [18 ℄ The line labeling problem has also been modeled as a CSP in quite a di�erent

way from (21) and (22): Instead of having one variable for ea
h line, let there be

one variable for ea
h jun
tion. The domain of variable j is then either f1; 2; 3; 4g or

f1; 2; 3; 4; 5; 6g or f1; 2; 3g or f1; 2; 3; 4; 5g, depending on whether j has type T, V, W,

or Y; and j's value represents the index of the legal labeling in Table 1. There's one

onstraint for ea
h line between jun
tions.

a) What is the
onstraint for line ab of (20) in this s
heme?

b) How about the lines np and op?

) What's the answer to exer
ise 59, with respe
t to this model?

d) Whi
h model do you think is better?

61. [15 ℄ Translate the line labeling problem (22) into an XCC problem.

62. [15 ℄ What standard labeling of Szilassi's polyhedron di�ers from Fig. 104(b)?

64. [M20 ℄ If H is the HC network that
orresponds to an HC pi
ture, explain how to

onstru
t the HC network H

R

that
orresponds to the mirror image of that pi
ture,

when H and H

R

both have the same jun
tions and the same oriented lines. Find a

simple relation between the line labeling problems for H and H

R

.

x 65. [M25 ℄ An HC network is
alled realizable if it
orresponds to at least one a
tual

HC pi
ture. Furthermore, that HC pi
ture must not have a T jun
tion whose
ollinear

lines both lie on the outer boundary. (Su
h a T
annot be the image of a 3VP in

general position. Noti
e that the line labeling problem for H is well de�ned regardless

of whether or not H
an be physi
ally realized.)

a) What is the smallest unrealizable HC network? Hint: It has three jun
tions.

b) Chara
terize all realizable HC networks whose jun
tions all have type V.

) Find an HC network,
onsisting entirely of type W jun
tions, that is unrealizable

be
ause it doesn't de�ne a planar graph.

d) Prove that every realizable HC network
ontains at least three jun
tions of type

V or W. Hint: Consider the boundary
y
le of any
onne
ted
omponent.

e) True or false: If the jun
tion T (a;b;
) in a realizable network is
hanged to either

W (
;b; a) or Y (a; b;
), the resulting network is still realizable.

66. [M46 ℄ Is there an algorithm to de
ide whether a given HC network is realizable?

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 89

standard labeling

smile of order n

standard

bow tie

bi
onne
ted

standard

Lu
as number

Fibona

i numbers

twindragon fra
tal

fra
tal

67. [22 ℄ Cover up the boundary of the HC pi
ture

and wat
h the dis
onne
ted interior images as they jump in and out, before your eyes.

a) Show that this pi
ture has only one standard labeling.

b) In how many ways
an the boundary jun
tions be labeled
onsistently, without

regard to any of the interior jun
tions?

) How many labelings are possible altogether, standard or not?

x 68. [M30 ℄ Let (j

0

j

1

: : : j

q�1

) be the boundary
y
le of a realizable HC network.

a) For 0 � k < q, show that there are only six possible ways to de�ne j

k

:

� j

k

= T (j

k+1

; j

k�1

; j

0

k

),
alled
ase L;

L$

k�1

k

k+1

k

0

, R$

k�1

k

k+1

k

0

� j

k

= T (j

0

k

; j

k+1

; j

k�1

),
alled
ase R;

� j

k

= V (j

k+1

; j

k�1

),
alled
ase V ;

V $

k�1

k

k+1

, �$

k�1

k

k+1

� j

k

= V (j

k�1

; j

k+1

),
alled
ase �;

� j

k

=W (j

k+1

; j

0

k

; j

k�1

),
alled
ase W ;

W $

k�1

k

k+1 k

0

, Y $

k�1

k

k+1

k

0

� j

k

= Y (j

k+1

; j

0

k

; j

k�1

),
alled
ase Y .

(The subs
ripts in `j

k�1

' are to be understood mod q. The line j

k

��� j

0

k

in
ases

L, R,W, and Y is
alled an \inner line," although j

0

k

might lie on the boundary.)

b) What
ombinations of line labels for j

k�1

j

k

, j

k

j

k+1

, j

k

j

0

k

an o

ur in ea
h
ase?

) Design an eÆ
ient way to test whether any inner line label
an be assigned more

than one value, when only the q
onstraints of the boundary
y
le are imposed.

69. [M23 ℄ The \smile of order n" is a realizable HC network S

n

with 3n+2 jun
tions:

S

1

= ; S

2

= ; S

3

= ; : : :

How many line labelings does S

n

have? How many of them are standard?

70. [16 ℄ In how many ways
an the \bow tie" be labeled?

71. [M22 ℄ Does a bi
onne
ted realizable HC network have a unique boundary
y
le?

72. [22 ℄ Constru
t a realizable HC network that has a unique line labeling, although

it doesn't have a standard labeling.

73. [HM39 ℄ Suppose ea
h jun
tion j

k

of a boundary
y
le (j

0

j

1

: : : j

q�1

) is V or �.

a) Let M

k

= A if j

k

= V and M

k

= B if j

k

= �, where A = (

1 1

1 0

) and B = (

1

�1

�1

0

)

are 2 � 2 matri
es. Prove that the number of ways to label the boundary
y
le

(j

0

j

1

: : : j

q�1

) is tra
e(M

0

M

1

: : :M

q�1

) + L

q

, where L

q

is a Lu
as number.

b) Show that 2F

q

� tra
e(A

p

B

q�p

)+L

q

� 2L

q

for 0 � p � q. What p gives equality?

) In fa
t, the number of labelings is between 2F

q

and 2L

q

in all
ases.

74. [HM21 ℄ The twindragon fra
tal (see Fig. 1 in Chapter 4)
an be approximated by

a sequen
e of polygonal paths T

n

for n � 2, where T

n

has 2

n

jun
tions:

T

2

= ; T

3

= ; T

4

= ; T

5

= ; T

6

= ; T

7

= ; T

8

= ; : : :

January 13, 2024

90 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

Ja
obi symbol

Penrose n-gon

squashed

Reutersv�ard

hexagonal grid

linear equations and linear inequalities

impossible

Kirousis

Papadimitriou

NP-
omplete

de
ision problem

The
lo
kwise path T

n

turns left or right at step k and at step k + 2

n�1

a

ording as

the Ja
obi symbol (

�1

k

) is = �1 or +1, for 1 � k � 2

n�1

. (See exer
ise 4.5.4{23.)

In how many ways
an T

n

be labeled? Hint: Use exer
ise 73.

76. [20 ℄ Combine a V jun
tion, a W jun
tion, and a Y jun
tion in su
h a way that

the resulting subpi
ture
annot be labeled. (See (24) and (25).)

x 77. [M25 ℄ The Penrose triangle, Penrose square, Penrose pentagon, Penrose hexagon,

: : : , are

; ; ; ; : : : :

a) What is the HC network for the Penrose n-gon?

b) In how many ways
an the Penrose n-gon be labeled
onsistently?

) Is the Penrose n-gon weakly realizable for any n � 3?

78. [20 ℄ Explain how to obtain (32) as the proje
tion of nine \squashed"
ubes.

79. [M22 ℄ In how many ways
an Reutersv�ard's (32) be labeled (standard or not)?

80. [24 ℄ We
an extend the idea in (32) to larger arrays of partially overlapping boxes:

(i) (ii) (iii) (iv)

(This is essentially a hexagonal grid, be
ause ea
h box
an potentially overlap with six

neighbors.) How many standard labelings are possible for (i), (ii), (iii), and (iv)?

81. [23 ℄ The 36 boxes in the 6 � 6 hexagonal arrays of exer
ise 80 involve 85 pairs

(A;B) of adja
ent boxes: 30 = 6 �5 pairs in dire
tion

!

; 30 = 5 �6 pairs in dire
tion

!

;

and 25 = 5 �5 pairs in dire
tion

!

. In every
ase we're allowed to spe
ify either A < B

or A > B, meaning that A lies behind or in front of B in the image. Example (iv)

illustrates the fa
t that this relation need not be transitive.

Thus those 36 boxes might be depi
ted in 2

85

di�erent ways. However, it turns out

that the boxes are too
lose together to allow all possibilities: When boxes A, B, and C

are mutually adja
ent, we
annot simultaneously spe
ify A < B, B < C, and C < A.

a) In how many ways
an those 85 relations be spe
i�ed, without any su
h non-

transitive triplets? Hint: This is a CSP.

b) Generalize to m� n hexagonal arrays of boxes, for 1 � m � n � 10.

x 83. [M30 ℄ Let H be a labeled HC pi
ture, whose jun
tions have known (x; y)
oor-

dinates. Explain how to
onstru
t a system of linear equations and linear inequalities

that have a solution whenever H is the proje
tion of some 3VP X in general position.

85. [22 ℄ Is the following HC pi
ture impossible? (It uses the right half of (26), twi
e.)

86. [M25 ℄ (L. Kirousis and C. Papadimitriou, 1988.) Prove that it's NP-
omplete to

de
ide whether or not a realizable HC pi
ture
an be labeled.

87. [HM46 ℄ Is it de
idable whether or not a given HC network is weakly realizable?

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 91

gra
eful labeling

automorphisms

symmetry

omplementation

XCC problem

symmetry breaking

puzzle

omplement

Golomb

K

n

ZDDs

Adamaszek

longest path

gra
eful permutation

KP

90. [15 ℄ If we
hange 6 to 7 in Fig. 105(b), we get another gra
eful labeling, sin
e the

edge labels 10�6 = 4 and 6�3 = 3 be
ome 10�7 = 3 and 7�3 = 4. Show that further

gra
eful labelings
an be obtained by
hanging only the labels of verti
es 13 and 14.

91. [M21 ℄ True or false: If graph G has k automorphisms, every gra
eful labeling of G

is equivalent to 2k � 1 others, under symmetry and
omplementation.

x 93. [21 ℄ To model the gra
eful labeling problem of Fig. 105 as an XCC problem,

we
an introdu
e 18 primary items f1; : : : ; 18g for the edge labels, 18 primary items

fNH-MA; : : : ; GA-SCg for the edges, 13 se
ondary items fNH; : : : ; SCg for the
olonies, and

19 se
ondary items fh

0

; : : : ; h

18

g for the holders of vertex labels. These items are to

be governed by 18 � 19 � 18 = 6156 options, su
h as

`6 PA-DE PA:3 DE:9 h

3

:PA h

9

:DE' ;

namely one for ea
h edge label d, ea
h edge, and ea
h way to assign labels j and k with

0 � j < k = j+d � 18 to the endpoints of that edge. (The example shown
overs edge

label 6 and edge PA-DE when PA is labeled 3 and DE is labeled 9.) Given those options,

Algorithm 7.2.2.1C needs about 90 gigamems to �nd the 641952 solutions.

a) Modify the model so that only the 160488 essentially di�erent solutions are found.

b) Modify the model so that it solves the puzzle of Fig. 105(d).

94. [M21 ℄ The arrays LO, FIRST, NEXTL, NEXTH, NAME in (35)
orrespond to the labeling

in Fig. 105(b). What arrays LO

0

, : : : , NAME

0

orrespond to its
omplement, Fig. 105(
)?

95. [M20 ℄ (S. Golomb, 1972.) Complete the proof that K

n

is ungra
eful when n � 5.

x 96. [25 ℄ Design a ba
ktra
k algorithm to �nd all the gra
eful labelings of P

n

as in (38).

97. [26 ℄ The sear
h tree for gra
eful labelings of P

10

, analogous to (38),
ontains 206

nodes, two of whi
h are labeled 1738092 and 1809372. Those two nodes have identi
al

subtrees, be
ause they both represent a partial path between 1 and 2 that la
ks the

elements f4; 5; 6g. Modify the algorithm of exer
ise 96 so that it avoids su
h redundant

omputations, by identifying nodes that are obviously equivalent. (Think of ZDDs.)

98. [M25 ℄ (M. Adamaszek, 2013.) Consider n points that all lie on a straight line L.

a) What's the length of the longest path within L that doesn't hit any point twi
e?

b) Prove that if p

1

: : : p

2m

is a gra
eful permutation of f1; : : : ; 2mg with p

2m

= p

1

+m,

then p

2k

> m for 1 � k � m.

) Conversely, if p

1

: : : p

2m

is gra
eful and p

2k

> m for 1 � k � m, then p

2m

= p

1

+m.

x 99. [M30 ℄ Determine all of the essentially di�erent gra
eful labelings of K

1;1;n

.

100. [M16 ℄ Prove that exa
tly one of the 4n! equivalent matri
es (x

ij

) that gra
efully

label a KP graph K

n

P

r

has 0���(m� 1) and satis�es (40).

101. [16 ℄ Study Fig. 107. Why doesn't

29

80

appear in level 3 of that tree?

x 102. [21 ℄ If n > 5, one of the bran
hes in the sear
h tree analogous to Fig. 107 will set

x

12

= m and x

22

= 0 at level 1, x

32

= m� 1 at level 2, x

42

= 2 at level 4 (and level 3),

and x

52

= m� 4 at level 5. What are the immediate des
endants of that level-5 node,

if (a) r = 2? (b) r = 3?

103. [M25 ℄ Explain why the exhaustive sear
h for gra
eful labelings of K

n

P

2

,

illustrated for n = 3 in Fig. 107, performs essentially identi
al
al
ulations for all

suÆ
iently large values of n, never �nding a solution.

x 104. [20 ℄ Draw levels 0, 1, and 2 of the sear
h tree for K

3

P

3

, analogous to Fig. 107.

January 13, 2024

92 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

�

KC graph

random gra
eful graph

G

�

m

�

fa
torial series

isolated verti
es

omponents

hromati
 numbers

isolated verti
es

bipartite

r-regular graphs

2-regular graphs

3-regular graphs

ubi
 graphs

trivalent graphs

Fun fa
t

graphs, small

uniquely gra
eful

rooted

gra
eful permutations

13-
olonies

P

n

data stru
tures

eÆ
ient

Golomb

i
osahedron

dode
ahedron

105. [46 ℄ Determine the number of gra
eful labelings of K

n

P

4

for all n.

x 106. [20 ℄ Is it possible to prove that K

3

P

17

is gra
eful by
onstru
ting a 3 � 17

matrix whose �rst row
ontains the �rst 34 digits of �?

107. [M24 ℄ Prove that K

3

P

r

is gra
eful for all r � 1, by
onstru
ting an appropriate

3� r matrix whose top row is (0;m� 2; 4;m� 6; 8; : : :).

108. [46 ℄ Is K

4

P

r

gra
eful for all r � 1?

109. [M11 ℄ How many symmetries does a KC graph have?

110. [M18 ℄ For what n > 2 and r > 2 does Lemma O prove thatK

n

C

r

isn't gra
eful?

x 111. [20 ℄ Does Lemma O tell us anything useful about KP graphs?

112. [20 ℄ A gra
eful square: Show that K

4

K

4

is gra
eful(!).

113. [12 ℄ Is every graph with four edges gra
eful?

x 115. [M24 ℄ A \random gra
eful graph" G

�

m

an be based on � using the fa
torial

series

� = 3 +

1

X

k=1

a

k

(k + 1)!

; where 0 � a

k

� k:

The verti
es are f0; : : : ;mg; the edges are 0���m and a

k

���a

k

+m�k, for 1 � k < m.

a) Show that these integers a

k

are unique, and
ompute them for k � 20.

b) How many isolated verti
es does G

�

m

have, for m � 20? How many
omponents?

) Determine the
hromati
 numbers �(G

�

1

), : : : , �(G

�

20

).

116. [22 ℄ Among the 16! gra
eful labelings with 16 edges, how many of them de�ne an

n-vertex graph, for ea
h n, after removing isolated verti
es? How many are
onne
ted?

117. [22 ℄ Repeat exer
ise 116, but restri
t the
ounts to bipartite graphs.

x 118. [22 ℄ Explain how to
ompute all possible gra
eful labelings of r-regular graphs

with m edges, given m and r. What are the smallest su
h labelings when 2 � r � 8?

119. [22 ℄ Continuing exer
ise 118, make a
omplete survey of all gra
eful labelings of

2-regular graphs with � 16 edges. How many su
h graphs are gra
eful?

120. [32 ℄ Continuing exer
ise 118, make a
omplete survey of all gra
eful labelings of

3-regular graphs (
ubi
 graphs) with� 14 verti
es. How many su
h graphs are gra
eful?

121. [46 ℄ Is every
onne
ted
ubi
 graph gra
eful?

x 122. [40 ℄ Fun fa
t: Exa
tly 12345 di�erent graphs have at most 8 nonisolated verti
es.

Study their gra
efulness: How many of them are gra
eful? Whi
h of them are uniquely

gra
eful? Whi
h of them are maximally gra
eful|gra
eful in the most di�erent ways?

x 123. [28 ℄ A gra
eful labeling is
alled rooted if every edge has a vertex in
ommon with

a longer edge, ex
ept edge m itself. For example, the �rst three gra
eful permutations

in (38) are rooted; but the other three are not, be
ause edge 1���3 doesn't tou
h any

of the longer edges 2���5, 0���4, 0���5.

a) Is the 13-
olonies labeling in Fig. 105(b) rooted?

b) How many of the 160488 gra
eful labelings of that graph are rooted?

) How many of the 16! labelings in exer
ise 116 are rooted?

d) Compute the number of rooted gra
eful labelings of P

n

, for n � 16.

124. [30 ℄ Find a
onne
ted gra
eful graph that has no rooted gra
eful labeling.

x 125. [35 ℄ Design an algorithm that �nds all of the ways to label a given graph gra
e-

fully. Try to
hoose data stru
tures that are as eÆ
ient as possible.

126. [29 ℄ (S. Golomb, 1972.) In how many essentially di�erent ways
an the verti
es

and edges of (a) an i
osahedron or (b) a dode
ahedron be labeled gra
efully?

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 93

randomized algorithm

mira
ulous

Ani
k

free trees

superexponential

omponents

Elkies

omplete graph

spanning trees

omplement

determinant

binomial tree

n-
ube

Gray
ode

binary re
urren
e

x 127. [28 ℄ Design a randomized algorithm that's able (with a little bit of lu
k) to

dis
over \mira
ulous" gra
eful labelings of a largish graph, su
h as the one in Fig. 106.

128. [24 ℄ Find all of the essentially distin
t gra
eful labelings of (41).

129. [M30 ℄ (D. Ani
k, 2016.) To ba
ktra
k through all gra
eful labelings of free trees

on the verti
es f0; : : : ;mg, we
an su

essively
hoose LO[k℄ for k = m, m� 1, : : : , 1,

in su
h a way that the edge LO[k℄���LO[k℄+ k doesn't produ
e a
y
le in the graph-

so-far. We shall prove that the number of
hoi
es is superexponential, by showing that

there always are at least t

k

hoi
es for LO[k℄, where t

k

is suitably large.

At the moment we
hoose LO[k℄, the
urrent graph has exa
tly k + 1
onne
ted

omponents (possibly singletons). Let's write x � y if verti
es x and y belong to the

same
omponent; also x � y if xmod k = y mod k. Call r a \residue" if 0 � r < k,

and
all it \bad" if x � y � r implies x � y. Say also that x is bad if xmod k is bad;

a
omponent is bad if all its verti
es are bad. Furthermore, \good" means \not bad."

a) Show that there's always at least one good residue.

b) If there are g good residues, then t

k

� g.

) If there are G good
omponents, then t

k

� G� g.

d) If k < m=2, a bad
omponent
ontains at least two di�erent bad residues.

e) Hen
e we may let t

k

= b(k + 4)=3
 when k < m=2.

f) When k � m=2 we may let t

k

= 2+ b(m� k)=2
. Hint: Prove that if x � x+ k,

there are verti
es y < x and z > x+ k su
h that y � x and z � x+ k.

x 130. [HM25 ℄ (N. Elkies, 2002.) In the
omplete graph on

verti
es f1; : : : ; ng, assign the weight x

d

to edge k���(k+d),

1 2 3 4

x

1

x

2

x

3

x

1

x

2

x

1

for 1 � k � n � d and 1 � d < n, as illustrated here for

n = 4. This graph has n

n�2

spanning trees in general, by

exer
ise 2.3.4.4{22; and we
an form the sum S(x

1

; : : : ; x

n�1

) of the produ
ts of all

edge weights, over ea
h of those trees. For example, when n = 4 we have

S(x

1

; x

2

; x

3

) = x

3

1

+ 4x

2

1

x

2

+ 3x

1

x

2

2

+ 3x

2

1

x

3

+ 4x

1

x

2

x

3

+ x

2

2

x

3

;

be
ause there's one spanning tree that uses all three x

1

's, and four that use two x

1

's and

an x

2

, et
. Noti
e that [x

1

x

2

x

3

℄S(x

1

; x

2

; x

3

) = 4 is twi
e the total number of gra
eful

labelings of 4-vertex trees, sin
e a labeling and its
omplement are both
ounted.

a) Express S(x

1

; : : : ; x

n�1

) as a determinant. Hint: See exer
ise 2.3.4.2{20.

b) Explain how to
ompute � (n�1) = [x

1

: : : x

n�1

℄S(x

1

; : : : ; x

n�1

) in O(2

n

n

3

) steps.

131. [HM46 ℄ Determine the asymptoti
 value of the fun
tion � (n) in exer
ise 130.

x 132. [21 ℄ The binomial tree T

n

has 2

n

nodes f0; 1; : : : ; 2

n

�1g, rooted at 0, where the

parent of node x 6= 0 is node x&(x�1). (See 7.2.1.3{(21).) If x = (x

n�1

: : : x

1

x

0

)

2

, let

l(x) = (l

n�1

: : : l

1

l

0

)

2

, where l

k

= x

0

�� � ��x

k

. Show that these labels make T

n

gra
eful.

133. [24 ℄ Continuing exer
ise 132, determine the exa
t number of essentially di�erent

gra
eful labelings of T

3

and T

4

. Also estimate that number for T

5

and T

6

.

136. [M23 ℄ Prove that the n-
ube is gra
eful by means of the following labeling based

on Gray
ode and an auxiliary sequen
e 0 = a

0

< a

1

< a

2

< � � � : Let g(2k) and

g(2k + 1) be labeled a

k

and m� k � a

k

, respe
tively, where m = n2

n�1

. For example,

v = 000 001 011 010 110 111 101 100

l(v) = a

0

12�a

0

a

1

11�a

1

a

2

10�a

2

a

3

9�a

3

when n = 3. (See 7.2.1.1{(4).) Assume that a

2

n

+r

= a

2

n

+ a

r

for 0 � r < 2

n

.

January 13, 2024

94 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

parallomino graph

grid

skeleton

�-gra
eful

bipartite

y
le C

n

omplement

ordered gra
eful labeling

near �-labeling, see ordered gra
eful labeling

a) Let V

j

be the verti
es of the form j�, and let L

j

be the labels of the edges in G jV

j

,

for 0 � j � 1. (For example, when n = 3 we have V

0

= f000; 001; 010; 011g and

L

0

= f12� 2a

0

; 12� a

0

� a

1

; 11� 2a

1

; 11� a

1

� a

0

g.) Express L

1

in terms of L

0

.

b) What values of a

1

, a

2

, a

4

, a

8

, : : : make the labeling gra
eful?

x 137. [M25 ℄ A parallomino graph (see exer
ise 7.2.2.1{303) has verti
es (x; y) for inte-

gers 0 � x � r and s

x

� y � t

x

, where 0 = s

0

� s

1

� � � � � s

r

, t

0

� t

1

� � � � � t

r

, and

s

k+1

� t

k

for 0 � k < r; edges go from (x; y) to (x+1; y) and (x; y+1) when possible.

For example, the parallomino graph with r = 6, (s

0

; t

0

) = (s

1

; t

1

) = (0; 3),

(s

2

; t

2

) = (1; 4), (s

3

; t

3

) = (s

4

; t

4

) = (2; 4), and (s

5

; t

5

) = (s

6

; t

6

) = (4; 4)
an be

de
orated with labels in two
losely related ways:

(i)

0

1

4

5

7

8

10

12

13 14

0

1

3

4

6

7

9

10

12

13

(ii)

0

28

1

27

25

4

24

5

22

7

21

8

19

10

18

12

16

13 15 14

Illustration (ii) is in fa
t a remarkable gra
eful labeling, where the edges whose labels

are 1, 2, : : : , 28 appear in stri
t order, from right to left and top to bottom!

a) How many verti
es and edges does a parallomino graph have, in general?

b) De
ipher the rule that
onne
ts illustration (i) with illustration (ii).

) Reverse-engineer the rule by whi
h illustration (i) was labeled.

d) Can every parallomino be gra
efully labeled, using these rules?

x 138. [M25 ℄ Let l denote m� l. A graph is �-gra
eful if its edges
an be written

u

0

���v

0

; u

1

���v

1

; : : : ; u

m�1

���v

m�1

;

where u

k

+ v

k

= k, 0 � u

k

< l, and 0 � v

k

< m+1�l, for some l.

Here u

k

and v

k

are labels of verti
es in the graph. For example, the labels

0 1 3 4 6 7 9

0 2 3 5 6 8 9

show that K

2

P

7

is �-gra
eful; and a similar
onstru
tion works for K

2

P

r

in general.

a) Prove that an �-gra
eful graph is gra
eful and bipartite.

b) For whi
h n is the
y
le C

n

�-gra
eful?

) Prove that every �-gra
eful labeling has an \edge
omplement" in whi
h edge k

be
omes edge m+ 1� k, for 1 � k � m.

d) Find a tree with seven nodes that's not �-gra
eful.

139. [23 ℄ A bipartite graph with parts U and V has an ordered gra
eful labeling if it

has a gra
eful labeling su
h that l(u) < l(v) for every edge u���v with u 2 U , v 2 V .

a) Show that every �-gra
eful graph has an ordered gra
eful labeling.

b) Show that the non-�-gra
eful tree of answer 138(d) also has su
h a labeling.

) Let G have m edges and an ordered gra
eful labeling. Prove that m
opies of G

an be perfe
tly pa
ked into the
omplete bipartite graph K

m;m

.

d) A bipartite graph G with m edges u���v between parts U and V leads naturally

to a bipartite graph G

(t)

with tm edges u���v

i

between parts U and V

1

[� � �[V

t

.

If G has an ordered gra
eful labeling, show that G

(t)

does too.

140. [M21 ℄ Continuing exer
ises 138 and 139, how many (a) �-gra
eful labelings

(b) ordered gra
eful labelings have m edges? (Compare with Theorem S.)

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 95

dire
t produ
t

tensor produ
t, see dire
t produ
t

n-
ube

grid

torus

Path P

n

y
le C

n

ordered gra
eful labeling

Caterpillar nets

(s; t)-
aterpillar

bipartite graph

pi, as random example

omplete bipartite graph

K

n;r

grid

grid graph

skeleton

pentominoes

K

n;r

omplete bigraph

polynomial

142. [M20 ℄ The dire
t produ
t of bipartite graphs always has at least two
omponents.

a) Prove this, by determining the
omponents of K

a;b

K

;d

.

b) When G and H are bipartite with parts (U;V) and (X;Y), let (G
H)

0

and (G

H)

00

be G
H restri
ted respe
tively to parts (U�X;V �Y) and (U�Y; V �X).

Des
ribe (i) (P

2m

 P

2n

)

0

and (P

2m

 P

2n

)

00

; (ii) (P

2m

 P

2n+1

)

0

and (P

2m

P

2n+1

)

00

; (iii) (P

2m+1

 P

2n+1

)

0

and (P

2m+1

 P

2n+1

)

00

; (iv) (C

2m

 C

2n

)

0

and

(C

2m

 C

2n

)

00

; (v) (Q

m

Q

n

)

0

and (Q

m

Q

n

)

00

, where Q

n

is the n-
ube.

) If G and H ea
h have an ordered gra
eful labeling, prove that (G
 H)

0

and

(G
H)

00

do too.

x 145. [M28 ℄ (Caterpillar nets.) A \
aterpillar" is a graph with at least two verti
es

that be
omes a path (or empty) when you remove all of its verti
es of degree 1. More

pre
isely, an (s; t)-
aterpillar is a bipartite graph with verti
es fu

0

; : : : ; u

s

; v

0

; : : : ; v

t

g

and edges de�ned by a binary ve
tor e = e

1

: : : e

s+t

that has s 0s and t 1s:

u

s

i

���v

t

i

for 0 � i � s+ t, where s

i

= �e

1

+ � � �+ �e

i

and t

i

= e

1

+ � � �+ e

i

.

For example, here's the (9; 11)-
aterpillar whose edge ve
tor is 11001001000011111101:

u

0

u

1

u

2

u

3

u

4

u

5

u

6

u

7

u

8

u

9

v

0

v

1

v

2

v

3

v

4

v

5

v

6

v

7

v

8

v

9

v

10

v

11

:

a) Draw the eight (s; t)-
aterpillars for whi
h s+ t = 3.

b) Prove that every (s; t)-
aterpillar is �-gra
eful.

) Given an (s; t)-
aterpillar, a \
aterpillar net" is a graph

obtained when we repla
e the verti
es u

j

and v

k

by

disjoint sets of verti
es U

j

= fu

j0

; : : : ; u

jp

j

g and V

k

=

fv

k0

; : : : ; v

kq

k

g, for 0 � j � s and 0 � k � t. The edges

are (p

s

i

; q

t

i

)-
aterpillars between U

s

i

and V

t

i

, for 0 �

i � s+ t. For example, a
aterpillar net with e = 1001,

p

0

= p

2

= 2, p

1

= q

0

= q

2

= 1, and q

1

= 3 is illustrated

here. How many edges does a
aterpillar net have?

00

01

02

10

11

20

21

22

00

01

10

11

12

13

20

21

ji

ki

u

ji

=

v

ki

=

d) Prove that every
aterpillar net is �-gra
eful.

e) Prove that the
omplete bipartite graph K

n;r

is a
aterpillar net.

f) Prove that the grid P

n

P

r

is a
aterpillar net.

g) Are either of the following graphs
aterpillar nets? ; .

146. [23 ℄ The grid graph P

2

P

6

is the \skeleton" of a pentomino (showing the outlines

of its �ve
ells). Prove that the skeletons of all twelve pentominoes are �-gra
eful.

148. [HM36 ℄ Exer
ise 145(e) proved that K

n;r

is �-gra
eful. Let A(n; r) be the exa
t

number of di�erent �-labelings that K

n;r

has, times 2 if n = r > 1. (We know that

K

2;2

= C

4

has a unique gra
eful labeling; but A(2; 2) = 2 be
ause the edges
an be

written either as 0���0, 1���0, 0���2, 1���2 or 0���0, 0���1, 2���0, 2���1 in the

notation of exer
ise 138.)

a) Prove that A(n; r) is the number of ways to write the polynomial F

m

(x) = 1 +

x + � � � + x

m�1

as a produ
t G(x)H(x), where m = nr, G(1) = n, H(1) = r,

and all
oeÆ
ients of G and H are either 0 or 1. (For example, A(2; 2) = 2

be
ause F

4

(x) = (1 + x)(1 + x

2

) = (1 + x

2

)(1 + x); A(6; 2) = 4 be
ause F

12

(x) =

January 13, 2024

96 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

real

palindromials

tra
e theory

digraph

XCC problem

essentially di�erent gra
eful labelings

aÆnely equivalent

essentially di�erent

symmetries

antisymmetries

FIRST

NEXT

LO

digraph representation

automorphism

antiautomorphism

set in
lusion

transitive

Boolean latti
e

(1 + x + x

2

+ x

3

+ x

4

+ x

5

)(1 + x

6

) = (1 + x + x

2

+ x

6

+ x

7

+ x

8

)(1 + x

3

) =

(1 + x+ x

4

+ x

5

+ x

8

+ x

9

)(1 + x

2

) = (1 + x

2

+ x

4

+ x

6

+ x

8

+ x

10

)(1 + x).)

b) Prove that if F

m

(x) = G(x)H(x) and the
oeÆ
ients of G and H are real, both

G and H are palindromials (palindromi
 polynomials): Their
oeÆ
ients are the

same when read in either dire
tion. (That is, G(x) = x

deg(G)

G(1=x).)

) Furthermore if all
oeÆ
ients of G and H are between 0 and 1, they're all 0 or 1.

d) Furthermore, if n > 1 and r > 1, either G(x) or H(x) has the spe
ial form

F

k

(x)T (x), where 1 < k < m and all
oeÆ
ients of T are 0 or 1.

e) Furthermore, G(x) = F

k

(x)T (x) implies that H and T are polynomials in x

k

.

f) Con
lude that A(p; q) = 2 whenever p and q are prime. What is A(p

e

; q

f

)?

g) What is A(p

1

p

2

; q

1

q

2

), when p

1

, p

2

, q

1

, q

2

are prime and p

1

6= p

2

, q

1

6= q

2

?

h) Use tra
e theory (Theorem 7.2.2.2F) to prove that A(p

e

1

1

: : : p

e

s

s

; q

f

1

1

: : : q

f

t

t

) =

[p

e

1

1

: : : p

e

s

s

q

f

1

1

: : : q

f

t

t

℄ 1=((1� p

1

) : : : (1� p

s

) + (1� q

1

) : : : (1� q

t

)� 1).

i) In parti
ular, A(p

e

; q

f

1

1

: : : q

f

t

t

) =

�

e+f

1

e

�

: : :

�

e+f

t

e

�

.

149. [M22 ℄ Show that K

n;r

sometimes has gra
eful labelings that are not �-gra
eful:

a) If r = 2 and 2n+1 = pq with p; q > 1, use labels f2n; 2n� pg in the se
ond part,

with labels

S

bq=2
�1

k=0

[2kp : : 2kp+ p) and bp=2
 others in the �rst part.

b) If n = 3k + 1, use labels [0 : : 2k℄ [[nr � k : : nr � 1℄ in the �rst part.

150. [M46 ℄ Does K

n;r

have gra
eful labelings besides those of exer
ises 148 and 149?

155. [20 ℄ Given a simple digraph D without loops,
onstru
t an XCC problem whose

solutions are the gra
eful labelings of D. Hint: Modify the
onstru
tion in exer
ise 93.

156. [13 ℄ For what a and b does x 7! (ax+b) mod 13 take Fig.109(e) into Fig.109(f)?

157. [22 ℄ Find all of the essentially di�erent gra
eful labelings of Fig. 109(a).

x 160. [M28 ℄ Two gra
eful labelings l and l

0

of a digraph D with q � 1 ar
s are
alled

aÆnely equivalent if l

0

(v) = (a(l(v)�b))mod q for all verti
es v, where a and b are inte-

gers with a ? q. (This notion mat
hes transformations (i) and (ii) dis
ussed in the text.)

a) Let v and w be distin
t verti
es ofD. Show that every gra
eful labeling l is aÆnely

equivalent to a gra
eful labeling l

0

for whi
h l

0

(v) = 0 and l

0

(w) = d for some dnq.

b) Exa
tly how many su
h labelings l

0

exist, given d and q?

) Now explain how to take the labelings found in (a) and �nd all of the \essentially

di�erent" ones, by taking a

ount of D's symmetries and antisymmetries.

161. [19 ℄ What are the essentially di�erent ways to label these digraphs gra
efully?

(a)

a

b

d

; (b)

a b
 d e f

:

164. [16 ℄ Design an algorithm to
reate the FIRST and NEXT arrays of a gra
eful

digraph, given its LO array.

x 165. [M25 ℄ Let l be a gra
eful labeling of D, and let LO, FIRST, NEXT, and NAME

be the
orresponding representation as in (44). A labeling l

0

equivalent to l will then

orrespond to
ertain arrays LO

0

, FIRST

0

, NEXT

0

, and NAME

0

. (Compare with exer
ise 94.)

a) Compute them when l

0

(v) = (a(l(v)� b))mod q, given a and b with a ? q.

b) Compute them when l

0

(v) = l(v�), given an automorphism � of D.

) Compute them when l

0

(v) = l(v�), given an antiautomorphism � of D.

x 168. [M24 ℄ The digraph D in Fig. 109 doesn't fully represent set in
lusion in a 3-

element universe be
ause it isn't transitive. Let D

�

be the digraph obtained when

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 97

Boolean latti
e

set in
lusion

onverse

aÆne equivalen
e

oriented path

Bloom

Hsu

oriented
omplete bipartite graph

graphs, small

digraphs, small

Delorme

parity

d

+

(v) (out-degree)

Bloom

Hsu

digra
eful graph

tournament

onverses

essentially distin
t

y
li
 (v; k; �)-di�eren
e set

the ar
s 000 ��! 011, 000 ��! 101, 000 ��! 110, 000 ��! 111, 001 ��! 111, 010 ��! 111,

100��!111 are added to D. What are its
lasses of equivalent gra
eful labelings?

169. [22 ℄ When the digraph in Fig. 109 is extended to a 4-element universe, it has 16

verti
es and 32 ar
s. Is it still gra
eful?

x 172. [HM35 ℄ Let D

m

be the set of m-tuples x = x

1

: : : x

m

with 0 � x

l

� m for

1 � l � m. If x 2 D

m

, the digraph aD(x)+b has m+1 verti
es f0; : : : ;mg and m ar
s,

(ax

l

+ b) mod q��!(ax

l

+al+ b) mod q, where q = m+1. Furthermore, say that x � x

0

in D

m

if aD(x) + b equals D(x

0

) or its
onverse D(x

0

)

T

, for some a and b with a ? q.

a) What are the equivalen
e
lasses of D

2

and D

3

?

b) What's a good way to visit ea
h equivalen
e
lass of D

m

, when m isn't too large?

) What's a good way to
ount the number of equivalen
e
lasses, when m is larger?

175. [25 ℄ Let l

k

= l(v

k

) be the kth vertex label in a path or
y
le v

0

��!� � ���!v

m

.

a) Show that l

2k

= r�1�k and l

2k+1

= r+k gra
efully label the oriented path P~

2r

.

b) Find a somewhat similar pattern of gra
eful labels for C~

2r

. Hint: Use vertex labels

< r and ar
 labels � r � 1 (modulo 2) in the �rst half of the
y
le.

176. [20 ℄ (G. S. Bloom and D. F. Hsu.) IfD is a gra
eful digraph withm ar
s andm+1

verti
es, prove thatD��!K

n

is also gra
eful. (It hasmn+m+n ar
s, m+n+1 verti
es.)

177. [22 ℄ Find an ungra
eful digraph D with 2 ar
s and 3 verti
es su
h that D��!K

n

is gra
eful for all n > 0.

178. [16 ℄ Is the oriented
omplete bipartite graph K~

m;n

= K

m

��!K

n

gra
eful?

180. [41 ℄ Investigate all of the gra
eful digraphs that have at most 6 nonisolated

verti
es. (Compare with exer
ise 122; the number rises from 12345 to 1540943.)

182. [M20 ℄ (C. Delorme.) Let D be a digraph with m ar
s for whi
h the total degree

d

+

(v)+d

�

(v) is even at every vertex v. Prove thatD
annot be gra
eful ifmmod 4 = 1.

183. [20 ℄ (G. S. Bloom and D. F. Hsu.) Show that the m edges of a digra
eful graph

an always be oriented in at least 2

bm=2

gra
eful ways.

x 185. [M30 ℄ A tournament is a digraph in whi
h either u��!v or v��!u for every pair of

verti
es u and v (see exer
ise 7{59). There are twelve unlabeled tournaments of order 5:

A B C D E F G H I J K L

a) What are the
onverses of A, B, : : : , L? (For example, A

T

= A.)

b) How many essentially distin
t gra
eful labelings does ea
h of them have?

) What are the gra
eful tournaments of orders 3 and 4?

d) A
y
li
 (v; k; �)-di�eren
e set is a set fa

1

; : : : ; a

k

g � f0; 1; : : : ; v � 1g su
h that

the k(k � 1) di�eren
es (a

j

� a

k

) mod v for j 6= k
ontain ea
h nonzero residue

exa
tly � times. For example, f0; 1; 3g is a
y
li
 (4; 3; 2)-di�eren
e set be
ause

0	 1 = 3; 0	 3 = 1; 1	 0 = 1; 1	 3 = 2; 3	 0 = 3; 3	 1 = 2;

writing `x 	 y' for (x � y) mod v. Prove that there exists a gra
eful n-vertex

tournament if and only if there exists a
y
li
 (

�

n

2

�

+ 1; n; 2)-di�eren
e set.

e) Show that f1; 7; 7

2

mod 37; : : : ; 7

8

mod 37g is a
y
li
 (37; 9; 2)-di�eren
e set.

January 13, 2024

98 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

weakly digra
eful

Buratti

Del Fra

Montgomery

Pokrovskiy

Sudakov

rainbow gra
eful labelings

proje
tive plane

uniform hypergraph

�nite �eld

Singer

primitive polynomial modulo p

proje
tive plane

aÆne equivalen
e

187. [46 ℄ An undire
ted graph with m edges
an be
onverted to a dire
ted graph in

3

m

ways, be
ause ea
h edge u���v
an be
ome u��!v or u ��v or both. Is every graph

\weakly digra
eful," in the sense that at least one of those 3

m

possibilities is gra
eful?

190. [20 ℄ (M. Buratti and A. Del Fra.) Show that (47) gra
efully labels C

n

$

.

x 191. [23 ℄ (R. Montgomery, A. Pokrovskiy, and B. Sudakov.) Prove that every tree T

with m edges and a vertex v adja
ent to at least 2m=3 leaves is rainbow gra
eful.

192. [24 ℄ Find rainbow gra
eful labelings of (i) K

1

� 3K

2

; (ii) 4K

1

� C

3

; (iii) 2C

4

.

193. [30 ℄ Whi
h of the 12345 graphs of exer
ise 122 are rainbow gra
eful?

194. [23 ℄ Is every digra
eful graph also rainbow gra
eful?

196. [HM20 ℄ A proje
tive plane of order n has n

2

+ n+1 points and n

2

+ n+1 lines,

where every line
ontains exa
tly n+1 points and every point belongs to exa
tly n+1

lines. Furthermore, every two points belong to exa
tly one line, and every two lines

interse
t in exa
tly one point. The following
onstru
tion de�nes su
h a plane whenever

F is a �nite �eld of n elements (see exer
ise 4.6.2{16): Ea
h point is a nonzero triple

(a

1

; a

2

; a

3

), and ea
h line is a nonzero triple [b

1

; b

2

; b

3

℄, where the a's and b's belong

to F . Two triples are
onsidered equal if one is a multiple of the other; for example,

(a

1

; a

2

; a

3

) = (2a

1

; 2a

2

; 2a

3

) in the �eld of three elements. Point (a

1

; a

2

; a

3

) lies on line

[b

1

; b

2

; b

3

℄ if and only if a

1

b

1

+ a

2

b

2

+ a

3

b

3

= 0 in F .

a) Explain why this
onstru
tion gives n

2

+ n+ 1 points and n

2

+ n+ 1 lines.

b) Whi
h points belong to the line [1; 0; 2℄ when n = 3?

) Why do two lines interse
t in a unique point?

x 197. [HM27 ℄ (J. Singer, 1938.) Suppose K

n+1

has gra
eful rainbow labels fl

0

; : : : ; l

n

g.

a) Show that they're a
y
li
 (n

2

+n+1; n+1; 1)-di�eren
e set (see exer
ise 185(d)).

b) If n = p is prime, let f(x) = x

3

�

1

x

2

�

2

x �

3

be a primitive polynomial

modulo p for the �eld F of p

3

elements (see 3.2.2{(9)). Consequently the nonzero

elements of F are f1; �; �

2

; : : : ; �

p

3

�2

g, where � is a root of f in F . What are the

other two roots of f? Hint: (x+ y)

p

� x

p

+ y

p

(modulo p).

) Continuing (b), �nd a transformation (a

1

; a

2

; a

3

)� = (a

0

1

; a

0

2

; a

0

3

) of triples with

the property that �

k

= a

1

�

2

+ a

2

� + a

3

implies �

k+1

= a

0

1

�

2

+ a

0

2

� + a

0

3

.

d) Find a transformation [b

1

; b

2

; b

3

℄� = [b

0

1

; b

0

2

; b

0

3

℄ of triples, to go with the transfor-

mation in (
), with the property that a

1

b

1

+ a

2

b

2

+ a

3

b

3

= a

0

1

b

0

1

+ a

0

2

b

0

2

+ a

0

3

b

0

3

.

e) As a
onsequen
e of (
), there are triples (a

k1

; a

k2

; a

k3

) of integers mod p for

whi
h we have �

k

= a

k1

�

2

+ a

k2

� + a

k3

, for 0 � k < p

3

� 1. List those triples in

the spe
ial
ase when p = 5 and f(x) = x

3

� 4x

2

� 3. (You
an stop at k = 31.)

f) Constru
t a proje
tive plane of order p as in exer
ise 196, and show that we may

take the points to be (a

k1

; a

k2

; a

k3

) for 0 � k < p

2

+ p + 1. Furthermore, L =

fk j a

k1

= 0 and 0 � k < p

2

+ p+ 1g is a set of gra
eful rainbow labels for K

p+1

.

g) Extend the ideas of (b){(f) to the
ase when n = p

e

is an arbitrary power of the

prime p, and work out the details when n = 8.

199. [HM33 ℄ Let R

m

be the set of m-tuples x = x

1

: : : x

m

with 0 � x

l

� 2m for

1 � l � m. If x 2 R

m

, the graph aG(x) + b has 2m + 1 verti
es f0; : : : ; 2mg and

m edges, (ax

l

+ b) mod q���(ax

l

+ al+ b) mod q, where q = 2m+ 1. Furthermore, say

that x � x

0

in R

m

if aG(x) + b equals G(x

0

), for some a and b with a ? q.

a) What are the equivalen
e
lasses of R

2

and R

3

? (Compare with exer
ise 172.)

b) What's a good way to visit ea
h equivalen
e
lass of R

m

, when m isn't too large?

) What's a good way to
ount the number of equivalen
e
lasses, when m is larger?

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 99

subgraph

indu
ed subgraph

isometri
 embedding

WORDS(5757)

Hamming graph

Cartesian produ
t

automorphisms

isometri
ally embedded

stri
t embedding

Hamming embedding

parent vertex

restri
ted growth string

minimal non-Hamming

MNH

indu
ed subgraphs

Winkler

isometri

Winkler

relation

200. [46 ℄ Is every forest rainbow gra
eful?

203. [15 ℄ True or false: A subgraph of H is any graph that we obtain from H by

removing zero or more edges, then removing zero or more isolated verti
es. An indu
ed

subgraph of H is any graph that we obtain from H by removing zero or more verti
es,

then removing every edge that tou
hed at least one of those verti
es.

204. [16 ℄ Find, by hand, an indu
ed C

7

of
ommon English words, in
luding
hord.

205. [17 ℄ Is
ords ���
olds ���
olts ���
osts ���
asts ���
arts ���
ards ���

ords an isometri
 embedding of C

7

into WORDS(5757)?

x 207. [M21 ℄ A Hamming graph is a graph of the form K

n

1

K

n

2

� � � K

n

r

. Thus

it has n

1

: : : n

r

verti
es x

1

x

2

: : : x

r

, where 0 � x

k

< n

k

for 1 � k � r; and we have

x

1

x

2

: : : x

r

���y

1

y

2

: : : y

r

if and only if x

k

6= y

k

for exa
tly one index k.

a) How many edges does K

n

1

K

n

2

� � � K

n

r

have?

b) How many automorphisms does K

n

1

K

n

2

� � � K

n

r

have?

) Compute the distan
e between 141421 and 271828 in a Hamming graph.

d) If a
lique G is embedded in K

n

1

K

n

2

� � � K

n

r

, prove that its image is
onstant

in all but one of the
onstituents K

n

k

.

e) What 4-vertex graph G
an't be stri
tly embedded in a Hamming graph?

f) Prove that the �ve-
y
le C

5

an't be stri
tly embedded into a Hamming graph.

208. [27 ℄ Exa
tly how many indu
ed seven-
y
les are present in WORDS(5757)? How

many of them are isometri
ally embedded?

209. [22 ℄ A stri
t embedding into a Hamming graph is
alled a Hamming embedding.

More pre
isely, if G is a graph with verti
es fv

0

; v

1

; : : : ; v

n�1

g, a Hamming embedding

of G is a fun
tion f(v

i

) = x

i1

: : : x

ir

with the property that, for 0 � i < j < n, we have

x

i1

: : : x

ir

���x

j1

: : : x

jr

in a Hamming graph if and only if v

i

���v

j

in G.

a) Assume that G is
onne
ted, and that ea
h vertex v

i

for i > 0 has a \parent

vertex" v

i

0

with i

0

< i and v

i

0

���v

i

. Show that every Hamming embedding of G

an be \normalized" so that (i) x

0k

x

1k

: : : x

(n�1)k

is a restri
ted growth string,

as de�ned in 7.2.1.5{(4), for 1 � k � r; and (ii) x

i(k+1)

> 0 for i > 0 implies that

x

jk

> 0 for some j < i. (Condition (ii) means that we don't \invade"
oordinate

k + 1 until
oordinate k has been used. In parti
ular, a normalized embedding

always has x

01

x

02

: : : x

0r

= 00 : : : 0 and x

11

x

12

: : : x

1r

= 10 : : : 0.)

b) Design an algorithm that visits every normalized Hamming embedding of G.

210. [18 ℄ A graph G is
alled minimal non-Hamming (MNH) when its indu
ed sub-

graphs G

0

are Hamming embeddable if and only if G

0

6= G.

a) Is G Hamming embeddable if and only if it has no indu
ed MNH subgraph?

b) Prove that an MNH subgraph is
onne
ted.

) True or false: If G is
onne
ted and not Hamming embeddable and not MNH,

one of its subgraphs G n v is
onne
ted and not Hamming embeddable.

x 211. [24 ℄ Find all MNH graphs that have at most nine verti
es.

x 212. [25 ℄ (P. M. Winkler, 1984.) If graph G satis�es the
onditions of exer
ise 209(a),

prove that it has at most one normalized isometri
 embedding into a Hamming graph.

Also design a polynomial-time algorithm that dis
overs the embedding, if it exists.

213. [M25 ℄ (P. M. Winkler, 1984.) Let (u���v) ./ (u

0

���v

0

) be the relation

d(u; u

0

)� d(u; v

0

) 6= d(v; u

0

) � d(v; v

0

), when u���v and u

0

���v

0

are edges of

a graph and d(u; v) denotes shortest distan
e in that graph.

a) Determine the ./ relation between the 18 edges of the graph shown.

January 13, 2024

100 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

ternary Hamming graph

Cartesian produ
t

transitive

equivalen
e relation

Sub
ube labels

ube

a-
ode, see Asterisk
odes for sub
ubes

Asterisk
odes for sub
ubes

tree

an
estor

in
lusive an
estor

subsets graphs (SGB)

Petersen graph

preorder

transitive laws

b) True or false: In a
omplete graph, (u���v) ./ (u

0

���v

0

)() fu; vg\fu

0

; v

0

g 6= ;.

) A ternary Hamming graph is a graph of the form K

3

� � � K

3

, \a Cartesian

produ
t of triangles." If G
an be isometri
ally embedded in a ternary Hamming

graph, prove that the ./ relation in G is transitive (so it's an equivalen
e relation).

d) Conversely, if ./ is transitive in G, there's an isometri
 ternary embedding of G.

214. [24 ℄ Find the smallest graph that (i)
an be embedded as an indu
ed subgraph,

but not isometri
ally; (ii)
an be embedded isometri
ally, but has an indu
ed subgraph

that
annot. How many graphs of n verti
es, for 1 � n � 9,
an be isometri
ally

embedded in a Hamming graph? (See exer
ise 211.)

x 216. [M37 ℄ (Sub
ube labels.) A string of 0s, 1s, and �s
onventionally represents a

sub
ube of a
ube, where ea
h � is a \wild
ard" that stands for either 0 or 1. For

example, 0�1� represents f0010; 0011; 0110; 0111g, whi
h is a sub
ube of ����.

It's easy to work with sub
ubes inside a
omputer, using the asterisks-and-

bits representation of exer
ise 7.1.1{30. For example, 0�1� is represented by the two

bitstrings a = 0101 and b = 0010, showing respe
tively the �s and the 1s.

The verti
es of a
onne
ted graph
an always be labeled with sub
ubes in su
h a

way that the distan
e between any two verti
es is exa
tly equal to the distan
e between

their labels(!). One su
h labeling of the �ve-
y
le 0���1���2���3���4���0 is

l(0) = 0000; l(1) = 1000; l(2) = 11�0; l(3) = ��11; l(4) = 0�01;

for example, the distan
e d(1; 4) from 1 to 4 is 2; so is the distan
e from 1000 to 0�01.

a) Give a formula for the distan
e between sub
ubes represented by (a; b) and (a

0

; b

0

).

b) Find all of the sub
ube representations of C

5

that have 4
oordinates per label.

) Show that the eight-vertex graph illustrated here has a sub
ube

representation, with 4
oordinates per label, in whi
h the verti
es

of the indu
ed �ve-
y
le have the same labels as shown above.

d) Let T be a tree with n verti
es, rooted at r. Assign labels with n� 1
oordinates

to ea
h vertex v of T , with one
oordinate v

w

for ea
h w 6= r, de�ned by the rule

v

w

= [w is an in
lusive an
estor of v ℄ = [d(v; w) + d(w; r)= d(v; r)℄:

Exa
tly d(v; r)
oordinates of l(v) are 1. Show that these are valid sub
ube labels.

e) Given any graph G on n verti
es, let T be a spanning tree rooted at r, with

every vertex v at level d(r; v) of that tree. Constru
t labels as in (d), with

v

w

= 1 if w is an in
lusive an
estor of v; but otherwise v

w

= (0; ?; �) if d(v;w)�

d(v; w

0

) = (1; 0;�1), respe
tively. Here `?' is a spe
ial value that
ontributes

1

2

to the distan
e when mat
hed with 1, but 0 when mat
hed with 0 or � or ?. For

example, if G = C

5

and r = 0, and if T has all edges but 2���3, we get

l(0) = 0000; l(1) = 10?0; l(2) = 11�?; l(3) = ?�11; l(4) = 0?01:

Now the \distan
e" between, say, l(2) and l(4) is 1 +

1

2

+ 0 +

1

2

= 2. Prove that,

in general, the \distan
e" between l(u) and l(v) is d(u; v), for any graph G. Also

exhibit the labels when G is the Petersen graph, subsets(2; 1;�4; 0; 0; 0;

#

1; 0).

f) In order to obtain a sub
ube labeling, we need to �nd a rule that
hanges ea
h `?'

to either `0' or `�', like
ipping a
oin but smarter. Show that there is su
h a rule.

Hint: Thinking of T as an ordered tree, v

w

an depend on whether v pre
edes or

follows w in preorder, as well as on the parity of the distan
es of v and w from r.

217. [M15 ℄ Whi
h of the following potential \transitive laws" are true in general?

i) G � G

0

� G

00

implies G � G

00

. v) G v G

0

� G

00

implies G � G

00

.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 101

onne
ted graphs

forest

partitioned

NP-
omplete

stri
tly embedded

Labeled graph embedding

hemistry

mole
ules

atom

ompatibility

bounded degree

NP-
omplete

tree

3SAT

dire
ted a
y
li
 graph

exa
t
over

ISIP problem

dire
ted graphs

Chatterjee

Dia
onis

random graph

a.s.: Asymptoti
ally almost surely

ii) G � G

0

� G

00

implies G v G

00

. vi) G v G

0

� G

00

implies G v G

00

.

iii) G � G

0

v G

00

implies G � G

00

. vii) G v G

0

v G

00

implies G � G

00

.

iv) G � G

0

v G

00

implies G v G

00

. viii) G v G

0

v G

00

implies G v G

00

.

218. [M16 ℄ Suppose G

1

, G

2

, H

1

, and H

2

are
onne
ted graphs, with G

1

� G

2

�

H

1

�H

2

. True or false: Either G

1

� H

1

and G

2

� H

2

or G

1

� H

2

and G

2

� H

1

.

219. [M17 ℄ True or false: If G � H, G is
onne
ted, and H is a forest, then G v H.

x 220. [20 ℄ Let G be the pattern graph K

1;m

�P

a

1

�� � ��P

a

t

, where A = fa

1

; : : : ; a

t

g is

a multiset of positive integers. Let T be the tree with root r andmn+m additional ver-

ti
es x

jk

for 1 � j � m, 0 � k � n, whose edges are r���x

j0

and x

jk

���x

j(k+1)

. Prove

that G � T if and only if A
an be partitioned into m multisets whose sums are ea
h

� n. (And spe
ial
ases of this partitioning problem are known to be NP-
omplete.)

x 221. [M23 ℄ If G is a graph on verti
es V , let q(G) be the graph whose verti
es are

pairs (v; k) with v 2 V and 0 � k < 5, and whose edges (v; k)��� (v

0

; k

0

) are of three

kinds: (i) v = v

0

and fk; k

0

g 2 ff0; 1g; f1; 2g; f2; 3g; f3; 4g; f4; 0g; f2; 4gg; (ii) v��� v

0

and fk; k

0

g = f0; 1g; (iii) v 6= v

0

, v /���v

0

, and fk; k

0

g = f0; 3g.

a) If G has n verti
es, how many verti
es does q(G) have? How many edges?

b) Prove that G
an be stri
tly embedded in H if and only if q(G)
an be embedded

in q(H). (Thus unlabeled ISIP is a spe
ial
ase of unlabeled SIP.)

222. [M25 ℄ Continuing exer
ise 221, redu
e the unlabeled SIP to the unlabeled ISIP.

224. [M20 ℄ (Labeled graph embedding.) A SIP often has side
onstraints in pra
ti
e.

For example, when graphs represent mole
ules, ea
h vertex might represent a parti
ular

kind of atom (
arbon, hydrogen, et
.), and ea
h edge might be labeled strong or weak.

In general, a labeled subgraph isomophism problem is de�ned by a pattern graph G

and a target graph H, where every vertex has zero or more labels l

i

and every edge has

zero or more labels L

j

. Relations of
ompatibility are also de�ned between the pattern

and target labels. The problem is to �nd every fun
tion f from the verti
es of G to

the verti
es of H that satis�es four
onditions: (i) If v 6= w then f(v) 6= f(w). (ii) If

v���w in G then f(v)��� f(w) in H. (iii) l

i

(v) is
ompatible with l

i

(f(v)), for all i.

(iv) If v���w in G then L

j

(v; w) is
ompatible with L

j

(f(v); f(w)), for all j.

a) Prove that every ISIP, possibly labeled, is a labeled SIP.

b) Given a labeled SIP, a vertex u of G, and a vertex û of H, show that the problem

of �nding all solutions with f(u) = û is a labeled SIP on the graphs Gnu andHnû.

226. [M30 ℄ Show that the problem of testing G v H is NP-
omplete, even when G is

a (free) tree and all verti
es of G and H have degree �3. Hint: Redu
e from 3SAT.

228. [20 ℄ If G is a graph with n verti
es and m edges, let

b

G be the dire
ted a
y
li

graph with m + n verti
es and 2m ar
s obtained by repla
ing ea
h edge u ��� v by

u��!uv ��v. Prove or disprove: (a) G � H ()

b

G �

b

H; (b) G v H ()

b

G v

b

H.

229. [21 ℄ Given an integer M � 3 and a graph H, is it hard to test if C

M

v H?

231. [20 ℄ A suitably small SIP problem
an be solved as an exa
t
over problem using

the options (53). Can an ISIP problem be solved in a similar way?

232. [20 ℄ En
ode SIP and ISIP problems for dire
ted graphs as exa
t
over problems.

233. [HM30 ℄ (S. Chatterjee and P. Dia
onis, 2021.) Let G

N

be a random graph on N

verti
es; ea
h of the

�

N

2

�

potential edges is independently present with probability 1/2.

a) Prove that G

b2 lg n+2+Æ

6v G

n

a.s., for �xed Æ > 0 as n!1.

b) Prove that G

d2 lg n�Æe

v G

n

a.s., for �xed Æ > 0 as n!1.

January 13, 2024

102 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

BRAIN83

Chv�atal's graph

Chv�atal's graph

ower snark

essentially di�erent solutions

multisets

omparison of multisets

sorting

LAD �ltering

dode
ahedron

simplex graphs

triangular grids

Globally All Di�erent �ltering

GAD

all-di�erent

mat
hing

bipartite graph

removable

tripartite digraph

strong
omponents

Hop
roft{Karp algorithm

Hall set

riti
al blo
k, see Hall set

x 235. [21 ℄ The redu
ed target graph

b

H obtained from BRAIN83(250) has 11 verti
es in

the left brain and 11 verti
es in the right brain, with only two edges between them.

Why does that make G �

b

H impossible, when G is Chv�atal's graph (52)?

236. [23 ℄ Embed Chv�atal's graph (52) into BRAIN83 with 6 verti
es in ea
h half-brain.

237. [24 ℄ When k � 12 is a multiple of 6, Chv�atal's graph of order k has k verti
es

f0; 0+; 1�; 1; 1+; : : : ; ((k=3) � 1)+; 0�g and 2k edges j ��� (j + 1), j ��� j+, j ��� j�,

j+��� (j + 1)�, j+��� (j + k=6)+, j+��� (j + k=6)� (modulo k) for 0 � j < k=3.

(Thus (52) is the
ase of order 12.) Can his 18-vertex graph be embedded in BRAIN83?

238. [23 ℄ Is the
ower snark graph J

5

(exer
ise 7.2.2.2{176) embeddable into BRAIN83?

x 239. [20 ℄ Constrain the embeddings of (52) so that only the essentially di�erent

solutions are found (thus only 1/8 of the total number).

242. [M22 ℄ If A and B are multisets of integers, say that A surpasses B if A's kth

largest element is greater than or equal to B's kth largest element, for 1� k � jBj � jAj.

a) Given a vertex v of a graph G, let s(v) = fdeg(u) j u���vg be the multiset of its

neighbors' degrees. Prove that, whenever G � H with an embedding fun
tion f ,

the multiset s(f(v)) surpasses s(v), for all verti
es v of G.

b) The obvious way to test whether or not s(w) surpasses s(v) is to sort the neighbors

of w and v by their degrees, then to do a pairwise
omparison of the sorted

elements. But sorting might introdu
e a logarithmi
 fa
tor into the running

time. Explain how to perform that test in only O(p+ deg(w)) steps, where p is

the maximum degree of any pattern vertex.

243. [21 ℄ Explain why LAD �ltering from (58) for
es 02 7! LA, after whi
h further

assignments to 01 and 03 and their neighbors get into trouble.

244. [23 ℄ What two solutions to the embedding problem (54) di�er from Fig. 112?

245. [24 ℄ What's the largest n for whi
h (a) P

2

P

n

� USA? (b) P

3

P

n

� USA?

246. [15 ℄ Do exer
ise 245 with v in pla
e of �.

247. [20 ℄ If possible, embed half of a dode
ahedron (namely, a pentagon surrounded

by �ve other pentagons) into the USA graph.

250. [21 ℄ Explore the embedding of simplex graphs (triangular grids) into USA.

x 253. [M25 ℄ (Globally All Di�erent �ltering.) When variables x

1

, : : : , x

m

are subje
t

to an all-di�erent
onstraint, the domains D

1

, : : : , D

m

� f1; : : : ; ng are said to be

feasible if there's a mat
hing of size m in the bipartite graph on verti
es fx

1

; : : : ; x

m

g

and fy

1

; : : : ; y

n

g whose edges are x

i

���y

j

when j 2 D

i

. A value j 2 D

i

is said to be

removable if x

i

���y

j

isn't in any feasible mat
hing.

Let x

1

��� y

j

1

, : : : , x

m

��� y

j

m

be a mat
hing, and
onstru
t the following

tripartite digraph T on fx

1

; : : : ; x

m

g, fy

1

; : : : ; y

n

g, and f?g: x

i

��!y

j

i

and y

j

i

��!?, for

1 � i � m; x

i

 ��y

j

, if j 2 D

i

and j 6= j

i

, for 1 � i � m; y

j

 ��?, if j =2 fj

1

; : : : ; j

m

g.

Prove that j 6= j

i

is removable from D

i

if and only if x

i

, y

j

, and ? belong to di�erent

strong
omponents of T .

x 254. [M26 ℄ Continuing exer
ise 253, further theory elu
idates the situation.

a) If I�f1; : : : ; mg, let D(I) =

S

fD

i

j i 2 Ig. Prove that the domains are feasible

if and only if jD(I)j � jIj for all subsets I. Hint: Use Algorithm 7.5.1H (see

page vii).

b) A subset I for whi
h jD(I)j = jIj is
alled a \Hall set." Prove that if a feasible

family of domains has no nonempty Hall sets, it has no removable values.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 103

permutation

GAD �ltering

stri
t embeddings

Christie

initial domains

LAD

GAD

Petersen graph

Chv�atal's graph

supplemental label

supplemental vertex labels

supplemental edge labels

supplemental graphs

supplemental pair labels

USA

LAD �ltering

bipartite graph

) In parti
ular, nothing is removable if jD

i

j � m for 1 � i � m.

d) If I is a Hall set, explain why we
an remove D(I) from all domains D

j

for j =2 I.

e) Prove that Hall sets of feasible domains are
losed under union and interse
tion.

f) Prove that a feasible family of domains has no removable elements if and only

if there's a partition of f1; : : : ;mg into disjoint sets I

0

, I

1

, : : : , I

r

with disjoint

domains D(I

0

), D(I

1

), : : : , D(I

r

) su
h that the Hall sets are pre
isely the 2

r

sets

obtainable by unions of fI

1

; : : : ; I

r

g. (GAD �ltering always yields su
h a family.)

g) Relate the partition of (f) to the tripartite digraph T of exer
ise 253.

x 255. [21 ℄ When m = n in exer
ise 253, every solution x

1

: : : x

n

will be a permutation

of f1; : : : ; ng. Improve the GAD �ltering algorithm in that
ase.

256. [29 ℄ Find all (a) embeddings (b) stri
t embeddings of the digraph

a

b

d

e

f

g

into Agatha Christie's \Orient Express digraph" (Fig. 3 near the beginning of Chap-

ter 7). As in the text's solution of (54), determine the initial domains; then repeatedly

bran
h on a variable with smallest domain, using LAD and GAD �ltering.

259. [22 ℄ Is the Petersen graph, minus two edges, embeddable in Chv�atal's graph?

260. [25 ℄ Whi
h of the following graphs are stri
tly embeddable in Chv�atal's graph?

(i) (ii) (iii) (iv) (v) (vi) (vii)

263. [15 ℄ True or false: G v H implies G

�2

v H

�2

.

264. [20 ℄ Compute the vertex degrees of G

�2

andH

�2

whenG = P

4

P

5

andH = USA.

What do those statisti
s imply about the domain of G's \middle vertex" 12?

265. [M18 ℄ Explain informally the meaning of the supplemental label d

S

G

when S is

the path P

k+1

of length k, pla
ing the designated vertex s at one end. Show that the

degree of vertex v in G

�2

an be expressed in terms of d

P

2

G

(v) and d

P

3

G

(v).

266. [23 ℄ Consider the following motif graphs S, with designated vertex s = ` ':

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

Compute the supplemental vertex labels d

S

G

(v), for ea
h v 2 G = .

267. [21 ℄ Compute supplemental edge labels for ea
h edge u���v of that same graph,

using ea
h of the motifs S = , , . (Here = s, = t.)

268. [20 ℄ Draw the supplemental graphs G

S;k

, for the graph G of exer
ise 266, when

(i) S = and k = 1; (ii) S = and k = 2.

269. [20 ℄ Consider supplemental pair labels based on the motif S = C

4

, with s and t

at distan
e 2. Show that, in problem (54) of embedding P

4

P

5

into USA, su
h labels

tell us that we
an't map both 00 7! MN and 11 7! MO.

x 270. [24 ℄ Using the supplemental graph G

S;2

, where S = P

2

P

3

and its verti
es of

degree 3 are s and t, show that the initial domains for all six interior verti
es of P

4

P

5

in the USA problem
an be redu
ed to size 13| less than half of what we had without it!

x 273. [20 ℄ Restate the rules for LAD �ltering in the presen
e of supplemental edge

labels, pair labels, and graphs: Pre
isely what bipartite graph is required to have a

mat
hing of size deg(u) when we're trying to as
ertain whether u 7! v is lo
ally feasible?

January 13, 2024

104 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

stri
t embeddings

domain

near verti
es

far verti
es

onne
ted

GAD �ltering

approximate GAD �ltering

supplemental graphs

MMIX

bitwise

Sort

bu
kets

Knight's grids

knight moves

hessboard

knight graph

x 274. [20 ℄ Extend the
on
ept of supplemental labels and graphs to stri
t embeddings:

Show that it's possible to
onstru
t fun
tions d

G

(v), `

G

(v; w), and digraphs G

�

su
h

that G v H implies d

G

(v) � d

H

(f(v)), `

G

(v; w) � `

H

(f(v); f(w)), and G

�

v H

�

, by

analogy with (62), (64), and (65).

x 277. [22 ℄ Many graph embedding problems are simple enough to be solved eÆ
iently

without maintaining a separate domain for ea
h pattern variable. Instead, it suÆ
es to

keep tra
k of the verti
es adja
ent to the ones already assigned. Say that an unassigned

vertex is near if it has at least one assigned neighbor; otherwise it's far.

a) Show that the pattern verti
es
an be prearranged into a �xed (stati
) order

p

1

p

2

: : : p

m

so that, at level l of the sear
h, verti
es fp

1

; : : : ; p

l

g have been assigned

and fp

l+1

; : : : ; p

r

l

g are near, for some r

l

� l. Furthermore r

l

> l for 0 < l < m if

and only if the pattern is
onne
ted.

b) Explain how to maintain a permutation t

1

t

2

: : : t

n

of the target verti
es (dynam-

i
ally) so that, at level l of the sear
h, the
urrent assignments are t

j

= f(p

j

) for

1 � j � l, and the verti
es ft

l+1

; : : : ; t

s

l

g are near, for some s

l

� r

l

.

) If p

l+1

has q near neighbors, must f(p

l+1

) have at least q near neighbors?

d) If p

l+1

has q far neighbors, must f(p

l+1

) have at least q far neighbors?

278. [20 ℄ Let D

1

, : : : , D

m

be domains � f1; : : : ; ng, with jD

1

j � � � � � jD

m

j. In

pra
ti
e, mu
h of the bene�t of GAD �ltering (exer
ise 253)
an be a
hieved more

heaply: \Set H U ;, and do the following for 1 � j � m: Set D

j

 D

j

nH and

U U[D

j

; then if D

j

= ; or jU j < j, the domains aren't feasible; otherwise if jU j = j,

set H H [U ." Show that all values removed from D

j

were indeed removable.

x 279. [25 ℄ One of the main subtasks of a SIP solver is to assign a target value v

0

to a

pattern vertex v, and to update all domains appropriately. Suggest appropriate data

stru
tures for making su
h assignments, when GAD �ltering is relaxed as in exer
ise 278.

Consider also the use of supplemental graphs. How
an your stru
tures eÆ
iently

propagate the
onstraints until all remaining domains have size 2 or more?

280. [22 ℄ Write an MMIX program for the algorithm of exer
ise 278, assuming that

n � 64 and that ea
h domain is represented bitwise. Pro
ess the domains in order of

in
reasing size, without assuming that jD

1

j � � � � � jD

m

j, and show that the running

time for the entire
omputation is only O(m). Hint: Sort into m+ 1 bu
kets.

283. [22 ℄ (Knight's grids.) The graphs P

2

P

7

and P

3

P

3

an be seen as knight moves

and

within a 5� 5 board; in other words, P

2

P

7

� N

5

and P

3

P

3

� N

5

, where N

n

is the

n� n knight graph. (This s
enario generalizes the
lassi
 notion of a \knight's tour.")

a) Find the largest n with P

m

P

n

� N

8

when m = 2, 3, 4, 5, 6.

b) Find the largest n with P

m

P

n

v N

8

when m = 2, 3, 4, 5, 6.

) Find the largest n with P

2

C

n

� N

8

.

d) Find the largest n with P

2

C

n

v N

8

.

e) Find the largest n with P

3

C

n

� N

8

.

f) Find the largest n with P

3

P

3

P

n

� N

8

.

284. [40 ℄ Continuing exer
ise 283, let f

m

(t) be the largest n su
h that P

m

P

n

� N

t

,

and let f

m

(t) be the largest n su
h that P

m

P

n

v N

t

. Compute f

m

(t) and f

m

(t) for as

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 105

ben
hmark tests

Knights and queens

queens

ben
hmarks

Larrosa

Valiente

Stanford GraphBase

Solnon

rook graph

book graphs

games graphs

ben
hmarks

Universal graphs

bull

4-vertex graphs

5-vertex graphs

revolving-door Gray
ode for 4-vertex graphs

Gray
ode for 4-vertex graphs

Subtree isomorphism.

free trees

Matula

inner degree

root

parent

subtree

many values of t � 3 as you
an, when m = 2, 3, and 4. [These problems make inter-

esting ben
hmark tests for SIP and ISIP solvers|and the results are attra
tive too.℄

x 285. [30 ℄ (Knights and queens.) Hundreds of ben
hmarks for use in
omparing and

improving SIP and ISIP solvers have been proposed by J. Larrosa and G. Valiente

[Math. Stru
tures in Comp. S
i. 12 (2002), 403{422℄, who sele
ted a wide variety of

graphs from the Stanford GraphBase and pro
eeded to test all pairs. The smallest SIP

instan
e that
ouldn't be solved within a reasonable time limit, a

ording to C. Solnon's

survey in 2018, turned out to be, \Is N

8

� Q

8

?" In other words, are the knight moves

on a
hessboard isomorphi
 to a subset of the queen moves? Investigate this problem.

286. [40 ℄ Continuing exer
ise 285, study other values of n � 3 for whi
h N

n

� Q

n

.

287. [M25 ℄ Is the n�n knight graph embeddable into the n�n rook graph for any n?

288. [30 ℄ Continuing exer
ise 285, the smallest ISIP instan
e that resisted solution in

2018 was quite weird: \Is book ("jean"; 0; 5; 0; 178; 1; 0; 0) v games (0; 0; 0; 0; 0; 0; 0; 0)?"

(The pattern graph has 75 verti
es; the target graph has 120.) Investigate this problem.

x 290. [30 ℄ (Universal graphs.) A �ve-vertex graph
alled the \bull" () is 3-universal,

in the sense that it
ontains every 3-vertex graph at least on
e as an indu
ed subgraph.

a) Find a 4-universal eight-vertex graph in whi
h every vertex has degree 3 or 6.

b) Find a 5-universal ten-vertex graph that
ontains an indu
ed 4-universal graph

with eight verti
es.

291. [27 ℄ Find a \revolving-door Gray
ode for 4-vertex graphs" by �nding 4-vertex

subsets V

1

, V

2

, : : : , V

11

of the graph H in exer
ise 290(a) su
h that the indu
ed

subgraphs H j V

1

, H j V

2

, : : : , H j V

11

are the eleven possible graphs on four verti
es.

Ea
h V

j+1

should share three verti
es with V

j

.

x 293. [34 ℄ (Subtree isomorphism.) Let S and T be free trees, having m nodes and n

nodes, respe
tively. A remarkably eÆ
ient algorithm, due to D. W. Matula, is able

to de
ide whether or not S � T (and S v T) in only O(mn

p

s) steps, where s is the

maximum inner degree of any node in S (the number of nonleaf neighbors).

a) Get ready to understandMatula's algorithm by solving the problem by hand when

S =

0 1 2

3 45

6

7 8

9

a

b
 d e

f g h i

(m = 19, s = 4); T =

0

1

2

3

4

5

6

7

8

9

a

b

d

e

f

g

hi j k l

m

no p q r s t

u

v w

x

y

z A B

C

D

E

F G H

I J K L M N O P Q

R S T U V W

(n = 59):

b) In general, let the nodes of S be f0; 1; : : : ; m� 1g, where deg(0) = 1. We think

of 0 as S's root ; every other node r has a parent, p(r), whi
h is the �rst node on

the path from r to 0. Similarly, the nodes of T are f0; 1; : : : ; n � 1g; but instead

of regarding T as rooted, we
onsider it to have 2(n � 1) dire
ted ar
s u��! v,

one for ea
h edge u���v of T . This ar
 e is denoted for
onvenien
e by e =

u

v

.

Let S

r

be the subtree of S
onsisting of all nodes whose path to 0 passes through r.

Similarly, when e =

u

v

, let T

e

be the subtree of T
onsisting of all nodes whose

path to u passes through v. Is S

r

� T

e

in (a), when r = 7, u = u, and v = w?

) Let fr

1

; : : : ; r

k

g be the
hildren of r in S, let e =

u

v

, and let fw

1

; : : : ; w

l

g be the

hildren of v in T . Under what
onditions is it possible to embed S

r

into T

e

, with

r 7! v, based on the embeddability of smaller subtrees?

January 13, 2024

106 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

maximum bipartite mat
hing

bipartite mat
hing

mat
hing

Hop
roft

Karp

Matula

feedba
k vertex set

over

dire
ted
y
le

positive table
onstraints

table
onstraints

CSP represented as XCC

XCC representation of CSP

CSP as XC

negative table
onstraints

radio
olorings

L(2,1) labeling, see radio
oloring

Petersen's graph

Chv�atal's graph

My
ielski's graph M

4

extended binary tree

binary tree

pre�x
ode

redu
ed en
oding

Sierpi�nski gasket graph

triangular grid

bary
entri
 even/odd
oordinate system

even/odd
oordinate system

binary representation

d) Let sol[r℄[e℄ = [S

r

�T

e

with r 7! root(T

e

)℄, for 0 < r < m and 0 � e < 2n � 2.

Explain how to
ompute all elements of this (m� 1)� (2n� 2) matrix by solving

O(mn) maximum bipartite mat
hing problems.

e) Furthermore, if v has l + 1 neighbors in T , the l + 1 mat
hing problems with

root(T

e

) = v are almost the same and they
an be solved simultaneously.

f) Sket
h the details of a
omplete implementation, using Algorithm 7.5.1H (the

Hop
roft{Karp algorithm) for mat
hing. What's the sol matrix for problem (a)?

294. [29 ℄ Evaluate Matula's algorithm (exer
ise 293) empiri
ally by applying it to

several
lasses of free trees:

a) Let S run through all 551 free trees with m = 12, and let T run through all 19320

free trees with n = 16.

b) Let S and T be uniformly random free trees with m = 25 and n = 1000.

) Let T be a random free tree with n = 1000; obtain S by repeatedly removing a

random leaf, 100 times.

x 295. [20 ℄ The feedba
k vertex set problem asks whether a given digraph D has a set

of k verti
es that
over every dire
ted
y
le. Show that it's a spe
ial
ase of ISIP.

x 297. [23 ℄ Exer
ise 4 illustrates how any �nite CSP
an be en
oded as an XCC problem

by listing its positive table
onstraints| the tuples that satisfy the given relations.

Show that any �nite binary CSP
an be en
oded as an XC problem by listing its

negative table
onstraints| the ordered pairs that do not satisfy the given relations.

Illustrate your method by explaining how to �nd all radio
olorings of a given

graph, using the
olors f0; 1; : : : ; d� 1g. (See exer
ise 7.2.2.2{36.)

298. [21 ℄ Apply exer
ise 297 to enumerate all optimum radio
olorings of (a) P

3

P

3

;

(b) Petersen's graph; (
) Chv�atal's graph; (d) My
ielski's graph M

4

.

300. [20 ℄ Any extended binary tree with d leaves and height h de�nes an h-bit pre�x

ode for a d-element domain: The representation of k is the path to external node k,

using 0 for a left bran
h and 1 for a right bran
h. For example, the binary tree

de�nes the 2-bit
odewords (00; 01; 1�) for k = (0; 1; 2).

a) Is this the same as Table 2's \pre�x en
oding"?

b) What's the pre�x
ode for the extended binary tree ?

) Relate that
ode to the \weakened en
oding" of Table 2.

301. [20 ℄ Reverse-engineer Table 2's \redu
ed en
oding." What makes it ti
k?

302. [20 ℄ How many variables,
lauses, and total literals are generated by ea
h of the

en
odings in Table 2, when the given graph has V verti
es and E edges?

303. [17 ℄ Why is the Sierpi�nski gasket graph S

(3)

n

uniquely 3-
olorable?

304. [20 ℄ True or false: The graph S

(3)

n

minus any edge is not uniquely 3-
olorable.

x 306. [M25 ℄ Sin
e S

(3)

n

is a subgraph of the triangular grid, we
an also name its edges

and verti
es by using the bary
entri
 even/odd
oordinate system of answer 7.2.2.1{124.

Give formulas for the bary
entri

oordinates of triangle a

1

: : : a

n�1

and its verti
es,

assuming that vertex 12 : : : 2 = 21 : : : 1 7! (0; 0; 0). What are the
oordinates of 0 : : : 0,

1 : : : 1, and 2 : : : 2? Hint: Show that every odd number between �2

n

and +2

n

has a

unique binary representation (b

1

: : : b

n

)

2

in whi
h every digit b

j

is �1.

307. [18 ℄ What
lauses
an be used with Table 2 to ensure that verti
es u, v, and w

will have the respe
tive
olors 0, 1, and 2?

309. [29 ℄ Apply the en
odings of Table 2 to the problem of 3-
oloring

b

S

(3)

n

for small n.

How well do they work with Algorithms 7.2.2.2L and 7.2.2.2C?

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 107

sear
h tree size

analysis of algorithms

MRV heuristi

lique hints

log

weakened

redu
ed

pre�x en
oding

XC problem

exa
t
overing problem

lower bounds for resolution

refutation length

ower snark line graphs

Sierpi�nski simplex graph

indu
ed subgraph

subgraph

Sierpi�nski graphs

x 311. [M30 ℄ Find a simple formula for the size of the ba
ktra
k tree that arises when

proving that

b

S

(3)

n

annot be 3-
olored. Ea
h node should bran
h on a vertex with

fewest available
olors, breaking ties by
hoosing the lexi
ographi
ally smallest.

313. [40 ℄ The pin
hed Sierpi�nski gasket

b

S

(3)

4

remains un
olorable with three
olors

even if we remove the edges 0000���0001, 0101���0111, 0222���2002, 2202���2222,

2212 ��� 2222. What's the largest number of edges that
an be removed from

b

S

(3)

n

before it be
omes 3-
olorable?

x 315. [21 ℄ What
lique hints, analogous to (69), are most appropriate for the (a) log,

(b) weakened, (
) redu
ed, and (d) pre�x en
odings?

316. [24 ℄ How
ould a SAT solver learn `(0202

2

_ 0222

2

)' from the pre�x-en
oded

lauses for 3-
oloring

b

S

(3)

4

? (See (70); assume that the
lique hints have been given.)

x 318. [25 ℄ Exer
ise 7.2.2.1{117 shows that graph
oloring is an XC problem. Empiri-

ally, how long does it take Algorithm 7.2.2.1X to show that

b

S

(3)

n

annot be 3-
olored?

319. [M46 ℄ Can an exponential lower bound be proved on the refutation length of the

lauses for 3-un
olorability of

b

S

(3)

n

? (See Theorem 7.2.2.2B.)

320. [24 ℄ Repeat exer
ise 309, but test
ower snark line graphs L(J

q

) instead of

b

S

(3)

n

.

321. [40 ℄ The
ower snark line graph L(J

q

) for odd q a
tually remains 3-un
olorable

even if we remove any one of its 12q edges. What's the largest number of edges that

an be removed before it be
omes 3-
olorable?

323. [16 ℄ The graph S

(4)

3

in Fig. 114 has (4

3

+4)=2 = 34 verti
es, but only 27 of them

are visible. What are the names of the seven hidden verti
es? (Give both names.)

324. [10 ℄ What's a simpler name for the Sierpi�nski simplex graph S

(d)

n

when d = 2?

325. [M15 ℄ True or false: S

(d)

n

is an indu
ed subgraph of S

(d

0

)

n

when d � d

0

.

326. [16 ℄ Almost every vertex of S

(d)

n

,

b

S

(d)

n

, and S

(d)

n

has degree 2d�2. What verti
es

are the ex
eptions?

x 328. [M17 ℄ The \proper" Sierpi�nski graphs s

(d)

n

, exempli�ed by

s

(3)

3

=

000

001 002

010

011 012

020

021 022

100

101 102

110

111 112

120

121 122

200

201 202

210

211 212

220

221 222

and s

(4)

3

=

000

001 002

003

010

011 012

013 020

021 022

023

030

031 032

033

100

101 102

103

110

111 112

113 120

121 122

123

130

131 132

133 200

201 202

203

210

211 212

213 220

221 222

223

230

231 232

233

300

301 302

303

310

311 312

313 320

321 322

323

330

331 332

333

;

are di�erent from but strongly related to the Sierpi�nski simplex graphs S

(d)

n

. In general,

s

(d)

n

has d

n

verti
es a

1

: : : a

n

, for 0 � a

j

< d, and two kinds of edges:

i)
lique edges a

1

: : : a

n�1

j���a

1

: : : a

n�1

k, for 0 � j < k < d;

ii) non
lique edges a

1

: : : a

i

jk : : : k ��� a

1

: : : a

i

kj : : : j, for all 0 � i < n � 1 and

0 � j < k < d.

Noti
e that almost every vertex has degree d; this property is akin to exer
ise 326.

a) Give a formula for the total number of edges in s

(d)

n

.

January 13, 2024

108 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

pure verti
es

queen graph

dire
t en
oding

symmetry

augmented Sierpinski tetrahedron

lique hints

pin
hed Sierpinski simplex

lique hints

haysta
k problem

en
ode

log en
oding

dire
t en
oding

dire
t

support en
oding

unit propagation

at-most-one
lauses

resolution

ternary relations

binary relations

b) What's an intuitive way to obtain S

(d)

n

from s

(d)

n+1

?

) What's an intuitive way to obtain S

(d)

n

from s

(d)

n�1

?

330. [M25 ℄ Show that, in every d-
oloring of S

(d)

n

, for n > 1, the number of pure

verti
es having a given
olor is
ongruent to d (modulo 2).

x 332. [22 ℄ Generalize the en
odings of `u 6= v' in Table 2 from ternary to d-ary.

x 333. [23 ℄ Generalize the
lique hints of exer
ise 315 to d-ary. Illustrate the
ase d = 5.

334. [20 ℄ Apply exer
ise 333 to the problem of 8-
oloring the 8�8 queen graph, using

the dire
t en
oding. (See test problem K1 in Table 7.2.2.2{6.)

335. [M26 ℄ When we try to prove that S

(4)

n

isn't 4-
olorable, we
an assume without

loss of generality that verti
es 0 : : : 00, 0 : : : 01, 0 : : : 02, 0 : : : 03 have the respe
tive

olors 0, 1, 2, 3. Show that the remaining problem still has 6-fold symmetry. How

ould that symmetry be exploited?

336. [24 ℄ Repeat exer
ise 309, but test S

(4)

n

instead of

b

S

(3)

n

. (Use
lique hints.)

337. [24 ℄ Repeat exer
ise 309, but test

b

S

(5)

n

instead of

b

S

(3)

n

. (Use
lique hints.)

338. [34 ℄ Apply a state-of-the-art SAT solver to the
lauses for

b

S

(3)

n

, S

(4)

n

,

b

S

(5)

n

, and

L(J

q

) for various en
odings, and
ompare the results to those obtained with Algorithm

7.2.2.2C in exer
ises 309, 320, 336, and 337.

x 340. [24 ℄ (The haysta
k problem.) Consider n

2

variables x

ij

for 0 � i; j < n, ea
h

with domain f0; 1; : : : ; n� 1g, subje
t to the following
onstraints: (i) x

ij

6= x

ij

0

when

j 6= j

0

. (ii) x

i0

+ x

ij

> 1 when 0 < i; j < n. (iii) x

i0

= x

0i

when 0 < i < n.

a) Prove that this CSP is unsatis�able.

b) Formulate it as an exa
t
over problem, and try it with algorithms of x7.2.2.1.

) Formulate it as a satis�ability problem, and try it with algorithms of x7.2.2.2.

341. [25 ℄ Explain how to generate SAT
lauses that eÆ
iently en
ode the relation

`u � v � t', when variables u and v are represented with the log en
oding and t is

onstant. Illustrate your
onstru
tion in the
ases `u � v+1' and `u � v�2', assuming

that u = (u

8

u

4

u

2

u

1

)

2

and v = (v

8

v

4

v

2

v

1

)

2

.

342. [20 ℄ Shorten the dire
t en
oding of (78) by simplifying (79). (For example,

(�u

0

_ �v

1

_ �w

1

) ^ (�u

0

_ �v

2

_ �w

1

)
an be repla
ed by (�u

0

_ v

0

_ �w

1

).)

343. [17 ℄ What are the dire
t and support en
odings of `uv 2 f00; 01; 12; 20g' ?

x 346. [20 ℄ If the binary relation of exer
ise 343 is treated as a k-ary relation with k = 2

and \binarized" by the general strategy of (77), what support
lauses do we get?

347. [11 ℄ Derive R

001

, R

010

, : : : , R

211

from (80){(82) and (R

000

) by unit propagation.

350. [M16 ℄ Let R(v

1

; : : : ; v

k

) be a k-ary relation, where variable v

j

has domain [0 : : d

j

)

for 1 � j � k. If R
ontains exa
tly G tuples, how many total literals are in the

(a) pre
lusion (b) support
lauses, when R is en
oded for SAT?

351. [M20 ℄ Prove that the dire
t en
oding doesn't need the at-most-one
lauses.

x 352. [M22 ℄ Use resolution to derive the
lauses for b 2 D

v

in (76) from the
lauses

for a 2 D

u

. (Thus half of the support
lauses for R are redundant.)

353. [22 ℄ How many of the 2

27

ternary relations on variables whose domain size is 3

an be expressed as the
onjun
tion of binary relations on those variables?

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 109

equivalent

median

WORDS(1000)

�ve-letter words

unit propagation

support en
oding

exa
t
over problem

CSP represented as XC

XCC problem

ina
tive variable

a
tive variable

a
tive variable

forward
onsisten
y

domain
onsisten
y

domain
onsisten
y

oloring problem

n queens problem

domain
onsisten
y

forward
onsisten
y

354. [23 ℄ Two of the 2

27

ternary relations on ternary domains are equivalent to ea
h

other if they di�er only with respe
t to permuting the elements of the domains or

permuting the order of the variables (or both). Thus, an equivalen
e
lass might
ontain

as many as 3!

4

= 1296 di�erent relations. How many equivalen
e
lasses are there? How

many of them satisfy the spe
ial
ondition of exer
ise 353? How many \
ome
lose"?

356. [20 ℄ When variables u, v, and w all have the domain [0 : : d), let R(u; v; w) be the

median-�xing relation `huvwi =
'. Is R the
onjun
tion of its three binary proje
tions?

x 357. [20 ℄ Let R(a; b;
; d; e) be the quinary relation whose tuples are WORDS(1000), the

most
ommon 1000 �ve-letter words of English: whi
h, there, : : : , dit
h. What tuples

are not inR, but are in all of its proje
tions R

a

(b;
; d; e), R

b

(a;
; d; e), : : : , R

e

(a; b;
; d)?

x 358. [21 ℄ One way to perform unit propagation is to (i) delete any
lause that
ontains

a true literal; (ii) remove all false literals from all
lauses; (iii) regard a unit
lause as

a true literal; (iv) regard an empty
lause as a
ontradi
tion. If this pro
ess has been

applied to the support en
oding S for some nonempty relation R(v

1

; : : : ; v

k

), prove:

a) There will be no
ontradi
tion.

b) If no
lauses remain, R is satis�ed by the true literals v

1a

1

, : : : , v

ka

k

.

) Otherwise the remaining
lauses are the support en
oding for some relation R

0

.

d) If literal v

a

remains, there's a solution with v

a

true and another with v

a

false.

e) If literal v

a

remains, statements (a), (b), and (
) hold also for the
lauses S^(v

a

).

f) If literal v

a

remains, statements (a), (b), and (
) hold also for the
lauses S^(�v

a

).

x 360. [20 ℄ Formulate the CSP (87) as an exa
t
over problem with primary variables w,

x, y, z, and with three options for ea
h primary variable (one for ea
h domain element).

361. [20 ℄ As an alternative to exer
ise 360, formulate (87) as an XCC problem, in the

style of the answer to exer
ise 4.

362. [18 ℄ Test your knowledge of \
orner
ases" in basi
 de�nitions by determining

whi
h of the following statements (if any) are true and whi
h of them (if any) are false.

a) The domain of every ina
tive variable in a partially solved CSP has size 1.

b) The domain of every a
tive variable in a partially solved CSP has size > 1.

) The domain of every a
tive variable in a partially solved CSP has size > 0, if we

have forward
onsisten
y.

d) Same as (
), but with domain
onsisten
y instead of forward
onsisten
y..

e) If all variables are a
tive, there is forward
onsisten
y.

The remaining statements refer to a simple CSP that has four variables fw; x; y; zg,

a single
onstraint `w+x < y+z', and domains D

w

= D

x

= D

y

= f1g; D

z

= f0; 1; 2; 3g:

f) If w, x, y, and z are a
tive, there is forward
onsisten
y.

g) If w is ina
tive, but x, y, and z are a
tive, there is forward
onsisten
y.

h) If w and x are ina
tive, but y and z are a
tive, there is forward
onsisten
y.

i) If w, x, and y are ina
tive, but z is a
tive, there is forward
onsisten
y.

j) Same as (g), (h), (i), but with domain
onsisten
y instead of forward
onsisten
y.

363. [20 ℄ Show that forward
onsisten
y and domain
onsisten
y are almost equiva-

lent, when the CSP being solved is a
oloring problem (all
onstraints are ` 6='), assuming

that we bran
h on a variable of domain size 1 whenever possible.

x 364. [28 ℄ Prove that, when redu
ing domains while solving the n queens problem,

domain
onsisten
y will yield no improvement over forward
onsisten
y until at least

dn=3e � 1 queens have been pla
ed. But �nd a pla
ement of �ve queens on a 16 � 16

board for whi
h DC redu
es more domains than FC does.

January 13, 2024

110 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

16 queens problem

domain �ltering

binary
onstraints

Horn
ore algorithm

k-ary
onstraints to binary

arities

binary
onstraints

domain
onsistent

dual of a CSP

line labeling problem

histos
ape

MRV heuristi

d-way bran
hing

forward
onsisten
y

4 queens problem

singleton domain
onsisten
y

binary
onstraint

path
onsistent

domain
onsisten
y

5 queens problem

domain �ltering

support ve
tors

365. [25 ℄ If four nonatta
king queens are pla
ed on a 16 � 16 board,
an a solution

to the 16 queens problem always be obtained by pla
ing twelve more queens?

368. [25 ℄ Modify step D4 of Algorithm D so that the
ase w = v
an often be omitted.

369. [23 ℄ Design a domain �ltering algorithm that applies to any CSP in whi
h all

onstraints are binary, by adapting Algorithm 7.1.1C (the \Horn
ore algorithm") to

the present
ontext. Your algorithm should either establish domain
onsisten
y or

on
lude that the problem is unsatis�able.

370. [27 ℄ Extend exer
ise 369 to nonbinary
onstraints.

x 372. [20 ℄ (Transforming k-ary
onstraints to binary.) Show that any CSP P with

n variables and m
onstraints, of arities k

1

, : : : , k

m

, is equivalent to a CSP P

�

with

m + n variables and k

1

+ � � � + k

m

binary
onstraints. Furthermore, P is domain

onsistent if and only if P

�

is domain
onsistent. Hint: See (77).

x 373. [25 ℄ (The dual of a CSP.) Continuing exer
ise 372, show that P is also equivalent

to a \dual" CSP P

D

that has binary
onstraints on only m variables. Does domain

onsisten
y in P imply domain
onsisten
y in P

D

?

374. [23 ℄ Exer
ise 60 dis
usses a jun
tion-oriented way to model the line labeling

problem as a CSP, in
ontrast to the line-oriented approa
h that has been followed

in the text and illustrated in (21) and (22). (In fa
t, the jun
tion-oriented model is

pre
isely what exer
ise 373
alls the dual of the line-oriented model.)

Compare the results of jun
tion-oriented domain �ltering, when applied to the

histos
ape example (20), with the results of line-oriented �ltering in (91).

377. [21 ℄ Des
ribe the top levels of the sear
h tree for the CSP P of (21) and (22),

when the MRV heuristi
 is used to sele
t a variable for d-way bran
hing, and when

domains are redu
ed by forward
onsisten
y only. Initially all domains are f+; -; >; <g.

x 378. [21 ℄ Do exer
ise 377 but with the binary CSP P

�

of exer
ise 372 instead of P.

379. [18 ℄ By exer
ise 364, the
onstraints of the 4 queens problem are domain
onsis-

tent. Show that singleton domain
onsisten
y will redu
e ea
h domain size from 4 to 2.

380. [M22 ℄ Suppose there's a binary
onstraint R

uv

for every pair of variables u and v,

where R

vv

= faa j a 2 D

v

g and R

vu

= fba j ab 2 R

uv

g. These
onstraints are
alled

path
onsistent if u and v are
onsistent with w for all variables u, v, w, in the sense that

ab 2 R

uv

implies that at least one
 2 D

w

satis�es a
 2 R

uw

and b
 2 R

vw

.

(Noti
e that this
ondition, with u = v, implies domain
onsisten
y.)

Consider, for example, the 5 queens problem with variables fr

1

; : : : ; r

5

g, where

r

i

= j means that there's a queen in row i,
olumn j. Let R

ii

0

denote R

r

i

r

i

0 . Initially

R

ii

0

= fjj

0

j (i = i

0

^ j = j

0

) _ (i 6= i

0

^ j 6= j

0

^ ji� i

0

j 6= jj � j

0

j)g;

but these
onstraints aren't path
onsistent: We must remove 25 from R

13

be
ause

r

1

= 2 and r

3

= 5 wipes out r

2

. Then we must remove 21 from R

15

, to avoid wiping

out r

3

. And then we must remove 24 from R

14

, lest r

5

be wiped out.

What path-
onsistent relations R

ii

0

remain, after we've done all su
h removals?

x 383. [M30 ℄ Consider the d � d

0

matrix (r

ij

), where r

ij

= [ij 2R℄
hara
terizes a

binary relation R. When doing domain �ltering, we want to know the support ve
tors

s

i

= [row i of r is nonzero℄ and s

0

j

= [
olumn j of r is nonzero℄, for 0 � i < d and

0 � j < d

0

. It's easy to
ompute s

i

and s

0

j

by simply s
anning row i or
olumn j until

we see a 1. But let's suppose that it's expensive to a

ess the array r (that is, to de
ide

whether or not ij 2 R); so we want to avoid
he
king r

ij

whenever possible.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 111

Analyze

random

support-�nding algorithms

hain problem

sour
es

random
ir
uit

supports

domain
onsisten
y

hain problem

sink

re
urren
e

asymptoti
 behavior

modstep problem

MRV

forward
onsisten
y

slow growth permutation

inverse

The following two-pass pro
edure has been suggested, using an auxiliary d � d

0

Boolean matrix m to remember where we've already looked in r. Initially m, s, and s

0

are zero. \Pass 1. For 0 � i < d do this: For 0 � j < d

0

, set m

ij

 1; if r

ij

= 1, set

s

i

 1, s

0

j

 1, and break out of the loop on j. Pass 2. For 0 � j < d

0

with s

0

j

= 0 do

this: For 0 � i < d with m

ij

= 0, if r

ij

= 1, set s

0

j

 1, and break out of the loop on i."

a) Analyze that algorithm, assuming that ea
h entry of the matrix is independently

random, with Pr(r

ij

= 1) = p for all i and j. Given i and j, what is the probability

that r

ij

will be examined in Pass 1? In Pass 2?

b) Improve Pass 1. Hint: We
an often avoid looking at r

ij

if we know that s

0

j

= 1.

) Experiment with the improved algorithm when, say, d = d

0

= 100.

384. [M46 ℄ Does the algorithm of exer
ise 383(b) have minimum expe
ted
ost, over

all support-�nding algorithms for random d� d

0

matri
es of density p?

x 387. [M25 ℄ The
hain problem is a CSP with n variables x

1

, : : : , x

n

, of whi
h x

1

through x

m

are \sour
es" and x

n

is a \sink." All variables have domain f0; 1; 2g. There

are m binary
onstraints, `x

i

6= x

n

' for 1 � i � m; also n�m ternary
onstraints,

`either x

i

= x

j(i)

or x

i

= x

k(i)

' for m < i � n;

where two indi
es with 0 < j(i) < k(i) < i are pres
ribed for every su
h i. (Noti
e the

similarity with addition
hains, Boolean
hains, resolution
hains, et
.)

a) Explain why every
hain CSP is unsatis�able.

b) Express any given
hain CSP as an XCC problem with � 15n options.

) Exa
tly how many
hain CSPs are possible, given m and n with 1 � m � n?

d) Experiment with XCC solvers on uniformly random
hain CSPs that have been

formulated as in (b), when m = 24 and n varies.

e) Exhibit supports that establish domain
onsisten
y for every
hain CSP. But show

that exer
ise 369 will �nd a
ontradi
tion just after x

n

is assigned a value.

388. [M28 ℄ Analyze the problems of exer
ise 387: Let P

m;n

be a random
hain prob-

lem, where every possible
hoi
e of the pairs (j(i); k(i)) for i > m is equally likely.

a) Let S

m;n

be the expe
ted total number of sinks in P

m;n

. (A sink is a variable x

i

that isn't in fj(i + 1); k(i+ 1); : : : ; j(n); k(n)g.) Find a simple formula for S

m;n

.

b) A sink, x

i

, for whi
h i < n, is not
onne
ted to x

n

. Neither is a variable that's

onstrained only by un
onne
ted variables. Find a re
urren
e by whi
h we
an

ompute C

m;n

, the expe
ted number of variables of P

m;n

that are
onne
ted

to x

n

. (For example, C

3;5

= 66=18.) What is C

24;64

?

) Find a re
urren
e by whi
h we
an
ompute

m;n

, the probability that all variables

of P

m;n

are
onne
ted to x

n

. (For example,

3;5

= 3=18.) What is

24;64

?

389. [HM41 ℄ What's the asymptoti
 behavior of C

m;n

, for �xed m and large n?

391. [M21 ℄ How many solutions does the (d; n)-modstep problem have? (See (93).)

x 392. [M22 ℄ Analyze the behavior of a ba
ktra
k sear
h for all solutions to the (d; n)-

modstep problem when d � n� 1 and n!1, using MRV and assuming that �ltering

is done by maintaining (a) forward
onsisten
y (only); (b) domain
onsisten
y.

400. [M20 ℄ Exa
tly how many permutations of f1; 2; : : : ; ng have p

j+1

< p

j

+ d, for

1 � j < n, given a number d with 1 � d � n?

401. [M21 ℄ For every subset S � f1; : : : ; n � 1g, prove that exa
tly one slow growth

permutation of f1; 2; : : : ; ng has the property \p

j+1

> p

j

if and only if j 2 S."

402. [M20 ℄ True or false: The inverse of a slow growth permutation has slow growth.

January 13, 2024

112 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

exa
t
over problem

pairwise ordering tri
k

�llomino

rookwise
onne
ted

polyominoes

pi, \random" example

e, \random" example

unique solution

googol=10

100

exa
t
over problem

pi, random

density

x 403. [23 ℄ Constru
t an exa
t
over problem whose solutions are the 2

n�1

slow growth

permutations of f1; 2; : : : ; ng. There should be n

2

options, ea
h
ontaining O(log n)

items. Hint: Use the pairwise ordering tri
k of exer
ise 7.2.2.1{20.

x 404. [21 ℄ Use exer
ise 402 to solve exer
ise 403 with more restri
tive options.

x 410. [20 ℄ (Fillomino.) A \�llomino pattern" is a labeling of grid
ells with

positive integers in su
h a way that every
ell labeled d is rookwise
onne
ted

to exa
tly d
ells that have the same label. (Equivalently, it's a way to pa
k a

shape with polyominoes, where no two d-ominoes have an edge in
ommon.)

For example, a more-or-less random �llomino pattern is shown at the right.

A \�llomino puzzle" is a labeling with positive integers and blanks, for

whi
h exa
tly one �llomino pattern
an be obtained by �lling in the blanks.

33877722

31888777

44488179

33418899

13225999

88855926

81859926

88856666

If, for instan
e, we want to solve puzzle (i) below, it's
lear that the upper left

orner
ell must be labeled 2, and that there must be a 3 at the lower left.

(i)

 14

2

1 2

 3

; (ii)

214

2

1 2

33

; (iii)

214

24

1 2

33

.

So (ii) is for
ed; and with a bit of thought we see that the blank below the upper 1

an't be 3 or more than 4. Hen
e we rea
h (iii), and ultimately a unique solution.

Show that one of the six
lues in puzzle (i) is a
tually redundant. But none of the

other �ve
an be removed, without spoiling the puzzle by allowing additional patterns.

411. [M24 ℄ Compute the exa
t number of 2�n �llomino patterns for n = 1, 2, 3, : : : ,

until rea
hing an n for whi
h that number ex
eeds 10

100

.

412. [21 ℄ The \�llomino problem" is to �nd every �llomino pattern that's
onsistent

with a given partial labeling. Formulate it as an exa
t
over problem.

413. [22 ℄ Try your lu
k with the following sele
ted �llomino puzzles:

(a)

2 1 2

1 12

 1 3

 3 1

21 1

 2 1 2

; (b)

33

31415926

535897932

 38462643

 44

; (
)

 2

 24 8 24

 68 6 68

 4

2684

 6482

 4

 24 8 24

 68 6 68

 2

; (d)

1 341412

 4

2 3 2 3

 2 3 33 1

 1 2

2 4

 4 44 3 2

 3 1 3 1

1

 342242 3

; (e)

 24

 15 13

 36 45

 46 63

 31

 65

 52 42

34 13

23 41

 24

.

414. [24 ℄ There are 59,951 4�4 �llomino patterns � whose labels don't ex
eed 5. Ex-

haustively study them all, �nding every valid puzzle without redundant
lues for whi
h

� is the solution. What interesting statisti
s and extremal examples lurk among them?

x 415. [M27 ℄ Prove that the solution to a �llomino puzzle whose maximum
lue is s
an-

not in
lude a d-omino with d > 4s+2. Can you
onstru
t su
h puzzles with d = 4s+2?

x 416. [M30 ℄ Chara
terize all valid m� n �llomino puzzles whose
lues are all 1s.

417. [HM40 ℄ Let #

d

(�) be the number of
ells labeled d in the �llomino pattern �,

and let Æ

d

= lim sup

n!1

#

d

(�

n

)=n

2

be the maximum density of d's in any in�nite

sequen
e of n� n patterns �

n

. Determine Æ

d

for as many d as you
an, and show that

Æ

d

= 1��(1=

p

d) as d!1.

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 113

o
tomino

hunky-o
ts

Azte
 diamond

kingwise
onne
ted

trail

stamping

undoing

doubly linked list

dan
ing links

bit ve
tor

doubly linked list

sparse-set

minimum

bit ve
tor

doubly linked list

sparse-set

AND

reversible sparse bitsets

sparse bitsets

bitset

trail

Compa
t-Table

k-ary relation

table
onstraint

hidden variable

sparse-set representation

binding

valid

Ba
kmarking

forward step

ba
kward step

418. [23 ℄ An o
tomino that
ontains a 2�3 re
tangle is
alled a \
hunky-o
t." There

are three kinds: Type S, symmetri
al (e.g.,); Type D, asymmetri
al, 2� 3+1� 2

(e.g.,); Type M, asymmetri
al, 2 � 3 + 1� 1 + 1� 1 (e.g.,).

a) How many
hunky-o
ts are of Type S? Type D? Type M?

b) Pa
k them into the s
aled-up Azte
 diamond shown, in su
h a way that

all
hunky-o
ts of the same type are kingwise
onne
ted.

420. [21 ℄ The trail at the right of Fig. 117 in
ludes many unne
essary entries; for

example, `

x

8

x

3

' has the same e�e
t as `

x

8

'. One idea for avoiding them is to set � ��1

when ba
ktra
king, instead of advan
ing � twi
e per node by always setting � �+1.

a) Demolish that idea.

b) Find a
orre
t way to do stamping that advan
es � only on
e per node.

421. [21 ℄ Suppose the domain of variable v is represented by a doubly linked list

as in (101) and (102), and that the dan
ing links proto
ol is being followed (so that

PREV(a) and NEXT(a) don't
hange when a is deleted). Show that if 0 � a < a

0

< d

and a

0

2 D

v

, then NEXT(a) � a

0

(even when a =2 D

v

).

423. [18 ℄ Explain in detail the representation of the initial domain f0; 1; : : : ; d � 1g,

when using the (a) bit ve
tor (b) doubly linked list (
) sparse-set representations.

424. [21 ℄ Sometimes a program wants to know minD

v

, the smallest element of v's

urrent domain. (By
onvention, min ; = d in this
ontext.) What's a good way to

handle that in the (a) bit ve
tor (b) doubly linked list (
) sparse-set representations?

425. [M11 ℄ True or false: Equation (111) says that (b

dd=ee

: : : b

1

b

0

)

2

e

=

P

f2

a

j a 2 Dg.

x 426. [25 ℄ Work out the details of the AND operation for reversible sparse bitsets:

Given a set D that's represented using b, D, and S as in Fig. 118, together with another

set D

0

� f0; 1; : : : ; d� 1g that's represented as an ordinary bitset using a q-element ar-

ray b

0

, design an algorithm that sets D D\D

0

, putting appropriate entries on the trail

so that this operation is reversible. Minimize the number of
hanges made to b, D, and S.

x 427. [27 ℄ (Compa
t-Table tuples.) A �nite k-ary relation
an be de�ned in general by

listing the k-tuples that satisfy it, as we did in (2) at the beginning of this se
tion.

Su
h a list,
alled a \table
onstraint," is also the domain of the hidden variable for

that relation (see answer 372). One of the best ways to represent large table
onstraints

in pra
ti
e is to use reversible sparse bitsets.

Suppose R(v

1

; : : : ; v

k

) is a relation whose variables v

j

ea
h have a d-ary domain

D

j

, with a sparse-set representation DOM

j

, IDOM

j

, SIZE

j

, while R itself is represented

by b, D, and S as in Fig. 118. Initially there's domain
onsisten
y with respe
t to R:

Every binding (v

j

; a

j

) with a

j

2 D

j

is supported in R, meaning that some tuple of R

has v

j

= a

j

;
onversely, every tuple of R is valid, meaning that ea
h a

j

belongs to D

j

.

After other
onstraints have been propagated, some of the domains will have

hanged. Explain what needs to be done in order to restore domain
onsisten
y with

respe
t to R. Hints: Let OSIZE

j

be the value of SIZE

j

before the re
ent propagations.

Use the interse
tion algorithm of exer
ise 426, together with appropriate bitsets b

0

.

x 430. [M33 ℄ (Ba
kmarking.) Suppose we are solving a CSP by assigning values to

variables x

1

, x

2

, : : : , in that order. Step t of the sear
h pro
ess begins at level l = l

t

,

at whi
h time we've made
ertain provisional assignments x

1

 a

1

, : : : , x

l

 a

l

and

we want to sele
t a
onsistent value a

l+1

for x

l+1

. If we su

eed, this step is a \forward

step," and we'll have l

t+1

= l + 1; otherwise it's a \ba
kward step," and l

t+1

= l � 1.

(Initially l

0

= 0. A ba
kward step from level 0 terminates the sear
h.)

January 13, 2024

114 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

nested parentheses

average

ACTIVE

minimum remaining values

MRV

hide

sharp preferen
e

After the �rst ba
kward step from level l, subsequent steps at that level tend to

repeat mu
h of the previous
omputations. Indeed, there's a value s = s

t

� l for whi
h

the previous ba
kward step at level l dealt with exa
tly the same assignments x

j

 a

j

for 1 � j < s. Thus we already \know" the results of all tests on s-ary relations between

a

1

, : : : , a

s�1

and a

t+1

, and we
ould have saved that information in an auxiliary array.

a) Forward and ba
kward steps
an be represented by a sequen
e of nested parenthe-

ses as in 7.2.1.6{(1). What values of l

t

and s

t

for 0 � t < 30
orrespond to the se-

quen
e `(())((())((()(()))())(()(())))' ? (Use s = 0 before ba
kward steps.)

b) Devise a way to
al
ulate s

0

, s

1

, : : : , from a given level sequen
e l

0

, l

1

, : : : .

Hint: Maintain a sequen
e of intervals [p

0

: : q

0

℄, [p

1

: : q

1

℄, : : : , [p

r

: : q

r

℄, where

0 = p

0

< p

1

< � � � < p

r

, su
h that s

t

= p

k

when k is maximum with p

k

� l

t

� q

k

.

) Show that the s values
an indeed be rather
ompli
ated, by
onstru
ting a level

sequen
e l

0

, l

1

, : : : for whi
h the intervals in the pre
eding hint are

[0 : :1℄; [2 : : 8℄; [4 : : 6℄; [5 : : 5℄; [10 : : 15℄; [11 : : 12℄; [14 : : 14℄:

d) Find levels 0 = l

0

, l

1

, : : : , l

30

= 0 for whi
h s

0

+ s

1

+ � � �+ s

29

� 107.

e) What's the average of s

0

+ � � �+ s

29

over all level sequen
es 0 = l

0

, : : : , l

30

= 0?

f) The amount of nonrepeated
omputation at step t
an be measured by l

t

� s

t

.

Generate random sequen
es of nested parentheses, 1000000 of ea
h, and estimate

the average value of l

t

� s

t

for 0 � t < 2000000. Hint: See Algorithm 7.2.1.6W.

g) Let D

j

= f1; : : : ; d

j

g be x

j

's domain. Explain how to use s

t

to avoid re
omputa-

tion at step t, by maintaining a \mark"M

ja

for ea
h variable x

j

and ea
h a 2 D

j

.

434. [05 ℄ Explain the signi�
an
e of CLR(x) in Table 3.

435. [10 ℄ What node inTable 7.2.2.1{2
orresponds to node x in Table 3, for 0�x�19?

436. [20 ℄ True or false: ITM(x) < SECOND if and only if LOC(x) < SECOND.

x 437. [20 ℄ True or false: ACTIVE = 0 whenever Algorithm C �nds a solution in step C9.

439. [25 ℄ Design an algorithm to set up the initial memory
ontents of an XCC

problem, as needed by step C1 of Algorithm C and illustrated in Table 3. The input

to your algorithm should
onsist of a sequen
e of lines with the following format:

� The very �rst line lists the names of all items, with the primary items �rst.

� Ea
h remaining line spe
i�es the items of a parti
ular option, one option per line.

440. [18 ℄ Explain how to bran
h in step C2 on an item i for whi
h SIZE(i) is min-

imum. If several items have that minimum length, i itself should also be minimum.

(This
hoi
e is often
alled the \minimum remaining values" (MRV) heuristi
.)

441. [20 ℄ In Table 3, �nd i and
 su
h that hide(i;
) will set FLAG 1 if FLAG = 0.

x 442. [19 ℄ Play through Algorithm C by hand, using exer
ise 440 in step C2 and the in-

put in Table 3, until �rst rea
hing step C8. What will the memory
ontain at that time?

x 444. [21 ℄ Why would it be a mistake to omit `FLAG �1' in step C4?

445. [21 ℄ In some appli
ations the MRV heuristi
 of exer
ise 440 leads the sear
h

astray, be
ause
ertain primary items have short lists yet
onvey little information

about desirable
hoi
es. Modify answer 440 so that an item i whose name does not

begin with the
hara
ter `#' will be
hosen only if SIZE(i) = 1 or no other
hoi
es

exist. (This ta
ti
 is
alled the \sharp preferen
e" heuristi
.)

447. [22 ℄ Why doesn't step C7 hide i

0

when i

0

� SECOND and POS(i

0

) � OACTIVE?

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 115

Solnon

for
ed moves

MRV heuristi

d-way bran
hing

sear
h tree

stage

level

binary bran
hing

heuristi
 fun
tion h(i)

dynami
 variable ordering

variable ordering

MRV heuristi
 fun
tion

heuristi
 fun
tion

queens-and-knights problem

XCC problem

WTD

MRV

FRB

d-way bran
hing

binary bran
hing

support matri
es

ompatible

stamping

queue (FIFO) than a sta
k (LIFO)

opt out (o)

x 450. [33 ℄ (C. Solnon.) Upgrade Algorithm C to Algorithm C

+

by treating
ases with

SIZE(i) = 1 more eÆ
iently. Hints: Maintain a list of all su
h a
tive primary items.

Step C5 is unne
essary when SIZE(i) = 1, be
ause step C11 will always go to C10.

x 451. [20 ℄ Step C3 of Algorithm C might �nd i

0

= i, in whi
h
ase the last �ve

assigments
an be skipped. Explain why it's probably not a good idea to skip them.

x 452. [18 ℄ Suppose the item i that's
hosen by theMRV heuristi
 in step C2 has options

o

1

, : : : , o

d

, where d = SIZE(i) > 1. Show that, after we've
onsidered all solutions in

whi
h i is
overed by o

1

, the MRV heuristi
 will tell us to bran
h again on this very

same item i, as we explore the solutions to the remaining problem.

453. [10 ℄ Does the sear
h tree (121)
ontain a node at stage 1 and level 3?

x 455. [33 ℄ Design Algorithm B, whi
h should be like Algorithm C

+

ex
ept that it does

binary bran
hing instead of d-way bran
hing. Your algorithm should use a user-supplied

heuristi
 fun
tion h(i) for dynami
 variable ordering, as des
ribed in the text.

456. [20 ℄ When the MRV heuristi
 fun
tion h(i) = SIZE(i) is used in Algorithm B,

the running time doesn't a
tually mat
h the speed of Algorithm C

+

. For example,

Problem C needs 45.0 G�, not 41.6 G�. Why?

458. [20 ℄ Modify Algorithm B so that it in
orporates the WTD heuristi
, (122).

459. [20 ℄ Formulate the queens-and-knights problem as an XCC problem.

460. [22 ℄ Sket
h the overall behavior of Algorithm B when it solves the queens-and-

knight problem with the WTD heuristi
. How large do the weights be
ome?

461. [20 ℄ Compare WTD to MRV on the queens-and-knights problem when there are

(a) 8 queens, 3 knights; (b) 8 queens, 7 knights; (
) 12 queens, 5 knights.

463. [33 ℄ The queens-and-knights problem is an example where WTD is exponentially

better than MRV. Constru
t XCC problems for whi
h WTD is exponentially worse.

464. [18 ℄ Modify Algorithm B so that it in
orporates the FRB heuristi
, (124).

465. [20 ℄ Do exer
ise 461, but with FRB instead of WTD.

x 466. [25 ℄ Modify Algorithm C

+

(exer
ise 450) so that it
an be used with heuristi
s

su
h as WTD and FRB to do d-way bran
hing instead of binary bran
hing.

467. [20 ℄ Do the WTD and/or FRB versions of exer
ise 466 improve on (125)?

468. [16 ℄ The matrix (126) is only one of several almost-support matri
es that
an be

onstru
ted for the options f00; 05; 10; 13; 16; 19g. What are the other possibilities?

x 469. [22 ℄ When setting up a support matrix, it's desirable to have a fast way to test

whether or not a parti
ular option o is
ompatible with at least one option o

0

that

ontains a given item i, where i =2 o. Design an algorithm to do this. Hint: Allo
ate a

new 32-bit �eld MARK(i) in the SET array, for every item i, and use \stamping."

471. [17 ℄ True or false re (128): The items of every option in O

s

belong to I

s

.

x 472. [13 ℄ Consider the example XCC problem of (126), after Algorithm S has explored

all solutions with option 13 and has then ba
ktra
ked to stage 0 and removed 13. What

are O

�1

, O

init

0

, and O

0

at that time? What are the ages of the ina
tive options?

473. [20 ℄ Why is it better for the set Q to be a queue (FIFO) than a sta
k (LIFO)?

474. [25 ℄ Is it possible to
all opt out (o) at a time when o 2 Q?

January 13, 2024

116 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

data stru
tures

spa
er node

�rst item of an option

primary

trigger

�xit

singly linked list

queue

empty

AVAIL list

opt out

empty q

domain
onsisten
y

trigger sta
k

\extreme" XC problem

stamping

over
ow

476. [35 ℄ The low-level data stru
tures used by Algorithm S extend those of Algo-

rithm C by giving ea
h node a fourth �eld, XTRA, in addition to the �elds ITM, LOC,

CLR that are illustrated in Table 3. We use the abbreviations TRIG(o) = CLR(o),

FIX(o) = XTRA(o), and AGE(o) = XTRA(o+ 1), when o is the spa
er node pre
eding an

option. The �rst item of an option, ITM(o + 1), is required to be primary.

The trigger and �xit sta
ks are implemented with
lassi
al singly linked list

stru
tures, using an array
alled POOL whose elements have two �elds, INFO and LINK.

The triggers of (127)
ould, for example, be represented with TRIG(0) = 1, TRIG(5) = 3,

TRIG(13) = 7, TRIG(19) = 11, and the following POOL:

p: 1 2 3 4 5 6 7 8 9 10 11 12 13

INFO(p): 19 4 13 4 13 17 5 11 19 11 0 17 |

LINK(p): 2 0 4 5 6 0 8 9 10 0 12 0 |

Two pointers, QF and QR, de�ne the queueQ, whi
h is empty if and only if QF = QR.

(The POOL above
an a

ompanied by QF = QR = 13.) The insertion operation `o) Q'

means \INFO(QR) o, LINK(QR) (AVAIL, QR LINK(QR)"; and the deletion opera-

tion `Q) o' means \p QF, o INFO(p), QF LINK(p), p) AVAIL," if QF 6= QR.

For example, starting with (127) represented as above, and with FIX(0) = � � � =

FIX(19) = 0, a
all on opt out (13) would have the e�e
t of setting SIZE(11) 1,

SIZE(23) 2, FIX(5) 7, FIX(19) 9, LINK(8) 0, INFO(7) 13, INFO(9) 13,

TRIG(13) 0, INFO(13) 5, LINK(13) 14, INFO(14) 19, LINK(14) 15, QR 15.

Use these
onventions to design Algorithm O, a \na��ve" implementation of the

opt out subroutine des
ribed in the text.

477. [32 ℄ Design Algorithm E, the empty q subroutine that's des
ribed in the text.

478. [30 ℄ Implement the portion of step S1 that establishes initial domain
onsisten
y.

479. [20 ℄ Explain how to delete all referen
es to purged options from the trigger sta
ks

of unpurged options, after the algorithm of exer
ise 478 has a
ted.

480. [22 ℄ The support-�nding loop in the answer to exer
ise 469 runs through the

a
tive options that
ontain a given item i sequentially, from �rst to last. Are better

results obtained by
onsidering them (a) ba
kwards (last to �rst)? (b) randomly?

x 482. [37 ℄ When Algorithm O (exer
ise 476) dea
tivates option o, it looks at every en-

try (o

0

; i

0

) of o's trigger sta
k. If o

0

and i

0

are both a
tive, it
onverts that entry to a �xit

(o; i

0

) on the trigger sta
k of o

0

; otherwise (o

0

; i

0

) remains on the trigger sta
k of o. We

ould save a lot of time if the trigger sta
k had the property that its entries for ina
tive o

0

all appeared at the bottom; then we wouldn't have to look at them all individually.

a) Explain why we
an't hope to keep the trigger sta
ks sorted by age, with entries

for the earliest-dea
tivated options o

0

nearest the bottom.

b) However, suggest a re�ned method, Algorithm O

+

, that does tend to
luster the

ina
tive entries near the bottom, and avoids looking at them all. Hint: Sort the

entries (o

0

; i

0

) that remain in TRIG(o), after opt out (o) has a
ted, by AGE(o

0

).

483. [20 ℄ Demonstrate the importan
e of trigger hints empiri
ally, by running Algo-

rithm S on the \extreme" XC problem for n = 12 (7.2.2.1{(82)), with and without them.

484. [22 ℄ Step S2 of Algorithm S advan
es SSTAMP, a 32-bit number whose values go

into the SS array that's used in the \hints" of exer
ise 482. Ordinarily we
an just set

SSTAMP (SSTAMP+1) mod 2

32

; but trouble will arise when the result is zero. Explain

how to avoid trouble. (See exer
ise 469 for the solution to a similar problem.)

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 117

losed knight's tour

knight's tour

Hamiltonian
y
le

knight graph

prime queen atta
king problem+

queen

Weigel

author

birthday

prime queen atta
king problem

strong prime queen atta
king

prime queen atta
king

Stappers

MCC solver

dan
ing
ells

dan
ing links

Covering with disks

k-
enter problem

dis
rete disks

pixels

MCC problem

exa
t
over problem

pa
k a given shape

polyominoes

negative table
onstraints

n queens problem

no-three-in-line

16 queens problem

Tullis

polyominoes

ell tetromino

tetromino

x 486. [30 ℄ Spell out the low-level details of what happens when step S6 of Algorithm S

hooses an option

s+1

= x

l

to explore at the next stage of the sear
h.

490. [22 ℄ Given m, n, i, j, and a set P , where 0 � i < m, 0 � j < n, and P �

f1; 2; : : : ;mng,
onstru
t an XCC problem whose solutions assign labels f1; 2; : : : ;mng

to the
ells of an m� n board, where the labels de�ne steps 1, 2, : : : , mn of a
losed

knight's tour (a Hamiltonian
y
le of the m�n knight graph). Furthermore, if a queen

is pla
ed in
ell (i; j), that queen must atta
k every
ell whose label is in P .

x 491. [23 ℄ (Peter Weigel, 2023.) Improve the
onstru
tion of exer
ise 490 by having

one option for every potential pair of knight moves, to and from a white
ell, instead

of having one option for every potential single move.

492. [20 ℄ Thanks to the
onstru
tion of exer
ise 491, the author was able to
elebrate

his 85th birthday in 2023 with a feli
itous
losed solution to the 10 � 10 prime queen

atta
king problem: It featured the spe
ial pattern `

85

20

00

23

' in the
enter, surmounted

by the exa
t date of his birth, `01 10 19 38' ! How many su
h solutions exist?

493. [24 ℄ The strong prime queen atta
king problem is the spe
ial
ase of exer
ise 490

where P
onsists of all prime numbers � mn plus all numbers 2

e

for 0 � e � lgmn.

a) Exhibit solutions of this problem, for as many m � n as you
an.

b) Also
ount the total number of solutions, for as many m � n as you
an.

x 495. [41 ℄ (Filip Stappers, 2023.) Design Algorithm M, an MCC solver that a

epts

the same input as Algorithm 7.2.2.1M but uses dan
ing
ells instead of dan
ing links.

Hint: Modify Algorithm B (exer
ise 455).

496. [22 ℄ How
an Algorithm M use dynami
 heuristi
s su
h as WTD and FRB?

498. [M21 ℄ (Covering with disks.) Can an m�n re
tangle be
overed with k \dis
rete

disks" of integer diameter d? (Namely the set of pixels of a d�d square whose
enters are

at distan
e < d=2 from the
enter of that square.) Formulate this as an MCC problem.

499. [16 ℄ Exer
ise 7.2.2.1{266 explains how to generate the options for an exa
t
over

problem whose solutions are the ways to pa
k a given shape with a given set of

polyominoes. What happens if we use those options in an MCC problem instead of

in an XC problem, assigning the multipli
ity [u

xy

: : v

xy

℄ to ea
h
ell (x; y) of the shape

and the multipli
ity [u

p

: : v

p

℄ to ea
h pie
e p?

x 501. [22 ℄ Exer
ise 297 explains how to en
ode \negative table
onstraints" as
on-

straints of an XC problem, provided that ea
h
onstraint is binary . Show that negative

table
onstraints between k > 2 variables
an be en
oded as
onstraints of an MCC

problem. For example, how
ould you en
ode `x 6= a or y 6= b or z 6=
' ?

502. [M21 ℄ Use Algorithm M to �nd all solutions to the n queens problem su
h that

no three queens lie in a straight line of any slope.

503. [M20 ℄ A

ording to (125), Algorithm C

+

�nds the 15 million solutions to the 16

queens problem in 43.9 G�. A

ording to (134), Algorithm M �nds the 71 thousand

for whi
h no three are
ollinear in 87.4 G�.

So why not simply remove unwanted solutions from the output of Algorithm C

+

?

504. [M21 ℄ Find the maximum m su
h that m distin
t straight lines ea
h
ontain

three or more queens, in some solution to the 16 queens problem.

506. [21 ℄ (Ian Tullis, 2022.) If possible,
reate a 4-
olored 10 � 10 pattern in whi
h,

for 1 �
 � 4, (i) every row
ontains exa
tly

ells of
olor
; (ii) every
olumn
ontains

exa
tly

ells of
olor
; (iii) the rookwise-
onne
ted
omponents of
olor
 have exa
tly

ells; and (iv) every
omponent of
olor 4 is an ell tetromino.

January 13, 2024

118 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

queens and knights, nonatta
king

knights and queens, nonatta
king

MCC problem

hessboard

dan
ing
ells versus dan
ing links

onstraint satisfa
tion automaton

CSA

nondeterministi
 automaton

automata

states

input states

output states

transition rule

variables

domain elements

solutions

asterisk

wild
ard

global
onstraint

507. [21 ℄ In how many ways
an q queens and s knights be pla
ed on an m�n board

so that no two pie
es atta
k ea
h other? Formulate this as an MCC problem.

508. [20 ℄ For 1 � q � 7, �nd the maximum number of knights that
an be pla
ed

together with q queens on an 8� 8
hessboard so that no pie
e atta
ks another. How

does Algorithm M fare, in
omparison to Algorithm 7.2.2.1M, when the options of

exer
ise 507 are used to solve this problem?

x 590. [31 ℄ A
onstraint satisfa
tion automaton (CSA) is a nondeterministi
 automaton

based on a given CSP. Like all automata, it has a set Q of states, whi
h
ontains a set

I � Q of input states and a set
 � Q of output states, together with a transition rule

that takes us from state to state. In this
ase the transitions have the general form

q 7! v

1

n a

1

; : : : ; v

t

n a

t

; (v a? q

0

: q

00

); for some t � 0,

where the v's are variables, the a's are domain elements, and the q's are states. The

meaning is, \Begin deterministi
ally: For 1 � j � t, if v

j

is unassigned, remove a

j

from

its domain if a

j

was present. Then bran
h nondeterministi
ally: Either (i) assign a as

the value of variable v, and go to state q

0

, or (ii) remove a from the domain of v and

go to state q

00

." Variable v must not previously have been assigned a value. Case (i)

is permitted only when a is in v's
urrent domain. It means that the domain of v is

redu
ed to the single value fag; furthermore, the domain of every other unassigned

variable w is also redu
ed, if ne
essary, so that every
onstraint for whi
h all variables

but w are assigned is fully satis�ed by every value in w's remaining domain.

A CSA
omputation begins in an initial state, with all variables unassigned, and

with all domains equal to the initial domains but restri
ted by the unary
onstraints.

It ends su

essfully in an output state when all variables have been assigned; or it
an

end unsu

essfully, either in a state q for whi
h some domain is empty, or for whi
h

all variables are assigned but q 62
, or for whi
h no transition rule was spe
i�ed. The

solutions of a CSA are the tuples of assigned values that a su

essful
omputation
an

produ
e. (In parti
ular, those solutions will also solve the given CSP.)

Either v or a in the `v a' part of a transition rule, or both,
an be repla
ed by

an asterisk (�), meaning that the automaton itself is supposed to
hoose the variable

and/or the value to be assigned, deterministi
ally, using an arbitrary heuristi
. Of

ourse su
h a \wild
ard" transition is inappli
able when no valid assignment is possible.

For example, the CSA with Q = I =
 = fqg and the wild
ard transition rule

`q 7! (� �? q: q)' simply has the same solutions as the given CSP. The CSA with

Q = fq

0

; q

1

; q

2

g, I = fq

0

g,
 = fq

2

g, and transitions

q

0

7! (v a? q

1

: q

2

); q

1

7! w n b; (� �? q

2

: q

2

); q

2

7! (� �? q

2

: q

2

)

has all solutions ex
ept those for whi
h v = a and w = b.

The domain element in a transition rule
an also be a named wild
ard of the form

`a

�

', where a is a lo
al identi�er. It means that the value a
hosen by the automaton

an be used in the spe
i�
ation of the states q

0

and q

00

. For example, the transition rule

q 7! (v a

�

? q

a

: q

�a

)

will
ause the automaton to
hoose an arbitrary value a in v's domain. Then if, say,

a = 3, it will bran
h nondeterministi
ally, either assigning v 3 and going into state q

3

or making no assignment and going into state q

�3

.

Noti
e that a CSA essentially adds a global
onstraint to the given CSP. \Find

all solutions that
orrespond to a sequen
e of states in the CSA from I to
." It
an

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 119

onsisten
y

restri
ted growth strings

nested parentheses

re
e
tion

symmetry breaking (removal)

breaking symmetries

y
li
 shifts

Lyndon words, see prime strings

prime strings

n queens problem

queens problem

equivalen
e
lass

re
e
tion

rotation

anoni
al solutions

lexi
ographi
ally least

superqueen

amazon

knight

n superqueens problem

Montanari

O, the all-0 matrix

be simulated by any pro
edure that makes further domain redu
tions, for example to

maintain
onsisten
y, as long as those redu
tions don't eliminate any solutions.

The following examples exhibit some of the versatility provided by this CSA

formalism. Let the variables of a given CSP be fv

1

; : : : ; v

n

g, ea
h with domain [0 : : d) =

f0; 1; : : : ; d� 1g, and subje
t to any number of further
onstraints.

a) De�ne a CSA whose solutions v

1

: : : v

n

are those with (v

1

+� � �+v

n

) mod 5 2 f1; 3g.

b) De�ne a CSA for the solutions where ea
h value o

urs at most twi
e.

) De�ne a CSA for the solutions where ea
h value o

urs either twi
e or not at all.

d) Similarly, design a CSA for all solutions v

1

: : : v

n

that are restri
ted growth strings.

(See Se
tion 7.2.1.5; in parti
ular, v

1

= 0 and v

2

is 0 or 1.)

e) Let d = 2, and restri
t the solutions to binary strings v

1

: : : v

n

that
orrespond to

nested parentheses when 0$ (and 1$). (In parti
ular, v

1

= 0 and v

n

= 1.)

591. [21 ℄ Suppose the re
e
tion v

n

: : : v

2

v

1

solves a
ertain CSP whenever v

1

v

2

: : : v

n

does. All domains are [0 : : d). Design a CSA that yields only one of those solutions.

592. [23 ℄ Suppose the
y
li
 permutation v

2

: : : v

n

v

1

solves a
ertain CSP whenever

v

1

v

2

: : : v

n

does. Design a CSA that yields just one solution in ea
h equivalen
e
lass un-

der
y
li
 shifts. All domains are [0 : : d). Hint: Consider prime strings (Se
tion 7.2.1.1).

x 593. [28 ℄ Solutions to the n queens problem belong to the same equivalen
e
lass

if they di�er only by a re
e
tion and/or rotation of the board. The purpose of this

exer
ise is to de�ne
anoni
al solutions, of whi
h there's exa
tly one in ea
h
lass.

Denote the
ells by (i; j) for 0 � i; j < n. Let R

i

be the
olumn
ontaining a queen

in row i, and let C

j

be the row
ontaining a queen in
olumn j; thus R

i

= j if and only

if C

j

= i. Let �x = n�1�x; noti
e that rotation by 90

Æ

hanges R

i

to C

�{

and C

j

to

�

R

j

.

a) Let (a

i

; b

i

;

i

; d

i

)=(R

i

; C

�{

;

�

R

�{

;

�

C

i

). Can we have fa

i

; b

i

;

i

; d

i

g\f�a

i

;

�

b

i

; �

i

;

�

d

i

g 6=;?

b) How does re
e
tion of the board
hange the numbers (a

i

; b

i

;

i

; d

i

) of a solution?

) Let n

0

= bn=2
. Write out the eight values of the 4dn=2e-tuple

(a

n

0

; b

n

0

;

n

0

; d

n

0

; a

n

0

+1

; b

n

0

+1

;

n

0

+1

; d

n

0

+1

; : : : ; a

n�1

; b

n�1

;

n�1

; d

n�1

)

that o

ur when the following solutions are rotated and/or re
e
ted:

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

d) Explain why the lexi
ographi
ally least of eight su
h tuples is a
anoni
al solution.

e) True or false: If n = 2n

0

, the
anoni
al tuple begins with a

n

0

� n

0

� 2.

f) Design a CSA for
anoni
al solutions to the n queens problem.

594. [27 ℄ What's the lexi
ographi
ally largest
anoni
al solution that uses 32 queens?

595. [24 ℄ A superqueen (also
alled an \amazon")
ombines the moves of a queen and

a knight. Use the methods of exer
ise 593 to determine the number of inequivalent

solutions to the n superqueens problem for small n.

600. [15 ℄ True or false: If Montanari's pro
edure (200) ever sets R

ij

 O (the all-0

matrix) for at least one pair (i; j), it will eventually set R

i

0

j

0

 O for all pairs (i

0

; j

0

).

January 13, 2024

120 COMBINATORIAL SEARCHING (F7A: 13 Jan 2024�1203) 7.2.2.3

Montanari601. [23 ℄ Summarize what (200) will do when presented with ea
h of the following

inputs, assuming that every unspe
i�ed relation R

ij

is the identity matrix when i = j,

or the all-1s matrix when i 6= j. (Domain sizes
an be dedu
ed from the given matri
es.)

a) n = 5, R

12

= R

23

= R

34

= R

45

= R

51

= (

0 1

1 0

).

b) n = 5, R

12

= R

23

= R

34

= R

45

= (

0 1 0

0 0 1

1 0 0

) and R

51

= (

0 1 1

0 0 1

1 0 0

).

) n = 5, R

12

= R

23

= R

34

= R

45

= R

51

= (

0 1 1

1 0 1

1 1 0

).

d) n = 3, R

12

= (

1 1

1 0

), R

13

= (

1 1 0

0 1 1

), and R

23

= (

1 0 1

1 0 0

).

602. [M25 ℄ (U. Montanari, 1974.) If (200) makes no
hange to any relation, prove

that the following property holds for every (s; t) 2 R

ij

and every sequen
e k

0

k

1

: : : k

r

of indi
es with k

0

= i, 1 � k

l

� n for 0 < l < r, and k

r

= j: There's a sequen
e of

values x

0

x

1

: : : x

r

su
h that x

0

= s, (x

l

; x

l+1

) 2 R

k

l

;k

l+1

for 0 � l < r, and x

r

= t.

999. [M00 ℄ this is a temporary exer
ise (for dummies)

January 13, 2024

7.2.2.3 CONSTRAINT SATISFACTION: EXERCISES 121

[This blank page has temporarily been inserted so that the answers will begin on an

even-numbered page.℄

January 13, 2024

122 ANSWERS TO EXERCISES 7.2.2.3

AUBREY

Benna
eur

J�arvisalo

Niemel�a

tautology

binary relation

Ma
kworth

omputer vision

histori
al notes

Fikes

Jeavons

NP-
omplete

H-
oloring problem

After [this℄ way of Solving Questions, a man may steale a Nappe,

and fall to worke again afresh where he left o�.

| JOHN AUBREY, An Idea of Edu
ation of Young Gentlemen (
. 1684)

SECTION 7.2.2.3

1. Only BCAON, BCU0D, BLUED, and SCION satisfy R

1

and R

3

; the �rst two fail R

2

.

2. (a) The literals of ea
h
lause de�ne the domain of the
orresponding variable. If

one
lause
ontains x and the other
ontains �x, forbid the pair x�x. [See H. Benna
eur,

ECAI 12 (1996), 155{159. Satis�ability/unsatis�ability is preserved, but the number

of solutions may
hange; whenm = 1 the 3SAT problem has 7 solutions, the CSP has 3.℄

(b) Seven variables

1

2 f1; 2;

�

3g, : : : ,

7

2 f

�

3;

�

4;

�

1g;

�

7

2

�

= 21
onstraints. Three

onstraints are satis�ed in 6 ways (for example,

1

5

2 f1

�

2; 13; 2

�

1; 23;

�

3

�

1;

�

3

�

2g); the other

18 in 8 ways (

1

7

2 D

1

�D

7

n 1

�

1). The SAT problem has 2 solutions, the CSP has 48.

(
; d) Adding Boolean variables fx

1

; x

2

; x

3

; x

4

g, we need only 5-out-of-6
onstraints

su
h as

1

x

1

2 f11; 20; 21;

�

30;

�

31g. [See M. J�arvisalo and I. Niemel�a, Workshop on

Modelling and Reformulating Constraint Satisfa
tion Problems 3 (2004), 111{124.℄

3. Let x

1B

= [x

1

= B℄, et
. Then the
lauses (x

1B

_ x

1S

), (x

1B

_ x

1S

), (x

2C

_ x

2L

),

(x

2C

_x

2L

), (x

3A

_x

3I

_x

3U

), (x

3A

_x

3I

), (x

3A

_x

3U

), (x

3I

_x

3U

), (x

4E

_x

4O

), (x

4E

_x

4O

),

(x

5D

_ x

5N

), (x

5D

_ x

5N

) establish the domains. And the
lauses (R

11

_ R

12

_ R

13

),

(R

11

_ x

1B

), (R

11

_ x

3A

), (R

11

_ x

5N

), (R

12

_x

1B

), (R

12

_ x

3U

), (R

12

_ x

5D

), (R

13

_ x

1S

),

(R

13

_x

3I

), (R

13

_x

5N

), : : : , (R

33

_x

2L

), (R

33

_x

4E

), (R

33

_x

5D

) establish the relations.

(Many other en
odings are possible; this one is systemati
 and avoids tri
kery.)

4. Primary R

1

, R

2

, R

3

; se
ondary x

1

, : : : , x

5

. Options `R

1

x

1

:B x

3

:A x

5

:N', `R

1

x

1

:B

x

3

:U x

5

:D', `R

1

x

1

:S x

3

:I x

5

:N', : : : , `R

3

x

2

:L x

4

:E x

5

:D'. (See exer
ise 7.2.2.1{100.)

5. There are just two subsets of f�g, namely ; and f�g. The �rst of those relations is

always false, so it's a
onstraint that wipes out all solutions. The se
ond is a tautology,

always true; it doesn't really
onstrain anything. (In general, there are 2

d

1

:::d

k

k-ary

relations on (D

1

; : : : ; D

k

), when ea
h D

i

has d

i

elements; hen
e there are 2

d

k

k-ary

relations over any d-element set. One of them is always false; another is always true.)

6. Given any binary relation on A�B,
onsisting of ordered pairs (a; b), math texts

say furthermore that the \domain" is the set of left
oordinates and the \range" is the

set of right
oordinates. Yet
onstraint satis�ers have happily spoken of the domains

of variables ever sin
e Ma
kworth's paper of 1977 introdu
ed the terminology.

Ma
kworth was in
uen
ed by earlier work in
omputer vision, where the value

of a variable was often a re
tangle (say) where some obje
t might be found in a

digital image; that would be an extramathemati
al sense of the word \domain," like a

\dominion." Moreover, his main fo
us was on
onstraints, not variables; the domains

of the
onstraints are the values of the variables. [Fikes had a
tually used the term

\range," not domain, in his original paper of 1970.℄

8. False. For example, (012343434) is a homomorphism from C

9

to C

5

. (The most

that
an be
on
luded, from the existen
e of a homomorphism from C

odd

to G, is that

G isn't bipartite, be
ause it
ontains an odd
y
le.)

9. (Solution by P. Jeavons.) Constru
t a new graph G

0

by repla
ing every edge u���v

of G by a path u���uv���vu���v, where uv and vu are new verti
es. Then there's a ho-

momorphism from G

0

to C

5

if and only if there's a homomorphism from G to K

5

. Hen
e

the problem is NP-
omplete. (In general the \H-
oloring problem," to de
ide whether

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 123

Hell

Ne�set�ril

omplement graph

lique

embeddable

oriented
y
le

C~

m

kDM problem

k-dimensional mat
hing

3DM

M�ezard

Montanari

radio
oloring

Gardner

Gruenberger

histori
al notes

Disney

or not a homomorphism from G to H exists, is trivial when H is bipartite; otherwise

it's NP-
omplete [P. Hell and J. Ne�set�ril, J. Comb. Theory B48 (1990), 92{110℄.)

10. (a) Let E = ffu; vg j u 6= v and fu; vg =2 Eg be the edges of the
omplement

graph G. (See Eqs. 7{(15) and 7{(35).) An independent set in G is a
lique in G. \Is

there a homomorphism from K

k

to (V;E)?"

(b) The verti
es not in a
over are independent. Use (a) with k jV j � k.

(
) They're isomorphi
 if and only if ea
h is embeddable in the other. It's a single

GCP if jV j = jV

0

j: \Is there a homomorphism from (V;E;E) to (V

0

; E

0

; E

0

)?"

(d) Let G

0

be the graph on f1; : : : ; jV jg for whi
h i���j if and only if ji � jj � k.

\Is G embeddable in G

0

?"

(e) Let A

0

be the relation f(uv; u

0

v

0

) j v = u

0

g on ordered pairs of verti
es in V ,

and let (f0; : : : ;m� 1g; O) be the oriented
y
le C~

m

, where m = jAj and O = fij j j =

(i+1) modmg. \Is there a homomorphism from (f0; : : : ;m� 1g; O; 6=) to (A;A

0

; 6=)?"

11. \u 6= v implies h(u) k h(v)" is the same as saying that jV j mutually unlike k-tuples

satisfy relation R. And that's pre
isely the kDM problem (k-dimensional mat
hing).

15. Given similar relational stru
tures S = (U;R

1

; : : : ; R

t

) and S

0

= (U

0

; R

0

1

; : : : ; R

0

t

),

the
orresponding CSP has variables U , ea
h with domain U

0

. Suppose U = f1; : : : ; ng.

The values x

i

1

: : : x

i

k

of every k-tuple i

1

: : : i

k

2 R

j

, where k = k

j

, are
onstrained to

satisfy the relation R

0

j

, for 1 � j � t.

18. (a) Let T be the matrix (

wz

--

wz

w

--

z

w

--

z

--

), where z

�

denotes 1=z. By indu
tion we have

G

N

(z) =

(ww

--

)

T

N�1

(

1

1

). For example, G

1

(z) = w

�

+w andG

2

(z) = w

�2

z

�

+2z+w

2

z

�

.

Now let u = (

w+w

--

2

)=z, v = ((

w�w

--

2

)=z)

2

+ z

2

, � = u +

p

v, � = u �

p

v. Then

we have T = S(

�

0

0

�

)S

�

, where S = (

��w

--

z

--

wz

��w

--

z

--

wz

). Hen
e G

N

(z) = a�

N�1

+ b�

N�1

,

with
oeÆ
ients a = �z + (z � z

3

)=

p

v , b = �z � (z � z

3

)=

p

v . (Noti
e that when

B = 0, everything simpli�es enormously be
ause w = 1. For example, � = z

�

+ z.)

(b) Di�erentiate and plug in. (The exa
t formulas are hairy, until we get to (
).)

(
) When N is large we
an ignore �. Thus G

0

(z)=G(z) in (b) is

d

dz

lnG(z) �

d

dz

N ln�, where � = e

�

osh �B +

p

e

2�

sinh

2

�B + e

�2�

.

(d) Now we have G

k

(z) =

(ww

--

)

T

k�1

XT

N�k

(

1

1

), where X = (

�1

0

0

1

). To put this

in
losed form, let Y = S

�

XS, so that T

k�1

XT

N�k

= S(

�

0

0

�

)

k�1

Y (

�

0

0

�

)

N�k

S

�

. Hen
e

G

k

(z) = â�

N�1

+

^

b�

N�1

+
�

N�k

�

k�1

+
�

k�1

�

N�k

, where â = (

w�w

--

2z

)a=

p

v,

^

b =

(

w

--

�w

2z

)b=

p

v,
 =

w�w

--

2

(1 � z

2

)=v. So the average
omes to (â +
�=(N

p

v))�

N�1

+

(

^

b�
�=(N

p

v))�

N�1

, divided byG(z); asymptoti
ally, it's sinh �B=

p

sinh

2

�B + e

�4�

.

[This answer is based on x2.5.1 of the book by M�ezard and Montanari.℄

20. It turns out that 17
onstraints like (12) are suÆ
ient to for
e x

i

6= x

j

whenever

i 6= j. (The problem without (14) is in fa
t equivalent to \radio
oloring" as in exer
ise

7.2.2.2{36; the graph in (11)
an't be 7-
olored radiowise.) But the se
ond model, with

only 7
onstraints like (15), has 20,358 solutions without the all-di�erent
onstraint!

We
an, for instan
e, set A C E G 1 and B D F H 8.

[The inventor of this puzzle is unknown. After Martin Gardner publi
ized it in

S
ienti�
 Ameri
an 206, 2 (February 1962), 150, Fred Gruenberger told him that he'd

learned of the problem in 1961 from a friend at Walt Disney Studios, \where it had

already
onsumed a fair amount of Mr. Disney's sta� time." Gruenberger had used

it that year in a TV do
umentary, \How a Digital Computer Works," featuring three

high-s
hool students who solved it from s
rat
h in about �ve minutes, working at

a bla
kboard, while a
omputer would supposedly have to run through 8! = 40320

January 13, 2024

124 ANSWERS TO EXERCISES 7.2.2.3

Cohoon

no-tou
h puzzle

Hamiltonian path

O'Beirne

Koplowitz

Gardner

symmetry

pairwise ordering tri
k

XC: exa
t
over

sharp preferen
e heuristi

K�: kilomems

symmetry

Dull

slot

permutations in order to �nd the answer! Ten years later, D. K. Cohoon
alled (11) the

\no-tou
h puzzle" in Math. Mag. 45 (1972), 261{265, without mentioning his sour
e.℄

Noti
e that the CSP model using (15) is essentially based on the
omplement of the

graph in (11), whi
h has only 11 edges and is easy to draw. A

ording to that model, the

problem is to make (A; B; : : : ; H) label a Hamiltonian path in the
omplement graph|

an observation made independently by T. H. O'Beirne and H. Koplowitz in letters to

Gardner, and later by Cohoon. There are four su
h paths, easy to �nd.

21. We
an save a fa
tor of 2 by assuming that A o

urs in the left half of the graph:

Remove A from the domains of fx

2

; x

5

; x

6

; x

8

g in the �rst model; remove f2; 5; 6; 8g

from the domain of A in the se
ond.

To save another fa
tor of 2, we
an add the
onstraint x

2

< x

8

(say) in the �rst

model. That
an't be done in the se
ond, without probing deeper into the solution.

22. Let there be 17 � 7 se
ondary items juv, one for every
ombination of a letter j

with A � j < H and an edge u��� v, where u < v. There are 64 options (v; k), where

1 � v � 8 and A � k � H; option (v; k)
ontains the primary items v and k, meaning

that vertex v is labeled with letter k. To prevent adja
ent letters in edge u���v, add

se
ondary item juv to options (u; j), (v; j), (u; j+1), and (v; j+1). For example, option

(2; E) is `2 E D12 D24 D25 D26 E12 E24 E25 E26'. (This
onstru
tion ni
ely in
orporates

both of the text's CSP models; noti
e that the all-di�erent
onstraint \
omes for free.")

That XC problem has 4 solutions, found in 300 kilomems with 485 nodes in the

sear
h tree. To break the symmetry as in exer
ise 21, �rst remove options (2; A), (5; A),

(6; A), (8; A); then also remove options (2; H) and (8; B), and use the pairwise ordering

tri
k of exer
ise 7.2.2.1{20 with m = 6, �

i

= (2; B + i), �

i

= (8; C + i) to ensure that

the label of 2 is less than the label of 8. (This introdu
es se
ondary items y

1

, : : : , y

5

; it

also puts y

2

and y

3

into option (2; E).) The resulting XC problem has 1 solution,
osts

108 kilomems, and examines 146 nodes. [If we
leverly
hange 5 to #5 and use the

sharp preferen
e heuristi
 of exer
ise 7.2.2.1{10, thereby for
ing the �rst bran
h to be on

vertex 5, the sear
h tree de
reases to just 43 nodes and the running time to just 35 K�.℄

23. Let variables (AB, BC, CD, DE, EF, FG, GH) ea
h have the 11-element domain of all

edges not in the graph. Constrain ea
h of (AB; BC), : : : , (FG; GH) to be one of the 48

ordered pairs of edges that have one vertex in
ommon. Also
onstrain ea
h of the

nonoverlapping pairs of variables, namely (AB; CD), (AB; DE), : : : , (EF; GH), to be one of

the other 62 ordered pairs of edges. (The all-di�erent
onstraint would be redundant.)

26. FABABACDCE (and its mirror image ECDCABABAF).

27. The mirror image of a solution with f � 5 has f < 5. (Alternatively, we
ould

have assumed that d < 5, or e < 5, or even that a

1

< 5; but F is probably harder

to pla
e. When t is even, the symmetry
an be broken by
hoosing any model of odd

multipli
ity, and requiring more than half of its o

urren
es to be < t=2.)

28. (Solution by B. C. Dull.) No. If that new
onstraint is violated, so is (18) when

l = l

0

+ l

00

, be
ause we have f

0k

+ f

1k

+ � � �+ f

(l

0

q

k

�1)k

� l

0

p

k

by (17).

But that \solution" is wrong ! The new
onstraints are useful, for example, when

l

00

= 0 and we have a partial solution for whi
h f

ik

is known only when i > t=2.

30. Introdu
e a primary item, representing slot i, for 0 � i < t. Also a primary item

for the name of ea
h model type, with its given multipli
ity. (In Fig. 100, for example,

item A has multipli
ity 3.) There will be one option for ea
h slot and ea
h type.

To implement the
onstraints (17), introdu
e primary items u

jk

for 0 � j � t� q

k

and 0 � k < m, having multipli
ity [0 : : p

k

℄. (If p

k

= 1, this item
ould be se
ondary.)

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 125

palindromi

walks

digraph

Fibona

i numbers

Narayana numbers

Tribona

i numbers

tableau shape

rim representation

In
lude u

jk

in the option for every model that uses feature k in slot i, for j � i < j+q

k

.

(Thus, one option for Fig. 100 is `2 B u

10

u

20

u

03

u

13

u

23

'.)

31. Noti
e that f

0k

+ � � �+f

(t�lq

k

�1)k

� r

k

� lp

k

if and only if

�

f

0k

+ � � �+

�

f

(t�lq

k

�1)k

�

s

lk

= t� lq

k

� r

k

+ lp

k

. Therefore introdu
e primary items v

lk

for 0 < l < dr

k

=p

k

e and

0 � k < m, having multipli
ity [0 : : s

lk

℄. In
lude v

lk

in the option for every model that

does not use feature k, for every slot i in the range 0 � i < t � lq

k

. (If s

lk

= 0, any

options that would in
lude v

lk

should be omitted, like the options for 0 B and 0 D in

Fig. 100. The option in answer 30 be
omes `2 B u

10

u

20

v

41

v

71

v

72

u

03

u

13

u

23

'. Other

redundant
onstraints su
h as those of exer
ise 28
an be implemented in a similar way.)

32. Yes: The only solutions are FEBAGAHDCAGECDACDCEGACDHAGABEF and its

mirror image (
hange `AC' to `CA' in the middle). The running time is (a) 28 gigamems,

with 22 meganodes in the sear
h tree; (b) 4 megamems, with 1670 nodes.

33. No; Algorithm 7.2.2.1M veri�es this in 202 G�, with 158 meganodes.

There's a
tually an easy way to prove the impossibility by hand, be
ause Model F

an only appear at the beginning, or at the end, or next to Model 0; furthermore F0F

is impossible. Hen
e the shortest possible way to produ
e four Model Fs is to put one

at ea
h end and to have two o

urren
es of F0 or 0F inside the sequen
e.

One way to solve the 62-
ar problem is to pla
e `00' between two solutions of the

30-
ar problem. That 62-
ar problem a
tually has 19050 solutions, of whi
h 18 are un-

hanged under left-right re
e
tion and the others form 9516 mirror pairs. Only 69 G� of

omputation are needed to �nd the symmetri
 ones. Every solution begins with FEBA

and ends with ABEF. Six of the palindromi
 solutions, su
h as FEBAF0HDCAGECDC-

AGEBAGAHDCAGECDAADCEGACDH : : :GACDH0FABEF, have two F's near ea
h end.

35. (a) We've seen equivalent problems before (for example, in Se
tions 5.4.2, 7.2.1.1,

and 7.2.1.7); but let's start from s
rat
h. Consider the digraph whose verti
es are the

q-bit patterns � with �� � p, having ar
s ���!� when the last q � 1 bits of � mat
h

the �rst q � 1 bits of �. (It's a subgraph of the digraph in exer
ise 2.3.4.2{23.) The

answer is the number of walks of length 10 that start from vertex 0

q

in this digraph:

144 when (p; q) = (1; 2); 60 when (p; q) = (1; 3); 504 when (p; q) = (2; 3).

(b) pbn=q
+min(p; nmod q).

(
) In general, the generating fun
tion G(z) for walks of length n from vertex � in

a given digraph is

P

�

G

�

(z), where G

�

(z) = [�=� ℄+z

P

��!�

G

�

(z) for ea
h vertex �.

For example, when (p; q) = (1; 2) and � = 00 we have G(z) = G

00

(z)+G

01

(z)+G

10

(z);

G

00

(z) = 1+z(G

00

(z)+G

10

(z)); G

01

(z) = z(G

00

(z)+G

10

(z)); G

10

(z) = zG

01

(z); hen
e

G

12

(z) = G(z) = (1 + z)=(1� z � z

2

). (They're Fibona

i numbers: C

12n

= F

n+2

.)

Similarly G

13

(z) = (1 + z + z

2

)=(1 � z � z

3

) (Narayana numbers); G

23

(z) =

(1+ z+ z

2

)=(1� z� z

2

� z

3

) (Tribona

i numbers). In general, G

1q

(z) = (1+ z+ � � �+

z

q�1

)=(1�z�z

q

) andG

(q�1)q

(z) = (1+z+� � �+z

q�1

)=(1�z�z

2

�� � ��z

q

). But the other

ases don't �t any evident pattern: G

24

(z) = (1+z+z

2

+z

3

�z

4

�z

5

)=(1�z�z

2

�z

4

+z

6

);

G

25

(z) = (1+z+2z

2

+2z

3

+2z

4

�z

5

�z

6

�2z

7

�z

8

�z

9

)=(1�z�z

3

�2z

5

+z

8

+z

10

);

G

35

(z) = (1+ z+ z

2

+2z

3

+2z

4

� z

5

� z

6

� z

8

� z

9

)=(1� z� z

2

� z

4

� 2z

5

+ z

7

+ z

10

).

36. (a) Given a plane partition whose elements P

ij

satisfy 0 � P

ij

� m, P

ij

� P

i(j+1)

,

P

ij

� P

(i+1)j

, and P

ij

= 0 for i > p or j > q � p,
onstru
t an extreme (p=q)-string

as follows: For k = 1, 2, : : : , m, form the tableau shape whose boxes are the elements

with P

ij

� k, and write down its rim representation, as in 7.2.1.4{(13) and (14). (This

will be a binary string of length q that
ontains exa
tly p 1s.)

For example, suppose p = 2, q = 5, m = 6, and
onsider the plane partition

441

210

.

The rim representations for k = 1, 2, 3, 4, 5, 6 are respe
tively 10100, 01010, 01001,

January 13, 2024

126 ANSWERS TO EXERCISES 7.2.2.3

Gessel

oordinates

matrix
oordinates

Cartesian
oordinates

stru
tured

dynami
 programming

quaternary relation

dis
rete Fourier transform

Fourier transform

01001, 00011, 00011; and the
on
atenation of those strings is extreme. (This beautiful

onstru
tion, devised by Ira Gessel in Mar
h 2020, is
learly reversible.)

(b) Let r = nmod q. Then

pqn

is e

(p�r)(q�r)

(bn=q
), if r < p; 1, if r = p;

e

pr

(dn=qe), if r > p.

39. Ea
h point (x; y; z) satis�es three equations in three unknowns, so the respe
tive

verti
es are ((�140; 0; 0), (75; 75;�100), (0; 252;�280), (40;�100;�200), (90;�50; 0),

(140; 50; 0), (�240; 0; 200), (140; 0; 0), (240; 0; 200), (�140;�50; 0), (�90; 50; 0), (�40;

100;�200), (0;�252;�280), (�75;�75;�100)). Then the seven hexagons 023 ���

310 ��� 501 ��� 054 ��� 460 ��� 206, 134 ��� 421 ��� 612 ��� 165 ��� 501 ��� 310, : : : ,

612���206���460���643���356���165 do the job, be
ause we
an
onstru
t a model

(with sti� paper or
omputer graphi
s). [Stru
tural Topology #13 (1986), 69{80.℄

40. The simplest example whose histos
ape is not a 3VP is the identity matrix (

1 0

0 1

),

be
ause more than three edges (in fa
t, �ve of them) tou
h vertex (1; 1; 1). Moreover,

the edge from (1; 1; 1) to (1; 1; 0) is adja
ent to four fa
es! [Beware: The standard

row-and-
olumn
onvention for
oordinates ij of a matrix are sometimes
onfusingly at

odds with the standard Cartesian
oordinates (x; y; z) of three-dimensional geometry.℄

In general,
onsider the histos
ape for (

a b

 d

) when a = maxfa; b;
; dg and b �
. It

fails to be 3VP when d > b, be
ause the
ubies (0; 0; b) and (1; 1; b) have a boundary

edge in
ommon. A milder violation o

urs when a > b and
 > d, be
ause four fa
es

meet at vertex (1; 1; b). Four fa
es meet at that vertex also when a > b = d >
.

But the other
ases are �ne: Case 1, a = b =
 � d. Case 2, a = b > maxf
; dg.

Case 3, a > b =
 = d. Case 4, a > b > d �
. When we take symmetry into a

ount,

these
ases
ontribute respe
tively (

�

10

1

�

+4

�

10

2

�

; 4

�

10

2

�

+8

�

10

3

�

; 4

�

10

2

�

; 8

�

10

3

�

+8

�

10

4

�

) valid

3VPs, a total of 4150.

(And the B

4

histos
apes of 2�2 matri
es with a

ij

< B yield B

4

=3+O(B

3

) 3VPs.)

41. An m�n histos
ape is a 3VP if and only if r(a

(i�1)(j�1)

; a

(i�1)j

; a

i(j�1)

; a

ij

) holds

for 1 � i < m and 1 � j < n, where r is the relation in the previous answer, be
ause

the verti
es (x; y; z) for whi
h x = i and y = j depend only on those four matrix entries.

The best way to enumerate the solutions to a CSP whose relations are enfor
ed in

su
h a stru
tured manner is to use the te
hniques of \dynami
 programming," whi
h

is the topi
 of Se
tion 7.7. This problem o�ers us a ni
e preview of those
oming

attra
tions, be
ause the following remarkable algorithm �nds the total number of m�n

matri
es whose 2 � 2 submatri
es all satisfy an arbitrary quaternary relation r. We

assume that ea
h variable has the domain 0 � a

ij

< t; and we use an (n+1)-dimensional

array of t

n+1

potentially large integers
(x

0

; : : : ; x

n

), all initially 1.

Q1. [Iterate on rows.℄ Do step Q2 for i = 1, : : : , m� 1; then go to Q3.

Q2. [Iterate on
olumns.℄ Do subroutine (i; j) below for j = 1, : : : , n�[i=m� 1℄.

Q3. [Sum.℄ The answer is

P

f
(x

0

; : : : ; x

n

) j 0 � x

0

; : : : ; x

n

< tg.

Subroutine (i; j) is the following: Set q (j � i) mod (n + 1). For all t

n

hoi
es of

(x

0

; : : : ; x

n

) su
h that x

q

= 0,
ompute t sums for 0 � d < t, namely

s

d

X

0�k<t

[r

ij

(k; x

(q+1) mod (n+1)

; x

(q�1) mod (n+1)

; d)℄
(x

0

; : : : ; x

q�1

; k; x

q+1

; : : : ; x

n

);

then set
(x

0

; : : : ; x

q�1

; d; x

q+1

; : : : ; x

n

) s

d

for 0 � d < t. (Noti
e that this
ompu-

tation is rather similar to the dis
rete Fourier transform in Eq. 4.6.4{(40).)

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 127

universal relation

lexi
ographi
ally less

mems

author

downloadable programs

golden ratio

jun
tions

half edges

boundary

line labeling

even/odd
oordinate system

The relation r

ij

in the formula for s

d

is r when j < n; but r

ij

is the universal

relation (always true) when j = n. (One
ould in fa
t let r

ij

be a di�erent quater-

nary relation for ea
h (i; j), where r

in

onstrains the joint values of (a

(i�1)(n�1)

; a

i0

;

a

i(n�1)

; a

(i+1)0

). Imagine the 2� (m� 1)n matrix (

a

00

a

01

:::a

0(n�1)

a

10

:::a

1(n�1)

a

20

:::

a

10

a

11

:::a

1(n�1)

a

20

:::a

2(n�1)

a

30

:::

)!)

The method works be
ause, when subroutine (i; j) begins,
(x

0

; : : : ; x

n

) is the

number of ways to set the initial matrix entries a

i

0

j

0

, for (i

0

; j

0

) lexi
ographi
ally less

than (i; j), so that all
onstraints on those variables are satis�ed and

(a

(i�1)(j�1)

; : : : ; a

(i�1)(n�1)

; a

i0

; : : : ; a

i(j�1)

) = (x

q

; x

q+1

; : : : ; x

n

; x

0

; : : : ; x

q�1

):

About 1.8 teramems of
omputation suÆ
e to show that the desired number of 8�8

matri
es is 1,927,084,607,409,168,698,157,388,476,170,741,096,757,035,906,066. (Those

\mems" were however longer than usual, be
ause 24 gigabytes of memory were needed.)

42. We essentially want to run that algorithm in reverse. To reverse step Q3, let the

ounts
(x

0

; : : : ; x

n

) be renamed

j

for 0 � j < t

n+1

, in any
onvenient way. Then for

j = 0, 1, : : : , set k k �

j

if k �

j

; but stop when k <

j

. That gives us suitable

values of (x

0

; x

1

; : : : ; x

n

), whi
h will be (a

(m�2)(n�1)

; a

(m�1)0

; : : : ; a

(m�1)(n�1)

). And

we'll want the kth solution for whi
h those n + 1 values are prespe
i�ed.

Similarly, we
an run subroutine (i; j) in reverse, if we're given the t

n+1

ounts

that it ends with, be
ause ea
h of those
ounts was obtained as the sum of at most n

ounts

j

whose sum ex
eeds k. That will give us enough information to determine

a

(i�1)(j�1)

, as well as a new value of k. The remaining problem is then to �nd the kth

solution when the �nal (m� i + 1)n� j � 1 elements are given.

We must rerun the algorithm for ea
h (i; j) = (m� 1; n � 1), (m� 1; n� 2), : : : ,

(1; 1), be
ause the previous
ounts have been dis
arded. However, we
an save time by

leverly omitting the
omputation of
ounts that won't
ontribute to solutions having

the prespe
i�ed �nal elements. (See the author's program HISTOSCAPE-UNRANK.)

The \random" 8 � 8 solution shown here was found by setting k N=�, where

N is the total number of solutions. (It
an be fabri
ated from sugar
ubes.)

0

B

B

B

B

B

B

B

B

B

�

5 4 2 3 2 2 6 3

6 7 9 8 8 8 7 0

5 1 1 6 4 7 7 7

5 3 9 9 1 7 6 2

5 4 5 7 1 1 4 2

7 9 6 7 1 7 7 1

5 2 5 7 2 4 5 2

3 2 9 9 2 3 6 0

1

C

C

C

C

C

C

C

C

C

A

In
identally, this histos
ape has 184 verti
es and 94 fa
es. Only 89 of the verti
es are

visible in this parti
ular view, and only 48 of the fa
es are at least partly visible. There

are 35 T jun
tions, 24 V jun
tions, 42 W jun
tions, and 23 Y jun
tions. When half

edges are for
ed at the boundary, the line labeling problem has six solutions, be
ause

of two independent ambiguities in the \
entral
anyon"; all but four labels are for
ed.

43. It's
onvenient to use the even/odd
oordinate system of exer
ise 7.2.2.1{145, with

ubie (i; j; k) represented by (2i + 1; 2j + 1; 2k + 1). In the following des
ription we

shall use the notation

�

k to stand for kmod 2. Assume that a

ij

< t for all i and j, and

set up a (2m+ 1)� (2n+ 1)� (2t+ 1) array b, initially zero.

January 13, 2024

128 ANSWERS TO EXERCISES 7.2.2.3

square torus

torus

vortex

dynami
 programming

all di�erent

inversions

pi, as random example

First, mark all the
ubies, by setting b

(2i+1)(2j+1)(2k+1)

 1 for 0 � k < a

ij

.

Se
ond, mark all the \visible" fa
es of
ubies, by doing the following for all (i; j; k)

with �{�|

�

k = 111 and b

ijk

= 1: If b

(i�2)jk

= 0, set b

(i�1)jk

 1; if b

i(j�2)k

= 0, set

b

i(j�1)k

 1; if b

ij(k�2)

= 0, set b

ij(k�1)

 1. (We assume that b

ijk

= 0 whenever

i < 0 or j < 0 or k < 0 or i > 2m or j > 2n or k > 2t.)

Third, to mark all the \visible" edges, do the following for all (i; j; k) with �{�|

�

k = 011

and b

ijk

= 1: If b

i(j�2)k

= 0, set b

i(j�1)k

 1; if b

ij(k�2)

= 0, set b

ij(k�1)

 1. Also do

this, for all (i; j; k) with �{�|

�

k = 101 and b

ijk

= 1: If b

(i�2)jk

= 0, set b

(i�1)jk

 1.

Fourth, mark all the verti
es, by doing the following for all (i; j; k) with �{�|

�

k = 001

and b

ijk

= 1: If b

ij(k�2)

= 0, set b

ij(k�1)

 1.

Finally, now that we know the verti
es, we're ready to output the fa
e polygons

(some of whi
h might be \holes" en
losed in a larger polygon). Every vertex will be

part of three polygons, one with
onstant i, another with
onstant j, another with

onstant k. All three
ases are similar; the polygon with
onstant i
an be found as

follows, starting at ijk where �{�|

�

k = 000: \While b

ijk

= 1, do a j-step and a k-step." A

j-step means, \Output vertex (i=2)(j=2)(k=2); set b

ijk

 2; set Æ 2 if b

i(j+1)k

> 0,

otherwise Æ �2; repeat j j + Æ until b

ijk

> 0." A k-step is similar. (The polygon

will have an even number of verti
es, be
ause we alternate j-steps with k-steps.) After

all fa
es with
onstant i have been output, all verti
es will have b

ijk

= 2.

For example,
onsider the histos
ape for (

1

1

1

1

0

1

1

1

1

). It has 16 verti
es: 000, 001, 030,

031, 110, 111, 120, 121, 210, 211, 220, 221, 300, 301, 330, 331. Its i-fa
e polygons

are 000 ��� 030 ��� 031 ��� 001 ��� 000, 110 ��� 120 ��� 121 ��� 111 ��� 110, 210 ���

220 ��� 221 ��� 211 ��� 210, 300 ��� 330 ��� 331 ��� 301 ��� 300; its j-fa
e polygons

are 000 ��� 001 ��� 301 ��� 300 ��� 000, 030 ��� 031 ��� 331 ��� 330 ��� 030, 110 ���

111��� 211��� 210��� 110, 120��� 121��� 221��� 220��� 120; its k-fa
e polygons are

000��� 300��� 330��� 030��� 000, 001��� 301��� 331��� 031��� 001, 110��� 210���

220���120���110, 111���211���221���121���111. It looks like a square torus.

44. (a) Swap 14 with 15.

(b) Swapping adja
ent elements of a vortex
hanges it to a non-vortex. (Moreover,

the 2�2 matrix (

a b

 d

) is a vortex if and only if [a<b℄+ [b< d℄+ [d<
℄+ [
<a℄ is odd.)

(
) First row (1; : : : ; n), se
ond row (2n; : : : ; n + 1), and so on.

(d) True, by answer 40 (
ase 4).

(e) It suÆ
es to verify this for 2 � 2 matri
es, when it's
learly true.

45. Let r

ij

(w; x; y; z) be any 4-ary relation that depends only on the relative order of

four distin
t elements fw; x; y; zg. (There are 2

24

su
h relations.) We
an enumerate all

m�n matri
es whose elements are a permutation of f0; 1; : : : ;mn�1g and whose 2�2

submatri
es satisfy r

ij

(a

(i�1)(j�1)

; a

(i�1)j

; a

i(j�1)

; a

ij

), with a dynami
 programming

algorithm stru
tured as the method of answer 41. But this time we need
ounts

(x

n�t

; : : : ; x

t

) for ea
h of the t

n+1

hoi
es of distin
t elements with 0 � x

n�t

; : : : ; x

t

<

t, where t = in + j when starting subroutine (i; j) and t = in + j + 1 when �nishing.

(For example, when m = n = 5, the number of
ounts is only 13

6

= 1235520 when

(i; j) = (2; 2), but it rises to 25

6

= 127512000 during the last round when (i; j) = (4; 4).)

Two ideas make it possible to represent these numerous
ounts eÆ
iently in mem-

ory. Count
(x

n�t

; : : : ; x

t

) is the number of partial solutions x

0

: : : x

t

whose �nal n+1

elements are x

n�t

: : : x

t

. Those
ounts
an be represented by y

n�t

: : : y

t

, where y

j

is x

j

minus the number of elements \inverted" by x

j

(namely the smaller elements

to its right, as in Se
tion 5.1.1). For example, if n = 3 and t = 8, the �nal four

elements of a permutation x

0

: : : x

8

might be x

5

x

6

x

7

x

8

= 3142; we represent them

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 129

author

downloadable programs

di�erential equation

Gessel

bivariate exponential generating fun
tion

generating fun
tion

re
urren
e relation

dual Lapla
e limit

fundamental
onstants

Lapla
e limit
onstant

Histori
al notes

Lapla
e

Cau
hy

omplex variable theory

Ja
quet

by y

5

y

6

y

7

y

8

= 1132. Or, going the other way, if y

5

y

6

y

7

y

8

= 3141, then x

5

x

6

x

7

x

8

must have been 6251. This representation has the ni
e property that 0 � y

j

� j for

n� t � j � t, so there
learly are t

n+1

possibilities.

Every permutation x

0

: : : x

t

of f0; : : : ; tg yields t + 2 permutations x

0

0

: : : x

0

t+1

of

f0; : : : ; t + 1g, if we
hoose x

0

t+1

arbitrarily and then set x

0

j

 x

j

+ [x

j

�x

0

t+1

℄. For

example, if t = 8 and x

5

x

6

x

7

x

8

= 3142, the ten permutations obtained from x

0

: : : x

8

will have x

0

5

x

0

6

x

0

7

x

0

8

x

0

9

= 42530, 42531, 41532, 41523, 31524, 31425, 31426, 31427, 31428,

or 31429. And the representations y

0

5

y

0

6

y

0

7

y

0

8

y

0

9

of those last �ve elements will simply be

respe
tively 31420, 31421, : : : , 31429! In general, we'll have y

0

j

= y

j

for 0 � j � t, and

y

0

t+1

= x

0

t+1

will be arbitrary; this inversion-oriented representation works beautifully.

Furthermore, there's a beautiful way to arrange the
ounts in memory, so that

subroutine (i; j) doesn't
lobber any of the existing
ounts when it updates t to t+ 1.

These details are all worked out in the author's programWHIRLPOOL-COUNT (online).

The answer to the stated problem is 2,179,875,344,187,129,600 (found in 10 G�).

46. (a) If n > 0, 2Q

n

= 2nU

n

is the number of permutations a

0

: : : a

2n�1

for whi
h

a

2k�1

< a

2k

() a

2k

< a

2k+1

. Hen
e Q

n

ounts those whi
h also have a

0

< a

1

. The

permutations enumerated by U

n+1

have the form a

1

: : : a

2k

(2n + 1)a

2k+1

: : : a

2n

, for

some k, where a

1

: : : a

2k

and a

2k+1

: : : a

2n

are independently
ounted by Q

k

and Q

n�k

.

(b) Hen
e U

0

(z) = Q(z)

2

, where Q(z) = 1+U

1

z

2

=2!+2U

2

z

4

=4!+� � � = 1+zU(z)=2.

The solution to this di�erential equation, with U(0) = 0, turns out to be slightly s
ary:

U(z) =

p

2 tanh(z=

p

2)=(1� (z=

p

2) tanh(z=

p

2)).

[Let p

n

(k) be the number of up-up-or-down-down permutations of the 2n+1 num-

bers f�n; : : : ; 0; : : : ; ng that begin with k. For example, the values (p

n

(�n); : : : ; p

n

(n))

for 1 � n � 3 are (1; 0; 1); (4; 2; 2; 2; 4); (42; 28; 22; 20; 22; 28; 42). Ira Gessel has dis
ov-

ered a surprisingly simple formula for the bivariate exponential generating fun
tion

X

m;n

p

(m+n)=2

(

m�n

2

)

w

m

m!

z

n

n!

=

osh((w � z)=

p

2)

osh((w + z)=

p

2)� ((w + z)=

p

2) sinh((w + z)=

p

2)

:

[To appear (2020); he used exer
ise 7.2.2.2{333.℄ One
an also show that these
urious

numbers satisfy the unusual re
urren
e relation p

n+1

(k) =

P

n

j=�n

jj � kjp

n

(j).℄

(
) Let V (z) = 1=(1� z tanh z) = 1+V

1

z

2

=1!+V

2

z

4

=3!+ � � � , where V

n

= 2

n�1

U

n

,

and let � be the positive number that satis�es � tanh� = 1. We have z tanh z =

P

1

k=0

k

(z��)

k

when z is near �, where

0

= � tanh� = 1,

1

= �+tanh��� tanh

2

� =

�, and

2

= 1�� tanh�� tanh

2

�+� tanh

3

� = 0. The only other root of z tanh z = 1

for jzj � 2� is z = ��. Hen
e the fun
tion V (z) � 2=(�

2

(�

2

� z

2

)) is analyti
 in

jzj � 2�; and we have U

n

=(2n � 1)! = 2

1�n

V

n

=(2n � 1)! = 2

2�n

=�

2n+2

+O(1=(2�)

2n

).

The
onstant � is a well-studied number
alled the dual Lapla
e limit,

� = 1:19967 86402 57733 83391 63698 48641 14194 42615�;

the even more famous Lapla
e limit
onstant

p

�

2

� 1 is

� = 0:66274 34193 49181 58097 47420 97109 25290 70562+:

[Histori
al notes: See P. S. Lapla
e, Connaissan
e des Tems de 1828 (1825), 311{321,

who thought the value was 0.66195. Cau
hy published the
orre
t value of � to �ve de
-

imals in an important memoir of 1831, whi
h laid the foundations of
omplex variable

theory; see his�uvres
ompl�etes (2) 12 (1916), 101, where he also
omputed � and �

2

.℄

To get further a

ura
y, Philippe Ja
quet observes that there are
onstants �

k

with �

k

tan�

k

= �1 and (k� :5)� < �

k

< k�, for all k � 1; for example, �

1

� 2:79839.

January 13, 2024

130 ANSWERS TO EXERCISES 7.2.2.3

meromorphi
 fun
tion

author

internet

all di�erent

XCC problem

rease

on
ave

onvex

Heawood

automorphisms

author

internet

determinant

oplanar

Joa
himsthal

volume

tetrahedron

de la Grange

Lagrange

histori
al notes

roman numerals

Thus z = �i�

k

is another root of z tanh z = 1 and another pole of the meromorphi

fun
tion V (z). (Apparently these, together with z = ��, are the only poles.)

(d) See the author's note \Whirlpool permutations" (May 2020), available online.

47. To formulate an m�n whirlpool puzzle as a CSP, there's one variable x

ij

for ea
h

empty
ell, having as domain the numbers not yet present; those variables must be all

di�erent. Also introdu
e redundant variables r

ij

for 0 � i < m and 1 � j < n, with

binary domains f<;>g,
onstrained to des
ribe the result of
omparing x

i(j�1)

: x

ij

.

Similarly,

ij

des
ribes x

(i�1)j

: x

ij

, for 1 � i < m and 0 � j < n. Finally we
onstrain

(r

ij

;

ij

; r

(i�1)j

;

i(j�1)

) to yield a vortex, for 1 � i < m and 1 � j < n.

(This setup is easily expressed as an XCC problem. For example, puzzle (iv) has

72 primary items, 44 se
ondary items, and 1808 options; it is solved in 800 kilomems.)

Puzzles (i) and (iv) have unique solutions. But puzzle (ii) has none; indeed, two

entries are required to be 4. Puzzle (iii) has two solutions (one
an swap 7$ 8).

(i)

1 3 5 7 9

17 16 15 14 13

23 24 25 11 12

22 21 20 19 18

2 4 6 8 10

; (ii)

3 14 15 9 2

4? 6 5 4?

; (iii)

3 14 15 12 13

7 9 2 6 16

5 20 24 23 17

4 1 25 22 18

8 10 11 21 19

; (iv)

3 13 14 23 15

9 12 2 24 6

10 11 5 8 7

1 20 21 16 25

4 19 18 17 22

:

50. Start with a tetrahedron, and introdu
e a \
rease" in one of its fa
es, either
on
ave

() or
onvex (). That gives us an obje
t with six verti
es, nine edges, two triangular

fa
es, and three quadrilateral fa
es. Now
rease a quadrilateral fa
e, between the two

triangular fa
es; that gives us six quadrilateral fa
es and the desired skeleton:

51. (We've seen this graph before in 7{(57). It's
alled the Heawood

graph, after its dis
overy by P. J. Heawood [Quarterly Journal of Pure

and Applied Mathemati
s 24 (1890), 332{338 and �g. 16 following 386℄,

and it has 336 automorphisms. At present this is its only known signed

skeleton that is realizable as a 3VP, up to automorphism.)

52. Partial results on small graphs are dis
ussed in the author's online note \Signed

skeletons" (April 2020). For example, 13 signed realizations of the 8-vertex graph

are known(!), and there may be others. Does the 3-
ube have more than four?

54. (a) The determinant is zero if and only if fv

0

; v

1

; v

2

; v

3

g are
oplanar; but they

aren't. If it's negative, swap v

2

$ v

3

. (Hen
e the
y
li
 order (v

1

v

2

v

3

) is unique.)

[See F. Joa
himsthal, Crelle 40 (1850), 21{47, who observed that the volume of the

tetrahedron formed by fv

0

; v

1

; v

2

; v

3

g is jD(v

0

; v

1

; v

2

; v

3

)j=6. See also J. de la Grange,

Nouveaux M�em. A
ad. S
ien
es et Belles-Lettres 4 (Berlin: 1773), 85{120, x5.℄

(b) D(v

0

; v

1

; v

2

; v) = 0.

(
) D(v

0

; v

1

; v

2

; v) > 0.

(d) For example use (o

1

o

2

o

3

)

8

, where o

1

= [v is opposite v

1

with respe
t to p

23

℄,

: : : , o

3

= [v is opposite v

3

with respe
t to p

12

℄. (There's no standard
onvention for

numbering o
tants; roman numerals are traditionally used in some arbitrary way.)

(e) With those v

i

, that method gives o
tant 0 whenever x, y, z are all positive.

(f) It's now in o
tant 2, be
ause � > �+
.

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 131

plane in three dimensions

ell

55. (a) A
areful
ase analysis shows that edge v

0

��� v

1

is
on
ave if and only if X

�

interse
ts o
tant 3. Similar
on
lusions hold for v

0

��� v

2

with respe
t to 5, and for

v

0

���v

3

with respe
t to 6.

(b) For example, if � is the angle at edge v

0

���v

1

, we have (v

2

� v

0

) � (v

3

� v

0

) =

kv

2

� v

0

kkv

3

� v

0

k
os �. Choose 0 < � < 180

Æ

if
on
ave, otherwise 180

Æ

< � < 360

Æ

.

57. First, if (x; y; z) is a vertex of X, there must be no edge
ontaining a point (x; y; z

0

)

with z 6= z

0

. (In parti
ular, there must be no vertex (x; y; z

0

) with z 6= z

0

.)

Se
ond, X mustn't
ontain non
ollinear edges whose proje
tions are
ollinear.

For example, if the line segment f(t; 0; 0) j 0 � t � 1g is an edge of X, there

shouldn't also be an edge of the form (u; 0; u). Quantitatively, ea
h edge has the

form f(x

0

+ �t; y

0

+ �t; z

0

+
t) j t

0

� t � t

1

g for some (�; �;
) 6= (0; 0; 0); by the �rst

assumption, we have in fa
t (�; �) 6= (0; 0). Distin
t edges must not have ��

0

= �

0

�.

[Consequently X has no fa
es perpendi
ular to the (x; y) plane. Indeed, every

plane in three dimensions is
hara
terized by an equation of the form ax+ by+
z = d,

where a, b, and
 are not all zero. Sin
e adja
ent edges of a fa
e aren't
ollinear, the

equation for its plane must have
 6= 0. Hen
e we may assume that
 = 1.℄

58. (a) There obviously are 8
ases with one
ubie. Three
ubies that make the \ell"

tri
ube
an be pla
ed in 24 ways. Five
ubies whose
omplement is an \ell"
an also

be pla
ed in 24 ways. Seven
ubies
an be pla
ed in 8 ways. An even number of
ubies

an't make a 3VP with the
enter as vertex. Total, 8+24+24+8 = 64. (In
identally, a

solution with (1, 3, 5, 7)
ubies has respe
tively (0, 1, 2, 3)
on
ave edges at the
enter.)

(b) Only the
ubie in the
orner
losest to the
amera obs
ures the
enter.

(
) This
hart shows the o
tants that
ontain
ubies, when o
tant 7 is
losest:

0 1 2 3

4

5 6

:7

023 102 231 310

:467 546 :675 :754

046 :157 204

315

462 :573

620

:731

015

154 :237 :376 401 540

623

:762

(Noti
e that the rotation x 7! y 7! z 7! x always gives an equivalent jun
tion pattern.)

By exer
ises 54 and 55, the possible labels of a V, W, or Y jun
tion in an HC pi
ture

depend only on whi
h o
tants adja
ent to the
orresponding vertex are o

upied.

(d) By de�nition, the two \bars" of a T must be half edges that point left.

59. (3t+ 2v + 3w + 3y)=2 variables and t+ v + w + y
onstraints.

January 13, 2024

132 ANSWERS TO EXERCISES 7.2.2.3

van Beek

unrealizable

Gardner

K

3;3

interior angles

omplexity

60. (a) (a; b) 2 f41; 51; 33; 62g, where `11' abbreviates (1; 1), et
.

(b) (n;p) 2 f12; 13; 22; 23; 32; 33; 42; 43g; (o; p) 2 f13; 23; 36g.

(
) t+ v + w + y variables and (3t+ 2v + 3w + 3y)=2
onstraints (role reversal!).

(d) The text's model has the ni
e feature that it allows us to dedu
e some labels

immediately (see (24) and (25)). Although we
an dedu
e p = 3 from the two
on-

straints in part (b), the
orresponding inferen
e from (22) is just as easy. The total

size of the new state spa
e, 4

t

6

v

3

w

5

y

, does however tend to be quite a bit smaller

than 4

(3t+2v+3w+3y)=2

; the ratio is (1=2)

t

(3=2)

v

(3=8)

w

(5=8)

y

, whi
h is � :00014 in

example (20). Computational experien
e is generally advisable when
hoosing between

models, be
ause di�erent models typi
ally suggest di�erent bran
hing heuristi
s. [See

P. van Beek, AAAI Conf. 10 (1992), 447{452, Example 3; see also exer
ise 374.℄

61. With 19 primary items fa; b; : : : ; sg and 26 se
ondary items fab; a
; : : : ; rsg (see

(21)), the options are `a ab:< a
:+', `a ab:< a
:>', : : : , `s rs:+ ls:- qs:+', as in exer
ise

7.2.2.1{100. (In general,
ontinuing exer
ise 59, there will be t+6v+3w+5y options.)

62. Change the lower Y labels to `---'. (That �lls in the \hole".)

64. Whenever j is T (l;m; r) or V (l; r) or W (l;m; r) or Y (a; b;
) in H, j is respe
tively

T (r;m; l) or V (r; l) or W (r;m; l) or Y (
; b; a) in H

R

. (This rule de�nes H

R

also in

ases where H is unrealizable as an HC pi
ture.)

Noti
e thatH andH

R

have the same variables and the same domains, but di�erent

relations. The values x

1

: : : x

n

solve H if and only if x

R

1

: : : x

R

n

solves H

R

, where +

R

= +,

-

R

= -, <

R

= >, >

R

= <. (For example, in the re
e
tion of (20) we have a = V (
; b);

the
orresponding
onstraint is (a
; ab) 2 f<+; <>; +>; >-; ><; -<g, whi
h is the same as

(ab; a
) 2 f+<; ><; >+; ->; <>; <-g, whi
h is the same as (ab; a
) 2 f>+; ><; +<; <-; <>; ->g.)

[People often say that mirror re
e
tion inter
hanges left and right, but not top

and bottom. Martin Gardner explains why in his book The Ambidextrous Universe.℄

65. (a) For example, a = V (b;
), b = V (
; a),
 = V (b; a).

(b) H is realizable if and only if ea
h of its
onne
ted
omponents is realizable.

If H is
onne
ted and its jun
tions fj

0

; j

1

; : : : ; j

p�1

g all have type V, we
an assume

that j

k

= V (j

k+�

k

; j

k��

k

) for 0 � k < p, with subs
ripts treated mod p, where ea
h

�

k

is �1. When p = 3, we must have �

0

= �

1

= �

2

. When p = 4, we must not have

�

0

6= �

1

6= �

2

6= �

3

. When p > 4, we
an assume (by swit
hing to H

R

if ne
essary) that

�

0

= �

k

= �

l

= +1 for some 0 < k < l < p. Then H is realized by putting j

0

, j

k

, j

l

at

the verti
es of a triangle, and pla
ing the intervening jun
tions at roughly equidistant

positions near the intervening edges of that triangle|perturbing them slightly so that

ea
h jun
tion is
onvex or
on
ave as desired, when seen from outside the triangle.

(
) The graph of a = b =
 =W (d; e; f), d = e = f =W (a; b;
) is K

3;3

.

(d) The interior angles of a polygon with m verti
es sum to (m� 2)180

Æ

; hen
e at

most m� 3 of them are greater than 180

Æ

.

(e) True. (Just jiggle the jun
tion a little bit.)

66. If indeed this question is re
ursively de
idable, what is its
omplexity?

67. (a) Ea
h \level" has a sequen
e of jun
tions j

1

= W (j

0

; j

0

1

; j

2

), j

2

= Y (j

1

; j

0

2

; j

3

),

j

3

=W (j

2

; j

0

3

; j

4

), : : : , j

9

= W (j

8

; j

0

9

; j

10

), whose
onne
ting lines j

0

j

1

, j

1

j

2

, : : : , j

9

j

10

must all be given the same label: either + or - or <. The standard boundary for
es the

labels <<<<<<<<<< at the bottom, but ---------- on the other levels. These, in turn,

immediately for
e the labels in their vi
inity, so the standard labeling is unique.

(b) Similarly, jun
tions of the form j

0

= V (j

0

0

; j

1

), j

1

= W (j

0

; j

0

1

; j

2

), j

2

=

Y (j

1

; j

0

2

; j

3

), : : : , j

6

= Y (j

5

; j

0

6

; j

7

), j

7

= W (j

6

; j

0

7

; j

8

), j

8

= V (j

7

; j

0

8

), whi
h appear

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 133

Winston

non
ommuting variables

tra
e

free boundary

string polynomials

onse
utive 1s

free boundary

upwards at the right and downwards at the left, for
e the labels from j

0

to j

8

to be

either ++++++++ or -------- or <<<<<<<<. But ++++++++ is ex
luded, be
ause it doesn't

ombine with ++++++++++ or ---------- or <<<<<<<<<< at the bottom.

Let the V jun
tions at the top be t

1

= V (t

2

; t

0

), t

2

= V (t

1

; t

3

), t

3

= V (t

4

; t

2

),

: : : , t

6

= V (t

5

; t

7

), t

7

= V (t

8

; t

6

). We know that t

0

t

1

must be - or >; the same holds

for t

7

t

8

. Hen
e the legal labelings from t

0

to t

8

are ->+<->>-, ->+<->>>, ->+<<+>-,

->+<<+>>, ->+<<<->, ->>-<+>-, ->>-<+>>, ->>-<<->, ->>>+<->, ->>>>>>-, ->>>>>>>,

>-<+>>>-, >-<+>>>>, >-<<->>-, >-<<->>>, >-<<<+>-, >-<<<+>>, >-<<<<->, >>+<->>-,

>>+<->>>, >>+<<+>-, >>+<<+>>, >>+<<<->, >>>-<+>-, >>>-<+>>, >>>-<<->, >>>>+<->,

>>>>>>>-, >>>>>>>>: 4 from - to -, 7 from - to >, 7 from > to -, and 11 from > to >.

The latter
an be used with either ---------- or <<<<<<<<<< at the bottom. So the

total number of boundary labelings is 4 + 7 + 7 + 11 + 11 = 40.

(
) There are exa
tly 40, be
ause ea
h of those 40 boundary-only solutions imposes

exa
tly the same
onstraints on the lines tou
hing the boundary. [P. H. Winston, who

presented this pi
ture as Fig. 3-17 in the se
ond edition of his book Arti�
ial Intelligen
e

(Addison{Wesley, 1984), noted that \The ba
kground border
ontributes
onsiderable

onstraint to line-drawing analysis e�orts." He may not have been aware, however,

that any border
onstrains the interpretation of the interior in the same way!℄

68. (a) These possibilities are essentially for
ed by the de�nition of boundary
y
le.

(b) In ea
h of the following 4� 4 matri
es, the rows and
olumns are indexed by

(>; <; -; +), where rows represent the label of j

k�1

j

k

and
olumns represent the label of

j

k

j

k+1

. The entry is 0 when the row/
olumn labels are illegal; otherwise it is 1 when

there's no jun
tion j

0

k

; otherwise it is (g; l; m; p) when j

k

j

0

k

must be labeled (>; <; -; +).

L =

�

l 0 0 0

l 0 0 0

l 0 0 0

l 0 0 0

�

; R =

�

g g g g

0 0 0 0

0 0 0 0

0 0 0 0

�

; V =

�

1 0 1 0

0 1 0 1

1 0 0 0

0 1 0 0

�

; � =

�

1 0 1 0

0 1 1 0

0 1 0 0

1 0 0 0

�

; W =

�

p 0 0 0

0 0 0 0

0 0 p 0

0 0 0m

�

; Y =

�

m0 0 0

0 0 l 0

0 gm0

0 0 0 p

�

:

(
) Multiply the matri
es of the boundary
y
le together, treating fg; l;m; pg as

non
ommuting variables. The diagonal entries of the resulting matrix then spe
ify the

permissible labelings of the internal lines. For example, the boundary
y
le of (20) gives

VWYWVWVWYW =

�

3pmpppmp 0 2pmpppmp 0

0 0 0 0

2pmpppmp 0 pmpppmp 0

0 0 0 0

�

;

hen
e the boundary (in isolation)
an be labeled four ways, with j

�1

j

0

labeled > in three

ases and - in the other. (The sum of diagonal elements is
alled the \tra
e.") In all

four
ases the interior labels are respe
tively +-+++-+; hen
e (20) has a free boundary.

This free-boundary-testing algorithm needn't implement arithmeti
 on string poly-

nomials in full generality. For ea
h matrix entry, it needs to remember only whether

that entry is (i) zero, (ii) a multiple of a
ertain string �, or (iii) mixed. At the end,

the boundary is free if and only if the sum of the four diagonal elements isn't mixed.

69. The tra
e of the boundary
y
le matrix produ
t W�

n

WV

n

of exer
ise 68 is

F

2

n+1

pp + 0 + F

2

n�1

pp + F

2

n�1

mm. Therefore, to
omplete the labeling, we need to

onsider a sequen
e of n V jun
tions, pre
eded and followed by the same sign. That's

equivalent to binary strings 1x

1

: : : x

n�1

1 with no two
onse
utive 1s|of whi
h there

are F

n�1

(see exer
ise 7.2.1.1{91). Altogether, then, there are F

n�1

(F

2

n+1

+ 2F

2

n�1

)

labelings, of whi
h F

n�1

are standard. (Nitpi
king note: S

1

has a free boundary, by

de�nition, although it
annot be fully labeled.)

January 13, 2024

134 ANSWERS TO EXERCISES 7.2.2.3

bridge

boundary
y
le

tra
e

organ pipe order, inverse

Kane

operator norm

eigenvalues

(a)

a

b

d

e

f

g

h

i

(b)

a

b

d

e

f

g

h

i

(
)

Fig. A{13. Unusual examples of HC pi
tures.

70. There are (1, 9, 1, 1) labelings with the bridge in the middle labeled (+, -, >, <),

respe
tively. (This example shows that an HC pi
ture need not have a boundary
y
le

onsisting of distin
t lines.)

71. No: The HC pi
tures in Figs. A{13(a) and A{13(b) have the same HC network

but di�erent
y
les. (Consequently the algorithm of exer
ise 68(
) must be told the

boundary
y
le as well as the network.)

72. See Fig. A{13(
). (Answer 68(
) gives tra
e(V Y Y VWVW) = 4mmpp+ glpp;

so the boundary
y
le
an be labeled in �ve ways. Only one of those ways, ><++, gives

usable labels to the inner lines, be
ause a V jun
tion doesn't allow --.)

73. (a) Let P be the 4� 4 matrix produ
t j

0

j

1

: : : j

q�1

, and let M =M

0

M

1

: : :M

q�1

.

By indu
tion we
an verify that P

ij

= P

(i�1)(j�1)

for 0 � i; j < 4; P

00

+ P

01

= F

q+1

;

P

02

+ P

03

= P

20

+ P

21

= F

q

; P

22

+ P

23

= F

q�1

; and M

ij

= P

(2i)(2j)

� P

(2i)(2j+1)

for

0 � i; j < 2. Hen
e tra
eP = P

00

+ P

11

+ P

22

+ P

33

= P

00

+ P

00

+ P

22

+ P

22

and

tra
eM =M

00

+M

11

= P

00

�P

01

+P

22

�P

23

= P

00

�(F

q+1

�P

00

)+P

22

�(F

q�1

�P

22

).

(b) The matrix produ
ts
an be expressed in
losed form using the identities

A

a

=

�

F

a+1

F

a

F

a

F

a�1

�

; B

b

=

�

F

b+1

�F

b

�F

b

F

b�1

�

; A

a

B

b

=

�

�

a;b

��

a;b�1

�

a�1;b

��

a�1;b�1

�

;

where �

a;b

= F

a+1

F

b+1

�F

a

F

b

=

1

5

(L

a+b+1

+2(�1)

b

L

a�b

). Hen
e �

a;b

��

a�1;b�1

=

1

5

(L

a+b

+4(�1)

b

L

a�b

), and the values of t

p

= tra
e(A

p

B

q�p

) o

ur in a pe
uliar order:

t

1

< t

3

< � � � < t

bq=2

= t

dq=2e

< � � � < t

2

< t

0

; with t

p

= t

q�p

:

The extremes are t

p

+ L

q

= 2F

q

when p 2 f1; q � 1g; t

p

+ L

q

= 2L

q

when p 2 f0; qg.

(
) (Solution by D. M. Kane.) Note that B = XAX, whereX = (

1

0

0

�1

). ThusM is

a produ
t of q As, but withm Xs inserted somehow, where m is the number of swit
hes

between V and � in the
y
le. Our goal is to prove that tra
eM � 2F

q

�L

q

= �F

q�3

.

We
an assume that M = (AXA)A

p

1

(AXA)A

p

2

: : : (AXA)A

p

m

, where p

k

� �1

for 1 � k � m. If all p

k

are nonnegative, tra
eM � 0, be
ause AXA = (

0 1

1 1

).

If p

1

= p

m

= �1, we have M = ABA

p

2

+2

B

p

3

+2

: : : B

p

m�1

+2

. And ABA = BAB

implies that tra
eM = tra
e(BABA

p

2

+1

B

p

3

+2

: : : B

p

m�1

+2

) = tra
e(ABA

p

2

+1

B

p

3

+2

: : : B

p

m�1

+3

) = � � � = tra
e(AB

p

3

+1

: : : B

p

m�1

+p

2

+4

), thus redu
ing m by 2. Therefore

we
an assume that at least one p

k

is �1, but no two �1s are
onse
utive.

Now let kMk be the operator norm of M , namely sup jMxj over all ve
tors x

of length 1. Then we have kAk = kAXAk = � and kAXAXAk = 1. Consequently

kMk � �

n�5

when m � 4. (We save a fa
tor of �

2

when p

k

= �1, � when p

k

� 0.)

Finally, let M have eigenvalues � and

^

�, where j�j � j

^

�j. Then tra
eM = �+

^

�,

and �

^

� = detM = (�1)

q

. So jtra
eM j � j�j+1=j�j � �

n�5

+�

5�n

� F

n�3

, for n > 6.

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 135

transpose of matrix

Hu�man

Lu
as number

free boundary

Sugihara

Draper

Ernst

Alexeev

Histori
al notes

Reutersv�ard

general position

star of David

Ernst

free boundary

74. Let D

0

= I and D

n+1

= D

n

AD

RX

n

, where

R

means left-right re
e
tion and

X

means `
hange A to B and B to A'. Thus D

1

= A, D

2

= AAB, D

3

= AABAABB,

et
. We have D

R

n

= D

T

n

, be
ause A

T

= A and B

T

= B. Hen
e, using the matri
es of

answer 73, D

n+1

= D

n

AXD

T

n

X; and the surprising formula D

n+3

= (

1

�1�n

n�1

�n

2

) arises

by indu
tion for n � 0. Consequently T

n

has tra
e(D

n�1

AD

n�1

A) + L

2

n

= L

2

n

� 1

labelings, when n � 4(!). The same formula holds for n = 3; but T

2

has 14.

76. . [This is a subpi
ture of Figure 9(d) in D. A. Hu�man's 1971 paper.

Examples (24) and (25)
ome from his Figure 8.℄

77. (a) The jun
tions are t

k

= T (t

k�1

; t

k+1

; u

k

), u

k

= V (w

k+1

; t

k

), v

k

= V (w

k

; w

k�1

),

w

k

= W (v

k

; u

k+1

; v

k

), with subs
ripts mod n, for 0 � k < n.

(b) The Lu
as number L

n

. (But only one of these labelings is standard; these

networks have a free boundary. Exer
ise 69 has similar
onsiderations.)

(
) (Solution by K. Sugihara.) The network de�nes a graph that's uniquely

embeddable as an HC pi
ture H in the plane. Suppose H is the proje
tion of some

3VP, X, and let F

k

be the fa
e of X that
orresponds to the region of H bounded

by the polygon (w

k

u

k�1

t

k�1

t

k

u

k

w

k+1

v

k+1

). Let P = (x; y) be a point in H's
enter

region, and let L be the line through P perpendi
ular to the plane of the pi
ture. Then

L interse
ts F

k

at some point (x; y; z

k

). Sin
e the edge u

k�1

w

k

is
onvex, by part (a),

we have z

k

> z

k�1

. But z

n�1

> z

n�2

> � � � > z

0

> z

n�1

is impossible.

[See also the dis
ussion by S. W. Draper in Per
eption 7 (1978), 283{296, as well

as the
omments by Bruno Ernst in Chapter 2 of his book Adventures with Impossible

Figures (1986). Ernst shows the Penrose square and hexagon, together with a di�erent

pentagon(!). The Penrose pentagon of the present exer
ise is #85 in the
omprehensive

website Impossible World by Vlad Alexeev, https://im-possible.info, a gallery

laun
hed in 2001 that features more than 1000 mind-bending images.℄

78. Take a
ube and
atten it so that opposite
orners are near ea
h other. (Here's

a view from the side, only 90% squashed: .) This gives a
rumpled obje
t very

like a hexagonal tile; you
an pla
e su
h \
hips" on a table with any desired overlaps.

Histori
al notes: A
opy of Reutersv�ard's original `Opus 1' is held by Moderna

Museet in Sto
kholm [NMH 42/1981℄. It does not show the boxes in general position|

the blank region in the middle is a symmetri
al \star of David"|so HC pi
ture (32)

is slightly di�erent. He told Bruno Ernst in 1986 that he dis
overed the pattern while

doodling during a boring le
ture about Latin! [See Figure 1 in Chapter 6 of Ernst's book

Opti
al Illusions (1992). Figure 7 in Ernst's Chapter 1 is (26), `perspe
tive japonaise

no. 231 aga', part of a series of more than 2500 artworks now prized by
olle
tors.℄

79. The
entral region has three V jun
tions, whose left lines
an independently be

labeled - or <. Hen
e there are 8 standard labelings|all realizable as in exer
ise 78.

There's a free boundary, sin
e ea
h of the
orners
an be labeled in three ways,

and ea
h of the other six in two ways; these 2

6

3

3

= 1728 boundary labelings all for
e

the same labels inside. So there are 8 � 1728 = 13824 labelings altogether.

80. Image (i) has a unique standard labeling. But (ii) has 33;554;432 = 2

25

, be
ause

ea
h of 25 interior \box tops" has a V jun
tion that
an be labeled in two ways.

Image (iii) shows what happens when the 36
ells of the 6� 6 hexagonal rhombus

are partitioned into three independent sets of 12. One set of twelve boxes is pla
ed in

front, another in ba
k. The front ones are labeled uniquely. The ba
k ones are labeled

uniquely at the edges, but in �ve ways when they appear only as a Y in the interior.

The middle ones ea
h have two labelings of a W near the edges (ex
ept at the very

January 13, 2024

136 ANSWERS TO EXERCISES 7.2.2.3

squashed boxes

bary
entri

oordinates

general position

Dynami
 programming

planar graph

ba
kground plane

bottom), but nine in the interior (when they show up as an un
onstrained Y with three

Ws). Altogether 11;809;800;000 = 5

5

2

6

9

5

standard labelings.

In image (iv) there's
lo
kwise overlapping in the outer loop, en
losing a loop with

ounter
lo
kwise overlapping; but it's realizable with \squashed boxes." As with the

other three images, a large number of T jun
tions makes the labelings fa
tor into small

independent subnetworks, and we �nd 5;242;880 = 2

20

�5 standard labelings altogether.

[An interesting mapping was used to draw these images: If x, y, and z are ea
h

�1,
orner (x; y; z) of the box in row i and
olumn j of the array is assigned to point

(6i+ j� 2y� 2z;�i+5j +2x+2z;�5i� 6j � 2z+2y) in bary
entri

oordinates. (At

most seven
orners of ea
h box are visible|all ex
ept
orner (1; 1;�1).) With this

s
heme, all points where the edges of two boxes interse
t are distin
t, and those points

are also distin
t from all
orner points; thus the images appear in general position.℄

81. (a, b) When m = n = 6 there are 85 Boolean variables, 50 ternary
onstraints; in

general there arem(n�1)+(m�1)n+(m�1)(n�1) Boolean variables and 2(m�1)(n�1)

ternary
onstraints. Ea
h
onstraint has the form [A<B ℄+[B<C ℄+[C <A℄ 2 f1; 2g.

Dynami
 programming works well, as in exer
ise 41, and this problem is
onsider-

ably easier than that one: Let box (i; j) in row i,
olumn j for 0 � i < m and 0 � j < n

be adja
ent to boxes (i; j + 1), (i + 1; j), and (i + 1; j + 1); and
onsider the number

n

(x

1

; : : : ; x

m�1

) of m � n solutions with x

j

= [(i�1; n�1)< (i; n�1)℄: After setting

1

(x

1

; : : : ; x

m�1

) 1, we
an readily
ompute the 2

m�1

ounts

n+1

(x

1

; : : : ; x

m�1

)

from the 2

m�1

ounts

n

. For example, when m = 3 we have

n+1

(0; 0) = 13

n

(0; 0) +

11

n

(0; 1) + 9

n

(1; 0) + 6

n

(1; 1);

n+1

(0; 1) = 11

n

(0; 0) + 12

n

(0; 1) + 10

n

(1; 0) +

9

n

(1; 1);

n+1

(1; 0) =

n+1

(0; 1);

n+1

(1; 1) =

n+1

(0; 0). (These 2

2m�3

oeÆ
ients are

themselves ea
h pre
omputed in O(m) steps by solving a small-and-simple CSP.)

The total number of solutions is t

m;n

=

P

f

n

(x

1

; : : : ; x

m�1

) j 0 � x

k

� 1g.

For example, (t

3;1

, t

3;2

, t

3;3

, : : : , t

3;n

, : : :) = (4, 162, 6570, : : : , d
r

n

e, : : :), where r =

(41+

p

1609)=2 � 40:556 and
 = (1609+31

p

1609)=28962 � :0985. We also have t

6;6

=

22406540276117433798 � 2

64:28

; t

10;10

= 2333623171515704644702 : : : 99558 � 2

193:89

.

83. Regarding H as an embedded planar graph, let F be the set of its fa
es. Ea
h

f 2 F will
orrespond to part (or all) of some fa
e

^

f of X|ex
ept that H's exterior

fa
e f

0

will
orresponds to a \ba
kground plane"

^

f

0

, whi
h is suÆ
iently distant that

it doesn't
on
eal any of X.

For ea
h line of H that is labeled < or >, introdu
e a new \shadow jun
tion" at

the midpoint of that line; and let J be the set of all jun
tions (shadow or not). Ea
h

jun
tion j of type V, W, or Y will
orrespond to a vertex |̂ of X. Every remaining

jun
tion j will
orrespond to an arti�
ial vertex |̂, namely the point of X or of the

ba
kground plane that lies just behind the point (x

j

; y

j

) of H.

Now use the following
hart to establish relations between jun
tions and fa
es:

jl r

A

B C

j2B

j2C

j�A

l2B

l�A

l�C

r2C

r�A

r�B

jl r

A

B C

j2B

j2C

j�A

l2B

l�A

l�C

r2C

r�A

r�B

jl r

m

A

B C

j2B

j�A

j�C

l2B

l�A

r2C

r�A

m2B

m�C

jl r

m

A

B C

j2C

j�A

j�B

l2B

l�A

r2C

r�A

m2C

m�B

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 137

stri
t inequality

linear programming

Sugihara

strongly realizable

Li
htenstein

3SAT

planar

orthohedral

histos
ape

omplexity

Kirousis

Papadimitriou

Sugihara

j

l

A

B

j2A

j2B

l2A

l�B

j

l

r

A

B

j2B

j�A

l2A

l�B

r2A

r�B

j

r

A

B

j2A

j2B

r2A

r�B

j

l

A

B

j2A

j2B

l2B

l�A

j

l

r

A

B

j2A

j�B

l2B

l�A

r2B

r�A

j

r

A

B

j2A

j2B

r2B

r�A

a

l

j

b

r

A B

C

j2A

l2C

l�A

a2A

a�B

j2B

r2C

r�B

b2B

b�A

a

b

j

A B

C

j2A

j2B

j2C

a�B

b�C

�A

a

b

j

A B

C

j2A

j2B

j2C

a�B

b�C

�A

l

r

j

A

B

C

j2B

j2C

j�A

l2A

l�B

r2A

r�C

a

b

j

A

B

C

j2A

j2B

j2C

a�C

b�B

�A

a

b

j

A

B

C

j2A

j2B

j2C

a�C

b�B

�A

Here `(j 2A, j � A, j �A)' means \|̂ lies (in, behind, in front of) the plane of

^

A."

To represent those relations linearly, we introdu
e a real variable z

j

for ea
h j 2 J ,

meaning that |̂ = (x

j

; y

j

; z

j

), where x

j

and y

j

are given
onstants. We also introdu
e

three real variables (a

f

; b

f

;

f

) for ea
h f 2 F , meaning that plane

^

f
onsists of all

(x; y; z) for whi
h ax+by+z+
 = 0. (See answer 57.) By
onvention, point (x; y; z) lies

behind point (x; y; z

0

) if and only if z > z

0

. Hen
e j 2 A() a

A

x

j

+b

A

y

j

+z

j

+

A

= 0;

j � A () a

A

x

j

+ b

A

y

j

+ z

j

+

A

� 1; j � A () a

A

x

j

+ b

A

y

j

+ z

j

+

A

��1.

(A
tually `> 0' and `< 0' were expe
ted here instead of `� 1' and `��1'; but stri
t

inequality is diÆ
ult to deal with, in general, while the theory of linear programming

handles nonstri
t inequality with ease. Fortunately the two notions are equivalent in

this
ase: If there's a solution to the stri
t inequalities, the nonstri
t ones will be satis-

�ed after we multiply all variables fa

f

; b

f

;

f

; z

j

g by a suitably large positive
onstant.)

[This
onstru
tion is based on Chapter 3 of K. Sugihara's book Ma
hine Interpre-

tation of Line Drawings (1986), where a
onsiderably more general problem is treated.

It is unknown whether or not this linear system is suÆ
ient for a 3VP X to exist.℄

85. No|it's strongly realizable as a 3VP. (Start by realizing .)

86. See J. Computer and System S
ien
es 37 (1988), 14{38. The
onstru
tion is based

on D. Li
htenstein's theorem [SICOMP 11 (1982), 329{343℄ that 3SAT is NP-
omplete

even when the
lauses are planar and severely restri
ted.

(The authors show, however, that labelability
an be de
ided in linear time if the

HC pi
ture arises from an \orthohedral" 3VP, in whi
h every plane fa
e is perpendi
ular

to the x-, y-, or z-axis. For example, a histos
ape is orthohedral. In su
h a
ase all

angles
an be assumed to be multiples of 60

Æ

. Furthermore, the two entries of Table 1

for whi
h a V jun
tion has a + label
an arise only for 60

Æ

angles; the other four

possibilities for V
an arise only for 120

Æ

angles.)

87. If indeed this question is re
ursively solvable, what is its
omplexity? [Partial

results were given by Kirousis and Papadimitriou in the paper just
ited. K. Sugihara

presented polynomial time ne
essary and suÆ
ient
onditions for strong realizability,

in his book
ited in answer 83, based on a related but di�erent mathemati
al model of

the problem. Consequently the realizations
onstru
ted there aren't 3VP in general.℄

90. Repla
e (13; 14) by (2; 13) or (4; 14) or (13; 2) or (14; 4) or (14; 13). (And to get

two more solutions,
hange either (12; 6; 13) to (6; 13; 7) or (8; 6; 14) to (6; 7; 4).)

January 13, 2024

138 ANSWERS TO EXERCISES 7.2.2.3

isolated verti
es

Domain
onsisten
y

bitwise
omplement

blurred state

91. Almost true (but false when m = 1). Given any gra
eful labeling l, we obtain 2k

equivalent labelings l(v�) and m� l(v�) when � runs through G's automorphisms. If

those labelings aren't distin
t, there are automorphisms � and � for whi
h l(v�) = m�

l(v�) for all v. But then �

�

� would be an automorphism satisfying l(v�

�

�) = m�l(v);

that is,
omplementation would be an automorphism.

That
an't happen when m > 1: By adding isolated verti
es if ne
essary, we

an assume that the verti
es are f0; : : : ;mg and that l(v) = v for 0 � v � m. The

edge labeled m must be 0���m, and we
an assume that the edge labeled m � 1 is

1���(m�1). Then m is not adja
ent to 1, so
omplementation isn't an automorphism.

93. (a) For example, eliminate all options with l(NY) > l(MA) or l(GA) > l(SC). (Then

5814 options remain, and the running time goes down to 33 gigamems.)

(b) Add a new primary item `*' and the new option `* GA:0 SC:18 NJ:5'. (The

sear
h tree now has 192 nodes. The algorithm of exer
ise 125 solves it with 62 nodes.

Domain
onsisten
y is mu
h more expensive but prunes the tree to only 23 nodes.)

94. LO

0

[l℄ = m� l� LO[l℄, NAME

0

[l℄ = NAME[m� l℄, FIRST

0

[l℄ = m� FIRST[m� l℄,

for 0 � l � m; NEXTL

0

[l℄ = m� NEXTH[l℄, NEXTH

0

[l℄ = m� NEXTL[l℄, for 1 � l � m;

but
hange m+ 1 to �1. (Other settings of FIRST

0

, NEXTL

0

, NEXTH

0

are also possible.)

95. The �rst four real verti
es
an't be f0; m�2; m�1; mg or f0; 1; m�1; mg, be
ause

only one edge
an be labeled 1. Hen
e they are f0; 2;m�1;mg; and LO[m�3℄ = 2.

That for
es LO[m�4℄ = 0, leaving no
hoi
es for LO[m�5℄.

96. The key idea is to have a good way to represent the partial path fragments formed

by the already-
hosen edges. If l is an un
hosen vertex label, let MATE[l℄ = l; if l is
ho-

sen and the endpoint of a partial subpath, let MATE[l℄ be the other endpoint; otherwise

let MATE[l℄ be the bitwise
omplement of the value it had when it was most re
ently an

endpoint, during the ba
ktra
king. For example, the MATE table (MATE[0℄, : : : , MATE[5℄)

at node `405' of (38) is (�5; 1; 2; 3; 5; 4); at node `4052,13' it's (�5; 3; 4; 1; 2;�4).

P1. [Initialize.℄ Set MATE[l℄ l for 0 � l < n, then set l 1.

P2. [Enter level l.℄ If l = n, visit a solution and go to P5. Otherwise set v 0.

P3. [Try LO[n � l℄ = v.℄ Set w v + n � l, v

0

 MATE[v℄, w

0

 MATE[w℄. Go to

P4 if v

0

< 0 or w

0

< 0 or v

0

= w. Otherwise set LO[n � l℄ v, MATE[v℄ �v

0

,

MATE[w℄ �w

0

, MATE[v

0

℄ w

0

, MATE[w

0

℄ v

0

, l l+ 1, and return to P2.

P4. [Try again.℄ Set v v + 1. If v < l and l > 2, go to P3.

P5. [Ba
ktra
k.℄ Set l l � 1, and terminate if l = 0. Otherwise set v LO[n � l℄,

w v+n� l, v

0

 MATE[v℄, w

0

 MATE[w℄. If v

0

� 0 set MATE[v℄ v; otherwise

set MATE[v℄ �v

0

and MATE[�v

0

℄ v. If w

0

� 0 set MATE[w℄ w; otherwise

set MATE[w℄ �w

0

and MATE[�w

0

℄ w. Return to P4.

97. A \blurred state" is obtained from MATE when all the negative entries are repla
ed

by `�'. For example, 1738092 and 1809372 both have (�; 2; 1;�; 4; 5; 6;�;�;�) as

their blurred state. With a suitable hashing s
heme we
an maintain a di
tionary of

all the distin
t blurred states that arise during the sear
h.

We also maintain a list of bran
h spe
s (v

p

; �

p

; o

p

) for p = 1, 2, : : : ; here v

p

is

a value of LO; �

p

is the blurred state if v

p

is
hosen; and o

p

is the bran
h when v

p

isn't. If � represents a blurred state, FIRST(�) represents its �rst bran
h and LOC(�)

represents the
orresponding output node. Both FIRST and LOC are 0 unless
hanged.

In step P1, set p 0 and �

1

to the initial blurred state.

In step P2, \visit" a solution by setting LOC(�

l

) 1.

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 139

breadth-�rst vs depth-�rst

depth-�rst vs breadth-�rst

Adamaszek

Histori
al notes

Abrham

Kotzig

Kl�ve

M
Gill

Ollis

longest
y
le

At the end of step P3, do the following just before returning to P2: Set �

l

to the

urrent blurred state, and set p p + 1, v

p

 v, �

p

 �

l

, o

p

 FIRST(�

l�1

), and

FIRST(�

l�1

) p. If �

l

has o

urred before, jump to the se
ond senten
e of step P5.

Finally, after ba
ktra
king is
omplete, we
an transform the bran
h spe
s into

something like a ZDD with the following pro
edure: \Set z 2, s 1, �

1

 �

1

, o

1

0, LOC(�

1

) z. While s 6= 0 do the following: \Set p LOC(�

s

), q FIRST(�

s

), s

o

s

. While q 6= 0 do the following: \Set q

0

 o

q

, � �

q

. If LOC(�) = 0 and FIRST(�) 6=

0, set o

q

 s, s q, LOC(�) z, z z + 1. If q

0

6= 0, output I

p

= (�v

q

? z: LOC(�))

and set p z, z z + 1; otherwise output I

p

= (�v

q

? 0: LOC(�)). Set q q

0

." " "

The output isn't ne
essarily a true ZDD: Its \variables" have to be understood

orre
tly, it isn't ne
essarily redu
ed, and its instru
tions
an sometimes have the form

I

p

= (�v? 0: 0). But many algorithms that manipulate ZDDs will handle it
orre
tly. For

example, the algorithm of exer
ise 7.1.4{208 will
ount the total number of solutions.

Equivalent nodes o

ur only on the same level, so it might seem that a breadth-�rst

sear
h is needed. But this method
oexists ni
ely with (depth-�rst) ba
ktra
king.

This exer
ise is based on the ideas of M. Adamaszek [J. Combin. Math. Combin.

Computing 87 (2013), 191{197℄, who was the �rst to enumerate gra
eful permutations

for 20 < n � 40. It gives a tremendous speedup over exer
ise 96; for example, when

n = 30 the running time de
reases from 25 teramems to 34 megamems!

[Histori
al notes: Gra
eful permutations were impli
itly introdu
ed by J. Abrham

and A. Kotzig, Cong. Numerantium 72 (1990), 163{174, who proved that they have

exponential growth. T. Kl�ve, IEEE Trans. IT-41 (1995), 279{283,
onsidered them

independently and used them to design
ertain error-
orre
ting
odes. See J. M
Gill

and M. A. Ollis, Dis
rete Math. 342 (2019), 793{799, for further developments.℄

98. (a) Let l

1

and l

2

be the longest two distin
t lengths. If we perturb ea
h point by

less than jl

1

� l

2

j=(2n), we
hange the path length by less than jl

1

� l

2

j. So we may

assume that the points p

1

: : : p

n

= (x

1

; 0) : : : (x

n

; 0) of a longest path have distin
t x's.

The path
an't be longest if max(x

i�1

; x

i

) < min(x

j

; x

j+1

) or if min(x

i�1

; x

i

) >

max(x

j

; x

j+1

) for some 1 < i < j < n: p

1

: : : p

i�1

p

j

: : : p

i

p

j+1

: : : p

2

p

n

would be longer.

Let S be the bn=2
 points with smallest x's, and let T be the other dn=2e points.

No two points of S
an be
onse
utive in the path; otherwise there would also be two

onse
utive points of T . Hen
e we
an assume that S = fx

2

; x

4

; : : : ; x

2bn=2

g.

The maximum path length is therefore (x

1

�x

2

) + (x

3

�x

2

) + (x

3

�x

4

) + � � � =

2

P

T�2

P

S�x

1

+x

n

[n even℄, where x

1

is the smallest x in T and x

n

is the largest x in S.

Similarly, the longest
y
le (p

1

: : : p

n

) has length 2

P

T � 2

P

S � 2x

1

[n odd℄.

(b) A gra
eful permutation with p

n

= p

1

+m yields a
y
le (p

1

: : : p

n

) of length

1 + � � �+ (2m�1) + (p

n

�p

1

) = 2m

2

, whi
h is maximum be
ause

P

T �

P

S = m

2

.

(
) The path length is 2

P

T � p

n

� 2

P

S + p

1

= 1 + � � � + (2m�1) = 2m

2

�m.

99. There are m = 2n + 1 edges. Call S a (d;m)-set if S [f jk � dj j k 2 Sg [fdg =

f1; : : : ;mg. A
anoni
al gra
eful labeling of K

1;1;n

has verti
es 0 and d in the �rst

two parts, where 1 � d � m, and the verti
es S of the third part are a (d;m)-set.

Furthermore, we require that 1 =2 S if d = m, to rule out the
omplementary labeling.

There
learly is no (d;m)-set with d > m. But there are 2

(m�1)=2

(m;m)-sets,

be
ause S must
ontain 1 or m� 1, 2 or m� 2, : : : , bm=2
 or dm=2e.

There's no (d;m)-set when dm=2e < d < m. For S would have to
ontain m,

m� 1, : : : , d+ 1, and then there'd be no way to get edge d� 1.

There's a unique (dm=2e; m)-set, namely S = fm;m� 1; : : : ; dm=2e+ 1g.

January 13, 2024

140 ANSWERS TO EXERCISES 7.2.2.3

re
ursion

breaks re
e
tion symmetry

Histori
al notes

Petrie

Smith

symmetry

Smith

Puget

KP

KC

unique

KC graphs

Finally, if d < dm=2e, a (d;m)-set S must be fm;m�1; : : : ;m�d+1g[S

0

, where

S

0

is a (d;m� 2d+ 2)-set. (An interesting re
ursion!)

So the total number of solutions is

P

dnm

2

(d�1)=2

+

P

dnn+1

1�2

n�1

�1�2[n=1℄.

100. If 1���m,
hange ea
h x

ij

to m�x

ij

. Then if minfx

11

; : : : ; x

n1

g > minfx

1r

; : : : ;

x

nr

g,
hange ea
h x

ij

to x

i(r+1�j)

. Finally, sort the rows so that x

11

< � � � < x

n1

.

101. It appears in level 4, be
ause that pla
ement of vertex 2
reates not only edge 7

(the goal of level 3) but also edge 6. One
an think of it as belonging to both levels.

102. (a) At level 5 we've
reated the

�

5

2

�

edges f1; 2; 3; 4; m� 6; m� 4; m� 3; m� 2;

m� 1; mg; so the algorithm's next step is to
reate edge m� 5. The possibilities are

(i) x

21

= m� 5; (ii) x

51

= 1; (iii) x

41

= m� 3; (iv) x

31

= 4; (v) x

11

= 5.

(b) Moves (i){(v) of part (a) all work, and they ni
ely break left-right symmetry.

There's also one more possibility, namely (vi) x

61

= 3 and x

63

= m � 2; again this

breaks re
e
tion symmetry. [All these
ases will take us through level 6 to level 7.℄

Histori
al notes: K. E. Petrie and B. M. Smith studied K

n

P

2

for n � 5, in order

to test several strategies that exploit symmetry in instan
es of CSP [Le
ture Notes in

Computer S
ien
e 2833 (2003), 930{934℄. Their methods were signi�
antly improved

by B. M. Smith and J.-F. Puget [Constraints 15 (2010), 64{92℄, who
onsidered KP

and KC graphs in general and dis
overed the unique labeling of K

6

P

3

. However, the

method illustrated in Fig. 107 is signi�
antly faster than all of those approa
hes.

103. Instead of �lling the matrix (x

ij

) with expli
it numbers,
al
ulate symboli
ally

with values of the form `m �
' or `
' for small values of
. (See exer
ise 102, and

imagine repla
ing (9, 8, 7, 6, 5) in levels 0 through 5 of Fig. 107 by (m, m� 1, m� 2,

m� 3, m� 4). Noti
e that nodes on level l+1 involve only the values f0; 1; : : : ; lg and

fm;m� 1; : : : ;m� lg, when l < dm=2e.)

Hen
e the top dm=2e levels of this symboli
 tree will be the same for all n, ex
ept

for nodes that have too many rows. It turns out that this tree has only 8910 nodes,

and its maximum level is 23. So we
an't get an edge labeled m� 23 when m > 46.

[The analogous trees for K

n

P

3

and K

n

C

3

have maximum level 52.℄

104. Here is one of several possibilities: (f = 15, e = 14)

f0

f0

1

f0

e

f0e

f

0

f

0

e

f

0e

f

0

f

e0

f

0

e

The nodes on level 2 have respe
tively (5, 6, 3, 3, 5, 6, 3)
hildren; and they lead to

respe
tively (60, 49, 29, 23, 47, 63, 13) solutions on level 16. (Left-right symmetry must

still be broken below the rightmost node: Use
olumn 1, not
olumn 3, on level 3.)

105. For example, the numbers are 1, 177, 12754, 164273 for n = 1, 2, 3, 4; and an

instan
e of K

6

P

4

is exhibited in Fig. 108. But by extending the method used for

r = 3, it appears likely that K

n

P

4

will be ungra
eful for all suÆ
iently large n.

106. Applying exer
ise 127 to this 99-edge graph qui
kly yields many solutions(!), su
h

as

0

�

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27 95 02

25 71 19 77 17 86 08 81 65 91 37 99 01 98 04 87 22

68 24 10 29 74 45 07 18 89 05 96 00 88 03 80 13 94

1

A

:

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 141

Suresh Singh

author

Stappers

mixed-radix representation

OEIS

planar

Stappers

union-�nd

[Smaller examples are also of interest. Consider, for example,

0

�

3 14 15 9 26

22 21 0 27 13

7 2 25 1 4

1

A

;

0

�

3 14 15 9 26 5

32 0 33 2 11 7

19 22 10 29 1 31

1

A

;

0

�

3 14 15 9 26 5 35

12 0 39 1 30 20 4

39 36 2 34 7 25 32

1

A

;

where there are respe
tively 1, 3, and 16 solutions having those top rows pres
ribed.℄

107. Let x

1(2k+1)

= m� x

2(2k+1)

= 4k and x

3(2k+1)

= m� 8k � 1 for 0 � k < dr=2e;

m� x

1(2k)

= x

3(2k)

= 4k � 2 and x

2(2k)

= 8k � 3 for 1 � k � br=2
; here m = 6r � 3

is always odd. (These values are distin
t; for example, the even numbers among them

are f0; 2; : : : ; 2r � 2g together with about 1/4 of the larger even numbers � 6r � 2.)

The di�eren
es between rows 2 and 3 give the odd edges f1; 3; : : : ; 2r � 1g. The

other odd edges
an be found in the di�eren
es between rows 1 and 2 or 3, and between

adja
ent
olumns of row 1. Finally, the even edges fm�(12k+f1; 3; 5; 7; 9; 11g)g are all

present too. [G. Suresh Singh, National A
ademy S
ien
e Letters 15 (1992), 193{194.℄

108. Gra
efulness is known, via exer
ise 127, for 1 � r � 14 at least (thanks to

omputations by the author and Filip Stappers).

109. K

n

C

r

has 2rn! symmetries: We
an re
e
t the
orresponding matrix left$right,

and/or shift its
olumns
y
li
ally, and/or permute its rows arbitrarily.

110. There are

�

n+1

2

�

r edges; and

�

n+1

2

�

mod 4 = (1; 2; 3; 0) when nmod 8 = (1; 3; 5; 7).

Thus K

n

C

r

is ungra
eful when nmod 8 = 1 and rmod 4 2 f1; 2g; when nmod 8 = 3

and rmod 4 2 f1; 3g; when nmod 8 = 5 and rmod 4 2 f2; 3g. (See Fig. 108 for the

ase n = r = 5. There's no restri
tion when nmod 8 = 7.)

111. The odd-degree verti
es are those in the r�2 \middle"
liques, if n is even; other-

wise they're the ones in the two \extreme"
liques. This observation
an sometimes be

used to prune the sear
h tree by ruling out partial solutions whose odd-degree verti
es

have all been labeled. For example, when proving that K

6

P

3

has a unique labeling,

it de
reases the tree size from 225 meganodes to less than 213 meganodes (about 95%).

112. The method of Fig. 107 shows, in fa
t, that K

4

K

4

has eleven

di�erent gra
eful labelings, one of whi
h is shown here. (It needs only

3 G� to dis
over this, with a sear
h tree of 12 million nodes. It needs

0.76 and 190 T� to prove that K

5

K

4

and K

5

K

5

are not gra
eful.)

0

B

�

48 0 39 35

1 17 47 23

38 45 7 2

19 20 5 46

1

C

A

113. No; K

2

�K

2

�K

2

�K

2

an't be gra
eful be
ause it has 8 verti
es. (But every

graph with four edges and � 5 verti
es is gra
eful; see the list following Theorem S.)

115. (a) This is the mixed-radix representation � = [

3;

1;

a

1

;

2;

a

2

;

3;

a

3

;

4;

:::

:::

℄; see 4.1{(9). The

re
urren
e x

1

= �� 3, a

n

= b(n+ 1)x

n

, x

n+1

= (n+ 1)x

n

� a

n

yields (a

1

; : : : ; a

20

) =

(0, 0, 3, 1, 5, 6, 5, 0, 1, 4, 7, 8, 0, 6, 7, 10, 7, 10, 4, 10) [OEIS A075874℄.

(b) (0, 0, 0, 1, 0, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 3, 2, 4, 3, 5) isolated; (1, 1, 1, 2, 2, 2,

3, 3, 3, 2, 3, 3, 3, 4, 3, 5, 3, 5, 4, 6)
omponents. [These 20 graphs are all planar.℄

(
) �(G

�

m

) = 2 for m 2 f1; 2; 3; 9; 10; 12; 15; 17g; �(G

�

m

) = 3 for the other m � 20.

[From this data we might be tempted to
onje
ture that a \random gra
eful

labeling," with m ! 1 edges, is a.s. planar, and 3-
olorable. But F. Stappers has

studied G

�

m

for m � 10000, and found them nonplanar for m = 33, 38, 41, 44, 46{49,

51{52, 54{56, 58{61, and all
ases � 63. On the other hand, they're all 3-
olorable.℄

116. While generating the 16! instan
es, as in the proof of Theorem S, we
an main-

tain
onne
tivity information, be
ause the steps of union-�nd are easily undone (see

Algorithm 2.3.3E). We get

onne
ted

total

= (

864

864

,

1141312

1141312

,

159551124

159601936

,

6537511962

6562523200

,

106698003000

108536168696

,

January 13, 2024

142 ANSWERS TO EXERCISES 7.2.2.3

omplement symmetry

OEIS

�-gra
eful

unique

o
tahedron

C

n

:
y
le graph

symmetri
al

Pegg Jr.

OEIS

y
les

Kotzig

Abrham

795992914532

838037875584

,

2869123162654

3252044834968

,

4974721374674

6508147089024

,

3859250594040

6590461997960

,

1104325114202

3099651627904

,

67540932632

519187026552

) for

7 � n � 17. (Divide all numerators and denominators by 2 to avoid
omplement

symmetry. Values for graphs with fewer edges are tabulated in OEIS A329790.)

117. This goes faster, be
ause the union-�nd algorithm
an be modi�ed to dete
t the

reation of an odd
y
le as soon as it o

urs (see Se
tion 7.4.1.1). The new
ounts

are

8

8

,

22242

22242

,

6317382

6318302

,

427805408

428781978

,

10110694366

10233657368

,

99592576642

103635506314

,

432843270752

479912612982

,

796114433250

1009922060716

,

516439259812

876211145722

,

67540932632

234013536424

, for 8 � n � 17; 2714363642056 altogether (� 0:1297 � 16!).

In
identally, there are 11932174 graphs with 16 edges and at most 17 verti
es, of

whi
h 915503 (about 7.67%) are bipartite.

[When the labelings are also restri
ted to be �-gra
eful, in the sense of exer
ise

138, the results be
ome

6

6

,

6840

6840

,

1855942

1856280

,

124467512

124746754

,

2945525928

2980811422

,

29277794448

30452911120

,

128904318498

142798046522

,

240333763962

304499321272

,

157722174046

267381496426

,

20772768256

72154842584

; 820394039226 altogether (� :0392 � 16!).℄

118. Su
h a graph must have n = 2m=r verti
es; so 2m=r must be an integer > r.

We
an pro
eed as in Theorem S and exer
ise 116, but prune the sear
h by disallowing

partial solutions with more than n nonisolated verti
es, or with any vertex of degree> r.

Examples for small r are easy, and unique: K

3

when r = 2, K

4

when r = 3, and

the o
tahedronK

2;2;2

when r = 4. There are six labelings when (m; r) = (20; 5): Two of

them give C

8

, the other four give C

3

� C

5

. Similarly, (m; r) = (27; 6) yields two gra
eful

labelings of C

9

. A unique labeling appears for (m; r) = (35; 7); its graph is C

3

�C

7

.

When r = 8 we must go up to m = 48. Here there are 14

gra
eful labelings, for eight di�erent graphs. The most symmetri-

al solution, shown here, has a graph with 384 automorphisms.

37 41

3329

1 48

23

2

240

3

45

(All of these
omputations are short; but other methods are

needed for r > 8. See E. Pegg Jr., math.sta
kex
hange.
om/

questions/3246000 (2019), and OEIS A308722. Pegg
onje
tures

that the smallest instan
es for r = 2k > 2 o

ur when m = 3k

2

.)

119. A 2-regular graph with m edges is a disjoint union of
y
les, having a total of m

verti
es. The number of gra
eful labelings for m = 3, 4, : : : , 16, with 0��� (m�1), is

1, 1, 0, 0, 7, 18, 0, 0, 175, 414, 0, 0, 7602, 20846. (Corollary E explains the zeros.)

It's easy to �nd the
y
li

omponents of any given labeling; so we
an identify

isomorphi
 graphs among those labelings. There are [z

m

℄ 1=

Q

n�3

(1� z

n

) di�erent 2-

regular graphs with m edges; hen
e the potential numbers of gra
eful 2-regular graphs,

for those values of m, are respe
tively 1, 1, 0, 0, 2, 3, 0, 0, 6, 9, 0, 0, 17, 21. The a
tual

numbers turn out to be 1, 1, 0, 0, 2, 3, 0, 0, 5, 8, 0, 0, 14, 19. Missing are 2C

3

� C

5

(that is, C

3

� C

3

�C

5

); 4C

3

; 5C

3

, 3C

3

� C

6

, 3C

5

; 3C

3

�C

7

, 2C

3

� 2C

5

.

[In Utilitas Mathemati
a 7 (1975), 263{279, A. Kotzig proved that tC

5

is ungra
e-

ful for all t � 1. And in Congressus Numerantium 44 (1984), 197{219, he showed that

a gra
eful 2-regular graph with t odd
omponents must have at least t(t+ 2) verti
es.

These results a

ount for all of the missing
ases listed above, ex
ept for 3C

3

�C

6

. On

the other hand he showed that C

3

�C

5

�� � ��C

2t+1

is gra
eful, for all t � 1. And with

J. Abrham, he also proved that C

p

�C

q

is gra
eful if and only if (p+ q) mod 4 2 f0; 3g;

see Dis
rete Mathemati
s 150 (1996), 3{15.℄

In
identally, a gra
efully labeled 2-regular graph always leaves one label 2 [0 : :m℄

unused. The unused label was respe
tively (4, 5, : : : , 12) in the
ase m = 16 exa
tly

(311, 1547, 3208, 3510, 3651, 3532, 3241, 1554, 292) times.

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 143

hash
ode

isomorphism
lustering

adja
en
y matri
es

House of Graphs

internet

Brinkmann

Coolsaet

Goedgebeur

M�elot

author

Kotzig

Turgeon

Heawood graph

MCC problem

120. Now there are m = 3t edges and n = 2t nonisolated verti
es, for 2 � t � 7. The

method of exer
ise 118 rapidly gives us gra
eful labelings galore, respe
tively (1, 5, 222,

22806, 2988280, 641731574) of them.

The main diÆ
ulty is to group them eÆ
iently into equivalen
e
lasses of isomor-

phi
 graphs. One good way is to
ompute a \hash
ode" h(G) for ea
h graph G. Let r

1

,

r

2

, : : : be pseudorandom integers in the range 0 � r

j

< 2

30

, and let r

0

= 0. For ea
h

vertex v,
ompute h(v) as follows: Let V

k

(v) be the set of verti
es at distan
e k from v,

and let d(v) be the maximum k with V

k

(v) 6= ;. Set t

w

 2r

k

+ 1 for ea
h w 2 V

k

(v).

Then, for k = d(v), d(v)� 1, : : : , 0,
ompute t

0

w

= t

w

Q

u���w

(2r

2d(v)+1�k

� t

u

) for all

w 2 V

k

(v), and set t

w

 t

0

w

for all su
h w. Let h(v) be the produ
t of all those values

t

0

w

, mod 2

32

. (Noti
e that h(v) is always odd, and h(v) = 1 when v is isolated.)

The hash
ode h(G) = (

P

v

bh(v)=2
)mod 2

32

, summed over all verti
es v, now

has the property that h(G) = h(H) whenever graphs G andH are isomorphi
. Further-

more, with trial and error we
an �nd
onstants r

k

for whi
h h(G) 6= h(H) whenever

G and H are nonisomorphi

ubi
 graphs with at most 14 nonisolated verti
es.

(The adja
en
y matri
es for all
onne
ted
ubi
 graphs with up to 24 verti
es
an

be downloaded in a
ompa
t format from houseofgraphs.org, the \House of Graphs";

and the dis
onne
ted ones
an be readily
onstru
ted from the
onne
ted ones. (See

G. Brinkmann, K. Coolsaet, J. Goedgebeur, and H. M�elot, Dis
rete Applied Math. 161

(2013), 311{314.) For example, there are 509
onne
ted
ubi
 graphs with 14 verti
es,

and 540 altogether. In fa
t, the author's �rst try to
hoose random
onstants r

j

a
tually

was able to
hara
terize uniquely every
ubi
 graph with fewer than 20 verti
es.)

The bottom line is that every
ubi
 graph with at most 14 verti
es is gra
eful,

with only two ex
eptions: 2K

4

when n = 8 and 3K

4

when n = 12. [A. Kotzig

and J. Turgeon proved that the graph tK

n

is gra
eful if and only if t = 1 and

n � 4; see Colloquia Mathemati
a So
ietatis J�anos Bolyai 18 (1976), 697{703.℄ In

fa
t, none of the
onne
ted
ubi
 graphs are the least bit diÆ
ult to label; the two

\least gra
eful" su
h graphs when n = 14 are graph (�) below, with 9526 labelings

and 96 automorphisms, and the Heawood graph 7{(57), with 10436 labelings and 336

automorphisms. (The dis
onne
ted graph 2K

4

� (K

3

P

2

), with 13824 automorphisms,

has only 11 gra
eful labelings.) The \most gra
eful" of the 14-vertex
ubi
s has 3762313

labelings(!) and only the identity automorphism; it's (��) below.

Suppose we prespe
ify the labels 0 = l

0

< l

1

< � � � < l

n�1

= m that are to be used.

Then a
ubi
 gra
eful labeling is the solution to the MCC problem whose primary items

are #1, : : : , #m and l

0

, : : : , l

n�1

, where the l's have multipli
ity 3; the options are sim-

ply `#k l

i

l

j

' for 0 � i < j < n, where k = l

j

�l

i

. We
an assume that l

n�2

= m�1, and

disallow `#(m�1) 1m'. It turns out that only 27028 of the

�

19

11

�

= 75582
hoi
es for the

l's have solutions. The one for labels f0; 1; 2; 3; 5; 6; 7; 10; 11; 14; 15; 16; 18; 21g is unique

(see (����) below); but f0; 1; 2; 3; 5; 6; 10; 11; 16; 17; 18; 19; 20; 21g has 455698 solutions.

0 1 2 3 5 6 10

21 18 16 15 14 11

7

(�) (��) (���) (����)

121. With
onsiderably more
omputation, the results of exer
ise 120
an be extended

to the 204,154,267,353 gra
eful labelings of
ubi
 graphs on 16 verti
es. There are 4207

su
h graphs, of whi
h 4060 are
onne
ted. The eviden
e is overwhelming: Ea
h of

January 13, 2024

144 ANSWERS TO EXERCISES 7.2.2.3

author

House of Graphs

paw

dart

K

n

K

m;n

P

n

C

n

L

m;n

lollipop graph

bridge

paw

the
onne
ted ones has at least 107,291 essentially di�erent gra
eful labelings. (That

\least gra
eful" example is (���) above.) From this
ir
umstantial eviden
e, the author

onje
tures
on�dently that every
onne
ted
ubi
 graph is gra
eful.

Furthermore, all 147 of the dis
onne
ted
ubi
 graphs on 16 verti
es are also

gra
eful, ex
ept of
ourse for 4K

4

. The
losest to being ungra
eful are 2K

4

�

(with 213 labelings) and 2K

4

�P

2

P

2

P

2

(with 1149). With only a bit of trepidation we

may therefore
onje
ture that every
ubi
 graph is gra
eful, ex
ept for 2K

4

, 3K

4

, : : : .

122. Ba
ktra
king via Theorem S, as in exer
ise 116, we
an avoid most of the m!=2

ases by allowing at most 8 of the verti
es f0; 1; : : : ;mg to tou
h an edge. Thus we

readily dis
over that the (1, 2, 7, 23, 122, 888, 11302) distin
t graphs with n = (2,

3, : : : , 8) nonisolated verti
es have respe
tively (1, 2, 13, 157, 3292, 110578, 5903888)

di�erent gra
eful labelings. (Complementary labelings are not
onsidered di�erent.)

All graphs with at most 8 nonisolated verti
es
an be found in the House of

Graphs. And the hash fun
tion in answer 120, but with di�erent r

j

, works for them.

One of the seven graphs with n = 4 nonisolated verti
es, 2K

2

, doesn't have

enough edges to be gra
eful. But the text points out that the other six work out �ne

(indeed, uniquely for K

1;3

, P

4

, C

4

, and K

4

, and up to 5 ways with the paw).

When n = 5, K

2

� P

3

has too few edges; K

2

�K

3

an't be labeled either; and

Corollary E rules out C

5

and K

5

, as well as K

1

��� 2K

2

. The other 18 are gra
eful:

K

1;4

uniquely, and the \dart" K

1

���(K

1

� P

3

) maximally (26 ways).

Cases n = (6, 7, 8) lose respe
tively (4, 7, 19) graphs with too few edges, and

(4, 20, 93) graphs that violate Corollary E. But they do in
lude (109, 845, 11124)

gra
eful graphs. Of
ourse K

1;n�1

is always uniquely gra
eful. The other unique
ases

for n = 6 are K

2

�K

4

, K

3;3

, K

2;2;2

, and the double paw . The other unique
ases

for n = 7 are mostly dis
onne
ted: P

2

� L

3;2

, P

3

� C

4

, C

3

� P

4

, C

3

� C

4

, C

3

� L

3;1

,

P

3

� K

4

, K

3

� K

1;1;2

, K

2

� K

5

; the
onne
ted one is K

1

��� (2K

1

��� 2K

2

). (Here

L

m;n

denotes the \lollipop graph" on m+ n verti
es,
onsisting of K

m

and P

n

joined

by a bridge; L

3;1

is the paw.) There are 10 dis
onne
ted uniquely gra
eful graphs for

n = 8: K

2

� C

6

, 2K

2

�K

1;1;2

, P

3

� C

5

, C

3

� P

5

, K

1;3

� L

3;1

, 2K

2

�K

4

, K

3

� L

4;1

,

K

1;3

� K

4

, P

3

� K

5

, K

3

� (P

2

��� P

3

). And the 19
onne
ted ones likewise have

lots of symmetry: K

1;7

, G

14

, 2K

1

��� 3K

2

, G

16

, 4K

1

��� 2K

2

, 2K

1

��� (K

2

� K

4

),

K

2

���2K

3

, K

1

���G

13

, K

1

��� (2K

1

��� (K

2

�K

3

)), 2K

1

���K

3;3

, K

3

��� (K

1

� 2K

2

),

K

3

���(P

2

�P

3

), K

3

���(2K

1

�K

3

), G

21

, K

1

���G

0

14

, 2K

1

���G

9

, K

2

���G

0

9

, K

2

���G

00

9

,

K

3

���(K

1

� C

4

), where G

m

or G

0

m

or G

00

m

denotes a spe
ial graph with m edges:

G

9

G

0

9

G

00

9

G

13

G

14

G

0

14

G

16

G

21

The
hampions for gra
efulness with 6, 7, and 8 verti
es are

(126 labelings), (680 labelings), and (3778 labelings).

123. (a) No, be
ause edge 11 (3���14, NC���SC) doesn't tou
h edges 12{18 (see (33)).

(b) 11067 (in
luding the solution to Fig. 105(d)).

(
) A rooted labeling always de�nes a
onne
ted graph. We get n nonisolated ver-

ti
es in respe
tively (864, 1122012, 148696974, 5469393230, 75003795230, 436515974020,

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 145

OEIS

author

ba
ktra
k program

downloadable programs

sparse set

bitwise tests

AND

rooted

automorphisms

Dobbelaere

Roki
ki

rooted

1132397252122, 1296227076156, 605872421102, 94984144008, 2895168460)
ases, for

7 � n � 17. The total, 3649515044178, is approximately 17.4% of 16!.

(d) 1, 1, 1, 1, 2, 3, 1, 3, 3, 4, 5, 7, 3, 3, 15, 4. (See OEIS A338988 for further

values. No pattern is evident. Does this sequen
e grow exponentially?)

124. (See exer
ise 122.) The only example with at most 8 verti
es is 4K

1

��� 2K

2

.

(And the only examples with 9 verti
es are , , K

1

��� , and

K

1

��� (2K

1

��� (K

2

� (2K

1

��� K

2

))); these are just four of the 259614
onne
ted

gra
eful graphs. The �rst of these is the only example with at most 14 edges.)

125. After numerous experiments, the author's most su

essful attempt is a ba
ktra
k

program
alled BACK-GRACEFUL, based on Algorithm 7.2.2W (and available online).

It keeps a list of all verti
es in a sparse set, with labeled verti
es at the left. To

enable eÆ
ient bitwise tests, it maintains ebits =

P

k

2

k

[edge k is labeled℄; rebits =

P

k

2

m�k

[edge k is labeled℄; and vbits =

P

k

2

k

[no vertex is labeled k℄. (For example,

if v is an unlabeled vertex with a neighbor labeled k, we
an AND the ve
tor of

permissible labels for v with :((ebits � k) + (rebits � (m�k))).)

The
urrent state is also maintained in four arrays lt , lu , vt , vu : If vertex v is

unlabeled, vt [v℄ = �1 and vu [v℄ is the number of v's unlabeled neighbors. But if v is

labeled k, we have vt [v℄ = k, lt [k℄ = v; lu [k℄ is the number of v's unlabeled neighbors,

and vu [v℄ is the value of vu [v℄ when the label was assigned. If no vertex has been

labeled k, lt [k℄ = �1 and lu [k℄ is unde�ned.

The task at ea
h level is to label a vertex for the longest
urrently unlabeled edge,

unless some unlabeled vertex has only one viable label.

To enumerate all ways that might
reate an edge of length q, we run through all

pairs (j; k) = (0; q), (1; q+1), : : : , (m�q;m) su
h that either (i) lu [j℄ > 0 > lu [k℄; or

(ii) lu [k℄ > 0 > lu [j℄; or (iii) lu [j℄ < 0 and lu [k℄ < 0. In
ase (i), we set v lv [j℄, and

for all v���w with lt [w℄ < 0 we
an label w with k. Case (ii) is similar. Case (iii) is the

more diÆ
ult \unrooted"
ase [see exer
ise 123℄: For all unlabeled v with vu [v℄ > 0, we

prepare to label v with j now, and to label one of v's neighbors with k at the next level,

if that su

eeds. An attempted vertex labeling fails if it dupli
ates a previous edge label.

126. Ea
h polyhedron has 30 edges and 120 automorphisms. Both questions were

apparently answered
orre
tly for the �rst time in O
tober 2020, by B. Dobbelaere and

T. Roki
ki (working independently!). The i
osahedron has only 12 verti
es, and we

easily �nd 24 distin
t solutions, of whi
h 5 in
lude the triangle 0���30���29���0 and

19 have the indu
ed path 30���0���29. All are rooted ex
ept for the solution shown.

(a)

0

21

14

26

23

2

19

10

3

30

29

1

; (b)

24

6

23

27

5

26

22

28

30

1

9

21

29

20

7

3

0

4

2

10

:

The dode
ahedron, with 20 verti
es to label, is mu
h more
hallenging; it has

784,298,856 distin
t labelings, of whi
h 38,092,064 are rooted (4.9%). The algorithm

of exer
ise 125 �nds them in 25.3 teramems, with a 203-giganode sear
h tree.

Notes: The solution shown is one of just 1882 for whi
h all vertex labels lie in

[0 : : 10℄ [[20 : : 30℄. Sin
e one of the edges has length 10, we
annot eliminate both 10

and 20. It turns out that both 10 and 20 must be used, and that exa
tly 9 of the labels

January 13, 2024

146 ANSWERS TO EXERCISES 7.2.2.3

XCC model

online

downloadable programs

Roki
ki

author

relu
tant doubling

restart

OEIS

Ani
k

Kotzig

�-labeling

Gray
ode

automorphisms

must be odd. In
identally, to �nd those 1882, the XCC model of exer
ise 93 a
tually

runs signi�
antly faster than the supposedly \streamlined" algorithm of exer
ise 125.

127. See the online program BACK-GRACEFUL-ROOTED-RANDOMRESTARTS, devel-

oped by T. Roki
ki and the author. As in exer
ise 125, it's based on Algorithm 7.2.2W.

But for speed it
onsiders only labelings that are \rooted" with respe
t to previously

spe
i�ed labels, and it uses simpler data stru
tures to dete
t dupli
ate edges. It ran-

domizes the table of legal moves at every level, and uses relu
tant doubling (Eq. 7.2.2.2{

(131)) to restart periodi
ally in a new, randomly generated part of the sear
h spa
e.

128. There are four with 0 at the Y:

2

8

16

15

0 1;

2

14

16

1

0 15,

8

11

16

7

0 15;

8

9

15

1

0 16. There's

one with 15 at the Y:

6

12

9

3

15 0. There are nine with 16 at the Y, su
h as

3

5

6

10

16 0.

And 33 with other elements at the Y, su
h as

4

2

1

3

5 0 and

8

3

4

6

12 0. Total 47.

129. (a) There are k + 1
omponents and k residues.

(b) If r is bad and xmod k = r, then we
learly
an't set LO[k℄ x. But if r is

good, at least one su
h x is OK.

(
) Say that x is a big vertex if x+ k > m. There are g big good verti
es, lying

in � g
omponents. The largest good verti
es in the other good
omponents are OK.

(d) The verti
es fr; r+k; : : : ; r+pkg
an't be
onne
ted by p edges of lengths > k.

(e) The k+1�G bad
omponents a

ount for at least 2(k+1�G) bad residues,

by (d). Hen
e g � k�2(k+1�G) and we haveG�g � k+2�G. If G �

2

3

(k+2) we have

G�g � (k+2)=3; otherwise either g or G�g is � G=2 > (k+2)=3. Thus d(k+2)=3e =

b(k+4)=3
 is a valid lower bound in all
ases, by (b) and (
). [Experiments for m � 20

suggest that t

k

= b(k + 3)=2
 � [k odd and k = dm=2e � 2 > 1℄ may in fa
t be valid.℄

(f) When k � m=2, all edges
onne
t small to big. The hint follows be
ause the

y
le
ontaining x and x+ k in
ludes the edges y���(x+ k)���x���z.

Let there be
 unusable verti
es, in C
omponents. A
omponent that
ontains

q > 0 unusable verti
es x

1

< � � � < x

q

therefore
ontains at least the 2q + 2 verti
es

y

1

< x

1

< � � � < x

q

< x

1

+ k < � � � < x

q

+ k < z

q

, and it
ontains at least 2q + 1 of

the m� k edges. Consequently m� k � 2
+ C; and the number of usable verti
es is

m+ 1� k �
 � (m� k)=2 + 1 + C=2 � 2 + b(m� k)=2
, unless C =
 = 0.

[Altogether we get the superexponential lower bound t

1

: : : t

m

=
(m!=24

m=2

).℄

130. (a) For example, when n = 4 it's det

�

x

1

+x

1

+x

2

�x

1

�x

2

�x

1

x

2

+x

1

+x

1

�x

1

�x

2

�x

1

x

3

+x

2

+x

1

�

.

(b) The sum of s

2

: : : s

n�1

S(1; s

2

; : : : ; s

n�1

) over all 2

n�2

hoi
es of s

j

= �1 is

2

n�2

times the desired result. For example, when n = 4 we have [x

1

x

2

x

3

℄S(x

1

; x

2

; x

3

) =

(S(1; 1; 1)� S(1; 1;�1)� S(1;�1; 1) + S(1;�1;�1))=4. [See OEIS A033472.℄

131. Empiri
al investigations by D. Ani
k suggest that � (n)=�(n � 1) grows approx-

imately as a + bn + (�1)

n

=n for some
onstants a, b,
. If that is true, � (n) =

exp(n lnn � n ln(e=b) + O(log n)). The exa
t values for n < 30 suggest further that

a � 0:19, b � 0:636, and
 � 0:42. But rigorous proofs are unknown. (This fun
tion

� (n) was introdu
ed by A. Kotzig, who
omputed it by hand for n � 6 in 1984.)

132. Suppose 1 � e < 2

n

, where 2

n

+ e = (e

n

: : : e

1

e

0

)

2

. Then the edge labeled e is

between x = (x

n�1

: : : x

1

x

0

)

2

and x& (x� 1), if e

k

= 1 and e

k�1

= � � � = e

0

= 0 and

x

j

= e

j

� [j >k ℄e

j+1

for 0 � j < n. (This is in fa
t an �-labeling. Noti
e that l(x) is

essentially a left-right re
e
tion of inverse Gray
ode, 7.2.1.1{(8).)

133. Noti
e that T

n

, like P

n

, has two automorphisms; so we divide the total number

of gra
eful labelings by 4. This yields 30 and 988184 for T

3

and T

4

; also approximately

4 � 10

18

and 10

48

for T

5

and T

6

, using ten million estimates with Algorithm 7.2.2E.

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 147

parity

ruler fun
tion �

�-gra
efully

Maheo

Kotzig

Rosa

Rosa

histori
al notes

Kotzig

Histori
al notes

Cahit

El-Zanati

Kenig

Vanden Eynden

136. (a) Suppose � has even parity and � has odd parity. Then l(1�) � l(1�) =

l(0�) � l(0�) � 2

n�2

� 2a

2

n�2

, be
ause a

0

= 0. Hen
e L

1

= L

0

� 2

n�2

� 2a

2

n�2

.

(b) Let a

2

k

= (k + 2)2

k�1

. This
hoi
e makes (a

0

; a

1

; : : :) = (0; 1; 3; 4; 8; 9; : : :),

and we have a

n

=

P

n

k=1

2

�k

for all n. (It
an be shown that a

n

= n + (e

1

2

e

1

+

� � � + e

t

2

e

t

)=2 when n = 2

e

1

+ � � � + 2

e

t

with e

1

> � � � > e

t

� 0.) By part (a),

L

0

= L

1

+ 2

n�2

+ 2a

2

n�2

= L

1

+ (n+ 1)2

n�2

. The other edges 0����1� have labels

fm� k � a

k

� a

2

n�1

�1�k

j 0 � k < 2

n�1

g = fm� k � (n� 1)2

n�2

j 0 � k < 2

n�1

g;

be
ause a

k

+a

2

n�1

�1�k

= a

2

n�1

�1

= (n�1)2

n�2

. Thus L

1

= f1; 2; : : : ; (n�1)2

n�2

g by

indu
tion; and it all works, �-gra
efully. [M. Maheo, Dis
rete Mathemati
s 29 (1980),

39{46; A. Kotzig, Journal of Combinatorial Theory B31 (1981), 292{296.℄

137. (a) n =

P

r

k=0

(t

k

�s

k

+1) verti
es; n�r�1 verti
al plus n�t

r

�1 horizontal edges.

(b) Numbers in ovals don't
hange; in re
tangles they're subtra
ted from 28.

(
) Use a re
tangle for (x; y) when x + y is odd. Label (0; 0) with 0. For ea
h

edge, pro
eeding left to right and bottom to top, make the labels of its endpoints sum

respe
tively to 0, 1, 2, : : : . (This will make the label in a re
tangle equal to the one

below it, and one less than the one above it, when those neighbors exist.)

(d) Yes! In general let �

0

= t

0

, Æ

0

= 0, and �

k+1

= �

k

+ t

k

+ t

k+1

� 2s

k+1

+ 1,

Æ

k+1

= �

k

� Æ

k

� s

k+1

, for 0 � k < r. Then the label of (x; y)
orresponding to (i) is

Æ

x

+ by=2
 when x is even, Æ

x

+ dy=2e when x is odd.

[This in fa
t is an instan
e of �-labeling as in exer
ise 138, where the u's are ovals

and the v's are re
tangles. A. Rosa presented a spe
ial
ase in Lemma 4.3 of his thesis.℄

138. (a) We have v

k

= m� v

k

� m� (m� l) = l > u

j

. Hen
e all the
omplemented

labels ex
eed all the un
omplemented ones, and ju

k

�v

k

j = m�v

k

�u

k

= m�k for all k.

(b) Sin
e C

n

has n edges, Corollary E tells us that nmod 4 must be 0 or 3. But

a bipartite graph has no odd
y
les; hen
e n = 4k. Conversely, the labels 0��� 1���

1��� 2��� 2��� 3���4���4��� 5��� 5��� 6��� 0��� 0 for C

12

reveal a general pattern

that works for all k > 0. (The similar non-� pattern 0���11���1���10���2���9���

4���8���5���7���0 for C

11

shows that C

4k+3

is at least gra
eful, for all k � 0.)

(
) Let u

�

k

= u

m�1

�u

m�1�k

and v

�

k

= v

m�1

�v

m�1�k

. (Equivalently,
hange ea
h

vertex label t to (l� 1� t) mod (m+1). Noti
e that u

m�1

= l� 1 and v

m�1

= m� l.)

(d) . [A. Rosa introdu
ed �-gra
eful graphs, and solved these problems as

well as exer
ise 145(b), in his original paper that introdu
ed gra
eful graphs. His thesis

(1965)
redited A. Kotzig for part (b).℄

139. (a) This is obvious, be
ause u

k

< l � v

k

.

(b) We
an assume that the
entral vertex is labeled 0. Then there are two

solutions, both with leaves labeled f1; 2; 4g.

(
) Suppose the edges of G are u

1

���v

1

, : : : , u

m

���v

m

, and the verti
es of K

m;m

are fa

0

; : : : ; a

m�1

; b

0

; : : : ; b

m�1

g. We use a \
y
li
" analog of the rainbow
opies of K

11

in Fig.110(
): Let the edges of the k-th
opy be (l(u

j

)+k)modm���(l(v

j

)+k)modm,

for 1 � j; k � m. (For example, the three
opies of the path 0���3���1���2 in K

3;3

are a

1

���b

1

���a

2

���b

0

, a

2

���b

2

���a

0

���b

1

, a

0

���b

0

���a

1

���b

2

.)

(d) Simply let the ith
opy v

i

of vertex v have label l(v)+(i�1)m. (Consequently,

by (
), we
an perfe
tly pa
k t

2

m
opies of G into K

tm;tm

; also (2tm+1)t into K

2tm+1

.)

Histori
al notes: I. Cahit proposed the
on
ept of ordering labeling in an un-

published resear
h report at the University of Waterloo [CORR 80-47 (De
ember

1980), 6 pages℄. It was introdu
ed independently by S. I. El-Zanati, M. J. Kenig,

and C. Vanden Eynden, in Australasian J. Combinatori
s 21 (2000), 275{285, who

January 13, 2024

148 ANSWERS TO EXERCISES 7.2.2.3

OEIS

Sheppard

hessboard

Azte
 diamonds

generalized toruses

parity

Snevily

A
harya

Gill

also showed that the graph S

n;2

with 2n edges 0 ��� a

j

��� b

j

for 1 � j � n has an

ordered gra
eful labeling; that graph isn't �-gra
eful when n > 2.

140. (a)

P

m

l=1

Q

m�1

k=0

(min(k+1; l)�max(0; k+ l�m)), sin
e the
hoi
es for ea
h k are

independent and sin
e u

m�1

= l� 1. (See OEIS A005193. Sheppard proved this when

he introdu
ed Theorem S). The values for 2 � m � 8 are 2, 4, 10, 30, 106, 426, 1930.

(b) No simple formula is evident. The values are now 2, 4, 12, 40, 182, 906, 5404.

When m = 16 there are 246,377,199,752,
ompared to 7,614,236,170 for (a).

Divide by 2 if
omplementary labelings are
onsidered to be equivalent.

142. (a) If the elements ofK

a;b

andK

;d

are respe
tively u

i

, v

j

and x

k

, y

l

, the elements

of K

a;b

K

;d

are u

i

x

k

, u

i

y

l

, v

j

x

k

, v

j

y

l

, for 1 � i � a, 1 � j � b, 1 � k �
, 1 � l � d.

The edges are u

i

x

k

���v

j

y

l

, u

i

y

l

���v

j

x

k

, so the produ
t is K

a
;bd

�K

ad;b

.

(b) (i) Think of the bla
k or white squares of the 2m�2n
hessboard,
onne
ted by

bishop moves. Rotate by 90

Æ

to get either an (m+n)�(m+n�1) or (m+n�1)�(m+n)

board,
onne
ted by rook moves, but with right triangles removed from the
orners.

These right triangles a�e
t m� 1 rows/
olumns at the upper left and lower right; they

a�e
t n� 1 rows/
olumns at the lower left and upper right.

(ii) Now the board is (m+n)� (m+n), with n (not n�1) rows/
olumns a�e
ted

at the upper left or lower right. Again the two graphs are isomorphi
 by transposition.

(iii) One of the graphs has b(2m+1)(2n+1)=2
 verti
es; it's an (m+n)� (m+n)

board with m � 1 and n � 1 rows/
olumns a�e
ted at
orners. The other, with one

more vertex, is an (m+n+1)�(m+n+1) board with m and n rows/
olumns a�e
ted.

[When m = n these are the Azte
 diamonds of orders n and n+ 1=2.℄

(iv) Both are generalized toruses (exer
ise 7{137), with o�sets (m;�m) and (n; n).

(v) The graph whose verti
es are binary ve
tors x

1

: : : x

m

y

1

: : : y

n

of given parity.

Ea
h vertex has mn neighbors: Complement one of the x's and one of the y's.

(
) Complementing labels inter
hanges parts; so we need only
onsider (G
H)

0

.

LetG's parts (U; V) have labels l(u), l(v), and letH's parts (X;Y) have labels l(x), l(y).

The new labels l(ux) = l(u) +ml(x), l(vy) = l(v) +ml(y)�m work beautifully, where

m is the number of edges in G. [H. S. Snevily, Dis
rete Math. 170 (1997), 185{194.℄

145. (a) 000 001 010 011 100 101 110 111

(b) Use labels 0, 1, : : : , s for u

0

through u

s

and 0, 1, : : : , t for v

0

through v

t

.

(
) There are m

s+t+1

edges, where m

0

= 0 and m

i+1

= m

i

+ p

s

i

+ q

t

i

+ 1.

(d) Assign the label a

j

+ i to ea
h element u

ji

of U

j

, and the label b

k

+ i to ea
h

element v

ki

of V

k

, where a

0

= b

0

= 0 and a

j+1

= a

j

+p

j

+q

j

0

+1, b

k+1

= b

k

+p

k

00

+q

k

+1;

here j

0

= maxfi j u

j

���v

i

g and k

00

= maxfi j u

i

���v

k

g. The labels are distin
t be
ause

a

j+1

> a

j

+ p

j

, b

k+1

> b

k

+ q

k

. These de�nitions ensure that a

s

i

+ b

t

i

= m

i

; hen
e

the edges of the
aterpillar between U

s

i

and V

t

i

re
eive the labels m�m

i

, m�m

i

� 1,

: : : , m�m

i+1

+ 1. When i = s+ t we have s

i

= s, t

i

= t; the �nal edge label is 1. In

the example, (a

0

; a

1

; a

2

) = (0; 6; 11) and (b

0

; b

1

; b

2

) = (0; 4; 10); see below.

(e) Let (s; t) = (0; r�1); this gives the
aterpillar K

1;r

, whose edges are u

0

���v

0

,

: : : , u

0

���v

r�1

. Then set p

0

= n�1 and q

i

= 0 for 0 � i < r. (See the
ase (3; 4) below.)

(f) Denote the grid points by (x; y) for 0 � x < r and 0 � y < n. Let U

j

be the

points with x + y = 2j, and let V

k

be the points with x + y = 2k + 1, as illustrated

below for n = 5 and r = 4. The edges between U

0

��� V

0

��� U

1

��� V

1

��� � � � are

stair
ase paths. (Hen
e this is a
aterpillar net in whi
h every
aterpillar is simply a

path. See B. D. A
harya and M. K. Gill, Indian J. Math. 23 (1981), 81{94.)

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 149

A
harya

roots of unity

fa
torization

intervals

In the following illustrations, digits ji in an oval signify u

ji

; digits ki in a re
tangle

signify v

ki

; shaded nodes show �nal vertex labels; shaded re
tangles are
omplemented:

0

1

2

6

7

11

12

13

0

1

4

5

6

7

10

11

00

01

02

00

10

20

30

0

1

2

0

3

6

9

00

10

11

12

20

21

22

23

30

31

00

01

10

11

12

13

20

21

22

30

0

2

3

4

8

9

10

11

14

15

0

1

4

5

6

7

11

12

13

15

(g) Yes, they both are:

00

10

11

12

20

2100

01

02

10

11

20

21

22

23

24

30

40

0

3

4

5

10

110

1

2

5

6

9

10

11

12

13

15

17

12

00

10

20 21

11

0100

10

11

12

4

0

2

7 8

3

10

4

5

6

146. Exer
ise 137 applies to P, Q, V, W, and Z; but exer
ise 145 is stronger.

In fa
t, the skeletons of all but the T pentomino are
aterpillar nets; the T does,

however, have 1824 di�erent �-gra
eful labelings. It's easy to de
ompose the others into

small
aterpillars, as in the de
omposition of S below, thereby writing down a labeling

qui
kly by hand|ex
ept that the (unique) de
omposition of U is diÆ
ult to �nd. The

R, V, and W also have surprising de
ompositions into rather large
aterpillars:

00

01

10

11

02

20

00

01

02

10

11

03

00

10

20

11

21

30

00

01

10

20

11

21

4

6

1

0

7

3

6

5

7

1

0

8

00

10

11

22

20

2100

01

10

11

21

20

10

00

11

01

12

02

00

02

01

03

04

05

10

00

11

01

12

13

00

10

01

11

02

12

[See B. D. A
harya, Le
ture Notes in Math. 1073 (1984), 205{211.℄

148. (a) (

P

n

i=1

x

a

i

)(

P

r

j=1

x

b

j

) =

P

m�1

k=0

x

k

is an algebrai
 way to say that fa

1

; : : : ; a

n

g

and fb

1

; : : : ; b

r

g are nonnegative integers whose nr sums a

i

+ b

j

yield f0; : : : ;m� 1g.

(b) Be
ause the mth roots of unity are e

2�ik=m

, the
omplete fa
torization of

(1�x

m

)=(1�x) over the real numbers is (1+ x)

[m even℄

�

Q

dm=2e�1

k=1

(1� 2x
os

2�k

m

+ x

2

).

And any produ
t of palindromials is a palindromial.

(
) Let G(x) = g

0

+ � � �+ g

x

and H(x) = h

0

+ � � �+ h

d

x

d

. Clearly g

0

= h

0

= 1.

Let k be minimal with 0 < g

k

< 1 or 0 < h

k

< 1; say 0 < g

k

< 1. Then h

k

= 0,

be
ause g

�k

= g

k

and g

�k

h

k

+ g

h

0

� 1. But g

k

h

0

+ g

k�1

h

1

+ � � � + g

0

h

k

= 1, and

all terms but g

k

h

0

are 0 or 1. Contradi
tion.

(d) Sin
e g

1

+ h

1

= 1 we may assume that g

1

= 1. Then the nonzero
oeÆ
ients

of G
an be written as a union of disjoint intervals [a

0

: : a

0

+k

0

)[[a

1

: : a

1

+k

1

)[� � � [

[a

t

: : a

t

+ k

t

), where a

0

= 0 and k

0

> 1 and a

i+1

> a

i

+ k

i

. If we shift those intervals

by s whenever h

s

is 1, the union of all of the resulting disjoint sets is [0 : : m).

Let k = k

0

. Clearly h

k

= 1. And we must have k

i

� k for 0 � i � t, to avoid

overlap after shifting by k. Moreover, if k

i

< k for some i, where i is minimal, there

will be a short gap between a

i

+k

i

and a

i

+k that
annot be
overed by any subsequent

shift without overlap. Hen
e all k

i

= k, and T (x) = x

a

0

+ � � �+ x

a

t

.

January 13, 2024

150 ANSWERS TO EXERCISES 7.2.2.3

permutation

M�obius polynomial

Krasner

Ranula

Senderov

Spivak

Beluhov

amazing identity

Stappers

uniquely

(e) We have G(1) = n, F

k

(1) = k, and T (0) = H(0) = 1. So every nonzero term

of T or H is a nonzero term of T (x)H(x) = F

m

(x)=F

k

(x) = F

m=k

(x

k

).

(f) If nr > 1, every fa
torization
ounted byA(n; r)
omes from one that's
ounted

by A(n=k; r) or by A(n; r=l), for some knn or some lnr. In parti
ular, A(p

e

; q

f

) =

A(p

e�1

; q

f

)[e> 0℄ +A(p

e

; q

f�1

)[f > 0℄ + [e= f =0℄. Hen
e A(p

e

; q

f

) =

�

e+f

e

�

.

(g) Let p

i

denote the operation of dividing n by p

i

, and let q

j

denote the operation

of dividing r by q

j

. Then every permutation � of fp

1

; p

2

; q

1

; q

2

g de�nes a fa
torization

F

m

(x) = G

�

(x)H

�

(x), by the rules G

p

i

�

(x) = F

p

i

(x)G

�

(x

p

i

); H

p

i

�

(x) = H

�

(x

p

i

);

G

q

j

�

(x) = G

�

(x

q

j

); H

q

j

�

(x) = F

q

j

(x)H

�

(x

q

j

); G

�

(x) = H

�

(x) = 1. For example,

G

p

1

q

2

p

2

q

1

(x) = F

p

1

(x)F

p

2

(x

p

1

q

2

), H

p

1

q

2

p

2

q

1

(x) = F

q

2

(x

p

1

)F

q

1

(x

p

1

q

2

p

2

).

But we must avoid double-
ounting, be
ause the operations fp

1

; p

2

g and fq

1

; q

2

g

ommute pairwise. There are 14 equivalen
e
lasses of permutations: p

1

p

2

q

1

q

2

�

p

1

p

2

q

2

q

1

� p

2

p

1

q

1

q

2

� p

2

p

1

q

2

q

1

, p

1

q

1

p

2

q

2

, p

1

q

1

q

2

p

2

� p

1

q

2

q

1

p

2

, p

1

q

2

p

2

q

1

, p

2

q

1

p

1

q

2

,

p

2

q

1

q

2

p

1

� p

2

q

2

q

1

p

1

, p

2

q

2

p

1

q

1

, and seven more with p$ q. So A(p

1

p

2

; q

1

q

2

) = 14.

(h) The M�obius polynomial for variables fp

1

; : : : ; p

s

; q

1

; : : : ; q

t

g, when the p's and

q's
ommute pairwise, is (1� p

1

) : : : (1� p

s

) + (1� q

1

) : : : (1� q

t

)� 1.

(i) 1=((1� q

1

) : : : (1� q

t

)� p) =

P

e�0

p

e

(1� q

1

)

�1�e

: : : (1� q

t

)

�1�e

.

[See M. Krasner and B. Ranula
, Comptes Rendus A
ad. S
i. 204 (Paris, 1937),

397{399, as well as V. Senderov and A. Spivak, Kvant 29, 1 (January{February 1998),

10{18, for
omments on parts (b){(d). N. Beluhov
ontributed to parts (a), (e),

(f), (g), and (i). Beluhov has also dis
overed the amazing identity A(p

e

1

p

e

2

; q

e

1

q

e

2

) =

P

k

(�1)

e+k

�

2e

k

�

4

(!); see Enumer. Combinatori
s and Appli
. 2:1 (2022), #S2R6, 1{11.℄

149. (a) Edges p through 2n are de�ned by the vertex labels already given. For the

other p�1 edges we must
hoose the labels 2n�j or 2n�p+j, for 1 � j � bp=2
; there

are 2

bp=2

solutions. (For example, when n = 7 there are two solutions with f14; 11g

in the se
ond part, and four with f14; 9g. One of the former has f0; 1; 2; 6; 7; 8; 12g in

the �rst part; one of the latter has f0; 1; 2; 3; 4; 11; 13g.)

(b) The se
ond part labels are fjn + k j 1 � j < rg [fnrg. For example, K

7;7

an be labeled with f0; 1; 2; 3; 4; 47; 48g and f9; 16; 23; 30; 37; 44; 49g.

150. Not when n; r � 23, a

ording to
al
ulations by F. Stappers. (Is K

n;n

uniquely

gra
eful when n = 3k + 2 is prime?)

155. Primary items f1; : : : ;mg for the ar
 labels, and m primary items vw for the ar
s

v ��! w. Also n se
ondary items v for the verti
es, and q = m + 1 se
ondary items

fh

0

; : : : ; h

m

g for the holders of ar
 labels. There are (m+1)m

2

options: `((y�x) mod q)

vw v:x w:y h

x

:v h

y

:w', for ea
h ar
 v��!w and ea
h x 6= y with 0 � x; y � m.

(We
an greatly redu
e the number of solutions by for
ing some vertex v to be

labeled 0, and for
ing some other vertex w to be labeled with a divisor of q.)

156. a = 7, b = 5. (Subtra
t 3, then multiply by the inverse of 5� 3.)

157. Using exer
ise 155 we qui
kly (14 M�) dis
over exa
tly 48 solutions with l(000) =

0 and l(001) = 1. Ea
h of them belongs to a set of 12 that are mutually equivalent,

via automorphisms and antiautomorphisms followed by possible addition and multi-

pli
ation, just as labelings (d) and (f) are obtained from (b) in Fig. 109. The four

essentially di�erent solutions are represented, lexi
ographi
ally least, by (l(000);::: ;

l(111)) = (0;1;2;5;12;6;8;3), (0;1;2;6;12;8;5;3), (0;1;2;9;6;4;11;8), (0;1;3;10;11;6;2;12).

160. (a) Let d = g
d(l(w) � l(v); q) and q

0

= q=d, so that l(w) � l(v) =
d for some

 ? q

0

. There's a unique

0

su
h that 0 <

0

< q

0

and

0

� 1 (modulo q

0

).

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 151

totient fun
tion

automorphisms

self-
onverse

antiautomorphisms

essentially distin
t

NEXTL

graph representation

There are d solutions to the simultaneous equations (a � l(v) + b)mod q = 0 and

(a � l(w)+ b)mod q = d, namely a = a

k

and b = (�a

k

� l(v)) mod q, where a

k

=

0

+ kq

0

and 0 � k < d. Hen
e we want to prove that a

k

? q for at least one value of k.

Say that the prime p is \in d" if pnq but p

==

nq

0

. (For example, if d = 10 and q = 60,

then only 5 is in d.) We
an write d = rd

0

, where the prime fa
tors of r are in d but

those of d

0

are not. If p divides g
d(a

k

; q) = g
d(

0

+ kq

0

; q) it must be in d; otherwise

it would divide q

0

but not

0

. Therefore g
d(a

k

; q) = g
d(a

k

; r). And the values of

a

k

mod r for 0 � k < d are d

0

opies of f0; 1; : : : ; r � 1g, be
ause q

0

? r.

(b) Exa
tly d

0

'(r) = d

Q

p in d

(1�

1

p

) gra
eful labelings are produ
ed by that
on-

stru
tion. Furthermore, di�erent values of k give a di�erent l

0

: Let u and u

0

be the ver-

ti
es for whi
h u��!u

0

and (l(u

0

)� l(u))mod q = 1. Then (l

0

k

(u

0

)� l

0

k

(u))mod q = a

k

.

(
) It suÆ
es to �nd the essentially di�erent
ases that are normalized, in the sense

that l(v) = 0 and l(w)nq. Begin with the set of all normalized solutions (a), grouping

the solutions for divisor d into equivalen
e
lasses of size d

Q

p in d

(1 �

1

p

) as in (b).

Then, for ea
h automorphism or antiautomorphism �, apply � to a representative

of ea
h
lass. If the result is in a di�erent
lass, after normalization by an aÆne

transformation, merge the
lasses. Repeat until no more merging is possible. (We need

only
onsider enough �'s to generate them all under
omposition.)

161. (a) Denote a labeling by the tuple l(a)l(b)l(
)l(d). If we
hoose v = b and w =
,

the initial aÆne equivalen
e
lasses in answer 160(
) turn out to be f1024g, f4021g for

d = 2 and f1034; 5032g, f2035; 4031g for d = 3, sin
e there are no solutions for d = 1.

This digraph has two automorphisms, () and (b
). It also is self-
onverse, so it

has two antiautomorphisms, one for ea
h automorphism; they are (a d) and (a d)(b
).

Let � = (a d). Then 1024� = 4021 and 2035� = 5032; so the
lasses of equivalent

labelings are f1024; 4021g and f1034; 2035; 4031; 5032g after the �rst step of merging.

Now let � = (b
). We have 1024� = 1204, whi
h normalizes aÆnely to 1024.

So no further merging o

urs, and there are just two essentially distin
t
lasses of

equivalent solutions. (We needn't try � = (a d)(b
), whi
h is generated by the others.)

(Alternatively, we
ould have
hosen v = a and w = b, say. Then the initial

lasses would have been f0143g, f0153g, f0243g, f0253g. The antiautomorphism (a d)

would have merged them to f0143; 0253g and f0153; 0243g. The automorphism (b
)

would then have made no further
hange.)

(b) Choose v = a and w = d, say, getting six initial
lasses f043125g, f015243g,

f031245g, f034215g, f045213g, f053241g. The antiautomorphism (a f)(b e)(
 d) merges

them to f034215; 043125g, f015243g, f031245; 053241g, f045213g; four
lasses only.

164. Set FIRST[l℄ �1 for 0 � l < q. Then do the following steps for l = 1, 2, : : : ,m:

Set v LO[l℄, w (v + l) mod q, t FIRST[v℄, FIRST[v℄ w, NEXT[l℄ t.

(A similar algorithm will
reate arrays FIRSTP and NEXTP with whi
h all pred-

e
essors of any given vertex
an be visited eÆ
iently. We
an also readily
reate

FIRST, NEXTL, and NEXTH from the LO array of a gra
eful undire
ted graph.)

165. (a) Let f(�1) = �1, otherwise f(x) = (a(x� b))mod q. Then LO

0

[(al) mod q℄ =

f(LO[l℄); FIRST

0

[(a(l� b)) mod q℄ = f(FIRST[l℄); NEXT

0

[(al) mod q℄ = f(NEXT[l℄);

NAME

0

[(a(l� b)) mod q℄ = NAME[l℄.

(b) LO, FIRST, and NEXT are un
hanged; NAME

0

[l℄� = NAME[l℄.

(
) LO

0

[q � l℄ = (LO[l℄ + l)mod q; NAME

0

[l℄� = NAME[l℄; FIRST

0

and NEXT

0

must

be
omputed from LO

0

using exer
ise 164.

January 13, 2024

152 ANSWERS TO EXERCISES 7.2.2.3

digits, extended hexade
imal

Karnaugh map

magi
al 4� 4 torus

self-
onjugate

Burnside's Lemma

ongruen
e enumeration

OEIS

totient fun
tion

Hardy

Wright

Hsu

Bloom

Stappers

168. Now q = 20, and D

�

has the same [anti℄automorphisms as D. Choosing v = 000

and w = 001 in answer 160(
) yields respe
tively (46, 48, 14, 0, 0) aÆne
lasses for

d = (1, 2, 4, 5, 10); the
lasses for d = 4 are pairs of labelings, the others are singletons.

Automorphisms merge every
lass for d > 1 with at least one
lass for d = 1. So

we
an
on�ne attention to the 23 labelings with l(001) = 1 and l(010) < l(100).

An antiautomorphism �nally leaves just seven
lasses: f012a
j5g, 013
if28,

016e745gg, f01649ehg, 018aid54, 0196edg4g, f0165i
f8, 01be
9ag, 01be
ajgg,

f0169e
jg, 01ba
568, 01ba
6f8g, f016a
fb8, 016j9
eg, 0198e6b4g, f01358ife,

014eb976, 014hbje6, 017fg56ig, f0135i8fe, 01657fgi, 01b9e476, 01bjeh46g. (Here

the extended hexade
imal digits 0 through j en
ode the labels 0 through 19.)

169. Very mu
h so, with millions and millions of labelings! Here's one

of the 32 solutions for whi
h l(0000) = 0, l(0001) = 1, l(0010) = 2,

l(0100) = 4, l(1000) = 8, and l(1111) = 15, all found in 200 G�. By

arranging the verti
es of this interesting digraph as a Karnaugh map

(see exer
ise 7.2.1.1{17), we
an exhibit it as a \magi
al 4� 4 torus."

0 1 221

4 14 113

8 24 1912

22 20 1615

172. (a) It suÆ
es to
onsider tuples with x

1

= 0. Then D

2

has two
lasses f00; 02g,

f01g

�

, and D

3

has six: f000; 032g, f001; 011; 021; 031g, f002; 010; 022; 030g

�

, f003; 033g

�

,

f012; 020g, f013; 023g

�

. (Those marked with � de�ne a self-
onjugate gra
eful digraph;

the others de�ne a
onjugate pair. For example, f000; 032g gives K

1

��!K

3

, K

3

��!K

1

.)

(b) Use arithmeti
 mod q. If a ? q and aa

0

= 1, de�ne ax = y

1

: : : y

m

and

�ax

T

= z

1

: : : z

m

, where y

l

= a(x

a

0

l

� x

a

0

) and z

l

= 1 � l � y

l

. Reje
t x if x > ax or

x > �ax

T

lexi
ographi
ally, for some a ? q. The a

epted tuples are inequivalent.

(
) The answer is

P

m

a=1

[a? q ℄

P

m

b=0

(f(a; b; q)+g(a; b; q))=(2q'(q)) by \Burnside's

Lemma," where f(a; b; q) and g(a; b; q) are respe
tively the number of x with D(x) =

aD(x) + b and D(x)

T

= aD(x) + b. Let t(�; �; q) = g
d(�; q)[g
d(�; q)n� ℄; this is the

number of x 2 [0 : : q) su
h that �x � � (modulo q), when �; � 2 [0 : : q).

Let f(l; a; b; q) = (a

s

l < l? 1: t(a

s

� 1;�b(a

s�1

+ � � � + a+ 1); q)), where s > 0 is

minimum with a

s

l � l. (All arithmeti
 is mod q.) Then f(a; b; q) =

Q

q�1

l=1

f(l; a; b; q).

Let g(l; a; b; q) = ((�a)

s

l < l? 1: t(a

s

� 1;�b(a

s�1

+ � � �+ a+1)� l(smod 2); q)),

where s > 0 is minimum with (�a)

s

l � l. Then g(a; b; q) =

Q

q�1

l=1

g(l; a; b; q).

(For example, it's 12502550 whenm = 9; see OEIS A341884. The totient fun
tion

'(n) is asymptoti
ally not mu
h less than n. In fa
t, lim inf

n!1

(ln lnn)'(n)=n = e

�

;

see Hardy and Wright, An Introdu
tion to the Theory of Numbers, Theorem 328.)

175. (a) Sin
e l

2k+1

� l

2k

= 2k+1 and l

2k+1

� l

2k+2

= 2k+2, these labels are a
tually

gra
eful for the nonoriented path P

n

. Modulo q = n, the edge labels 2, 4, : : : , n � 2

be
ome ar
 labels n � 2, n� 4, : : : , 2.

(b) Use the labels l

2k

= k, l

2k+1

= r�1�k in the �rst half. Then de�ne l

2r�1�k

=

l

k

+ r+1. (This elegant
onstru
tion is due to D. F. Hsu [Le
ture Notes in Math. 824

(1980), 134{140℄, whose paper with G. S. Bloom [Congressus Numerantium 35 (1982),

91{103℄ introdu
ed the notion of gra
eful digraphs and proved Theorem H.)

176. Let l

0

(v) = (n+ 1)l(v) for v 2 D, l

0

(w

k

) = k for the other verti
es fw

1

; : : : ; w

n

g.

[SIAM Journal on Algebrai
 and Dis
rete Methods 6 (1985), 519{536.℄

177. D = P~

3

, l(v

0

) = 2n+ 1, l(v

1

) = 0, l(v

2

) = n + 1, and l(w

k

) = k for 1 � k � n.

178. Yes, be
ause K

m;n

is �-gra
eful with labels f0; 1; : : : ;m� 1g in one part.

180. (Answer left to the reader: Enjoy! Consider also the analogs of exer
ises 116{120,

as well as the behavior of random gra
eful digraph labelings as m!1. Many results

have been reported by F. Stappers at ar
hive.org/details/gra
eful_digraphs_6.)

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 153

histori
al notes

transitive tournament

Kumudakshi

Carmi
hael

Di
key

Hughes

toleran
e

Stappers

lollipop L

m;n

preorder

182. If D were gra
eful, its ar
 labels would sum to 1 + � � � +m = q(q � 1)=2. That

sum is also
ongruent (modulo q) to

P

v

(d

+

(v)� d

�

(v))l(v), whi
h is even.

183. For ea
h k with 1 � k � m, we
an reverse the orientations on the ar
s labeled k

and m+ 1� k. [See the paper
ited in answer 176, whi
h introdu
ed digra
efulness.℄

185. (a) A;E;C;F;B;D;G;H; I; J;K;L. (Note that A is the transitive tournamentK~

5

.)

(b) C, G, H, I, J, K are not gra
eful; the other six are uniquely gra
eful. (The

lexi
ographi
ally smallest LO[1℄LO[2℄ : : : LO[10℄ tables for A, B, D, L are respe
tively

0040210442, 0010770742, 0010210742, 0017214742; E = B

T

; F = D

T

. Ea
h labeling

an be obtained from any of the others by reversing pairs as in exer
ise 183.)

(
) The four unlabeled tournaments for n = 4 are A

0

, B

0

, C

0

, D

0

, obtained by

removing the bottom verti
es of A, B, C, D. The self-
onverse D

0

is ungra
eful; the

others are uniquely gra
eful, with LO tables 002102 and 001042 for A

0

and B

0

; C

0T

= B.

When n = 3, A

00

is uniquely gra
eful but B

00

is the ungra
eful C~

3

.

(d) Let v = q =

�

n

2

�

+1. Given a gra
eful tournament on verti
es f1; : : : ; ng, with

labels a

j

= l(j), suppose ar
 j��!k is labeled l and ar
 k

0

��!j

0

is labeled q � l. Then

a

k

	a

j

and a

k

0

	a

j

0

are two di�eren
es equal to l, so we have a
y
li
 (v; n; 2)-di�eren
e

set. (We'll have j = k

0

and k = j

0

when l = q=2, but never j = j

0

and k = k

0

.) Con-

versely, by assigning labels from su
h a di�eren
e set, we get a gra
eful tournament if we

de�ne either (j��!k and k

0

��!j

0

) or (k��!j and j

0

��!k

0

) whenever k	j = k

0

	j

0

. [This

onne
tion was apparently �rst noted by Kumudakshi in her Ph.D. thesis (Mangalore:

National Institute of Te
hnology Karnataka, July 2016), Proposition 2.2.5.℄

(e) These residues form a
y
le (1 7 12 10 33 9 26 34 16) that de�nes a symmetri
al

gra
eful tournament, in whi
h u��!v whenever v is one of the next four elements after u.

(But the transitive tournament K~

9

is not gra
eful.) [In pla
e of 7, R. D. Carmi
hael

mentioned the equally good multiplier 16, on pages 437{438 of his Introdu
tion to the

Theory of Groups of Finite Order (1937); he probably learned about this remarkable

di�eren
e set from someone else, so its origin is obs
ure. A
omputer sear
h by L. J.

Di
key has shown that no other
y
li
 di�eren
e sets with � = 2 exist for n � 5000;

see D. R. Hughes, Le
ture Notes in Mathemati
s 686 (1978), 55{58.℄

187. Say G is weakly digra
eful with toleran
e t if it
an be gra
efully oriented using

just m + t ar
s. Cal
ulations by Filip Stappers show that, for all 1044 graphs with

up to 7 verti
es, exa
tly (1013, 26, 4, 1) require toleran
e t = (0, 1, 2, 3). (Only 3K

2

needs toleran
e 3; only 2K

2

, L

3;4

, K

6

, and K

7

need toleran
e 2. For K

7

we
an use

the vertex labels f0; 1; 2; 4; 7; 15; 19g, mod 24, with all ar
s u��!v going from min(u; v)

to max(u; v) ex
ept that 2��!1, 4��!2, 7��!4, 19��!15, 15��!0; the \tolerant" ar
s

15��!7 and 15��!1 also pair up with their reversals 7��!15 and 1��!15.)

It seems likely that all
onne
ted graphs are weakly digra
eful with bounded toler-

an
e, be
ause ea
h modulus q = m+t+1 gives a \fresh start" for a
hieving gra
efulness.

190. The ar
 labels between k and k+ 1 are �(2k+ 1) (modulo q), where q = 2n+1,

ex
ept for two values of k. The ex
eptional values are k = b(n� 1)=2
, when the labels

are �1, and k = n, when they are �(n�(�1)

n

). Altogether, they are therefore �(n) =

f�1;�3; : : : ;�(2n�1)g, be
ause the \missing"
ase �(2k+1) for k = b(n�1)=2
 turns

out to be �(n � (�1)

n

). Finally, �(n) is the same as f�1;�2; : : : ;�ng (modulo q).

[Dis
rete Mathemati
s 261 (2003), 116.℄

191. Regard T as rooted at v, with subtrees T

1

, : : : , T

d

where jT

1

j � � � � � jT

d

j, and

number the verti
es v

0

, v

1

, : : : , v

m

in preorder. Let l(v

0

) = 0; and for k = 1, : : : , dm=3e

let l(v

k

) be the least positive integer su
h that l(v

k

) 6= l(v

j

) and jl(v

k

)�l(parent(v

k

))j 6=

January 13, 2024

154 ANSWERS TO EXERCISES 7.2.2.3

unique

Adams

Appleton

El-Zanati

Vanden Eynden

omplement

exa
t
over

Hartke

�

Osterg�ard

Bryant

El-Zanati

self-
onverse

linearly independent

homogeneous equations

primitive polynomial

jl(v

j

) � l(parent(v

j

))j for 1 � j < k. At most 3(k � 1) values are ex
luded, hen
e

l(v

k

) � m. Let C = fjl(v

k

)� l(parent(v

k

))j j 1 � k � dm=3eg be the \
olors" used.

The remainingm�dm=3e � 2m=3 verti
es are leaves adja
ent to v, by hypothesis.

So we
an label them with the negatives of the unused
olors, �(f1; : : : ; mg n C).

192. The labels f0;1; 2; 5;12; 23; 29g give all di�eren
es f�1;�2; : : : ;�18g (modulo 37),

with �1, �10, �11 o

urring twi
e. For (i), let 0 /��� 1, 2 /��� 29, 12 /��� 23; for (ii),

let 1 /��� 2 /��� 12 /��� 1. For (iii), work modulo 41 and let 0 /��� 36 /��� 18 /��� 31 /��� 0,

1 /���2 /���22 /���28 /���1. [Ea
h of these labelings is essentially unique. The other graphs

on 7 and 8 verti
es that are uniquely rainbow gra
eful are 3K

1

� 2K

2

, 4K

1

�K

1;3

,

3K

1

�K

1;4

, 3K

1

�K

2

� C

3

, 3K

1

�K

2

� P

3

, K

8

.℄

193. P. Adams and J. Appleton (see S. I. El-Zanati and C. Vanden Eynden,Mathemat-

i
a Slova
a 59 (2009), 1{18) found that G

$

is gra
eful ex
ept in the following 18
ases:

For n = 6 verti
es, 4K

1

�K

2

, the
omplement of K

2

. For n = 7, the
omplements

of K

3;3

, K

1;5

, K

2

, and K

1

. For n = 8, the
omplements of K

4;4

, K

3;4

, K

2;6

, K

1;6

,

K

1;5

, K

2;2

, K

3

�K

2

, 4K

2

, K

3

, 3K

2

, 2K

2

, K

1;2

, and K

2

. (The \most rainbow gra
eful"

8-vertex graph is : There are 41,636 essentially di�erent ways to label it!)

[It turns out that 43
opies of K

7

an be pa
ked perfe
tly into K

43

, but not

y
li
ally. On the other hand, 29
opies of 4K

1

�K

2

annot be pa
ked perfe
tly into

K

29

,
y
li
ally or otherwise. It's the smallest example of an m-edge graph whose
opies

an't exa
tly
over K

2m+1

. See S. Hartke, P. R. J.

�

Osterg�ard, D. Bryant, and S. I.

El-Zanati, Journal of Combinatorial Designs 18 (2010), 94{104.℄

194. No; 4K

1

�K

2

is digra
eful (answer 187), yet not rainbow gra
eful

(answer 193). (It has 156 essentially distin
t gra
eful orientations, 18 of whi
h

are self-
onverse. The most gra
eful of these, with 5 labelings, is shown.)

196. (a) There are n

3

� 1 nonzero triples, in equivalen
e
lasses of size n � 1, hen
e

(n

3

�1)=(n�1)
lasses. Ea
h
lass has a unique element whose �rst nonzero
omponent

is 1; thus a

1

= 1 in n

2

lasses, (a

1

; a

2

) = (0; 1) in n, and (a

1

; a

2

; a

3

) = (0; 0; 1) in 1.

(b) a

1

+ 2a

3

� 0 (modulo 3) () a

1

� a

3

. So the answer is f(0; 1; 0), (1; 0; 1),

(1; 1; 1), (1; 2; 1)g. (In general a

1

b

1

+ a

2

b

2

+ a

3

b

3

= 0 has n

2

� 1 nonzero solutions

(a

1

; a

2

; a

3

) in F , belonging to (n

2

� 1)=(n � 1)
lasses, when [b

1

; b

2

; b

3

℄ is nonzero.)

(
) The nonzero ve
tors [b

1

; b

2

; b

3

℄, [b

0

1

; b

0

2

; b

0

3

℄ are linearly independent when one

isn't a multiple of the other. In that
ase the homogeneous equations a

1

b

1

+ a

2

b

2

+

a

3

b

3

= a

1

b

0

1

+ a

2

b

0

2

+ a

3

b

0

3

= 0 have n� 1 nonzero solutions (a

1

; a

2

; a

3

), all equivalent.

[See 7{(57) for the
ase n = 2; see also exer
ise 7{19.℄

197. (a) It's an immediate
onsequen
e of the de�nitions; there are m =

�

n+1

2

�

edges.

(b) If �

3

=

1

�

2

+

2

�+

3

, then �

3p

=

1

�

2p

+

2

�

p

+

3

. Hen
e the other roots

are �

p

and �

p

2

. [And

1

= � + �

p

+ �

p

2

, �

2

= �

1+p

+ �

1+p

2

+ �

p+p

2

,

3

= �

1+p+p

2

.℄

(
) Sin
e �

k+1

=

1

�

k

+

2

�

k�1

+

3

�

k�2

, a

0

1

= a

2

+

1

a

1

, a

0

2

= a

3

+

2

a

1

, a

0

3

=

3

a

1

.

(d) b

0

1

= b

2

, b

0

2

= b

3

, b

0

3

= (b

1

�

1

b

2

�

2

b

3

)=

3

.

(e) Es
hewing parentheses and
ommas, they are 001, 010, 100, 403, 132, 223,

031, 310, 304, 244, 241, 211, 411, 212, 421, 312, 324, 444, 042, 420, 302, 224, 041, 410,

202, 321, 414, 242, 221, 011, 110, 003. Sin
e �

31

= 3, we have �

31+k

= 3�

k

.

(f) Let v = p

2

+ p+ 1. Then f1; �

v

; �

2v

; : : : ; �

(p�2)v

g = f1; 2; : : : ; p� 1g, so the

triples for f1; �; : : : ; �

v�1

g are all the points. The given labels L are the points of the

line [1; 0; 0℄. Hen
e the points of the line [1; 0; 0℄�

k

are (L + k) mod v, and we have a

y
li
 (v; p+ 1; 1)-di�eren
e set. (For example, L = f0; 1; 6; 18; 22; 29g when p = 5.)

(g) Let F be the �eld of p

3e

elements, spe
i�ed by a primitive polynomial mod-

ulo p, and let � be a root of f in F . Then the sub�eld F

0

of p

e

elements is f0; 1; �

v

; : : : ;

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 155

o
tal notation

Kirkman

Gordon

Burnside's lemma

OEIS

El-Zanati

Vanden Eynden

Punnim

bipartite graph

ordered gra
eful rainbow labeling

unique answer

hordless

joke

Stanford GraphBase

Hamming distan
e

K

2;1;1

�

(p

3

�2)v

g, where v = p

2e

+p

e

+1. The polynomial f

0

(x) = (x��)(x��

p

e

)(x��

p

2e

) =

x

3

�

1

x

2

�

2

x�

3

is primitive for F and has
oeÆ
ients in F

0

. Pro
eed as before.

When n = 8 we
an use f(x) = x

9

�x

5

�1. Then ! = �

v

= �

73

= �

8

+�

7

+�

4

+

�+1 is a primitive root for F

0

, and we have f

0

(x) = x

3

�(!

2

+1)x

2

�x�!. Using o
tal

notation with 0 = 0, 1 = 1, 2 = !, : : : , 7 = !

2

+!+1, the points 1, �, �

2

, : : : , �

72

are

001, 010, 100, 512, 777, 603, 451, 655, 131, 602, 441, 755, 423, 175, 242, 304, 276, 044,

: : : , 151, and they yield the gra
eful rainbow labels f0; 1; 17; 39; 41; 44; 48; 54; 62g forK

9

.

[Transa
tions of the Amer. Math. So
. 43 (1938), 377{385. T. P. Kirkman had

dis
overed
y
li
 di�eren
e sets \by a

ident" for the proje
tive planes of orders 2, 3,

4, 5, and 8, in Trans. Hist. So
. Lan
ashire and Cheshire 9 (1857), 127{142. A famous

onje
ture that K

n+1

is rainbow gra
eful if and only if n is a prime power has been ver-

i�ed for all n � 2000000; see D. M. Gordon, Ele
troni
 J. Combin. 1 (1994), #R6, 1{7.℄

199. (a) It suÆ
es to
onsider tuples with x

1

= 0. Then R

2

has two
lasses f00, 01, 03,

04g, f02g, and R

3

has eleven: f000, 011, 015, 050, 054, 065g, f001, 002, 024, 041, 063,

064g, f003, 026, 031, 034, 046, 062g, f004, 061g, f005, 013, 021, 044, 052, 060g, f006,

014, 030, 035, 051, 066g, f010, 055g, f012, 020, 022, 043, 045, 053g, f016, 025, 032,

033, 040, 056g, f023, 042g, f036g. For example, the �rst and fourth
lasses give K

1;3

.

(b) Use arithmeti
 mod q. Reje
t x if x > ax lexi
ographi
ally for some a ? q,

where ax = y

1

: : : y

m

is de�ned by �rst setting z

al

 ax

l

if al � m, otherwise

z

q�al

 a(x

l

+ l); then y

l

= z

l

� z

1

. The a

epted tuples are inequivalent.

(
) It's

P

2m

a=1

[a? q ℄

P

2m

b=0

f(a; b; q)=(q'(q)), where f(a; b; q) =

Q

m

l=1

f(l; a; b; q)

and f(l; a; b; q) = (a

s

l = l? t(a

s

� 1;�b(a

s�1

+ � � � + a + 1); q): q � a

s

l = l? t(a

s

�

1; l� b(a

s�1

+ � � �+ a+ 1); q): 1), where s > 0 is minimum with a

s

l � l or q � a

s

l � l.

(Compare with answer 172(
). We get 943532049 when m = 9; see OEIS A342357.)

200. This
onje
ture was introdu
ed by S. I. El-Zanati, C. Vanden Eynden, and

N. Punnim, Australasian J. Combinatori
s 24 (2001), 209{219. In fa
t, they
on-

je
tured that every bipartite graph G with no isolated verti
es has an \ordered gra
eful

rainbow labeling," in whi
h the smaller endpoint of every edge belongs to one part and

the larger endpoint belongs to the other. (One su
h labeling for C

6

is (041327).)

203. True and true.

204. The unique answer is
hord���
hore���
hose���
hase���
hasm���
harm���

hard���
hord. (But one might argue that an indu
ed
y
le is always \
hordless.")

205. Yes. One must
he
k that d(
ords;
osts) = 3 and d(
olts;
arts) = 3 in

WORDS(5757): The �rst is true be
ause
orts and
osds are nonwords, a

ording to the

Stanford GraphBase; the se
ond is true be
ause
orts and
alts are nonwords.

207. (a)

�

n

1

2

�

+

�

n

2

2

�

+ � � �+

�

n

r

2

�

.

(b) n

1

!n

2

! : : : n

r

! t

2

! t

3

! t

4

! : : : , when t

q

of the n

k

are equal to q.

(
) 4. (This question is too easy. Hamming distan
e is de�ned in exer
ise 7{23.)

(d) Suppose x

1

: : : x

r

��� y

1

: : : y

r

be
ause x

j

6= y

j

, and x

1

: : : x

r

��� z

1

: : : z

r

be
ause x

k

6= z

k

. Then y

1

: : : y

r

���z

1

: : : z

r

if and only if j = k.

(e) K

2;1;1

. It
ontains two triangles that share an edge; hen
e the images of both

triangles vary in only one
onstituent, by (d). But then all verti
es are adja
ent.

(f) Suppose we
hange
oordinates k

0

, k

1

, : : : , k

4

as we go around the
y
le.

Then k

0

6= k

1

6= � � � 6= k

4

6= k

0

, by (d). And ea
h k

i

must equal some k

j

for j 6= i.

208. Every indu
ed C

7

of a Hamming graph is equivalent to 000 ��� 100 ��� 110 ���

111���121���021���001���000. So we
an start by dividing WORDS(5757) into

�

5

2

�

=

January 13, 2024

156 ANSWERS TO EXERCISES 7.2.2.3

unsupported

ba
ktra
k

stri
t embedding

tied-path graphs

10 families of subgraphs in whi
h two of the
oordinates are
onstant. (The largest

su
h subgraphs are *a*e*, *a**s, *o**s, and ***es, with sizes 305, 316, 329, and 371.)

To �nd all solutions within ea
h subgraph,
ount the frequen
y of ea
h letter in

ea
h
oordinate position. Choose the
oordinates (i; j; k) that will
ontain respe
tively

(3; 2; 2) letters in the solution, with j < k. A word is \unsupported" if any of its letters

in positions (i; j; k) have frequen
ies less than (2; 3; 3). There must also be at least

one letter, in ea
h of
oordinates (i; j; k), whose frequen
y ex
eeds (2; 3; 3). Dis
ard

unsupported words (and update the frequen
ies) until all words are supported and all

frequen
ies are satisfa
tory. Then visit the solutions, of whi
h there are 69457.

A solution is isometri
 if and only if three spe
i�
 �ve-letter strings, found as in

answer 205, are nonwords. Exa
tly 6879 solutions survive this test| in
luding just one

that belongs to WORDS(1000), namely beams���seams���seems���seeds���sends���

bends ��� beads ��� beams. (Furthermore, exa
tly (2628, 2088) of the 5757 words

parti
ipate in at least one (indu
ed, isometri
)
y
le; (225, 298) in only one of them.

The
hampion words are pares, in 2543 indu
ed
y
les; later, in 233 isometri

y
les.)

209. (a) To satisfy (i), permute the elements with
oordinate k. To satisfy (ii), permute

the
oordinates a

ording to their �rst use.

(b) Straightforward ba
ktra
k suÆ
es, bran
hing on the possible f(v

i

) adja
ent

to f(v

i

0

). Also ensure that, for all 0 � j < i and j 6= i

0

, the Hamming distan
e d

H

satis�es [v

j

/���v

i

℄ < d

H

(f(v

i

); f(v

j

)) � d(v

i

; v

j

).

210. (a) Yes. Any stri
t embedding of G also stri
tly embeds all G's indu
ed subgraphs.

(b) If not
onne
ted, one of its
omponents is nonembeddable (and indu
ed).

(
) True. Suppose G n v is dis
onne
ted, with indu
ed
omponents G

0

and G

00

,

where G

00

isn't embeddable. Then Gnv

0

is
onne
ted for some v

0

in G

0

; it
ontains G

00

.

211. Let (C

n

, H

n

, M

n

) be the n-vertex graphs that are respe
tively (
onne
ted,

onne
ted and Hamming embeddable, MNH). Clearly H

3

= C

3

. Given lists of C

n

for 4 � n � 9, exer
ise 210 tells us that we
an
ompute H

n

andM

n

as follows: Start

with H

n

andM

n

empty. For ea
h G 2 C

n

, test if all n of its subgraphs Gnv are either

dis
onne
ted or in H

n�1

. If not, do nothing. Otherwise use exer
ise 209(b) to test if

G has a Hamming embedding. If so, put G into H

n

; otherwise put G intoM

n

.

The resulting sizes (jH

4

j=jC

4

j, : : : , jH

9

j=jC

9

j) turn out to be (5/6, 11/21, 36/112,

117/853, 469/11117, 2023/261080); and (jM

4

j, : : : , jM

9

j) = (1, 2, 0, 1, 1, 6).

The MNH graphs for n � 8 all turn out to be \tied-path graphs," namely the

graphs P (n

1

; : : : ; n

k

) with 2+n

1

+� � �+n

k

verti
es and k+n

1

+� � �+n

k

edges that are ob-

tained by tying together the endpoints of paths P

n

1

+2

, : : : , P

n

k

+2

: M

4

= fP (0; 1; 1)g;

M

5

= fP (1; 2); P (1; 1; 1)g;M

6

= ;;M

7

= fP (1; 1; 3)g;M

8

= fP (2; 2; 2)g.

If we knew only these results, we'd be tempted to
onje
ture falsely that P (1; 1; 5)

and P (3; 3; 3) are MNH. But all su
h hopes are shattered by

M

9

=

n

; ; ; ; ;

o

;

we might still
onje
ture tentatively, however, that all MNH graphs are planar.

212. In a normalized embedding, say that i is \k's pioneer for
" if i = minfj j x

jk

=
g.

Then 0 is every
oordinate's pioneer for 0. But a positive i
annot be a double pioneer;

v

i

an't be breaking re
ords in two di�erent
oordinates, be
ause it di�ers from its

parent in only one pla
e. Let p(k;
) be k's pioneer for
, if it exists.

We shall prove, by indu
tion on i > 0, that at most one normalized label l(v

i

)

is isometri
ally
onsistent with l(v

0

), : : : , l(v

i�1

). Suppose we
ould legitimately set

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 157

�(x)

sideways addition

nearest
ommon an
estor

median labels

either x

ik

= a or x

ik

= b, where a < b, and let j = p(k; a). Then j < i, and d(v

j

; v

i

)

takes on two di�erent values when we set x

ik

= a and x

ik

= b. Contradi
tion.

Now suppose moves are legitimate in two di�erent
oordinates, k < l, so that

if (x

i

0

k

; x

i

0

l

) = (a; b) we
ould set (x

ik

; x

il

) to either (a

0

; b) or (a; b

0

). If a

0

> a, let

j = p(k; a) and t = x

jl

. Then d(v

i

; v

j

) = �+[a 6=a

0

℄+[t 6= b℄ = �+[a 6= a℄+[t 6= b

0

℄ for

some �;
onsequently 1+ [t 6= b℄ = [t 6= b

0

℄, and we must have t = b. Let h = p(l; b) and

t

0

= x

ih

. Then d(v

i

; v

h

) = �

0

+ [t

0

6=a

0

℄ + [b 6= b℄ = �

0

+ [t

0

6= a℄ + [b 6= b

0

℄;
onsequently

[t

0

6= a

0

℄ = [t

0

6=a℄ + 1 and t

0

= a. Hen
e h = p(k; a) = j, and j is a double pioneer! So

a = b = 0. Finally let g = p(k; 1). Then x

gl

= 0; and d(v

i

; v

g

) = �

00

+[1 6= a

0

℄+[0 6=0℄ =

�

00

+ [1 6=0℄ + [0 6= b

0

℄, a
ontradi
tion. A similar
ontradi
tion arises when a

0

< a.

So the desired algorithm is simpli
ity itself: To �nd l(v

i

), there are fewer than 2i

andidates; for 0 � j < i we need O(i) operations to test that d(l(v

i

); l(v

j

)) is
orre
t.

If a
andidate su

eeds, we know l(v

i

), and no other
andidates need be examined. If no

andidate su

eeds, there's no isometri
 embedding. Total time is O(n

4

), usually less.

[See Dis
rete Applied Mathemati
s 7 (1984), 221{225, also for exer
ise 213.℄

213. (a) There are three kinds of verti
es:
orner (C, with degree 2); interior (I, with

degree 4); other (O, with degree 3). There are four types of edges, whi
h we may
all

CO, II, IO, OO. The relations OO ./ OO, OO ./ II, II ./ II always hold. Ea
h CO or IO

is related to itself and to three others \parallel" to it.

(b) True. For example, (0���1) ./ (1���2) ./ (2���3) 6./ (0���1).

(
) Clearly ./ is re
exive and symmetri
. If (u��� v) ./ (u

0

���v

0

) ./ (u

00

���v

00

)

in any isometri
 Hamming embedding, and if u

k

6= v

k

, u

0

k

0

6= v

0

k

0

, u

00

k

00

6= v

00

k

00

, where u

k

denotes the kth
oordinate of l(u), then k = k

0

= k

00

. And if the embedding is ternary,

we must also have fu; vg [fu

00

; v

00

g 6= ;, hen
e (u���v) ./ (u

00

���v

00

).

(d) Let there be r equivalen
e
lasses, and let u

(k)

��� v

(k)

represent
lass k.

Assign label l(w) = w

1

: : : w

r

to vertex w, where w

k

= (d(w; u

(k)

)� d(w; v

(k)

))mod 3.

214. The graph with labels f00; 10; 20; 11; 21; 31g answers (i); for (ii), add a seventh

vertex labeled 30. Example (ii) shows that indu
ed \minimal nonisometri
ally embed-

dable" subgraphs should not be used to prune the sear
h for embeddable ones. But we

still
an ex
lude graphs with an indu
ed MNH. Totals for 1 � n � 9 are (1/1, 1/1, 2/2,

4/5, 9/11, 28/35, 86/111, 318/427, 1265/1742), where the denominators show every

isometri
 embedding and the numerators show only the ternary ones.

216. (a) �((b� b

0

) &�(a j a

0

)), the number of non-� bits that di�er.

(b) There are essentially only two other possibilities:

l(0) = 0000; l(1) = 1000; l(2) = 110�; l(3) = ��11; l(4) = 0001;

l(0) = 000�; l(1) = 100�; l(2) = 1�10; l(3) = �111; l(4) = 010�:

(
) Let 5 be the top vertex, and let 6 and 7 be the two verti
es inside the indu
ed

�ve-
y
le. Use the labels l(5) = 1�01, l(6) = 01�0, l(7) = �010.

(d) If v 6= r, let v

0

= parent(v). We want to prove that �(l(u)� l(v)) = d(u; v) for

all u and v. If w is their nearest
ommon an
estor,
oordinates (u, u

0

, : : : , u

(d(u;w)�1)

,

v

(d(w;v)�1)

, : : : , v

0

, v) of l(u) and l(v) are respe
tively (1; 1; : : : ; 1; 0; : : : ; 0; 0) and

(0; 0; : : : ; 0; 1; : : : ; 1; 1); other
oordinates mat
h. So there are d(u; v) mismat
hes. (This

onstru
tion is a spe
ial
ase of median labels; see 7.1.1{(63).)

(e) For example, suppose d(u;w) = 4 and d(w; v) = 2. Coordinates (u; u

0

; u

00

; u

000

)

are 1 in l(u), non-1 in l(v);
oordinates (v

0

; v) are non-1 in l(u), 1 in l(v); other
oordi-

nates are either both 1 or both non-1, so they
ontribute nothing to the \distan
e."

January 13, 2024

158 ANSWERS TO EXERCISES 7.2.2.3

squashed
ube

isometri
 embedding

Graham

Pollak

Winkler

3-PARTITION

strongly NP-
omplete

Garey

Johnson

Noti
e that
oordinates (v

0

; v)
ontribute

1

2

(1+d(u; v)�d(u; v

0

))+

1

2

(1+d(u; v

0

)�

d(u;w)) =

1

2

(d(w; v)+d(u; v)�d(u;w)). Similarly,
oordinates (u; u

0

; u

00

; u

000

)
ontribute

1

2

(d(u;w) + d(u; v)� d(w; v)). So the total \distan
e" is indeed d(u; v).

For the Petersen graph, with verti
es ij for 0 � i < j < 5 and root 01, we have

23 04 14 24 03 13 34 02 12

l(01) = 0 0 0 0 0 0 0 0 0

l(23) = 1 0 0 0 ? ? 0 ? ?

l(04) = 1 1 0 ? ? � ? ? �

l(14) = 1 0 1 ? � ? ? � ?

l(24) = 0 ? ? 1 0 0 0 ? ?

l(03) = ? ? � 1 1 0 ? ? �

l(13) = ? � ? 1 0 1 ? � ?

l(34) = 0 ? ? 0 ? ? 1 0 0

l(02) = ? ? � ? ? � 1 1 0

l(12) = ? � ? ? � ? 1 0 1

=)

23 04 14 24 03 13 34 02 12

l(01) = 0 0 0 0 0 0 0 0 0

l(23) = 1 0 0 0 0 0 0 0 0

l(04) = 1 1 0 0 � � 0 � �

l(14) = 1 0 1 0 � � 0 � �

l(24) = 0 � � 1 0 0 0 0 0

l(03) = � 0 � 1 1 0 0 � �

l(13) = � � 0 1 0 1 0 � �

l(34) = 0 � � 0 � � 1 0 0

l(02) = � 0 � � 0 � 1 1 0

l(12) = � � 0 � � 0 1 0 1

:

(f) Change `?' to (`�', `0') in u

v

when [u<v ℄+ f(u; v) is (even, odd), where `<' is

preorder and f(u; v) = d(u; v)+d(u; r)+d(v; r). Proof: Let p = d(u;w) and q = d(w; v),

and assume that u < v. Then the an
estors of u satisfy u

(k)

< v for 0 � k < p;

similarly, u < v

(k)

for 0 � k < q. De�ne x

k

= f(u

(k)

; v) mod 2 for 0 � k � p, and

x

p+q�k

= f(u; v

(k)

) mod 2 for 0 � k � q. Noti
e that x

p

= 0, and x

0

= x

p+q

. In l(u)

and l(v) we have u

u

(k)

= 1 and v

u

(k)

= ? if and only if x

k

6= x

k+1

, for 0 � k < p;

similarly u

v

(k)

= ? and v

v

(k)

= 1 if and only if x

p+q�k

6= x

p+q�k�1

, for 0 � k < q. So

the number of ?s is the number of substrings `01' and `10' within x, say 2m. If there

are m

0

transitions `10' before the 0 at x

p

, there are m�m

0

transitions `01' after it.

Notes: If we shrink ea
h sub
ube to a point, we get a \squashed
ube." The

sub
ube labels de�ne an isometri
 embedding into a squashed
ube|we
an't get

shorter paths by going outside the image and
oming ba
k again. (However, the

omputation of shortest distan
es between unused points of the squashed
ube isn't

easy.) The existen
e of a sub
ube representation with n�1
oordinates was
onje
tured

by R. L. Graham and H. O. Pollak [Bell System Te
h. J. 50 (1971), 2495{2519℄ and

proved by P. M. Winkler [Combinatori
a 3 (1983), 135{139℄.

217. Be
ause G v G

0

implies G � G

0

, (i), (iii), (v), and (vii) are obviously true. And

(viii)
learly holds. But (ii), (iv), (vi) fail either when G = G

0

or when G

0

= G

00

.

218. False. (Maybe G

1

= G

2

= K

2

, H

1

= C

4

, H

2

= K

1

.)

219. True. Suppose f embeds G into H, u /���v, f(u)��� f(v), and u = u

0

���u

1

���

� � ����u

k

= v. Then k > 1, and f(u

0

)���f(u

1

)���� � ����f(u

k

)���f(u) is a
y
le.

220. The vertex of degree m must map to r; its neighbors must map to fx

10

; : : : ; x

m0

g.

So ea
h path P

a

i

must be mapped to a

i

verti
es of fx

j1

; : : : ; x

jn

g for some j. Those

with the same j form a submultiset of sum � n. So we get a suitable partition.

Conversely, su
h a partition yields an embedding. (And if a

1

+ � � � + a

t

= mn

and t = 3m, we've solved the 3-PARTITION problem, whi
h is strongly NP-
omplete.

See M. R. Garey and D. S. Johnson, Computers and Intra
tability (1979), x4.2.2.)

221. (a) 5n verti
es and 6n +

�

n

2

�

edges.

(b) If v 7! f(v) is a stri
t embedding from G to H, then (v; k) 7! (f(v); k) is easily

seen to be an embedding from q(G) to q(H), by
onsidering the three kinds of edges.

Conversely, assume that (v; k) 7! (f(v; k); g(v; k)) is an embedding. For �xed v,

let w

k

= f(v; k) and r

k

= g(v; k). If w

k

6= w

k+1

we must have r

k

= 0 or r

k+1

= 0. And

if, say, r

0

is the only 0, we have w

0

6= w

1

= � � � = w

4

and fr

1

; r

4

g = f1; 3g, implying

both w

0

���w

1

and w

0

/���w

1

. A similar
ontradi
tion arises if r

k

is the only 0. So

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 159

Solnon

automorphisms

omplete graphs

dire
ted graphs

omplete binary tree

(r

0

; : : : ; r

4

) must be a
y
li
 permutation of (0; 1; 0; 3; 4) or (0; 1; 0; 4; 3); but none of

those is
ompatible with (w

2

; r

2

)���(w

4

; r

4

). Hen
e f(v; k) = f(v) is independent of k.

Now the image of q(G) has 5n verti
es and 6n+

�

n

2

�

edges; it must be an isomorphi

opy.

222. If G has n verti
es V , let s(G) have n

2

verti
es (v; w), where (v; v)��� (v; w)���

(w;w) for all v 6= w, and (v; w)���(w; v) when v���w. Let t(G) be s(G) together with

additional verti
es fv; wg whenever v���w; we have (v; v)���fv; wg ��� (w;w) when

fv; wg exists. One
an now prove that G � H if and only if s(G) v t(H).

For example, if f is a stri
t embedding of s(G), f(v; v) must be a vertex of the form

(f(v); f(v)), at least when n > 2, be
ause (v; v) has degree 2n�2 in s(G) and the other

verti
es of t(H) have degree � 3. Then f(v; w) and f(w; v) when v���w in G must be

(f(v); f(w)) and (f(w); f(v)), sin
e those are the only adja
ent verti
es in t(H) that are

neighbors of both (f(v); f(v)) and (f(w); f(w)). But when v 6= w and v /���w, ff(v; w),

f(w; v)g
an be any two of (f(v); f(w)), (f(w); f(v)), and possibly ff(v); f(w)g.

(Christine Solnon noti
ed that s(G) has a huge number of automorphisms, be-

ause one
an independently swap (v; w) with (w; v) when v 6= w. To avoid this problem

she uses dire
ted ar
s (v; v)��!(v; w)��!(w;w).)

224. (a) Suppose the given ISIP has edge labels L

j

for 0 � j < J . De�ne a labeled SIP

on

b

G and

b

H, the
omplete graphs on the verti
es of G and H, giving their verti
es the

labels l

i

and
ompatibilities they have in G and H. Also give their edges the existing

labels L

j

on existing edges, with the existing
ompatibilities; and let L

j

(u; v) = � when

u /���v, where � is always
ompatible with �. Finally|and this is the key point| in-

trodu
e a new edge label L

J

, where L

J

(v; w) = [v���w ℄,
ompatible if and only if equal.

(b) Suppose the given SIP has labels l

i

for 0 � i < I and L

j

for 0 � j < J .

Introdu
e a new vertex label l

I

, where l

I

(v) = [v���u℄ for v 2 Gnu and l

I

(v̂) = [v̂���û℄

for v̂ 2 H n û; these labels are
ompatible if and only if l

I

(v) � l

I

(v̂). Also introdu
e

new vertex labels l

I+1+j

for 0 � j < J , where l

I+1+j

(v) = L

j

(u; v) if u���v, otherwise

l

I+1+j

(v) = �, using the
ompatibility relation of L

j

and letting � be self-
ompatible.

(For dire
ted graphs, however, we need more. Ar
 labels L

j

(v; w) are given when

v��!w. In part (a) let L

J

(v; w) = 2[v��!w ℄+ [v ��w ℄. In part (b), let l

I

(v) = [v��!u℄,

l

I+1

(v) = [v ��u℄, l

I+2+j

(v) = L

j

(v; u) or �, l

I+2+J+j

(v) = L

j

(u; v) or �.)

226. Given a 3SAT problem with m
lauses, where every literal o

urs exa
tly twi
e

(exer
ise 7.2.2.2{208),
onstru
t G and H as follows: Start with the
omplete binary

tree B

m

withm leaves; if m = 2

k

�r, with 0 � r < 2

k�1

, there are r leaves on level k�1

and m� r leaves on level k. Atta
h
� � �

, a path of length 10m together

with a `Y' at one end, to the root of B

m

, and
all the result B

+

m

. Then G is obtained

from B

+

m

by repla
ing ea
h leaf by a path . Similarly, H is obtained from

B

+

m

by repla
ing the kth leaf by the graph

a

b

; where fa; b;
g are the literals of
lause k;

we also add nontree edges, two from ea
h of a, b,
, to the verti
es
alled respe
tively �a,

�

b, �
 in the other
lauses. (These labels de�ne the nontree edges, but don't appear in H.)

Noti
e that G has 14m+ 1 verti
es, 14m edges; H has 17m+ 1 verti
es, 20m edges.

If the
lauses are satis�able, then G v H, be
ause we
an mat
h the \tip" of

leaf k to a literal a, b, or
 that satis�es
lause k. Conversely, if G v H, the `Y' of

G must
orrespond to the `Y' of H, be
ause the path of length 10m
an't originate

within B

m

. Also the embedding of levels 0 through k must properly mat
h up the r

leaves on level k � 1 and the m� r leaves on level k. Thus the embedding will spe
ify

literals that satisfy ea
h
lause, never
hoosing both l and

�

l.

January 13, 2024

160 ANSWERS TO EXERCISES 7.2.2.3

Papadimitriou

Luks

isomorphism between graphs

bounded degree

Matou�sek

Thomas

treewidth

Werth

W�orlein

Dreweke

Fis
her

Philippsen

breadth-�rst sear
hes

�rst moment prin
iple

se
ond moment prin
iple

utting

Pairwise ordering

supplemental labeling fun
tion

Zampelli

Deville

Solnon

majorizes

[This
onstru
tion is based on an idea of C. Papadimitriou. On the other hand,

E. Luks [J. Computer and System S
ien
es 25 (1982), 42{65℄ gave a polynomial-time

algorithm to test full isomorphism between graphs of bounded degree. J. Matou�sek

and R. Thomas [Dis
rete Math. 108 (1992), 343{364℄ have shown how to solve G � H

and G v H in polynomial time if G has bounded degree andH has bounded treewidth.℄

228. (a, b) Both equivalen
es are easily proved. Noti
e that all verti
es of

b

G either

have in-degree 0 (the original verti
es of G) or in-degree 2 (the original edges of G);

the embeddings must distinguish them too. (See T. Werth, M. W�orlein, A. Dreweke,

I. Fis
her, and M. Philippsen, in Data Mining for Business Appli
ations (2009), 213.)

229. No. If M = 2k+1, use breadth-�rst sear
hes to test if H
ontains a vertex u and

two verti
es v���w at distan
e k from u. A similar method works when M = 2k + 2.

231. Yes, by in
luding additional items in the option for v and V , namely

fe � E j e = (u /���v) and E = (U���V) for some u and Ug:

232. For SIP, there's a se
ondary item uv �UV for every ar
 u��!v in the pattern and

every nonar
 U 6��!V in the target; this item is inserted into the option for `u U ' and

the option for `v V ' (and no other options). For ISIP, those options also get a se
ondary

item uv �UV for every nonar
 u 6��!v in the pattern and every ar
 U��!V in the target.

233. (a) If there areW

mn

stri
t embeddings from G

m

to G

n

, then E(W

mn

) = n

m

=2

(

m

2

)

,

be
ause ea
h of the n

m

embedding fun
tions f su

eeds with probability 1=2

(

m

2

)

. When

m = 2 lg n + 1 + Æ we have

�

m

2

�

�

�

2 lgn

2

�

+ 2(1 + Æ) lg n = (m+ Æ) lg n. Hen
e, by the

�rst moment prin
iple (MPR{(21)), Pr(G

m

v G

n

) = Pr(W

mn

> 0) � E(W

mn

) � n

�Æ

.

(b) Clearly E(W

mn

) � n

m

2

�

(

m

2

)

(1 �m

2

=n); and when m = 2 lg n + 1 � Æ, one

an show that E(W

2

mn

) � (n

m

=2

(

m

2

)

)

2

(1 + O(n

�2Æ=3

)). Hen
e, by the se
ond moment

prin
iple, Pr(G

m

v G

n

) � 1�O(n

�2Æ=3

). [J. Combin. Theory B160 (2023), 144{162.℄

235. In general, assume that G and H are
onne
ted graphs with G � H, and that H

an be dis
onne
ted into
omponents H

1

and H

2

by
utting k edges. Then there must

be a way to
ut k edges from G in su
h a way that ea
h resulting
omponent
an be em-

bedded in either H

1

or H

2

. (But (52) remains
onne
ted when any two edges are
ut.)

236. BRAIN83(600) suÆ
es for this, with 0 7! 53, 0+ 7! 56, 1� 7! 15, 1 7! 36, 1+ 7! 38,

2� 7! 79, 2 7! 76, 2+ 7! 55, 3� 7! 35, 3 7! 39, 3+ 7! 14, 0� 7! 77.

237. Yes: 12 � 3 ways in BRAIN83(370), found in 3.7 T� (but none in BRAIN83(360)).

238. (J

5

is 3-regular.) Not into BRAIN83(600); but 20 � 86 ways into BRAIN83(700).

239. Require f(0+) < f(v) for v 2 f1�; 1+; 2�; 2+; 3�; 3+; 0�g. (\Pairwise order-

ing," exer
ise 7.2.2.1{20, makes options still longer but needs only 3 + 1:5 G� to �nd

the 9 essentially di�erent embeddings into BRAIN83(300).)

242. (a) The same result holds if `deg' is repla
ed by `d' in the de�nition of s, where

d is any supplemental labeling fun
tion. Proof: Let v's neighbors in G be v

1

, : : : , v

p

,

where d(v

1

) � � � � � d(v

p

); similarly, let f(v)'s neighbors in H be w

1

, : : : , w

q

, where

d(w

1

) � � � � � d(w

q

) and q � p. Given k � p, there are indi
es 1 � i

1

< � � � < i

k

� q,

depending on k, su
h that ff(v

1

); : : : ; f(v

k

)g = fw

i

1

; : : : ; w

i

k

g. Let j be the index with

w

i

k

= f(v

j

); then d(v

k

) � d(v

j

) � d(w

i

k

) � d(w

k

). [See S. Zampelli, Y. Deville, and

C. Solnon, Constraints 15 (2010), 327{353.℄

(b) (Solution by C. Solnon.) For 1 � k � p, let v have a

k

neighbors of degree k;

also let w have b

k

neighbors of degree k, or of degree � k when k = p. Then
he
k

whether or not b

p

: : : b

1

majorizes a

p

: : : a

1

, namely whether or not b

p

+ � � � + b

k

�

a

p

+ � � �+ a

k

for p � k � 1. (Compare with Algorithm 5.2D and exer
ise 7.2.1.4{54.)

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 161

partial ordering of multisets

distributive latti
e

latti
e

L(r; s)

partitions

q-nomial
oe�s

Philip Hall

histori
al notes

system of distin
t representatives

distin
t representatives

Hall set

pigeonhole prin
iple

[This partial ordering of multisets is a distributive latti
e. When restri
ted to

multisets of at most r positive integers, all � s, it's the latti
e L(r; s) of partitions into

at most r parts � s, of whi
h there are [q

k

℄

�

r+s

r

�

q

partitions of k by 7.2.1.4{(51).℄

243. 02 7! MS would for
e 01 7! AL and 03 7! AL. 02 7! TX would for
e 01 7! NM and

03 7! NM. Now 02 7! LA limits the domains of 01 and 03 to fMS; TXg; and that for
es

both 00 7! NM and 04 7! NM. (AL has no neighbors in h, so we
an't map 00 7! AL.)

244.

DC

AL

AZ AR

CA CO

CT

DE

FL

GA

ID IL INIA

KS KY

LA

ME

MD

MAMIMN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

and

DC

AL

AZ AR

CA CO

CT

DE

FL

GA

ID IL INIA

KS KY

LA

ME

MD

MAMIMN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

.

245. (a) One of 4 � 12 embeddings for P

2

P

12

is

�

CA OR ID WY NE IA WI MI OH WV PA NJ

AZ NV UT CO KS MO IL IN KY VA MD DE

�

.

(b) And

OR ID WY NE IA IL

NV UT CO KS MO KY

CA AZ NM OK AR TN

!

is one of 4 � 9 for P

3

P

6

.

246. P

2

P

2

(in just 8 � 3 ways, in
luding fCO; NE; MO; OKg); P

3

P

0

.

247. There are 10 � 7 ways, in
luding for instan
e

DC

AL

AZ AR

CA CO

CT

DE

FL

GA

ID IL INIA

KS KY

LA

ME

MD

MAMIMN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

and

DC

AL

AZ AR

CA CO

CT

DE

FL

GA

ID IL INIA

KS KY

LA

ME

MD

MAMIMN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

.

(And there are 12 � 19 ways to embed six pentagons that surround a hexagon.)

250. There are unique embeddings v USA and v USA of

simplex (4; 4; 4; 3; 0; 0; 0) and simplex (5; 5; 3; 3; 0; 0; 0). (Put NV in the left
orner.)

253. Let M(v) be the mate of vertex v in the given mat
hing, so that M(x

i

) = y

j

i

and M(y

j

i

) = x

i

. Also let M(y

j

) = ? if j =2 fj

1

; : : : ; j

m

g. Suppose there's also another

feasible mat
hing, with mate fun
tionm, in whi
hm(x

i

) = y

j

(hen
e j isn't removable).

Let u

0

= x

i

, v

0

= y

j

, and u

1

= M(v

0

). If u

k

6= ?, let v

k

= m(u

k

) and u

k+1

=

M(v

k

). If u

k

= u

0

, this sequen
e will be periodi
, and u

k

��! v

k�1

��!u

k�1

��!� � ���!

v

0

��!u

0

will be a path in T ; hen
e x

i

and y

j

will be in the same strong
omponent.

But if u

k

= ?, let v

�1

= M(u

0

) and u

�1

= m(v

�1

). If u

�l

6= ?, let v

�l�1

=

M(u

�l

) and u

�l�1

= m(v

�l�1

). Eventually we'll have u

�l

= ?, and a path u

k

��!

v

k�1

��!u

k�1

��!� � ���!v

�l

��!u

�l

; so y

j

and ? will be in the same strong
omponent.

Conversely, if there's an oriented path x

i

��!� � ���!y

j

��!x

i

or ?��!� � ���!y

j

��!

x

i

in T , we
an
onvert the given mat
hing to a feasible mat
hing with x

i

��� y

j

by

reversing ea
h edge of that path. Hen
e j isn't removable.

254. (a) [This is Philip Hall's theorem, J. London Math. So
. 10 (1935), 26{30, where

Hall sets are featured. When x

1

���y

j

1

, : : : , x

m

���y

j

m

is su
h a mat
hing, the sequen
e

j

1

: : : j

m

is
alled a \system of distin
t representatives." Group theorists use the term

\Hall set" for quite a di�erent
on
ept|also due to Philip Hall.℄ The
ondition is

ertainly ne
essary. If the algorithm fails, its �nal dag supplies an I with jD(I)j < jIj.

January 13, 2024

162 ANSWERS TO EXERCISES 7.2.2.3

perfe
t mat
hings

Histori
al notes

Berge

perfe
t mat
hing

elementary bipartite

Lov�asz

Plummer

K}onig

bigraph

strongly
onne
ted

R�egin

Gent

Miguel

Nightingale

bi-degree

(b,
) If j is removable from x

i

's domain, there's no mat
hing in the subgraph

with x

i

and y

j

deleted. So there's a subset I � f1; : : : ; mg n i with jD

0

(I)j < jIj, where

D

0

is the subdomain in the subgraph. Thus jD(I)j � jIj; by feasibility, jD(I)j = jIj.

(d) Be
ause all values in D(I) must be used as the images of I's variables.

(e) Let A, B, C be disjoint subsets of f1; : : : ; ng, with a = jAj, b = jBj,
 = jCj,

a

0

= jD(A)j, b

0

= jD(B) nD(A)j,

0

= jD(C) nD(A)j, a

0

+ b

0

= a + b, a

0

+

0

= a +
.

By feasibility we have a

0

� a and a

0

+ b

0

+

0

� jD(A [B [C)j � a+ b+
. Therefore

2a

0

+ b

0

+

0

� 2a+ b+
 = 2a

0

+ b

0

+

0

, hen
e a

0

= a and jD(A [B [C)j = a+ b+
.

(f) This stru
ture is a
onsequen
e of parts (b) and (d); I

1

through I

r

are the min-

imal nonempty Hall sets. (Consequently the problem now has r+1 independent sets of

variables fx

i

j i 2 I

j

g, ea
h of whi
h has the all-di�erent
onstraint only within its sub-

domain D(I

j

); moreover, perfe
t mat
hings are required, ex
ept between I

0

and D(I

0

).

(g) Ea
h I

j

is the set of x's belonging to some strong
omponent, with j = 0 when

that
omponent also
ontains ?. (Noti
e that I

0

might be ;. There might be more

than r + 1 strong
omponents, but only be
ause fy

j

g is a singleton strong
omponent

when D(i) = fjg is a singleton domain.)

Histori
al notes: Chapter 7 of C. Berge's book Graphs and Hypergraphs (1973)

surveys the theory of alternating paths, whi
h allows us to understand the family

of all maximum mat
hings. Minimal nonempty Hall sets
orrespond to
onne
ted

bipartite graphs for whi
h every edge is part of a perfe
t mat
hing. Su
h graphs are

alled \elementary bipartite" by L. Lov�asz and M. D. Plummer [Mat
hing Theory

(1986), Chapter 4℄, who have tra
ed the
on
ept ba
k to D. K}onig [Mathematikai �es

Term�eszettudom�anyi

�

Ertes��t}o 33 (1915), 221{229℄. One of many interesting properties

of su
h graphs, noted in their exer
ise 4.1.5,
an be paraphrased as follows: \Let F be

a loopfree digraph on verti
es fx

1

; : : : ; x

n

g, and let G be the bigraph on fx

1

; : : : ; x

n

g,

fy

1

; : : : ; y

n

g whose edges are x

i

��� y

i

for 1 � i � n and x

i

��� y

j

whenever x

i

��! y

j

in F . Then F is strongly
onne
ted if and only if G is elementary."

J.-C. R�egin [Pro
. Nat. Conf. on Arti�
ial Intelligen
e 12 (1994), 362{367℄ de-

veloped the algorithm of exer
ise 253 after dis
overing that every removable element

of an all-di�erent
onstraint
an be identi�ed from a single
omputation of strong

omponents. Subsequent re�nements of his algorithm were surveyed
arefully and in-

vestigated empiri
ally by I. P. Gent, I. Miguel, and P. Nightingale [Arti�
ial Intelligen
e

172 (2008), 1973{2000℄, who noted gains in eÆ
ien
y after strong
omponents I

j

have

been identi�ed as in (f) and used for GAD �ltering on the smaller domains D(I

j

).

255. Given a mat
hing, let T simply be the digraph on verti
es fy

1

; : : : ; y

n

g with ar
s

fy

j

i

��!y

k

j x

i

��!y

k

and k 6= j

i

g. Then k 6= j

i

is removable fromD

i

if and only if y

k

and

y

j

i

belong to di�erent strong
omponents. (We're essentially identifying x

i

with y

j

i

.)

256. (a) The domain D

a

of a must be a target vertex with a prede
essor of out-degree

� 4; so D

a

= f6, 8, 13, 14, 15, 16g. And D

d

is the set of targets with a prede
essor

having out-degree � 1, in-degree � 1, and at least two neighbors, namely f3, 6, 8, 12,

13, 14, 15, 16g. But D

b

= f3g is the only target with a prede
essor of bi-degree � 1,

where \bi-degree" is the number of two-way ($) edges; D

= f8g is the only target

with bi-degree � 1 and out-degree � 2. Similarly, D

e

= D

a

; D

f

= f0g; D

g

= f14g.

After the for
ed assignments b 7! 3,
 7! 8, f 7! 0, g 7! 14, the remaining domains

redu
e to D

a

= D

e

= f6, 13, 15, 16g; D

d

= D

a

[f12g. LAD �ltering now tells us that

e 67! 16, be
ause D

d

doesn't
ontain 16's su

essor (3). Similarly, d 67! 13; d 67! 16.

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 163

line graph

automorphisms

domain

So we bran
h on e, and there are three
ases: If e 7! 6, then d 7! 15 and we

dis
over two solutions, a 7! 13 or 16. If e 7! 13, then d 7! 12 and a 7! 6, 15, or 16. If

e 7! 15, then d 7! 6 and a 7! 13 or 16.

(b) With stri
t embedding the initial domain D

e

is redu
ed to f8, 13, 16g. Only

two of the previous solutions survive: (a; b;
; d; e; f; g) 7! (6 or 15, 3, 8, 12, 13, 0, 14).

259. Yes; but there are three essentially di�erent ways to delete two edges. If the edges

are adja
ent|at distan
e 1 in the line graph|there are 32�4 embeddings, su
h as (P1)

below. If at distan
e 2, (P2) is one of 16 � 7 embeddings. At distan
e 3 there are none.

(P1) (P2)

(i)

(ii) (iv)

(v)

(vi)

(vii)

260. Respe
tively 8 �1, 32 �1, 0, 16 �1, 16 �3, 64 �1, 8 �1 stri
t embeddings. (Noti
e that

in
ase (iv), the pattern has 8 automorphisms, the target has 8, and the image has 4.

So we get (8 � 8)=4 = 16 di�erent embedding fun
tions f .)

263. Spe
ta
ularly false. For example, if H = G���K

1

then H

�2

is a
omplete graph.

264. The degree of 12 in G

�2

is 11. So we
an ex
lude 22 verti
es whose degree in H

�2

is 10 or less: fAZ, CA, CT, DC, DE, FL, GA, LA, MA, ME, MI, MN, ND, NH, NJ, NV, OR, RI, SC,

TX, VT, WAg. (The text's original method didn't ex
lude AZ or TX; its supplemental edge

labels `

G

, `

H

did ex
lude all of these ex
ept MN and NV, and pi
ked o� also NM and WI.)

265. d

P

k+1

G

(v) is the number of simple paths of length exa
tly k that begin at v. (Thus

when k = 1, d

P

2

G

(v) = deg(v).) Consequently v's degree in G

�2

is d

P

2

G

(v)+[d

P

3

G

(v)> 0℄.

266. Symmetri
ally equivalent verti
es have the same label. Left to right, they are:

(i) (4, 2, 7, 6, 8, 8, 5, 2); (ii) (0, 20, 2, 12, 6, 12, 6, 0); (iii) (2, 6, 6, 16, 12, 10, 7, 5);

(iv) (0, 8, 7, 16, 12, 20, 8, 0); (v) (0, 0, 22, 16, 24, 34, 4, 0); (vi) (0, 0, 0, 2, 4, 4, 2, 2);

(vii) (0, 2, 2, 4, 2, 2, 0, 0); (viii) (0, 0, 0, 0, 2, 0, 0, 0); (ix) (0, 0, 0, 2, 0, 2, 0, 0).

267. Here `a; b' stands for the label left-to-right, then right-to-left:

4,0

4,0

4,0

1,4

1,4

3,1

3,1

2,3

2,3

2,2

3,2

3,2

2,3

2,3

2,2

0,2

0,2

2,0

2,0

2,0

3,1

3,1

5,4

5,4

4,3

4,3

4,4

5,4

5,4

1,5

1,5

2,2

0,5

0,5

0,0

0,0

0,0

4,4

4,4

3,3

3,3

5,5

5,5

2,2

5,5

5,5

5,5

5,5

3,3

0,0

0,0

268. Graph (i) is undire
ted, be
ause s and t are symmetri
ally pla
ed.

(i) = ; (ii) =

269. Indeed, if v 7! MO and v

0

is diagonally adja
ent to v, we
an't have v

0

7! AL,

GA, LA, MN, NC, NM, OH, WV, or WY, even though those states are at distan
e 2 from MO,

be
ause no appropriate 4-
y
le
onne
ts them to MO.

270. Only 15 verti
es v of H = USA have at least 4 neighbors in H

S;2

, namely fAR,

CO, IA, IL, KS, KY, MO, NE, NV, OK, SD, TN, UT, WV, WYg. Furthermore, if say 11 7! NV,

then 12 7! AZ, CA, ID, OR, or UT; hen
e 12 7! UT. Similarly 11 7! NV implies 21 7! UT, a

ontradi
tion. An analogous
ontradi
tion rules out 11 7! WV.

273. One part has the neighbors u

0

of u in G (either u��!u

0

or u ��u

0

or both). The

other part has the neighbors v

0

of v. There's a potential mat
h between u

0

and v

0

if and

only if all of the following
onditions hold: (i) v

0

is in the
urrent domain of u

0

. (ii) If

u��!u

0

in G then v��!v

0

in H. (iii) If u ��u

0

in G then v ��v

0

in H. (iv) For ea
h

January 13, 2024

164 ANSWERS TO EXERCISES 7.2.2.3

initialize the domains

omplementary graph

breadth-�rst sear
h

data stru
ture

sparse-set representation

LAD �ltering

VF2

VF3

Carletti

Cordella

Foggia

Saggese

Sansone

Vento

Hall set

M
Creesh

Prosser

stri
t embedding

supplemental pair label that we've
omputed, satisfying (64), `

G

(u; u

0

) � `

H

(v; v

0

) and

`

G

(u

0

; u) � `

H

(v

0

; v). And if G is to be stri
tly embedded intoH, we also have two more

onditions: (v) If u 6��!u

0

in G then v 6��!v

0

in H. (vi) If u 6 ��u

0

in G then v 6 ��v

0

in H.

Condition (i) implies that d

G

(u

0

) � d

H

(v

0

) for every supplemental label that

we've
omputed, be
ause we used those labels to initialize the domains.

This bipartite mat
hing problem arises not only for the original pattern graph G

and the original target graph H, but also (and independently) for every pair of supple-

mental graphs G

�

and H

�

that we know are solutions to (65).

274. Count the number of stri
t embeddings S v G that map v 7! s and possibly

w 7! s, in a motif S with designated verti
es s and possibly t. (In parti
ular, when S

is K

2

on the verti
es s and t, the
omplementary graph G

�

= G is supplementary.)

277. (a) Choose a vertex p in ea
h
onne
ted
omponent, and use breadth-�rst sear
h

to list the elements p

(1)

p

(2)

: : : rea
hable from p in in
reasing order of distan
e, starting

with p itself. Con
atenate those lists. (Some
hoi
es are mu
h better than others.)

(b) (This data stru
ture is a spe
ial
ase of a sparse-set representation.) Maintain

also the inverse permutation u

1

: : : u

n

so that, if the target verti
es are f1; : : : ; ng, we

have t

j

= k if and only if u

k

= j. Initially t

j

= u

j

= j for 1 � j � n. When assigning

f(p

l+1

) = k, �rst set j u

k

, l l+1, k

0

 t

l

, t

l

 k, t

j

 k

0

, u

k

 l, u

k

0

 j. Then

for ea
h neighbor k

00

of k, set j u

k

00

and, if j > s

l

, set s

l

 s

l

+1, k

0

 t

s

l

, t

s

l

 k

00

,

t

j

 k

0

, u

k

0

 j, u

k

00

 s

l

. Finally, if s

l

< r

l

, set l l � 1. (That assignment to k

annot be part of a solution, so we must ba
ktra
k. No
hanges to the t and u arrays

need to be made when ba
ktra
king.)

(
) Yes; this
ondition is weaker than LAD �ltering. (Noti
e that q = q

l

is �xed

and
an be
omputed in advan
e; also a target vertex k is near if and only if u

k

� s

l

.)

(d) Yes, in the ISIP (stri
t embedding); again q = q

0

l

is �xed. But no, in the SIP.

[These heuristi
s are used by the SIP and ISIP solvers VF2 and VF3 to prune the

ba
ktra
k tree. See V. Carletti, L. P. Cordella, P. Foggia, A. Saggese, C. Sansone, and

M. Vento, IEEE Trans. PAMI-26 (2004), 1367{1372; PAMI-40 (2018), 804{818.℄

278. At step j, H is a Hall set, based on domains di�erent from D

j

. [See C. M
Creesh

and P. Prosser, LNCS 9255 (2015), 300{301.℄

279. First assume for
onvenien
e that the target graph has n � 64 verti
es, that all

graphs are undire
ted, and that there are at most 7 supplemental graphs (thus at most

8 altogether). Represent the pattern by an m�m matrix A

uv

of bytes; the individual

bits of A

uv

tell us whi
h of the 8 pattern graphs have u���v. Ea
h target graph H

S

is represented by n o
tabytes H

S

v

0

; bit u

0

of H

S

v

0

is 1 if and only if u

0

���v

0

in H

S

.

To assign v 7! v

0

, �rst set D

v

 fv

0

g, and mark it \�nal" so that it won't

parti
ipate at deeper levels of the sear
h. Then, for every pattern vertex u 6= v, we

must set D

u

 D

u

& H

S

v

0

whenever A

uv

tells us that u ��� v in H

S

; we simply set

D

u

 D

u

n fv

0

g if A

uv

= 0. (For stri
t embedding, also set D

u

 D

u

&�H

S

v

0

.)

The resulting domains should now be re�ned further as in exer
ise 278. That

algorithm is readily extended to re
ognize qui
kly whether or not at least one non�nal

domain has been redu
ed to size 1; if so, we repeat the pro
ess with a new v and v

0

.

If the target graph has n > 64 verti
es, a similar pro
edure
an be
arried out

with dn=64e o
tabytes per domain and with dn=64e o
tabytes in pla
e of ea
h H

S

v

0

. If

the graphs are dire
ted, byte A

uv

should represent u��!v in the pattern graphs, and

bit u

0

of H

S

v

0

should represent u

0

��! v

0

in H

S

. The transposed target graphs should

also be represented separately, so that bit u

0

of H

ST

v

0

represents v

0

��!u

0

in H

S

. If A

vu

tells us that v��!u in H

S

, we should set D

u

 D

u

&H

ST

v

0

.

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 165

Histori
al notes

Bitwise domain �ltering

Ullmann

M
Gregor

M
Creesh

opying domains

OR

ANDN

Van Kessel

Quimper

geek art

automorphism

4-
ube

[Histori
al notes: Bitwise domain �ltering was re
ommended by J. R. Ullmann

in one of the �rst papers about SIP solving, JACM 23 (1976), 31{42. See also J. J.

M
Gregor, Information S
ien
es 19 (1979), 229{250, as well as Ullmann's subsequent

paper in ACM J. Experimental Algorithmi
s 15 (2011), 1.6:1{1.6:64. C. M
Creesh has

reported (unpublished) that the state-of-the-art Glasgow solver,
. 2020, spends roughly

1/3 of its time doing bitwise propagation, 1/4 doing relaxed GAD �ltering, 1/6
opying

domains from one level to the next, and 1/10
hoosing the variable on whi
h to bran
h.℄

280. In the following
ode, D

k

is the o
tabyte in address dom+8k. Sorting is a
hieved

by making byte START[i℄ point to the �rst domain of size i; NEXT[k℄ points to the next

domain of the same size. The assembler
ode `start GREG � ;next GREG �+64 ;dom GREG

�+128' appears somewhere in the Data_Segment, so that we
an address those arrays

onveniently. Bu
ket m re
eives all domains of size � m, be
ause they
an be treated

in any order. Symbols t, u, h, i, j, k, kk denote registers $255, $0, $1, $2, $3, $4, $5.

Sort SET j,0 j 0.

SET i,56 i 56.

1H STOU j,start,i START[i : : i+ 7℄ 0.

SUB i,i,8 i i� 8.

PBNN i,1B Repeat while i � 0.

CMP t,i,0 t �1.

STB t,m,start START[m℄ �1.

SET k,m k m.

1H 8ADDU kk,k,0 kk 8k.

LDOU t,kk,dom t D

k

.

SADD t,t,0 t jD

k

j.

CMP i,t,m

CSP t,i,m If t > m set t m.

LDB i,start,t

STB i,next,k NEXT[k℄ START[t℄.

STB k,start,t START[t℄ k.

SUB k,k,1 k k � 1.

PBP k,1B Loop while k > 0.

DoIt SET u,0 u ;.

SET h,0 h ;.

SET i,0 i 0. (j = 0)

LDB k,start,0 k START[0℄.

PBZ k,2F No domain empty?

1H INCL j,1 j j + 1.

8ADDU kk,k,0

LDOU t,kk,dom t D

k

.

OR u,u,t U U [t.

ANDN t,t,h t t nH.

BZ t,Unfeas To Unfeas if t = ;.

STOU t,kk,dom D

k

 t.

SADD t,u,0 t jU j.

CMP t,t,j t sign(t � j).

BN t,Unfeas To Unfeas if jU j < j.

CSZ h,t,u If jU j = j set H U .

LDB k,k,next k NEXT[k℄.

BP k,1B Repeat loop if k > 0.

BN k,Feas We're done if k < 0.

2H INCL i,1 i i+ 1.

LDB k,i,start k START[i℄.

PBP k,1B Repeat loop if k > 0.

PBZ k,2B In
rease size if k = 0.

Feas ...

The total time is approximately (8� + 30�)m+ 10� + 38�.

Complete GAD �ltering
an also be done with bitwise manipulation, but the

algorithms are
onsiderably more
ompli
ated and time-
onsuming. See P. Van Kessel

and C.-G. Quimper, Pro
eedings of the AAAI Conferen
e 26 (2012), 577{583.

283. (a) The problem is to �nd knight paths p

1

: : : p

m

and q

1

: : : q

n

so that the mn

ells p

i

+ q

j

lie in a
hessboard and are distin
t. There are respe
tively (2, 13, 16, 3)

essentially di�erent solutions for (m;n) = (2; 22), (3; 12), (4; 7), (6; 6); examples appear

in (i){(vi) of Fig. A{14. The symmetri
al
onstru
tions (iv) and (v) show that P

n�2

P

n�2

� N

n

for all n � 4, indeed in at least two di�erent ways when n is even. Case (vi)

is delightfully \symmetri
al" although it has no nontrivial automorphism: It arises from

64 di�erent embedding fun
tions f , while
ases (iv) and (v) arise from only 16 ea
h.

(b) Every extremal solution is shown in (vii){(xiv) of Fig. A{14.

(
) Case (xv) is one of three essentially di�erent solutions for n = 20.

(d) Case (xvi) is the essentially unique solution for n = 8.

(e) Case (xvii) is one of two essentially di�erent solutions for n = 8.

(f) Case (xviii) is the essentially unique embedding for n = 2, and it's stri
t.

[In
identally, the 4-
ube P

2

P

2

P

2

P

2

, whi
h is also C

4

C

4

, is uniquely

embeddable in N

n

for all n � 7, and that embedding is in fa
t stri
t.℄

January 13, 2024

166 ANSWERS TO EXERCISES 7.2.2.3

ba
ktra
k sear
h

(i) (ii) (iii) (iv) (v) (vi)

(vii) (viii) (ix) (x) (xi) (xii)

(xiii) (xiv) (xv) (xvi) (xvii) (xviii)

Fig. A{14. A gallery of knight's grids in a
hessboard.

284. Although SIP solvers use sophisti
ated te
hniques like �ltering and supplemental

labels, the spe
ial geometry of these problems means that a spe
ially tuned ba
ktra
k

sear
h
an be signi�
antly faster. For example, suppose t is given, as well as a �xed

knight path p

1

: : : p

m

. Instead of mapping a pattern vertex into a �xed vertex of the

target graph N

t

, we
an map q

1

to the origin and ba
ktra
k over all knight paths

q

1

q

2

: : : for whi
h the points p

i

+ q

j

are distin
t and �t into a t� t region of the plane.

That avoids �(t

2

) near-similar bran
hes at the top levels of the sear
h tree.

We have (f

2

(3); : : : ; f

2

(11)) = (1, 2, 7, 10, 15, 22, 29, 36, 46); and f

2

(12) � 57,

be
ause of the knight path q

1

: : : q

57

in Fig. A{15. Using somewhat similar paths one

an prove that f

2

(t) = t

2

=2�O(t), with most of the
ells q

j

on \even" rows.

Whenm = 3 we
an
ompute exa
t results a bit further: (f

3

(3); : : : ; f

3

(14)) = (1,

1, 3, 5, 9, 12, 16, 20, 27, 33, 39, 48); and f

3

(15) � 55 be
ause of a knight path q

1

: : : q

55

that sti
ks to
ells (i; j) with (i + j) mod 3 �xed. Using su
h paths together with a

\
rooked path" p

1

p

2

p

3

one
an show that f

3

(t) = t

2

=3�O(t). However, f

3

(14) = 48 is

obtained with a \straight" p

1

p

2

p

3

and a
ompletely mysterious path q

1

: : : q

48

.

When m = 4 we have (f

4

(3); : : : ; f

4

(17)) = (1, 1, 2, 4, 5, 7, 10, 15, 18, 22, 25,

34, 37, 43, 52), and f

4

(18) � 61. In this
ase the optimum solutions for 13 � n � 16

all o

ur when p

1

p

2

p

3

p

4

is the zigzag path shown as `1 1 1 1'; su
h solutions prove

that f

4

(t) = t

2

=4�O(t). However, the zigzag path yields only f

4

(17) � 49. Hen
e the

straight path wins when t = 17, and the sequen
e f

4

(t) remains mysterious.

Turning now to indu
ed subgraphs, (f

2

(3); : : : ; f

2

(18)) = (1, 2, 5, 8, 8, 10, 12, 15,

19, 24, 28, 32, 36, 40, 46, 52); also (f

3

(3); : : : ; f

3

(24)) = (1, 1, 3, 4, 5, 6, 7, 10, 11, 12,

14, 16, 20, 21, 25, 28, 32, 34, 41, 44, 49, 53); furthermore (f

4

(3); : : : ; f

4

(36)) = (1, 1, 2,

4, 4, 5, 6, 8, 8, 10, 12, 12, 14, 15, 17, 18, 20, 20, 22, 24, 25, 26, 28, 29, 31, 32, 34, 35,

37, 38, 40, 41, 43, 44). It appears that lim

t!1

f

2

(t)=t

2

= �

2

and lim

t!1

f

3

(t)=t

2

= �

3

for some (unknown) positive
onstants �

2

and �

3

. But f

4

(t) = O(t), be
ause none of

the paths p

1

p

2

p

3

p

4

allow us to \turn a
orner."

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 167

M
Creesh

Glasgow solver

restarts

symmetri
al solutions

Solnon

Roki
ki

horizontal and verti
al symmetry

axial symmetry

4-fold symmetry

90-degree rotation

entral symmetry

Beluhov

Lo Shu

magi
 square

D�urer

axial symmetry

6 43 8 45 47 18 49

6 43 8 45 471849

5 42 7 44 9 46 19 48 17 50

5 42 7 44 9 4619481750 20

41 4 29 10 31 1220 14 51 16

41 4 29103112 28145116 21

3 4028 30 11 32 1321 15 52

3 40 3630113213 271552 22

36 39 2 3727 33 5622 24 53

39 2 37 353356 262453 55 23

35 1 3826 34 5755 2523 54

1 38 3457 25 54

14 11 4 1

14 16 11 13 4 10 1 3

16 18 1413 15 1110 12 4 3 5 1 2

18 1615 17 1312 30 10 5 9 3 2 6

1817 19 1530 28 12 9 31 5 6 8 2

19 21 1728 26 3031 29 9 8 32 6 7

21 1926 20 2829 27 3132 36 8 7 33

2120 22 2627 25 2936 3233 35 7

22 52 2025 23 27 44 3635 37 33 34

52 2223 51 2544 24 37 43 3534 38

5251 53 2324 48 4443 45 3738 40 34

53 55 5148 50 2445 47 4340 42 38 39

55 5350 54 4847 49 4542 46 4039 41

5554 5049 4746 4241

54 49 46 41

33 35 37 39 1 3

33 35 37 39 1 3

32 33 34 35 36 37 38 39 40 1 2 3 4

3233 3435 3637 3839 40 1 2 3 4

31 32 34 25 36 38 17 40 41 2 5 4

3132 34 2536 38 1740 41 2 5 4

31 30 26 25 24 18 17 16 41 42 5 6

31 30 2625 24 1817 1641 42 5 6

29 30 27 26 23 24 19 18 15 16 43 42 7 6

2930 2726 2324 1918 1516 4342 7 6

29 28 27 22 23 20 19 14 15 12 43 10 7 8

29 2827 2223 2019 1415 1243 10 7 8

28 22 21 20 14 13 12 11 10 9 8

28 22 2120 14 1312 1110 9 8

21 13 11 9

21 13 11 9

Fig. A{15. Champion knight's grids on larger boards.

285. C. M
Creesh found the �rst solution below in 2019, in 446 se
onds using 160

parallel threads, on the Glasgow solver (whi
h in
orporates random restarts). It seems

probable that millions of solutions exist, but a person has to be lu
ky to �nd them.

The problem is essentially to label ea
h
ell ij of a
hessboard with the name

of another
ell xy, so that when two
ells are a knight move apart their labels are a

queen move apart. (For example, the knight-move neighbors of the
ell labeled 36 in

the �rst solution are labeled 06, 63, 47, and 66.) In problems su
h as this it's often

easier (and fun) to look for symmetri
al solutions, be
ause su
h solutions have many

fewer variables. For example, we
an impose further
onstraints: (i) if ij 7! xy then

ji 7! yx; (ii) if ij 7! xy then i�| 7! x�y, where �y = 7� y; (iii) if ij 7! xy then �{j 7! �xy.

C. Solnon dis
overed in 2021 that
ondition (i)
annot be satis�ed. But T. Roki
ki

found that there are exa
tly 8 � 4 ways to satisfy both (ii) and (iii), as in the se
ond

solution below, thus a
hieving \axial symmetry" (see exer
ise 7.2.2.1{386). He showed

furthermore that exa
tly 8 � 14 solutions have the other kind of 4-fold symmetry, under

90-degree rotation, as in the third solution; the
onstraint in this
ase is (iv) if ij 7! xy

then j�{ 7! y�x. Also exa
tly 4 � 23 solutions, like the fourth, satisfy (ii) but not (iii).

And 32 � 991 have
entral symmetry: (v) if ij 7! xy then �{�| 7! �x�y, but not (ii) or (iii).

60 30 36 44 74 15 64 14

06 41 65 33 66 17 75 24

10 63 00 47 35 34 11 67

05 56 32 61 77 57 13 31

62 70 27 55 43 71 37 02

45 50 52 76 07 22 53 73

72 26 25 23 51 46 01 04

20 12 54 16 21 03 40 42

12 11 06 05 02 01 16 15

51 00 13 41 46 14 07 56

10 42 55 04 03 52 45 17

50 24 30 43 44 37 23 57

20 54 40 33 34 47 53 27

60 32 25 74 73 22 35 67

21 70 63 31 36 64 77 26

62 61 76 75 72 71 66 65

67 50 32 41 30 07 34 71

33 63 60 57 12 74 31 02

00 37 23 52 61 35 01 24

73 51 66 15 56 22 72 13

64 05 55 21 62 11 26 04

53 76 42 16 25 54 40 77

75 46 03 65 20 17 14 44

06 43 70 47 36 45 27 10

10 40 71 61 66 76 47 17

11 72 60 43 44 67 75 16

62 21 41 77 70 46 26 65

63 00 73 24 23 74 07 64

51 42 27 30 37 20 45 56

05 03 33 53 54 34 04 02

22 57 32 36 31 35 50 25

12 06 13 55 52 14 01 15

286. N. Beluhov notes that the 3�3 \Lo Shu" magi
 square may a
tually be regarded

as an embedding of N

3

into P

3

P

3

; and the famous magi
 square in Albre
ht D�urer's

Melen
olia I is an embedding of N

4

into Q

4

, with axial symmetry!

January 13, 2024

168 ANSWERS TO EXERCISES 7.2.2.3

Roki
ki

Solnon

MRV heuristi

Beluhov

(p; q)-leaper

leaper

football teams

Hugo

Les Mis�erables

independent set

isolated

unique solution

Boolean fun
tion

lollipop

paw

lique

BDD

Histori
al notes

Moon

Alon

Without redu
ing for symmetry, there are 44176 embeddings for n = 3, 171569126

for n = 4, and zillions for 5 � n � 7. Restri
ting to solutions with
entral symmetry,

these
ounts be
ome (80, 66624, 69200, 1599680, 48560, 32000), for 3 � n � 8.

Surprisingly, no 4-way symmetry is possible for 9 � n � 30. In fa
t Roki
ki found

that there are only 32 � 2 symmetri
al solutions for n = 9, all with
entral symmetry.

[But Solnon has dis
overed that unsymmetri
al solutions
an be obtained quite

qui
kly, with a dynami
ally weighted improvement of the MRV heuristi
, at least for

9 � n � 12! I shall be reporting on that at length, in a future version of these notes.℄

287. (Solution by N. Beluhov.) Of
ourse N

n

has very few edges when n is small, so the

task is easy; (1, 24, 1296, 69120) embeddings solve the problem when n = (1, 2, 3, 4).

When n = 5, there are exa
tly 28800 embeddings. In fa
t, they are the mappings

ij 7! p((2i+j) mod 5)q((3i+j) mod 5) and their transposes, when p and q are arbitrary

permutations of f0; 1; 2; 3; 4g. Those maps also embed the toroidal 5� 5 knight moves.

But it's impossible when n > 5, be
ause knight edges of the same slope must map

onto rook edges of the same slope. (This is true in ea
h \knight rhombus," and we
an

onne
t moves of the same slope by
hains of su
h rhombuses.) And without loss of

generality, knight edges of at least two distin
t slopes map onto horizontal rook edges.

(And in general, the n � n graph of every skew free (p; q)-leaper is embeddable

in the n� n rook graph for n = p

2

+ q

2

, but not for larger n.)

288. If solvable, there would be headline news: We
ould name 75 Ameri
an
ollegiate

football teams who played ea
h other in 1990 if and only if 75
orresponding
hara
ters

en
ountered ea
h other in the �rst half of Vi
tor Hugo's Les Mis�erables (1862)! But

unfortunately this one is not solvable. Indeed, 95 of the target teams belong to one of

eleven \
onferen
es"; and they play almost everybody in their own
onferen
e. So the

largest independent set among those teams has at most 1+1+1+1+1+1+1+1+2+2+2

members. Sin
e at most 8 of the remaining 25 teams are independent, the target graph

has at most 23 independent verti
es. But the pattern graph has 27 isolated verti
es.

290. (a) The unique solution is ni
ely symmetri
. One interesting way

to �nd it is to
onsider a Boolean fun
tion on

�

8

2

�

= 28 variables x

uv

,

one for ea
h potential edge u ��� v. The fun
tion that
hara
terizes 4-

universal graphs H is

V

G2G

4

S(G), where G

4

is the set of all 4-vertex

graphs and S(G) = [GvH ℄. For example, when G = L(3; 1) we have S() =

W

tuvw

x

tu

x

tv

x

tw

x

uv

�x

uw

�x

vw

, whi
h is an OR taken over all 8 � 7 � 6 � 5 = 1680 ordered

quadruples of verti
es tuvw.

0

1

2

3

4

5

6

7

Many simpli�
ations are possible, be
ause H must
ontain a 4-vertex
lique C as

well as an independent set I of size 4, having just one vertex in
ommon with C. The

eighth vertex must not be adja
ent to all of C n I, but adja
ent to at least one of I nC.

That leaves only 11 unspe
i�ed variables x

uv

; the resulting BDD has only 1019 nodes

and
an be
omputed in only 4 megamems.

(b) It turns out that exa
tly 90 distin
t 4-universal 8-vertex

graphs
an be stri
tly embedded in a 5-universal 10-vertex graph|

but not the graph of (a). This example be
omes 4-universal when we

delete verti
es 8 and 9; further deletion of f5; 6; 7g gives the bull.

0

123

4

5

6

7

8

9

The Boolean fun
tion for all 5-universal graphs in G

10

, analogous to the one in

part (a), has

�

10

2

�

� 22 = 23 variables and a BDD of size 3803(!),
omputed in 2.5 G�.

[Histori
al notes: J. W. Moon introdu
ed n-universal graphs in Pro
. Glasgow

Math. Asso
. 7 (1965), 32{33. He de�ned �(n) as the minimum number of verti
es in

su
h a graph, and showed that 2

(n�1)=2

< �(n) < 1:1n2

(n�1)=2

. N. Alon sharpened this

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 169

Trimble

Stappers

Trimble

Zhang

Szeider

internet

video

Stappers

Ho Boon Suan

CSP

rainbow path problem

XCC

hexade
imal
ode, extended

unmat
hed girl in maximum mat
hing

re
ursive pro
edure

to �(n) = 2

(n�1)=2

(1 + O(n

�1=2

(log n)

3=2

)) in Geometri
 and Fun
tional Analysis 27

(2017), 1{32. Exa
t values for small n were
omputed by J. Trimble [arXiv:2109.00075

[math.CO℄ (2021), 22 pages℄, who found (�(1); : : : ; �(6)) = (1, 3, 5, 8, 10, 14) and

16 � �(7) � 18. The minimum number of edges in an n-universal graph is (0, 1, 4, 11,

21) for 1 � n � 5; the smallest known examples for n = 6 and 7, due respe
tively to

F. Stappers and J. Trimble, have respe
tively 45 and 77 edges. T. Zhang and S. Szeider

showed in LIPI
s 280 (2023), 39:1{39:20, that �(7) > 16.℄

291. In fa
t we
an obtain ea
h V

j+1

by \promoting" a vertex of V

j

: V

1

= 0125 (K

1;1;2

);

V

2

= 0126 (C

4

); V

3

= 0136 (P

4

); V

4

= 0236 (P

3

�K

1

); V

5

= 0237 (K

2

�2K

1

); V

6

= 0247

(K

4

); V

7

= 1247 (K

1;3

); V

8

= 1347 (L(3; 1)); V

9

= 1357 (K

4

); V

10

= 1367 (C

3

�K

1

);

V

11

= 2367 (2K

2

). Exer
ise: Make and post an animated video of this. [See suggestions

by Filip Stappers (https://ar
hive.org/details/gray-4-universal/) and Ho Boon

Suan (https://www.youtube.
om/wat
h?v=KelZOGPr3Zw).℄

An interesting CSP now suggests itself: Given a digraph in whi
h ea
h vertex v

has a given
olor
(v) 2 f1; : : : ; dg, we seek an oriented path v

1

��!v

2

��!� � ���!v

d

su
h

that ea
h
olor o

urs on
e in f
(v

1

);
(v

2

); : : : ;
(v

d

)g. Let's
all this the rainbow path

problem. There's a ni
e way to formulate it as an XCC: Let there be 3d primary items

x, x+, x� for 1 � x � d, together with a se
ondary item v for ea
h vertex v; we also

have two spe
ial primary items ? and >. If the verti
es
olored x are v

1

, : : : , v

t

, there

are 3t options `x v

1

:Æ

1s

: : : v

t

:Æ

ts

', `? v

s

:1 x�', `x+ v

s

:1 >', for 1 � s � t. Also, for

ea
h ar
 v��!v

0

with
(v) 6=
(v

0

), there's an option `
(v)+ v:1 v

0

:1
(v

0

)�'.

This exer
ise is the spe
ial
ase where ea
h v is a 4-element subset of f0; : : : ; 7g

and
(v) is the
orresponding indu
ed subgraph; v��!v

0

if and only if v

0

in
reases an

element of v by 1. The asso
iated XCC has 105 items, 341 options, and 22 solutions,

found in 3 megamems. (But we were lu
ky, be
ause there are 8! = 40320 ways to label

the verti
es of H and only 4224 of them yield solutions.)

293. (a) The answer is unique, ex
ept for permutation of f0; 2; 3g:

0

1 2

3

4

5

6 7

8

9

ab

d

e

f

gh

i

(b) Yes. Subtree S

r

has nodes f7; 8; d; eg; subtree T

e

has

nodes fw; x; y; z; A; Bg; map 7 7! w, 8 7! x, d 7! y, e 7! z. (This

example uses an extended hexade
imal
ode in whi
h the letters

[a : : z℄ denote [10 : : 35℄ and the letters [A : : Z℄ denote [36 : : 61℄.)

(
) Let e

j

=

v

w

j

, for 1 � j � l. The stated embedding is possible if and only if

there are analogous embeddings of S

r

1

, : : : , S

r

k

into some k distin
t subtrees T

e

j

.

(d) The
ondition in (
) is that there's a mat
hing of size k in the graph with

k boys, l girls, and b

i

���g

j

() sol[r

i

℄[e

j

℄.

(e) Let v's neighbors be fw

0

; : : : ; w

l

g; de�ne e

j

as in (
), but for 0 � j � l.

Now
onsider the graph of (d), but with l + 1 girls. The embedding for e =

u

v

is

possible when u = w

j

() there's a mat
hing of size k with g

j

unmat
hed. And

Algorithm 7.5.1H has the beautiful property that su
h a mat
hing exists () g

j

2

fQUEUE[0℄; : : : ; QUEUE[q � 1℄g when that algorithm terminates with no free boys. (This

brilliant idea saves us a fa
tor of n. See Theorem 3.4 in Matula's paper, Annals of

Dis
rete Math. 2 (1978), 91{106.)

(f) Assign integers [0 : : 2n � 2) to the ar
s e of T so that (i) all ar
s e =

u

v

with

the same value of v are
onse
utive, and (ii) if deg(e) < deg(e

0

) then e < e

0

. (Here

deg(e) means deg(v) when e =

u

v

.) For 1 � d � n, set THRESH[d℄ to the number of ar
s

with deg(e) < d. If e =

u

v

and e

0

=

v

u

, set UERT[e℄ u, VERT[e℄ v, DUAL[e℄ e

0

.

The heart of the
omputation is solve (r), a re
ursive pro
edure to set sol[q℄[e℄

for all ar
s e and all des
endants q of r, where r is a node of S. Here's how it works:

January 13, 2024

170 ANSWERS TO EXERCISES 7.2.2.3

author

downloadable programs

If r is a leaf, simply set sol[r℄[e℄ 1 for 0 � e < 2n � 2. Otherwise suppose r

1

,

: : : , r

k

are r's
hildren, and solve (r

i

) for 1 � i � k. We start with sol[r℄[e℄ 0 for

0 � e < 2n � 2. Then we set d k + 1, e THRESH[d℄, and do the following while

e < 2n�2: While e = THRESH[d + 1℄ set d d+1; set up a bipartite mat
hing problem

(see below), and use its solution to �x sol[r℄[e + j℄ for 0 � j < d; then set e e+d.

(One
an abort,
on
luding that S 6� T , if solve (r) never sets any sol[r℄[e℄ 1.)

The bipartite graph for r and [e : : e+d) has k boys b

i

= r

i

(the
hildren of r) and

d > k girls g

j

= e + j, with b

i

��� g

j

if and only if sol[b

i

℄[DUAL[g

j

℄℄ = 1. However,

several spe
ial
ases are important: If b

i

���g

j

for no j, there's no perfe
t mat
hing and

we don't bother to look for one. If b

i

���g

j

for all j, we omit boy b

i

from the graph.

(That happens often, for example whenever r

i

is a leaf.) So we're left with k

0

� k boys,

where k

0

is at most the inner degree of r. If k

0

= 0 (every boy mat
hes every girl), we

set sol[r℄[e + j℄ 1 for 0 � j < d. Otherwise if Algorithm 7.5.1H terminates with

f = d� k

0

, and with q girls in its queue, we set sol[r℄[QUEUE[j℄℄ 1 for 0 � j < q.

Finally, S � T if and only if sol[1℄[e℄ = 1 for at least one ar
 e.

Here's the sol matrix for the trees of (a):

u 11796

lfhnuxxwwCCHOONpRpML1435686a
lkmfifo5sjtCQuGFOtVpRJSqMrUqT032sNuwzyGWP5Lr5b975ked5nhguBAxuHED5KJItFCwv4qpjf
6

v 028abdemgiovyzABDEQPWVISKUT33447799kkllhhnnjjssHHFFGGNNJJRRrrMMLL111tttxxxOOOqqq6666

ffffwwwwCCCCppppuuuuu5555555

1 0001110000000000000000

2 11

3 11

4 001010000000

5 00000000000000000000000000010110101010101011111011101010101010101101111011011111011111110111011101111111111111111111

6 11

7 00000000000000000000000000001100101010001010110010110010100010001000110011000011011101110111111101110111111111111111

8 000111

9 000000000000000000000000000111101011101010111110111110111011101011011110110111

a 000000000000000000000000000111

b 11

 00111000000111111100111111011000110101111111111111

d 11

e 11

f 000000000000000000000000000111

g 11

h 000000000000000000000000000111

i 11

The author's online program MATULA in
ludes additional matri
es solx and

soly, whi
h re
ord the MATE and QUEUE information of subproblem solutions, so that

an a
tual embedding of S into T
an be exhibited when one exists.

294. (a) The average running time is less than 2 kilomems, and the standard deviation

is very small. There are exa
tly 516399 pairs with S � T (4:85%). Tree S

1

is embed-

dable the most (2016 T s); tree S = K

1;12

is embeddable the least (31 T s); tree T

1

has

the most embedded subtrees (74 Ss); trees T = P

16

and K

1;15

have the fewest (1 S);

trees S

2

and T

2

lead to the largest bipartite mat
hing problem (5 boys, 14 girls).

S

1

= � max; T

1

= � max; S

2

= 6� T

2

= :

(b) These tests, whi
h take about 250 kilomems, �nd S � T slightly more than

half of the time, and rarely need bipartite mat
hing with more than 3 boys.

(
) These tests take about 10 megamems, and �nd a unique embedding about

30% of the time. (About 5% of the time there are �ve or more.) The mat
hing problems

usually all have fewer than 5 boys and fewer than 9 girls.

295. If D has n verti
es, there's a solution if and only if K~

n�k

v D.

297. Let there be a primary item v for ea
h variable v, and let D

v

be v's domain. Let

there be a se
ondary item u

i

v

j

for all elements of N = f(u; v; i; j) j u < v, i 2 D

u

,

j 2 D

v

, (u; v) = (i; j) disallowedg. There's one option for ea
h v and ea
h j 2 D

v

:

`v

W

(u;v;i;j)2N

u

i

v

j

W

(v;u;j;i)2N

v

j

u

i

'.

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 171

Prestwi
h

Klav�zar

ternary-to-binary en
odings

unit
lauses

weakened en
oding

For radio
oloring we
an in fa
t do better. Let D

v

= [0 : : d) for all v, and

N = f(u; v; i; j) j u��� v, u < v, ji � jj < 2g; introdu
e also a se
ondary item v

j

for

ea
h v and j, meaning that v has a neighbor
olored j. The option for v and j is then

`v

W

u���v

u

j

W

(u;v;i;j)2N

u

i

v

j

W

(v;u;j;i)2N

v

j

u

i

'.

298. (a) 608 (d = 7); (b) 95520 (d = 10); (
) 3311464 (d = 12); (d) 401800 (d = 11).

300. (a) Yes. For example, (�u

2

_ �v

2

) says that we don't have u = v = 2. (Like the

binary en
oding, it allows all pairs of binary bits in ea
h variable's representation.

But it's better, be
ause it lumps 11 together with 10 instead of with 00.)

(b) (000; 001; 01�; 1��). (See also the variable-length example in 6.2.2{(33).)

(
) Omit 000. (S. Prestwi
h introdu
ed this alternative in order to study en-

odings that have many bit patterns assigned to a single value.)

301. v

2

v

1

= (00; 01; 10; 11) means v = (0; 1; 2; 1 or 2). The allowable u

2

u

1

v

2

v

1

are

0001, 0010, 0011, 0100, 0110, 1000, 1001, 1100; hen
e u 6= v. (See also answer 332.)

302. Dire
t: (vars,
lauses, totlits) = (3V; 4V + 3E; 9V + 6E). Multivalued: (3V; V +

3E; 3V+6E). Log or Ordered: (2V; V+3E; 2V+8E). Binary: (2V; 6E; 24E). Support:

(3V; 4V + 6E; 9V + 18E). Weakened: (3V; V + 3E; 3V + 12E). Redu
ed: (2V; 3E; 8E).

Pre�x: (2V; 3E; 10E). Curiously, the multivalued en
oding has fewer total literals than

the redu
ed en
oding when E >

3

2

V, although it has more variables and more
lauses.

303. By indu
tion on n, the
olors at the
orners are uniquely determined: Given

the
olors of verti
es 01 : : : 1 and 02 : : : 2, there are two ways to 3-
olor ea
h of the

subgaskets 1� : : : � and 2� : : : �; but three of those four possibilities fail to hook up.

[S. Klav�zar, Taiwanese Journal of Mathemati
s 12 (2008), 513{522.℄

304. True. There are two 3-
olorings when n = 1. And any 3-
oloring � S

(3)

n

with

equal
olors at two
orners
an be extended to a 3-
oloring � S

(3)

n+1

, in one or two ways.

306. The hint follows by indu
tion. Consider three ternary-to-binary en
odings

0� = 1;

1� = 1;

2� = 1;

0� = 1;

1� = 1;

2� = 1;

0� = 1;

1� = 1;

2� = 1;

and let a

1

: : : a

n�1

7!

�

((a

1

�) : : : (a

n�1

�))

2

;

((1a

1

�) : : : (a

n�1

�))

2

;

((a

1

�) : : : (a

n�1

�))

2

�

:

For example, 1202 7! ((1111)

2

; (11111)

2

; (1111)

2

) = (�5; 5; 1). It's easy to verify that

� 7! (x; y; z) implies that x, y, and z are odd numbers with x+ y+ z = 1. Conversely,

one
an go ba
k from su
h (x; y; z) to �, but only if � is a ternary ve
tor a

1

: : : a

n�1

.

To go from the representation of triangle � to its three verti
es �0, �1, or

�2, add respe
tively (�1;�1; 1), (�1; 1;�1), or (1;�1;�1). The
orner points are

0 : : : 00 7! (�2

n

; 2

n+1

;�2

n

); 1 : : : 11 7! (�2

n

; 0; 2

n

); and 2 : : : 22 7! (2

n

; 0;�2

n

).

307. Assert the unit
lauses (�u

1

), (�u

2

), (v

1

), (�v

2

), (�w

1

), (w

2

). In the weakened

en
oding, also assert (�v

0

) and (�w

0

).

309. Here are typi
al running times for Algorithm 7.2.2.2C, in units of 10

n

mems:

without
lique hints with
lique hints

3 4 5 6 7 8 9 n 3 4 5 6 7 8 9 10 11

Dir 1.0 4.3 4.7 4.1 5.3 7.6 12.0 1.2 4.0 4.3 3.7 3.5 4.5 7.9

Mul 0.9 4.6 4.3 4.1 4.8 7.1 13.1 1.2 4.1 3.4 3.8 4.3 4.9 7.5

Log 0.9 3.1 3.9 3.9 3.2 4.9 8.1 1.1 4.0 3.6 3.0 2.8 3.4 5.8 10.7 23.5

January 13, 2024

172 ANSWERS TO EXERCISES 7.2.2.3

fo
us

re
urren
e relations

generating fun
tions

Lu
as number

Fibona

i numbers

Stappers

dan
e

author

LEN �elds

primary item

MRV

heap-ordered lists

Bin 28.9 48.2 70.3 78.5 89.7

Sup 2.4 6.4 6.9 5.8 5.9 6.9 13.3 2.8 7.8 7.0 6.2 6.0 6.8 9.6

Wea 9.1 14.9 14.5 14.7 16.9 23.6 27.0

Red 0.8 3.9 3.3 3.4 3.2 3.7 8.6 1.0 3.8 3.8 2.7 2.6 3.1 6.5 12.9 24.0

Pre 3.4 7.7 7.5 5.7 6.4 7.5 11.2 1.4 2.8 3.4 3.0 2.3 3.0 4.8 7.3 14.6

Tests were omitted when there was little
han
e of su

ess. Sin
e runtime depends on

random
hoi
es, ea
h experiment was done nine times; the median is shown. (For exam-

ple, the values for Pre when n = 11 ranged from 11.2 to 16.1.) Algorithm 7.2.2.2L gives

very similar results when n � 5. But for n � 6 it often loses fo
us and takes forever.

311. For n > 1 let X

n

be the sear
h tree size for 3-
oloring S

(3)

n

when distin
t
olors

have already been spe
i�ed for verti
es 0 : : : 00 and 0 : : : 01; also let Y

n

be similar, but

for verti
es 0 : : : 00 and 1 : : : 11; and let Z

n

be similar, but for

b

S

(3)

n

instead of S

(3)

n

.

Then X

2

= Y

2

= 5 and Z

2

= 2. Also X

n+1

= X

n

+ (X

n

+ Y

n

� 1) + (X

n

+ 2Z

n

);

Y

n+1

= 1 + (X

n

+ Y

n

� 1 + Y

n

� 1) + (X

n

+ 2Z

n

); Z

n+1

= X

n

+ Y

n

� 1 + 2Z

n

. Via

generating fun
tions we �nd X

n+1

= Y

n+1

= 2

n�1

L

2n+1

+1 and Z

n+1

= 2

n�1

L

2n

� 1,

where L

m

= F

m+1

+F

m�1

is a Lu
as number. The answer, if we de
ide to save a fa
tor

of 6 by prespe
ifying the
olors of 0 : : : 00 and 0 : : : 01, is Z

n

= b(3 +

p

5)

n�1

=2
.

313. For all n > 2, Filip Stappers has
onstru
ted 2

n�1

sets of 2

n�1

+1 removable edges

as follows: Ea
h set in
ludes the two \tip" edges that tou
h vertex 2 : : : 2, plus 2

n�1

�1

non-tip edges. When n = 2 the non-tip edge is 00��� 01, whi
h
an also be written

11��� 01; these two forms have di�erent progeny. When n > 2, repla
e ea
h non-tip

edge �a����b for n�1 by two non-tip edges �aa����a
, �bb����b
, where
 =2 fa; bg;

also add either 2 : : : 200���2 : : : 201 or 2 : : : 211���2 : : : 210 as a further non-tip edge.

For example, when n = 4 we get eight sets of nine removable edges, su
h as:

0000���0001, 0022���0021, 0111���0110, 0122���0120, 2000���2002, 2011���2012,

2200���2201, 2202���2222, 2212���2222. (This
onstru
tion a
tually produ
es all of

the largest removable sets when n � 4. Is that
onje
ture a
tually true for all n?)

315. (a,
) (u

1

_ v

1

_ w

1

) ^ (u

2

_ v

2

_ w

2

).

(b) (u

0

_ v

0

_ w

0

) ^ (u

1

_ v

1

_ w

1

) ^ (�u

1

_ �v

1

_ �w

1

) ^ (u

2

_ v

2

_ w

2

).

(d) (u

1

_ v

1

_ w

1

) ^ (�u

1

_ �v

1

_ �w

1

) ^ (u

2

_ v

2

_ w

2

).

316. If (:0202

2

) and (:0222

2

), the
lique hint (0202

2

_0212

2

_0222

2

) implies (0212

2

).

Hen
e (:0201

2

); and (0022

2

_ 0201

2

_ 0202

2

) implies (0022

2

),
ontradi
ting (0002

2

).

318. The
onstru
tion of exer
ise 7.2.2.1{117(b) ni
ely sets up an exa
t
over problem

with d3

n

=2e primary items, 3

n

se
ondary items, and d3

n+1

=2e � 5 options, ea
h of size

at most 3. (The
olors of the �rst three verti
es are for
ed.) And Algorithm 7.2.2.1X

ni
ely proves un
olorability, with a sear
h tree of size Z

n

= O(5:24

n

) (see exer
ise 311).

Indeed, only a few links need to dan
e at every node of that tree.

But there's a
at
h! The author's implementation of step X3, whi
h was used for

many of the experiments in Se
tion 7.2.2.1, looks at the LEN �elds of every un
overed

primary item, when
hoosing the item for bran
hing by MRV (see exer
ise 7.2.2.1{9).

So his implementation in
urs a
ost of
(3

n

=2 � l) for ea
h node at level l. That's

foolish|be
ause in this problem all the LEN �elds are at most 3!

A better implementation of step X3 solves the problem with only O(n) steps of

omputation at ea
h node, while making pre
isely the same
hoi
es: We maintain heap-

ordered lists of all un
overed primary items that have a given length. (See Algorithm

5.2.3H.) Then we simply
hoose the smallest item in the nonempty list of least LEN.

With that improvement the running time for

b

S

(3)

n

is � (1:7n + 12)(3 +

p

5)

n

�.

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 173

weakened en
oding

author

pure verti
es

ontra
tion of a graph

line graph

Klav�zar

Milutinovi�

Jakova

Zemlji�

self-transpose

latin square

omplete binary tree

In this parti
ular problem it turns out to be very important to
hoose the smallest

item ea
h time; otherwise the algorithm gets lost and exer
ise 311 does not apply.

Noti
e that the se
ondary items (three per
lique)
ould a
tually be made primary;

surprisingly, however, that
hanges the order of exploration and messes everything up.

319. The same question
an of
ourse be asked for

b

S

(d)

n

and S

(d)

n

.

320. We observed in Se
tion 7.2.2.2 that Al-

gorithm 7.2.2.2L is hopelessly slow for this

problem. The
lique-hinted runtimes shown

here are in units of q

2

kilomems. One of

several surprises in this experiment is that

the weakened en
oding performs mu
h better

than expe
ted, espe
ially when q is small.

q 29 49 99 199 399 799 1599 3199

Dir 58 44 46 40 52 56 40 41

Mul 96 60 53 36 57 99 62

Log 35 24 24 28 29 33 19 17

Sup 148 169 111 99 109 152 105

Red 53 29 31 27 34 37 25 22

Wea 32 35 41 55 66 51 39 58

Pre 47 31 35 35 77 77 35 38

321. (The author hopes that some reader will supply a good answer. His best so far

is to remove nine edges, su
h as these: a

0

���b

1

, e

0

���d

1

, f

0

���

1

, a

1

���b

1

, b

1

���

1

,

b

1

���d

1

,

1

���d

1

,

1

���e

1

, d

1

���f

1

.)

323. 013 = 031; 113 = 131; 123 = 132; 133 = 311; 213 = 231; 312 = 321; 313 = 331.

324. A path of length 2

n�1

. (And S

(2)

n

is a (2

n�1

+ 1)-
y
le.)

325. True: Consider the verti
es a

1

: : : a

n

with a

j

< d for all j. (And we
an indepen-

dently remap the
oordinates of those verti
es in d

0

d

= d

0

(d

0

� 1) : : : (d

0

� d+1) ways.)

326. The pure verti
es j : : : j for 0 � j < d (S

(d)

n

), 2 � j < d (

b

S

(d)

n

), 1 � j < d (S

(d)

n

).

328. (a) d

n

(d� 1)=2
lique edges; (d

n

� d)=2 non
lique edges.

(b) Contra
t all the non
lique edges.

(
) Add a loop to ea
h pure vertex j : : : j, then take the line graph.

[The graphs s

(d)

n

for arbitrary d were introdu
ed by S. Klav�zar and U. Milutinovi�
, in

Cze
hoslovak Mathemati
al Journal 47 (1997), 95{104; a few years later, M. Jakova
,

in Ars Combinatoria 116 (2014), 395{405, introdu
ed S

(d)

n

. For a
omprehensive survey

of graph-theoreti
al properties satis�ed by these and similar graphs, see A. M. Hinz,

S. Klav�zar, and S. S. Zemlji�
, Dis
rete Applied Mathemati
s 217 (2017), 565{600.℄

330. Ea
h of d

n

vertex labels re
eives a
olor, and ea
h
olor
 appears d

n�1

times|

on
e in every
lique. And
 appears an even number of times on the impure labels,

sin
e they're paired up. So its pure appearan
es are
ongruent to d

n�1

(modulo 2).

In
identally, a d-
oloring of S

(d)

2

is essentially a self-transpose d� d latin square.

332. Ea
h variable v must be represented individually. Dire
t and Support: d Boolean

variables v

j

= [v= j ℄, with the at-least-one
lause (v

0

_ � � �_v

d�1

) and

�

d

2

�

at-most-one

lauses �v

i

_ �v

j

. Multivalued and Weakened: Omit those at-most-one
lauses. (If v

j

= 1

and v

k

= 0 for j < k < d in the weakened en
oding, v = j.) Log: l = dlg de variables

v

1

, v

2

, v

4

, : : : , denoting v = (: : : v

4

v

2

v

1

)

2

. Assert
lauses of length l to ex
lude the

ases d � v < 2

l

. (Those
lauses
an often be shortened; for example, to ex
lude v > 4

when d = 5 it suÆ
es to assert (�v

4

_ �v

2

) and (�v

4

_ �v

1

).) Pre�x: Again dlg de variables,

but there are no
onstraints; v = j is represented by the path to the jth leaf in the

omplete binary tree with j external nodes. For example, the �ve values when d = 5

are represented by v

4

v

2

v

1

= 000, 001, 01�, 10�, 11�, e�e
tively lumping together the

binary values f2; 3g, f4; 5g, f6; 7g. Redu
ed: d� 1 variables v

j

= [v= j ℄ for 0 < j < d.

Order: d� 1 variables v

j

= [v� j ℄ for 0 < j < d; assert (�v

j

_ v

j�1

) for 1 < j < d.

We also must assert
lauses to prohibit u = j and v = j. Dire
t, Multivalued:

(�u

j

_ �v

j

). Redu
ed: Same, but assert (u

1

_ � � � _ u

d�1

_ v

1

_ � � � _ v

d�1

) when j = 0.

January 13, 2024

174 ANSWERS TO EXERCISES 7.2.2.3

SATLog: Assert a
lause of length 2l from the binary representation of j; for example,

when l = 3 and j = 4, assert (�u

4

_ u

2

_ u

1

_ �v

4

_ v

2

_ v

1

). (However, that
lause

an be shortened to (�u

4

_ u

1

_ �v

4

_ v

1

) when d = 6, and to (�u

4

_ �v

4

) when d = 5.)

Support: Assert (�u

j

_ v

1

_ � � � _ v

j�1

_ v

j+1

_ � � � _ v

d�1

), and the same with u $ v.

Weakened: Assert (�u

j

_ u

j+1

_ � � � _ u

d�1

_ �v

j

_ v

j+1

_ � � � _ v

d�1

). Pre�x: Assert a

lause of length 2l or 2l� 2 based on the path to leaf j. For example, when d = 5 and

j
orresponds to f4; 5g, assert (�u

4

_ u

2

_ �v

4

_ v

2

). (See exer
ise 7.2.2.2{391(
).) Order:

Assert (�u

j

_ u

j+1

_ �v

j

_ v

j+1

); but omit �u

0

, �v

0

, u

d

, v

d

(whi
h are always false).

333. We assume that all domain sizes are d, and that we want to assert all possible

hints when the underlying
onstraint graph has a d-
lique fv

(1)

; : : : ; v

(d)

g. Let v

k

be one

of the Boolean variables representing vertex v. If we know that v

k

= 1 for at least one v

in any
-
lique, where 3 �
 � d, we
an assert the positive
lause (v

(i

1

)

_� � �_v

(i

)

) for

all

�

d

�

subsets fi

1

; : : : ; i

g � f1; : : : ; dg. Similarly, if we know that v

k

= 0 for at least

one su
h v, we
an assert the negative
lause (�v

(i

1

)

_ � � � _ �v

(i

)

) for all su
h subsets.

Let's assume, for example, that the verti
es fu; v; w; x; yg form a
lique when

d = 5. Dire
t, Multivalued, Support, and Redu
ed have positive hints (u

j

_ v

j

_

w

j

_ x

j

_ y

j

) for 0 � j < d; we must, however, omit j = 0 in the redu
ed en
oding,

where v

0

doesn't exist. Log en
oding, likewise, has (u

4

_ v

4

_ w

4

_ x

4

_ y

4

); and when

j 2 f1; 2g it also has �ve positive
lauses for
 = 4, namely (u

j

_ v

j

_ w

j

_ x

j

), : : : ,

(v

j

_ w

j

_ x

j

_ y

j

), as well as ten negative
lauses for
 = 3, su
h as (�u

j

_ �v

j

_ �w

j

).

Thus, Log has 1+5+5+10+10 = 31 hints altogether, for every 5-
lique(!). Order has

even more: Positive for
j 2 f32; 43; 54g and negative for
j 2 f33; 42; 51g, totalling

10 + 5 + 1 + 10 + 5 + 1 = 32. (Examples are the hints (�u

1

_ �v

1

_ �w

1

_ �x

1

_ �y

1

),

(�u

2

_�v

2

_ �w

2

_�x

2

), and (u

3

_v

3

_w

3

).) And Pre�x has positive hints for
j 2 f42; 44; 51g,

negative hints for
j 2 f33; 34; 51g, also totalling 32. Finally, Weakened has positive

hints for
j 2 f50; 51; 52; 53; 54g, negative hints for
j 2 f33; 42g.

334. With hints for 17 8-
liques (7 rows, 8
olumns, and two long diagonals; the top

row is already for
ed), the time for Algorithm 7.2.2.2C to prove unsatis�ability goes

down dramati
ally, from 9813 M� to 0.8 M� (median of nine runs)|better than K6!

335. Suppose we have a 4-
oloring h, with h(a

1

: : : a

n

) 2 f0; 1; 2; 3g for all verti
es

a

1

: : : a

n

. If � is any permutation of f1; 2; 3g, let 0� = 0. Then h

0

(a

1

: : : a

n

) =

h((a

1

�) : : : (a

n

�))�

�

is a 4-
oloring; and h

0

(0 : : : 0j) = h(0 : : : 0(j�))�

�

= j��

�

= j.

Consequently we
an assume without loss of generality that h(0 : : : 011) = 0. Let

v

k

be the vertex a

1

: : : a

n

su
h that k = (a

1

: : : a

n

)

2

. Then the sequen
e h(v

1

), h(v

3

),

h(v

5

), : : : , h(v

2

n

�1

) begins 1, 0, and ends with 2 or 3. So there's a �rst odd index j

with h(v

j

) > 1, and we
an assume without loss of generality that h(v

j

) = 2.

We
ould exploit this when ba
ktra
king to save a fa
tor of at least 3. But if we are

using SAT, the assertions (0 : : : 011

0

) and (:0 : : : 101

3

) don't a
tually give any speedup.

336. (Pre�x = Log when d = 4.) To avoid de
imal points in the table below, the

running times are given in units of 10

2n�4

mems, rounded to two signi�
ant digits.

S

(4)

3

S

(4)

4

S

(4)

5

S

(4)

6

S

(4)

7

b

S

(5)

3

b

S

(5)

4

b

S

(5)

5

b

S

(5)

6

Dir 580 200 24 12 13 Dir 460 650 160 25

Mul 580 130 33 18 17 Mul 22000 2500 250 30

Log 5900 2600 440 62 48 Log 8400 6700 1600

Sup 2100 800 250 85 24 Sup 8700 3900 480

Wea 140000 8900 1700 290 450 Pre 6100 4700 1200 1600

Red 9100 5000 200 20 24 Red 16000 1800 180 17

Ord 680 130 26 11 16 Ord 2500 1700 320 150

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 175

Kissat

Intel Xeon
omputer

Biere

lique

permutation

pigeonhole prin
iple

domain in
onsisten
y

dire
t representation

}, tautology

lique hints

multivalued en
oding

van Dongen

ben
hmarks

ompetition

337. Similarly, the table entries above are in units of 10

2n�2

mems. Reasons for the

sterling performan
e of the dire
t en
oding when n = 3, and for the poor performan
e

of the pre�x en
oding when n = 6, are unknown.

338. Here are the
lique-hint runtimes for Kissat 2022-light on an Intel Xeon
omputer,

model E5-2620 v4 2.1GHz, reported by Armin Biere. (The units for

b

S

(3)

n

, S

(4)

n

,

b

S

(5)

n

are respe
tively 10

n�11

, 10

n�7

, and 10

n�5

se
; the units for L

q

= L(J

q

) are q

2

�se
.

Algorithm 7.2.2.2C is totally e
lipsed on the

b

S

(3)

n

and S

(4)

n

ben
hmarks!)

b

S

(3)

9

b

S

(3)

10

b

S

(3)

11

b

S

(3)

12

S

(4)

6

S

(4)

7

S

(4)

8

b

S

(5)

5

b

S

(5)

6

b

S

(5)

7

b

S

(5)

8

L

1023

L

2047

L

4095

L

8191

Dir 170 84 45 26 6 7 9 8 6 28 31 62 57 49 15

Mul 150 81 45 24 10 11 19 34 40 37 28 23 17 13

Log 110 60 32 18 54 38 27 40 39 38 23 18 14 10

Sup 180 73 54 28 25 31 33 47 57 59 20 15 10 6

Red 100 59 35 18 17 100 46 13 11 11 14 21 20 14 10

Wea 120 85 50 29 170 210 340 32 19 14 11

Pre 60 44 33 21 54 38 27 55 74 76 30 24 27 19

Ord 110 60 32 18 7 14 51 22 26 30 25 23 18 14 10

340. (a) Ea
h of the n
lusters fx

ij

j 0 � j < ng is an n-
lique, so their values must

be a permutation of the domain. If i > 0 and j > 0, x

i0

< 2 implies x

ij

� 2; hen
e

x

i0

� 2. So the n� 1 variables fx

01

; : : : ; x

0(n�1)

g have only n � 2 available values.

(b) Sin
e there really are only n

2

� n + 1 variables, by (iii), we
an identify x

i0

with x

0i

. Let there be 2n

2

� n+1 primary items x

ij

and v

ij

for 0 � i; j < n, omitting

x

0j

when j > 0. Introdu
e 2(n � 1)

2

se
ondary items a

ij

and b

ij

for 0 < i; j < n, in

order to forbid (x

i0

; x

ij

) = (0; 1) and (1; 0). There's an option
ontaining x

ij

and v

ik

for ea
h 0 � i; j; k < n ex
ept when i = 0 and j > 0. If i > 0 and j = 0 that option

ontains also v

0k

, as well as a

ij

0

for 0 < j

0

< n when k = 0, and b

ij

0

for 0 < j

0

< n

when k = 1. If i > 0 and j > 0 it
ontains also b

ij

when k = 0 or a

ij

when k = 1.

The running time for Algorithm 7.2.2.1X is approximately proportional to (n�1)!,

if the primary items have their natural order; for example, it's 105 M� when n = 8 and

90 G� when n = 12. But the time is mu
h, mu
h longer when they're randomly ordered

(e.g., 1880 G� when n = 7). On the other hand, Algorithm 7.2.2.1P qui
kly proves

unsatis�ability in �(n

4

) steps, be
ause the domains of x

ij

and v

ij

are in
onsistent. For

example, it needs only 22 M� to remove all options when n = 32.

(
) Use, for instan
e, the dire
t representation, with x

ijk

= [x

ij

= k℄; identify x

i0k

with x

0ik

. The
lauses for
lique i are A

i

^B

i

^ C

i

^D

i

for 0 � i < n, where

A

i

=

V

(n�1)[i6=0℄

j=0

�

(

W

n�1

k=0

x

ijk

) ^

V

0�k<k

0

<n

(�x

ijk

_ �x

ijk

0

)

�

[domain
onstraints℄;

B

i

=

V

0�j<j

0

<n

V

n�1

k=0

(i > 0? (�x

ijk

_ �x

ij

0

k

): (�x

j0k

_ �x

j

0

0k

)) [
lique
onstraints℄;

C

i

=

V

n�1

k=0

(i > 0? (

W

n�1

j=0

x

ijk

): (

W

n�1

j=0

x

j0k

)) [
lique hints℄;

D

i

= (i > 0?

V

n�1

j=1

((�x

i00

_ �x

ij1

) ^ (�x

i01

_ �x

ij0

)): }) [
onstraint (ii)℄:

Thanks to the
lique hints,
lassi
al SAT solvers handle this problem quite well. For

example, in nine runs for n = 32 with di�erent random seeds, the median time for

Algorithm 7.2.2.2L was 59 M�, and Algorithm 7.2.2.2C needed only 2.4 M�. But

without the
lique hints the runtime is exponential| for example 270 G� with 7.2.2.2C

for n = 11. The multivalued en
oding does poorly too (280 G�), even with
lique hints.

[This problem was introdu
ed by M. R. C. van Dongen as one of the ben
hmarks

for the 2nd international CSP solver
ompetition in 2006. In the
ompetition, of
ourse,

only the variables, domains, and
onstraints were given, and variable names were

January 13, 2024

176 ANSWERS TO EXERCISES 7.2.2.3

auxiliary variable

pure literals

overing

pre
lusion
lauses

multivalued en
oding

truth tables

bitwise AND

randomized. A me
hani
al solver wouldn't be able to dedu
e unsatis�ability eÆ
iently

without somehow understanding the
lique stru
ture, and introdu
ing something like

the v

ij

items of (b) or the hints of (
).℄

341. Changing the notation to gain symmetry, let's en
ode `u+v � 2

n

�1+t', where u =

(u

n�1

: : : u

0

)

2

and v = (v

n�1

: : : v

0

)

2

. It's the same problem, sin
e �u = (�u

n�1

: : : �u

0

)

2

=

2

n

� 1� u. There are no
onstraints if t � 1� 2

n

; there are no solutions if t � 2

n

.

For all n > 0 and 1� 2

n

< t < 2

n

, let a

n;t

be an auxiliary variable and
onstru
t

the following
lauses: (i) (�a

n;t

_ u

n�1

_ v

n�1

) if 0 � t < 2

n�1

; (i

0

) (�a

n;t

_ u

n�1

_

v

n�1

_ a

n�1;t+2

n�1

) if t < 0; (ii) (�a

n;t

_ u

n�1

_ a

n�1;t

); (iii) (�a

n;t

_ v

n�1

_ a

n�1;t

);

(iv) (�a

n;t

_ a

n�1;t�2

n�1

), if t > 1 and n > 1. (In
ases (ii) and (iii), omit a

n�1;t

if

t � 2

n�1

.) Then u + v � 2

n

� 1 + t if and only if u and v satisfy these
lauses with

a

n;t

= 1, for some values of the other auxiliary variables.

(We
an remove �a

n;t

, and all
lauses that
ontain pure literals of the form �a

n

0

;t

0

.)

For instan
e, t = �1 en
odes `u � v+1': (�u

8

_v

8

_a

3;7

), (�u

8

_a

3;�1

), (v

8

_a

3;�1

),

(�a

3;7

_ �u

4

), (�a

3;7

_ v

4

), (�a

3;7

_ a

2;3

), (�a

3;�1

_ �u

4

_ v

4

_ a

2;3

), (�a

3;�1

_ �u

4

_ a

2;�1

),

(�a

3;�1

_ v

4

_ a

2;�1

), (�a

2;3

_ �u

2

), (�a

2;3

_ v

2

), (�a

2;3

_ a

1;1

), (�a

2;�1

_ �u

2

_ v

2

_ a

1;1

),

(�a

1;1

_ �u

1

), (�a

1;1

_ v

1

). And `u � v � 2' is (�u

8

_ v

8

), (�u

8

_ a

3;2

), (v

8

_ a

3;2

), (a

3;�6

),

(�a

3;2

_ �u

4

_v

4

), (�a

3;2

_ �u

4

_a

2;2

), (�a

3;2

_v

4

_a

2;2

), (�a

3;2

_a

2;�2

), (�a

3;�6

_ �u

4

_v

4

_a

2;�2

),

(�a

2;2

_ �u

2

), (�a

2;2

_ v

2

), (�a

2;2

_ a

1;0

), (�a

2;�2

_ �u

2

_ v

2

_ a

1;0

), (�a

1;0

_ �u

1

_ v

1

).

342. The shortest \
overing" is (�u

0

_v

0

_ �w

1

)^(u

0

_w

1

)^(�u

1

_v

2

)^(�u

2

_v

1

)^(v

1

_ �w

2

).

343. Besides the at-least-one and at-most-one
lauses, the dire
t en
oding has pre-

lusion
lauses (�u

0

_�v

2

) ^ (�u

1

_�v

0

) ^ (�u

1

_�v

1

) ^ (�u

2

_�v

1

) ^ (�u

2

_�v

2

), while the support

en
oding has (�u

0

_v

0

_v

1

) ^ (�u

1

_v

2

) ^ (�u

2

_v

0

) ^ (�v

0

_u

0

_u

2

) ^ (�v

1

_u

0

) ^ (�v

2

_u

1

).

346. (R

00

_R

01

_R

12

_R

20

)^ (R

00

_u

0

)^ (R

00

_ v

0

)^ (R

01

_u

0

)^ (R

01

_ v

1

)^ (R

12

_

u

1

)^(R

12

_v

2

)^(R

20

_u

2

)^(R

20

_v

0

)^(�u

0

_R

00

_R

01

)^(�u

1

_R

12

)^(�u

2

_R

20

)^(�v

0

_

R

00

_R

20

)^(�v

1

_R

01

)^(�v

2

_R

12

) and the at-least-one, at-most-one
lauses for u and v.

347. After dedu
ing u

0

, v

0

, w

0

, we have (for example) �w

1

; hen
e R

001

.

350. (a) There are N = d

1

: : : d

k

�G
lauses of length k, hen
e Nk literals altogether.

(b) The
lause exempli�ed by (80) has G literals; the Gk
lauses like the left

of (81) ea
h have 2; the d

1

+ � � � + d

k

lauses like the right of (81) have a total of

d

1

+ � � �+ d

k

+Gk. So the grand total is (3k + 1)G + d

1

+ � � �+ d

k

.

351. Consider a general relation R as in exer
ise 350, with Boolean variables v

ja

for

1 � j � k and 0 � a < d

j

. Then R(a

1

; : : : ; a

k

) is true if and only if every pre
lusion

lause is satis�ed with v

ja

j

true for 1 � j � k and the other Boolean variables arbitrary.

(The redu
ed en
oding without at-most-one is the \multivalued en
oding"; see Table 2.)

352. Let C

a

be the
lause for a 2 D

u

, and let C =

W

fu

a

j a 2 D

u

g be u's at-least-one

lause. Given b 2 D

v

, resolve C with ea
h C

a

for whi
h ab =2 R = R(u; v); this gives

C

0

= U

b

_ V

b

, where U

b

=

W

fu

a

j ab 2 Rg, V

b

=

W

fv

j
 2 R

0

b

g, and R

0

b

= f
 j a
 2 R

for some a with ab =2 Rg. If R

0

b

6= ;, we get the desired
lause (�v

b

_U

b

) by resolving C

0

with (�u

_ �u

b

) for ea
h
 2 R

0

b

. Otherwise the desired
lause is subsumed by U

b

, whi
h

an be obtained by resolving C with C

a

for all a 2 D

u

that have no support in R.

(The other half of the
lauses are, however, important for unit resolution.)

353. Form the 27-bit ve
tors for the set of all 2

9

truth tables a

i

on (x

1

; x

2

; x

3

) that

de�ne binary relations on (x

1

; x

2

); also similar ve
tors b

j

and

k

for (x

1

; x

3

) and (x

2

; x

3

).

The number of distin
t a

i

& b

j

&

k

is 1614530, whi
h is � 1:2% of 2

27

. (The answer

to the analogous question for domain size 2 is 166, by exer
ise 7.2.2.2{191.)

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 177

parity

all-di�erent

median of three

proje
tions

Histori
al note

Rossi

Petrie

Dhar

hidden variable

Montanari

positive versus negative table
onstraints

negative versus positive table
onstraints

354. There are 111618
lasses; they form 55809 pairs, be
ause the
omplements of

equivalent relations are equivalent. One of the pairs has
lasses of size 1 (the empty

relation and the full relation). Another pair has
lasses of size 9 (for example, `x = 0'

and `x 6= 0'). Another has
lasses of size 12 (`(x�y�z) mod 3 =
onst' or `(x�y�z) mod

3 6=
onst', analogous to the parity relations mod 2). Then there's size 18 (like `x = y'

or `x 6= y'). The
lass
ontaining `x = y = z = 0' is one of 20
lasses of size 27. The
lass

ontaining `x, y, and z are distin
t' is one of 4
lasses of size 36; so is the
lass
ontaining

`x = y = z'. There are 12722
lasses of size 648, and 96726 of the maximum size, 1296.

The 1614530 de
omposable relations in answer 353 form 1841 equivalen
e
lasses.

Those
lasses are not
losed under
omplementation; for example, `hxyzi = 1', whose

lass has size 108, is de
omposable; but `hxyzi 6= 1' di�ers in six pla
es (x; y; z) from the

interse
tion of its proje
tions onto fx; yg, fx; zg, fy; zg. Altogether 6034 of the
lasses,

and 6496994 of the relations (� 4:8%), are within 1 of that interse
tion; 65623736 rela-

tions are within 5. Only the
lass that
ontains `(x+y+z) mod 3 = 0' is at distan
e 18.

356. Yes; it's not diÆ
ult to prove that R(u; v; w) = P (u; v)^P (u;w)^P (v;w), where

P (u; v) = (max(u; v) �
) ^ (min(u; v) �
).

357. hells, shart, and tri
e. (But hells and tri
e are in WORDS(3500).)

358. (a) If a

1

: : : a

k

2 R there's a solution with v

1a

1

= � � � = v

ka

k

= 1.

(b) All
lauses are satis�ed, and the value of every literal has been unambiguously

for
ed. Furthermore exa
tly one v

ja

j

is true for ea
h j.

(
) If v

a

be
omes false, D

v

loses the value a. If v

a

be
omes true, all v

a

0

for a

0

6= a

be
ome false; we're left with the support
lauses for a relation on the variables 6= v.

(d) The
urrent relation R

0

has at least two elements in D

v

.

(e, f) The arguments in (a), (b), (
) remain valid.

Histori
al note: F. Rossi, C. J. Petrie, and V. Dhar [ECAI 9 (1990), 550{556℄

des
ribed the \hidden variable" tri
k as part of the CSP folklore; U. Montanari had

alluded to it on page 105 of his paper of 1974.

360. Introdu
e se
ondary items w

2

x

2

, w

1

y

0

, : : : , y

2

z

1

for the ex
luded pairs. The

options are then `w w

0

z

2

', `w w

1

y

0

', `w w

2

x

2

w

2

y

0

'; `x x

0

z

0

x

0

z

2

', `x x

1

y

1

x

1

y

2

', `x

w

2

x

2

x

2

y

2

'; `y w

1

y

0

w

2

y

0

y

0

z

0

y

0

z

1

', `y x

1

y

1

y

1

z

0

y

1

z

1

', `y x

1

y

2

x

2

y

2

y

2

z

1

'; `z x

0

z

0

y

0

z

0

y

1

z

0

', `z y

0

z

1

y

1

z

1

y

2

z

1

', `z w

0

z

2

x

0

z

2

'.

361. Now there are six primary items, fwx;wy; wz; xy; xz; yzg, while fw; x; y; zg are

se
ondary. There are 8 + 7 + 8 + 6 + 7 + 4 options, listing the \positive" tuples. For

example, the options for wx are `wx w:0 x:0', `wx w:0 x:1', : : : , `wx w:2 x:1'; the

options for yz are `yz y:0 z:2', `yz y:1 z:2', `yz y:2 z:0', `yz y:2 z:2'. (By
ontrast,

answer 360 used the \negative" tuples that were expressly forbidden in (87). In this

instan
e, negative beats positive.)

362. (a) True. An ina
tive variable has been assigned the (unique) value in its domain.

(b) False. Any or all variables in a given problem might have a singleton domain.

(
) False. An empty domain is always weakly viable (indeed, viable), be
ause Def-

inition V is satis�ed va
uously. If a domain be
omes empty while maintaining forward

onsisten
y, we are justi�ed in ba
ktra
king immediately; but that may be in
onvenient.

Sometimes it's best to wait for the next level of sear
h to dis
over an empty domain.

(d) Even more false than (
)! An a
tive variable with empty domain
annot

appear in the same
onstraint as an a
tive variable with nonempty domain.

(e) True, unless there are unary
onstraints|whi
h must mat
h the domains.

(f, g, h) True. The only
onstraint still involves two or more a
tive variables.

January 13, 2024

178 ANSWERS TO EXERCISES 7.2.2.3

wipeout

Weigel

fourfold symmetry

Le
outre

(i, j) False. But would be true if D

z

were redu
ed to f2; 3g.

363. If the
urrent partial solution of a
oloring problem is FC but not DC, some a
tive

binding (v; a) is unviable. Hen
e v is adja
ent to a vertex w with D

w

� fag; and w is

a
tive (by FC). So we'll remove a from D

v

when we maintain FC after assigning w = a.

364. Pla
ing a queen in some row or
olumn redu
es the number of

unatta
ked
ells in another row or
olumn by at most 3. Thus no

wipeout is possible until some domain has size � 3.

But �ve queens pla
ed as shown leave r

8

with only two free

ells, allowing DC to forbid four potential pla
ements. (In
identally,

these �ve pla
ements appear in 37 solutions of the full problem.)

q

q

q

q

q

r8

r8

r8 r8

365. No; Peter Weigel has shown that exa
tly 8 � 89 + 2 � 3 = 718 foursomes
annot

be
ompleted. The three solutions with fourfold symmetry are obtained by pla
ing a

queen in (row;
ol) = (1; 2) or (3; 7) or (7; 8), then rotating by 90

Æ

, 180

Æ

, 270

Æ

.

368. Sometimes the
ase w = v is ne
essary. If, for example, S

= fu; vg and

STAMP(u) > STAMP(
), the
hange to D

u

might have
aused v to lose all support in
.

But we
an introdu
e a new variable q, setting q 0 at the beginning of step

D4, also setting q 1 at the beginning of D6 if STAMP(w) > STAMP(
). Then step D4

needs to do step D6 for w = v only if q = 0 after all other
hoi
es of w 2 S

have been

tried. [See C. Le
outre, Constraint Networks (2009), Algorithm 9.℄

369. We use the following data stru
tures for
lauses
 and bindings �:

BIND(
) is the binding for whi
h
lause
 lists potential supports;

POS(
) is the MEM lo
ation for the
urrent support of BIND(
);

IN(�), where � = (v; a), is 1 if a is in v's
urrent domain, otherwise 0;

LAST(�) is the �nal
lause
 su
h that MEM[POS(
)℄ = �;

PREV(
) is the previous
lause

0

su
h that MEM[POS(

0

)℄ = MEM[POS(
)℄;

START(
) is the MEM lo
ation just pre
eding
lause
.

A sta
k S

0

, S

1

, : : : holds bindings that will soon be removed from their
urrent

domains.

H1. [Initialize.℄ Set LAST(�) 0 and IN(�) 1 for all bindings �. Also set
 l

s 0, so that the table of
lauses, MEM, and the sta
k are initially empty. Then, for

ea
h binding � = (v; a) and for ea
h
onstraint R(v;w) that involves v, generate

a potential
lause as follows: Let fb

1

; : : : ; b

k

g be the values of w su
h that ab

j

2

R(v; w). If k = jD

w

j, do nothing (the relation doesn't
onstrain �). Otherwise if

k > 0, set

+1, BIND(
) �, START(
) l, MEM[l+j℄ (w; b

j

) for 1 � j �

k, l l + k, POS(
) l, � MEM[l℄, PREV(
) LAST(�), and LAST(�)
.

[See (89).℄ Otherwise if IN(�) = 1, set IN(�) 0, S

s

 �, s s+ 1.

H2. [Prepare to loop.℄ Terminate the algorithm if s = 0 (be
ause all bindings with

IN(�) = 1 are supported). Otherwise set s s � 1, � S

s

, and
 LAST(�).

(We need to �nd supports for bindings previously supported by �.)

H3. [Done with loop?℄ If
 = 0, return to H2. Otherwise set

0

 PREV(
), �

BIND(
), and let � = (w; b). Go to H6 if IN(�) = 0 (be
ause we've already deleted

b from w's domain and don't need support for it). Otherwise set k POS(
)� 1.

H4. [Done with
?℄ If k = START(
), go to H5. Otherwise set � MEM[k℄. If

IN(�) = 0, set k k � 1 and repeat this step. Otherwise set POS(
) k,

PREV(
) LAST(�), LAST(�)
, and go to H6.

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 179

dual Horn
lauses

\
ompound" Boolean variable

hyperbindings

support
lauses

hidden variable

bipartite

hypergraph

Heawood graph

Fano hypergraph

Fano proje
tive plan

binary
onstraint

Boolean matrix

supports

De
hter

histori
al remarks{

Pearl

H5. [Remove binding �.℄ Set IN(�) 0 and remove b from the domain of w. If w's

domain is now empty, terminate and report unsatis�ability. Otherwise set S

s

 �

and s s+ 1.

H6. [Loop on
.℄ Set

0

and return to step H3.

370. Consider, for example, the 4-ary relation wxyz 2 f0101; 1210; 2110g, where D

w

=

D

x

= D

y

= D

z

= f0; 1; 2g. We
an set up 12 dual Horn
lauses analogous to (88):

x

1

y

0

z

1

) �w

0

, x

2

y

1

z

0

) �w

1

, x

1

y

1

z

0

) �w

2

;) �x

0

, w

0

y

0

z

1

^w

2

y

1

z

0

) �x

1

, w

1

y

1

z

0

) �x

2

;

: : : ;) �z

2

; here x

a

y

b

z

is a \
ompound" Boolean variable meaning x

a

^ y

b

^ z

.

Additional
lauses su
h as �x

a

) x

a

y

b

z

, �y

b

) x

a

y

b

z

, �z

) x

a

y

b

z

,
omplete the set.

The algorithm of exer
ise 369 is extended to allow \hyperbindings" � su
h as

f(x; a); (y; b); (z;
)g as well as ordinary bindings, and to build the table of all ne
essary

lauses in the extension of step H1. In general, a k-ary
onstraint yields jD

v

j support

lauses whose left-hand sides involve (k � 1)-ary
ompound Booleans, for ea
h v in

the s
ope of the relation. And there are k � 1
lauses for ea
h (k � 1)-ary
ompound

Boolean, having that
ompound on the right and a simple Boolean on the left.

372. Ea
h \variable" of P

�

is either a variable v of P or a
onstraint
 of P (sometimes

alled a \hidden variable"). Ea
h \
onstraint" of P

�

is a relation between some ordinary

variable v and some hidden variable
 with v 2 S

. (Thus the graph of
onstraints in P

�

is bipartite; it represents the hypergraph whose hyperedges are P's s
opes S

, just as the

bipartite Heawood graph represents the Fano hypergraph in 7{(57).) Ea
h domain D

v

is the same in P and P

�

; ea
h domain D

i

is the set of

i

's k

i

-tuples.

Domain
onsisten
y is espe
ially easy to understand when all
onstraints are bi-

nary, be
ause a binary
onstraint
an be represented as a Boolean matrix. Domain
on-

sisten
y holds if and only if none of the Boolean matri
es has an all-zero row or
olumn.

Consider a 4-ary
onstraint su
h as `wxyz 2 f0101; 0122; 1100; 1212; 2020; 2211g'.

The Boolean matrix that relates this
onstraint to the ternary variable x is

0101 0122 1100 1212 2020 2211

0 0 0 0 0 1 0

1

1 1 1 0 0 0

!

2 0 0 0 1 0 1

.

Noti
e that ea
h
olumn of su
h a matrix
ontains exa
tly one 1. In general, if v 2 S

and a 2 D

v

, the number of 1s in the row for v = a in the matrix that relates v to
 is the

number of supports for v=a in
. An all-zero row is equivalent to having no support.

(The
onstru
tion in this exer
ise provides an alternative solution to exer
ise 370.)

373. Let the variables of P

D

be the hidden variables of P, namely P's
onstraints,

where we require the tuples of hidden variable
 to mat
h the tuples of every other

hidden variable

0

wherever their s
opes overlap. (There's a
onstraint between
 and

0

if and only if S

\ S

0

6= ;.)

Suppose, for example, that P is the CSP with

four binary variables fw; x; y; zg and the following two

ternary
onstraints:

 = `w + x+ y = 1';

0

= `x+ y + z = 2'.

Then P is domain
onsistent. But P

D

is not, be
ause the matrix for the relation

between
 and

0

, shown at the right, has an all-zero row (and an all-zero
olumn).

xyz

z }| {

011 101 110

001 1 0 0

wxy

(

010

0 1 0

!

100 0 0 0

Referen
es: The dual of a CSP was de�ned by R. De
hter and J. Pearl [Arti�
ial

Intelligen
e 38 (1989), 353{366℄, who observed that many of the
onstraints between

hidden variables are often redundant be
ause they're
onsequen
es of others. When

January 13, 2024

180 ANSWERS TO EXERCISES 7.2.2.3

database theorists

join graph

pairwise
onsisten
y

Janssen

J�egou

Nouguier

Vilarem

Ba

hus

Chen

Beek

Walsh

forward
onsisten
y

Debruyne

Bessi�ere

Cardon

Le
outre

prepro
essing step

failed literals

SLUR algorithm

toroidal

the unne
essary
onstraints are removed, we get what database theorists
all a \join

graph." Domain
onsisten
y of P

D

was
alled pairwise
onsisten
y by P. Janssen,

P. J�egou, B. Nouguier, and M.C. Vilarem [IEEE International Workshop on Tools

for Arti�
ial Intelligen
e 1 (1989), 420{427℄. F. Ba

hus, X. Chen, P. van Beek, and

T. Walsh [Arti�
ial Intelligen
e 140 (2002), 1{37℄ made a thorough study of lo
al

onsisten
ies in P

�

and P

D

.

374. The total size of all domains in (22), before redu
tion, is 4 � 26 = 104,
ompared

to 4 � 1 + 6 � 5 + 3 � 8 + 5 � 5 = 83 in exer
ise 60. When redu
ing (22) to (91), 46

domain values are immediately ruled out by having no initial supports. (For example,

the Horn
lause for be=< has an empty left-hand side.) Then the algorithm of exer
ise

370 makes 67 dedu
tions (su
h as qs=<) fq=+) before �nishing.

Filtering in the dual model goes mu
h faster, in part be
ause all
onstraints

are binary. After 48 domain values are immediately ruled out, only three dedu
tions

need to be made by the Horn-
ore method of exer
ise 369. (For example, one of

them is e=---) b=+-+.) The �nal domains are of size 1 for the interior jun
tions

fd; g; h; i; j; k; l; n; pg. In fa
t, forward
onsisten
y by itself gives ex
ellent redu
tion.

Exterior jun
tions fa; q; rg of type V are left with domains of size 3; the others,

fb;
; e; f;m; o; sg, are left with 2-element domains. The a
tual line labels are repre-

sented only impli
itly by the domains of this model.

377. Suppose the bran
h variable at the root is ab. One of the four bran
hes is `ab = +'.

Sin
e variable ab appears in the binary relation for jun
tion a, FC redu
es the domain

of a
 to f>g; hen
e we'll assign a
 = > next. Oops: The ternary relation at jun
tion

(namely the relation on fa
;
d;
mg should now tell us that we're in trouble; but FC

won't be aware of any diÆ
ulty until either
d or
m has been assigned a value.

Another bran
h is `ab = <'. That one redu
es the domain of a
 to f+; >g. It should

get us into trouble at jun
tion b; but no trouble will be sensed there until there's an

assignment to either be or bd. (And other bran
hes near the root fare no better.)

378. In this
ase the bran
h `ab = +'
hanges D

a

to f+>g and D

b

to f+-+g, by FC.

Hen
e we'll soon take the bran
h `a = +>', whi
h for
es a
 = >, whi
h redu
es D

to ;.

The bran
h `ab = <' sets D

b

 ;. The bran
h `ab = -' soon for
es a
 = <,

be = -, : : : , and the
omplete solution at the right of (23), all via FC. Finally, the

bran
h `ab = >' and FC give the other three solutions, with minimal bran
hing.

379. If we pla
e a queen in a
orner, say in
ell (1; 1), both of the free
ells in row 3

are domain in
onsistent with respe
t to
olumn 3. If we pla
e a queen near the
orner,

say in
ell (2; 2), the free
ell in row 1 is domain in
onsistent with respe
t to
olumn 1.

[Singleton domain
onsisten
y was introdu
ed by R. Debruyne and C. Bessi�ere in

IJCAI 15 (1997), 412{417; see also the implementation hints by C. Bessiere, S. Cardon,

R. Debruyne, and C. Le
outre in Constraints 16 (2011), 25{53. It
an be very useful

as a prepro
essing step for diÆ
ult problems; but the
ost of maintaining it during

sear
h is usually too high. With Boolean domains this idea is
alled \falsifying failed

literals"; see also the SLUR algorithm of exer
ise 7.2.2.2{444.℄

380. We have jj

0

2 R

ii

0

if and only if (i

0

; j

0

) = (i; j)+ (1;�2)k for some k (modulo 5).

For example, R

24

= f12; 15; 21; 23; 32; 34; 43; 45; 51; 54g. (These are the positions of

pairs of queens in
omplete solutions to the problem. Every
omplete solution is

equivalent to one of the two toroidal solutions; see exer
ise 7.2.2{12.)

[With 6 queens, path
onsisten
y is a
hieved after only one round of removals.

With 7 or more queens, the initial
onstraints are path
onsistent.℄

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 181

geometri
 series

van Dongen

Dieker

Sapozhnikov

varian
e

van Dongen

author

van Dongen

sharp preferen
e heuristi

383. (a) Let q = 1� p. In Pass 1, r

ij

is examined if and only if r

ik

= 0 for 0 � k < j,

hen
e with probability q

j

. So the expe
ted total
ost is

P

d�1

i=0

P

d

0

�1

j=0

q

j

= (1� q

d

0

)d=p.

Pass 2 examines r

ij

if and only if we have (i) r

kj

= 0 for 0 � k < i; (ii) r

ik

= 1

for some k < j; and (iii) either r

k0

: : : r

k(j�1)

6= 0 : : : 0 or r

k0

: : : r

kj

= 0 : : : 00, for

i < k < d. So the probability is q

i

(1� q

j

)(1� pq

j

)

d�1�i

.

Summing this geometri
 series over i, we �nd that the total expe
ted
ost of Pass 2

is (1�q

d

)d

0

=p�S, where S =

P

d

0

�1

j=0

(1�pq

j

)

d

=p is the expe
ted number of unne
essary

probes made by the na��ve algorithm. [This analysis was �rst
arried out by M. R. C.

van Dongen, A. B. Dieker, and A. Sapozhnikov, who also derived a
ompli
ated formula

for the varian
e. See Constraint Programming Letters 2 (2008), 55{77.℄

(b) Do the inner loop only for values of j with s

0

j

= 0. Then, if that loop ends with

s

i

= 0, do another loop on j, but only for values of j with m

ij

= 0. (This algorithm

is due to M. R. C. van Dongen; see Fig. 7.3 in his Ph.D. thesis (Cork: National Univ.

of Ireland, 2002). The expe
ted number of probes in Pass 1 remains the same; but

the expe
ted number of
olumn supports found on that pass is in
reased. No simple

formula is known for the expe
ted number of probes in the subsequent Pass 2.)

[When d

0

= 2, the expe
ted
ost of this improved algorithm
an be shown to

equal (1 + q)d + q

d�1

� q

2d�1

. And the expe
ted
ost when d

0

= 3 turns out to be

(1 + q + q

2

)d+ q

d�2

+ 2q

d�1

� q

2d�3

(1 + q + q

2

) + q

3d�3

(1� q

2

).℄

(
) p = :01 p = :02 p = :03 p = :04 p = :05 p = :10 p = :50 p = :90

mean
ost (na��ve) 12700 8700 6300 4900 4000 2000 400 220

mean
ost (a) 8100 6000 4600 3700 3100 1700 390 210

mean
ost (b) 7500 5200 3700 2800 2200 1100 200 110

dev (b) 310 300 280 260 200 130 18 3

384. Although that algorithm treats rows and
olumns in dramati
ally di�erent ways,

its expe
ted
ost does appear to be symmetri
al in d and d

0

(at least when d � 4 or

d

0

� 4). That's ni
ely
onsistent with being optimum. Furthermore, the author has

proved optimality when d = 2, as well as when (d; d

0

) = (3; 3) and (3; 4).

Mar
 van Dongen observes that an optimum algorithm queries r

ij

only when

either (i) both s

i

and s

0

j

are unknown, or (ii) one of them is known but not the other.

Every optimum algorithm
an be assumed to make all of its type (i) queries �rst,

be
ause (ii) followed by (i) is never better than (i) followed by (ii).

387. (a) Every x

i

has the value of some sour
e, by indu
tion on i. But x

n

doesn't.

(b) Let R

i

be primary and x

i

be se
ondary for 1 � i � n. Also let x

i;j

be

se
ondary for 1 � i � m and j 2 f0; 1; 2g, together with 3m options `R

i

x

i

:j x

i;j

'. Add

another primary item #, with three options `# x

n

:j x

1;j

: : : x

m;j

' for j 2 f0; 1; 2g;

that takes
are of the binary
onstraints. Finally, introdu
e 15(n�m) options `R

i

x

i

:a

x

j(i)

:b x

k(i)

:
' for m < i � n and for all a; b;
 2 f0; 1; 2g with (a = b or a =
).

(
) De�ne j(i) and k(i) in

�

m

2

��

m+1

2

�

: : :

�

n�1

2

�

= 2

m�n

(n�1)

n�m

(n�2)

n�m

ways.

(d) These problems are tough for Algorithm 7.2.2.1C; for instan
e, the �rst

random example tried for m = 24 and n = 64 took 1.4 teramems. But it be
ame mu
h

more tra
table, only 31 gigamems, when ea
h item R

i

for m < i � n was renamed

#R

i

, and the sharp preferen
e heuristi
 of exer
ise 7.2.2.1{10 was used. (That tri
k also

polished o� nine other random instan
es, with a median run time of 1.5 megamems.)

(e) To support x

i

= a in a binary
onstraint, set the other variable to (a+1) mod 3.

To support x

i

= a in a ternary
onstraint, set the other two variables to a.

But after x

n

 a, answer 369 will remove a from the domains of x

1

, x

2

, : : : .

January 13, 2024

182 ANSWERS TO EXERCISES 7.2.2.3

Hwang

Mit
hell

ba
ktra
king

exponentially large

d-way bran
h

forward
onsisten
y

Prover{Delayer game

Delayer

binary bran
hing

Janson

[This family of problems was introdu
ed by J. Hwang and D. G. Mit
hell, LNCS

3709 (2005), 343{357, who showed that with suitable
hoi
es of j(i) and k(i) it
an be

solved via ba
ktra
king only with an exponentially large sear
h tree, if every node of

that tree is a d-way bran
h on the value of some variable (or on the options that
an

over an item), assuming that the algorithm prunes domains (or removes options) only

via forward
onsisten
y. They devised a Prover{Delayer game, as in Theorem 7.2.2.2R.

On the other hand, a polynomial-size sear
h tree
an be
onstru
ted with binary

bran
hing, where every sear
h tree node
hooses either to in
lude an option or not: For

ea
h value a tentatively assigned to x

n

, try to in
lude an option for R

i

that spe
i�es ei-

ther x

j(i)

:a or x

k(i)

:a, where i is as small as possible. That option leads to an immediate

ontradi
tion. So we
an remove it, and
ontinue until x

n

= a is
ontradi
ted.

We
an obviously generalize the
hain CSP by allowing arbitrary ternary
on-

straints R

i

for m < i � n, perhaps di�erent for ea
h i. Many su
h generalizations are

likely to be instru
tive.℄

388. (a) Let X

i

= [x

i

is a sink℄. Then EX

i

= Pr(X

i

= 1) = q

max(i;m)+1

: : : q

n

, where

q

l

= Pr(i =2 fj(l); k(l)g) =

�

l�2

2

�

=

�

l�1

2

�

. Hen
e EX

i

=

�

max(i;m)�1

2

�

=

�

n�1

2

�

; and S

m;n

=

P

n

i=1

EX

i

=

n

3

(1 + 2m

3

=n

3

).

(b) Set d n �m� 1, a

0;0;m

 1. Then for 1 � i � d and 0 � j � i, set

a

i;j;m

�

m+i�j�2

2

�

[j 6= i℄ a

i�1;j;m

+ (

�

m+i�1

2

�

�

�

m+i�j�1

2

�

)[j 6=0℄ a

i�1;j�1;m

:

Then there are a

i;j;m

ases in whi
h x

1

is
onne
ted to exa
tly j of the variables fx

m+1

;

: : : ; x

m+i

g. Consequently the number of
ases in whi
h x

1

is not
onne
ted to x

n

is

b

m;n

P

d

j=0

�

n�j�2

2

�

a

d;j;m

; and the probability that a parti
ular sour
e is
onne
ted

to x

n

is p

m;n

= 1 � b

m;n

=q

m;n

, where q

m;n

is de�ned in exer
ise 387(
). Finally,

C

m;n

= mp

m;n

+

P

n

i=m+1

p

i;n

. We have C

24;64

� 8:4023 and C

24;500

� 41:08.

(
) Let f(s; t) = 0 if s < 0 or t < 0 and f(s; t) = [s=0℄ if s + t = m; also

f(s; t) =

�

t+1

2

�

f(s� 2; t+1)+ (s� 1)tf(s� 1; t)+

�

s

2

�

f(s; t� 1) when s+ t > m. Then

f(s; t) is the number of
ases with s+ t variables, m of whi
h are sour
es, and t sinks.

Hen
e

m;n

= f(n� 1; 1)=q

m;n

. We have

24;64

� 1:7522 � 10

�25

.

In
identally,

m;n

= 0 for n < 2m � 1; and

m;2m�1

= m!(m � 1)!

2

(m � 2)!=

((2m� 2)!(2m� 3)!) = 32 � 16

�m

m

2

� (1 +O(1=m)).)

389. Observing that C

m;n

� C

2;n

� C

m;n

+m, Svante Janson has proved that C

m;n

�

3

8

p

�

3

n; and he has also obtained formulas for the higher moments. [To appear.℄ On the

other hand, he
onje
tures that

m;n

approa
hes (�+ o(1))

n

, for some
onstant � < 1

that has no simple form.

391. Let y

k

= (x

(k+1) mod n

� x

k

) mod d for 0 � k < n. Then x

0

: : : x

n�1

is a solution

if and only if (y

0

+ � � �+ y

n�1

) mod d = 0. Hen
e the number of solutions is d

P

k

�

n

dk

�

.

392. (a) We
an assume that x

0

 0 is assigned �rst; then x

1

 0 or 1; then x

2

 x

1

or x

1

+1; et
. The a
tive domains after x

j

has been assigned will be D

j+1

= fx

j

; x

j+1

g;

D

k

= f0; : : : ; d � 1g for j + 1 < k < n � 1; D

n�1

= f0; d� 1g. So the sear
h tree size

will be
(2

n

d). [In fa
t, Algorithm 7.2.2.1C looks at exa
tly 2

n

d � d + 1 nodes when

d > n, 2

n

d+ 1 nodes when d = n, and 2

n

d+ n

2

� 2n+ 2 nodes when d = n� 1.℄

(b) After x

0

 0 we'll have D

k

= f0g for 0 < k < n, if d > n; D

k

= f0; kg, if

d = n; and f0; k � 1; kg for 1 < k < n � 1, if d = n � 1. The latter
ase is the most

interesting: After setting x

j

= j�1, we'll have D

k

= fk�1g for j < k < n. So there will

be O(n

2

d) nodes altogether. [In fa
t, Algorithm S looks at exa
tly (n+ 1)d+ n nodes

when d > n; 2n

2

+2n nodes when d = n; and (n

2

+7n� 2)d=2 nodes when d = n� 1.℄

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 183

Riordan

Eulerian numbers

OEIS

Stanley

interval

ba
ktra
king

modeling as CSP

patterns in permutations

(132; 312)-avoiding

reversals

(213; 231)-avoiding

degenerate

binary sear
h trees

Histori
al note

Sakinaga

re
urren
es

400. There are exa
tly d ways to insert `n' into su
h a permutation of f1; : : : ; n � 1g,

namely at the beginning or after one of fn � 1; n � 2; : : : ; n � d + 1g. So the answer

is d! d

n�d

, by indu
tion. [The number of permutations with exa
tly k instan
es of

p

j+1

� p

j

+d was investigated by J. Riordan in the �nal
hapter of An Introdu
tion to

Combinatorial Analysis (1958), thereby generalizing the Eulerian numbers. See OEIS

A120434 for the
ase d = 2.℄

401. p

j

= n if and only if j � 1 is minimum with j =2 S. Remove p

1

: : : p

j

and re
urse.

[Ri
hard Stanley, in Enumerative Combinatori
s 1, se
ond edition (2012), exer
ise

1.114(b), dis
overed another interesting family of permutations with this uniqueness

property, namely those p

1

: : : p

n

su
h that fp

1

; : : : ; p

k

g is an interval, for 1 � k � n;

a typi
al example for n = 7 is 4325617. Su
h permutations are readily generated via

ba
ktra
king, but not so easy to set up as a CSP; the
ondition is that if i < j < k we

don't have p

i

< p

k

< p

j

or p

j

< p

k

< p

i

, In other words, they're `(132; 312)-avoiding'.

Their left-to-right reversals, the (213; 231)-avoiding permutations, are pre
isely those

that produ
e degenerate binary sear
h trees; see exer
ise 6.2.2{5(b).℄

402. True. In fa
t, the set S
orresponding to the inverse is S

R

= fn � j j j 2 Sg.

403. Let p

j

and q

j

be primary items for 1 � j � n; also introdu
e (n � 1)(n � 2)

se
ondary items j:k for 1 � j < n and 1 � k < m = n � 1, whi
h
orrespond to items

y

k

of the pairwise en
oding tri
k that enfor
es p

j+1

� p

j

+ 1. For ea
h 1 � j; k � n

there's an option
ontaining p

j

, q

k

, and perhaps other items: If j > 1 and k > 2, set

t k � 2; then while t > 0 in
lude (j�1):t and set t t& (t� 1). (This
ontributes

�

k�2

.) If j < n and k � m, set t �k; then while t > �m in
lude j:(�t) and set

t t & (t � 1). (This
ontributes �

k�1

.) For example, the \diagonal" options when

n = 5 are `p

1

q

1

1.1 1.2', `p

2

q

2

2.2', `p

3

q

3

2.1 3.3', `p

4

q

4

3.2', `p

5

q

5

4.3 4.2'.

404. We
an also require q

k+1

� q

k

+ 1: Introdu
e new se
ondary items j;k for 1 �

j < n and 1 � k < m. Whenever answer 403 put r:s in the option for p

j

and q

k

, also

put r;s in the option for p

k

and q

j

. (Thus one option for n = 5 is `p

2

q

3

1.1 2.3 3,2'.)

410.
2443

2433

1422

3331

(1 of 3)

;

2177

2772

1372

3377

(1 of 32)

;

5144

5544

1552

3332

(1 of 3)

;

2141

2442

1412

3331

(1 of 1)

;

2143

2443

1413

3331

(1 of 12)

;

2144

2644

1662

6662

(1 of 24)

.

[Histori
al note: Fillomino was invented by Waku Sakinaga; see Puzzle Communi
ation

Nikoli 47 (February 1994).℄

411. If t

n

= t

n

(1) + t

n

(2) + � � � is the desired number, where t

n

(m) is the num-

ber of patterns with m in the upper right
orner, we have the re
urren
es t

n

(m) =

a

n

(m;m) +

P

2n�m

m

0

=1

b

n

(m;m;m

0

;m

0

); a

n

(l;m) = (l < 2? 0: l > 2n? 0: l = 2n? 1:

l = 2? t

n�1

�2t

n�1

(m)+a

n�1

(m;m): a

n�1

(l�2; m)+2

P

2n�l

m

0

=1

b

n�1

(l�2; m;m

0

;m

0

));

b

n

(l; m; l

0

;m

0

) = (m = m

0

? 0: l < 1? 0: l

0

< 1? 0: l + l

0

> 2n? 0: l + l

0

= 2n? 1:

l = l

0

? t

n�l

� t

n�l

(m) � t

n�l

(m

0

) + b

n�l

(m;m;m

0

; m

0

): l < l

0

? a

n�l

(l

0

� l;m

0

) +

P

2n�l�l

0

m

00

=1

b

n�l

(m

00

;m

00

; l

0

�l;m

0

)[m

00

6=m℄: b

n

(l

0

;m

0

; l; m)). Here a

n

(l;m) is the number

of length n pre�xes of 2�1 �llomino patterns that end with twom's at the right, where

those m's are part of an l-omino; b

n

(l; m; l

0

;m

0

) is similar, but ending with m 6= m

0

at

the right, respe
tively parts of an l-omino and an l

0

-omino. Hen
e (t

1

; t

2

; : : : ; t

145

) = (1,

5, 33, 138, 715, 3524, : : : , 51376 52565 68766 30928 69800 54061 86098 15559 89493

34784 20112 85272 12992 22603 93822 34860 83493 24519 70607 50508). (The ratio

t

n+1

=t

n

onverges rapidly to 4.91867 12250 37424 13083 06703 91572 28440 : : : .)

January 13, 2024

184 ANSWERS TO EXERCISES 7.2.2.3

author

downloadable programs

Green

Saarinen

�kobouzu17

symmetry

412. Suppose the given shape S has N
ells. There are N primary items ij, one for

ea
h
ell. (If S is an m � n grid, for instan
e, we have N = mn and 0 � i < m,

0 � j < n.) A potential d-omino is a set P � S of rookwise
onne
ted
ells for whi
h

every ij 2 P is either blank or labeled d, but not adja
ent to any
ell =2 P that's

labeled d. (All su
h P
an be found by using an interesting variant of the algorithm

in exer
ise 7.2.2{75; see, for example, the author's online program FILLOMINO-DLX.)

There are se
ondary items e

d

, one for ea
h edge between two unlabeled
ells and ea
h

possible d. And there's one option for ea
h potential d-omino P ,
ontaining (i) all ij 2 P

and (ii) all e

d

for whi
h e is an edge between a blank
ell 2 P and a blank
ell =2 P .

For example, the puzzle of exer
ise 410 has m = n = 4, N = 16, and exa
tly (8, 5,

11, 11) potential (1, 2, 3, 4)-ominoes, hen
e 35 options. Two of the potential tetromino

options are `02 03 12 13 h

224

v

124

' and `11 21 22 32 h

224

v

124

v

334

', where h

ij

and v

ij

denote the horizontal and verti
al edges that
onne
t (i�1)j and i(j�1) with ij.

How large
an d be? Suppose

d

of the given
ells are labeled d, for a total of

C =

1

+

2

+ � � � +

s

\
lues," where s is the maximum label. Then every potential

d-omino has d � max(N �C; s). And there's a sharper bound max(N �C

+

; s), where

C

+

=

P

s

d=1

+

d

and

+

d

is a lower bound on the number of d labels that are known to

exist. For example, we may take

+

1

=

1

;

+

2

= 2(

2

� the number of pairs of adja
ent

2s); and for d � 3,

+

d

= dd

d

=de+ [

d

mod d=0 and the ds aren't disjoint d-ominoes℄.

413.

(a)

221221

1ee312

e1e332

eeeeee

233e1e

213ee1

122122

; (b)

335555666

314159266

444999236

555899932

535897932

338877773

888772643

338462643

344466644

; (
)

6244221244

6244888244

6688866688

2684446888

2684226882

6448446482

6248441448

6248862248

6688666688

6882268888

; (d)

1334141224

2344i44434

2143i22334

1223i33i14

21i3i3ii22

2iiiiii444

34444i3324

33221i3421

1444ii4433

3334224223

; (e)

2244446633

5153366313

5553616345

4444646345

5566643145

3565543345

3552542215

3442513334

2344544414

2332242244

.

[Puzzle (
), by Chris Green, was posted at puzzleparade.blogspot.
om (19 July 2013),

#60; puzzle (d), whi
h totally defeats the
onstru
tion in answer 412 be
ause it requires

a humongous number of options, was posted at gmpuzzles.
om by Tapio Saarinen

(7 O
tober 2014); puzzle (e) was posted on Twitter by �kobouzu17 (31 De
ember 2022).

414. We save a fa
tor of roughly 8 by removing symmetry. Ea
h potential puzzle with

k
lues leads to k potential puzzles with one fewer
lue, until we rea
h invalid
ases that

are mat
hed by more than one of the given 59951. Potential puzzles without redundan-

ies must still be s
reened to ensure that they
an't be solved with labels greater than 5.

All told we obtain 938484 nonisomorphi
 minimal 4�4 puzzles whose
lues don't

ex
eed 5, of whi
h (937236, 1240, 8, 0) have (1, 2, 4, 8)-fold symmetry. Exa
tly (1124,

56253, 374643, 377611, 104436, 20410, 3520, 430, 57) of them have (4, 5, : : : , 12)
lues.

4

 4

1

 3

(i)

4

 4

1

 2

(ii)

4

 4

2

 2

(iii)

4

 4

2

 5

(iv)

 1

 15

 51

1

(v)

 3

 3

 3

3 3

(vi)

 5

 5 5

5 5

5 5

(vii)

1 33

55

 544

5544

(viii)

 1 1

2 4

 5 4

5 5

(ix)

 3 2

4 4

 2 4

4 4

(x)

 2

3 1

 4

 2

(xi)

 41

2

 3

3 2

(xii)

Fig. A{16. A gallery of interesting 4� 4 �llomino puzzles.

Puzzles (i){(iv) in Fig. A{16, whi
h have just 4
lues ea
h, make a ni
e sequen
e

by whi
h we
an introdu
e newbies to the wonders of �llomino. One of the
utest

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 185

parity

he
kerboard

domain
onsisten
y

Beluhov

unique

spanning tree

entroid of a free tree

hexomino

Beluhov

Mebane

monominoes

X pentominoes

pentominoes

tee tetrominoes

tetrominoes

bent trominoes

trominoes

parity

Azte
 re
tangles

rotating 45

Æ

examples with 4-fold symmetry is puzzle (v). And (vi) and (vii) are among the 15 with

\pure"
lues (all the same). Puzzle (viii) is interesting not be
ause it's hard to solve,

but be
ause all twelve of its
lues are ne
essary. Similarly, none of the eight
lues in (ix)

and (x), whi
h appear in the
ells of odd parity like a
he
kerboard, are redundant. The

most diÆ
ult 4�4 �llomino puzzles, rated by the sear
h tree size (16) when full domain

onsisten
y is maintained, are probably those in (xi) and (xii). (See Appendix E.)

415. (Solution by N. Beluhov.) Let P be a maximal rookwise
onne
ted subset of the

solution, having no labels � s. Every element of P must have the same label d = jP j,

be
ause the solution is unique. Let T be a spanning tree of P . Every edge u ��� v

of T partitions T , hen
e P , into two polyominoes P

u

[P

v

when that edge is removed

from T , where u 2 P

u

and v 2 P

v

. By uniqueness, we
annot have s < jP

u

j < jP

v

j.

Case 1, T has one
entroid, v. When T is rooted at v, let v's
hildren be u

1

,

: : : , u

k

, with
orresponding subtree sizes s

1

� � � � � s

k

. Then s

1

� s

2

+ � � � + s

k

by

Eq. 2.3.4.4{(7). Hen
e we have jP

v

j = s

2

+� � �+s

k

+1 > jP

u

1

j = s

1

in the de
omposition

P = P

u

1

[P

v

. It follows that s

1

� s; and d � ks+ 1 � 4s+ 1.

Case 2, T has two
entroids, u ��� v. We may suppose that u = i(j�1) and

v = ij,
oordinatewise. If T also
ontains both of the edges u

0

= (i�1)(j�1) ��� u

and v

0

= (i�1)j ��� v (or, similarly, if T
ontains both u

0

= (i+1)(j�1) ��� u and

v

0

= (i+1)j���v), we get a de
omposition P = P

u

0

[P

v

0

[P

uv

by deleting those edges,

where jP

u

0

j � s and jP

v

0

j � s. On the other hand, if in the original tree T we delete only

edge u���v and repla
e it with edge u

0

���v

0

, we get a new tree for whi
h u

0

and v

0

are

the two
entroids, as well as a new polyomino P

u

0

v

0

= P

u

0

[P

v

0

. By symmetry between

u���v and u

0

���v

0

, therefore, d = jP

uv

j + jP

u

0

v

0

j � 2jP

u

0

v

0

j � 2jP

u

0

j + 2jP

v

0

j � 4s.

Finally, if T doesn't
ontain su
h u

0

and v

0

, we
an regard u and v as
o-roots

of T ; and their subtrees (at most four total) must ea
h have size � s. Hen
e d � 4s+2.

This proof shows that we
an obtain d = 4s+2 for s = 1 only when the P is the

\itali
 X hexomino" . That's impossible if the overall shape is a re
tangular grid;

but

1 1

1 1

is a valid puzzle in a grid minus two
orners, and d = 5 is possible in a 3�3 grid.

Here's s = 2:

 1 1

 1 2 2

1 1

 2 2 1

 1 1

;

for s = 3, see exer
ise 413(a);

and here's s � 4, shown for s = 5:

14 1 5 34

43212 54 2

 3 5 31

 4 5 2

 55555 5 1

1 5 55555

 2 5 4

 13 5 3

 2 45 21234

43 5 1 41

.

416. (Solution by N. Beluhov and P. Mebane.) When m = 1 they are and

1

a

b

1

1

b

2

1 : : : 1

b

r

1

for r � 1, 0 � a;
 � 1, 2 � b

j

� 4, (1�a)b

1

� 2, (1�
)b

r

� 2.

When m = 2 they're �

�

1

: : :

�

r

 for r � 0, �;
 2 f�;

1

;

1

g, �

j

2 f

1

1

;

1

1

g.

Now suppose 3 � m � n. By answer 415 with s = 1, this problem is equivalent

to tiling an m � n re
tangle with monominoes and X pentominoes, together with tee

tetrominoes at the edges and bent trominoes at the
orners.

Noti
e that the 1s all o

ur in
ells ij with the same parity (i+j) mod 2. Therefore

we
an transform them�n grid into two \Azte
 re
tangles," rotating 45

Æ

and mapping

ij 7! (m� i + j + Æ; i + j � Æ)=2 for 1 � i � m, 1 � j � n, and Æ 2 f0; 1g. If we put

a border around the Azte
 re
tangles by appending m + n + 2 images of ij for i = 0

January 13, 2024

186 ANSWERS TO EXERCISES 7.2.2.3

kingwise adja
ent

halo

Beluhov

Gerdjikov

Azte
 re
tangle

Toroidal

or i = m+1 or j = 0 or j = n+1, and if we �ll those border
ells with 1s, we get an

equivalent problem that's easy to visualize: (i) There must be no 2�2 array of 1s; (ii) no

two s
an be kingwise adja
ent. For example, if m = 4, n = 7, and Æ = 0 we have

11 12 13 14 15 16 17

21 22 23 24 25 26 27

31 32 33 34 35 36 37

41 42 43 44 45 46 47

00

20

40 51

53

55

57

48

28

08

06

04

02

11 22 33 44

13 24 35 46

15 26 37

17

31 42

10

30

50

52

54

56

58

38

1807

05

03

01

41

21 32 43 54

12 23 34 45

14 25 36 47

16 27

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1 1 1

1

1

1 1 1

1

1

1

1

1

1

1

1

1

1

matrix

4� 7

even Azte

4� 7

odd Azte

4� 7

even Azte

4� 7 problem

even Azte

4� 7 solution

even matrix

4� 7 solution

The two Azte
 re
tangles are isomorphi
 when mn is even. The solutions when

m is even and Æ = 0 are the �rst n
olumns of A

m

when nmod (m+1) 2 f1; mg, and

of B

m

when nmod (m+1) 2 fm�2; mg, where A

m

and B

m

are in�nite matri
es

A

6

=

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

: : :

; B

6

=

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

: : :

whose
olumns have period length 2m+ 2, illustrated here for m = 6.

Solutions exist for odd m only when n is odd and Æ = 0. Two easy
onstru
tions

always work: The even-numbered rows are 1 1 1 1 1 : : : , and the odd-numbered

rows alternate between 1 1 1 1 : : : and 1 1 1 : : : . Besides those

two, (n�1)=2 additional solutions also arise when m = n is odd, su
h as the following:

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

417. Given a polyomino P with d = d(P)
ells,
onsider the path that goes through

the
enters of all
ells that lie just outside of P 's perimeter (its outer boundary). The

region between this path and the perimeter is
alled P 's \halo," and we shall
all

its area h = h(P). The formula h = (p � v)=2 is not diÆ
ult to prove, where p

is the perimeter's length and v is the number of maximal

verti
al line segments that it has. (A 23-omino and its halo

are pi
tured.) Furthermore, N. Beluhov and S. Gerdjikov

[K�oz�episkolai Matematikai �es Fizikai Lapok [K�oMaL℄ (3)

70, 7 (O
tober 2020), 419, problem A. 783℄ have shown that

h � t=2 implies d � b

t

= b(t

2

+ 4)=8
. This bound is in

fa
t sharp for all t � 4, with the maximum d attained by a

bt=2
�dt=2e Azte
 re
tangle with Æ = 0 (see exer
ise 416).

h =

36�11

2

Polyominoes without
ommon edges have disjoint halos. Therefore if an n � n

�llomino pattern �

n

ontains k d-ominoes, we must have k(d + h

d

) � n

2

+ O(n),

where h

d

= d

p

8d � 4 e=2 is the smallest possible halo area of a d-omino. Consequently

#

d

(�

n

)=n

2

� d=(d+h

d

)+O(1=n), and we have Æ

d

� d=(d+h

d

). These upper bounds are:

d = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

d

d+h

d

=

1

2

1

2

6

11

4

7

5

8

12

19

7

11

2

3

2

3

20

29

11

16

12

17

13

18

28

39

30

41

8

11

17

23

3

4

38

51

40

53

42

55

22

29

23

30

24

31

25

32

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 187

Stappers

Demaine

Friedman

Azte
 re
tangles

biaxial

axial

Break symmetry

unique

Kur
han

Le
outre

Szymanek

tuples

ruler fun
tion

Toroidal
onstru
tions (with appropriate o�sets) give lower bounds for small d:

(d=1)

15

555

151

; (d=2)

122

244

244

; (d=3)

322

331

322

331

; (d=4)

144

4144

4413

1433

; (d=9)

199

9999922

2299

; (d=11)

bbb1

bbbbb333

bbb1

;

(d=14)

eeee1

eeeeee4444

eeee1

; (d=16)

ggg1

ggggg5

ggggg5555

ggg1

; (d=19)

jjjjj2

jjjj2

jjjjj1

jjjjj55555

; (d=22)

mmmmm2

mmmm2

mmmmm7

mmmm7

mmmm77777

:

(These
onstru
tions for d 2 f14; 19; 22g are due to Filip Stappers, and Erik Demaine

ontributed d = 3. See https://eri
h-friedman.github.io/mathmagi
/0316.html

for generalizations.) The eÆ
ient pa
king of Azte
 re
tangles and their halos also gives

us the lower bounds Æ

d

� d=(b

2k�1

+ k) when 1 < b

2k�2

< d � b

2k�1

; Æ

d

� d=(b

2k

+ k)

when b

2k�1

< d � b

2k

; these bounds are in fa
t optimum when d = b

2k

. So we have

the following partial results:

d = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Æ

d

�

3

8

4

9

1

2

8

15

5

8

3

5

7

12

2

3

9

14

2

3

11

16

2

3

13

18

7

10

5

7

16

23

17

24

3

4

19

27

5

7

3

4

22

31

23

32

3

4

25

32

Are these the true values of Æ

d

, or
an some of them be in
reased?

418. (a) 9; 4; 7. (See exer
ise 7.2.2.1{386. Adding a domino to a 2� 3 hexomino gives

(0; 1; 1; 1; 4) o
tominoes with respe
tively (180

Æ

, biaxial, axial, diagonal, no) symmetry;

adding two nonadja
ent monominoes gives (2; 1; 3; 0; 7).)

(b) Using answer 7.2.2.1{266, pie
e is, for example, 0[1-4℄ 1[0-3℄.

Break symmetry by restri
ting pie
e , say, to 1/8 of its options. Among the

(8 � 16928) pa
kings,
onne
tedness is obtained uniquely(!) as shown. [This

pleasant puzzle was introdu
ed by R. Kur
han in 2022.℄

420. (a) That suggestion would make the
urrent stamp equal to (1, 2, 1, 2, 3, 2, 1, 2,

3, 2, 3, 2, 1, 0) when � in Fig. 117 has the respe
tive values (1, 2, : : : , 14). Therefore

entries su
h as `

y

1

' would improperly be omitted from the trail in lines 11 and 16. And

the omission of `

y

5

' on line 29 would give the in
orre
t value y = 4 on line 30.

(b) If we asso
iate a fresh value of � to ea
h node, the \
orre
t"
urrent stamps

orresponding to (1, : : : , 14) are then (1, 2, 1, 3, 4, 3, 1, 5, 6, 5, 7, 5, 1, 0). To obtain

this behavior, pla
e both x and x

0

on the trail when x
hanges, so that both x and

STAMP(x) are restored when ba
ktra
king. Ba
ktra
king should also restore � to its

previous state. For example, the trail at line 06 would be `j

0

x

0;0

y

0;0

j

1

y

1;1

'. At line 29

it would be `j

0

x

0;0

y

0;0

j

5

y

1;1

x

8;1

j

7

y

5;5

'. (That's 1 + 3 + 3 + 1 + 3 + 3 + 1 + 3 = 18 entries

instead of 1 + 2 + 2 + 2 + 2 + 1 + 2 + 2 + 2 + 1 + 2 = 19; not a huge win in this
ase.)

421. This property is invariant be
ause it is true initially and un
hanged by deletion.

[C. Le
outre and R. Szymanek used it when iterating over all tuples of a relation that

belong to the
urrent domains; see LNCS 4204 (2006), 284{298.℄

423. (a) BITS(v) = 2

d

�1. (b) NEXT

v

(a) = a+1 and IN

v

[a℄ = 1 and PREV

v

(a+ 1) = a,

for 0 � a < d; NEXT

v

(d) = IN

v

[d℄ = 0; PREV

v

(0) = d. (
) DOM

v

[k℄ = IDOM

v

[k℄ = k, for

0 � k < d; SIZE(v) = d.

424. (a) �(BITS(v)+ 2

d

). (b) NEXT(d). (
) Initialize MIN(v) to 0. If deleting a =

MIN(v) in (110), also do this: Set t MIN(v) + 1, MIN(v) d. For 0 � k < SIZE(v),

if DOM

v

[k℄ < MIN(v), set MIN(v) DOM

v

[k℄, and break out of this loop if MIN(v) = t.

425. True. (See Eq. 4.1{(5).)

January 13, 2024

188 ANSWERS TO EXERCISES 7.2.2.3

Qui
ksort

trail(x)

bitwise OR

bitwise AND

residual supports

wild
ards

ZDD

Verhaeghe

valley

426. This algorithm uses an approa
h similar to Qui
ksort (Algorithm 5.2.2Q) to

ex
hange elements of D that are out of pla
e. It doesn't
hange b

k

when b

k

should

have be
ome zero a

ording to (111), be
ause su
h words b

k

will never be fet
hed. The

operation \trail(x)" means \push the pair (address of x, value of x) onto the trail."

R1. [Initialize.℄ Set i 0, s S, j s� 1.

R2. [Done?℄ (At this point all
ases k for k < i and k > j are done.) If i > j, go to R7.

R3. [Try k = D[i℄.℄ Set k D[i℄ and x b

k

& b

0

k

. If x = 0, go to R4. Otherwise, if

x 6= b

k

, trail(b

k

) and set b

k

 x. Set i i+ 1 and return to R2.

R4. [Done?℄ (We know that b

D[i℄

should be zero.) If i = j, go to R7.

R5. [Try k = D[j℄.℄ Set k D[j℄ and x b

k

& b

0

k

. If x = 0, set j j � 1 and return

to R4. Otherwise, if x 6= b

k

, trail(b

k

) and set b

k

 x.

R6. [Swap.℄ Set D[i℄$ D[j℄, i i+ 1, j j � 1, and return to R2.

R7. [Terminate.℄ If S 6= i, trail(S) and set S i.

427. Let the tuples of R be �

i

for 0 � i < t. And for 1 � j � k, 0 � a < d, let r[j; a℄

be the bitset whose ith bit is [v

j

=a in �

i

℄. (Thus, if R is the relation (78), we
an let

(�

0

, : : : , �

6

) = (000, 001, 010, 012, 020, 121, 211), with t = 7; then r[1; 0℄ = 1111100,

r[1; 1℄ = 0000010, r[1; 2℄ = 0000001, : : : , r[3; 1℄ = 0100011, r[3; 2℄ = 0001000.)

First we need to remove invalid tuples from the
urrent R. For ea
h j with

OSIZE

j

6= SIZE

j

, the values DOM

j

[k℄ for SIZE

j

� k < OSIZE

j

have been deleted

from D

j

sin
e R's last propagation. So we interse
t b with b

0

, where b

0

is either

(i) �ORfr[j; DOM

j

[k℄℄ j SIZE

j

� k < OSIZE

j

g or (ii) ORfr[j; DOM

j

[k℄℄ j 0 � k < SIZE

j

g;

use (i) if OSIZE

j

� SIZE

j

< SIZE

j

, otherwise use (ii). This bitwise OR is
omputed by

looking only at the S words of r[j; a℄ whose indi
es appear in the �rst S lo
ations of D.

Then we need to �lter the domains. For ea
h j with SIZE

j

> 1, and ea
h a =

DOM

j

[k℄ for 0 � k < SIZE

j

, we remove a from D

j

if (v

j

; a) has no
urrent support in R.

That's easily tested by running through the nonzero words of b, using the �rst S entries

of D, and ANDing them with the words of r[j; a℄, until we �nd a nonzero word (or not).

The �ltering operation goes faster if we keep a table of residual supports s[j; a℄,

where s[j; a℄ is the index of the word where a support was previously found. A loop

through b is needed only if word s[j; a℄ of b ^ r[j; a℄ is zero.

If �ltering makes a domain empty, we ba
ktra
k (having found a
ontradi
tion).

[Compa
t tables
an be made
onsiderably more
ompa
t by extending these

algorithms to allow su
h things as tuples with wild
ards (e.g., 01��2�) or even allowing

ZDD-like spe
i�
ations. For a survey of these developments, see the Ph.D. thesis of

H�el�ene Verhaeghe (University of Louvain, 2021), viii + 169 pages.℄

430. (a) t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

l

t

= 0 1 2 1 0 1 2 3 2 1 2 3 4 3 4 5 4 3 2 3 2 1 2 3 2 3 4 3 2 1

s

t

= 0 0 0 0 0 1 1 0 1 1 2 2 0 2 4 0 4 2 2 3 2 1 2 2 2 3 2 3 2 1

(b) Initially p

0

 0, q

0

 1, r 0. For t = 0, 1, : : : , do this: Set k r and,

while l

t

< p

k

or l

t

> q

k

, set k k � 1; then s

t

 p

k

. If l

t+1

< l

t

(a ba
kward step),

update the intervals as follows: If l

t�1

< l

t

(a \valley"), �rst set r r+1 and q

r

 l

t

;

then set p

r

 l

t

; then if p

r�1

= p

r

, set r r� 1 and, if q

r+1

> q

r

, also set q

r

 q

r+1

.

For example, after �nding s

7

= 0 in (a), the
urrent intervals are updated to

[0 : :1℄, [1 : : 2℄, [3 : : 3℄ be
ause t = 7 is a valley at level 3. They're next updated to

[0 : :1℄, [1 : : 2℄, [2 : : 3℄. When eventually t = 25 they're [0 : :1℄, [1 : : 2℄, [2 : : 5℄, [3 : : 3℄.

(
) The shortest su
h sequen
e goes from 0 down to 8, then up to 1, down to 6,

up to 3, down to 5, up to 4, down to 15, up to 9, down to 12, up to 10, down to 14, up

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 189

Catalan numbers

unary
onstraint

Gas
hnig

IJCAI: Pro
 Int Joint Conf on AI

De
hter

olor

list heads

se
ondary items

author

ITEM

to 13 at time 8 + 7 + 5 + 3 + � � �+ 1 = 53 = 2

P

r

j=1

(q

j

� p

j

+ 1) + p

r

� 1. (In general

the shortest goes from 0 down to q

1

, then up to p

1

� 1, : : : , down to q

r

, up to p

r

� 1.)

(d) t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

l

t

= 0 1 2 3 4 5 4 5 6 5 6 7 6 7 8 7 8 7 8 7 8 7 8 7 6 5 4 3 2 1

either

n

s

t

= 0 0 0 0 0 0 0 5 0 5 6 0 6 7 0 7 8 7 8 7 8 7 8 7 6 5 0 0 0 0

l

t

= 0 1 2 3 4 5 6 5 6 7 6 7 8 7 8 7 8 7 8 7 8 7 8 7 6 5 4 3 2 1

or

n

s

t

= 0 0 0 0 0 0 0 0 6 0 6 7 0 7 8 7 8 7 8 7 8 7 8 7 6 0 0 0 0 0

(e) 389533569=9694845 � 40:2. [In general, if we
onsider X =

P

2m�1

t=0

s

t

over

all

�

2m

m

�

=(m + 1) level sequen
es that have m forward steps and m ba
kward steps,

empiri
al results for small m suggest that maxX � :54m

2

.℄

(f) Empiri
ally, the average of l

t

� s

t

for m = 10

6

is only about 6.8, although

the standard deviation turns out to be about 52; and the empiri
al average value

of r at step t is, in
identally, 441 � 200. By exer
ise 2.3.4.5{5, the average of l

t

is

exa
tly ((m+ 1)4

m

� (2m + 1)

�

2m

m

�

)/(2m

�

2m

m

�

) =

1

2

p

�m+ O(1); this is � 885 when

m = 1000000. So ba
kmarking
an be expe
ted to save
onsiderable re
omputation.

[Can the asymptoti
s of

P

(l

t

� s

t

) and

P

r

t

as m!1 be determined analyti
ally?℄

(g) Initially M

ja

= 0 for all j and a. We let a

j

= 0 before x

j

is assigned.

G1. [Begin step t.℄ Set j l

t

+1 and a a

j

. (We want to assign a new value to x

j

.)

G2. [Advan
e a.℄ Set a a + 1. Go to G7 if a > d

j

. Otherwise repeat this step if

M

ja

< s

t

. (We've already seen that x

j

= a isn't
onsistent with the
urrently

assigned values fx

i

= a

i

j 1 � i �M

ja

g.)

G3. [Begin further tests.℄ Set k M

ja

.

G4. [Che
k relations with x

k

.℄ If (a

1

; : : : ; a

k

; a) doesn't satisfy all
onstraints between

(x

1

; : : : ; x

k

) and x

j

that involve x

k

, set M

ja

 k and return to G2. (If k = 0, we

simply test the unary
onstraint on x

j

.)

G5. [Loop on k.℄ If k < l

t

, set k k + 1 and return to G4.

G6. [Finish forward step.℄ Set M

ja

 j, a

j

 a, l

t+1

 l

t

+ 1; step t is done.

G7. [Finish ba
kward step.℄ Set a

j

 0 and l

t+1

 l

t

� 1; step t is done.

(Here s

t

is evaluated as in (b). Of
ourse the values of l

t

and s

t

need not be stored in

memory. This te
hnique was introdu
ed by J. Gas
hnig for binary
onstraints [IJCAI

5 (1977), 457℄, and extended to (k + 1)-ary
onstraints by R. De
hter in x5.2.2 of her

book Constraint Pro
essing (2003).)

434. It's the
olor of the item in NODE[x℄, but irrelevant in a spa
er node.

435. Node x+ 6. (The former nodes 1 to 5 were doubly linked list heads.)

436. True, if x isn't a spa
er node.

437. False; unused se
ondary items will still be a
tive. (The author experimented with

a version of Algorithm C that keeps primary and se
ondary items segregated within

the ITEM array, but found that the extra
ompli
ations were hardly ever helpful.)

439. (See further
omments in the answer to exer
ise 7.2.2.1{8, whi
h is similar.)

I1. [Read the �rst line.℄ Set s �1, x i 0. Then, for ea
h item name � on the

�rst line, set i i+1, SIZE(4i) 0, NAME(4i) �. If � names the �rst se
ondary

item, also set s i. (As in the text, SIZE(t) � SET[t� 1℄, POS(t) � SET[t� 2℄,

and NAME(t) o

upies SET[t� 4℄ and SET[t� 3℄. We're temporarily using only

four slots of SET for ea
h item.) At the end, set ACTIVE i, ITM(0) 0.

I2. [Read an option.℄ Go to I3 if no input remains. Otherwise let the next line of input

ontain the distin
t item names �

1

, : : : , �

k

, with respe
tive
olors

1

, : : : ,

k

(where

January 13, 2024

190 ANSWERS TO EXERCISES 7.2.2.3

j

= 0 if �

j

has no
olor). Complain if a primary item is
olored, or if all items are

se
ondary. Do the following for 1 � j � k: Find the index i

j

for whi
h NAME(4i

j

) =

�

j

, using an algorithm from Chapter 6. Set t SIZE(4i

j

), SIZE(4i

j

) t + 1,

ITM(x+ j) i

j

, LOC(x+ j) t, CLR(x+ j)

j

. Finally, adjust the spa
ers by

setting LOC(x) k, x x+ k + 1, ITM(x) �k. Repeat step I2.

I3. [Initialize ITEM.℄ Set k 0, j 4. While k < ACTIVE, set ITEM[k℄ j, k k+1,

j j + 4 + SIZE(4k). If s < 0, set SECOND j and s ACTIVE.

I4. [Expand SET.℄ While k > 0, do the following: Set j ITEM[k � 1℄ and SIZE(j)

SIZE(4k), POS(j) k� 1, NAME(j) NAME(4k); if SIZE(j) = 0 and k < s, termi-

nate (primary ITEM[k � 1℄ has no options); if k = s set SECOND j. Set k k�1.

I5. [Adjust NODE.℄ For x

0

= 1, 2, : : : , x� 1, do the following if ITM(x

0

) � 0: Set i

ITEM[ITM(x

0

)� 1℄, j i+ LOC(x

0

), ITM(x

0

) i, LOC(x

0

) j, SET[j℄ x

0

.

440. Set � 1. For 0 � k < ACTIVE, do the following steps if ITEM[k℄ < SECOND:

Set � SIZE(ITEM[k℄); if � = � and ITEM[k℄ < i, set i ITEM[k℄; if � < �, set

i ITEM[k℄, � �, and terminate the loop if � = 1. (Early termination violates

the statement of the exer
ise, but we do it anyway be
ause tiebreaking isn't important

when � = 1; the remaining option for i is for
ed.) Afterwards, go to C9 if � = 1.

(Noti
e that � will never be zero, although it
ould be zero in exer
ise 7.2.2.1{9.)

441. i = 23 (meaning x) and
 = B will leave q with no options.

442. Item 11 (q) is sele
ted in step C2, dea
tivated in step C3, and hidden with

OACTIVE = ACTIVE = 4 in step C4. (Thus the options
ontaining q, represented by

nodes 2 = SET[11℄ and 14 = SET[12℄, leave the option lists for items 23 = ITM(3),

31 = ITM(4), 4 = ITM(1), 23 = ITM(15).) Step C5 sets TRAIL[0℄ (4; 2), TRAIL[1℄

(31; 2), TRAIL[2℄ (17; 2), TRAIL[3℄ (23; 2), and y

1

 t 4. Step C6 tries option

x

0

 2, dea
tivating items 23, 31, 4. Then C7, with OACTIVE = 4 and ACTIVE = 1, hides

(23; 0) and jumps to C11 while trying to hide (31; A). After sizes are restored, C6 tries

option x

0

 14, whi
h is su

essfully hidden by C7. Here's the state when we rea
h C8:

i SET[i℄

LNAME 0 p

RNAME 1

POS 2 1

SIZE 3 1

� 4 6

5 11

6 1

LNAME 7 q

RNAME 8

POS 9 4

SIZE 10 2

� 11 2

12 14

LNAME 13 r

RNAME 14

POS 15 0

SIZE 16 2

i SET[i℄

� 17 17

18 7

LNAME 19 x

RNAME 20

POS 21 3

SIZE 22 2

� 23 12

24 8

25 15

26 3

LNAME 27 y

RNAME 28

POS 29 2

SIZE 30 2

� 31 18

32 9

33 4

k: 0 1 2 3 4

ITEM[k℄: 17 4 31 23 11 ACTIVE = 3

x: 0 1 2 3 4 5 6

ITM(x): 0 4 11 23 31 �4 4

LOC(x): 4 6 11 26 33 4 4

CLR(x): | 0 0 0 A | 0

x: 7 8 9 10 11 12 13

ITM(x): 17 23 31 �4 4 23 �2

LOC(x): 18 24 32 2 5 23 2

CLR(x): 0 A 0 | 0 B |

x: 14 15 16 17 18 19

ITM(x): 11 23 �2 17 31 �2

LOC(x): 12 25 2 17 31 |

CLR(x): 0 A | 0 B |

(Hmm; why are SET[22℄ = 2 and SET[23℄ = 12? Answer: When x was puri�ed

by hide(23; A) in C7, option `p x:B' was deleted from p's list but not x's. The other two

options involving x had already been deleted from x's list by hide(11; 0) in step C4.)

444. Suppose there's a primary item i

0

6= i whose options all involve i. Then hide(i; 0)

will remove all options of i

0

. If it sees FLAG = 0 when SIZE(i

0

) be
omes zero, it will

abort its normal operations prematurely.

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 191

MRV heuristi

for
ed move

mems

dan
ing
ells

author

onditional bran
hes

pipeline

sparse-set deletion

deletion

T

0

stage

level

opt(x,x')

se
ondary item

Noti
e that this
ase
an arise only when all options of i also in
lude i

0

, be
ause

step C2 minimizes SIZE(i). Suppose the MRV heuristi
 had not been used; then it

would be possible to have a
tive items without options, and step C2 would have to go

to C10 after
hoosing an item with SIZE(i) = 0.

445. Before testing � versus � in answer 440, go to C10 if � = 0 (see exer
ise 444).

Otherwise add a large
onstant to � if � > 1 and NAME(ITEM[k℄) doesn't begin with `#'.

447. The se
ondary item i

0

is ina
tive, so its option list has already been puri�ed.

450. Let FORCE be an array whose size is at least the number of primary items. After

setting s

0

in (118), say \If s

0

= 1 and FLAG = 0 and i

0

< SECOND and POS(i

0

) < ACTIVE,

set FORCE[f℄ i

0

, f f + 1." Also, before setting FLAG in (118), set f 0.

Steps C1

+

through C11

+

are identi
al to steps C1 through C11, ex
ept that C1

+

also sets f 0, and that C2

+

and C8

+

are revised (in
luding new intermediate steps):

C2

+

. [Choose i.℄ Set � 1. For 0 � k < ACTIVE, do the following steps if

ITEM[k℄ < SECOND: Set � SIZE(ITEM[k℄); then if � = 1, set FORCE[f℄

ITEM[k℄, f f + 1; otherwise if � = � and ITEM[k℄ < i, set i ITEM[k℄;

otherwise if � < �, set i ITEM[k℄, � �.

C2.1

+

. [For
ed?℄ If f > 0, set f f � 1, i FORCE[f℄, and go to C8.2

+

. Otherwise

if � =1, go to C9

+

.

C8

+

. [Advan
e to the next level.℄ Set l l+ 1.

C8.1

+

. [Not for
ed?℄ If f = 0, go to C2

+

. Otherwise set f f � 1, i FORCE[f℄,

and repeat step C8.1

+

if POS(i) � ACTIVE.

C8.2

+

. [For
e a move.℄ Perform steps C3

+

and C4

+

. Then set y

l+1

 t and go to C6

+

.

451. Indeed, it's tempting to save �ve mems by doing those assignments only when

i

0

6= i; the runtimes for dan
ing
ells in (120) would then look almost 10% better! But

on the author's
omputer, the true running time for, say, Problem Q in
reases from 64.3

user se
onds to 72.2 user se
onds, even though 43.9 G� be
omes 37.6 G�. The reason

is that
onditional bran
hes
an slow down a modern
omputer's pipeline. (Similar

remarks apply when x

00

= x

0

in (118), or a

0

= a in general sparse-set deletion, (110).)

452. The remaining problem is the same as the former, but with option o

1

removed.

Removing o

1

de
reases SIZE(i

0

) by [i

0

2 o

1

℄, for ea
h item i

0

. Hen
e every a
tive primary

item i

0

of the remaining problem will have SIZE(i

0

) � d� 1 = SIZE(i). Furthermore,

if SIZE(i

0

) = SIZE(i), we'll have POS(i

0

) � POS(i).

453. In fa
t there are two su
h nodes. One of them is labeled `v

31

: a

31

'. The other is

the right
hild of the node labeled `v

21

: a

21

'.

455. The following algorithm operates under the same ground rules as Algorithm C

+

,

ex
ept that it uses two additional arrays, d

0

d

1

: : : d

T

and LS[s℄ for 0 � s � T

0

, where

T

0

is the number previously
alled T (the largest possible stage). The new size T of

the x and d arrays must be larger than before, be
ause it must now a

ommodate the

largest possible level under binary bran
hing. We use the simple subroutine

opt(x; x

0

) = `x x

0

; while ITM(x� 1) > 0 set x x� 1'

to set x to the leftmost item of the option that
ontains x

0

.

B1. [Initialize.℄ Set the problem up in memory as in exer
ise 439. Also insert addi-

tional entries into the SET array, if they're needed for bran
hing heuristi
s. Set

ACTIVE to the number of items, SECOND to the internal number of the smallest

se
ondary item (or 1 if there are none), and l s t f 0.

January 13, 2024

192 ANSWERS TO EXERCISES 7.2.2.3

heuristi
 fun
tion

siblings

subroutine

level

stage

B2. [Not for
ed?℄ If f = 0, go to B3. Otherwise set f f � 1 and i FORCE[f℄.

Repeat step B2 if POS(i) � ACTIVE; otherwise set y

s

 t and go to B6.

B3. [Choose i.℄ Set � 1. For 0 � k < ACTIVE, do the following steps if ITEM[k℄ <

SECOND: If SIZE(ITEM[k℄) = 1, set FORCE[f℄ ITEM[k℄, f f + 1; otherwise

set � h(ITEM[k℄), where h is the given heuristi
 fun
tion; if � = � and

ITEM[k℄ < i, set i ITEM[k℄; if � < �, set i ITEM[k℄, � �.

B4. [For
ed?℄ If f > 0, set f f�1, i FORCE[f℄, y

s

 t, and go to B6. Otherwise

if � =1, set y

s

 t and go to B14.

B5. [Trail the sizes.℄ Terminate with trail over
ow if t+ACTIVE ex
eeds the maximum

available TRAIL size. Otherwise set TRAIL[t+ k℄ (ITEM[k℄; SIZE(ITEM[k℄))

for 0 � k < ACTIVE; then set y

s

 t and t t+ ACTIVE.

B6. [Try i's �rst option.℄ Set d

l

 SIZE(i), x

l

 SET[i℄, and do opt(x; x

l

). (We'll

try to extend the
urrent partial solution by in
luding the option that starts at x.)

B7. [Dea
tivate ITM(x).℄ Set i ITM(x), i

0

 LOC(x), k POS(i). If k� ACTIVE, go

to B8. Otherwise do step B11; after �nishing B11, set ACTIVE ACTIVE�1, i

00

ITEM[ACTIVE℄, ITEM[ACTIVE℄ i, ITEM[k℄ i

00

, POS(i) ACTIVE, POS(i

00

) k.

B8. [Advan
e x.℄ Set x x+ 1. Return to B7 if ITM(x) > 0.

B9. [Enter new stage.℄ Set s s+ 1.

B10. [Enter new level.℄ Set l l + 1 and LS[s℄ l. Terminate with level over
ow if

l > T (there's no room to store x

l

); otherwise return to B2.

B11. [Hide in
ompatible options.℄ For j i+ SIZE(i)� 1 down to i, do the following

if j 6= i

0

: Set x

0

 SET[j℄, and do step B12 if CLR(x) = 0 or CLR(x

0

) 6= CLR(x).

B12. [Visit siblings of x

0

.℄ Do opt(x

00

; x

0

). Then while ITM(x

00

) > 0, do step B13 unless

x

00

= x

0

, and set x

00

 x

00

+ 1.

B13. [Hide option x

00

.℄ Set i

00

 ITM(x

00

) and j

00

 LOC(x

00

). If j

00

� SECOND and

POS(i

00

) � ACTIVE, do nothing (item i

00

has already been puri�ed). Otherwise set

s

0

 SIZE(i

00

)�1. If s

0

= 0 and j

00

< SECOND, set f 0 and go to B16 (the a
tive

primary item i

00

has no option beside x

00

). Otherwise if s

0

= 1 and j

00

< SECOND,

set FORCE[f℄ i

00

and f f +1. If s

0

> 0, set x

000

 SET[i

00

+ s

0

℄, SIZE(i

00

)

s

0

, SET[i

00

+ s

0

℄ x

00

, SET[j

00

℄ x

000

, LOC(x

00

) i

00

+ s

0

, LOC(x

000

) j

00

.

B14. [Visit a solution.℄ Visit the solution that's spe
i�ed by nodes x

LS[j℄

for 0 � j < s.

B15. [Ba
k up.℄ Terminate if s = 0. Otherwise set t y

s

, s s� 1, l LS[s℄.

B16. [Purge x

l

.℄ If d

l

= 1, go to B15. Otherwise, for y

s

� k < t, set SIZE(i

0

) s

0

if

TRAIL[k℄ = (i

0

; s

0

). Then set ACTIVE t�y

s

, t y

s

, x

00

 x

l

, and do step B13.

Also set x

0

 x

l

, and do step B12. (Step B13 won't �nd s

0

= 0, be
ause every a
-

tive primary item has at least two a
tive options when d

l

> 1.) Return to B10.

(Step B11 is a subroutine,
alled by step B7. Similarly, B12 and B13 are subroutines.

Subroutine B13 might jump to B16 dire
tly instead of returning to its
aller, B12.)

This algorithm maintains the entire history x

0

: : : x

l

of all bran
hes leading to the

urrent level, so that an interested user
an monitor the
urrent progress. But only

one node per stage (namely x

LS[0℄

, x

LS[1℄

, : : :) is a
tually needed.

456. Step C4

+

takes advantage of d-way bran
hing to hide all of i's options on
e,

instead of d times. Binary bran
hing
an't do that.

(In
identally, Problem C doesn't really need the MRV heuristi
, be
ause the

ordering of its primary items
auses Algorithm B to
hoose the same items i even with

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 193

oating point number

over
ow

author

organ-pipe order

forward
onsisten
y

Weigel

pigeons

the trivial heuristi
 h(i) = 0. However, that heuristi
 takes 1665.8 G� with Problem H,

ompared to 445.7 G� with h(i) = SIZE(i) and 407.4 G� with Algorithm C

+

.)

458. In step B1, provide spa
e for WT(i) (initially set to 1.0) in the SET array, when i

is primary. (It's best to store it as a single-pre
ision
oating point number, be
ause it

will be used in division. Furthermore, there won't be any problem of over
ow, be
ause

the assignment \WT(i) WT(i)+ 1:0" will do nothing when WT(i) = 2

24

.)

In step B13, set WT(i

00

) WT(i

00

)+ 1 before going to B16.

(The author's implementation also provides optional diagnosti
 features that
an

display an item's weight at
ru
ial times.)

459. For n queens and p knights on an n � n board, we
an start with a setup like

7.2.2.1{(23) for the queens, with primary items fr

i

j 1 � i � ng, f

j

j 1 � j � ng

listed in organ-pipe order, together with se
ondary items fa

s

j 1 < s � 2ng, fb

d

j �n <

d < ng. Let's add primary items fN

k

j 0 � k < pg for the knights, together with

se
ondary items fR

k

j 0 � k < pg, fC

k

j 0 � k < pg, whose
olors will be row and

olumn indi
es. Finally, n

2

se
ondary items fij j 1 � i; j � ng will keep the queens and

knights separate. The queen options are `r

i

j

a

i+j

b

i�j

ij' for 1 � i; j � n; the knight

options are `N

k

ij R

k

:i C

k

:j R

k

0

:i

0

C

k

0

:j

0

', for all 1 � i; j; i

0

; j

0

� n and 0 � k < p with

(i � i

0

)

2

+ (j � j

0

)

2

= 5 and k

0

= (k � 1) mod p. (When n = 8 and p = 5 there are

(16+5) + (64+30+10) items and 64+1680 options.)

460. Using answers 458 and 459, Algorithm B will begin by
hoosing options `r

5

1

a

6

b

4

51', `

4

a

5

b

�3

14 r

1

', `r

3

8

a

11

b

�5

38', `

3

a

9

b

3

63 r

6

', `

5

a

12

b

2

75 r

7

', `

7

a

15

b

1

87

r

8

', `

2

a

4

b

0

22 r

2

', `

6

a

10

b

�2

46 r

4

' in stages 0 through 7, with d

0

: : : d

7

= 85321111.

Then stage 8
hooses `N

0

11 R

0

:1 C

0

:1 R

4

:2 C

4

:3' as one of N

0

's 295 remaining options;

and stage 9
hooses `N

1

32 R

1

:3 C

1

:2 R

0

:1 C

0

:1' as one of two for N

1

. (Our formulation

has not pre
luded `N

1

23 R

1

:2 C

1

:3 R

0

:1 C

0

:1', sin
e we use forward
onsisten
y only.)

We �rst run into trouble in stage 11, when N

4

's weight be
omes 2 and we rea
h step B16

for the �rst time. (The
lo
k shows only 91 kilomems so far, sin
e the initialization.)

A
omplex
al
ulation that rules out all knight pla
ements, in
luding all 295

options for N

1

, eventually takes us ba
k to stage 7. At that point, about 125 M� have

elapsed; and (N

0

; N

1

; N

2

; N

3

; N

4

) have a
quired weights (3448, 4019, 4839, 4859, 2504).

Sin
e d

4

d

5

d

6

d

7

= 1111, we ba
ktra
k to stage 3, where `

3

a

7

b

1

43 r

4

' is now for
ed.

Stage 4 now �nds that r

1

, r

5

,

4

,

6

have only two a
tive options, while ea
h knight

item N

k

has 316. But N

3

is
hosen for bran
hing, by (122), sin
e 316=4859 < 2=1. An-

other
omplex
al
ulation, never bran
hing on a queen, eventually leads ba
k to stage 2.

And so on. After ea
h of the options in stages 3, 2, 1, 0 has been purged, a
omplex

exploration of knight moves
onsumes 150 to 200 M� and in
reases the knight-item

weights. At the end (759 M�) those weights are (21261, 23721, 27138, 27795, 28194).

(It is not true that the queen items retain weight 1. Knights
an be pla
ed in su
h

a way that for
ed queen moves lead to a
ontradi
tion. In fa
t, r

5

a
quires weight 47!)

461. (a) 76 M� : 819 M�; (b) 13.3 G� : 118.8 G�; (
) 11.6 G� : 13.6 T�.

463. (Solution by P. Weigel.) Let there be primary items p

i

for 0 � i � n, representing

pigeons, and se
ondary items h

j

for 0 � j < n, representing holes. Also primary items

f and F together with se
ondary items �, x, y, whi
h
leverly fool the WTD heuristi

as follows: The options for pigeons are `p

i

h

j

�:0 y:(i+ j) mod 2', for all i and j, ex
ept

that � is omitted when j = imod n. The options for f are `f �:1' and n � 2 identi
al

opies of `f x:0'; the options for F are `F �:1' and n � 2 identi
al
opies of `F x:1'.

(First we bran
h on f or F ,
ausing � to get
olor 1. A
ontradi
tion soon arises,

giving weight 2 to either p

0

or p

n

. After that, bran
hing never o

urs again on f or F ,

January 13, 2024

194 ANSWERS TO EXERCISES 7.2.2.3

parity

d-way

WTD

y

FRB

oating point numbers

hide routine

MRV

WTD heuristi

FRB

online programs

WTDy

FRBy

se
ondary

spa
er

puri�ed

be
ause they have at least n�2 options and their weight remains 1. If all a
tive p

i

have

weight 1, they all have at most n=2 remaining options, be
ause of the parity item y.)

However, the d-way heuristi
 WTD

y

is not fooled, be
ause it
ontinues to bran
h

on f or F until all n � 1 options have been tried. To defeat it, we
an simply add a

new primary item #, with two identi
al options `#'; the se
ond # shuns f and F .

For example, the running time for WTD when n = 20 is 6.8 gigamems, using #,

and 2.6 gigamems for WTD

y

,
ompared to 473 kilomems for MRV.

This XCC problem also turns out to be exponentially bad for FRB and FRB

y

.

464. In step B1, provide spa
e for single-pre
ision
oating point numbers TRY(i)

(initially 1.0) and FR(i) (initially 0.5) in the SET array, when i is primary. In step B6,

also set i

0

 i and TRY(i

0

) TRY(i

0

)+ 1. Then at the end of step B8, set FR(i

0

)

FR(i

0

) � FR(i

0

)=TRY(i

0

). In step B13, set FR(i

0

) FR(i

0

) + (1:0 � FR(i

0

))=TRY(i

0

)

before going to B16. (See answer 458.)

465. (a) 1.1 G� : 819 M�; (b) 207.9 G� : 118.8 G�; (
) 17.1 T� : 13.6 T�.

466. Any heuristi
 fun
tion h that
an be used in step B3
an also be used in step

C2

+

, provided that we repla
e `if � = 1' in that step by `if � = 0, set f 0 and go

to C10

+

; otherwise if � = 1'. (The
ase � = 0
ould not previously arise, be
ause the

hide routine (118) normally prevents the size of any primary item from be
oming zero.

Suppose, however, that i

0

is a primary item for whi
h (i) every option that
ontains i

0

also
ontains the primary item i; and (ii) some option o
ontains i but not i

0

. Then i

has more options than i

0

; and a non-MRV heuristi
 method might
hoose to bran
h on i.

If so, hide will be
alled in step C4

+

with FLAG �1, and (118) will set SIZE(i

0

) 0.

This size will be trailed in step C5

+

, and we'll �nd � = 0 after trying option o for item i.)

To implement theWTD heuristi
 (see exer
ise 458), in
rease WT(i

0

) before setting

FLAG 1 in (118), and in
rease WT(ITEM[i℄) before going to C10

+

from step C2

+

.

Similarly, to implement FRB (see exer
ise 464), update the failure rate of i = ITEM[k℄

by setting TRY(i) TRY(i)+1 in step C4

+

; set FR(i) FR(i)+(1:0� FR(i))=TRY(i)

in step C7

+

before going to C11

+

, and FR(i) FR(i) � FR(i)=TRY(i) in step C8

+

.

(Sample implementations are in the online programs SSXCC-WTD0 and SSXCC-FRB0.)

467. Yes! Call them WTDy and FRBy as in (131). Then WTDy improves Problem K,

a
hieving 2.5 G�; FRBy improves Problems O

�

, U, Y

�

, a
hieving (5844.4, 117.5, 2.5) G�.

468. S[10; r℄
an be 16 or 19. S[13; r℄
an be 05, 16, or 19. S[19; p℄
an be 00 or 10.

S[19; q℄
an be 00 or 13.

469. Allo
ate also a new integer �eld MATCH(i), for every se
ondary item i. Let STAMP

be a 32-bit integer, initially 0; all the MARK �elds are also initially 0. To get ready for

testing option o, do this, assuming that NODE[o℄ is the spa
er pre
eding option o: Set

STAMP (STAMP + 1) mod 2

32

. If STAMP = 0, set STAMP 1 and MARK(i) 0 for all i.

For x = o + 1, o + 2, : : : , set i ITM(x), and exit the loop if i � 0; otherwise set

MARK(i) STAMP, and if i � SECOND also set MATCH(i) (CLR(x) = 0? �1: CLR(x)).

Now, given an item i =2 o (equivalently, MARK(i) 6= STAMP), do this: For j i,

i+1, : : : , exit the loop unsu

essfully if j = i+SIZE(i); otherwise set o

0

 SET[j℄ and

exit the loop su

essfully if o

0

does not fail the following
ompatibility test: \Set x

0

 o

0

and x x

0

+ 1. While x 6= x

0

, set i

0

 ITM(x); if i

0

< 0, set o

0

 x x + i

0

� 1;

otherwise if MARK(i

0

) = STAMP and (i

0

< SECOND or CLR(x) 6= MATCH(i

0

)), fail; set

x x+ 1." (Noti
e that o

0

is set to the spa
er pre
eding a su

essful option.)

471. False. If i 2 o 2 O

s

we have i 2 I

s

if and only if i has not been \puri�ed"; that

is, i is not a se
ondary item whose nonzero
olor was �xed by an option in f

1

; : : : ;

s

g.

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 195

A

age

ACTIVE

OACTIVE

puri�ed

ina
tive option

472. O

�1

= f00; 05; 10; 13; 16; 19g; O

init

0

= f00; 05; 13; 19g; O

0

= f00; 19g; AGE(10) =

AGE(16) = �1 (purged); AGE(13) = 0 (removed); AGE(05) = 0 (purged). (Soon

afterwards, a solution will be found at stage 2, with O

init

1

= O

1

= f19g, O

init

2

= ;,

AGE(00) = 1, AGE(19) = 3 (both
hosen), or with the roles of 00 and 19 reversed.)

(To help understand the
on
ept of age, we
an asso
iate impli
it \age labels"

to the edges of tree (121). Age labels on the horizontal edges, marked ` 6=', are always

even numbers; for example, they're (0; 0; 0) in the �rst row and (2; 2; 2) in the se
ond.

Age labels on the verti
al edges, marked `=', are always odd numbers, su
h as (1) in

the �rst
olumn and (1; 3) in the se
ond.)

473. There's an e
onomy of s
ale when we
an use exer
ise 469 to make many
om-

patibility tests with respe
t to the same option.

474. Yes. For example, suppose o = `p q', o

0

= `p r', o

00

= `q s', S[o; r℄ = S[o

00

; r℄ =

o

0

, S[o; s℄ = S[o

0

; s℄ = o

00

. If we
hoose o, blo
king o

0

will trigger (o

00

; r), thereby

enqueuing o

00

. Similarly, blo
king o

00

will enqueue o

0

. (No harm is done.)

476. We allow o to be within an option. Global variable A is the
urrent age. Global

variables ACTIVE and OACTIVE represent the number of
urrently a
tive items, in a

slightly tri
ky way: If option o is being blo
ked by a new
hoi
e

s+1

, then ACTIVE =

jI

s+1

j and OACTIVE = jI

s

j; but ACTIVE = OACTIVE = jI

s

j if o is being removed or purged.

O1. [Move to left spa
er.℄ While ITM(o) > 0, set o o� 1. Then set x o+ 1.

O2. [Hide o from ITM(x).℄ Set i ITM(x), p LOC(x). If p � SECOND and POS(i) �

OACTIVE, go to O3 (item i has been puri�ed); otherwise set s

0

 SIZE(i) � 1. If

s

0

= 0 and p < SECOND, go to O11 (i is wiped out); otherwise set x

0

 SET[i + s

0

℄,

SIZE(i) s

0

, SET[i + s

0

℄ x, SET[p℄ x

0

, LOC(x) i+ s

0

, LOC(x

0

) p.

O3. [Loop on x.℄ Set x x+ 1. Return to O2 if ITM(x) > 0:

O4. [Begin trigger loop.℄ Set AGE(o) A, p TRIG(o), HEAD 0.

O5. [Loop done?℄ If p = 0, go to O10. Otherwise set o

0

 INFO(p), q LINK(p),

i

0

 INFO(q), p

0

 LINK(q).

O6. [Is o

0

a
tive?℄ Set a AGE(o

0

). If a > A, go to O7 (o

0

is a
tive); otherwise set

i ITM(o

0

+ 1). If LOC(o

0

+ 1) � i+ SIZE(i), go to O8 (o

0

is ina
tive).

O7. [Is i

0

a
tive?℄ Go to O9 if POS(i

0

) < ACTIVE (i

0

is a
tive).

O8. [Keep trigger.℄ Set LINK(q) HEAD, HEAD p, p p

0

, and return to O5.

O9. [Trigger be
omes �xit.℄ Set INFO(p) o, LINK(q) FIX(o

0

). If FIX(o

0

) = 0,

put o

0

) Q and set AGE(o

0

) 1. Then set FIX(o

0

) p, p p

0

; return to O5.

O10. [Su

ess.℄ Set TRIG(o) HEAD and terminate su

essfully.

O11. [Clear the queue.℄ If QF = QR, go to O12. Otherwise Q) o, un�x(o), and repeat

step O11. Here the routine `un�x(o)'
hanges all of o's �xits ba
k to triggers:

un�x(o) =

8

<

:

Set p FIX(o) and FIX(o) 0.

While p > 0, set o

0

 INFO(p), q LINK(p), INFO(p) o,

p

0

 LINK(q), LINK(q) TRIG(o

0

), TRIG(o

0

) p, p p

0

.

O12. [Failure.℄ Terminate unsu

essfully (be
ause item i has lost its last option).

Steps O2{O3 make option o ina
tive (that is, not present in the sets of its a
tive

items). Steps O4{O9 remove o from S[o

0

; i

0

℄ when both o

0

and i

0

are a
tive, by
reating

\holes" to be �xed; but (o

0

; i

0

) remains on o's trigger sta
k if o

0

or i

0

are ina
tive. Step

January 13, 2024

196 ANSWERS TO EXERCISES 7.2.2.3

�rst item of o

0

AGE(o

0

)

author

hint

validation
ode

O6 relies on the fa
t that the �rst item of o

0

is primary. Noti
e that our data stru
tures

make it easy to
onvert triggers to �xits and vi
e versa.

Step O9 makes AGE(o

0

) in�nite when o

0

enters Q; we'll use this in step E2 below.

477. We follow the
onventions of Algorithm O, as in exer
ise 476.

E1. [Done?℄ If QF = QR, terminate su

essfully. Otherwise Q) o.

E2. [Is o a
tive?℄ If AGE(o) = 1, go to E3 (o is a
tive). Otherwise un�x(o), as in

step O11, and return to E1.

E3. [Mark o's items.℄ Set STAMP, MARK, and MATCH as in the �rst paragraph of answer 469.

E4. [Begin �xit loop.℄ Set p FIX(o).

E5. [Loop done?℄ If p = 0, set FIX(o) 0 and return to E1. Otherwise set q

LINK(p), i INFO(q), p

0

 LINK(q). (We needn't look at INFO(p) just now.)

E6. [Find a support.℄ (Now i is a primary item, and i =2 o.) Use the se
ond paragraph

of answer 469 to �nd an option o

0

su
h that i 2 o

0

k o. If unsu

essful, go to E8.

E7. [Re
ord the support.℄ Set INFO(p) o, LINK(q) TRIG(o

0

), TRIG(o

0

) p,

p p

0

, and return to E5.

E8. [Prepare to purge.℄ (There's no a
tive support for (o; i).) Set FIX(o) p and

un�x(o) as in step O11.

E9. [Purge o.℄ Set OACTIVE ACTIVE and
all opt out (o). Terminate unsu

essfully if

that fails; otherwise return to E1.

478. (These steps have mu
h in
ommon with Algorithm E above.)

A1. [Begin option loop.℄ Set QR(AVAIL, QF QR, A �1, OACTIVE ACTIVE, o 0.

A2. [Mark o's items.℄ Set STAMP, MARK, and MATCH as in the �rst paragraph of answer 469.

A3. [Begin item loop.℄ Set k 0 and i ITEM[k℄.

A4. [Find a support.℄ If MARK(i) = STAMP, go to A6. Otherwise use the se
ond

paragraph of answer 469 to �nd an option o

0

for whi
h i 2 o

0

k o. If that su

eeds,

go to A5. Otherwise
all opt out (o), and go to A7 if that su

eeds. Otherwise

terminate unsu

essfully.

A5. [Re
ord the support.℄ Set p (AVAIL, q (AVAIL, INFO(p) o, LINK(p) q,

INFO(q) i, LINK(q) TRIG(o

0

), TRIG(o

0

) p.

A6. [Item loop done?℄ Set k k + 1, i ITEM[k℄. Return to A4 if i < SECOND.

A7. [Option loop done?℄ Set o o+ LOC(o) + 1. Return to A2 if o < LAST.

A8. [Empty the queue.℄ Call empty q (), terminating unsu

essfully if it fails.

479. Do the a
tions in the following paragraph for all options o with AGE(o) � 0:

Set p TRIG(o) and q

0

 �1. While p 6= 0, do this: \Set q LINK(p) and

p

0

 LINK(q). If AGE(INFO(p)) � 0, simply set q

0

 q; otherwise put p) AVAIL,

q) AVAIL, and set TRIG(o) p

0

if q

0

< 0, LINK(q

0

) p

0

if q

0

� 0. Then set p p

0

."

480. The author's experiments have found neither (a) nor (b) to be an improvement.

482. (a) An entry (o

0

; i

0

) might go into TRIG(o) long before o

0

be
omes ina
tive. For

example, we might have
hosen o = S[o

0

; i

0

℄ already in step S1 (Algorithm A).

(b) We shall pla
e a \hint" (�
; v) into every newly re
onstru
ted trigger sta
k,

when we wish to
laim that all entries (o

0

; i

0

) below the hint have AGE(o

0

) <
. Here

v is a validation
ode: Options
hange their status and their age as the sear
h tree

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 197

stage stamp

stamping

T

0

Bu
ket sort

sort

radix list sort

hints

puri�ed

purify

evolves; but this hint will remain valid as long as v is equal to SS[
� 1℄, the \stage

stamp" that was re
orded for stage b
=2
 in step S2.

Ea
h step of Algorithm O

+

is the same as the
orresponding step of Algorithm O,

ex
ept as noted below. Algorithm O's variable HEAD is repla
ed by arrays H[a℄ and

T[a℄ of temporary list heads and tails, for 0 � a < 2T

0

. Initially H[a℄ = 0 for all a.

O4

+

. [Begin trigger loop.℄ Set AGE(o) A, p TRIG(o), a

min

 1, p

0

 0.

O5.1

+

. [Hint?℄ If o

0

� 0, pro
eed to step O6

+

(this entry is not a hint).

O5.2

+

. [Valid hint?℄ If �o

0

� A and i

0

= SS[(�o

0

)� 1℄, set p

0

 p and go to O10

+

.

O5.3

+

. [Dis
ard a useless entry.℄ p) AVAIL, q) AVAIL, p p

0

, and return to O5

+

.

O7

+

. [Is i

0

a
tive?℄ Go to O9

+

if POS(i

0

) < ACTIVE (i

0

is a
tive). Otherwise set

a A.

O8

+

. [Keep trigger.℄ If a < 0, go to O5.3

+

. If a < a

min

, set a

min

 a. If H[a℄ = 0, set

T[a℄ q. Then set LINK(q) H[a℄, H[a℄ p, p p

0

, and return to O5

+

.

O10

+

. [Bu
ket sort.℄ If p

0

6= 0 and a

min

= �o

0

� 1, set p

0

 LINK(q), p) AVAIL,

q) AVAIL (avoid a double hint). For a = a

min

, a

min

+ 1, : : : , A� 1, do this:

\If H[a℄ 6= 0, set LINK(T[a℄) p

0

, p (AVAIL, q (AVAIL, LINK(p) q,

INFO(p) �a � 1, INFO(q) SS[(a+ 1)� 1℄, LINK(q) H[a℄, H[a℄ 0,

p

0

 p." Then if H[A℄ 6= 0, set LINK(T[A℄) p

0

, p

0

 H[A℄, H[A℄ 0. Finally

set TRIG(o) p

0

and terminate su

essfully. (See Algorithm 5.2.5R.)

483. With the hints, 6.3 G� (
ompared to 1.3 G� for Algorithm C); without them,

124.1 G�. (The ratio is even more extreme, about 1 to 150, when n = 15. In that

ase Algorithm S runs in 2.1 T�,
ompared to 432 G� for Algorithm C. One might

guess that options need never be purged, when the \extreme" problem is being solved,

be
ause every possible option is present. But that's de�nitely false, even when n = 2!

After the option `1' is removed, option `1 2' has no support with respe
t to item 2.)

484. If SSTAMP be
omes 0, remove all hints from all trigger sta
ks. Then set SS[k℄ k

for 0 � k < s and SSTAMP s. (The values in SS are distin
t, and less than SSTAMP;

so they
an safely be used in future hints.)

486. Let left(o; x) mean \o x� 1; while ITM(o) > 0 set o o� 1."

J1. [Begin loop.℄ Do left(o; x

l

), and set p OACTIVE ACTIVE, x o+1, i ITM(x).

J2. [Is i ina
tive?℄ Set p

0

 POS(i). If p

0

� p, go to J4 (i has been puri�ed).

J3. [Dea
tivate i.℄ Set p p � 1, i

0

 ITEM[p℄, ITEM[p℄ i, ITEM[p

0

℄ i

0

,

POS(i) p, POS(i

0

) p

0

. If i � SECOND, set MATCH(i) CLR(x) (see answer 469).

J4. [Loop done?℄ Set x x+ 1 and i ITM(x). Return to J2 if i > 0.

J5. [Begin another loop.℄ Set ACTIVE p. (We'll blo
k the options 6= o from the lists

of all the newly ina
tive items, fITEM[k℄ j ACTIVE � k < OACTIVEg.)

J6. [Blo
k ITEM[p℄'s options.℄ Set i ITEM[p℄ and j i+SIZE(i)�1. If i � SECOND

and MATCH(i) 6= 0, purify i as follows: \While j � i, set o

0

 SET[j℄, j j�1, and

all opt out (o

0

) if CLR(o

0

) 6= MATCH(i)." Otherwise blo
k i's options 6= o as follows:

\While j � i, do left(o

0

; SET[j℄), set j j � 1, and
all opt out (o

0

) if o

0

6= o."

J7. [Loop done?℄ Set p p+ 1. Return to J6 if p < OACTIVE.

J8. [Dea
tivate o.℄ Set SIZE(ITEM[p℄) 0 for all p with ACTIVE � p < OACTIVE and

ITEM[p℄ < SECOND. Also set AGE(o) A.

January 13, 2024

198 ANSWERS TO EXERCISES 7.2.2.3

sparse-set representation

queen graph

knight graph

parity

multipli
ity

MCC problem

symmetry redu
tion

Weigel

It's important for j to be de
reasing, not in
reasing, in step J6, be
ause the options

being blo
ked move right as they leave the sets. The
alls on opt out (o

0

) will not fail,

be
ause o is supported. No
hange is needed to any trigger sta
k in step J8, be
ause

the a
tive option o being
hosen
ontains no a
tive primary items. Sizes are zeroed in

that step be
ause step O6 should hen
eforth
onsider option o to be ina
tive.

490. There's no
losed tour, hen
e no solution, when mn is odd. We shall write simply

`ij' for
ell (i; j). Let ij

Q

��� i

0

j

0

be the adja
en
y relation for the m � n queen graph,

namely \ij 6= i

0

j

0

and (i = i

0

or j = j

0

or i+ j = i

0

+ j

0

or i� j = i

0

� j

0

)"; similarly, let

ij

N

��� i

0

j

0

denote adja
en
y in the
orresponding knight graph, \(i� i

0

)

2

+(j�j

0

)

2

= 5."

Let A be the set fi

0

j

0

j i

0

j

0

Q

���ijg of
ells atta
ked by the queen. Say that
ell i

0

j

0

is red if

it has the same parity as the queen's
ell, that is, if (i

0

+j

0

+ i+j) mod 2 = 0; otherwise,

i

0

j

0

is white. We will assume that all red
ells have odd labels; the other
ase is similar.

Suppose A has a

1

red
ells and a

0

white
ells; usually a

1

> a

0

. Also suppose P has

p

1

odd numbers, p

0

even numbers. We must have p

1

� a

1

and p

0

� a

0

, be
ause P � A.

Let there be mn primary items i

0

j

0

and se
ondary items x

i

0

j

0

, for 0 � i

0

< m,

0 � j

0

< n; also mn primary items #k

0

and se
ondary items y

k

0

, for 1 � k

0

� mn.

The \
olor" of x

i

0

j

0

will be a label, and the \
olor" of y

k

0

will be a
ell. The options

are ` i

0

j

0

#k

0

x

i

0

j

0

:k

0

y

k

0

:i

0

j

0

, x

i

00

j

00

:k

00

y

k

00

:i

00

j

00

', for all i

0

, j

0

, k

0

, i

00

, j

00

, k

00

su
h that

i

0

j

0

N

��� i

00

j

00

and k

00

= 1 + (k

0

modmn) and OK(i

0

; j

0

; k

0

) and OK(i

00

; j

00

; k

00

) are true,

where OK(i

0

; j

0

; k

0

) means \0 � i

0

< m, 0 � j

0

< n, (i

0

+j

0

+k

0

+i+j) mod 2 = 1, and k

0

2

P) i

0

j

0

2 A." (The option says, \Step k

0

of the tour goes from
ell i

0

j

0

to
ell i

00

j

00

.")

We
an make this
onstru
tion mu
h more eÆ
ient when a

1

= p

1

, by simply

omitting all of the options in whi
h i

0

j

0

is red, i

0

j

0

2 A, and k

0

=2 P ; also those in whi
h

i

00

j

00

is red, i

00

j

00

2 A, and k

00

=2 P . Moreover, if a

1

� p

1

= t > 0, we
an retain those

options but append �

0

or �

00

to ea
h of them, where �

0

and �

00

are new primary items

of multipli
ity t. (This modi�
ation makes it an MCC problem, not XCC, if t > 1.)

491. Use the primary item i

0

j

0

only when i

0

j

0

is white, and #k

0

only when k

0

is odd;

use the se
ondary item x

i

0

j

0

only when i

0

j

0

is red, and y

k

0

only when k

0

is odd. Also

introdu
e new primary items i

0

j

0

~

and

~

i

0

j

0

for every red
ell i

0

j

0

. The options are now

`#k

0

i

0

j

0

~

x

i

0

j

0

:k

0

y

k

0

:i

0

j

0

i

00

j

00

x

i

000

j

000

:k

000

y

k

000

:i

000

j

000

~

i

000

j

000

' for all i

0

, j

0

, k

0

, i

00

, j

00

, k

00

,

i

000

, j

000

, k

000

su
h that i

0

j

0

N

��� i

00

j

00

, i

00

j

00

is white, i

00

j

00

N

��� i

000

j

000

, i

0

j

0

6= i

000

j

000

, k

0

is odd,

k

00

= k

0

+1, k

000

= 1+(k

00

modmn), OK(i

0

; j

0

; k

0

), OK(i

00

; j

00

; k

00

), and OK(i

000

; j

000

; k

000

).

492. By �xing the labels of those eight
ells, the

onstru
tion produ
es 10591 options on 200 + 100

items. Its 43 solutions are found by Algorithm S

with heuristi
s (MRV, WTD, FRB) in respe
tively

(343, 231, 1602) G�. (And the FC method FRB

y�

takes 1475 G�.) The solutions shown here mini-

mize and maximize the sum of atta
ked labels.

73347504713669661796

76057235020918976865

33740308377067169598

06778401101938996415

83320724850011146194

78258231202360391263

81307922598613629340

26532887562190434845

29805154895849464192

52278857505542914447

31346308613691141758

64073235900918599215

33308962376013165798

06658601101938991293

29020588850011949756

66872803202384394895

27046722837847965540

68737077242180435249

71267582794651544144

74697225768142455053

493. (a, b) Almost all parameter
ombinations (m;n; i; j) are unsatis�able, either be-

ause p

1

> a

1

or be
ause a small sear
h tree proves impossibility. (The
ases (5; 6; 2; 2)

and (6; 6; 2; 2) are MCC problems.) The only surviving
ombinations with m � n are

(6; 7; 2; 3): 2 � 52 solutions, 3.6 G�; (7; 8; 2; 2): 16 solutions, 9.6 G�; (7; 8; 2; 3): 1206

solutions, 597.1 G�; (7; 8; 3; 3): 2 �989 solutions, 1450.7 G�; (7; 10; 2; 4): 491 solutions,

1338.4 G�; (8; 8; 3; 3): 2 � 688 solutions, 2154.8 G�; (8; 9; 3; 4): 2 � 6010 solutions,

33.9 T�; and two really hard
ases (9; 10; 4; 4) and (10; 10; 4; 4). [All runtimes are from

DC-WTD, without symmetry redu
tion. This problem was originally posed by Peter

Weigel, who was able to show after massive
al
ulations that the 9�10
ase has exa
tly

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 199

opt(x; x

0

)

dea
tivate(i)

multipli
ities

for
ed

2 � 1658756 solutions. He has also found many thousands of solutions to the 10 � 10

problem| for whi
h he estimates that, with methods that are
urrently known, about

100 years of
omputation will be needed to obtain a
omplete
ount.℄

180906393437

052817360740

101908333835

290427164132

201130012415

032613223142

122102251423

0512035631285154

4401061352553027

1104450229325350

2043160714392633

1710194623364938

4221081540473425

0918412235243748

69180138672253126510

36396817021366095255

19703704210823541164

40352031160314455651

27300542072459486346

34412825321544615057

29263306436049584762

5346210255482314

2001544722135649

4552191203501524

1811645116053257

6344170431582506

1041366138072833

4362390835305926

4009423760273429

1063361972653443

3720096435447166

6211180106674233

2138050817704568

1261023904073241

5522591631406946

6013560352493027

2354155825284750

1457245348512629

23202578591057766114

26792209187760135675

21241980115817741562

36278203080512635255

83023706816653167364

28358401040740655451

85883138414867704572

34299087323946435069

89863330474249687144

495. Besides opt(x; x

0

), the following adaptation of Algorithm B uses the subroutine

dea
tivate(i) =

�

ACTIVE ACTIVE� 1, i

000

 ITEM[ACTIVE℄, k POS(i);

ITEM[ACTIVE℄ i, ITEM[k℄ i

000

, POS(i) ACTIVE, POS(i

000

) k.

The elements of its TRAIL array are triplets, not pairs.

M1. [Initialize.℄ Set the problem up in memory as in step B1 of answer 455. Also

insert additional entries BOUND(i) and SLACK(i) into the SET array for ea
h pri-

mary item i, initialized to v

i

and v

i

�u

i

when i's given multipli
ities are [u

i

: : v

i

℄.

Terminate if SIZE(i) < u

i

for any i. Dea
tivate any items for whi
h SIZE(i) = 0.

M2. [Not for
ed?℄ If f = 0, go to M3. Otherwise set f f � 1 and i FORCE[f℄.

Repeat step M2 if POS(i) � ACTIVE; otherwise set y

s

 t, � 1, and go to M6.

M3. [Choose i.℄ Set � 1. For 0 � k < ACTIVE, do the following steps if ITEM[k℄ <

SECOND: Set i

0

 ITEM[k℄, s min(SLACK(i

0

); BOUND(i

0

)), � SIZE(i

0

) + 1 +

s� BOUND(i

0

). If � = 1, set FORCE[f℄ i

0

and f f +1, for 1 � j � SIZE(i

0

).

(In that
ase, every remaining option of i

0

is for
ed.) Otherwise, if � � � and

(� < � or (s � � and (s < � or (SIZE(i

0

) � �

0

and (SIZE(i

0

) > �

0

or i

0

< i))))),

set � �, i i

0

, � s, and �

0

 SIZE(i

0

). (See exer
ise 7.2.2.1{166.)

M4. [For
ed?℄ If f > 0, set f f � 1, i FORCE[f℄, � 1, y

s

 t, and go to M6.

Otherwise if � =1, set y

s

 t and go to M16.

M5. [Trail the sizes.℄ Terminate with trail over
ow if t+ACTIVE ex
eeds the maximum

available TRAIL size. Otherwise set TRAIL[t+ k℄ (ITEM[k℄; SIZE(ITEM[k℄);

BOUND(ITEM[k℄)) for 0 � k < ACTIVE, omitting BOUND if ITEM[k℄ � SECOND.

Then set y

s

 t and t t+ ACTIVE.

M6. [Try i's �rst option.℄ Set d

l

 �, x

l

 SET[i℄, and do opt(x; x

l

). (We'll try to

extend the
urrent partial solution by in
luding the option that starts at x.)

M7. [Commit ITM(x).℄ Set i ITM(x), i

0

 LOC(x), k POS(i). If k � ACTIVE, go

to M10 (the se
ondary item i has been puri�ed). Otherwise, if i < SECOND, set

BOUND(i) BOUND(i) � 1, and go to M9 if BOUND(i) > 0.

M8. [Cover i.℄ (Now i � SECOND or BOUND(i) = 0.) Do step M13. Then dea
tivate(i)

and go to M10.

M9. [Hide option x.℄ Set x

00

 x and do step M15.

M10. [Advan
e x.℄ Set x x+ 1. Return to M7 if ITM(x) > 0.

M11. [Enter new stage.℄ Set s s+ 1.

M12. [Enter new level.℄ Set l l+ 1 and LS[s℄ l. Terminate with level over
ow if

l > T (there's no room to store x

l

); otherwise return to M2.

January 13, 2024

200 ANSWERS TO EXERCISES 7.2.2.3

siblings

subroutines

Symmetry was broken

bipair

Mu~niz

polyomino piling

piling

M13. [Hide in
ompatible options.℄ For j i+SIZE(i)�1 down to i, do the following

if j 6= i

0

: Set x

0

 SET[j℄, and do step M14 if CLR(x) = 0 or CLR(x

0

) 6= CLR(x).

M14. [Visit siblings of x

0

.℄ Do opt(x

00

; x

0

). Then while ITM(x

00

) > 0, do step M15, and

set x

00

 x

00

+ 1.

M15. [Hide option x

00

.℄ Set i

00

 ITM(x

00

) and j

00

 LOC(x

00

). If j

00

� SECOND and

POS(i

00

) � ACTIVE, do nothing (item i

00

has already been puri�ed). Otherwise

set s

0

 SIZE(i

00

) � 1. If j

00

< SECOND and s

0

< BOUND(i

00

) � SLACK(i

00

), set

f 0 and go to M18 (the a
tive primary item i

00

needs x

00

to attain its lower

bound). Otherwise, if j

00

< SECOND and s

0

= 0, dea
tivate(i

00

) (whi
h has lost

its last option). Otherwise, if s

0

> 0, set x

000

 SET[i

00

+ s

0

℄, SIZE(i

00

) s

0

,

SET[i

00

+ s

0

℄ x

00

, SET[j

00

℄ x

000

, LOC(x

00

) i

00

+ s

0

, LOC(x

000

) j

00

.

M16. [Visit a solution.℄ Visit the solution that's spe
i�ed by nodes x

LS[j℄

for 0�j<s.

M17. [Ba
k up.℄ Terminate if s = 0. Otherwise set t y

s

, s s� 1, l LS[s℄.

M18. [Purge x

l

.℄ If d

l

= 1, go to M17. Otherwise, for y

s

� k < t, set SIZE(i

0

) s

0

if TRAIL[k℄ = (i

0

; s

0

; b

0

); also set BOUND(i

0

) b

0

if i

0

< SECOND. Then set

ACTIVE t� y

s

, t y

s

, x

0

 x

l

, d

l

 1, and do step M14. Return to M12.

(As before, steps M13, M14, and M15 are subroutines; and subroutine M15 might jump

dire
tly to M18 instead of returning to its
aller.)

496. Begin step M3 with � 1 and �

0

 1, where � is an integer and �

0

is a
oating

point number. Later in that step, if � > 1, set �

0

 �=w, where w = WT(i

0

) for WTD,

w = FR(i

0

) for FRB. Then if �

0

� �

0

and (�

0

< �

0

or (s � � and (s < � or (SIZE(i

0

) � �

0

and (SIZE(i

0

) > �

0

or i

0

< i))))), set �

0

 �

0

, � �, i i

0

, � s, and �

0

 SIZE(i

0

).

498. Assume that m > 1 and n > 1. Let # be a primary item of multipli
ity k; also

let xy be a primary item of multipli
ity [1 : : k℄, for 0 � x < m and 0 � y < n. If d is

odd, there are mn options, for 0 � x

0

< m and 0 � y

0

< n,
onsisting of # together

with fxy j 0 � x < m; 0 � y < n; (x� x

0

)

2

+ (y � y

0

)

2

< d

2

=4g. If d is even, there

are (m� 1)(n � 1) options, for 1 � x

0

< m and 1 � y

0

< n,
onsisting of # together

with fxy j 0 � x < m; 0 � y < n; (x� x

0

)(x� x

0

+ 1) + (y� y

0

)(y� y

0

+ 1) < d

2

=4g.

499. The solutions are the ways to pile su
h polyominoes into that shape, using at

least u

p

and at most v

p

opies of pie
e p, so that at least u

xy

and at most v

xy

of those

pie
es o

upy
ell (x; y).

Problem E in the text (see (134)) is the spe
ial
ase where the pie
es are simply

the twelve pentominoes, with u

p

= v

p

= 1, and the shape is simply a 7 � 7 square,

with u

xy

= 1 and v

xy

= 1 + [x=0 or y=0 or x=6 or y=6℄ for 0 � x; y < 7.

(Symmetry was broken by restri
ting pie
e P

to one of its eight orientations.) Two of the

10,343,858 solutions are shown here: The most

interesting one doubles up only on
ells that

are
orners or adja
ent to
orners. (It's unique,

ex
ept for re
e
ting the RW bipair.) The other

is one of only seven that have X in the
enter,

and double up only above the diagonal.

V VX V Y Y PY PY

VX X X W Y P OP

V X W W R P O

T W W R R R O

T T T R Z Z O

QT S S S U Z OU

QS QS Q Q U UZ UZ

P PY YZ YZ VY VW VW

P P Z Y W W OV

P Z Z X W S OV

Q Q X X X S OS

Q U U X R T OS

Q U R R R T OS

Q U U R T T T

(A. O. Mu~niz's post for 2 May 2023 in https://puzzlezapper.
om/blog/ pro-

poses the name \polyomino piling" for
ases where all u

xy

> 0 and some v

xy

> 1.)

501. Assume that there's a se
ondary item for ea
h variable, and that `x = a' is

represented by options that
ontain `x:a'. Then the example
an be handled by

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 201

Histori
al notes

Loyd

Pahl

OEIS

ollinear

ba
ktra
k

or
hard pattern

unique

MCC problem

unique

introdu
ing a new primary item #, with multipli
ity [0 : : 2℄; we simply in
lude #

in the options that for
e x = a, y = b, and z =
.

This
onstru
tion fails, however, if some option
ontains more than one of the

olorings x:a, y:b, z:
, be
ause it requires us to in
lude # more than on
e in that option.

We
an omit any option where all three appear. And we
an add `+:1' to options where

two of them appear, where + is a new se
ondary item. Then the options `! # +:1' and

`! +:0', where ! is a new primary item, �nish the job.

In general, a similar s
heme will en
ode `x

1

6= a

1

or � � � or x

k

6= a

k

', using a new

primary item # whose multipli
ity is [0 : : k � 1℄.

502. (This is essentially an appli
ation of the idea in the previous exer
ise.) If 0 < p < q

and p ? q, the relevant lines `y = (p=q)x+
onstant' of slope p=q
an be enumerated

by
onsidering the lower left points at whi
h they interse
t an n � n grid, namely

f(x; y) j 0 � x < n � 2q; 0 � y < n � 2pg n f(x; y) j x � q; y � pg. Also, the lines

of slope s are in one-to-one
orresponden
e with lines of slopes 1=s, �s, and �1=s.

Thus we
an build a table of N(n) triples (�

i

; �

i

;

i

), where line i is
hara
terized by

`�

i

x+�

i

y =

i

'. (We have (N(4); : : : ; N(12)) = (0, 12, 32, 76, 136, 252, 356, 572, 836).)

Start with the items r

i

,

j

, a

s

, b

d

and the n

2

options of the n queens problem

(see 7.2.2.1{(23)). Add N(n) new primary items #

k

, for 0 � k < N(n), ea
h with

multipli
ity [0 : : 2℄. Then append to option `r

i

j

a

i+j

, b

i�j

' every item #

t

for whi
h

�

t

i+ �

t

j equals

t

in the table of relevant lines.

Histori
al notes: Answer 7.1.4{241(a) pointed out Sam Loyd's observation in

1896 that this problem is solvable when n = 8. Solutions for larger n were
ounted by

F. Pahl, who posted the results to math.sta
kex
hange in answer to question 4642059

(February 2023). The asymptoti
 behavior is
urrently unknown|not even whether

solutions exist for in�nitely many n. See OEIS sequen
e A365437.

503. Yes, that would be qui
k. It's well known that points f(x

1

; y

1

); (x

2

; y

2

); (x

3

; y

3

)g

are
ollinear if and only if x

1

(y

2

�y

3

)+x

2

(y

3

�y

1

)+x

3

(y

1

�y

2

) = 0. This test already

rules out more than 3.5 million
ases after examining at most the �rst �ve rows. [The

fastest way to visit all solutions is probably a
ustomized ba
ktra
k program. But the

MCC te
hnology would be helpful if additional
onstraints were imposed.℄

504. This beautiful \or
hard pattern" (m = 17) is unique, ex
ept for

rotation and re
e
tion. It was dis
overed when studying the N(16) = 2668

relevant lines of answer 502. (In
identally, the line x+2y = 4 is part of 1172

solutions that
ontain all three of its points; at the other extreme, the line

x+2y = 14 is part of 226825 solutions that
ontain � 3 of its eight points.)

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

506. Constru
t an MCC problem with primary items R

ik

and C

jk

of multipli
ity k,

for 0 � i; j < 10 and 1 � k � 4; also se
ondary items ijk, whi
h are essentially Boolean

variables whose
olor is [
ell ij is
olored k℄; also primary items ij. There are 400 op-

tions, `ij R

ik

C

jk

ij1:[k=1℄ ij2:[k=2℄ ij3:[k=3℄ ij4:[k=4℄'; they enfor
e (i) and (ii).

Also introdu
e primary items #ij, whi
h signify that
ell ij belongs to a poly-

omino whose size mat
hes its
olor. Every potential pla
ement of a
-omino has a

orresponding option that in
ludes
 of these sharp items. For example,

the solution shown makes use of the options `#06 051:0 061:1 071:0 161:0';

`#03 #13 022:0 032:1 042:0 122:0 132:1 142:0 232:0'; `#02 #11 #12 013:0

023:1 033:0 103:0 113:1 123:1 133:0 213:0 223:0'; `#00 #01 #10 #20 004:1

014:1 024:0 104:1 114:0 204:1 214:0 304:0'.

It turns out that Tullis's tapestry is unique: There's only one solution,

ex
ept for rotation and re
e
tion(!).

4432441332

4332414432

4243433421

1243343424

2344142334

2331442344

4423324413

3424324143

3414234243

3144233244

January 13, 2024

202 ANSWERS TO EXERCISES 7.2.2.3

queens-and-knights problem

knight graph

Weigel

blank (unmat
hable)
olor

unmat
hable

WTD heuristi

FRB heuristi

tilted square

Histori
al notes

ITA Software

Hui

unit d-ve
tor

507. (Of
ourse this is quite di�erent from the queens-and-knights problem of exer
ise

459.) Let Q and S be primary items with multipli
ities q and s, respe
tively. Also let r

i

,

j

, a

d

, b

d

, and s

ij

be se
ondary items, for 0 � i < m, 0 � j < n, and 0 � d < m+n�1.

There are two options for every
ell ij of the board, one for queen pla
ement and one

for knight pla
ement, namely

`Q r

i

j

a

i+j

b

i+n�1�j

S

fs

kl

:0 j ij���kl in the m� n knight graphg';

`S s

ij

r

i

:0

j

:0 a

i+j

:0 b

i+n�1�j

:0

S

fs

kl

:0 j ij���kl in the m� n knight graphg'.

The tri
k here, due to Peter Weigel, is to give
olor 0 to some se
ondary items while

giving a blank (unmat
hable)
olor to others, while noting that queens
an be a knight's

move apart and knights
an be a queen's move apart. (See exer
ise 7.2.2.1{169.)

508. A bevy of q = 1, : : : , 7 queens
an
oexist respe
tively with (22, 15, 11, 7, 5, 3, 1)

knights in respe
tively (12, 40, 56, 328, 16, 40, 104) ways, ignoring symmetry; and no

additional knights
an be added. For example, here's a maximum solution for ea
h
ase:

q

nnnnn

n n n

n n n

n n n n

n n n

n n n n

q

q

n n n

n n n

n n n

n n

nnnn

q

q

q

nn nn

n n

n n

n n

n

q

q

q

q

n n

n

nn

nn

q

q

q

q

q

n

n nn

n

q

q

q

q

q

q

n

n n

q

q

q

q

q

q

q

n

The dan
ing links te
hnology of Algorithm 7.2.2.1M handles ea
h of these 14

problems in fewer than 301 M�. Algorithm M is faster yet|at most 183 M�, when

(q; s) = (2; 15). But theWTD heuristi
 makes it worse, when q is small: More than 1 G�

when q = 1. And the FRB heuristi
 is
hampion in all
ases with q < 5; for instan
e, it

needs only 33 M� when (q; s) = (3; 12),
ompared to 186 M� by Algorithm 7.2.2.1M.

Indeed, the FRB heuristi
 turns out to be dramati
ally superior on larger instan
es

of this problem. For example, it needs only 991 gigamems to �nd all solutions when

(m;n; q; s) = (12; 15; 5; 38); the other three methods spend more

than 49 T� on this problem before even
ompleting the �rst of

143 bran
hes at the root of the sear
h tree! (In
identally, all 8

solutions are obtained from the one shown by re
e
ting the board

and-or by using the \tilted square" tri
k of exer
ise 7.2.2{11. The

maximum number of knights for (m;n; q) = (12; n; 5) and n � 12

turns out to be 25 + b

9

2

(n� 12)
.)

q

q

q

q

q

nnnnn n

nnnnnnn

n n n n

n n n n n n

n n n n

n n n n n n

n n n n n

Histori
al notes: This problem was introdu
ed by ITA Software in spring 2002 as

a pre-interview test question, in the
ase m = n = 8 and q = s, and popularized in 2004

by Roger Hui (see http://
ode.jsoftware.
om/wiki/Essays/Queens and Knights).

590. In ea
h CSA below, I = fq

0

g and Q is impli
it.

(a)
 = fq

1

; q

3

g; q

r

7! (� a

�

? q

(r+a) mod 5

: q

r

).

(b) Clearly n � 2d. Let e

a

= 0

a

10

d�1�a

be the unit d-ve
tor with 1 in
o-

ordinate a. Let
 = fq(a; p)g, over all a 2 [0 : : d) and ternary d-ve
tors p with

p

0

+ � � � + p

d�1

= n. Use the transitions q

0

7! (� a

�

? q(a; e

a

): q

0

); q(a; p) 7!

R

a;p

; (� b

�

? q(b; p+ e

b

): q(a; p)), where R

a;p

= ; if p

a

6= 2; otherwise R

a;p

= fv

1

n a,

: : : , v

n

n ag ex
ludes a from all unassigned domains.

(
) Same as (b), but with
 restri
ted to the

�

d

n=2

�

ve
tors p with no 1s.

(d) Let
 = fq(n; a; b) j 0 � a < d; 0 � b < 2g. Use transitions q

0

7! R; (v

1

0? q(1; 0; 0): q

0

) and q(j; a; b) 7! R(j; a; b); (v

j

 a

0�

? (a

0

= a+1? q(j+1; a+1; 0): q(j+1;

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 203

partial assignment

?

symmetry is broken

palindromes

Duval

dead

transposition

entral symmetry

a; 1)): q(j; a; b)), where R = fv

j

n a j 1 � j � n; j � a < dg; R(j; a; 0) = ;; and

R(j; a; 1) = fv

j+1

n a+ 2; v

j+2

n a+ 3; : : : ; v

n

n a+ (n� j) + 1g.

(e) Let S

j

= (�1)

v

1

+ � � �+ (�1)

v

j

. A ne
essary and suÆ
ient
ondition is that

S

j

� 0 for 1 � j < n, and S

n

= 0. One solution is therefore to enter state q(j; S

j

) after

assigning v

1

through v

j

, with
 = fq(n; 0)g: q

0

7! v

1

n 1; v

n

n 0; (v

1

 0? q(1; 1): q

0

);

q(j; s) 7! (v

j+1

 a

�

? q(j + 1; s+ (�1)

a

): q(j; s)), for 1 � j < n and 0 � s � j.

[These
onstru
tions
an often be signi�
antly improved by redu
ing the domains

further. For example, if d = 10 and n = 12 in (
), R

0;1111120000

ould ex
lude f6; 7; 8; 9g

from the domains of all �ve unassigned variables. In part (d) the underlying CSP might

�nd it mu
h better to assign variables in a di�erent order; if then a is in the domain D

k

of v

k

, we must have a � 1 2 D

1

[� � � [D

k�1

. In part (e) we
ould assign values

su

essively to v

1

, v

n

, v

2

, v

n�1

, and so on. We
ould even allow the CSP to assign

variables in order of smallest domain; a partial assignment in whi
h s variables have

been assigned to 0 and t variables to 1 is then feasible if and only if we get a nested

ve
tor by assigning the leftmost n=2� s unassigned variables to 0 and the others to 1.℄

591. Let Q be the set of all states q(j; a) or q

0

(j; a), for j � 1 and 0 � a < d, together

with the spe
ial state ? that is rea
hed when \symmetry is broken." Let I = fq(1; 0)g.

Use the transitions q(j; a) 7! (v

j

 a? q

0

(j; a): q(j; a + 1)); q

0

(j; a) 7! v

n+1�j

n 0, : : : ,

v

n+1�j

n a � 1, (v

n+1�j

 a? q(j + 1; 0): ?); ? 7! (� �? ?: ?). (State q

0

(j; a)

makes no restri
tions when a = 0.) We
an let
 = Q; but the a
tual �nal states are

q(n=2 + 1; 0) or q

0

((n+ 1)=2; a) for palindromi
 solutions, ? for the others.

592. The following CSA uses Duval's algorithm (see answer 7.2.1.1{106) to produ
e

only the solutions that are powers of a prime string: Let I = fq

0

g, Q = I [fq(j; k) j

1 � j < k � n + 1g [f#g, and
 = fq(j; n + 1) j j divides ng. (State # is \dead.")

Use the transitions q

0

7! (v

1

 �? q(1; 2): q

0

) and

q(j; k) 7! (v

k

 a

�

? (a < v

k�j

? #: a = v

k�j

? q(j; k + 1): q(k; k + 1))):

[This method is attra
tive, but additional pruning is often possible. For example, if

D

k

is the kth domain, we
an remove from D

1

any element > maxD

k

, for any k > 1.℄

593. (a) Yes, but only in spe
ial
ases. The middle row, when i = �{ (hen
e i = (n�1)=2)

is spe
ial; that's the only time we
an have a

i

= �

i

. And we
learly have a

i

= �a

i

if and

only if a

i

= (n � 1)=2. Also a

i

=

�

d

i

if and only if R

i

= C

i

; that
an happen without

atta
king queens if and only if R

i

= i = C

i

. Similarly, a

i

=

�

b

i

o

urs if and only if

R

i

= �{ and C

�{

= i. Cy
li
 symmetry dispenses with the other
ases, like b

i

= �

i

.

(b) For example, transposition (i; j)$ (j; i) swaps R

i

$ C

i

; thus (a

i

; b

i

;

i

; d

i

)$

(

�

d

i

; �

i

;

�

b

i

; �a

i

). In general, re
e
tion
omplements the set fa

i

; b

i

;

i

; d

i

g.

(
) Ea
h tuple spawns seven others: (b

n

0

;

n

0

; d

n

0

; a

n

0

; : : : ; b

n�1

;

n�1

; d

n�1

; a

n�1

);

(

n

0

; d

n

0

; a

n

0

; b

n

0

; : : : ;

n�1

; d

n�1

; a

n�1

; b

n�1

); (d

n

0

; a

n

0

; b

n

0

;

n

0

; : : :; d

n�1

, a

n�1

, b

n�1

,

n�1

); (

�

d

n

0

; �

n

0

;

�

b

n

0

; �a

n

0

; : : : ;

�

d

n�1

; �

n�1

;

�

b

n�1

; �a

n�1

); and so on. Thus the eight tuples

for the �rst solution are (2, 7, 7, 2; 4, 4, 2, 5; 6, 0, 0, 1; 3, 3, 6, 6); (7, 7, 2, 2; 4, 2, 5, 4; 0,

0, 1, 6; 3, 6, 6, 3); (7, 2, 2, 7; 2, 5, 4, 4; 0, 1, 6, 0; 6, 6, 3, 3); (2, 2, 7, 7; 5, 4, 4, 2; 1, 6, 0,

0; 6, 3, 3, 6); (5, 0, 0, 5; 2, 5, 3, 3; 6, 7, 7, 1; 1, 1, 4, 4); (0, 0, 5, 5; 5, 3, 3, 2; 7, 7, 1, 6; 1, 4,

4, 1); (0, 5, 5, 0; 3, 3, 2, 5; 7, 1, 6, 7; 4, 4, 1, 1); (5, 5, 0, 0; 3, 2, 5, 3; 1, 6, 7, 7; 4, 1, 1, 4).

The se
ond solution has
entral symmetry, so it has only four distin
t tuples: (1,

7, 1, 7; 7, 1, 7, 1; 5, 4, 5, 4; 3, 2, 3, 2); (7, 1, 7, 1; 1, 7, 1, 7; 4, 5, 4, 5; 2, 3, 2, 3); (0, 6,

0, 6; 6, 0, 6, 0; 3, 2, 3, 2; 5, 4, 5, 4); (6, 0, 6, 0; 0, 6, 0, 6; 2, 3, 2, 3; 4, 5, 4, 5).

The other two solutions ea
h have eight tuples, of whi
h the lexi
ographi
ally

least turn out to be (0, 1, 8, 7; 6, 3, 5, 1; 1, 8, 1, 3; 5, 6, 4, 6; 2, 4, 0, 8) and (5, 5, 5,

5; 1, 7, 1, 7; 4, 1, 4, 2; 7, 10, 10, 10; 10, 6, 7, 6; 2, 2, 2, 1).

January 13, 2024

204 ANSWERS TO EXERCISES 7.2.2.3

one-to-one fun
tion

symmetry has been broken

Kot�e�sove

leaper

(d) Indeed, if f(x) is any one-to-one fun
tion that maps every solution x of some

ombinatorial problem into a tuple, the x's for whi
h f(x) is lexi
ographi
ally least,

over all solutions equivalent to x by any de�nition of equivalen
e, are
anoni
al.

(e) True: min(a

n

0

; �a

n

0

) < n

0

; and we
an't have a

n

0

= b

n

0

=

n

0

= d

n

0

= n

0

� 1.

(f) In the following, `ij?' is shorthand for `R

i

 j?' or `C

j

 i?' in exer
ise 590;

it means that we either pla
e a queen in
ell (i; j) or forbid that
ell. Similarly, `not ij'

is shorthand for `R

i

6= j, C

j

6= i'; this restri
tion is va
uous unless 0 � i; j < n. States

q

k

arise when we potentially have 4-fold symmetry; states r

k

arise when we potentially

have 2-fold symmetry; and states s

k

are intermediary. After symmetry has been broken

we rea
h state ?, whi
h is the wild
ard state `? 7! (� �? ?: ?)' as in answer 591.

q

1

(i; j) 7! R(i; j); (ij? q

2

(i; j): q

1

(i; j+1));

q

2

(i; j) 7! (j�{? q

3

(i; j): s

2

(i; j));

q

3

(i; j) 7! (�{�|? q

4

(i; j): s

4

(i; j));

q

4

(i; j) 7! (�|i? q

1

(i+1; 0): ?);

r

1

(i; j) 7! not �{j�1; (ij? r

2

(i; j): r

1

(i; j+1));

r

2

(i; j) 7! (�{�|? r

3

(i; 0): ?);

r

3

(i; j) 7! not j�1i; (j�{? r

4

(i; j): r

3

(i; j+1));

r

4

(i; j) 7! (�|i? r

1

(i+1; 0): ?);

s

2

(i; j) 7! not �|i; (�{�|? s

3

(i; j+1): ?); s

3

(i; j) 7! not j�1i; (j�{? r

4

(i; j): s

3

(i; j+1));

s

4

(i; j) 7! not �|i;?; q

1

(i; n) = r

1

(i; n) = r

3

(i; n) = s

3

(i; n) = ?. Here R(i; j) stands for

the restri
tions `not (j�1)�{, not �{j�1, not j�1i', as well as four more when i = dn=2e:

`not �{j, not ji, not i�|, not �|�{'. These rules suÆ
e when n = 2n

0

and I = fq

1

(n

0

; 0)g.

If n = 2n

0

+ 1, let I = fs

1

(0)g and introdu
e n

0

+ 1 new states s

1

(j), where we

have s

1

(0) 7! not n

0

j and not jn

0

for n

0

< j < n, (n

0

0? ?: s

1

(1)); s

1

(j) 7! not j�1n

0

,

(n

0

j? ?: s

1

(j+1)) for 0 < j < n

0

; and s

1

(n

0

) 7! (n

0

n

0

? q

1

(n

0

+1; 0): ?).

The �nal state is (q

1

(n; 0); r

1

(n; 0);?) for solutions with (4; 2; 1)-fold symmetry.

594. (14, 14, 14, 14; 16, 16, 16, 16; 31, 31, 31, 31; 29, 29, 29, 29; 26, 27, 27, 27; 24,

24, 6, 24; 3, 1, 1, 6; 27, 3, 3, 3; 10, 30, 10, 10; 22, 6, 25, 21; 5, 26, 30, 11; 11, 11, 11,

8; 23, 22, 23, 23; 12, 12, 12, 12; 7, 5, 22, 22; 13, 13, 13, 13). [Pla
e twelve queens in

extreme positions, and redu
e domains a

ordingly. Then start the CSA of answer 593

in state q

1

(20; 26); only six
anoni
al solutions
ontinue with a

20

= 26 and b

20

= 27.

More than 32 queens
ould, of
ourse, be treated similarly.℄

595. With

b

Q(n) = 8

b

Q

a

(n)+4

b

Q

s

(n)+2

b

Q

d

(n) solutions (see answer 7.2.2.1{24), we have

n = 10 11 12 13 14 15 16 17 18 19 20

b

Q

a

(n) = 0 5 18 231 642 4040 25320 166201 1115373 8060958 61981118

b

Q

s

(n) = 1 1 2 6 11 49 79 245 498 1192 3798

b

Q

d

(n) = 0 0 2 2 0 0 12 17 0 0 60

b

Q(n) = 4 44 156 1876 5180 32516 202900 1330622 8924976 64492432 495864256

[See x12.2 of V. Kot�e�sove
's book Non-Atta
king Chess Pie
es (online sin
e 2011)

for detailed information about pie
es that
ombine a queen with a leaper.℄

600. True. It will set R

i

0

j

 O when k = i, and R

ij

0

 O when k = j; then R

i

0

j

0

 O.

601. (a) Let X = (

0 1

1 0

). When k = 1, R

52

 I. Then when k = 2, R

13

 I, R

53

 X.

Then when k = 3, we set R

14

 X, R

24

 I, R

54

 I. Then when k = 4, R

15

 I,

R

25

 X, R

35

 I, R

55

 O. Soon all are O, by exer
ise 600.

(b) These relations say that x

j+1

= (x

j

+1) mod 3 for 1 � j < 5; but x

5

x

1

an be

not only 01, 12, or 20, but also 02. However, it's pe
uliar be
ause (for example) R

21

=

(

1 1 1

1 1 1

1 1 1

) puts no
onstraint on x

1

x

2

! The
onstraints begin to propagate as in (a): When

k = 1, R

52

 (

1 0 1

1 0 0

0 1 0

); then when k = 2, R

13

 (

0 0 1

1 0 0

0 1 0

), R

53

 (

1 1 0

0 1 0

0 0 1

); et
.; R

55

= (

1 0 0

0 0 0

0 0 0

)

January 13, 2024

7.2.2.3 ANSWERS TO EXERCISES 205

after k = 4, meaning that x

5

must be 0. A lot happens when k = 5, basi
ally for
ing

x

1

x

2

x

3

x

4

x

5

= 20120 and allowing only one possibility for x

i

x

j

when i � j.

The �rst round ends with R

21

= (

0 1 1

0 0 0

0 0 0

), R

31

= (

0 0 0

0 1 1

0 0 0

), et
. But round 2 \puri�es"

ea
h R

ij

with i > j so that only one 1 remains, thus a
hieving a perfe
tly stable state.

(
) Nothing
hanges. In fa
t, there will be no
hange in any s
enario where

R

kk

= I for all k and R

ik

R

kj

is all 1s whenever i 6= k 6= j.

(d) When k = 2, R

13

 (

1 0 0

0 0 1

) and R

33

 (

1 0 0

0 0 0

0 0 1

). Then R

31

 (

1 1

0 0

1 1

), R

32

 (

1 1

0 0

1 1

)

when k = 3. No further
hanges o

ur; hen
e the �nal state is
uriously asymmetri
,

with R

13

6= R

T

31

, R

23

6= R

T

32

, and R

21

still equal to (

1 1

1 1

). (Don't ask what that means.)

602. It's true for r = 1; so assume that r > 1. Let k = maxfk

1

; : : : ; k

r�1

g, and let

(p; q) be minimum and maximum with k

p

= k

q

= k. (Possibly p = q.) By (200) there's

a value x su
h that (s; x) 2 R

ik

, (x; x) 2 R

kk

, (x; t) 2 R

kj

. Hen
e by indu
tion on r we

an �nd suitable x

0

: : : x

p

with x

0

= s and x

p

= x, suitable x

p

: : : x

q

with x

p

= x

q

= x,

and suitable x

q

: : : x

r

with x

q

= x and x

r

= t.

999. : : :

January 13, 2024

LIFEAPPENDIX E

ANSWERS TO PUZZLES IN THE ANSWERS

9

7

143

15

52

1116

1 17

180

(see answer 93(b))

4144

4414

1434

2233

(i)

4424

4424

1344

3322

(ii)

4441

4224

2444

2122

(iii)

4144

4454

2454

2555

(iv)

3122

3441

3144

1221

(xi)

4441

2433

2313

3322

(xii)

(see answer 414)

No intuitive answers, please.

| LIFE INTERNATIONAL (17 De
ember 1962)

206

January 13, 2024

HUNTINDEX AND GLOSSARY

Index-making has been held to be the driest

as well as lowest spe
ies of writing.

We shall not dispute the humbleness of it;

but the task need not be so very dry.

| LEIGH HUNT, in The Indi
ator (1819)

When an index entry refers to a page
ontaining a relevant exer
ise, see also the answer to

that exer
ise for further information. An answer page is not indexed here unless it refers to a

topi
 not in
luded in the statement of the exer
ise.

Barry, David M
Alister (= Dave), iii.

AAAI: Ameri
an Asso
iation for Arti�
ial

Intelligen
e (founded in 1979);

Asso
iation for the Advan
ement of

Arti�
ial Intelligen
e (sin
e 2007).

ECAI : European Conferen
e on Arti�
ial

Intelligen
e (1980{), formerly
alled

Arti�
ial Intelligen
e and Simulation

of Behavior (1974{1978).

EJOR: European Journal of Operational

Resear
h (1977{).

Instantiations, see Assignments.

LIPI
s: Leibniz International Pro
eedings

in Informati
s (2008{).

Relation: A property that holds for
ertain

tuples of elements.

Tuple: A sequen
e (x

1

; : : : ; x

k

) of elements,

sometimes written simply x

1

: : : x

k

.

Nothing else is indexed yet (sorry).

Preliminary notes for indexing appear in the

upper right
orner of most pages.

If I've mentioned somebody's name and

forgotten to make su
h an index note,

it's an error (worth $2.56).

207

