
AutoSteper
Liu Mingkang (刘明康)

2023.03.27
V1.3.8

Introduction
Install

Enumeration
Main project

AutoSteper
step
random
base

Engineering
restart&proceed
error handling

Optimizer
machine and resource
opt mode and parameter

Generator
Checker
Blacklist
Pre-scan
Post-analysis

refine
isomorphism test

simple_test_iso
simple_log_relatives
strict_scatter_relatives

cook_disordered
find_SWR
get_binding_e
Path_Parser

Reference

Fig 1. Overview of the stepwise model.

Introduction
AutoSteper is a python package to simulate and analyze the stepwise reaction in chemistry.
Currently, it well supports the exohedral fullerene systems

. Our lab is working intensively to cover more
scenarios. Extensions and issues are greatly appreciated.

The stepwise reaction of exohedral fullerenes originated from the radical-addition theory, 1 in
which the functionalization of fullerenes is described to be a radical attack behavior. Functional
groups attack the carbon cage one by one, and the energetically favored adducts could be
isolated.

AutoSteper is designed to simulate this procedure in a fully automated fashion (denoted as
growth simulation). It consists of 3 modules, namely, the generator, the optimizer, and the
checker. As shown in Fig 1, the generator is designed to enumerate addition patterns and build
quasi-equilibrium molecules. The optimizer is in charge of optimizing these molecules with 3rd
party software. The checker is to ensure the optimized molecule maintains an intact structure.

Despite the simulation of the stepwise addition procedure, AutoSteper provides automated
topological analysis as well. Since the simulation generates valuable low-energy intermediates
and the parent-son information is stored in every step, the topological linkage information could
be easily extracted. Fig 2 well explains the topological linkage, that is, the relationship between

 and its parent , son .

af://n22

Fig 2. Illustration of the topological linkage.

Fig 3. Illustration of an SWR scenario.

This information is critical when one trying to parse pathways for a specific product, 2 however,
when it comes to different systems, the topological information needs to be re-generated. As an

example, AutoSteper parses the Stone-Wales Rearrangement (SWR) phenomenon 3 by solving
the subgraph isomorphism problem with the assistance of the networkx package. Fig 3

illustrates one of the SWR phenomena, in which a cage skeleton transformation takes place when
the functional groups attack.

Since the subgraph isomorphism function is relatively slow, only limited isomers could be
considered. Similarly, this function could also be used to re-generate pathways and draw the
binding energy profile.

Installation, details of each module as well as the post-analysis functions are presented below.

Install

Enumeration

AutoSteper relies on OpenSource projects FullereneDataPraser and usenauty to properly
enumerate non-isomorphic addition patterns.

af://n36
af://n37
https://github.com/XJTU-ICP/FullereneDataParser
https://github.com/Franklalalala/usenauty

FullereneDataPraser is an excellent python package to handle fullerene-related research
problems, this project utilizes it to convert 3D coordinates to graph6str format. For install:

usenauty is a lightweight tool to enumerate non-isomorphic addition patterns with nauty
algorithm. The original project is in usenauty, here we employ a branch version of it. For install:

Note: The CXX standard is set to be 17, which means the gcc version need to be 8 or higher, or a
higher version of IDE, such as Visual Studio 2017. The cmake version need to be 3.1 or higher.
There are two pre-compiled releases for Windows and Linux platform, respectively.

The absolute path of compiled cagesearch file corresponds to the gen_core_path button in

generator module.

Main project

To install the main project:

To install from source code:

AutoSteper
AutoSteper is the highest level of abstraction. It controls sub-modules to simulate the entire
stepwise addition process. It has 3 different modes, corresponding to the 3 generator’s modes.
Details are presented below:

step : the stepwise simulation.

random : randomly generate isomers and optimize them to an equilibrium state.

base : enumerate and evaluate all the non-isomorphic isomers for a specific addon number.

Except for these functions, AutoSteper provides engineering-related features, such as restart

and error handling . For details see the engineering section.

git clone https://github.com/XJTU-ICP/FullereneDataParser

cd FullereneDataParser

pip install .

1

2

3

git clone https://github.com/Franklalalala/usenauty

cd usenauty

mkdir build

cd build

cmake .. -G "Unix Makefiles"

make

1

2

3

4

5

6

pip install AutoSteper1

git clone https://github.com/Franklalalala/AutoSteper

cd AutoSteper

pip install .

1

2

3

https://github.com/XJTU-ICP/FullereneDataParser
https://github.com/Franklalalala/usenauty
https://doi.org/10.1016/j.cpc.2020.107206
https://github.com/saltball/usenauty
https://en.wikipedia.org/wiki/C%2B%2B17
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio#2017
af://n45
af://n52

step

The input script below is a typical case:

import os

from autosteper import AutoSteper

mach_para = {

 'batch_type': "x",

 'context_type': "SSHContext",

 'remote_root': 'xx/',

 'remote_profile': {

 "hostname": "xx",

 "username": "xx",

 "password": "xx",

 "port": 22,

 "timeout": 10

 }

}

resrc_para = {

 'number_node': 6,

 'cpu_per_node': 6,

 'gpu_per_node': 0,

 'group_size': 10,

 'queue_name': "batch",

 'envs': {

 "OMP_STACKSIZE": "4G",

 "OMP_NUM_THREADS": "3,1",

 "OMP_MAX_ACTIVE_LEVELS": "1",

 "MKL_NUM_THREADS": "3"

 },

 'sub_batch_size': 50

}

para = {

 'pristine_path': r'geom.xyz',

 'root': r'./',

 'gen_para': {'group': 'Cl',

 'geom_mode': 'pre_defined',

 'gen_core_path': r'xx\cagesearch.exe'

 },

 'opt_mode': 'xtb',

 'opt_para': {

 'cmd_list': [r'xx/xtb', '--opt', 'tight', '--json'],

 'out_list': ['xtbopt.xyz', 'xtbopt.log', 'xtbout.json'],

 'deal_wrong_mode': 'Report',

 'mach_para': mach_para,

 'resrc_para': resrc_para,

 },

 'run_para': {

 'start': 1,

 'stop': 4,

 'step': 1,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

af://n62

Fig 4. An AutoSteper workbase.

The resrc_para and mach_para are designed to configure a suitable environment for

optimizers. (see optimizer module) After that, one needs to configure the parameter of the class
AutoSteper . Specifically, one needs to provide:

pristine_path : the path to the pristine cage. It could be in any mainstream structure

format, only if the ASE package supports it.
root : the ABSOLUTE path to the growth simulation workbase, where the AutoSteper would

make a directory in the name of the pristine cage. Fig 4 presents one of the workbase
directory.

The gen_para and opt parameters configure a generator and an optimizer. To simulate a
stepwise addition reaction, one needs to provide the run_para with the following parameters

considered.

start : the addition stage () when the simulation started. The first step will

enumerate and evaluate all the non-isomorphic isomers without any filter.
stop : the addition stage () when the simulation started.
step : number of the newly attached functional groups after the first step.

 'wht_list_para': {

 'mode': 'rank',

 'rank': 5

 }

 },

}

raw folder is pre-defined

auto = AutoSteper(para=para)

auto.run()

52

53

54

55

56

57

58

59

60

61

https://wiki.fysik.dtu.dk/ase/ase/io/io.html#ase.io.read

Fig 5. An AutoSteper sub-workbase.

Fig 6. The first step workbase.

wht_list_para : parameters to control the isomers saved in every step. These isomers will

serve as seeds in the next step to generate derivatives. The white list is a relatively concept to
the blacklist. 7 modes could be selected, details see AutoSteper/test_cutoff.py. The default
mode is rank_and_value , in which the rank is 200, and the value is 1eV. rank_and_value

means the lower boundary of two of them.

AutoSteper would create sub-workbases for every addon number. Fig 5 presents one of the
scenarios. In this case, the start value is 1, the stop value is 10, and the step value is 1.

The directory of the first step is illustrated in Fig 6.

The functions of each file/directory are presented below.

raw : the quasi-equilibrium isomers built in every step.

cooked : the equilibrium state of each isomer, in xyz format.

cooking : the real workbases for each optimization job. It typically contains more

optimization details than the cooked folder.

failed_job_paths : the absolute path of each failed optimization job as well as their

corresponding failed status code.

geom_1_addons.out : the enumerated addition patterns in the first step. geom is the name
of the pristine cage, 1 is the addon number of the first step.

passed_info.pickle : key information of the optimization jobs that passed the topological
check. In the early version of AutoSteper, this file is called deep_yes_info.pickle , meaning

information is stored in a deep chart. Fig 7 presents one of the scenarios. The meaning of
each column is presented below:

https://github.com/Franklalalala/AutoSteper/blob/master/tests/test_cutoff/test_cutoff.py

Fig 7. Example of the passed_info.

Fig 8. Example of the parent_info in the first step.

Fig 9. Example of the parent_info in the proceeding addition stages.

Fig 10. Example of the status_info.

name : the name for each isomer, in 36 format.

energy : the equilibrium energy of each isomer, in units eV.
xyz_path : the absolute path to each isomer structure, in xyz format.

nimages : the number of images in each optimization trajectory.

parent_info.pickle : key information of the parent-son relationships generated during the

growth simulation. In the early version of AutoSteper, this file is called
flat_yes_info.pickle , meaning information is stored in a flat chart, and only the passed

isomers are considered. The flat format enables a fast index when parsing the topological
information.

The first step is different from others since there is only one parent for all the
isomers. Fig 8 presents one of the cases. The columns correspond to each
isomer. The first row corresponds to their energy.
Fig 9 presents a case in the proceeding addition stages. The columns correspond to
each isomer. The first row stores the names of their parent(s). Note
that, isomers in addition stage could have more than one parent .
The second row corresponds to their energy.

status_info.pickle : the status code for each optimization job, in flat chart format for

indexing convenience. Note that this status code is different from the failed status code. Only
three codes are available:

0 : normal termination.

-1 : topological intactness is undermined. (failed topology check)
-2 : wrong jobs. This would happen when there are no files retrieved from

computational resources, for example, the internet is broken.

The directory of the proceeding addition stages is illustrated in Fig 11. The difference compared
with the first step is presented below:

Fig 11. The workbase for the proceeding addition stages.

Fig 12. Example of the all_parent_info.

sub_nauty : there is more than one parent that generates derivatives. Related information is

dumped in this folder.

all_parent_info.pickle : the parent-son information for all the isomers. (see Fig

12.) This is generated when building the quasi-equilibrium isomers. Note that the
parent_info.pickle only considers the passed ones, and it contains energy info. The

all_parent_info.pickle stores duplicated but more detailed information, therefore it may
be useful for future development.

random

The random mode could be used to sample targeted configuration space, for example, building a
dataset to train Neural Network Potential (NNP). The parameters for random mode are basically
the same as the step mode. Differences lie in the run_para , which is replaced by random_para .

Specifically, one needs to provide:

addon_list : a list that consists of desired addon numbers, e.g, .

random_num : for each addon number m, the number of randomly sampled isomers .
try_times : since some systems are highly unstable, e.g, , all the isomers

sampled could be unphysical and fail the topological check. In this case, the whole batch of
isomers should be discarded. This parameter is highly recommended to control the
failed chances. Note that, it needs deal_wrong_mode set as Tough to properly function.

Despite these parameters, the execution method of AutoSteper changed from run to random .
For an example script, see AutoSteper/test_random.py.

base

The base mode could be used to enumerate and evaluate all isomers for a specific system
. In fact, it could be viewed as the first step in the step mode. Since the base mode has

only one step, its input script doesn’t need run_para . The rest of the parameters stay the same
as above. The execution method of AutoSteper changed from run to base . For an example

script, see AutoSteper/test_base.py.

Engineering

af://n149
https://github.com/Franklalalala/AutoSteper/blob/master/tests/test_random/test_random.py
af://n159
https://github.com/Franklalalala/AutoSteper/blob/master/tests/test_base/test_base.py
af://n161

Currently, AutoSteper provides restart and error_handling for engineering convenience.

More features are under development.

restart&proceed

The restart feature is designed for the step mode in case the simulation is interrupted. To use

it, simply replace the execution method of AutoSteper to restart . For example:

Note that, the restart method will delete the original workbase for

, after that, a new workbase will be created for
. Make sure the restart_add_num equals the exact addon

stage when the simulation was interrupted.

Besides, this feature could be used to proceed with a normally terminated simulation. For
example, the original one terminated in add_num = 4 , and the restart_add_num could be set as

4+step .

error handling

The error_handling feature is assigned to optimizers. For description convenience, details of
them are presented in this section. Note that, the error mentioned here denotes an unexpected

optimization task result, which is different from the failed notation.

There are 3 modes in total. Specifically:

Report : simply report the wrong information and end out.

Complete : recursively submit jobs in small batches to minimize the wrong jobs, then end

out. Note that, the dpdispatcher submits jobs in a batch style. When there is one job ends
unexpectedly, there would be no retrieval from the remote for the whole batch. The
Complete mode will submit recursively with small batches until the abnormal ones are left.

Tough : designed for random mode in case the whole batch of randomly generated isomers

are unphysical.

Optimizer
The optimizer module heavily rely on open-source package deepmodeling/dpdispatcher. See
Getting Started to get familiar with dpdispatcher. Here presents the usage of AutoSteper’s
customized version.

machine and resource

To start with, one needs to set a machine and a resource configuration. Here present some
examples.

For the machine parameter, two sets of configurations are recommended. See below:

auto.run()

auto.restart(restart_add_num=5)

1

2

from local (typically your win system) to clusters. Input scripts are

submitted in Personal Computer (PC).

mach_para = {

 'batch_type': "Torque", # my cluster type

1

2

3

af://n163
af://n168
af://n178
https://github.com/deepmodeling/dpdispatcher
https://docs.deepmodeling.com/projects/dpdispatcher/en/latest/getting-started.html
af://n180

For the resource parameter, here is an example:

The machine parameters tell the dpdispatcher which cluster to use and how to contact, while
the resource parameter assigns computation resources to each job.

The original workflow of the dpdispatcher is illustrated in Fig 13.

 'context_type': "SSHContext",

 'remote_root': '/home/test/xx/', # the remote workbase where the actual

computation take place.

 'remote_profile': {

 "hostname": "2xx.2xx.xx.7x", # IP

 "username": "xx",

 "password": "xx",

 "port": 22,

 "timeout": 10

 }

}

inside your clusters. Input scripts are submitted in the cluster.

mach_para = {

 'batch_type': "Torque", # my cluster type

 'context_type': "LocalContext", # Do not need IP information

 'remote_root': '/home/test/xx/',

 'remote_profile': None

}

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

resrc_para = {

 'number_node': 6, # the sequence name for your cluster.

 'cpu_per_node': 6, # computational resources for each task.

 'gpu_per_node': 0, # same as above

 'group_size': 10, # number of tasks contained in each job (group).

 'queue_name': "batch", # queue name for my cluster

 'envs': { # extra enviromental variables

 "OMP_STACKSIZE": "4G",

 "OMP_NUM_THREADS": "3,1",

 "OMP_MAX_ACTIVE_LEVELS": "1",

 "MKL_NUM_THREADS": "3"

 },

 'sub_batch_size': 50 # number of tasks contained in each batch.

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Fig 13. Simplified workflow of dpdispatcher.

Fig 14. A top-down illustration of the modified dpdispatcher.

Each optimization job corresponds to a task. Then, tasks are grouped (group_size) into jobs.
These jobs are submitted through ssh or local context (context_type) to remote (remote_root),

where the remote would assign computational resources to each job (All_cpu_cores

/cpu_per_node) and execute them in parallel.

However, when it comes to huge task sequences, the number of groups in line may put pressure
on the cluster. And when something wrong happened in a single job, the whole batch would be
undermined. (For example, no retrieval from remote.) Therefore, we proposed the
sub_batch_size parameter to perform job dispatch in a mini-batch style. An illustration of the

modified dpdispatcher is presented in Fig 14.

More details could be found in the documentation of Machine parameters and Resources
parameters.

opt mode and parameter

Currently, AutoSteper provides interfaces for 3 software, namely, the xTB program, the Gaussian
software, and the ASE python library. Examples could be found in test_ASE_Optimizer,
test_Gaussian_Optimizer, and test_XTB_Optimizer.

In addition, AutoSteper provides the Multi_Optimizer to properly integrate different software or

employ the same software repeatly. Examples could be found in test_multi_optimizer.

The details about related parameters are presented below:

https://docs.deepmodeling.com/projects/dpdispatcher/en/latest/machine.html
https://docs.deepmodeling.com/projects/dpdispatcher/en/latest/resources.html
af://n195
https://xtb-docs.readthedocs.io/en/latest/contents.html
https://gaussian.com/
https://wiki.fysik.dtu.dk/ase/about.html
https://github.com/Franklalalala/AutoSteper/tree/master/tests/test_ASE_Optimizer
https://github.com/Franklalalala/AutoSteper/tree/master/tests/test_Gaussian_Optimizer
https://github.com/Franklalalala/AutoSteper/tree/master/tests/test_XTB_Optimizer
https://github.com/Franklalalala/AutoSteper/tree/master/tests/test_multi_optimizer

1. opt_mode : tells the AutoSteper class or the switch_optimizers function which optimizer

to choose.
2. cmd_list : the actual command line in the final workbase (without the filename). It consists

of the call of the program, options, flags, and so on.
3. out_list : the names of output files that need to be downloaded.

4. deal_wrong_mode : how to deal with wrong jobs, details see the engineering section.
5. has_parity : The spin multiplicity is different between odd and even addon number

isomers. Set this button true if you intend to simulate odd addon number isomers. This will
enabling an automated multipicity check.

Generator
The generator module is in charge of building molecules. Details of parameters are presented
below:

group : the name of functional groups. Currently, AutoSteper supports

.
gen_core_path : the absolute path to the executable binary file cagesearch , which is

compiled from the Franklalalala/usenauty repository.
geom_mode : decides how to build quasi-equilibrium isomers. This parameter is highly

recommended to be set as pre_defined . The pre-defined geometry parameters are chosen

from thousands of randomly sampled isomers. If one needs to change these parameters, set
geom_mode to another value and assign new parameters through geom_para . Note that, the
new format needs to stay consistent with the original.

Note that, the generator module could be used alone to build hand-tuned structures. See
AutoSteper/test_build_unit.py.

Checker
The checker module will check optimized isomers to ensure an undermined topology. 7 scenarios
could be detected, their corresponding failed status codes are presented below.

1. At least one functional group breaks the bond with the cage and becomes a radical.
2. At least one functional group deviates from the initial addition site and moves to another.
3. At least one 3-membered carbon ring is formed during optimization, meaning the pristine

cage is squeezed by functional groups.
4. At least one carbon atom only has 2 neighboring carbon atoms or less, meaning the cage is

broken.
5. At least one functional group binds with 2 or more carbon atoms, which is unstable for

currently supported functional groups.
6. At least one carbon atom binds with 5 or more atoms, which means a small cluster or a

coordination is formed.
7. The inner intactness of at least one functional group () is undermined.

These status codes will be reported in the failed_job_paths file.

Need to mention that, the AutoSteper module doesn’t need any specific input parameters for the
checker module, though it could also be used alone. See AutoSteper/test_checker.py.

Blacklist

af://n210
https://github.com/Franklalalala/usenauty
https://github.com/Franklalalala/AutoSteper/blob/18f474b0dd58adc9cd7484007a14927e2cde5123/src/autosteper/generator.py#L12
https://github.com/Franklalalala/AutoSteper/blob/master/tests/test_build_unit/test_build_unit.py
af://n221
https://github.com/Franklalalala/AutoSteper/blob/master/tests/test_checker/test_checker.py
af://n240

Fig 15. Illustration of the high-energy configuration space.

The concept of the blacklist is based on the assumption that high-energy isomers probably
contain local instability motifs, therefore their derivatives will unlikely to become stable ones since
they still contain those instability motifs. This is a dual concept to the low-energy configuration
space, which is treated as seeds to generate derivatives. See Fig 15.

AutoSteper collects two kinds of isomers into the blacklist.

1. The isomers that failed the topological check. (denote as failed)
2. The high-energy isomers within certain reverse cutoff. (denote as unstable)

When it comes to a new step, the new addition patterns will check through the blacklist at first. If
a pattern contains any of the recorded patterns, it will be directly skipped.

To control the influence of a high-energy pattern, AutoSteper provides a queue to store high-
energy patterns. See Fig 16.

Fig 16. Illustration of the queue maintained by AutoSteper.

AutoSteper starts collecting high-energy isomers in start_clct_num . These patterns start

functioning in the next step and will continue to function till
start_clct_num+container_size*step . The blacklist system will shut down after final_chk .

To enable the blacklist feature, one needs to provide a blk_para . Here is an example of
blk_para , for example of an input script, see AutoSteper/test_blk_list.py

Note that, all failed addition patterns are collected by default as long as the blacklist system
functions. Another kind of high-energy isomers is collected when the clct_unstb is Ture. The

unstb_para controls the reversed cutoff range, details see AutoSteper/test_cutoff.py.

Pre-scan
The pre-scan feature takes the quasi-equilibrium geometry to approximate the equilibrium state
isomer. Since AutoSteper builds quasi-equilibrium isomers in a python environment, currently
only the python package ASE is supported as the single-point evaluator.

blk_para = {

 'start_clct_num': 2,

 'final_chk_num': 8,

 'clct_unstb': True,

 'unstb_para': {

 'mode': 'rank',

 'rank': 10,

 },

 'container_size': 3

}

1

2

3

4

5

6

7

8

9

10

https://github.com/Franklalalala/AutoSteper/blob/master/tests/test_black_list/test_blk_list.py
https://github.com/Franklalalala/AutoSteper/blob/master/tests/test_cutoff/test_cutoff.py
af://n258
https://wiki.fysik.dtu.dk/ase/about.html

Fig 17. The workbase when the pre-scan feature enabled.

The generated isomer (in atom class) would go through a single-point evaluation before dumping

to a xyz format file. After the generation of all isomers, the low-energy ones will be selected and
re-dumped into the post_pre_scan_raw folder. These isomers would undergo geometry

optimization with optimizers. Fig 17 presents a working folder when the pre-scan feature is
enabled. It’s basically the same as the step mode workbase.

To enable a pre-scan feature, one needs to provide a pre_scan_para . Here is an example of
pre_scan_para , for example of an input script, see AutoSteper/test_pre_scan.py.

Note:

1. The calculator needs to stay in ASE format.

2. The ps_cut_para controls the cutoff range for the isomers that need geometry
optimization.

Post-analysis
AutoSteper provides multiple functions and abstractions to perform the post-analysis. Here
presents a brief introduction.

refine

When one needs to improve computational accuracy, the refine function in the parser module
presents a nice solution. Only 3 parameters are needed to perform a refinement procedure. That
is:

old_workbase : the original workbase.

new_workbase : the new workbase.

ref_para : the same format as the optimizer’s parameter to configure an optimizer.

pre_scan_para = {

 'start_ps_para': 2, # when the pre-scan feature enabled

 'final_ps_para': 3, # when the last addition stage that the pre-scan

feature functions

 'calculator': calculator, # the calculator in ASE format

 'ps_cut_para': { # to control the cutoff range

 'mode': 'rank',

 'rank': 80

 }

}

1

2

3

4

5

6

7

8

9

https://github.com/Franklalalala/AutoSteper/blob/master/tests/test_pre_scan_restart/test_pre_scan.py
https://wiki.fysik.dtu.dk/ase/ase/calculators/calculators.html#calculators
af://n271
af://n273

That’s it. AutoSteper will refine the original data and dump them into the new workbase. For
details, see AutoSteper/test_refine.py.

isomorphism test

AutoSteper provides 3 functions to perform the isomorphism test. For example, see
AutoSteper/test_iso_relatives.py.

Details are presented below:

simple_test_iso

This function is designed to test whether a specific isomer is within the simulation
results . If it’s indeed within the results, this function will
output its corresponding rank . One needs to provide:

q_atoms : the queried isomer, in ASE Atoms format.
passed_info_path : the absolute path to the queried passed_info.pickle .

top_k : a cutoff performed on the passed_info.pickle , rank mode only. If none,

AutoSteper will scan all the simulation results.

simple_log_relatives

This function is designed to quickly find relatives of a specific isomer and log key
information to a writeable path. Here relatives mean the intermediates (),
isomer () and derivatives () of the queried isomer. To ensure
a fast test, here use the addition patterns as a criterion.

Two ways to decide the queried addition pattern.

The recommended way to get the addition pattern:

q_atoms : the queried isomer, in ASE Atoms format. Note that, it needs to have an

identical pristine cage to the target. This ensures an identical sequence.
group : the symbol of the functional group.

cage_size : the size of the pristine cage.
The second way to get the addition pattern:

q_seq : the 36-base format name. See the 36 base function.
q_cage : the key to decipher the 36-base name to a sequence, in AutoSteper/cage

format.

After that, one needs to provide:

fst_add_num : the smallest addon number to be scanned.

final_add_num : the biggest addon number to be scanned.

step : the step that used in the growth simulation.
workbase : the original workbase.

dump_log_path : the absolute path to dump the related information.

Here is an example of the dumped log.

https://github.com/Franklalalala/AutoSteper/blob/master/tests/test_ref/test_refine.py
af://n283
https://github.com/Franklalalala/AutoSteper/blob/master/tests/test_iso_relatives/test_iso_relatives.py
af://n286
https://wiki.fysik.dtu.dk/ase/ase/atoms.html#module-ase.atoms
af://n295
https://wiki.fysik.dtu.dk/ase/ase/atoms.html#module-ase.atoms
https://github.com/Franklalalala/AutoSteper/blob/18f474b0dd58adc9cd7484007a14927e2cde5123/src/autosteper/cage.py#L59
https://github.com/Franklalalala/AutoSteper/blob/18f474b0dd58adc9cd7484007a14927e2cde5123/src/autosteper/cage.py#L11
https://github.com/Franklalalala/AutoSteper/blob/master/tests/test_iso_relatives/rel.log

Fig 18. Example of the dumped information. The red 'x' presents a relative, blue '+' is a non-
isomerphic one.

strict_scatter_relatives

This function is designed to strictly find relatives of a specific isomer. It implements the
subgraph_is_isomorphic function to perform the isomorphism test and dump information in a
png format (see Fig 18). The input parameters are basically the same as the above function. The
difference is that it needs a folder to dump information.

In addition, AutoSteper dumps the relative energy of each scanned isomer, and groups them into
the non_rel_e and rel_e .

cook_disordered

To better analyze the low-energy configuration space, AutoSteper provides the cook_disordered

function to translate disordered log files into structured information. Two folders and one pickle
file will be generated. Details are presented below:

pathway_info.pickle : information for all the pathways. name column meaning the

pathway-related names, rel_e corresponds to the relative energy of isomers, e_area

means the relative energy of pathways.

./sorted : sorted information for isomer rankings. And this is a standard output format.

./sorted/log : the final optimization logs for a specific isomer. File names contain two

metrics. The first number means the number of addends, the last number means the
ranking of the specific isomer. For example, 1_addons_1 means it contains 1 addend

and its energy rank is 1 (the lowest energy one).
./sorted/xyz : the final image of the optimization trajectory. The name convention is

the same as above.

af://n328
https://networkx.org/documentation/latest/reference/algorithms/generated/networkx.algorithms.isomorphism.GraphMatcher.subgraph_is_isomorphic.html#graphmatcher-subgraph-is-isomorphic
af://n333

./sorted/info : energy information.

./sorted/connection : connection information. 1_addons_1.npy corresponds to the
isomer, whose geometry information is stored in 1_addons_1.xyz . This isomer has

connection relationships with higher addends, here in this case, it means 2 addends.
1_addons_1.npy stores this information, 1 meaning connected, 0 for not.

./pathways : pathway-related isomers. traj.log for the whole trajectory.

One needs to provide following parameters:

disordered_root : path to the disordered root.

dump_root : path to dump information.
keep_top_k_pathway : how many generated pathways to keep. (in rank mode)

step : the step of the original growth simulation.

log_mode : two log formats are supported. 1. the gaussian format, type key word gauss . 2.
the xyz format, type key word xyz .

For an example, see AutoSteper/test_cook_disordered.py.

On the bases of structured information, one can easily perform topological analysis. See
find_SWR and get_binding_e in below.

find_SWR

For description convenience, here we denote an isomer before and after an SWR as
and . The system is represented as the query system and is the
target system.

One needs to provide the following parameters:

q_sorted_root : the sorted information provided by the cook_disordered function. This

root corresponds to the query system.
tgt_sorted_root : same as above, for the target system.

swr_dump_path : where to dump the information.

step : the step of the original growth simulation.
is_unique : if true, for every atoms in q_root, only one SWR target is outputted, typically for

the lowest energy isomer, here we take the rank info in the name as criteria.
is_low_e : if true, for every atoms in q_root, only one SWR target is outputted, and it should

have lower energy than the 'ought to be' parents.

Details about the output are presented below:

./swr_dump_path : Automated generated SWR pairs.

For example, q_14_to_tgt_15 means SWRs between and

q_14_to_tgt_15/0_to_2_swr_1 means SWRs between and .
 means the pristine cage.

The 1 in 0_to_2_swr_1 means this query atoms has an energy rank of 1 among other

query atoms.
In the folder of q_14_to_tgt_15/0_to_2_swr_1 , q_atoms.xyz is the geometry structure for
the query atoms , tgt_atoms_rank_1.xyz is the corresponding target atoms

, since there may be more than one target atoms (if the is_unique option is

False), the 1 in tgt_atoms_rank_1.xyz means the energy rank of target atom.

For an example, see AutoSteper/test_find_SWR.

https://github.com/Franklalalala/AutoSteper/blob/master/tests/test_cook_disordered/test_cook_disordered.py
af://n365
https://github.com/Franklalalala/AutoSteper/tree/master/tests/test_find_SWR

get_binding_e

The binding energy well explains the reaction activity. Based on the structured topological
information provided by the cook_disordered function, one can easily parse the binding energy
information. Set hydrofullerene as an example, AutoSteper following this equation to calculate
binding energy.

One needs provide the following parameters:

sorted_root : the structured source folder.

cage_e : the energy of the pristine cage.

addends_e : the energy of the simple substance of addons. Here in this case, its Hydrogen.

Note that, the cage_e and addends_e need to be calculated under the same computational level
as the general isomers.

The output of this function is dumped into the sorted_root/info/ , in the format of pickle and
xlsx .

For an example, see AutoSteper/test_binding_e.py.

Path_Parser

The Path_Parser is an abstraction designed to get pathways from the parent-son information,

which is generated along with the Growth Simulation. This feature is considered since the very
beginning of AutoSteper. The parent-son information could be viewed as a by-product of the

simulation, therefore the calculation of pathways is extremely fast.

One needs to provide the following parameters for a basic configuration:

The configuration will generate pathways for . Here the q_add_num is the m, the
q_isomer_rank is i. log_low_e_num will dump low-energy isomers

 into a log. q_path_rank will decide how many low-energy

pathways to be dumped.

This configuration parses pathways for the specific q_isomer_rank . All the pathways end to the

.

To see a mixed scenario, simply set the is_mixed flag to True. See
AutoSteper/test_path_parser_2.py. The generated pathways will end to

.

If one needs a higher accuracy of pathways, there is a refiner option in Path_Parser . See

AutoSteper/test_path_parser_2_ref.py.

path_para = {

 'step': 1, # the step that used in the growth simulation.

 'start': 1, # when the growth simulation started

 'q_add_num': 4,

 'q_path_rank': 10,

 'q_isomer_rank': 5,

 'log_low_e_num': 10,

}

1

2

3

4

5

6

7

8

af://n393
https://github.com/Franklalalala/AutoSteper/blob/master/tests/test_binding_e/test_binding_e.py
af://n407
https://github.com/Franklalalala/AutoSteper/blob/master/tests/test_path_parser/test_path_parser_2.py
https://github.com/Franklalalala/AutoSteper/blob/master/tests/test_path_parser/test_path_parser_2_ref.py

Fig 19. Example of the generated heatmap for pathways.

If one needs to control the number of pathways, set a ctl_path_para as below:

This is for the case when the queried addon number is very high. Since the Path_Parser
functions in a DFS way, the low-energy pathways will be well preserved.

The generated pathways are highly structured and informative, see AutoSteper/test_path_parser.
Here presents the well-designed heatmap. See Fig 19.

path_para = {

 'step': 1, # the step that used in the growth simulation.

 'start': 1, # when the growth simulation started

 'q_add_num': 22,

 'q_path_rank': 10,

 'q_isomer_rank': 5,

 'log_low_e_num': 10,

 'ctl_path_para': {

 'ctl_parent_num': 3, # Control the number of parents for each

isomer.

 'max_path_num': 10000, # Control the maximum number of pathways.

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

https://github.com/Franklalalala/AutoSteper/tree/master/tests/test_path_parser

1. 10.1039/A905719F ↩

2. 10.1038/nchem.549 ↩

3. 10.1021/acs.accounts.9b00175 ↩

It well-explained the ranking of pathways. For example, all the related isomers for the pathway in
row 1 is the lowest-energy one (relative energy is 0), therefore it’s the lowest-energy pathway.

Reference
In DOI format.

af://n422

	Introduction
	Install
	Enumeration
	Main project

	AutoSteper
	step
	random
	base

	Engineering
	restart&proceed
	error handling

	Optimizer
	machine and resource
	opt mode and parameter

	Generator
	Checker
	Blacklist
	Pre-scan
	Post-analysis
	refine
	isomorphism test
	simple_test_iso
	simple_log_relatives
	strict_scatter_relatives

	cook_disordered
	find_SWR
	get_binding_e
	Path_Parser

	Reference

