
lyse: a data analysis system for process-as-you-go
automated data analysis

Chris Billington

January , 

Contents

 Introduction 

 e lyseAPI 

 Examples 
. Single-shot example . 
. Multi-shot example . 

 Introduction

l
yse is a data analysis system which gets your code running on experimental data as it is
acquired. It is fundamenally based around the ideas of experimental shots and analysis
routines. A shot is one trial of an experiment, and a routine is a Python script, written

by you, that does something with the measurement data from one or more shots.
Analysis routines can be either single-shot ormulti-shot. is determines what data and

functions are available to your code when it runs. A single-shot routine has access to the
data from only one shot, and functions available for saving results only to the hdf file for
that shot. A a multi-shot routine has access to the entire dataset from all the runs that are
currently loaded into lyse, andhas functions available for saving results to anhdffilewhich
does not belong to any of the shots—it’s a file that exists only to save the ‘meta results’.

Actually things are far less magical than that. e only enforced difference between a
single shot routine and a multi-shot routine is a single variable provided to your code when
lyse runs it. Your code runs in aperfectly clean Python environmentwith this one exception:
a variable in the global namespace called path, which is a path to an hdf file. If you have
told lyse that your routine is a singleshot one, then this path will point to the hdf file for
the current shot being analysed. On the other hand, if you’ve told lyse that your routine is
amultishot one, then it will be the path to an h file that has been selected in lyse for saving
results to.

e other differences listed above are conventions only, and pertain to how you use the
API that lyse provides, which will be different depending on what sort of analysis you’re
doing.

Here’s a screenshot of lyse:
ough lyse’s design is based around the assumption that you’ll follow these conventionsmost of the time



. Here’s where single shot routines can be added and removed, with the plus and mi-
nus buttons. ey will be executed in order on each shot (more on how that works
shortly). ey can be reordered, or enabled/disabled with the checkboxes on the le.
e checkboxes to the right, underneath the plot icons don’t currently do anything,
but they are intended to provide control over how plots generated by the analysis
routines are displayed and updated.

. Here is wheremulti-shot routines can be added or removed. e file selection button
at the top allows you to select what hdf file multi-shot routines will get given (to
which they will save their results).

. Allows pausing of analysis. lyse by default will run all single-shot routines on a shot
when it arrives (either via the HTTP server or having been manually added). Aer
all the shots have been processed, only then will the multi-shot routines be executed.
So if you load ten shots in quickly, the multi-shot routines won’t run until they’ve all
been processed by the single-shot routines. However most of the time there will be
sufficient delay in between shots arriving that multi-shot routines will be executed
pretty much every time a new shot arrives.

. If you want to re-run single-shot analyses on some shots, select them and click this
button. ey’ll then be processed in order.

. is will rerun all the multi-shot analyses.

. Here is where shots appear, either having arrived over HTTP of having been added
manually via the file browser (by clicking the plus button). Many columns will pop-
ulate this part of the screen, one for each global and each of the results (as saved by
single-shot routines) present in the shots. A high-priority planned feature is to be
able to choose exactly which globals and results are displayed. Otherwise this display
is overwhelming to the point of uselessness. e data displayed here represents the
entirety of what is available to multi-shot routines via the API provided by lyse.

. is is where the output of routines is displayed, errors in red. If you’re putting print
statements in your analysis code, here is where to look to see them. Likewise if there’s
an exception and analysis stops, look here to see why.



 e lyseAPI

S , you’ve got a single filepath. What data analysis could you possibly do with
that? It might seem like you have to still do the same amount of work that you would
without an analysis system! Whilst that’s not quite true, it’s intentionally been de-

signed that way so that you can run your code outside lyse with very little modification.
Another motivating factor is to minimise the amount of magic black box behaviour, such
that an analysis routine is actually just an ordinary Python script which makes use of an API
designed for our purposes. lyse is both a program which executes your code, and an API
that your code can call on.

To get started, you’ll want to begin your analysis routine with:

 from lyse import *

e lyse module provides the following one function and two classes:

data(filepath=None, host='localhost') . e data function when called with no argu-
ments obtains the current dataset from a running instance of lyse on the same com-
puter. It returns a pandas DataFramewith the same rows and columns as you see in the
main program of lyse. is is a simple way to get at your data, that doesn’t require
at all that your code is being run from within lyse. You can simply open a python
interactive session, type from lyse import *; df = data(), and begin pulling out
columns and plotting them against each other. Callin data() this way is intended for
pulling data for multi-shot analysis, and should be avoided in single-shot mode.
Whencalledwith the host argument, the data function instead connects to a running
instance of lyse on that computer, downloading its DataFrame over the network. I’m
planning on including automatic SSH tunnelling through bec.physics to allow for us
to obtain our data from outside the lab subnet without the need for a VPN.
When calledwith the filepath argument, the data function instead returns a pandas
Series object with the globals and results from just the h file specified. is is in-
tended for use in single-shot mode, with the filepath being that single global variable
that lyse implants into the namespace, as I mentioned in sec .

Run(h5_path)  Sometimes you need more than just the globals and results in single shot
mode. In fact, you cannot produce any results without having access tomeasurement
data—that is traces and images. Run objects providemethods for obtaining this data
from an h file. ey also provide methods for saving your results back to the same
h file.

t, V = Run.get_trace(name) Returns an array of times and an array of voltages for
an analogue input trace named name, as specified in a call to AnalogIn.acquire
in labscript.

im = Run.get_image(orientation,label,image) Returns an image (as an array) from
the camera with specified orientation (eg side, top), image label (eg fluorescence,
absorption), and specific image name (egOD, atoms, flat).

importing lyse imports the functions in pythonlib/lyse/__init__.py, whereas the main program is
pythonlib/lyse/main.pyw

ere is another argument to this function—no_write=False, but is is intended for use only internally by
Sequence, which instantiates many runs but disables their functions for writing to file



Run.save_result(name,value) Saves a single-value result to the hdf file. e result
will be saved as an attribute to the group /results/ your_script's_filename,
with the attribute name . Results saved in thiswaywill be available to subsequent
routines in the DataFrames and Series returned by data() under the hierarchy
dataframe[your_script's_ filename, your_result's_name].

Run.save_result_array(name,data) is method saves an array which can be any
numpydatatype convertible tohdfdatatypes (which is prettymuchanynumpy
array, includingnumpy ‘record’ arrays—those are theoneswithnamedcolumns).
earraywill be saved in adataset under the group /results/ your_script's_filename,
with the dataset’s name being name. It will not be accessible alongside glob-
als and single-value results, but can be accessed with the get_result_array
method.

arr = Run.get_result_array(group,name) is returns a numpy array as saved by
the save_result_array function. e group argument specifies the name of
the group that the result array was saved to within the results group of the hdf
file. is will be then filename of the analysis routine which saved the result.

Run.set_group(groupname) When running Python in interactive mode, the Run ob-
ject can’t know what filename to use as the hdf group name to which results
are savedwith save_result and save_result_array. So if you try to instantiate
a Run object in interactive mode, you’ll be prompted to call this method to set
what the group name should be instead.

t1, V1,...tn, Vn = Run.get_trace(name_1,..., name_n)
A convenience method for getting many traces at once.

Run.save_results(name_1,value_1..., name_n, value_n)
A convenience method for saving many results at once.

arr1,...arrn = Run.get_result_arrays(group, name_1,..., name_n)
Aconveniencemethod for gettingmany result arrays at once, provided they are
within the same group.

Run.save_result_arrays(name_1,data_1..., name_n, data_n)
A convenience method for saving many result arrays at once.

Sequence(h5_path,run_paths) A Sequence object represents many runs. It provides meth-
ods for getting data from the runs, and for saving the results of multi-shot analyses to
the file specified by h5_path, which should be the filepath that lyse provides to your
multi-shot analysis script. run_paths should be a list of filepaths that you would like
to be included in this Sequence. You can pull out these filenames from the DataFrame
provided by the data() functionwith df['filepaths']. Youmight use this to pass in
the filepaths for only a subset of the shots. You can also pass in the entire DataFrame
as the run_paths, and if it contains a column called 'filepaths', then those filepaths
will be used.

Sequence.runs e sequence object contains a Run object for each of the files in
run_paths. Sequence.runs is a dictionary of these Runobjects, keyedbyfilepath.
is dictionary ismainly for internal use by the Sequence object, but is included
here in case you really do need to delve into the data from individual shots dur-
ing a multi-shot routine. All methods of these Run objects that would write to
their hdf file have been disabled.

Sequence.get_result_array Takes the same arguments as Run.get_result_array,
and returns a dictionary of result arrays, one for each run, keyed by filepath.

Sequence.get_trace Takes the same arguments as Run.get_result_array, and re-
turns a dictionary of t, V tuples, one for each run, keyed by filepath.



e Sequenceobject alsohas themethods save_result, save_result_array, save_results
and save_result_arrays, which work identically to equivalent methods in the Run
object, the only difference being that you’re saving the results to the h file associ-
ated with the Sequence object, rather than a file associated with a single shot.

 Examples

. Single-shot example

 from lyse import *
 from pylab import *

 # Let's obtain our data for this shot -- globals, image attributes and
 # the results of any previously run single-shot routines:
 ser = data(path)

 # Get a global called x:
 x = ser['x']


 # Get a result saved by another single-shot analysis routine which has
 # already run. The result is called 'y', and the routine was called
 # 'some_routine':
 y = ser['some_routine','y']

 # Image attributes are also stored in this series:
 w_x2 = ser['side','absorption','OD','Gaussian_XW']

 # If we want actual measurement data, we'll have to instantiate a Run object:
 run = Run(path)

 # Obtaining a trace:
 t, mot_fluorecence = run.get_trace('mot fluorecence')

 # Now we might do some analysis on this data. Say we've written a
 # linear fit function (or we're calling some other libaries linear
 # fit function):
 m, c = linear_fit(t, mot_fluorecence)

 # We might wish to plot the fit on the trace to show whether the fit is any good:

 plot(t,mot_fluorecence,label='data')
 plot(t,m*t + x,label='linear fit')
 xlabel('time')
 ylabel('MOT flourescence')
 legend()

 # Don't call show() ! lyse will introspect what figures have been made
 # and display them once this script has finished running. If you call
 # show() it won't find anything. lyse keeps track of figures so that new
 # figures replace old ones, rather than you getting new window popping
 # up every time your script runs.

 # We might wish to save this result so that we can compare it across
 # shots in a multishot analysis:
 run.save_result('mot loadrate', c)

. Multi-shot example

 from lyse import *
 from pylab import *

 # Let's obtain the dataframe for all of lyse's currently loaded shots:
 df = data()

 # Now let's see how the MOT load rate varies with, say a global called
 # 'detuning', which might be the detuning of the MOT beams:


 detunings = df['detuning']

 # mot load rate was saved by a routine called calculate_load_rate:

 load_rates = df['calculate_load_rate', 'mot loadrate']

 # Let's plot them against each other:

 plot(detunings, load_rates,'bo',label='data')

 # Maybe we expect a linear relationship over the range we've got:
 m, c = linear_fit(detunings, load_rates)

Sequence is actually a subclass of Run



 # (note, not a function provided by lyse, though I'm sure we'll have
 # lots of stock functions like this available for import!)

 plot(detunings, m*detunings + c, 'ro', label='linear fit')
 legend()

 #To save this result to the output hdf5 file, we have to instantiate a
 #Sequence object:
 seq = Sequence(path, df)
 seq.save_result('detuning_loadrate_slope',c)



	Introduction
	The lyse API
	Examples
	Single-shot example
	Multi-shot example

